WO2010143410A1 - コンデンサおよびコンデンサの製造方法 - Google Patents

コンデンサおよびコンデンサの製造方法 Download PDF

Info

Publication number
WO2010143410A1
WO2010143410A1 PCT/JP2010/003792 JP2010003792W WO2010143410A1 WO 2010143410 A1 WO2010143410 A1 WO 2010143410A1 JP 2010003792 W JP2010003792 W JP 2010003792W WO 2010143410 A1 WO2010143410 A1 WO 2010143410A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
layer
dielectric layer
dielectric
providing
Prior art date
Application number
PCT/JP2010/003792
Other languages
English (en)
French (fr)
Inventor
加賀田博司
鳳桐将之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/377,212 priority Critical patent/US20120087059A1/en
Priority to EP10785942A priority patent/EP2400514A1/en
Priority to JP2011518301A priority patent/JPWO2010143410A1/ja
Priority to CN201080025206XA priority patent/CN102804298A/zh
Publication of WO2010143410A1 publication Critical patent/WO2010143410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Definitions

  • the present invention relates to a capacitor that can be thinned and, as a result, can have a large capacity.
  • FIG. 13 is a cross-sectional view of a conventional capacitor 900 described in Patent Document 1.
  • a capacitor 900 is a film capacitor, and is a flexible resin film, a dielectric layer 901, a conductive layer 902 made of a conductor such as aluminum deposited on the upper surface of the dielectric layer 901, and an upper surface of the conductive layer 902. And a conductive layer 904 made of a conductor such as aluminum deposited on the upper surface of the dielectric layer 903.
  • One end of the conductive layer 902 is electrically connected to the terminal 905, and the other end of the conductive layer 902 is open.
  • one end side of the conductive layer 904 is open, and the other end side is electrically connected to the terminal 906.
  • the terminal 905 is formed on one end side of the conventional capacitor 900, and the terminal 906 is formed on the other end side opposite to the terminal 905.
  • the terminals 905 and 906 are not in direct current conduction.
  • An uppermost dielectric layer 907 is provided on the uppermost surface of the capacitor 900 to prevent the conductive layer 904 from being exposed. However, it is difficult for the capacitor 900 to secure a large capacity.
  • the capacitor includes a base made of an organic film, a first conductive layer provided on the upper surface of the base, a first dielectric layer provided on the upper surface of the first conductive layer, and a first dielectric.
  • the first dielectric layer comprises a plurality of pieces of metal oxide tiled on top of the first conductive layer.
  • the second dielectric layer comprises a plurality of pieces of metal oxide spread over the lower surface of the second conductive layer.
  • This capacitor can secure a large capacity.
  • FIG. 1A is a cross-sectional view of a capacitor according to Embodiment 1 of the present invention.
  • FIG. 1B is an enlarged schematic view of a dielectric layer of the capacitor in accordance with the first embodiment.
  • FIG. 2 is a cross-sectional view of a capacitor according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a capacitor in accordance with a third preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a capacitor according to a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a capacitor according to a fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a capacitor in accordance with a sixth preferred embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a capacitor in accordance with a seventh embodiment of the present invention.
  • FIG. 8 is a cross sectional view of a capacitor in accordance with an eighth embodiment of the present invention.
  • FIG. 9 is an enlarged sectional view of a capacitor in accordance with a ninth preferred embodiment of the present invention.
  • FIG. 10A is an enlarged sectional view of another capacitor according to the ninth embodiment.
  • 10B is an enlarged cross-sectional view of still another capacitor according to Embodiment 9.
  • FIG. FIG. 10C is an enlarged cross-sectional view of still another capacitor according to Embodiment 9.
  • FIG. 11 is an enlarged sectional view of a capacitor in accordance with a tenth preferred embodiment of the present invention.
  • FIG. 12 is an enlarged cross-sectional view of another capacitor according to the tenth embodiment.
  • FIG. 13 is a cross-sectional view of a conventional film capacitor.
  • FIG. 1A is a cross-sectional view of a capacitor 1001 according to the first embodiment of the present invention.
  • the capacitor 1001 includes a capacitor element 2001 and terminals 5 and 6.
  • Capacitor element 2001 has a side surface 2001C facing in direction 1001C and a side surface 2001D opposite to side surface 2001C. Side 2001D faces in the opposite direction 1001D of direction 1001C.
  • the terminals 5 and 6 are provided on the side surfaces 2001C and 2001D of the capacitor element 2001, respectively.
  • the upper surface 2A of the base 2 has a conductor non-forming portion 7 located at the end of the direction 1001C.
  • a conductive layer 3 is formed on the portion of the upper surface 2A of the base 2 except the non-conductor forming portion 7.
  • a dielectric layer 4 is formed on the upper surface 3A of the conductive layer 3.
  • a dielectric layer 104 is provided on the top surface 4A of the dielectric layer 4.
  • the lower surface 102B of the base material 102 has a conductor non-formed portion 107 located at the end of the direction 1001D.
  • a conductive layer 103 is formed on a portion of the lower surface 102B of the base material 102 excluding the non-conductor forming portion 107.
  • a dielectric layer 104 is formed on the lower surface 103 B of the conductive layer 103.
  • the lower surface 104 B of the dielectric layer 104 is located on the upper surface 4 A of the dielectric layer 4.
  • the conductive layer 103 faces the conductive layer 3 via the dielectric layers 4 and 104.
  • the conductive layers 103 and 3 are connected to the terminals 5 and 6, respectively.
  • the thickness of the dielectric layers 4 and 104 is 0.3 to 50.0 nm, and the relative dielectric constant is 30 or more.
  • the substrates 2 and 102 are made of an insulating material such as an organic film.
  • FIG. 1B is an enlarged schematic view of the dielectric layer 4 (104).
  • the dielectric layer 4 (104) is a nanosheet consisting of a plurality of metal oxide pieces 700 laid on the upper surface 3A and the lower surface 103B of the conductive layers 3 and 103.
  • the metal oxide pieces 700 are made of oxide nanosheets such as titanate nanosheets and niobate nanosheets.
  • the metal oxide piece 700 has a thickness of several atoms, and the thickness is about 0.3 nm to 2 nm, preferably 0.3 nm to 50 nm, and the length and width are about 10 nm to 1 mm.
  • the plurality of metal oxide pieces 700 are adhered and spread on the upper surface and the lower surface of the conductive layer by the adhesion assisting layer made of a cation disposed on the upper surface and the lower surface of the conductive layer.
  • the conductive layer 3 is disposed on the top surface 2A of the base 2 except for the non-conductor forming portion 7 of the top surface 2A of the base 2.
  • the conductive layer 3 is formed on the upper surface 2A of the substrate 2 by a thin film forming technique such as vapor deposition or sputtering, and is made of metal such as aluminum.
  • the thickness of the conductive layer 3 is, for example, about 20 nm.
  • the thickness of the substrate 2 is several ⁇ m and the relative dielectric constant is 10 or less.
  • the dielectric layer 4 having a thickness of 0.3 nm or more and 50 nm or less and a relative dielectric constant of 30 or more is disposed on the upper surface 3A of the conductive layer 3.
  • the dielectric layer 4 is composed of a titanium oxide nanosheet having a relative dielectric constant of about 125, a niobium oxide nanosheet having a relative dielectric constant of about 300, or the like.
  • the structure 50 which is a metallized film is produced with the base material 2, the dielectric layer 4 and the conductive layer 3.
  • the base 2, the dielectric layer 4 and the conductive layer 3 of the structure 50 are respectively the same as the base 102, the dielectric layer 104 and the conductive layer 103, and also constitute the structure 150. That is, the structure 50 functions as the structure 150 by turning upside down.
  • the dielectric layer 4 is also formed on the side surface of the conductive layer 3 (103) facing the nonconductive portion 7 (107) and on the nonconductive portion 7 (107) of the surface 2A (102B) of the base 2 (102). (104) may be formed.
  • a configuration in which the conductive layers 3 and 103 are not easily short-circuited in a later step can be realized.
  • a short circuit between the conductive layers 3 and 103 and the terminal 5 or 6 can be avoided in a later step.
  • ⁇ Third step> The structures 50 and 150 obtained in the second step are stacked and stacked.
  • the lower surface 104B of the dielectric layer 104 is located on the upper surface 4A of the dielectric layer 4, the conductive layers 3 and 103 face each other via the dielectric layers 4 and 104, and the non-conductor forming portions 7 and 107 are opposite to each other. In the directions 1001C and 1001D.
  • the number of sets is determined in consideration of the required capacitance, the desired size of the capacitor 1001, and the like.
  • the terminals 5 and 6 are respectively formed on the side surfaces 2001C and 2001D of the capacitor element 2001 by a thermal spraying method.
  • the conductive layers 3 and 103 are connected to the terminals 6 and 5 respectively in a direct current manner.
  • the thicknesses of the dielectric layer 901 and the dielectric layer 903 are about several ⁇ m and the relative dielectric constant is about 10 or less, a large capacity should be secured. Is difficult.
  • the capacitor 1001 is provided via two nanosheets (dielectric layers 4 and 104) which are difficult to handle in a single layer in which the conductive layers 3 and 103 have a high relative dielectric constant with a thickness of 0.3 nm to 50 nm. Since they face each other at a narrow interval, a large capacity can be secured.
  • the capacitor 1001 shown in FIG. 1A is formed by stacking the structures 50 and 150, it is not necessary to limit to this, and it is not necessary to be limited to this.
  • the terminal 6 may be formed on one end side of the structure 50 by the thermal spraying method, and the terminal 5 may be formed on the other side of the wound structure 150 by the thermal spraying method.
