WO2010143616A1 - 作業機械および作業機械の制御方法 - Google Patents

作業機械および作業機械の制御方法 Download PDF

Info

Publication number
WO2010143616A1
WO2010143616A1 PCT/JP2010/059647 JP2010059647W WO2010143616A1 WO 2010143616 A1 WO2010143616 A1 WO 2010143616A1 JP 2010059647 W JP2010059647 W JP 2010059647W WO 2010143616 A1 WO2010143616 A1 WO 2010143616A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
hydraulic
arm
valve
opening area
Prior art date
Application number
PCT/JP2010/059647
Other languages
English (en)
French (fr)
Inventor
広治 大東
紀孝 永田
雅俊 内丸
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN2010800258282A priority Critical patent/CN102459770B/zh
Priority to US13/376,250 priority patent/US9074346B2/en
Priority to KR1020117028286A priority patent/KR101305267B1/ko
Priority to DE112010002422.7T priority patent/DE112010002422B4/de
Publication of WO2010143616A1 publication Critical patent/WO2010143616A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/162Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/20Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors controlling several interacting or sequentially-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means

Definitions

  • the present invention relates to a work machine and a control method for the work machine.
  • non-priority side actuator the size of the opening of the control valve of one actuator (hereinafter referred to as “non-priority side actuator”) is independently operated. Control to make it smaller than the hour value is performed (see Patent Document 1). Thereby, the flow rate of the hydraulic fluid supplied to the other actuator (hereinafter referred to as “priority side actuator”) can be ensured.
  • the opening of the control valve of the non-priority side actuator is made small based only on the operation of the operation unit for instructing the operation of the actuator. For this reason, even when a large load is applied to the non-priority actuator, the opening of the control valve is reduced when the operation unit receives a predetermined operation. For this reason, there exists a possibility that the operating speed of an actuator may fall.
  • An object of the present invention is to provide a work machine and a work machine control method capable of suppressing a decrease in operating speed of an actuator and occurrence of a hydraulic pressure loss during complex operation.
  • a work machine includes a hydraulic pump that discharges hydraulic oil, a first actuator, a first direction switching valve, a second actuator, a second direction switching valve, an operation unit, A first hydraulic pressure detection unit, a pilot pressure control valve, and a control unit are provided.
  • the first actuator is driven by hydraulic fluid discharged from the hydraulic pump.
  • the first direction switching valve can switch the supply direction of the hydraulic oil from the hydraulic pump, and changes the flow rate of the hydraulic oil supplied to the first actuator by changing the opening area of the flow path of the hydraulic oil.
  • the second actuator is driven by hydraulic fluid discharged from the hydraulic pump.
  • the second direction switching valve can switch the supply direction of the hydraulic oil from the hydraulic pump, and changes the flow rate of the hydraulic oil supplied to the second actuator by changing the opening area of the flow path of the hydraulic oil.
  • the operation unit is for operating the first actuator and the second actuator.
  • the first hydraulic pressure detection unit detects the hydraulic pressure supplied to the first actuator.
  • the pilot pressure control valve adjusts the pilot pressure input to the pilot port of the first directional control valve.
  • the control unit controls the opening area of the first directional control valve by controlling the pilot pressure control valve.
  • the control unit controls the pilot pressure control valve so that the opening area of the first directional switching valve when the composite operation is performed is equal to or smaller than the opening area of the first directional switching valve when the single operation is performed. .
  • the combined operation means that the first actuator and the second actuator are operated simultaneously.
  • the single operation means that only the first actuator of the first actuator and the second actuator is operated.
  • the control unit determines the opening area of the first direction switching valve when the composite operation is performed based on the hydraulic pressure detected by the first hydraulic pressure detection unit.
  • a work machine is the work machine according to the first aspect, wherein the control unit performs an opening operation of the first directional control valve when a composite operation is performed, by a single operation.
  • the opening area of the first direction switching valve is made smaller than the above, the opening area of the first direction switching valve is increased as the hydraulic pressure detected by the first hydraulic pressure detection unit increases.
  • a work machine is the work machine according to the second aspect, wherein the operation part is a first operation part for operating the first actuator and an operation part for operating the second actuator. And a second operation unit.
  • the control unit supplies the flow rate of the hydraulic oil supplied to the first actuator and the second actuator according to the operation amount of the first operation unit and the operation amount of the second operation unit. Determine the flow rate of hydraulic oil.
  • a control part determines the opening area of a 1st direction switching valve based on the flow volume of the hydraulic fluid supplied to a 1st actuator, the hydraulic pressure detected by the 1st hydraulic pressure detection part, and the hydraulic pressure supplied to a 2nd actuator. To do.
  • a work machine is the work machine according to the third aspect, and the control unit stores in advance as a hydraulic pressure supplied to the second actuator when a composite operation is performed. Use fixed values.
  • a work machine is the work machine according to any one of the first to fourth aspects, comprising a vehicle main body, a boom attached to the vehicle main body, and an arm attached to the boom. And a work attachment attached to the arm. Then, the first actuator drives the arm. The second actuator drives the boom.
  • a work machine is the work machine according to any one of the first to fourth aspects, wherein the vehicle main body, a boom attached to the vehicle main body, and an arm attached to the boom are provided. And a work attachment attached to the arm.
  • the vehicle main body has a traveling body and a revolving body placed on the traveling body.
  • the first actuator drives the boom, and the second actuator turns the swing body.
  • a work machine control method includes a hydraulic pump that discharges hydraulic oil, a first actuator, a first direction switching valve, a second actuator, a second direction switching valve, and an operation.
  • 1 is a method for controlling a work machine, comprising: a first section, a first hydraulic pressure detection section, and a pilot pressure control valve.
  • the first actuator is driven by hydraulic fluid discharged from the hydraulic pump.
  • the first direction switching valve can switch the supply direction of the hydraulic oil from the hydraulic pump, and changes the flow rate of the hydraulic oil supplied to the first actuator by changing the opening area of the flow path of the hydraulic oil.
  • the second actuator is driven by hydraulic fluid discharged from the hydraulic pump.
  • the second direction switching valve can switch the supply direction of the hydraulic oil from the hydraulic pump, and changes the flow rate of the hydraulic oil supplied to the second actuator by changing the opening area of the flow path of the hydraulic oil.
  • the operation unit is for operating the first actuator and the second actuator.
  • the first hydraulic pressure detection unit detects the hydraulic pressure supplied to the first actuator.
  • the pilot pressure control valve adjusts the pilot pressure input to the pilot port of the first directional control valve.
  • the opening area of the first directional control valve is controlled by controlling the pilot pressure control valve. Then, the pilot pressure control valve is controlled so that the opening area of the first direction switching valve when the composite operation is performed is equal to or smaller than the opening area of the first direction switching valve when the single operation is performed.
  • the combined operation means that the first actuator and the second actuator are operated simultaneously.
  • the single operation means that only the first actuator of the first actuator and the second actuator is operated. Further, in this work machine control method, the opening area of the first directional control valve when the composite operation is performed is determined based on the hydraulic pressure detected by the first hydraulic pressure detection unit.
  • the opening area of the first direction switching valve is equal to or less than the opening area of the first direction switching valve when the single operation is performed.
  • the size of the opening area is determined based on the hydraulic pressure detected by the first hydraulic pressure detection unit.
  • the opening area of the first directional control valve can be determined according to the actual load of the first actuator. Thereby, it can suppress that a 1st direction switching valve is throttled unnecessarily. As a result, it is possible to suppress a decrease in the operating speed of the actuator and a loss of hydraulic pressure during the combined operation.
  • the size of the throttle is adjusted according to the load applied to the first actuator. For this reason, it is possible to control the first directional control valve appropriately corresponding to the actual work situation.
  • the flow rates of hydraulic oil distributed to the first actuator and the second actuator are determined according to the operation amounts of the first operation unit and the second operation unit. The Then, based on the determined flow rate of the hydraulic oil supplied to the first actuator, the hydraulic pressure detected by the first hydraulic pressure detection unit, and the hydraulic pressure supplied to the second actuator, the opening area of the first directional switching valve is It is determined. That is, the opening area of the first directional control valve necessary for supplying the determined amount of hydraulic oil to the first actuator is determined in consideration of the load applied to the first actuator. Thereby, the flow rate of the hydraulic oil actually supplied to the first actuator can be approximated to the determined flow rate.
  • a fixed value stored in advance is used as the hydraulic pressure supplied to the second actuator. For this reason, it is not necessary to provide a hydraulic pressure detection unit for detecting the hydraulic pressure supplied to the second actuator, and the number of hydraulic pressure detection units can be reduced. Further, when both the hydraulic pressure supplied to the first actuator and the hydraulic pressure supplied to the second actuator fluctuate, the opening area of the first directional switching valve is set to the hydraulic pressure supplied to the first actuator and the second actuator. If it is determined based on the supplied hydraulic pressure, hunting may occur in the first actuator. However, the occurrence of such hunting can be suppressed by using a fixed value as the hydraulic pressure supplied to the second actuator.
  • the opening area of the first directional control valve is set to the first when the arm is operated alone.
  • the opening area of the direction switching valve is not larger than the opening area.
  • the size of the opening area of the first direction switching valve is determined according to the load applied to the arm.
  • the load on the arm such as during excavation, varies more than the load on the boom. For this reason, the opening area of the first directional control valve can be more appropriately controlled by considering the hydraulic pressure of the first actuator that drives the arm.
  • the opening area of the first direction switching valve is set to be the single operation of the boom. Or less than the opening area of the first direction switching valve. At that time, the size of the opening area of the first direction switching valve is determined according to the load applied to the boom. The load applied to the boom during work using the boom varies more greatly than the load applied to the swivel body during turning. For this reason, the opening area of the first directional control valve can be more appropriately controlled by considering the hydraulic pressure of the first actuator that drives the boom.
  • the opening area of the first direction switching valve is adjusted for the first direction switching valve when the single operation is performed.
  • the size of the opening area is determined based on the hydraulic pressure detected by the first hydraulic pressure detection unit.
  • the opening area of the first directional control valve can be determined according to the actual load of the first actuator. Thereby, it can suppress that a 1st direction switching valve is throttled unnecessarily. As a result, it is possible to suppress a decrease in the operating speed of the actuator and a loss of hydraulic pressure during the combined operation.
  • FIG. 1 is an external view of a hydraulic excavator according to an embodiment of the present invention.
  • Schematic which shows the structure of the hydraulic circuit with which a hydraulic excavator is provided.
  • the graph which shows the PQ characteristic of a hydraulic pump.
  • the flowchart which shows the control at the time of compound operation of a hydraulic excavator.
  • the diversion ratio table memorize
  • Schematic which shows the structure of the hydraulic circuit with which the hydraulic excavator which concerns on other embodiment is provided.
  • FIG. 10 A hydraulic excavator 10 according to an embodiment of the present invention is shown in FIG.
  • the hydraulic excavator 10 includes a traveling body 11, a revolving body 12, and a work machine 13.
  • the traveling body 11 has a pair of traveling devices 11a and 11b.
  • Each traveling device 11a, 11b has crawler belts 14a, 14b and a traveling motor (not shown), and the crawler belts 14a, 14b are driven by the traveling motor to cause the hydraulic excavator 10 to travel.
  • the revolving unit 12 is placed on the traveling unit 11.
  • the turning body 12 turns on the traveling body 11 by a turning motor 27 (see FIG. 2).
  • a cab 15 is provided at the front left side position of the revolving structure 12.
  • the work machine 13 is attached to the center of the front part of the revolving structure 12 and includes a boom 21, an arm 22, and a bucket 23.
  • a base end portion of the boom 21 is rotatably connected to the revolving unit 12. Further, the distal end portion of the boom 21 is rotatably connected to the proximal end portion of the arm 22.
  • the distal end portion of the arm 22 is rotatably connected to the bucket 23.
  • hydraulic cylinders boost cylinder 24, arm cylinder 25, and bucket cylinder 26
  • the work machine 13 is driven, thereby performing work such as excavation.
  • FIG. 1 This hydraulic system particularly shows a configuration for driving the boom cylinder 24, the arm cylinder 25, the bucket cylinder 26, and the turning motor 27 described above.
  • the first hydraulic pump 31 and the second hydraulic pump 32 serve as driving sources for driving the boom cylinder 24, the arm cylinder 25, the bucket cylinder 26, and the turning motor 27.
  • the first hydraulic pump 31 and the second hydraulic pump 32 are driven by an engine (not shown).
  • the first hydraulic pump 31 and the second hydraulic pump 32 are variable displacement hydraulic pumps whose discharge capacity can be changed by changing the inclination angle of the swash plate.
  • Each hydraulic pump 31, 32 is provided with variable displacement valves 33, 34 for changing the inclination angle of the swash plate.
  • the variable displacement valves 33 and 34 change the inclination angle of the swash plate according to the applied pilot pressure.
  • the pilot pressure applied to the variable displacement valves 33 and 34 is controlled by pump control valves 35 and 36.
  • the pump control valves 35 and 36 are electromagnetic proportional control valves, and control the pilot pressure output to the variable displacement valves 33 and 34 by a command signal from the control unit 30.
  • the control unit 30 controls the pump control valves 35 and 36 so that the pump capacity changes according to the pump pressure as in the PQ characteristic shown in FIG. That is, the control unit 30 controls the pump capacity according to the pump pressure so that the absorption horsepower (P ⁇ Q) of the pump becomes constant.
  • the hydraulic oil discharged from the first hydraulic pump 31 is supplied to hydraulic actuators such as an arm cylinder 25, a boom cylinder 24, a bucket cylinder 26, and a left travel motor (not shown) via operation valves 41 to 43.