  • the capacitor 1001 according to the first embodiment shown in FIG. 1A can be realized by stacking the structural bodies 50 and 150 having the same shape in a predetermined direction, so that the production efficiency can also be increased.
  • the base material 2 is comprised with organic films, such as a resin film, and that whose thickness is thicker than the dielectric material layer 4 is used.
  • organic films such as a resin film
  • the base material 2 (102) as a base material, and to form conductive layer 3 (103) and dielectric material layer 4 (104) on the upper surface.
  • the substrates 2 and 102 are realized by an organic compound
  • the dielectric layers 4 and 104 in FIG. 1A are realized by an inorganic compound.
  • the structures 50 and 150 obtained after the second step are stacked such that the conductive layers 3 and 103 face each other via the two dielectric layers 4 and 104.
  • the structure obtained after the first step including the dielectric layer 104 and the conductive layer 103 may be stacked on the structure 50. In this case, since the conductive layers 3 and 103 face each other only through the dielectric layer 4, the capacitance value can be increased.
  • the cross-sectional view of the capacitor 1001 shown in FIG. 1A shows the one after pressure is applied from the upper and lower direction after the above-mentioned steps to make the layers adhere.
  • the upper surface 4A (lower surface 104B) of the dielectric layer 4 (104) is flat, it is not necessary to limit to this and it may be a shape having unevenness.
  • the capacitor 1001 at least includes the structures 50 and 150.
  • Structure 50 includes base 2 made of an organic film, conductive layer 3 formed on upper surface 2 A of base 2, and dielectric layer 4 formed on upper surface 3 A of conductive layer 3.
  • the conductive layer 3 has a connecting portion 3T that reaches at least one end side of the substrate 2.
  • Structure 150 includes base 102 made of an organic film, conductive layer 103 formed on lower surface 102 B of base 102, and dielectric layer 104 formed on lower surface 103 B of conductive layer 103.
  • the conductive layer 103 has a connection portion 103T that reaches at least one end side of the base material 102.
  • the dielectric layers 4 and 104 are metal oxides having a thickness of several atoms or a laminate of these metal oxides.
  • the connection portions 3T and 103T are located in opposite directions to each other.
  • the structures 50 and 150 are stacked or wound in a state where the dielectric layers 4 and 104 are in contact with each other.
  • the base material 2 102 made of an organic film is prepared.
  • the conductive layers 3 and 103 are formed on at least one side of the substrates 2 and 102, respectively.
  • the conductive layer 3 has a connecting portion 3T reaching at least one end side of the substrate 2.
  • the conductive layer 103 has a connecting portion 103T reaching at least one end side of the base material 2.
  • Dielectric layers 4 and 104 are formed on the surfaces of the conductive layers 3 and 103, respectively. Thereby, the structures 50 and 150 are manufactured. Thereafter, the capacitors 50 are manufactured by stacking and winding the structures 50 and 105 such that the connection portions 3T and 103T are in opposite directions and the dielectric layers 4 and 104 are in contact with each other.
  • FIG. 2 is a cross-sectional view of capacitor 1002 according to the second embodiment.
  • Capacitor 1002 includes capacitor element 2002 and terminals 5 and 6.
  • Capacitor element 2002 has side surface 2002C facing in direction 1002C and side surface 2002D opposite to side surface 2002C. Side 2002D faces in the opposite direction 1002D of direction 1002C.
  • the terminals 5 and 6 are provided on the side surfaces 2002C and 2002D of the capacitor element 2002, respectively.
  • the upper surface 2A of the base material 2 has a conductor non-forming portion 13 located at the end of the direction 1002C.
  • a conductive layer 8 is formed on the portion of the top surface 2A of the base 2 except the non-conductor forming portion 13.
  • a dielectric layer 4 is formed on the upper surface 8A of the conductive layer 8.
  • the lower surface 2B of the base material 2 has a conductor non-formed portion 14 located at the end of the direction 1002D.
  • a conductive layer 9 is formed on a portion of the lower surface 2B of the base 2 except the non-conductor forming portion 14.
  • a dielectric layer 10 is provided on the lower surface 9 B of the conductive layer 9.
  • the lower surface 10 B of the dielectric layer 10 is located on the upper surface 4 A of the dielectric layer 4.
  • the conductive layer 8 faces the conductive layer 9 via the dielectric layers 4 and 10.
  • the thickness of the dielectric layers 4 and 10 is 0.3 to 50.0 nm, and the relative dielectric constant is 30 or more.
  • the dielectric layer 10 is made of an oxide nanosheet having the same structure as the dielectric layer 4.
  • the conductive layer 8 is disposed on the portion of the upper surface 2A of the base 2 excluding the non-conductor forming portion 13.
  • the conductive layer 8 is formed on the upper surface 2A of the substrate 2 by a thin film forming technique such as vapor deposition or sputtering.
  • the conductive layer 8 is made of metal such as aluminum, and the thickness of the conductive layer 8 is, for example, about 20 nm.
  • the thickness of the substrate 2 is several ⁇ m and the relative dielectric constant is 10 or less.
  • the conductive layer 8 is formed on the portion other than the non-conductor forming portion 13 because the conductive layer 8 and the terminal 5 are DC-connected when the terminal 5 is formed on one end side of the capacitor 1 in a later step. This is to prevent conduction.
  • the dielectric layer 4 having a thickness of 0.3 nm or more and 50 nm or less and a relative dielectric constant of 30 or more is disposed on the upper surface 8A of the conductive layer 8.
  • the dielectric layer 4 is composed of a titanium oxide nanosheet having a relative dielectric constant of about 125, a niobium oxide nanosheet having a relative dielectric constant of about 300, or the like.
  • the dielectric layer 4 may be formed on the side surface of the conductive layer 8 facing the nonconductive portion 13 or the nonconductive portion 13 of the upper surface 2A of the base 2.
  • the conductive layer 9 is disposed on the portion of the lower surface 2B of the base 2 except the non-conductor forming portion 14 located at the end of the direction 1002D.
  • the conductive layer 9 is formed on the lower surface 2B of the substrate 2 by a thin film forming technique such as vapor deposition or sputtering.
  • the conductive layer 9 is made of metal such as aluminum, and the thickness of the conductive layer 9 is, for example, about 20 nm.
  • the conductive layer 9 is formed on the portion excluding the non-conductor forming portion 14 because, when the terminal 6 is formed on the side surface 2002D of the capacitor element 2002 in a later step, the conductive layer 9 and the terminal 6 are in direct current conduction. It is to prevent doing.
  • a structure 51 which is a metallized film is manufactured by providing the dielectric layer 10 having a thickness of 0.3 nm to 50 nm and a relative dielectric constant of 30 or more on the lower surface of the conductive layer 9. Do.
  • the dielectric layer 10 is composed of a titanium oxide nanosheet having a relative dielectric constant of about 125, a niobium oxide nanosheet having a relative dielectric constant of about 300, or the like.
  • the dielectric layer 10 may be formed on the side surface of the conductive layer 9 facing the nonconductive portion 14 or the nonconductive portion 14 on the lower surface of the base 2.
  • the lower surface 10B of the dielectric layer 10 of the structure 51 is positioned on the upper surface 10A of the dielectric layer 10 of another structure 51, and the conductive layer 8 and the conductive layer 9 face each other via the dielectric layers 4 and 10 As described above, the structures 51 are stacked and stacked.
  • the capacitor 1002 in FIG. 2 consists of three structures 51.
  • the number of structures 51 is determined in consideration of the required capacity, the desired size of the capacitor 1002, and the like.
  • the insulating coating layer 11 is provided on the uppermost layer, and the insulating coating layer 12 is provided on the lowermost layer. Thereby, conductive layers 8 and 9 and dielectric layers 4 and 10 can be protected from the external environment.
  • the terminal 5 is formed on the side surface 2002C of the capacitor element 2002 by the thermal spraying method
  • the terminal 6 is formed on the side surface 2002D of the capacitor element 2002 by the thermal spraying method.
  • the plurality of conductive layers 8 provided in the capacitor element 2002 are connected DC to the terminal 6 at the side surface 2002D
  • the plurality of conductive layers 9 are DC connected to the terminal 5 at the side surface 2002C.
  • the capacitor 1002 is opposed through the dielectric layers 4 and 10 which are nanosheets having a high relative dielectric constant and a thickness of 0.3 nm to 50 nm, respectively, the conductive layer 8 has a large capacity. It is possible to
  • the three structural bodies 51 are stacked and formed, but it is not necessary to limit to this, and the single structural body 51 is wound and superposed and wound.
  • the terminal 5 may be formed on one end side of the structural body 51 by a thermal spraying method, and the terminal 6 may be formed on the other end side of the wound structural body by a thermal spraying method.
  • the capacitor 1002 according to the second embodiment shown in FIG. 2 can be realized only by stacking the structural bodies 51 having the same shape, so that the production efficiency can also be increased.
  • the base material 2 is comprised with organic films, such as a resin film, and that whose thickness is thicker than the dielectric material layer 4 or the dielectric material layer 10 is used.
  • the conductive layer 3 and the dielectric layer 4 can be formed on the upper surface 2A of the substrate 2.
  • the base material 2 in FIG. 2 is implement
  • the dielectric material layer 4 in FIG. 2 and the dielectric material layer 10 in FIG. 2 are implement
  • the cross-sectional view of the capacitor 1002 shown in FIG. 2 describes the one after pressure is applied from above and below in FIG.
  • the dielectric layer 4 and the dielectric layer 10 are expressed as a flat thing, it does not need to restrict to this, and even if it is a shape with an unevenness
  • the capacitor 1002 includes the plurality of structural bodies 51 and the pair of external electrodes 5 and 6.
  • Each structure 51 includes a substrate 2 made of an organic film, a pair of conductive layers 8 and 9 formed on both surfaces 2A and 2B of the substrate, and the surface of at least one of the conductive layers 8 and 9.
  • the dielectric layer 4 (10) formed on The conductive layer 8 has a connecting portion 8T that reaches at least one end of the substrate 2.
  • the conductive layer 9 has a connecting portion 9T reaching at least one end side of the substrate 2.
  • the external electrodes 5 and 6 are electrically connected to the conductive layers 9 and 4 respectively.
  • the dielectric layer 4 (10) is a metal oxide having a thickness of several atoms or a laminate of this metal oxide.
  • the connection parts 8T and 9T are located in the opposite direction to each other.
  • the plurality of structures 51 are stacked and wound or stacked in the same direction.
  • the base material 2 which consists of organic films is prepared.
  • a pair of conductive layers 8 and 9 are formed on both sides of the substrate 2 respectively.
  • the conductive layer 8 has a connecting portion 8T that reaches at least one end of the substrate 2.
  • the conductive layer 9 has a connecting portion 9T reaching at least one end side of the substrate 2.
  • the connection portions 8T and 9T are disposed in the opposite directions to each other.
  • a dielectric layer 4 (10) is formed on at least one of the pair of conductive layers 8 and 9. Thereby, a plurality of structures 61 are manufactured. Thereafter, a plurality of structural bodies 61 are stacked in the same direction and stacked or wound to manufacture a capacitor 1002.
  • FIG. 3 is a cross-sectional view of a capacitor 1003 according to the third embodiment.
  • the capacitor 1003 includes a capacitor element 3001 and terminals 5 and 6.
  • Capacitor element 3001 has side 3001 C facing in direction 1003 C and side 3001 D opposite to side 3001 C.
  • the side surface 3001D faces in the opposite direction 1003D of the direction 1003C.
  • the terminals 5 and 6 are provided on the side surfaces 3001 C and 3001 D of the capacitor element 3001, respectively.
  • the upper surface 2A of the base material 2 has the conductor non-formed portion 13 located at the end of the direction 1003C.
  • a conductive layer 8 is formed on the portion of the top surface 2A of the base 2 except the non-conductor forming portion 13.
  • Dielectric layer 4 is formed on upper surface 8A of conductive layer 8.
  • the lower surface 2B of the base material 2 has a conductor non-forming portion 14 located at the end of the direction 1003D.
  • the conductive layer 9 is formed on the portion of the lower surface 2B of the base 2 except the non-conductor forming portion 14.
  • the base 2, the dielectric layer 4 and the conductive layers 8 and 9 constitute a structural body 60.
  • a plurality of structures 60 are stacked such that the lower surface 9A of the conductive layer 9 is located on the upper surface 4A of the dielectric layer 4 and the conductive layers 8 and 9 face each other with the dielectric layer 4 in between.
  • the terminals 5 and 6 are connected to the conductive layers 9 and 8 respectively.
  • the thickness of the dielectric layer 4 is 0.3 to 50.0 nm, and the relative dielectric constant is 30 or more.
  • the conductive layer 8 is disposed on the portion of the upper surface 2A of the base 2 excluding the non-conductor forming portion 13.
  • the conductive layer 8 is formed on the upper surface 2A of the substrate 2 by a thin film forming technique such as vapor deposition or sputtering.
  • the conductive layer 8 is made of metal such as aluminum, and the thickness of the conductive layer 8 is, for example, about 20 nm.
  • the thickness of the substrate 2 is several ⁇ m and the relative dielectric constant is 10 or less.
  • forming the conductive layer 8 in the portion excluding the non-conductor forming portion 13 prevents the conductive layer 8 and the terminal 5 from being conducted in a direct current when the terminal 5 is formed in a later step. It is for.
  • the dielectric layer 4 having a thickness of 0.3 nm to 50 nm and a relative dielectric constant of 30 or more is disposed on the upper surface 8A of the conductive layer 8.
  • the dielectric layer 4 is composed of a titanium oxide nanosheet having a relative dielectric constant of about 125, a niobium oxide nanosheet having a relative dielectric constant of about 300, or the like.
  • the dielectric layer 4 may be formed on the side surface of the conductive layer 8 facing the nonconductive portion 13 or the nonconductive portion 13 on the upper surface of the base 2.
  • the conductive layer 9 is disposed on the portion of the lower surface 2B of the base material 2 excluding the non-conductor forming portion 14 to produce a structure 60.
  • the conductive layer 9 is formed on the lower surface of the substrate 2 by a thin film forming technique such as vapor deposition or sputtering.
  • a thin film forming technique such as vapor deposition or sputtering.
  • aluminum or the like is used, and the thickness of the conductive layer 9 is, for example, about 20 nm.
  • the reason why the conductive layer 9 is formed in the portion excluding the non-conductor forming portion 14 is to prevent the conductive layer 9 and the terminal 6 from being conducted in a direct current manner when the terminal 6 is formed in a later step. is there.
  • the plurality of structures 60 obtained in the third step are stacked and stacked such that the conductive layers 8 and 9 face each other via the dielectric layer 4.
  • the number of structural bodies 60 is determined in consideration of the required capacitance, the desired size of the capacitor 1003, and the like.
  • the insulating coating layer 11 is provided on the uppermost layer, and the insulating coating layer 12 is provided on the lowermost layer. Thereby, conductive layer 8, conductive layer 9, and dielectric layer 4 can be protected from the external environment.
  • the terminal 5 is formed on the side surface 3001C of the capacitor element 3001 by the thermal spraying method, and similarly, the terminal 6 is formed on the side surface 3001D of the capacitor element 3001 by the thermal spraying method.
  • the plurality of conductive layers 8 disposed in the capacitor element 3001 are DC-connected to the terminal 6 at the side surface 3001D, and the plurality of conductive layers 9 are DC-connected to the terminal 5 at the side surface 3001D.
  • the capacitor 1003 is large because the conductive layer 8 and the conductive layer 9 face each other through the dielectric layer 4 which is one nanosheet having a thickness of 0.3 nm to 50 nm and a high relative dielectric constant. It becomes possible to secure capacity.
  • the capacitor 1003 in FIG. 3 is formed by laminating three structural bodies 60, it is not necessary to limit to this, and it is not necessary to limit to this, and one structural body 60 may be wound and overlaid and wound.
  • the terminal 5 may be formed on the one end side of the structure by the thermal spraying method, and the terminal 6 may be formed on the other end side of the wound structure 60 by the thermal spraying method.
  • the capacitor 1003 of the third embodiment shown in FIG. 3 can be realized only by stacking the structural bodies 60 of the same shape, so that the production efficiency can also be increased.
  • the base material 2 is comprised with organic films, such as a resin film, and that whose thickness is thicker than the dielectric material layer 4 is used.
  • the conductive layers 8 and 9 and the dielectric layer 4 can be formed on the upper surface 2A and the lower surface 2B of the base material 2.
  • the base material 2 in FIG. 3 is implement
  • the dielectric material layer 4 in FIG. 3 is implement
  • the cross-sectional view of the capacitor 1003 shown in FIG. 3 shows the one after pressure is applied from the vertical direction in FIG.
  • the dielectric layer 4 is expressed as a flat thing, it does not need to restrict to this, and even if it is a shape with an unevenness
  • FIG. 4 is a cross-sectional view of a capacitor 1004 according to the fourth embodiment.
  • the capacitor 1004 includes a capacitor element 4001 and terminals 5 and 6.
  • Capacitor element 4001 has side 4001 C facing in direction 1004 C and side 4001 D opposite to side 4001 C.
  • Side 4001D faces in the opposite direction 1004D of direction 1004C.
  • the terminals 5 and 6 are provided on the side surfaces 4001 C and 4001 D of the capacitor element 4001, respectively.
  • the upper surface 2A of the base material 2 has the conductor non-formed portion 13 located at the end of the direction 4001C.
  • the conductive layer 8 is formed on the portion of the upper surface 2A of the base 2 excluding the non-conductor forming portion 13.
  • Dielectric layer 4 is formed on upper surface 8A of conductive layer 8.
  • the upper surface 4A of the dielectric layer 4 has a non-conductor forming portion 14 located at the end of the direction 1004D.
  • the structure 61 is formed by forming the conductive layer 9 on the portion of the top surface 4A of the dielectric layer 4 excluding the non-conductor forming portion 14.
  • the plurality of structures 61 are stacked such that the lower surface 2B of the base 2 is located on the upper surface 9A of the conductive layer 9.
  • the thickness of the dielectric layer 4 is 0.3 to 50.0 nm, and the relative dielectric constant is 30 or more.
  • the conductive layer 8 is disposed on the portion of the upper surface 2A of the base 2 excluding the non-conductor forming portion 13.
  • the conductive layer 8 is formed on the upper surface 2A of the substrate 2 by a thin film forming technique such as vapor deposition or sputtering.
  • the conductive layer 8 is made of metal such as aluminum, and the thickness of the conductive layer 8 is, for example, about 20 nm.
  • the thickness of the substrate 2 is several ⁇ m and the relative dielectric constant is 10 or less.
  • the conductive layer 8 is formed on the portion excluding the non-conductor forming portion 13 because the conductive layer 8 and the terminal 5 are DC direct when the terminal 5 is formed on the side surface 4001 C of the capacitor element 4001 in a later step.
  • the dielectric layer 4 having a thickness of 0.3 nm or more and 50 nm or less and a relative dielectric constant of 30 or more is disposed on the upper surface 8A of the conductive layer 8.