  • the hydraulic oil discharged from the second hydraulic pump 32 is hydraulic actuators such as an arm cylinder 25, a boom cylinder 24, a swing motor 27, a bucket cylinder 26, and a right travel motor (not shown) via operation valves 44 to 47. To be supplied. Further, the hydraulic oil supplied to the hydraulic actuator is collected in the tank via the operation valves 41 to 47.
  • the operation valves 41 to 47 include a first arm operation valve 41, a first boom operation valve 42, a first bucket operation valve 43, a second arm operation valve 44, a second boom operation valve 45, a swing motor operation.
  • a valve 46 and a second bucket operation valve 47 are provided.
  • the flow path 1A is connected to the first hydraulic pump 31.
  • a first arm operation valve 41, a first boom operation valve 42, and a first bucket operation valve 43 are provided in the flow path 1A.
  • a channel 1B is branched from the channel 1A.
  • the first arm operation valve 41 is connected to the flow path 1 ⁇ / b> B via the check valve 51.
  • the first boom operation valve 42 is connected to the flow path 1 ⁇ / b> B via the check valve 52.
  • the first bucket operation valve 43 is connected to the flow path 1 ⁇ / b> B via the check valve 53.
  • the 1st arm operation valve 41, the 1st boom operation valve 42, and the 1st bucket operation valve 43 are connected to channel 1B in parallel mutually.
  • a hydraulic pressure sensor 91 is connected to the flow path 1A.
  • the hydraulic sensor 91 detects the pressure of the hydraulic oil discharged from the first hydraulic pump 31 (hereinafter referred to as “first pump pressure”).
  • the hydraulic sensor 91 sends a detection signal corresponding to the detected first pump pressure to the control unit 30.
  • the flow path 3A is connected to the bottom side oil chamber of the arm cylinder 25.
  • a hydraulic pressure sensor 92 is connected to the flow path 3A.
  • the hydraulic sensor 92 detects the pressure of hydraulic oil supplied to the bottom side oil chamber of the arm cylinder 25 (hereinafter referred to as “arm cylinder pressure”).
  • the hydraulic sensor 92 sends a detection signal corresponding to the detected arm cylinder pressure to the control unit 30.
  • a flow path 3B is connected to the head side oil chamber of the arm cylinder 25.
  • a channel 4 ⁇ / b> A is connected to the bottom side oil chamber of the boom cylinder 24.
  • a flow path 4 ⁇ / b> B is connected to the head side oil chamber of the boom cylinder 24.
  • a flow path 5 ⁇ / b> A is connected to the right turning port R of the turning motor 27.
  • a flow path 5B is connected to the left turning port L of the turning motor 27.
  • a flow path 6 ⁇ / b> B is connected to the head side oil chamber of the bucket cylinder 26.
  • a flow path 6 ⁇ / b> A is connected to the bottom side oil chamber of the bucket cylinder 26.
  • the first arm operation valve 41, the first boom operation valve 42, and the first bucket operation valve 43 are each a direction switching valve capable of switching the supply direction of hydraulic oil from the first hydraulic pump 31.
  • the first arm operation valve 41, the first boom operation valve 42, and the first bucket operation valve 43 are switched to the state A, the state N, and the state B according to the pilot pressure supplied to the pilot ports X and Y, respectively.
  • the first arm operation valve 41, the first boom operation valve 42, and the first bucket operation valve 43 are connected to each other by changing the opening area of the hydraulic oil flow path according to the applied pilot pressure. The flow rate of the hydraulic oil supplied to the actuator can be changed.
  • the first arm operation valve 41 controls the supply of hydraulic oil from the first hydraulic pump 31 to the arm cylinder 25.
  • the first arm operation valve 41 allows the flow path 1B and the flow path 3A to communicate with each other and allows the flow path 3B and the tank to communicate with each other.
  • the hydraulic oil is supplied from the first hydraulic pump 31 to the bottom side oil chamber of the arm cylinder 25, and the hydraulic oil is discharged from the head side oil chamber of the arm cylinder 25.
  • the arm cylinder 25 extends.
  • the first arm operation valve 41 allows the flow path 1B and the flow path 3B to communicate with each other and allows the flow path 3A and the tank to communicate with each other.
  • the hydraulic oil is supplied from the first hydraulic pump 31 to the head side oil chamber of the arm cylinder 25, and the hydraulic oil is discharged from the bottom side oil chamber of the arm cylinder 25.
  • the arm cylinder 25 contracts.
  • the first arm operation valve 41 causes the first hydraulic pump 31 side and the first boom operation valve 42 side of the flow path 1A to communicate with each other. Further, the flow of hydraulic oil between the arm cylinder 25, the first hydraulic pump 31 and the tank is blocked.
  • the first boom operation valve 42 controls the supply of hydraulic oil from the first hydraulic pump 31 to the boom cylinder 24.
  • the first boom operation valve 42 communicates the flow path 1B and the flow path 4A and communicates the flow path 4B and the tank.
  • the hydraulic oil is supplied from the first hydraulic pump 31 to the bottom side oil chamber of the boom cylinder 24, and the hydraulic oil is discharged from the head side oil chamber of the boom cylinder 24.
  • the boom cylinder 24 extends.
  • the first boom operation valve 42 allows the flow path 1B and the flow path 4B to communicate with each other and allows the flow path 4A and the tank to communicate with each other.
  • the hydraulic oil is supplied from the first hydraulic pump 31 to the head side oil chamber of the boom cylinder 24, and the hydraulic oil is discharged from the bottom side oil chamber of the boom cylinder 24.
  • the boom cylinder 24 contracts.
  • the first boom operation valve 42 causes the first arm operation valve 41 side and the first bucket operation valve 43 side of the flow path 1A to communicate with each other. Further, the flow of hydraulic oil between the boom cylinder 24, the first hydraulic pump 31 and the tank is shut off.
  • the first bucket operation valve 43 controls the supply of hydraulic oil from the first hydraulic pump 31 to the bucket cylinder 26.
  • the first bucket operation valve 43 allows the flow path 1B and the flow path 6A to communicate with each other and allows the flow path 6B and the tank to communicate with each other.
  • the hydraulic oil is supplied from the first hydraulic pump 31 to the bottom side oil chamber of the bucket cylinder 26, and the hydraulic oil is discharged from the head side oil chamber of the bucket cylinder 26.
  • the bucket cylinder 26 extends.
  • the first bucket operation valve 43 allows the flow path 1B and the flow path 6B to communicate with each other and allows the flow path 6A and the tank to communicate with each other.
  • the hydraulic oil is supplied from the first hydraulic pump 31 to the head side oil chamber of the bucket cylinder 26, and the hydraulic oil is discharged from the bottom side oil chamber of the bucket cylinder 26.
  • the bucket cylinder 26 contracts.
  • the 1st bucket operation valve 43 makes the 1st boom operation valve 42 side of the flow path 1A, and the tank side communicate. Further, the flow of oil between the bucket cylinder 26, the first hydraulic pump 31 and the tank is blocked.
  • a flow path 2A is connected to the second hydraulic pump 32.
  • a second arm operation valve 44, a second boom operation valve 45, a swing motor operation valve 46, and a second bucket operation valve 47 are provided in the flow path 2A.
  • a flow path 2B is branched from the flow path 2A.
  • the second arm operation valve 44 is connected to the flow path 2 ⁇ / b> B via the check valve 54.
  • the second boom operation valve 45 is connected to the flow path 2 ⁇ / b> B via the check valve 55.
  • the swing motor operation valve 46 is connected to the flow path 2 ⁇ / b> B via the check valve 56.
  • the second bucket operation valve 47 is connected to the flow path 2 ⁇ / b> B via the check valve 57.
  • a hydraulic pressure sensor 93 is connected to the flow path 2A.
  • the hydraulic sensor 93 detects the pressure of the hydraulic oil discharged from the second hydraulic pump 32 (hereinafter referred to as “second pump pressure”).
  • the hydraulic sensor sends a detection signal corresponding to the detected second pump pressure to the control unit 30.
  • the second arm operation valve 44, the second boom operation valve 45, the swing motor operation valve 46, and the second bucket operation valve 47 are directional control valves that can switch the supply direction of the hydraulic oil from the second hydraulic pump 32, respectively. is there.
  • the second arm operation valve 44, the swing motor operation valve 46, and the second bucket operation valve 47 are switched to the state A, the state N, and the state B according to the pilot pressure supplied to the pilot ports X and Y, respectively.
  • the second boom operation valve 45 is switched between the state A and the state N according to the pilot pressure supplied to the pilot ports X and Y.
  • the second arm operation valve 44, the second boom operation valve 45, the swing motor operation valve 46, and the second bucket operation valve 47 change the opening area of the hydraulic oil flow path according to the applied pilot pressure, The flow rate of the hydraulic oil supplied to the connected hydraulic actuator can be changed.
  • the second arm operation valve 44 controls the supply of hydraulic oil from the second hydraulic pump 32 to the arm cylinder 25.
  • the second arm operation valve 44 communicates the flow path 2B and the flow path 3A, and communicates the flow path 3B and the tank.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the bottom side oil chamber of the arm cylinder 25, and the hydraulic oil is discharged from the head side oil chamber of the arm cylinder 25.
  • the arm cylinder 25 extends.
  • the second arm operation valve 44 allows the flow path 2B and the flow path 3B to communicate with each other and allows the flow path 3A and the tank to communicate with each other.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the head side oil chamber of the arm cylinder 25, and the hydraulic oil is discharged from the bottom side oil chamber of the arm cylinder 25.
  • the arm cylinder 25 contracts.
  • the second arm operation valve 44 causes the second hydraulic pump 32 side and the second boom operation valve 45 side of the flow path 2A to communicate with each other. Further, the oil flow between the arm cylinder 25, the second hydraulic pump 32 and the tank is blocked.
  • the second boom operation valve 45 controls the supply of hydraulic oil from the second hydraulic pump 32 to the boom cylinder 24.
  • the second boom operation valve 45 communicates the flow path 2B and the flow path 4A, and communicates the flow path 4B and the tank.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the bottom side oil chamber of the boom cylinder 24, and the hydraulic oil is discharged from the head side oil chamber of the boom cylinder 24.
  • the boom cylinder 24 extends.
  • the second boom operation valve 45 causes the second arm operation valve 44 side and the swing motor operation valve 46 side of the flow path 2A to communicate with each other. Further, the oil flow between the boom cylinder 24, the second hydraulic pump 32 and the tank is blocked.
  • the turning motor operation valve 46 controls the supply of hydraulic oil from the second hydraulic pump 32 to the turning motor 27.
  • the turning motor operation valve 46 allows the flow path 2B and the flow path 5A to communicate with each other and allows the flow path 5B and the tank to communicate with each other.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the right turning port R of the turning motor 27, and the hydraulic oil is discharged from the left turning port L of the turning motor 27.
  • the turning motor 27 rotates in a direction corresponding to the clockwise direction of the turning body 12.
  • the turning motor operation valve 46 allows the flow path 2B and the flow path 5B to communicate with each other and allows the flow path 5A and the tank to communicate with each other.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the left turning port L of the turning motor 27, and the hydraulic oil is discharged from the right turning port R of the turning motor 27.
  • the turning motor 27 rotates in a direction corresponding to the counterclockwise direction of the turning body 12.
  • the turning motor operation valve 46 communicates the second boom operation valve 45 side and the second bucket operation valve side of the flow path 2A. Further, the flow of oil between the turning motor 27, the second hydraulic pump 32 and the tank is shut off.
  • the second bucket operation valve 47 controls the supply of hydraulic oil from the second hydraulic pump 32 to the bucket cylinder 26.
  • the second bucket operation valve 47 allows the flow path 2B and the flow path 6A to communicate with each other and allows the flow path 6B and the tank to communicate with each other.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the bottom side oil chamber of the bucket cylinder 26, and the hydraulic oil is discharged from the head side oil chamber of the bucket cylinder 26.
  • the bucket cylinder 26 extends.
  • the second bucket operation valve 47 communicates the flow path 2B and the flow path 6B, and communicates the flow path 6A and the tank.
  • the hydraulic oil is supplied from the second hydraulic pump 32 to the head side oil chamber of the bucket cylinder 26, and the hydraulic oil is discharged from the bottom side oil chamber of the bucket cylinder 26.
  • the bucket cylinder 26 contracts.
  • the second bucket operation valve 47 causes the swing motor operation valve 46 side and the tank side of the flow path 2A to communicate with each other. Further, the oil flow between the bucket cylinder 26, the second hydraulic pump 32 and the tank is blocked.
  • the above-described operation valves 41 to 47 have a pair of pilot ports X and Y, respectively, and the operation valves 41 to 47 are supplied to the pilot ports X and Y by supplying hydraulic oil with a predetermined pilot pressure. Is controlled.
  • the pilot pressure applied to these operation valves 41 to 47 is controlled by operating the operation unit 60. That is, when the operation unit 60 is operated, the operation of the work implement 13 and the turning operation of the turning body 12 are controlled.
  • the operation unit 60 is a device for operating the arm cylinder 25, the boom cylinder 24, the turning motor 27, and the bucket cylinder 26.
  • the operation unit 60 includes an arm operation unit 61, a boom operation unit 62, a turning operation unit 63, and a bucket operation unit 64.
  • the arm operation unit 61, the boom operation unit 62, the turning operation unit 63, and the bucket operation unit 64 each include an operation lever 65 and a pilot valve 66.
  • the operation lever 65 is an operation member that is disposed in the cab 15 and is operated by an operator.
  • the pilot valve 66 adjusts and outputs the hydraulic oil discharged from the pilot hydraulic pump 37 to a pressure corresponding to the operation amount of the operation lever 65.
  • the pilot pressure output from the pilot valve 66 of the arm operation unit 61 is applied to the pilot ports X and Y of the first arm operation valve 41 and the second arm operation valve 44.
  • the pilot pressure output from the arm operation unit 61 is detected by a hydraulic pressure sensor 94.
  • the pilot pressure output from the pilot valve 66 of the boom operation unit 62 is applied to the pilot ports X and Y of the first boom operation valve 42 and the second boom operation valve 45.
  • the pilot pressure output from the boom operation unit 62 is detected by a hydraulic pressure sensor 95.
  • the pilot pressure output from the pilot valve 66 of the turning operation unit 63 is applied to the pilot ports X and Y of the turning motor operation valve 46.
  • the pilot pressure output from the turning operation unit 63 is detected by a hydraulic pressure sensor 96.
  • the pilot pressure output from the pilot valve 66 of the bucket operation unit 64 is applied to the pilot ports X and Y of the first bucket operation valve 43 and the second bucket operation valve 47.
  • the pilot pressure output from the bucket operation unit 64 is detected by a hydraulic pressure sensor 97.
  • the hydraulic sensors 94 to 97 send detection signals corresponding to the detected pilot pressures to the control unit 30.
  • a first pilot control valve 48 and a second pilot control valve 49 are provided in the pilot flow paths 7A and 7B that connect the arm operation portion 61 and the pilot ports X and Y of the first arm operation valve 41.
  • the first pilot control valve 48 is an electromagnetic proportional control valve that adjusts the pilot pressure input to the first pilot port X of the first arm operation valve 41 in accordance with a command signal from the control unit 30.
  • the second pilot control valve 49 is an electromagnetic proportional control valve that adjusts the pilot pressure input to the second pilot port Y of the first arm operation valve 41 in accordance with a command signal from the control unit 30. For this reason, the control unit 30 can electrically control the opening area of the first arm operation valve 41 by controlling the first pilot control valve 48 and the second pilot control valve 49.