  • the dielectric layer 4 is composed of a titanium oxide nanosheet having a relative dielectric constant of about 125, a niobium oxide nanosheet having a relative dielectric constant of about 300, or the like.
  • the dielectric layer 4 may be formed on the side surface of the conductive layer 8 facing the nonconductive portion 13 and the nonconductive portion 13 on the upper surface of the base 2.
  • the conductive layer 9 is provided on the portion of the top surface 4A of the dielectric layer 4 excluding the non-conductor forming portion 14 to produce a structure 61.
  • the conductive layer 9 is formed on the upper surface 4A of the dielectric layer 4 by a thin film forming technique such as vapor deposition or sputtering.
  • the conductive layer 9 is made of metal such as aluminum, and the thickness of the conductive layer 9 is, for example, about 20 nm.
  • the conductive layer 9 may be formed by a vapor deposition process at normal temperature in order to avoid damage to the dielectric layer 4 as much as possible.
  • the conductive layer 9 is formed on the portion excluding the non-conductor forming portion 14 because the conductive layer 9 and the terminal 6 are in direct current conduction when the terminal 6 is formed on the side surface 4001 D of the capacitor element 4001 in a later step. It is to prevent doing.
  • the non-conductor forming portion 14 may be designed to be larger than the non-conductor forming portion 13. Since the dielectric layer for maintaining insulation with the terminal 6 is not disposed at the end of the direction 1004D of the conductive layer 9, the distance between the conductive layer 9 and the terminal 6 is wider than the distance between the conductive layer 8 and the terminal 5 If this is done, the risk of shorting between the conductive layer 9 and the terminal 6 can be reduced.
  • the plurality of structures 61 obtained in the third step are stacked and stacked such that the conductive layers 8 and 9 face each other through the base material 2.
  • the capacitor 1004 in FIG. 4 is realized by stacking four structural bodies 61, but the number of structural bodies 61 is determined in consideration of the required capacitance, the desired size of the capacitor 1004, and the like.
  • the insulating coating layer 11 is disposed on the uppermost layer. Thereby, conductive layer 8 and conductive layer 9 can be protected from the external environment.
  • the terminal 5 is formed on the side surface 4001C of the capacitor element 4001 by a thermal spraying method
  • the terminal 6 is formed on the side surface 4001D of the capacitor 4001 by a thermal spraying method.
  • a plurality of conductive layers 8 disposed in capacitor element 4001 are connected DC to terminal 5 at side surface 4001C
  • a plurality of conductive layers 9 disposed in capacitor element 4001 are connected to terminal 6 at side surface 4001D. It is connected in direct current.
  • the capacitor 1004 secures a large capacity because the conductive layers 8 and 9 face each other through the dielectric layer 4 which is one nanosheet having a thickness of 0.3 nm to 50 nm and a high relative dielectric constant. It is possible to
  • the capacitor 1004 in FIG. 4 is formed by stacking four structural bodies 61.
  • the structure is not limited to this, and one structural body 61 may be wound to overlap and be wound.
  • the terminal 5 may be formed on the one end side by the thermal spraying method, and the terminal 6 may be formed on the other end side of the wound structure 61 by the thermal spraying method.
  • the capacitor 1004 according to the fourth embodiment shown in FIG. 4 can be realized only by stacking the structural bodies 61 having the same shape, so that the production efficiency can also be increased.
  • the base material 2 is comprised with organic films, such as a resin film, and that whose thickness is thicker than the dielectric material layer 4 is used.
  • the conductive layer 8 and the dielectric layer 4 can be formed on the upper surface 2A of the substrate 2.
  • the base material 2 in FIG. 4 is implement
  • the dielectric material layer 4 in FIG. 4 is implement
  • the cross-sectional view of the capacitor 1004 shown in FIG. 4 describes the one after pressure is applied from above and below in FIG.
  • the dielectric layer 4 is expressed as a flat one in FIG. 4, the present invention is not limited to this, and there is no problem even if it has a shape having asperities.
  • the capacitor 1004 comprises at least a plurality of structures 61.
  • Each structure 61 includes a base 2 made of an organic film, a conductive layer 8 formed on one side 2A of the base 2, a dielectric layer 4 formed on the surface 8A of the conductive layer 8, and a dielectric layer And a conductive layer 9 formed on the surface 4A of the fourth.
  • the conductive layer 8 has a connecting portion 8T that reaches at least one side of the substrate 2.
  • the conductive layer 9 has a connecting portion 9T that reaches at least one side of the substrate 2.
  • the dielectric layer 4 is a metal oxide having a thickness of several atoms or a laminate of the metal oxide.
  • the connection parts 8T and 9T are located in the opposite direction to each other.
  • the plurality of structures 61 are stacked and wound or stacked in the same direction.
  • the base material 2 which consists of organic films is prepared.
  • the conductive layer 8 is formed on one side of the substrate 2.
  • the conductive layer 8 has a connecting portion 8T that reaches at least one end side of the substrate 2.
  • Dielectric layer 4 is formed on the surface of conductive layer 8.
  • Conductive layer 9 is formed on the surface of dielectric layer 4.
  • the conductive layer 9 has a connecting portion 9T reaching at least one end side of the substrate 2.
  • a capacitor 1004 can be manufactured by stacking and winding a plurality of structures 61 in the same direction.
  • FIG. 5 is a cross-sectional view of a capacitor 1005 according to the fifth embodiment.
  • the same parts as those of capacitor 1001 in the first embodiment shown in FIG. 1A are assigned the same reference numerals.
  • the lower surface 3B of the conductive layer 3 has the non-dielectric portion 15 located at the end of the direction 1001C, and the upper surface 103A of the conductive layer 103 is at the end of the direction 1001D. It has a dielectric non-forming portion 16 located.
  • the dielectric layer 4 is formed on the portion of the top surface 3A of the conductive layer 3 excluding the non-dielectric portion 16.
  • the dielectric layer 104 is formed on a portion of the lower surface 103 B of the conductive layer 103 except the dielectric non-forming portion 15.
  • the dielectric layer 104 wraps around to the side surface of the conductive layer 3 and the terminals 6 and the conductive layer 3 are DC-wise It is possible to suppress the occurrence of a failure of not conducting. In addition, it is possible to suppress the occurrence of a defect that the conductive layer 103 and the terminal 5 do not conduct in a direct current manner due to the influence of the dielectric layer 104.
  • the dielectric layers 4 and 104 wrap around to the side surface of the conductive layer 103, and the terminal 5 and the conductive layer 103 do not conduct current. It is possible to suppress the occurrence of defects. Further, it is possible to suppress the occurrence of a defect that the conductive layer 3 and the terminal 6 do not conduct in a direct current manner due to the influence of the dielectric layers 4 and 104.
  • FIG. 6 is a cross-sectional view of a capacitor 1006 according to the sixth embodiment.
  • the same parts as those of capacitor 1002 in the second embodiment shown in FIG. 6 are identical parts as those of capacitor 1002 in the second embodiment shown in FIG.
  • the lower surface 9B of the conductive layer 9 has the non-dielectric portion 15 located at the end of the direction 1002C, and the upper surface 9A of the conductive layer 9 is at the end of the direction 1002D. It has a dielectric non-forming portion 16 located. Dielectric layers 4 and 10 are formed on portions of top surface 8A of conductive layer 8 excluding dielectric non-forming portion 15, and dielectric layers 4 and 10 are portions on top surface 8A of conductive layer 8 excluding dielectric non-forming portion 16 Is formed.
  • the dielectric layer 4 wraps around to the side surface of the conductive layer 8, and the terminal 6 and the conductive layer 8 do not conduct current. It is possible to suppress the occurrence of defects. In addition, it is possible to suppress the occurrence of a defect that the conductive layer 9 and the terminal 5 do not conduct in a direct current manner due to the influence of the dielectric layer 4.
  • the dielectric layer 10 wraps around to the side surface of one end portion of the conductive layer 9, and the defect that the terminal 5 and the conductive layer 9 are not conducted in direct current. Can suppress the occurrence of In addition, it is possible to suppress the occurrence of a defect that the conductive layer 8 and the terminal 6 do not conduct in a direct current manner due to the influence of the dielectric layer 10.
  • FIG. 7 is a cross-sectional view of capacitor 1007 according to the seventh embodiment.
  • the same parts as those of capacitor 1003 in the third embodiment shown in FIG. 3 are assigned the same reference numerals.
  • upper surface 8A of conductive layer 8 has dielectric non-forming portion 117 located at the end of direction 1003D, and lower surface 9B of conductive layer 9 is at the end of direction 1003C. It has a dielectric non-forming portion 17 located.
  • the dielectric layer 4 is formed on the portion of the upper surface 8 A of the conductive layer 8 excluding the dielectric non-forming portion 117 and the portion of the lower surface 9 B of the conductive layer 9 excluding the dielectric non-forming portion 17.
  • the dielectric layer 4 wraps to the side surface of the conductive layer 8, and the terminals 6 and the conductive layer 8 are DC-wise. It is possible to suppress the occurrence of a failure of not conducting. In addition, it is possible to suppress the occurrence of a defect that the conductive layer 9 and the terminal 5 do not conduct in a direct current manner due to the influence of the dielectric layer 4.
  • FIG. 8 is a cross-sectional view of a capacitor 1008 according to an eighth embodiment.
  • the same parts as those of the capacitor 1004 of the fourth embodiment shown in FIG. 8 are identical parts as those of the capacitor 1004 of the fourth embodiment shown in FIG. 8.
  • the upper surface 8A of the conductive layer 8 has the dielectric non-forming portion 117 located at the end of the direction 1004D, and the lower surface 9B of the conductive layer 9 is at the end of the direction 1004C. It has a dielectric non-forming portion 17 located.
  • the dielectric layer 4 is formed on the portion of the upper surface 8 A of the conductive layer 8 excluding the dielectric non-forming portion 117 and the portion of the lower surface 9 B of the conductive layer 9 excluding the dielectric non-forming portion 17.
  • dielectric layer 4 wraps up to the side surface of conductive layer 8, and terminal 6 and conductive layer 8 do not conduct in a direct current manner. It is possible to suppress the occurrence of defects. In addition, it is possible to suppress the occurrence of a defect that the conductive layer 9 and the terminal 5 do not conduct in a direct current manner due to the influence of the dielectric layer 4.
  • FIGS. 1A to 8 conceptually show the capacitors 1001 to 1008 and do not strictly show cross-sectional views of actual capacitors.
  • the dielectric layers 4, 104, 10, 110 may be a laminate of multi-layered nanosheets, or may be single-layered nanosheets.
  • FIG. 9 is an enlarged sectional view of a capacitor 1009 according to the ninth embodiment.
  • FIG. 9 shows the interface between the base 2, the conductive layer 8, the dielectric layer 4 and the conductive layer 9 of the capacitors 1001 to 1008 according to the first to eighth embodiments.
  • a large number of convex and concave portions are formed on the upper surface 2A of the base 2 on which the conductive layer 8 is provided.
  • the conductive layer 8 By forming the conductive layer 8 on the surface of such a large number of convex and concave portions by a process such as sputtering or vapor deposition, it is possible to increase the adhesive strength between the base 2 and the conductive layer 8.
  • a method of roughening the surface of the substrate 2 by dry etching, wet etching or the like can be considered.
  • a large number of projections and depressions are also formed on the upper surface 8A of the conductive layer 8 on which the dielectric layer 4 is provided. As a result, the surface area of the conductive layer 8 can be increased, and the capacity of the capacitor can be improved.
  • the large number of projections and depressions on the surface of the conductive layer 8 may be formed on the basis of the large number of projections and depressions formed on the surface of the substrate 2, and the conditions for forming the conductive layer 8 (sputtering and evaporation) You may form only by adjusting. In addition, a combination of these two methods may be used to form a large number of projections and depressions on the surface of the conductive layer 8.
  • the dielectric layer 4 made of nanosheets of titanium oxide, niobium oxide or the like is formed to cover the surface of a large number of projections and depressions of the conductive layer 8 with a substantially constant thickness.
  • conductive layer 9 is formed of conductive polymer layer 18 provided on upper surface 4A of dielectric layer 4, and backup metal layer 19 provided on upper surface 18A of conductive polymer layer 18. ing.
  • the conductive polymer layer 18 is a conductive resin, and has low hardness and flexibility as compared to metals.
  • the conductive polymer layer 18 As a method of forming the conductive polymer layer 18, for example, after a dispersion liquid containing particles of the conductive polymer and a dispersing agent is disposed on the dielectric layer 4, the dispersing agent is at least partially removed or And methods of curing are contemplated. Alternatively, after the monomer is disposed on the dielectric layer 4, the conductive polymer layer 18 may be realized by polymerizing using a method such as an oxidizing agent or anodic oxidation.
  • the interface between the conductive polymer layer 18 and the backup metal layer 19 is not flat but is appropriately roughened.
  • the adhesion strength between the conductive polymer layer 18 and the backup metal layer 19 can be improved, and the contact area between the two can be increased, whereby the resistivity can be lowered.
  • a method of roughening the interface between the conductive polymer layer 18 and the backup metal layer 19 a method of etching the upper surface of the conductive polymer layer 18 can be considered.
  • As an etchant potassium permanganate or the like is used.
  • the backup metal layer 19 is formed by sputtering, vapor deposition or the like.
  • the reason why the backup metal layer 19 is provided on the upper surface of the conductive polymer layer 18 is to increase the effective conductivity of the conductive layer 9.
  • the conductivity of the conductive polymer is a few hundredth of the conductivity of the metal, and by disposing the backup metal layer 19, the effective conductivity of the conductive layer 9 can be reduced.
  • the conductive layer 9 is configured to have the backup metal layer 19.
  • the configuration is not limited to this.
  • the backup metal layer 19 is not provided, and the conductive layer 9 is configured by only the conductive polymer layer 18. May be This can simplify the manufacturing process.
  • FIG. 10A is an enlarged cross sectional view of another capacitor 1009A in the ninth embodiment. 10A, the same parts as those of capacitor 1009 in the ninth embodiment shown in FIG. 9 are assigned the same reference numerals.
  • the conductive layer 9 shown in FIG. 10A does not include the backup metal layer 19, and the conductive layer 9 is softer than the conductive layer 8. Since the conductive layer 9 is soft compared to the conductive layer 8, when the pressure is applied in the vertical direction in FIG. 10A, the shape of the conductive layer 8 does not change substantially while the shape of only the conductive layer 9 changes. Get into As a result, it is possible to improve the facing area between the electrodes while avoiding the occurrence of an airspace as much as possible between the electrodes of the capacitor (between the conductive layer 8 and the conductive layer 9).
  • different metals may be used for the conductive layer 8 and the conductive layer 9, or the same metal may be used.
  • the conditions of the process of forming the conductive layer 8 and the conductive layer 9 are made different so that the conductive layer 9 is softer than the conductive layer 8.
  • the hardness of the conductive layers 3 and 103 in the pair of structures 50 and 150 obtained in the second step is substantially the same value, but as described above, the hardness is the pair.
  • the hardness of the conductive layer 8 and the hardness of the conductive layer 9 are made different, and a large number of convexes and concaves are provided on the surface of at least one of the dielectric layers 4 and 10.
  • the surface area can be increased to increase the capacity, and the adhesion of each layer can be improved.
  • the conductive layer 8 is made different by making the hardness of the conductive layer 8 and the hardness of the conductive layer 9 different, and providing a plurality of convexes and concaves on at least one surface of the dielectric layer 4 and the conductive layer 9.
  • the surface area of 9 can be increased to increase the capacity, and the adhesion of each layer can be improved.
  • the surface area of conductive layers 8 and 9 is increased. While being able to attain high capacity-ization, the adhesiveness of each layer can be improved.
  • the oxide nanosheet simple substance used in forming the nanosheet has only a thickness equivalent to several atoms, and the thickness is approximately 0.3 nm to 2 nm, and the length and width are about 10 nm to 1 mm in size have.
  • the adhesion aiding layer specifically, a layer such as a cation
  • the average distance between the convex portions of the concavo-convex portion formed on the surface of the conductive layer 8 may be set larger than the length and the width of the oxide nanosheet alone. As a result, the oxide nanosheet alone can easily enter the recess, and formation of small holes in the dielectric layer 4 can be prevented.
  • a large number of projections and depressions are formed only on the upper surface 2A of the base 2 on which the conductive layer 8 is formed, but a large number of projections and depressions may be formed on the lower surface 2B of the base 2.
  • FIG. 10B is an enlarged cross-sectional view of still another capacitor 1009B in the ninth embodiment. 10B, the same reference numerals as in the capacitor 1009 in the ninth embodiment shown in FIG. 9 denote the same parts.
  • an insulating coating layer 68 covering the entire upper surface 8A is provided on the upper surface 8A of the conductive layer 8. As a result, it is possible to prevent a short circuit between the conductive layer 8 and the conductive layer 9 if there are small holes in the dielectric layer 4 realized by the nanosheet.
  • FIG. 10C is an enlarged cross-sectional view of still another capacitor 1009C in the ninth embodiment.
  • the same parts as those in capacitor 1009 in the ninth embodiment shown in FIG. 9 are assigned the same reference numerals.
  • an insulating coating layer 64 is provided which covers the entire top surface 4A of the dielectric layer 4 realized by the nanosheet. Also in this case, if the dielectric layer 4 realized by the nanosheet has small holes, the insulating coating layer 64 enters the small holes of the nanosheet, and as a result, a part of the surface of the conductive layer 8 is coated with the insulating coating agent. It is covered and it can prevent that the conductive layer 8 and the conductive layer 9 short-circuit.
  • the insulating coating applied on the upper surface of the conductive layer 8 is planarized, the insulating coating enters the small holes and recesses of the conductive layer 8 and a part of the dielectric layer 4 is formed. Only the surface is covered with the insulating coating layer. As a result, the generation of an air space between the conductive layer 8 and the conductive layer 9 can be avoided, and the capacitance of the capacitor can be prevented from being reduced.
  • the insulating coating layers 64 and 68 are in the form of paste or liquid before being applied to the object to be coated, and are made of an insulating material that can be cured after application.
  • the insulating material include, but are not limited to, polypropylene and polyphenylene sulfide.
  • FIG. 11 is an enlarged cross-sectional view of capacitor 1010 according to the tenth embodiment.
  • FIG. 11 shows the interface between the base 2, the conductive layer 8, the dielectric layer 4 and the conductive layer 9 of the capacitors 1001 to 1008 according to the first to eighth embodiments.
  • Asperities are generated on the upper surface 2A and the lower surface 2B of the base material 2 in the manufacturing process.
  • the insulating coating layer 20 is formed on the upper surface 2A of the base material 2
  • the insulating coating layer 21 is formed on the lower surface 2B of the base material 2.