  • the pilot valve 66 causes the first pilot port X of the first arm operation valve 41 and the second arm operation valve 44 to communicate with the pilot hydraulic pump 37, and The second pilot port Y of the first arm operation valve 41 and the second arm operation valve 44 is communicated with the tank.
  • a pilot pressure corresponding to the operation amount of the operation lever 65 is applied to the first pilot port X of the first arm operation valve 41 and the second arm operation valve 44.
  • the first arm operation valve 41 and the second arm operation valve 44 are switched to the state A, and the opening areas of the arm operation valves 41 and 44 correspond to the applied pilot pressure, that is, the operation lever 65 is operated.
  • the size is set according to the amount.
  • the pilot valve 66 is connected to the second pilot port Y of the first arm operation valve 41 and the second arm operation valve 44 and the pilot hydraulic pump. 37 and the first pilot port X of the first arm operation valve 41 and the second arm operation valve 44 are communicated with the tank. Thereby, a pilot pressure corresponding to the operation amount of the operation lever 65 is applied to the second pilot port Y of the first arm operation valve 41 and the second arm operation valve 44. Then, the first arm operation valve 41 and the second arm operation valve 44 are switched to the state B, and the opening areas of the arm operation valves 41 and 44 correspond to the applied pilot pressure, that is, the operation lever 65 is operated.
  • the size is set according to the amount.
  • hydraulic oil is supplied to the head side oil chamber of the arm cylinder 25 and the arm cylinder 25 contracts.
  • the excavator 10 can perform the dumping work by the work machine 13.
  • the operation of contracting the arm cylinder 25 in this way is referred to as “arm dump operation”.
  • the operation of the boom cylinder 24 is the same as the operation of the arm cylinder 25 except that the second boom operation valve 45 is not switched to the state B.
  • the boom cylinder 24 is extended by tilting the operation lever 65 of the boom operation unit 62 to one side.
  • the operation for extending the boom cylinder 24 in this way is referred to as a “boom raising operation”.
  • the boom cylinder 24 contracts by tilting the operation lever 65 of the boom operation unit 62 to the other side. Thereby, boom lowering operation can be performed.
  • the operation of the swing motor 27 is the same as the operation of the arm cylinder 25 except that the swing motor operation valve corresponding to the first hydraulic pump 31 is not provided.
  • the turning motor operation valve 46 is switched to the state A.
  • the turning motor 27 rotates in the right direction, and the turning body 12 can be turned in the right direction.
  • the swing motor operation valve 46 is switched to the state B by tilting the operation lever 65 of the swing operation unit 63 to the other.
  • the turning motor 27 rotates in the left direction, and the turning body 12 can be turned in the left direction.
  • the operation of the bucket cylinder 26 is the same as the operation of the arm cylinder 25 described above.
  • the bucket cylinder 26 can be extended to perform excavation work. Further, when the operation lever 65 of the bucket operation unit 64 is tilted to the other side, the bucket cylinder 26 is contracted to perform the dumping work.
  • the control of the single operation is performed repeatedly.
  • the arm operation valves 41 and 44 are controlled according to the operation direction and operation amount of the arm operation unit 61 and the bucket operation valve 43 is operated.
  • 47 are controlled according to the operation direction and operation amount of the bucket operation unit 64.
  • the control unit 30 determines the opening area of the operation valve corresponding to one actuator as a value during single operation (hereinafter referred to as “reference value”). The control is performed so that the hydraulic oil can easily flow to the other actuator.
  • reference value a value during single operation
  • the arm cylinder pressure is detected by the hydraulic sensor 92 and constantly monitored by the control unit 30 while the following control is performed.
  • step S1 it is determined whether or not an arm excavation operation has been performed.
  • step S2 it is determined whether or not an arm excavation operation has been performed. If the pilot pressure detected by the hydraulic sensor 94 is equal to or greater than the value at which the first arm operation valve 41 is switched to the state A, it is determined that the arm excavation operation has been performed regardless of the state of the second arm operation valve 44. The When the arm excavation operation is performed, the process proceeds to step S2.
  • step S2 it is determined whether or not a boom raising operation has been performed.
  • the process proceeds to step S3.
  • step S3 it is determined whether or not the pilot pressure Ppb from the boom operation unit 62 detected by the hydraulic sensor 95 is greater than a predetermined threshold value ps1.
  • the threshold value ps1 corresponds to a pilot pressure when the boom operation lever 65 is slightly operated.
  • the process proceeds to step S4.
  • step S4 it is determined whether or not the arm cylinder pressure Pca detected by the hydraulic sensor 92 is smaller than a predetermined threshold value ps2.
  • the threshold value ps2 corresponds to an arm cylinder pressure when a large load is applied to the arm cylinder 25, and is a value smaller than a fixed value stored in the control unit 30 as a boom cylinder pressure Pcb described later. If the arm cylinder pressure Pca is smaller than the threshold value ps2, the process proceeds to step S5.
  • step S5 the diversion ratio of the boom cylinder 24 is determined.
  • the diversion ratio of the boom cylinder 24 is determined based on the pilot pressure from the boom operation unit 62 detected by the hydraulic sensor 95.
  • the control unit 30 stores a diversion ratio table as illustrated in FIG.
  • the diversion ratio table shows the pilot pressure Ppb from the boom operation unit 62 and the diversion ratio r of the boom cylinder 24 corresponding to the pilot pressure Ppb.
  • the diversion ratio table indicates an appropriate diversion ratio of the hydraulic oil to the boom cylinder 24 when a combined operation of the arm excavation operation and the boom raising operation is performed.
  • the pilot pressure Ppb from the boom operation unit 62 is shown in the uppermost row of the diversion ratio table.
  • the diversion ratio r to the boom cylinder 24 corresponding to each pilot pressure Ppb is shown.
  • This diversion ratio r indicates the ratio of the flow rate to the boom cylinder 24 when the total flow rate of the first hydraulic pump 31 is 10.
  • the diversion ratio corresponding to the pilot pressure not included in the diversion ratio table is calculated by proportional calculation from the values included in the diversion ratio table.
  • the control unit 30 determines the diversion ratio to the boom cylinder 24 by referring to such a diversion ratio table.
  • step S6 the opening area of the first arm operation valve 41 is calculated.
  • the opening area of the first arm operation valve 41 is calculated based on the following equation.
  • A is the opening area of the first arm operation valve 41.
  • Q is the total flow rate of the first hydraulic pump 31.
  • r is the diversion ratio of the boom cylinder 24 determined in step S5.
  • Ca is a predetermined constant.
  • Pcb is the pressure of hydraulic oil supplied to the boom cylinder 24 (hereinafter referred to as “boom cylinder pressure”), and a fixed value stored in the control unit 30 is used.
  • Pca is an arm cylinder pressure detected by the hydraulic sensor 92.
  • a 0 is the value of the opening area of the first arm operation valve 41 when the arm cylinder 25 is operated alone, and is a constant value determined by the opening shape of the valve spool of the first arm operation valve 41.
  • step S7 the control unit 30 outputs a command signal to the first pilot control valve 48 and the second pilot control valve 49.
  • the first pilot control valve 48 and the second pilot control valve 49 are controlled so that the opening area of the first arm operation valve 41 becomes the value calculated in step S6.
  • step S3 when the pilot pressure Ppb from the boom operation unit 62 is equal to or lower than the threshold value ps1, the process proceeds to step S8.
  • step S4 the process also proceeds to step S8 when the arm cylinder pressure Pca is equal to or higher than the threshold ps2.
  • step S8 the opening area of the first arm operation valve 41 is set to a reference value.
  • Reference value as described above, the value A 0 of the aperture area of the first arm operating valve 41 when the arm cylinder 25 is solely operated.
  • step S6 it may become A> A 0.
  • the opening area of the first arm operating valve 41 is set to the opening area A 0 of the first arm operating valve 41 during the sole operation.
  • step S7 command signals are output to the pilot control valves 48 and 49 so that the opening area of the first arm operation valve 41 becomes the value determined in step S8.
  • FIG. 5 shows the value of the opening area of the first arm operation valve 41 corresponding to the arm cylinder pressure Pca together with the diversion ratio table described above.
  • the boom cylinder pressure Pcb fixed value
  • the constant Ca is 0.5
  • the reference value of the opening area of the first arm operation valve 41 is 700.
  • the opening area of the first arm operation valve 41 is illustrated. Further, the above-described threshold value ps1 is set to 8, and the threshold value ps2 is set to 140.
  • the opening area of the valve 41 is constant at a reference value 700.
  • the opening area of the first arm operation valve 41 is constant at the reference value 700 regardless of the magnitude of the arm cylinder pressure Pca.
  • the opening area of the first arm operation valve 41 is constant at the reference value 700 regardless of the magnitude of the pilot pressure Ppb.
  • the opening area of the first arm operation valve 41 is the first arm during the single operation. It is set to the same value as the opening area (reference value) of the operation valve 41.
  • the first arm operation valve 41 is based on the above-described equation (1). 41 opening areas are calculated.
  • the opening area of the first arm operation valve 41 calculated here is a value smaller than the reference value 700.
  • the calculated opening area of the first arm operation valve 41 is smaller as the diversion ratio r to the boom cylinder 24 is larger. Further, the calculated opening area of the first arm operation valve 41 is larger as the arm cylinder pressure Pca is larger. That is, the opening area of the first arm operation valve 41 is determined based on the arm cylinder pressure Pca.
  • the opening area of the first arm operation valve 41 is determined to be smaller than the value when the arm cylinder 25 is operated alone, the flow path of the first arm operation valve 41 is smaller than that during the single operation. Squeezed. Thereby, it becomes easy for hydraulic oil to flow into boom cylinder 24, and hydraulic oil supplied to boom cylinder 24 can be secured.
  • the larger the arm cylinder pressure Pca the larger the opening area of the first arm operation valve 41. For this reason, when a large load is applied to the arm cylinder 25, throttling of the first arm operation valve 41 is suppressed or throttling is not performed. Thereby, it is possible to prevent the first arm operation valve 41 from being throttled unnecessarily, and to prevent a loss of hydraulic pressure. Furthermore, the increase in the pump pressure of the first hydraulic pump 31 can be suppressed by restricting or not restricting the restriction of the first arm operation valve 41. For this reason, it can suppress that the pump capacity of the 1st hydraulic pump 31 falls. Thereby, it can suppress that the operating speed of the arm cylinder 25 and the boom cylinder 24 falls.
  • the opening area of the first arm operation valve 41 is set to the reference value. For this reason, when the operation lever 65 of the boom operation unit 62 is slightly operated, the first arm operation valve 41 is not throttled. Thereby, it is possible to prevent the first arm operation valve 41 from being throttled in response to a very small operation of the boom operation unit 62.
  • the opening area of the first arm operation valve 41 is calculated using Equation 1, a fixed value stored in the control unit 30 is used as the boom cylinder pressure. For this reason, it is not necessary to provide a hydraulic pressure sensor for detecting the boom cylinder pressure. Further, since the boom cylinder 24 has a smaller variation in load than the arm cylinder 25, the variation in the arm cylinder pressure is small. For this reason, even if a fixed value is used as the arm cylinder pressure, an appropriate opening area of the first arm operation valve 41 can be accurately calculated.
  • the arm cylinder 25 is used as the first actuator and the boom cylinder 24 is used as the second actuator, but other actuators may be used as the first actuator and the second actuator.
  • the boom cylinder 24 may be used as the first actuator, and the turning motor 27 may be used as the second actuator.
  • the hydraulic circuit included in the excavator 10 is desirably a circuit as shown in FIG.
  • a first pilot control valve 48 and a second pilot control valve 49 are provided in pilot flow paths 8A and 8B that connect the second boom operation valve 45 and the pilot valve 66 of the boom operation unit 62.
  • a hydraulic sensor 98 is provided for detecting the pressure of hydraulic oil supplied to the bottom side oil chamber of the boom cylinder 24 (hereinafter referred to as “boom cylinder pressure”).
  • Equation 2 Q is the total flow rate of the second hydraulic pump 32.
  • r is a diversion ratio of the turning motor 27 and is obtained from the diversion ratio table.
  • Pcm is the pressure of hydraulic oil supplied to the turning motor 27 (hereinafter referred to as “swing motor pressure”), and a fixed value stored in the control unit 30 is used.
  • Pcb is a boom cylinder pressure detected by the hydraulic sensor 98.
  • the loss of hydraulic pressure in the second hydraulic pump 32 can be prevented as in the above embodiment. Further, since the decrease in the pump capacity of the second hydraulic pump 32 is suppressed, it is possible to prevent the speed of the boom cylinder 24 and the swing motor 27 from decreasing.
  • the present invention can be applied not only to two types of actuators but also to combined operation of three or more types of actuators.
  • control may be performed in which only the flow rate of one actuator is changed and the flow rates of the other two actuators are fixed.
  • the bucket 23 is used as a work attachment, but other work attachments such as a breaker may be used. Further, the present invention may be applied to work machines other than the hydraulic excavator 10 as long as a composite operation of a plurality of actuators is performed. In the above embodiment, the present invention is applied to a so-called backhoe hydraulic excavator in which the bucket 23 is attached toward the cab 15 side. However, the bucket 23 is attached in the direction opposite to the cab 15 side. The present invention may be applied to a so-called loading excavator.
  • the opening area is calculated by a mathematical formula, but the value of the opening area may be determined from a map. That is, the relationship between the opening area and the oil pressure may be mapped and stored in the control unit, and the opening area may be determined from the detected oil pressure and the map.
  • the present invention is effective as a work machine and a control method of the work machine because it has the effect of suppressing the operation speed of the actuator during the combined operation and the loss of hydraulic pressure.
  • Hydraulic excavator (work machine) 12 Revolving body (vehicle body) 21 Boom 22 Arm 23 Bucket (work attachment) 24 Boom cylinder (second actuator) 25 Arm cylinder (first actuator) 30 control part 31 1st hydraulic pump 41 1st arm operation valve (1st direction switching valve) 42 First boom operation valve (second direction switching valve) 48 1st pilot control valve (pilot pressure control valve) 49 Second pilot control valve (pilot pressure control valve) 60 Operation section 92 Hydraulic sensor (first hydraulic pressure detection section) 61 Arm operation unit (first operation unit) 62 Boom operation part (second operation part)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 本発明の課題は、複合操作時にアクチュエータの動作速度が遅くなること、及び、油圧のロスが発生することを抑えることができる作業機械を提供することにある。油圧ショベルにおいて制御部(30)は、複合操作が実行された場合の第1アーム操作弁(41)の開口面積が、単独操作が実行された場合の第1アーム操作弁(41)の開口面積以下となるようにパイロット制御弁(48,49)を制御する。複合操作とは、アームシリンダ(25)とブームシリンダ(24)とが同時に操作されることを意味する。単独操作とは、アームシリンダ(25)とブームシリンダ(24)とのうちアームシリンダ(25)のみが操作されることを意味する。また、制御部(30)は、複合操作が実行された場合の第1アーム操作弁(41)の開口面積を油圧センサ(92)が検知したアームシリンダ圧に基づいて決定する。

Description

作業機械および作業機械の制御方法
 本発明は作業機械および作業機械の制御方法に関する。
 油圧ショベルなどの作業機械は、複数のアクチュエータが共通の油圧ポンプによって駆動される油圧回路を有している。このような作業機械において、複数のアクチュエータが同時に駆動される複合操作が行われると、作動油の多くが負荷の小さい方のアクチュエータに流れる。この場合、負荷の大きい方のアクチュエータにおいて作動油の流量が不足するという問題が生じる。
 上記の問題を解決するため、従来の作業機械では、複合操作が行われた場合に、一方のアクチュエータ(以下、「非優先側のアクチュエータ」と呼ぶ)のコントロールバルブの開口の大きさを単独操作時の値よりも小さくする制御が行われる(特許文献1参照)。これにより、他方のアクチュエータ(以下、「優先側のアクチュエータ」と呼ぶ)に供給される作動油の流量を確保することができる。
特開2006-97854号公報
 しかし、従来の作業機械では、アクチュエータの動作を指示するための操作部の操作のみに基づいて、非優先側のアクチュエータのコントロールバルブの開口が小さくされている。このため、非優先側のアクチュエータに大きな負荷がかかっている場合であっても、操作部が所定の操作を受けた場合には、コントロールバルブの開口が小さくされてしまう。このため、アクチュエータの動作速度が低下する恐れがある。また、非優先側のアクチュエータに大きな負荷がかかっている場合には、優先側のアクチュエータに作動油が流れ易くなっているため、非優先側のアクチュエータのコントロールバルブの開口を小さくせずとも優先側のアクチュエータへの流量を確保することができる。それにも関わらず、非優先側のコントロールバルブの開口を小さくすることになってしまい、油圧のロスが生じる。
 本発明の課題は、複合操作時にアクチュエータの動作速度が低下すること、及び、油圧のロスが発生することを抑えることができる作業機械および作業機械の制御方法を提供することにある。
 本発明の第1の態様に係る作業機械は、作動油を吐出する油圧ポンプと、第1アクチュエータと、第1方向切換弁と、第2アクチュエータと、第2方向切換弁と、操作部と、第1油圧検知部と、パイロット圧制御弁と、制御部とを備える。第1アクチュエータは、油圧ポンプから吐出された作動油によって駆動される。第1方向切換弁は、油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、第1アクチュエータに供給される作動油の流量を変更する。第2アクチュエータは、油圧ポンプから吐出された作動油によって駆動される。第2方向切換弁は、油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、第2アクチュエータに供給される作動油の流量を変更する。操作部は、第1アクチュエータおよび第2アクチュエータを操作するためのものである。第1油圧検知部は、第1アクチュエータに供給される油圧を検知する。パイロット圧制御弁は、第1方向切換弁のパイロットポートに入力されるパイロット圧を調整する。制御部は、パイロット圧制御弁を制御することにより第1方向切換弁の開口面積を制御する。制御部は、複合操作が実行された場合の第1方向切換弁の開口面積が、単独操作が実行された場合の第1方向切換弁の開口面積以下となるようにパイロット圧制御弁を制御する。複合操作とは、第1アクチュエータと第2アクチュエータとが同時に操作されることを意味する。単独操作とは、第1アクチュエータと第2アクチュエータとのうち第1アクチュエータのみが操作されることを意味する。また、制御部は、複合操作が実行された場合の第1方向切換弁の開口面積を第1油圧検知部が検知した油圧に基づいて決定する。
 本発明の第2の態様に係る作業機械は、第1の態様の作業機械であって、制御部は、複合操作が実行された場合の第1方向切換弁の開口面積を、単独操作が実行された場合の第1方向切換弁の開口面積よりも小さくする場合、第1油圧検知部が検知した油圧が大きくなるほど第1方向切換弁の開口面積を大きくする。
 本発明の第3の態様に係る作業機械は、第2の態様の作業機械であって、操作部は、第1アクチュエータを操作するための第1操作部と、第2アクチュエータを操作するための第2操作部とを有する。制御部は、複合操作が実行された場合には第1操作部の操作量と第2操作部の操作量に応じて、第1アクチュエータに供給される作動油の流量と第2アクチュエータに供給される作動油の流量とを決定する。そして、制御部は、第1アクチュエータに供給される作動油の流量と第1油圧検知部が検知した油圧と第2アクチュエータに供給される油圧とに基づいて第1方向切換弁の開口面積を決定する。
 本発明の第4の態様に係る作業機械は、第3の態様の作業機械であって、制御部は、複合操作が実行された場合には、第2アクチュエータに供給される油圧として、予め記憶された固定値を用いる。
 本発明の第5の態様に係る作業機械は、第1の態様から第4の態様のいずれかの作業機械であって、車両本体と、車両本体に取り付けられるブームと、ブームに取り付けられるアームと、アームに取り付けられる作業アタッチメントと、をさらに備える。そして、第1アクチュエータはアームを駆動する。第2アクチュエータはブームを駆動する。
 本発明の第6の態様に係る作業機械は、第1の態様から第4の態様のいずれかの作業機械であって、車両本体と、車両本体に取り付けられるブームと、ブームに取り付けられるアームと、アームに取り付けられる作業アタッチメントと、をさらに備える。車両本体は、走行体と、走行体上に載置される旋回体とを有する。そして、第1アクチュエータはブームを駆動し、第2アクチュエータは旋回体を旋回させる。
 本発明の第7の態様に係る作業機械の制御方法は、作動油を吐出する油圧ポンプと、第1アクチュエータと、第1方向切換弁と、第2アクチュエータと、第2方向切換弁と、操作部と、第1油圧検知部と、パイロット圧制御弁と、を備える作業機械の制御方法である。第1アクチュエータは、油圧ポンプから吐出された作動油によって駆動される。第1方向切換弁は、油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、第1アクチュエータに供給される作動油の流量を変更する。第2アクチュエータは、油圧ポンプから吐出された作動油によって駆動される。第2方向切換弁は、油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、第2アクチュエータに供給される作動油の流量を変更する。操作部は、第1アクチュエータおよび第2アクチュエータを操作するためのものである。第1油圧検知部は、第1アクチュエータに供給される油圧を検知する。パイロット圧制御弁は、第1方向切換弁のパイロットポートに入力されるパイロット圧を調整する。そして、この作業機械の制御方法では、パイロット圧制御弁を制御することにより第1方向切換弁の開口面積が制御される。そして、複合操作が実行された場合の第1方向切換弁の開口面積が、単独操作が実行された場合の第1方向切換弁の開口面積以下となるようにパイロット圧制御弁を制御する。複合操作とは、第1アクチュエータと第2アクチュエータとが同時に操作されることを意味する。単独操作とは、第1アクチュエータと第2アクチュエータとのうち第1アクチュエータのみが操作されることを意味する。また、この作業機械の制御方法では、複合操作が実行された場合の第1方向切換弁の開口面積を第1油圧検知部が検知した油圧に基づいて決定する。
 本発明の第1の態様に係る作業機械では、複合操作が行われた場合には、第1方向切換弁の開口面積を単独操作が行われている場合の第1方向切換弁の開口面積以下とするが、その開口面積の大きさは、第1油圧検知部が検知した油圧に基づいて決定される。このため、実際の第1アクチュエータの負荷に応じて第1方向切換弁の開口面積を決定することができる。これにより、第1方向切換弁が不要に絞られることを抑えることができる。その結果、複合操作時にアクチュエータの動作速度が低下すること、及び、油圧のロスが発生することを抑えることができる。
 本発明の第2の態様に係る作業機械では、複合操作時に第1方向切換弁が絞られる場合、第1アクチュエータにかかっている負荷に応じて、その絞りの大きさが調整される。このため、実際の作業状況により適切に対応した第1方向切換弁の制御を行うことができる。
 本発明の第3の態様に係る作業機械では、第1操作部と第2操作部との操作量に応じて、第1アクチュエータと第2アクチュエータとにそれぞれ分配される作動油の流量が決定される。そして、決定された第1アクチュエータに供給される作動油の流量と、第1油圧検知部が検知した油圧と第2アクチュエータに供給される油圧とに基づいて、第1方向切換弁の開口面積が決定される。すなわち、決定された流量の作動油を第1アクチュエータに供給するために必要な第1方向切換弁の開口面積が、第1アクチュエータにかかっている負荷を考慮して、決定される。これにより、実際に第1アクチュエータに供給される作動油の流量を、決定された流量に近似させることができる。
 本発明の第4の態様に係る作業機械では、第2アクチュエータに供給される油圧として、予め記憶された固定値が用いられる。このため、第2アクチュエータに供給される油圧を検知するための油圧検知部を設ける必要が無く、油圧検知部の数を低減することができる。また、第1アクチュエータに供給される油圧と第2アクチュエータに供給される油圧とが共に変動する場合に、第1方向切換弁の開口面積を、第1アクチュエータに供給される油圧と第2アクチュエータに供給される油圧とに基づいて決定すると、第1アクチュエータにハンチングが生じる恐れがある。しかし、第2アクチュエータに供給される油圧として固定値を用いることにより、このようなハンチングの発生を抑えることができる。
 本発明の第5の態様に係る作業機械では、アームとブームとの複合操作が行われた場合には、第1方向切換弁の開口面積をアームの単独操作が行われている場合の第1方向切換弁の開口面積以下とする。その際、第1方向切換弁の開口面積の大きさは、アームにかかっている負荷に応じて決定される。掘削作業時など、アームにかかる負荷は、ブームにかかる負荷よりも変動が大きい。このため、アームを駆動する第1アクチュエータの油圧を考慮することにより、第1方向切換弁の開口面積をより適切に制御することができる。
 本発明の第6の態様に係る作業機械では、ブームの駆動と旋回体の旋回との複合操作が行われた場合には、第1方向切換弁の開口面積をブームの単独操作が行われている場合の第1方向切換弁の開口面積以下とする。その際、第1方向切換弁の開口面積の大きさは、ブームにかかっている負荷に応じて決定される。ブームを用いた作業時にブームにかかる負荷は、旋回時に旋回体にかかる負荷よりも変動が大きい。このため、ブームを駆動する第1アクチュエータの油圧を考慮することにより、第1方向切換弁の開口面積をより適切に制御することができる。
 本発明の第7の態様に係る作業機械の制御方法では、複合操作が行われた場合には、第1方向切換弁の開口面積を単独操作が行われている場合の第1方向切換弁の開口面積以下とするが、その開口面積の大きさは、第1油圧検知部が検知した油圧に基づいて決定される。このため、実際の第1アクチュエータの負荷に応じて第1方向切換弁の開口面積を決定することができる。これにより、第1方向切換弁が不要に絞られることを抑えることができる。その結果、複合操作時にアクチュエータの動作速度が低下すること、及び、油圧のロスが発生することを抑えることができる。
本発明の一実施形態に係る油圧ショベルの外観図。 油圧ショベルが備える油圧回路の構成を示す概略図。 油圧ポンプのPQ特性を示すグラフ。 油圧ショベルの複合操作時の制御を示すフローチャート。 油圧ショベルが備える制御部に記憶された分流比テーブル。 他の実施形態に係る油圧ショベルが備える油圧回路の構成を示す概略図。
 <外観構成>
 本発明の一実施形態に係る油圧ショベル10を図1に示す。この油圧ショベル10は、走行体11と旋回体12と作業機13とを備えている。
 走行体11は、一対の走行装置11a,11bを有する。各走行装置11a,11bは、履帯14a,14bと走行モータ(図示せず)とを有し、履帯14a,14bが走行モータによって駆動されることによって、油圧ショベル10を走行させる。