  • the conductive layer 8 is formed on the upper surface of the planarized insulating coating layer 20 by sputtering or vapor deposition, and the conductive layer 9 is formed on the lower surface of the planarized insulating coating layer 21 by sputtering or vapor deposition. Since the conductive layer 8 and the conductive layer 9 are formed on the surface of the insulating coating layer 20 and the insulating coating layer 21 which are planarized, the surfaces of the conductive layer 8 and the conductive layer 9 are also substantially flat.
  • a dielectric layer 4 is formed on the surface of the conductive layer 8
  • a dielectric layer 10 is formed on the surface of the conductive layer 9. Since the dielectric layer 4 and the dielectric layer 10 are formed on the surfaces of the substantially flat conductive layer 8 and the conductive layer 9, the surfaces of the dielectric layer 4 and the dielectric layer 10 are also substantially flat.
  • the surfaces to be in close contact with each other are substantially flat, so that an air space is not easily generated between the conductive layer 8 and the conductive layer 9. Can be prevented from being reduced.
  • FIG. 12 is an enlarged cross sectional view of another capacitor 1010A in the tenth embodiment.
  • the same components as those of capacitor 1010 shown in FIG. 12 does not have the insulating coating layers 20 and 21, and the conductive layers 8 and 9 are made of a conductive polymer, so that the unevenness of the surface of the substrate 2 can be planarized.
  • the process can be simplified.
  • each of the conductive layers 8 and 9 may be formed of a conductive polymer layer and a backup metal layer, whereby the conductivity of the conductive layers 8 and 9 can be increased. it can.
  • the terms indicating directions such as “upper surface” and “lower surface” indicate relative directions depending only on the relative positional relationship of capacitor components such as dielectric layers and conductive layers, and vertical It does not indicate the absolute direction such as the direction.
  • the capacitor of the present invention is small in size and has a large capacity, it can be used for small electronic devices such as mobile communication mobile phones and notebook computers.

Abstract

 コンデンサは、有機フィルムよりなる基材と、基材の上面に設けられた第1の導電層と、第1の導電層の上面に設けられた第1の誘電体層と、第1の誘電体層の上面に設けられた第2の誘電体層と、第2の誘電体層の上面に設けられた第2の導電層とを備える。第1の誘電体層は、第1の導電層の上面に敷き詰められた複数の金属酸化物片よりなる。第2の誘電体層は、第2の導電層の下面に敷き詰められた複数の金属酸化物片よりなる。

Description

コンデンサおよびコンデンサの製造方法
 本発明は、薄型化が可能であり、結果、大容量化が可能となるコンデンサに関する。
 図13は特許文献1に記載されている従来のコンデンサ900の断面図である。コンデンサ900はフィルムコンデンサであり、柔軟性を有する樹脂フィルムである誘電体層901と、誘電体層901の上面に蒸着形成されたアルミ等の導体より為る導電層902と、導電層902の上面に設けられ、柔軟性を有する樹脂フィルムより為る誘電体層903と、誘電体層903の上面に蒸着形成されたアルミ等の導体より成る導電層904とを有する。
 導電層902の一端側は端子905と電気的に接続されており、導電層902の他端側は開放されている。それに対し、導電層904の一端側は開放されており、他端側は端子906と電気的に接続されている。
 尚、端子905は、従来のコンデンサ900の一端側に形成されると共に、端子906は、端子905の反対側の他端側に形成されている。そして、端子905、906とは直流的には導通していない。
 コンデンサ900の最上面には最上面誘電体層907が設けられ、導電層904が露出することを防止している。しかし、コンデンサ900は大きな容量を確保することが困難である。
特開2000-124061号公報
 コンデンサは、有機フィルムよりなる基材と、基材の上面に設けられた第1の導電層と、第1の導電層の上面に設けられた第1の誘電体層と、第1の誘電体層の上面に設けられた第2の誘電体層と、第2の誘電体層の上面に設けられた第2の導電層とを備える。第1の誘電体層は、第1の導電層の上面に敷き詰められた複数の金属酸化物片よりなる。第2の誘電体層は、第2の導電層の下面に敷き詰められた複数の金属酸化物片よりなる。
 このコンデンサは大きな容量を確保することが可能である。
図1Aは本発明の実施の形態1に係るコンデンサの断面図である。 図1Bは実施の形態1に係るコンデンサの誘電体層の拡大模式図である。 図2は本発明の実施の形態2に係るコンデンサの断面図である。 図3は本発明の実施の形態3に係るコンデンサの断面図である。 図4は本発明の実施の形態4に係るコンデンサの断面図である。 図5は本発明の実施の形態5に係るコンデンサの断面図である。 図6は本発明の実施の形態6に係るコンデンサの断面図である。 図7は本発明の実施の形態7に係るコンデンサの断面図である。 図8は本発明の実施の形態8に係るコンデンサの断面図である。 図9は本発明の実施の形態9に係るコンデンサの拡大断面図である。 図10Aは実施の形態9に係る他のコンデンサの拡大断面図である。 図10Bは実施の形態9に係るさらに他のコンデンサの拡大断面図である。 図10Cは実施の形態9に係るさらに他のコンデンサの拡大断面図である。 図11は本発明の実施の形態10に係るコンデンサの拡大断面図である。 図12は実施の形態10に係る他のコンデンサの拡大断面図である。 図13は従来のフィルムコンデンサの断面図である。
 (実施の形態1)
 図1Aは本発明の実施の形態1に係るコンデンサ1001の断面図である。コンデンサ1001は、コンデンサ素子2001と、端子5、6を備える。コンデンサ素子2001は方向1001Cに向く側面2001Cと、側面2001Cの反対側の側面2001Dとを有する。側面2001Dは、方向1001Cの反対の方向1001Dを向く。端子5、6はコンデンサ素子2001の側面2001C、2001Dにそれぞれ設けられている。基材2の上面2Aは方向1001Cの端に位置する導体非形成部7を有する。導体非形成部7を除く基材2の上面2Aの部分には導電層3が形成されている。導電層3の上面3Aには誘電体層4が形成されている。誘電体層4の上面4Aには誘電体層104が設けられている。基材102の下面102Bは方向1001Dの端に位置する導体非形成部107を有する。導体非形成部107を除く基材102の下面102Bの部分には導電層103が形成されている。導電層103の下面103Bには誘電体層104が形成されている。誘電体層104の下面104Bは誘電体層4の上面4A上に位置する。導電層103が誘電体層4、104を介して導電層3に対向する。導電層103、3は端子5、6にそれぞれ接続されている。誘電体層4、104の厚みが0.3~50.0nmであり、かつ、比誘電率が30以上である。基材2、102は有機フィルムなどの絶縁材料からなる。
 図1Bは誘電体層4(104)の拡大模式図である。誘電体層4(104)は、導電層3、103の上面3Aや下面103Bに敷き詰められた複数の金属酸化物片700よりなるナノシートである。金属酸化物片700は、チタン酸ナノシートやニオブ酸ナノシート等の酸化物ナノシートよりなる。金属酸化物片700は、数原子の厚みを有し、その厚さは概ね0.3nm~2nm、好ましくは0.3nm以上50nm以下であり、長さと幅は10nmから1mm程度である。複数の金属酸化物片700は、導電層の上面や下面に配置されたカチオンよりなる付着補助層により導電層の上面や下面に接着して敷き詰められている。
 実施の形態1に係るコンデンサ1001の製造方法を以下に説明する。
 <第1工程>