 旋回体12は、走行体11上に載置されている。旋回体12は、旋回モータ27(図2参照)によって走行体11上において旋回する。また、旋回体12の前部左側位置には運転室15が設けられている。
 作業機13は、旋回体12の前部中央位置に取り付けられており、ブーム21、アーム22、バケット23を有する。ブーム21の基端部は、旋回体12に回転可能に連結されている。また、ブーム21の先端部はアーム22の基端部に回転可能に連結されている。アーム22の先端部は、バケット23に回転可能に連結されている。また、ブーム21、アーム22およびバケット23のそれぞれに対応するように油圧シリンダ(ブームシリンダ24、アームシリンダ25およびバケットシリンダ26)が配置されている。これらの油圧シリンダ24~26が駆動されることによって作業機13が駆動され、これにより、掘削等の作業が行われる。
 <油圧システムの構成>
 次に、油圧ショベル10が備える油圧システムの構成を図2に示す。この油圧システムは、特に、上述したブームシリンダ24、アームシリンダ25、バケットシリンダ26、及び旋回モータ27を駆動するための構成を示している。第1油圧ポンプ31および第2油圧ポンプ32は、ブームシリンダ24、アームシリンダ25、バケットシリンダ26、旋回モータ27を駆動するための駆動源となる。第1油圧ポンプ31および第2油圧ポンプ32はエンジン(図示せず)によって駆動される。
 第1油圧ポンプ31および第2油圧ポンプ32は、斜板の傾斜角が変更されることによって吐出容量を変更可能な可変容量型の油圧ポンプである。各油圧ポンプ31,32には、斜板の傾斜角を変更するための可変容量弁33,34が付設されている。可変容量弁33,34は、印加されるパイロット圧に応じて斜板の傾斜角を変更する。可変容量弁33,34に印加されるパイロット圧は、ポンプ制御弁35,36によって制御される。ポンプ制御弁35,36は、電磁比例制御弁であり、制御部30からの指令信号によって可変容量弁33,34に出力するパイロット圧を制御する。制御部30は、図3に示すPQ特性のようにポンプ圧に応じてポンプ容量が変化するように、ポンプ制御弁35,36を制御する。すなわち、制御部30は、ポンプの吸収馬力(P×Q)が一定となるように、ポンプ圧に応じてポンプ容量を制御する。
 第1油圧ポンプ31から吐出された作動油は、操作弁41~43を介して、アームシリンダ25、ブームシリンダ24、バケットシリンダ26、左走行モータ(図示せず)などの油圧アクチュエータに供給される。第2油圧ポンプ32から吐出された作動油は、操作弁44~47を介して、アームシリンダ25、ブームシリンダ24、旋回モータ27、バケットシリンダ26、右走行モータ(図示せず)などの油圧アクチュエータに供給される。また、油圧アクチュエータに供給された作動油は、操作弁41~47を介してタンクに回収される。
 具体的には、操作弁41~47は、第1アーム操作弁41、第1ブーム操作弁42、第1バケット操作弁43、第2アーム操作弁44、第2ブーム操作弁45、旋回モータ操作弁46、第2バケット操作弁47を有する。
 第1油圧ポンプ31には、流路1Aが接続されている。流路1Aには、第1アーム操作弁41、第1ブーム操作弁42、第1バケット操作弁43が設けられている。流路1Aからは流路1Bが分岐している。第1アーム操作弁41はチェック弁51を介して流路1Bに接続されている。第1ブーム操作弁42は、チェック弁52を介して流路1Bに接続されている。第1バケット操作弁43は、チェック弁53を介して流路1Bに接続されている。このように、第1アーム操作弁41、第1ブーム操作弁42、第1バケット操作弁43は互いに並列に流路1Bに接続されている。流路1Aには、油圧センサ91が接続されている。油圧センサ91は、第1油圧ポンプ31から吐出された作動油の圧力(以下、「第1ポンプ圧」と呼ぶ)を検出する。油圧センサ91は、検出した第1ポンプ圧に対応する検知信号を制御部30に送る。
 また、アームシリンダ25のボトム側油室には流路3Aが接続されている。流路3Aには、油圧センサ92が接続されている。油圧センサ92は、アームシリンダ25のボトム側油室に供給される作動油の圧力(以下、「アームシリンダ圧」と呼ぶ)を検出する。油圧センサ92は、検出したアームシリンダ圧に対応する検知信号を制御部30に送る。また、アームシリンダ25のヘッド側油室には流路3Bが接続されている。ブームシリンダ24のボトム側油室には流路4Aが接続されている。ブームシリンダ24のヘッド側油室には流路4Bが接続されている。旋回モータ27の右旋回ポートRには流路5Aが接続されている。旋回モータ27の左旋回ポートLには流路5Bが接続されている。バケットシリンダ26のヘッド側油室には流路6Bが接続されている。バケットシリンダ26のボトム側油室には流路6Aが接続されている。
 第1アーム操作弁41、第1ブーム操作弁42、第1バケット操作弁43は、それぞれ、第1油圧ポンプ31からの作動油の供給方向を切換可能な方向切換弁である。第1アーム操作弁41、第1ブーム操作弁42、第1バケット操作弁43は、それぞれ、パイロットポートX,Yに供給されるパイロット圧に応じて状態A、状態N、及び状態Bに切り替わる。また、第1アーム操作弁41、第1ブーム操作弁42、第1バケット操作弁43は、印加されるパイロット圧に応じて作動油の流路の開口面積を変更することにより、接続された油圧アクチュエータへ供給される作動油の流量を変更することができる。
 第1アーム操作弁41は、第1油圧ポンプ31からアームシリンダ25への作動油の供給を制御する。状態Aでは、第1アーム操作弁41は、流路1Bと流路3Aとを連通させると共に、流路3Bとタンクとを連通させる。これにより、第1油圧ポンプ31からアームシリンダ25のボトム側油室に作動油が供給され、アームシリンダ25のヘッド側油室から作動油が排出される。その結果、アームシリンダ25は伸長する。状態Bでは、第1アーム操作弁41は、流路1Bと流路3Bとを連通させると共に、流路3Aとタンクとを連通させる。これにより、第1油圧ポンプ31からアームシリンダ25のヘッド側油室に作動油が供給され、アームシリンダ25のボトム側油室から作動油が排出される。その結果、アームシリンダ25は収縮する。状態Nでは、第1アーム操作弁41は、流路1Aの第1油圧ポンプ31側と第1ブーム操作弁42側とを連通させる。また、アームシリンダ25と、第1油圧ポンプ31およびタンクとの間の作動油の流れを遮断する。
 第1ブーム操作弁42は、第1油圧ポンプ31からブームシリンダ24への作動油の供給を制御する。状態Aでは、第1ブーム操作弁42は、流路1Bと流路4Aとを連通させると共に、流路4Bとタンクとを連通させる。これにより、第1油圧ポンプ31からブームシリンダ24のボトム側油室に作動油が供給され、ブームシリンダ24のヘッド側油室から作動油が排出される。その結果、ブームシリンダ24は伸長する。状態Bでは、第1ブーム操作弁42は、流路1Bと流路4Bとを連通させると共に、流路4Aとタンクとを連通させる。これにより、第1油圧ポンプ31からブームシリンダ24のヘッド側油室に作動油が供給され、ブームシリンダ24のボトム側油室から作動油が排出される。その結果、ブームシリンダ24は収縮する。状態Nでは、第1ブーム操作弁42は、流路1Aの第1アーム操作弁41側と第1バケット操作弁43側とを連通させる。また、ブームシリンダ24と、第1油圧ポンプ31およびタンクとの間の作動油の流れを遮断する。
 第1バケット操作弁43は、第1油圧ポンプ31からバケットシリンダ26への作動油の供給を制御する。状態Aでは、第1バケット操作弁43は、流路1Bと流路6Aとを連通させると共に、流路6Bとタンクとを連通させる。これにより、第1油圧ポンプ31からバケットシリンダ26のボトム側油室に作動油が供給され、バケットシリンダ26のヘッド側油室から作動油が排出される。その結果、バケットシリンダ26は伸長する。状態Bでは、第1バケット操作弁43は、流路1Bと流路6Bとを連通させると共に、流路6Aとタンクとを連通させる。これにより、第1油圧ポンプ31からバケットシリンダ26のヘッド側油室に作動油が供給され、バケットシリンダ26のボトム側油室から作動油が排出される。その結果、バケットシリンダ26は収縮する。状態Nでは、第1バケット操作弁43は、流路1Aの第1ブーム操作弁42側とタンク側とを連通させる。また、バケットシリンダ26と、第1油圧ポンプ31およびタンクとの間の油の流れを遮断する。
 また、第2油圧ポンプ32には、流路2Aが接続されている。流路2Aには、第2アーム操作弁44、第2ブーム操作弁45、旋回モータ操作弁46、第2バケット操作弁47が設けられている。流路2Aからは流路2Bが分岐している。第2アーム操作弁44はチェック弁54を介して流路2Bに接続されている。第2ブーム操作弁45は、チェック弁55を介して流路2Bに接続されている。旋回モータ操作弁46は、チェック弁56を介して流路2Bに接続されている。第2バケット操作弁47は、チェック弁57を介して流路2Bに接続されている。このように、第2アーム操作弁44、第2ブーム操作弁45、旋回モータ操作弁46、第2バケット操作弁47は互いに並列に流路2Bに接続されている。流路2Aには、油圧センサ93が接続されている。油圧センサ93は、第2油圧ポンプ32から吐出された作動油の圧力(以下、「第2ポンプ圧」と呼ぶ)を検出する。油圧センサは、検出した第2ポンプ圧に対応する検知信号を制御部30に送る。
 第2アーム操作弁44、第2ブーム操作弁45、旋回モータ操作弁46、第2バケット操作弁47は、それぞれ、第2油圧ポンプ32からの作動油の供給方向を切換可能な方向切換弁である。第2アーム操作弁44、旋回モータ操作弁46、第2バケット操作弁47は、それぞれ、パイロットポートX,Yに供給されるパイロット圧に応じて状態A、状態N、及び状態Bに切り替わる。また、第2ブーム操作弁45は、パイロットポートX,Yに供給されるパイロット圧に応じて状態Aおよび状態Nに切り替わる。第2アーム操作弁44、第2ブーム操作弁45、旋回モータ操作弁46、第2バケット操作弁47は、印加されるパイロット圧に応じて作動油の流路の開口面積を変更することにより、接続された油圧アクチュエータへ供給される作動油の流量を変更することができる。
 第2アーム操作弁44は、第2油圧ポンプ32からアームシリンダ25への作動油の供給を制御する。状態Aでは、第2アーム操作弁44は、流路2Bと流路3Aとを連通させると共に、流路3Bとタンクとを連通させる。これにより、第2油圧ポンプ32からアームシリンダ25のボトム側油室に作動油が供給され、アームシリンダ25のヘッド側油室から作動油が排出される。その結果、アームシリンダ25は伸長する。状態Bでは、第2アーム操作弁44は、流路2Bと流路3Bとを連通させると共に、流路3Aとタンクとを連通させる。これにより、第2油圧ポンプ32からアームシリンダ25のヘッド側油室に作動油が供給され、アームシリンダ25のボトム側油室から作動油が排出される。その結果、アームシリンダ25は収縮する。状態Nでは、第2アーム操作弁44は、流路2Aの第2油圧ポンプ32側と第2ブーム操作弁45側とを連通させる。また、アームシリンダ25と、第2油圧ポンプ32およびタンクとの間の油の流れを遮断する。
 第2ブーム操作弁45は、第2油圧ポンプ32からブームシリンダ24への作動油の供給を制御する。状態Aでは、第2ブーム操作弁45は、流路2Bと流路4Aとを連通させると共に、流路4Bとタンクとを連通させる。これにより、第2油圧ポンプ32からブームシリンダ24のボトム側油室に作動油が供給され、ブームシリンダ24のヘッド側油室から作動油が排出される。その結果、ブームシリンダ24は伸長する。状態Nでは、第2ブーム操作弁45は、流路2Aの第2アーム操作弁44側と旋回モータ操作弁46側とを連通させる。また、ブームシリンダ24と、第2油圧ポンプ32およびタンクとの間の油の流れを遮断する。
 旋回モータ操作弁46は、第2油圧ポンプ32から旋回モータ27への作動油の供給を制御する。状態Aでは、旋回モータ操作弁46は、流路2Bと流路5Aとを連通させると共に、流路5Bとタンクとを連通させる。これにより、第2油圧ポンプ32から旋回モータ27の右旋回ポートRに作動油が供給され、旋回モータ27の左旋回ポートLから作動油が排出される。その結果、旋回モータ27は、旋回体12の右回りに対応する方向に回転する。状態Bでは、旋回モータ操作弁46は、流路2Bと流路5Bとを連通させると共に、流路5Aとタンクとを連通させる。これにより、第2油圧ポンプ32から旋回モータ27の左旋回ポートLに作動油が供給され、旋回モータ27の右旋回ポートRから作動油が排出される。その結果、旋回モータ27は旋回体12の左回りに対応する方向に回転する。状態Nでは、旋回モータ操作弁46は、流路2Aの第2ブーム操作弁45側と第2バケット操作弁側とを連通させる。また、旋回モータ27と、第2油圧ポンプ32およびタンクとの間の油の流れを遮断する。
 第2バケット操作弁47は、第2油圧ポンプ32からバケットシリンダ26への作動油の供給を制御する。状態Aでは、第2バケット操作弁47は、流路2Bと流路6Aとを連通させると共に、流路6Bとタンクとを連通させる。これにより、第2油圧ポンプ32からバケットシリンダ26のボトム側油室に作動油が供給され、バケットシリンダ26のヘッド側油室から作動油が排出される。その結果、バケットシリンダ26は伸長する。状態Bでは、第2バケット操作弁47は、流路2Bと流路6Bとを連通させると共に、流路6Aとタンクとを連通させる。これにより、第2油圧ポンプ32からバケットシリンダ26のヘッド側油室に作動油が供給され、バケットシリンダ26のボトム側油室から作動油が排出される。その結果、バケットシリンダ26は収縮する。状態Nでは、第2バケット操作弁47は、流路2Aの旋回モータ操作弁46側とタンク側とを連通させる。また、バケットシリンダ26と、第2油圧ポンプ32およびタンクとの間の油の流れを遮断する。
 上述した操作弁41~47は、それぞれ一対のパイロットポートX,Yを有しており、各パイロットポートX,Yへ所定のパイロット圧の作動油が供給されることにより、各操作弁41~47が制御される。これらの操作弁41~47に印加されるパイロット圧は、操作部60が操作されることによって制御される。すなわち、操作部60が操作されることによって、作業機13の動作および旋回体12の旋回動作が制御される。
 操作部60は、アームシリンダ25、ブームシリンダ24、旋回モータ27、バケットシリンダ26を操作するための装置である。操作部60は、アーム操作部61、ブーム操作部62、旋回操作部63、及びバケット操作部64を有する。アーム操作部61、ブーム操作部62、旋回操作部63、及びバケット操作部64は、それぞれ操作レバー65とパイロット弁66とを有する。操作レバー65は、運転室15内に配置されており、オペレータによって操作される操作部材である。パイロット弁66は、パイロット油圧ポンプ37から吐出された作動油を操作レバー65の操作量に応じた圧力に調整して出力する。
 アーム操作部61のパイロット弁66から出力されたパイロット圧は、第1アーム操作弁41および第2アーム操作弁44のパイロットポートX,Yに印加される。アーム操作部61から出力されるパイロット圧は、油圧センサ94によって検知される。ブーム操作部62のパイロット弁66から出力されたパイロット圧は、第1ブーム操作弁42および第2ブーム操作弁45のパイロットポートX,Yに印加される。ブーム操作部62から出力されるパイロット圧は、油圧センサ95によって検知される。旋回操作部63のパイロット弁66から出力されたパイロット圧は、旋回モータ操作弁46のパイロットポートX,Yに印加される。旋回操作部63から出力されるパイロット圧は、油圧センサ96によって検知される。バケット操作部64のパイロット弁66から出力されたパイロット圧は、第1バケット操作弁43および第2バケット操作弁47のパイロットポートX,Yに印加される。バケット操作部64から出力されるパイロット圧は、油圧センサ97によって検知される。油圧センサ94~97は、それぞれ検知したパイロット圧に対応した検知信号を制御部30に送る。
 また、アーム操作部61と第1アーム操作弁41のパイロットポートX,Yとを接続するパイロット流路7A,7Bには、第1パイロット制御弁48と第2パイロット制御弁49が設けられている。第1パイロット制御弁48は、制御部30からの指令信号に応じて、第1アーム操作弁41の第1パイロットポートXに入力されるパイロット圧を調整する電磁比例制御弁である。第2パイロット制御弁49は、制御部30からの指令信号に応じて、第1アーム操作弁41の第2パイロットポートYに入力されるパイロット圧を調整する電磁比例制御弁である。このため、制御部30は、第1パイロット制御弁48および第2パイロット制御弁49を制御することによって、第1アーム操作弁41の開口面積を電気的に制御することができる。
 <油圧アクチュエータの操作>
 以下、操作部60による油圧アクチュエータの操作について説明する。まず、複数のアクチュエータのうち1つのアクチュエータのみが操作される単独操作が行われる場合について説明する。
 アーム操作部61の操作レバー65が一方に倒されると、パイロット弁66は、第1アーム操作弁41および第2アーム操作弁44の第1パイロットポートXとパイロット油圧ポンプ37とを連通させると共に、第1アーム操作弁41および第2アーム操作弁44の第2パイロットポートYをタンクに連通させる。これにより、操作レバー65の操作量に応じたパイロット圧が第1アーム操作弁41および第2アーム操作弁44の第1パイロットポートXに印加される。そして、第1アーム操作弁41および第2アーム操作弁44が状態Aに切り替わると共に、各アーム操作弁41,44の開口面積が、印加されたパイロット圧に応じた、すなわち、操作レバー65の操作量に応じた大きさに設定される。これにより、アームシリンダ25のボトム側油室に作動油が供給され、アームシリンダ25が伸張する。これにより、油圧ショベル10は作業機13による掘削作業を行うことができる。以下、このようにアームシリンダ25を伸張させる操作を「アーム掘削操作」と呼ぶ。
 アーム操作部61の操作レバー65が上記の方向とは逆の他方に倒されると、パイロット弁66は、第1アーム操作弁41および第2アーム操作弁44の第2パイロットポートYとパイロット油圧ポンプ37とを連通させると共に、第1アーム操作弁41および第2アーム操作弁44の第1パイロットポートXをタンクに連通させる。これにより、操作レバー65の操作量に応じたパイロット圧が第1アーム操作弁41および第2アーム操作弁44の第2パイロットポートYに印加される。そして、第1アーム操作弁41および第2アーム操作弁44が状態Bに切り替わると共に、各アーム操作弁41,44の開口面積が、印加されたパイロット圧に応じた、すなわち、操作レバー65の操作量に応じた大きさに設定される。これにより、アームシリンダ25のヘッド側油室に作動油が供給され、アームシリンダ25が収縮する。これにより、油圧ショベル10は作業機13によるダンプ作業を行うことができる。以下、このようにアームシリンダ25を収縮させる操作を「アームダンプ操作」と呼ぶ。
 ブームシリンダ24の操作については、第2ブーム操作弁45が状態Bには切り替わらない点を除いて、上記のアームシリンダ25の操作と同様である。ブーム操作部62の操作レバー65を一方に倒すことにより、ブームシリンダ24が伸長する。以下、このようにブームシリンダ24を伸張させる操作を「ブーム上げ操作」と呼ぶ。また、ブーム操作部62の操作レバー65を他方に倒すことにより、ブームシリンダ24が収縮する。これにより、ブームの下げ操作を行うことができる。
 旋回モータ27の操作については、第1油圧ポンプ31に対応する旋回モータ操作弁が設けられていない点を除いて、上記のアームシリンダ25の操作と同様である。旋回操作部63の操作レバー65を一方に倒すことにより、旋回モータ操作弁46が状態Aに切り替わる。これにより、旋回モータ27が右方向に回転して、旋回体12を右方向に旋回させることができる。また、旋回操作部63の操作レバー65を他方に倒すことにより、旋回モータ操作弁46が状態Bに切り替わる。これにより、旋回モータ27が左方向に回転して、旋回体12を左方向に旋回させることができる。
 バケットシリンダ26の操作については、上記のアームシリンダ25の操作と同様である。バケット操作部64の操作レバー65を一方に倒すことにより、バケットシリンダ26が伸長して掘削作業を行うことができる。また、バケット操作部64の操作レバー65を他方に倒すことにより、バケットシリンダ26が収縮してダンプ作業を行うことができる。
 次に、複数のアクチュエータのアクチュエータが同時に操作される複合操作が行われる場合について説明する。複合操作時には、基本的には、上記の単独操作の制御が重ねて行われる。例えば、アーム操作部61とバケット操作部64とが同時に操作された場合には、アーム操作弁41,44がアーム操作部61の操作方向および操作量に応じて制御されると共に、バケット操作弁43,47がバケット操作部64の操作方向および操作量に応じて制御される。ただし、特定のアクチュエータの特定の操作が組み合わされて同時に行われる場合には、制御部30は、一方のアクチュエータに対応する操作弁の開口面積を単独操作時の値(以下「基準値」と呼ぶ)よりも小さくし、他方のアクチュエータに作動油を流れ易くするための制御を行う。以下、このような複合操作時の制御について図4のフローチャートに基づいて詳細に説明する。
 なお、以下の制御が行われている間、アームシリンダ圧は油圧センサ92によって検知され、制御部30によって常にモニタされている。
 まず、ステップS1において、アーム掘削操作が行われた否かが判断される。ここでは、油圧センサ94が検知したパイロット圧に基づいて、アーム掘削操作が行われたか否かが判断される。なお、油圧センサ94が検知したパイロット圧が、第1アーム操作弁41が状態Aに切り換えられる値以上であれば、第2アーム操作弁44の状態に関わらずアーム掘削操作が行われたと判断される。アーム掘削操作が行われた場合には、ステップS2に進む。
 ステップS2では、ブーム上げ操作が行われたか否かが判断される。ここでは、油圧センサ95が検知したブーム操作部62からのパイロット圧に基づいて、ブーム上げ操作が行われたか否かが判断される。ブーム上げ操作が行われた場合には、ステップS3に進む。
 ステップS3では、油圧センサ95が検知したブーム操作部62からのパイロット圧Ppbが所定の閾値ps1より大きいか否かが判断される。閾値ps1は、ブーム操作レバー65を僅かに操作した場合のパイロット圧に相当する。ブーム操作部62からのパイロット圧Ppbが所定の閾値ps1より大きいときにはステップS4に進む。
 ステップS4では、油圧センサ92が検知したアームシリンダ圧Pcaが所定の閾値ps2より小さいか否かが判断される。閾値ps2は、アームシリンダ25に大きな負荷がかかっている場合のアームシリンダ圧に相当し、後述するブームシリンダ圧Pcbとして制御部30に記憶されている固定値よりも小さな値である。アームシリンダ圧Pcaが閾値ps2より小さい場合にはステップS5に進む。
 ステップS5では、ブームシリンダ24の分流比が決定される。ここでは、油圧センサ95が検知したブーム操作部62からのパイロット圧に基づいて、ブームシリンダ24の分流比が決定される。制御部30は、図5に例示するような分流比テーブルを記憶している。分流比テーブルは、ブーム操作部62からのパイロット圧Ppbと、このパイロット圧Ppbに対応するブームシリンダ24の分流比rとを示すものである。分流比テーブルは、アーム掘削操作とブーム上げ操作との複合操作が行われた場合において、ブームシリンダ24への作動油の適切な分流比を示すものである。図5において、分流比テーブルの最上段の行には、ブーム操作部62からのパイロット圧Ppbが示されている。そして、上から2番目の行には、各パイロット圧Ppbに対応するブームシリンダ24への分流比rが示されている。この分流比rは、第1油圧ポンプ31の全流量を10とした場合のブームシリンダ24への流量の割合を示している。なお、分流比テーブルに含まれていないパイロット圧に対応する分流比は、分流比テーブルに含まれている値からの比例計算によって算出される。制御部30は、このような分流比テーブルを参照することにより、ブームシリンダ24への分流比を決定する。