 基材2の上面2Aの導体非形成部7を除く部分で且つ基材2の上面2Aに導電層3を配置する。導電層3は蒸着やスパッタ等の薄膜形成技術により基材2の上面2Aに形成され、アルミニウム等の金属よりなる。導電層3の厚みは、例えば20nm程度である。例えば、基材2の厚みは数μmであり、比誘電率10以下である。
 <第2工程>
 第1工程の後、導電層3の上面3Aに、厚みが0.3nm以上50nm以下であり、比誘電率が30以上となる誘電体層4を配置する。誘電体層4は、125程度の比誘電率を有するチタン酸化物ナノシートや、300程度の比誘電率を有するニオブ酸化物ナノシート等で構成されている。このように、基材2と誘電体層4と導電層3とで金属化フィルムである構造体50を作製する。構造体50の基材2と誘電体層4と導電層3は基材102と誘電体層104と導電層103とそれぞれ同じであり、構造体150も構成する。すなわち、構造体50は上下反転することで構造体150として機能する。
 尚、導体非形成部7(107)に面した導電層3(103)の側面や、基材2(102)の面2A(102B)の導体非形成部7(107)にも誘電体層4(104)が形成されても良い。これにより、後の工程において、導電層3、103が短絡しにくい構成を実現することができる。また、後の工程において、導電層3、103と端子5または端子6とが短絡することをも回避できる。
 <第3工程>
 第2工程で得られた構造体50、150を重ね合わせて積層する。誘電体層104の下面104Bが誘電体層4の上面4A上に位置し、導電層3、103が誘電体層4、104を介して対向し、且つ、導体非形成部7、107が互いに逆の方向1001C、1001Dに設けられる。
 図1Aに示すコンデンサ1001では、構造体50、150の3つの組が積層されているが、必要な容量やコンデンサ1001の所望サイズ等を勘案してその組の数を決定する。
 第3工程の後、コンデンサ素子2001の側面2001C、2001Dに端子5、6を溶射工法によりそれぞれ形成する。導電層3、103は端子6、5にそれぞれ直流的に接続されている。
 図13に示す従来のフィルムコンデンサ900では、誘電体層901、誘電体層903の厚さは数μm程度であり、また、その比誘電率は概ね10以下であるので、大きな容量を確保することが困難である。
 コンデンサ1001は、導電層3、103が0.3nm以上50nm以下の厚みの高い比誘電率を有した強度的に単体では扱う事が困難な2つのナノシート(誘電体層4、104)を介して狭い間隔で対向しているので、大きな容量を確保することが可能となる。
 尚、図1Aに示すコンデンサ1001は、構造体50、150を積層して形成したが、これに限る必要はなく、構造体50、150を巻回することで重ね合わせ、巻回された構造体50の一端側に端子6を溶射工法により形成し、巻回された構造体150の他端側に端子5を溶射工法により形成しても良い。
 図1Aに示す実施の形態1のコンデンサ1001は、同一形状の構造体50、150を所定の向きで積層することで実現できるので、生産効率を高くすることもできる。
 尚、基材2は樹脂フィルム等の有機フィルムで構成され、その厚みは誘電体層4よりも厚いものが用いられる。これにより、基材2(102)を基材として使用し、その上面に導電層3(103)、誘電体層4(104)を形成することが可能となる。
 また、基材2、102は有機化合物により実現され、図1A中の誘電体層4、104は無機化合物により実現されている。
 更に、上記においては、導電層3、103が2つの誘電体層4、104を介して対向するように第2工程の後に得られた構造体50、150を積層する。構造体50に、誘電体層104と導電層103とを有する第1工程の後に得られる構造体を積層してもよい。この場合には、導電層3、103が誘電体層4のみを介して対向するので、容量値を増大させることができる。
 尚、図1Aに示すコンデンサ1001の断面図は、上記工程後、上下方向から加圧し、各層を密着させた後のものを記載している。図1Aにおいては、誘電体層4(104)の上面4A(下面104B)が平坦であるが、これに限る必要はなく、凹凸を有した形状のものであってもよい。
 前述のように、コンデンサ1001は、構造体50、150を少なくとも備える。構造体50は、有機フィルムから成る基材2と、基材2の上面2Aに形成された導電層3と、導電層3の上面3Aに形成された誘電体層4とを備える。導電層3は、基材2の少なくとも一端辺に達した接続部3Tを有する。構造体150は、有機フィルムから成る基材102と、基材102の下面102Bに形成された導電層103と、導電層103の下面103Bに形成された誘電体層104とを備える。導電層103は、基材102の少なくとも一端辺に達した接続部103Tを有する。誘電体層4、104は、数原子分程度の厚みを有した金属酸化物または、この金属酸化物の積層体である。接続部3T、103Tは互いに逆方向に位置する。構造体50、150は、誘電体層4、104が当接した状態で積層または巻回されている。
 また、前述のように、有機フィルムから成る基材2、102を用意する。基材2、102の少なくとも片面に導電層3、103をそれぞれ形成する。導電層3は基材2の少なくとも一端辺に達した接続部3Tを有する。導電層103は基材2の少なくとも一端辺に達した接続部103Tを有する。導電層3、103の表面に誘電体層4、104をそれぞれ形成する。これにより、構造体50、150を製造する。その後、接続部3T、103Tが互い逆方向に位置し、かつ誘電体層4、104が当接するように、構造体50、105を重ねて積層または巻回することによりコンデンサ1001を製造する。
 (実施の形態2)
 図2は実施の形態2に係るコンデンサ1002の断面図である。コンデンサ1002は、コンデンサ素子2002と、端子5、6とを備える。コンデンサ素子2002は方向1002Cに向く側面2002Cと、側面2002Cの反対側の側面2002Dとを有する。側面2002Dは、方向1002Cの反対の方向1002Dを向く。端子5、6はコンデンサ素子2002の側面2002C、2002Dにそれぞれ設けられている。基材2の上面2Aは方向1002Cの端に位置する導体非形成部13を有する。導体非形成部13を除く基材2の上面2Aの部分には導電層8が形成されている。導電層8の上面8Aには誘電体層4が形成されている。基材2の下面2Bは方向1002Dの端に位置する導体非形成部14を有する。導体非形成部14を除く基材2の下面2Bの部分には導電層9が形成されている。導電層9の下面9Bには誘電体層10が設けられている。誘電体層10の下面10Bは誘電体層4の上面4A上に位置する。導電層8は誘電体層4、10を介して導電層9に対向する。誘電体層4、10の厚みは0.3~50.0nmであり、かつ、比誘電率が30以上である。誘電体層10は誘電体層4と同様の構造を有する酸化物ナノシートよりなる。
 実施の形態2に係るコンデンサ1002の製造方法を以下に説明する。
 <第1工程>
 導体非形成部13を除く基材2の上面2Aの部分に導電層8を配置する。導電層8は蒸着やスパッタ等の薄膜形成技術により基材2の上面2Aに形成される。導電層8はアルミニウム等の金属よりなり、導電層8の厚みは、例えば20nm程度である。例えば、基材2の厚みは数μmであり、比誘電率10以下である。
 また、導体非形成部13を除く部分に導電層8を形成するのは、後の工程においてコンデンサ1の一端側に端子5が形成される際に、導電層8と端子5とが直流的に導通することを防止するためである。
 <第2工程>
 第1工程の後、導電層8の上面8Aに、厚みが0.3nm以上50nm以下であり、比誘電率が30以上となる誘電体層4を配置する。
 誘電体層4は、125程度の比誘電率を有するチタン酸化物ナノシートや、300程度の比誘電率を有するニオブ酸化物ナノシート等で構成されている。
 尚、導体非形成部13に面した導電層8の側面や、基材2の上面2Aの導体非形成部13にも誘電体層4が形成されても良い。これにより、後の工程において、対向する導電層8と導電層9とが短絡しにくい構成を実現できる。
 また、後の工程において、コンデンサ素子2002の側面2002Cに端子5が形成される際に、導電層8と端子5とが短絡することをも回避できる。
 <第3工程>
 第2工程の後、方向1002Dの端に位置する導体非形成部14を除く基材2の下面2Bの部分に導電層9を配置する。導電層9は蒸着やスパッタ等の薄膜形成技術により基材2の下面2Bに形成される。導電層9はアルミニウム等の金属よりなり、導電層9の厚みは、例えば20nm程度である。
 導体非形成部14を除く部分に導電層9を形成するのは、後の工程においてコンデンサ素子2002の側面2002Dに端子6が形成される際に、導電層9と端子6とが直流的に導通することを防止するためである。
 <第4工程>
 第3工程の後、導電層9の下面に、厚みが0.3nm以上50nm以下であり、比誘電率が30以上となる誘電体層10を設けることにより金属化フィルムである構造体51を作製する。
 誘電体層10は、125程度の比誘電率を有するチタン酸化物ナノシートや、300程度の比誘電率を有するニオブ酸化物ナノシート等で構成されている。
 尚、導体非形成部14に面した導電層9の側面や、基材2の下面の導体非形成部14にも誘電体層10が形成されても良い。これにより、後の工程において、対向する導電層8と導電層9とが短絡しにくい構成を実現できる。
 また、後の工程において、コンデンサ素子2002の側面2002Dに端子6が形成される際に、導電層9と端子6とが短絡することをも回避できる。
 <第5工程>
 構造体51の誘電体層10の下面10Bを別の構造体51の誘電体層10の上面10Aに位置させて、誘電体層4、10を介して導電層8と導電層9とが対向するように構造体51を重ね合わせて積層する。
 図2のコンデンサ1002は、3つの構造体51からなる。構造体51の数は、必要な容量やコンデンサ1002の所望サイズ等を勘案して決定する。
 第5工程の後、最上層に絶縁コート層11が設けられ、最下層に絶縁コート層12が設けられる。これにより、導電層8、9および誘電体層4、10を外部環境から保護することができる。
 その後、コンデンサ素子2002の側面2002Cに端子5を溶射工法により形成し、コンデンサ素子2002の側面2002Dに端子6を溶射工法により形成する。コンデンサ素子2002内に設けられた複数の導電層8は、側面2002Dにおいて端子6と直流的に接続されており、複数の導電層9は側面2002Cにおいて端子5と直流的に接続されている。
 コンデンサ1002は、導電層8、9がそれぞれ0.3nm以上50nm以下の厚みで且つ高い比誘電率を有しているナノシートである誘電体層4、10を介して対向するので、大きな容量を確保することが可能となる。
 尚、図2に示すコンデンサ1002では、3つの構造体51が積層されて形成されているが、これに限る必要はなく、1つの構造体51を巻回することで重ね合わせ、巻回された構造体51の一端側に端子5を溶射工法により形成し、巻回された構造体の他端側に端子6を溶射工法により形成しても良い。