 次に、ステップS6では、第1アーム操作弁41の開口面積が算出される。ここでは、以下の式に基づいて、第1アーム操作弁41の開口面積が算出される。
Figure JPOXMLDOC01-appb-M000001
ただし、Pca>Pcbのときは、A=Aとする。
Aは第1アーム操作弁41の開口面積である。Qは第1油圧ポンプ31の全流量である。rはステップS5で決定されたブームシリンダ24の分流比である。Caは所定の定数である。Pcbは、ブームシリンダ24に供給される作動油の圧力(以下「ブームシリンダ圧」と呼ぶ)であり、制御部30に記憶された固定値が用いられる。Pcaは、油圧センサ92によって検知されたアームシリンダ圧である。Aは、アームシリンダ25が単独操作されている場合の第1アーム操作弁41の開口面積の値であり、第1アーム操作弁41のバルブスプールの開口形状によって決まる一定値である。
 そして、ステップS7において、制御部30は、第1パイロット制御弁48および第2パイロット制御弁49に指令信号を出力する。この指令信号により、第1アーム操作弁41の開口面積がステップS6で算出した値となるように、第1パイロット制御弁48および第2パイロット制御弁49が制御される。
 なお、ステップS3において、ブーム操作部62からのパイロット圧Ppbが閾値ps1以下である場合には、ステップS8に進む。また、ステップS4において、アームシリンダ圧Pcaが閾値ps2以上である場合にもステップS8に進む。
 ステップS8では、第1アーム操作弁41の開口面積が基準値に設定される。基準値は、上述したように、アームシリンダ25が単独操作されている場合の第1アーム操作弁41の開口面積の値Aである。
 なお、アームシリンダ圧Pcaとブームシリンダ圧Pcbとが近接した値の場合には、ステップS6において、A>Aとなる場合がある。この場合には、第1アーム操作弁41の開口面積は、単独操作時の第1アーム操作弁41の開口面積Aに設定される。
 そして、ステップS7において、第1アーム操作弁41の開口面積がステップS8で決定された値となるように、パイロット制御弁48,49に指令信号が出力される。
 上記のフローによって決定される第1アーム操作弁41の開口面積の一例を図5に示す。図5では、上述した分流比テーブルと共に、アームシリンダ圧Pcaに対応した第1アーム操作弁41の開口面積の値を示している。ここでは、第1油圧ポンプ31の全流量Qを500、ブームシリンダ圧Pcb(固定値)を160、定数Caを0.5、第1アーム操作弁41の開口面積の基準値を700とした場合の第1アーム操作弁41の開口面積を例示している。また、上述した閾値ps1は8に設定されており、閾値ps2は140に設定されている。
 図5に示す表では、ブーム操作部62からのパイロット圧Ppbがゼロのとき、すなわち、アームシリンダ25の単独操作が行われる場合には、アームシリンダ圧Pcaの大きさに関わらず第1アーム操作弁41の開口面積は基準値700で一定である。また、ブーム操作部62からのパイロット圧Ppbが閾値8以下の場合には、アームシリンダ圧Pcaの大きさに関わらず第1アーム操作弁41の開口面積は基準値700で一定である。アームシリンダ圧Pcaが閾値140以上である場合には、パイロット圧Ppbの大きさに関わらず第1アーム操作弁41の開口面積は基準値700で一定である。すなわち、ブーム操作部62からのパイロット圧Ppbが閾値8以下の場合又はアームシリンダ圧Pcaが閾値140以上である場合には、第1アーム操作弁41の開口面積は、単独操作時の第1アーム操作弁41の開口面積(基準値)と同じ値に設定される。
 パイロット圧PPbが閾値8より大きく且つアームシリンダ圧Pcaが閾値140未満である場合(図5の二点鎖線で囲まれたエリア参照)には、上述した数1式に基づいて第1アーム操作弁41の開口面積が算出される。ここで算出された第1アーム操作弁41の開口面積は、基準値700よりも小さな値である。算出された第1アーム操作弁41の開口面積は、ブームシリンダ24への分流比rが大きいほど小さい。また、算出された第1アーム操作弁41の開口面積は、アームシリンダ圧Pcaが大きいほど大きい。すなわち、第1アーム操作弁41の開口面積は、アームシリンダ圧Pcaに基づいて決定されている。
 <特徴>
 油圧ショベル10では、アーム掘削操作とブーム上げ操作との複合操作が行われた場合には、上記の数1式によって、第1アーム操作弁41の開口面積の値が算出される。そして、第1アーム操作弁41の開口面積が、数1式によって算出された値となるように、第1パイロット制御弁48および第2パイロット制御弁49が制御される。第1パイロット制御弁48と第2パイロット制御弁49とは電磁比例制御弁であるため、制御部30からの指令信号によって、第1アーム操作弁41へのパイロット圧を所望の値に精度よく制御することができる。このため、第1アーム操作弁41の開口面積が、数1式によって算出された値となるように、第1アーム操作弁41を容易に制御することができる。
 また、第1アーム操作弁41の開口面積が、アームシリンダ25が単独操作された場合の値よりも小さい値に決定されると、第1アーム操作弁41の流路が単独操作時よりも小さく絞られる。これにより、ブームシリンダ24に作動油が流れ易くなり、ブームシリンダ24に供給される作動油を確保することができる。
 また、ブームシリンダ24の分流比rが大きいほど、すなわち、ブーム操作部62の操作量が大きいほど、第1アーム操作弁41の開口面積は小さくなる。このため、ブームシリンダ24に大きな出力が望まれておりブーム操作部62が大きく操作された場合には、第1アーム操作弁41の流路がさらに小さく絞られる。これにより、ブームシリンダ24に多くの流量を確保することができる。逆に言えば、ブーム操作部62の操作量が小さいほど、第1アーム操作弁41の開口面積は大きくなる。このため、ブームシリンダ24に大きな出力が望まれていない場合には、第1アーム操作弁41を不必要に絞ることが抑えられる。これにより、油圧のロスを低減することができる。
 また、アームシリンダ圧Pcaが大きいほど、第1アーム操作弁41の開口面積は大きくなる。このため、アームシリンダ25に大きな負荷がかかっている場合には、第1アーム操作弁41の絞りが抑えられる或いは絞りが行われない。これにより、第1アーム操作弁41を無駄に絞ることが抑えられ、油圧のロスが生じることを防止することができる。さらに、第1アーム操作弁41の絞りが抑えられるか或いは絞られないことにより、第1油圧ポンプ31のポンプ圧の上昇を抑えることができる。このため、第1油圧ポンプ31のポンプ容量が低下することを抑えることができる。これにより、アームシリンダ25およびブームシリンダ24の動作速度が低下することを抑えることができる。
 また、ブーム操作部62からのパイロット圧が閾値ps1以下である場合には、第1アーム操作弁41の開口面積が基準値に設定される。このため、ブーム操作部62の操作レバー65が僅かに操作された場合には、第1アーム操作弁41は絞られない。これにより、ブーム操作部62のごく小さな操作に過敏に反応して第1アーム操作弁41が絞られることを防止することができる。
 また、数1式を用いて第1アーム操作弁41の開口面積が算出される際には、ブームシリンダ圧は制御部30に記憶された固定値が用いられる。このため、ブームシリンダ圧を検知するための油圧センサを設ける必要がない。さらに、ブームシリンダ24はアームシリンダ25と比べて負荷の変動が小さいため、アームシリンダ圧の変動は小さい。このため、アームシリンダ圧として固定値を用いても、第1アーム操作弁41の適切な開口面積を精度よく算出することができる。
 また、作業機13を空中で複合動作させる場合、保持圧を確保できないため、アームシリンダ圧とブームシリンダ圧とが共に変動することがあり、このような油圧の変動によって作業機13にハンチングが発生してしまう恐れがある。そこで、上記のように、ブームシリンダ圧として固定値が用いられることにより、ハンチングの発生を抑えることができる。
(他の実施形態)
 (a)上記の実施形態では、第1アクチュエータとしてアームシリンダ25が用いられ、第2アクチュエータとしてブームシリンダ24が用いられているが、第1アクチュエータおよび第2アクチュエータとして他のアクチュエータが用いられてもよい。例えば、第1アクチュエータとしてブームシリンダ24が用いられ、第2アクチュエータとして旋回モータ27が用いられてもよい。この場合、油圧ショベル10が備える油圧回路は図6に示すような回路であることが望ましい。この油圧回路では、第1パイロット制御弁48と第2パイロット制御弁49とが第2ブーム操作弁45とブーム操作部62のパイロット弁66とを繋ぐパイロット流路8A,8Bに設けられている。また、ブームシリンダ24のボトム側油室に供給される作動油の圧力(以下「ブームシリンダ圧」と呼ぶ)を検知する油圧センサ98が設けられている。そして、ブーム上げ操作と旋回モータ27の操作との複合操作が行われた場合には、上述した複合操作時のフローと同様にして、第2ブーム操作弁45の開口面積が決定される。この場合、以下の式を用いて、第2ブーム操作弁45の開口面積が算出される。
Figure JPOXMLDOC01-appb-M000002
数2式において、Qは第2油圧ポンプ32の全流量である。rは旋回モータ27の分流比であり、分流比テーブルから求められる。Pcmは、旋回モータ27に供給される作動油の圧力(以下、「旋回モータ圧」と呼ぶ)であり、制御部30に記憶された固定値が用いられる。Pcbは油圧センサ98によって検知されたブームシリンダ圧である。
 この場合も上記の実施形態と同様に、第2油圧ポンプ32での油圧のロスを防止することができる。また、第2油圧ポンプ32のポンプ容量の低下が抑えられることにより、ブームシリンダ24と旋回モータ27との速度低下を防止することができる。
 さらに、2種のアクチュエータに限らず、3種以上のアクチュエータの複合操作に対しても本発明の適用が可能である。また、3種のアクチュエータの複合操作の場合には、1つのアクチュエータの流量のみを変更し、他の2つのアクチュエータの流量を固定にする制御が行われてもよい。
 (b)上記の実施形態では、ブームシリンダ圧として制御部30に記憶された固定値が用いられているが、ブームシリンダ圧を検知する油圧センサが設けられ、油圧センサによって検知された油圧がブームシリンダ圧として用いられてもよい。また、上述した他の実施形態(a)の旋回モータ圧についても同様に、油圧センサによって検知されてもよい。この場合、さらに精度よく操作弁の開口面積を算出することができる。
 (c)上記の実施形態では、作業アタッチメントとしてバケット23が用いられているが、ブレーカなどの他の作業アタッチメントが用いられてもよい。また、複数のアクチュエータの複合操作が行われるものであれば、油圧ショベル10以外の作業機械に対して本発明が適用されてもよい。また、上記の実施形態では、バケット23が運転室15側向きに取り付けられた、いわゆるバックホーと呼ばれる油圧ショベルに本発明が適用されているが、バケット23が運転室15側とは反対向きに取り付けられた、いわゆるローディングショベルに対して本発明が適用されてもよい。
 (d)上記の実施形態では、数式により開口面積が算出されているが、マップから開口面積の値を決定してもよい。すなわち、開口面積と油圧との関係をマップ化して制御部に記憶させておき、検知した油圧とマップとから開口面積を決定してもよい。
 本発明は、複合操作時にアクチュエータの動作速度が遅くなること、及び、油圧のロスが発生することを抑えることができる効果を有し、作業機械および作業機械の制御方法として有用である。
10 油圧ショベル(作業機械)
12 旋回体(車両本体)
21 ブーム
22 アーム
23 バケット(作業アタッチメント)
24 ブームシリンダ(第2アクチュエータ)
25 アームシリンダ(第1アクチュエータ)
30 制御部
31 第1油圧ポンプ
41 第1アーム操作弁(第1方向切換弁)
42 第1ブーム操作弁(第2方向切換弁)
48 第1パイロット制御弁(パイロット圧制御弁)
49 第2パイロット制御弁(パイロット圧制御弁)
60 操作部
92 油圧センサ(第1油圧検知部)
61 アーム操作部(第1操作部)
62 ブーム操作部(第2操作部)
 

Claims (7)

  1.  作動油を吐出する油圧ポンプと、
     前記油圧ポンプから吐出された作動油によって駆動される第1アクチュエータと、
     前記油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、前記第1アクチュエータに供給される作動油の流量を変更する第1方向切換弁と、
     前記油圧ポンプから吐出された作動油によって駆動される第2アクチュエータと、
     前記油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、前記第2アクチュエータに供給される作動油の流量を変更する第2方向切換弁と、
     前記第1アクチュエータおよび前記第2アクチュエータを操作するための操作部と、
     前記第1アクチュエータに供給される油圧を検知する第1油圧検知部と、
     前記第1方向切換弁のパイロットポートに入力されるパイロット圧を調整するパイロット圧制御弁と、
     前記パイロット圧制御弁を制御することにより前記第1方向切換弁の開口面積を制御し、前記第1アクチュエータと前記第2アクチュエータとが同時に操作される複合操作が実行された場合の前記第1方向切換弁の開口面積が、前記第1アクチュエータと前記第2アクチュエータとのうち前記第1アクチュエータのみが操作される単独操作が実行された場合の前記第1方向切換弁の開口面積以下となるように前記パイロット圧制御弁を制御し、前記複合操作が実行された場合の前記第1方向切換弁の開口面積を前記第1油圧検知部が検知した油圧に基づいて決定する制御部と、
    を備える作業機械。
  2.  前記制御部は、前記複合操作が実行された場合の前記第1方向切換弁の開口面積を、前記単独操作が実行された場合の前記第1方向切換弁の開口面積よりも小さくする場合、前記第1油圧検知部が検知した油圧が大きくなるほど前記第1方向切換弁の開口面積を大きくする、
    請求項1に記載の作業機械。
  3.  前記操作部は、前記第1アクチュエータを操作するための第1操作部と、前記第2アクチュエータを操作するための第2操作部とを有し、
     前記制御部は、前記複合操作が実行された場合には前記第1操作部の操作量と前記第2操作部の操作量に応じて、前記第1アクチュエータに供給される作動油の流量と前記第2アクチュエータに供給される作動油の流量とを決定し、前記第1アクチュエータに供給される作動油の流量と前記第1油圧検知部が検知した油圧と前記第2アクチュエータに供給される油圧とに基づいて前記第1方向切換弁の開口面積を決定する、
    請求項2に記載の作業機械。
  4.  前記制御部は、前記複合操作が実行された場合には、前記第2アクチュエータに供給される油圧として、予め記憶された固定値を用いる、
    請求項3に記載の作業機械。
  5.  車両本体と、
     前記車両本体に取り付けられるブームと、
     前記ブームに取り付けられるアームと、
     前記アームに取り付けられる作業アタッチメントと、
    をさらに備え、
     前記第1アクチュエータは前記アームを駆動し、
     前記第2アクチュエータは前記ブームを駆動する、
    請求項1から4のいずれかに記載の作業機械。
  6.  走行体と、前記走行体上に載置される旋回体とを有する車両本体と、
     前記車両本体に取り付けられるブームと、
     前記ブームに取り付けられるアームと、
     前記アームに取り付けられる作業アタッチメントと、
    をさらに備え、
     前記第1アクチュエータは前記ブームを駆動し、
     前記第2アクチュエータは前記旋回体を旋回させる、
    請求項1から4のいずれかに記載の作業機械。
  7.  作動油を吐出する油圧ポンプと、前記油圧ポンプから吐出された作動油によって駆動される第1アクチュエータと、前記油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、前記第1アクチュエータに供給される作動油の流量を変更する第1方向切換弁と、前記油圧ポンプから吐出された作動油によって駆動される第2アクチュエータと、前記油圧ポンプからの作動油の供給方向を切換可能であり、作動油の流路の開口面積を変更することにより、前記第2アクチュエータに供給される作動油の流量を変更する第2方向切換弁と、前記第1アクチュエータおよび前記第2アクチュエータを操作するための操作部と、前記第1アクチュエータに供給される油圧を検知する第1油圧検知部と、前記第1方向切換弁のパイロットポートに入力されるパイロット圧を調整するパイロット圧制御弁と、を備える作業機械の制御方法であって、
     前記パイロット圧制御弁を制御することにより前記第1方向切換弁の開口面積を制御し、前記第1アクチュエータと前記第2アクチュエータとが同時に操作される複合操作が実行された場合の前記第1方向切換弁の開口面積が、前記第1アクチュエータと前記第2アクチュエータとのうち前記第1アクチュエータのみが操作される単独操作が実行された場合の前記第1方向切換弁の開口面積以下となるように前記パイロット圧制御弁を制御し、前記複合操作が実行された場合の前記第1方向切換弁の開口面積を前記第1油圧検知部が検知した油圧に基づいて決定する、
    作業機械の制御方法。
     
PCT/JP2010/059647 2009-06-12 2010-06-08 作業機械および作業機械の制御方法 WO2010143616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800258282A CN102459770B (zh) 2009-06-12 2010-06-08 工程机械及工程机械的控制方法
US13/376,250 US9074346B2 (en) 2009-06-12 2010-06-08 Work machine and control method for work machines
KR1020117028286A KR101305267B1 (ko) 2009-06-12 2010-06-08 작업 기계 및 작업 기계의 제어 방법
DE112010002422.7T DE112010002422B4 (de) 2009-06-12 2010-06-08 Arbeitsmaschine und Steuerverfahren für Arbeitsmaschinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009141436A JP5161155B2 (ja) 2009-06-12 2009-06-12 作業機械および作業機械の制御方法
JP2009-141436 2009-06-12

Publications (1)

Publication Number Publication Date
WO2010143616A1 true WO2010143616A1 (ja) 2010-12-16

Family

ID=43308871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059647 WO2010143616A1 (ja) 2009-06-12 2010-06-08 作業機械および作業機械の制御方法

Country Status (6)

Country Link
US (1) US9074346B2 (ja)
JP (1) JP5161155B2 (ja)
KR (1) KR101305267B1 (ja)
CN (1) CN102459770B (ja)
DE (1) DE112010002422B4 (ja)
WO (1) WO2010143616A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142032A (ja) * 2013-01-25 2014-08-07 Kawasaki Heavy Ind Ltd 液圧駆動装置
WO2014123368A1 (ko) * 2013-02-08 2014-08-14 두산인프라코어 주식회사 굴삭기의 유압펌프 제어장치 및 방법
JP6220228B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 建設機械の油圧駆動システム
CN105452570A (zh) 2015-08-18 2016-03-30 株式会社小松制作所 作业车辆及其控制方法
KR101656765B1 (ko) 2015-08-18 2016-09-12 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량 및 그 제어 방법
DE112015000220T5 (de) 2015-11-02 2016-08-18 Komatsu Ltd. Steuersystem für ein Arbeitsfahrzeug, Steuerverfahren und Arbeitsfahrzeug
JP2017110721A (ja) * 2015-12-16 2017-06-22 日立建機株式会社 建設機械の油圧駆動装置
DE112016000048B4 (de) * 2016-02-08 2023-10-19 Komatsu Ltd. Arbeitsfahrzeug und Verfahren zum Steuern von Arbeitsvorgängen
JP2018035620A (ja) * 2016-09-01 2018-03-08 ナブテスコ株式会社 建設機械
JP6982474B2 (ja) * 2017-11-22 2021-12-17 川崎重工業株式会社 油圧駆動システム
JP7190933B2 (ja) * 2019-02-15 2022-12-16 日立建機株式会社 建設機械
CN113550374B (zh) * 2021-06-30 2022-08-12 徐州徐工挖掘机械有限公司 挖掘机作业的流量控制方法及提高动臂提升速度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248404A (ja) * 1992-03-05 1993-09-24 Sumitomo Constr Mach Co Ltd 建設機械の油圧回路
JP2006097854A (ja) * 2004-09-30 2006-04-13 Kobelco Contstruction Machinery Ltd 建設機械の油圧制御回路
JP2008224038A (ja) * 2008-04-07 2008-09-25 Komatsu Ltd 油圧駆動機械の制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301096B1 (en) * 1987-01-30 1994-03-02 Kabushiki Kaisha Komatsu Seisakusho Operation controller
US5182908A (en) * 1992-01-13 1993-02-02 Caterpillar Inc. Control system for integrating a work attachment to a work vehicle
JPH05256303A (ja) * 1992-01-15 1993-10-05 Caterpillar Inc 油圧回路制御装置
JP2602760B2 (ja) * 1992-07-23 1997-04-23 石原薬品株式会社 無電解メッキ浴の自動管理方法
JPH0694007A (ja) * 1992-09-08 1994-04-05 Komatsu Ltd 油圧駆動機械の制御装置
JP3646812B2 (ja) * 1995-05-02 2005-05-11 株式会社小松製作所 移動式破砕機の制御回路
WO1997032135A1 (en) * 1996-02-28 1997-09-04 Komatsu Ltd. Control device for hydraulic drive machine
US5737993A (en) * 1996-06-24 1998-04-14 Caterpillar Inc. Method and apparatus for controlling an implement of a work machine
JP3306301B2 (ja) * 1996-06-26 2002-07-24 日立建機株式会社 建設機械のフロント制御装置
US6282891B1 (en) * 1999-10-19 2001-09-04 Caterpillar Inc. Method and system for controlling fluid flow in an electrohydraulic system having multiple hydraulic circuits
US6321152B1 (en) * 1999-12-16 2001-11-20 Caterpillar Inc. System and method for inhibiting saturation of a hydraulic valve assembly
JP4489258B2 (ja) * 2000-07-17 2010-06-23 日立建機株式会社 建設機械の電子制御システム
US6498973B2 (en) * 2000-12-28 2002-12-24 Case Corporation Flow control for electro-hydraulic systems
JP3777114B2 (ja) * 2001-11-05 2006-05-24 日立建機株式会社 油圧作業機の油圧回路装置
US6938535B2 (en) * 2002-12-13 2005-09-06 Caterpillar Inc Hydraulic actuator control
US6618659B1 (en) * 2003-01-14 2003-09-09 New Holland North America, Inc. Boom/bucket hydraulic fluid sharing method
JP4647325B2 (ja) * 2004-02-10 2011-03-09 株式会社小松製作所 建設機械の作業機の制御装置、建設機械の作業機の制御方法、及びこの方法をコンピュータに実行させるプログラム
US7146808B2 (en) * 2004-10-29 2006-12-12 Caterpillar Inc Hydraulic system having priority based flow control
US7260931B2 (en) * 2005-11-28 2007-08-28 Caterpillar Inc. Multi-actuator pressure-based flow control system
DE102007059491B3 (de) * 2007-12-11 2009-07-09 Sauer-Danfoss Gmbh & Co Ohg Verfahren und Schaltungsanordnung zur Druckmittelversorgung von zumindest zwei hydraulischen Verbrauchern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248404A (ja) * 1992-03-05 1993-09-24 Sumitomo Constr Mach Co Ltd 建設機械の油圧回路
JP2006097854A (ja) * 2004-09-30 2006-04-13 Kobelco Contstruction Machinery Ltd 建設機械の油圧制御回路
JP2008224038A (ja) * 2008-04-07 2008-09-25 Komatsu Ltd 油圧駆動機械の制御装置

Also Published As

Publication number Publication date
CN102459770A (zh) 2012-05-16
CN102459770B (zh) 2013-12-11
US20120093624A1 (en) 2012-04-19
DE112010002422T5 (de) 2013-01-03
US9074346B2 (en) 2015-07-07
KR20120024661A (ko) 2012-03-14
DE112010002422B4 (de) 2014-04-30
JP5161155B2 (ja) 2013-03-13
JP2010285828A (ja) 2010-12-24
KR101305267B1 (ko) 2013-09-06

Similar Documents

Publication Publication Date Title
JP5161155B2 (ja) 作業機械および作業機械の制御方法
JP6134263B2 (ja) 油圧駆動システム
US8146355B2 (en) Traveling device for crawler type heavy equipment
WO2012114654A1 (ja) 作業アタッチメントを備えた建設機械
US9951797B2 (en) Work machine
EP2354331B1 (en) Hydraulic drive device for hydraulic excavator
US11542963B2 (en) Hydraulic drive device for traveling work machine
CN111989441B (zh) 油压挖掘机驱动系统
US11078646B2 (en) Shovel and control valve for shovel
CN112105785A (zh) 工程机械的液压驱动装置
JP2013079552A (ja) 作業車両
JP6891079B2 (ja) 建設機械の油圧駆動システム
JP5324981B2 (ja) 作業機械
JP6615137B2 (ja) 建設機械の油圧駆動装置
WO2014061407A1 (ja) 油圧駆動システム
JP6667994B2 (ja) ショベル
CN108884843B (zh) 挖土机及挖土机用控制阀门
WO2021192389A1 (ja) 作業機械
JP2003090302A (ja) 建設機械の油圧制御回路
JP2020153506A (ja) 作業機械の油圧駆動装置
JP3981101B2 (ja) 油圧ショベルの旋回単独操作検出回路
JP2015031377A (ja) 油圧駆動装置
JP2007032786A (ja) 流体圧制御装置及び流体圧制御方法
WO2022131195A1 (ja) 弁ユニットおよび弁装置
JP2023142310A (ja) 作業機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025828.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117028286

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120100024227

Country of ref document: DE

Ref document number: 112010002422

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13376250

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10786147

Country of ref document: EP

Kind code of ref document: A1