 図2に示す実施の形態2のコンデンサ1002は、同一形状の構造体51を積層するだけで実現できるので、生産効率を高くすることもできる。
 尚、基材2は、樹脂フィルム等の有機フィルムで構成され、その厚みは誘電体層4や誘電体層10よりも厚いものが用いられる。これにより、基材2の上面2Aに導電層3、誘電体層4を形成することが可能となる。
 また、図2中の基材2は有機化合物により実現され、図2中の誘電体層4と、図2中の誘電体層10とは無機化合物により実現されている。
 尚、図2に示すコンデンサ1002の断面図は、上記工程後、図2における上下方向から加圧し、各層を密着させた後のものを記載している。図2においては、誘電体層4、誘電体層10が平坦なものとして表現されているが、これに限る必要はなく、凹凸を有した形状のものであっても問題ない。
 前述のように、コンデンサ1002は、複数の構造体51と、一対の外部電極5、6とを備える。各構造体51は、有機フィルムから成る基材2と、基材の両面2A、2Bにそれぞれ形成された一対の導電層8、9と、導電層8、9のうち少なくとも一方の導電層の表面に形成された誘電体層4(10)とを備える。導電層8は基材2の少なくとも一端辺に達した接続部8Tを有する。導電層9は基材2の少なくとも一端辺に達した接続部9Tを有する。外部電極5、6は導電層9,4とそれぞれ電気的に接続されている。誘電体層4(10)は、数原子分程度の厚みを有した金属酸化物または、この金属酸化物の積層体である。接続部8T、9Tは互いに逆方向に位置する。複数の構造体51は同方向に重ねられて巻回または積層されている。
 また、前述のように、有機フィルムから成る基材2を用意する。基材2の両面に一対の導電層8、9をそれぞれ形成する。導電層8は基材2の少なくとも一端辺に達した接続部8Tを有する。導電層9は基材2の少なくとも一端辺に達した接続部9Tを有する。接続部8T、9Tは互いに逆方向に配置される。一対の導電層8、9の少なくとも一方に誘電体層4(10)を形成する。これにより、複数の構造体61を製造する。その後、複数の構造体61を同方向に重ねて積層または巻回することによりコンデンサ1002を製造する。
 (実施の形態3)
 図3は実施の形態3に係るコンデンサ1003の断面図である。コンデンサ1003は、コンデンサ素子3001と、端子5、6とを備える。コンデンサ素子3001は方向1003Cに向く側面3001Cと、側面3001Cの反対側の側面3001Dとを有する。側面3001Dは、方向1003Cの反対の方向1003Dを向く。端子5、6はコンデンサ素子3001の側面3001C、3001Dにそれぞれ設けられている。基材2の上面2Aは方向1003Cの端に位置する導体非形成部13を有する。導体非形成部13を除く基材2の上面2Aの部分に導電層8が形成されている。導電層8の上面8A上に誘電体層4が形成されている。基材2の下面2Bは方向1003Dの端に位置する導体非形成部14を有する。導体非形成部14を除く基材2の下面2Bの部分に導電層9が形成されている。基材2と誘電体層4と導電層8、9は構造体60を構成する。導電層9の下面9Aが誘電体層4の上面4Aに位置して、導電層8、9が誘電体層4を介して対向するように、複数の構造体60が積層されている。端子5、6は導電層9、8にそれぞれ接続されている。誘電体層4の厚みが0.3~50.0nmであり、かつ、比誘電率が30以上である。
 実施の形態3に係るコンデンサ1003の製造方法を以下に説明する。
 <第1工程>
 導体非形成部13を除く基材2の上面2Aの部分に導電層8を配置する。
 導電層8は蒸着やスパッタ等の薄膜形成技術により基材2の上面2Aに形成される。導電層8はアルミニウム等の金属よりなり、導電層8の厚みは、例えば20nm程度である。例えば、基材2の厚みは数μmであり、比誘電率10以下である。
 また、導体非形成部13を除く部分に導電層8を形成するのは、後の工程において端子5が形成される際に、導電層8と端子5とが直流的に導通することを防止するためである。
 <第2工程>
 第1工程の後、導電層8の上面8Aに厚みが0.3nm以上50nm以下であり、比誘電率が30以上となる誘電体層4を配置する。
 誘電体層4は、125程度の比誘電率を有するチタン酸化物ナノシートや300程度の比誘電率を有するニオブ酸化物ナノシート等で構成されている。
 尚、導体非形成部13に面した導電層8の側面や、基材2の上面の導体非形成部13にも誘電体層4が形成されても良い。これにより、後の工程において、対向する導電層8と導電層9とが短絡しにくい構成を実現できる。
 また、後の工程において、導電層8と端子5とが短絡することをも回避できる。
 <第3工程>
 第2工程の後、導体非形成部14を除く基材2の下面2Bの部分に導電層9を配置することにより構造体60を作製する。
 導電層9は蒸着やスパッタ等の薄膜形成技術により基材2の下面に形成される。材料としては、アルミニウム等が用いられ、導電層9の厚みは、例えば20nm程度である。
 導体非形成部14を除く部分に導電層9を形成するのは、後の工程において端子6が形成される際に、導電層9と端子6とが直流的に導通することを防止するためである。
 <第4工程>
 第3工程で得られた複数の構造体60を、導電層8、9が誘電体層4を介して対向するように重ね合わせて積層する。
 図3のコンデンサ1003では、3つの構造体60が積層されているが、構造体60の数は、必要な容量やコンデンサ1003の所望サイズ等を勘案して決定する。
 第4工程の後、最上層に絶縁コート層11が設けられ、最下層に絶縁コート層12が設けられる。これにより、導電層8および導電層9、誘電体層4を外部環境から保護することができる。
 その後、コンデンサ素子3001の側面3001Cに端子5を溶射工法により形成し、同様に、コンデンサ素子3001の側面3001Dに端子6を溶射工法により形成する。コンデンサ素子3001内に配置された複数の導電層8は、側面3001Dにおいて端子6と直流的に接続されており、複数の導電層9は、側面3001Dにおいて端子5と直流的に接続されている。
 コンデンサ1003は、0.3nm以上50nm以下の厚みを有し高い比誘電率を有している1つのナノシートである誘電体層4を介して導電層8と導電層9とが対向するので、大きな容量を確保することが可能となる。
 尚、図3のコンデンサ1003は、3つの構造体60を積層して形成したが、これに限る必要はなく、1つの構造体60を巻回することで重ね合わせ、巻回された構造体60の一端側に端子5を溶射工法により形成し、巻回された構造体60の他端側に端子6を溶射工法により形成しても良い。
 図3に示す実施の形態3のコンデンサ1003は、同一形状の構造体60を積層するだけで実現できるので、生産効率を高くすることもできる。
 尚、基材2は、樹脂フィルム等の有機フィルムで構成され、その厚みは誘電体層4よりも厚いものが用いられる。これにより、基材2の上面2Aと下面2Bに導電層8、9、誘電体層4を形成することが可能となる。
 また、図3中の基材2は有機化合物により実現され、図3中の誘電体層4は無機化合物により実現されている。
 尚、図3に示すコンデンサ1003の断面図は、上記工程後、図3における上下方向から加圧し、各層を密着させた後のものを記載している。図3においては、誘電体層4が平坦なものとして表現されているが、これに限る必要はなく、凹凸を有した形状のものであっても問題ない。
 (実施の形態4)
 図4は実施の形態4に係るコンデンサ1004の断面図である。コンデンサ1004は、コンデンサ素子4001と、端子5、6とを備える。コンデンサ素子4001は方向1004Cに向く側面4001Cと、側面4001Cの反対側の側面4001Dとを有する。側面4001Dは、方向1004Cの反対の方向1004Dを向く。端子5、6はコンデンサ素子4001の側面4001C、4001Dにそれぞれ設けられている。基材2の上面2Aは方向4001Cの端に位置する導体非形成部13を有する。導体非形成部13を除く基材2の上面2Aの部分に導電層8を形成する。導電層8の上面8Aに誘電体層4を形成する。誘電体層4の上面4Aは方向1004Dの端に位置する導体非形成部14を有する。導体非形成部14を除く誘電体層4の上面4Aの部分に導電層9を形成することで構造体61を形成する。基材2の下面2Bが導電層9の上面9A上に位置するように、複数の構造体61を積層する。誘電体層4の厚みが0.3~50.0nmであり、かつ、比誘電率が30以上である。
 実施の形態4に係るコンデンサ1004の製造方法を以下に説明する。
 <第1工程>
 導体非形成部13を除く基材2の上面2Aの部分に導電層8を配置する。導電層8は蒸着やスパッタ等の薄膜形成技術により基材2の上面2Aに形成される。導電層8はアルミニウム等の金属よりなり、導電層8の厚みは、例えば20nm程度である。例えば、基材2の厚みは数μmであり、比誘電率10以下である。
 また、導体非形成部13を除く部分に導電層8を形成するのは、後の工程においてコンデンサ素子4001の側面4001Cに端子5が形成される際に、導電層8と端子5とが直流的に導通することを防止するためである。
 <第2工程>
 第1工程の後、導電層8の上面8Aに、厚みが0.3nm以上50nm以下であり、比誘電率が30以上となる誘電体層4を配置する。
 誘電体層4は、125程度の比誘電率を有するチタン酸化物ナノシートや、300程度の比誘電率を有するニオブ酸化物ナノシート等で構成されている。
 尚、導体非形成部13に面した導電層8の側面や、基材2の上面の導体非形成部13にも、誘電体層4が形成されても良い。これにより、後の工程において、対向する導電層8と導電層9とが短絡しにくい構成を実現できる。
 <第3工程>
 第2工程の後、導体非形成部14を除く誘電体層4の上面4Aの部分に導電層9を設けることにより構造体61を作製する。導電層9は蒸着やスパッタ等の薄膜形成技術により誘電体層4の上面4Aに形成される。導電層9は、アルミニウム等の金属よりなり、導電層9の厚みは、例えば20nm程度である。尚、誘電体層4が破損することを極力避けるために、導電層9は、常温での蒸着プロセスにより形成してもよい。
 導体非形成部14を除く部分に導電層9を形成するのは、後の工程においてコンデンサ素子4001の側面4001Dに端子6が形成される際に、導電層9と端子6とが直流的に導通することを防止するためである。
 尚、導体非形成部14を導体非形成部13よりも大きく設計しても良い。導電層9の方向1004Dの端には端子6との絶縁性を保つための誘電体層が配置されないので、導電層8と端子5との間隔よりも導電層9と端子6との間隔を広くしておいた方が、導電層9と端子6とが短絡するリスクを低減できる。
 <第4工程>
 導電層8、9が基材2を介して対向するように、第3工程で得られた複数の構造体61を重ね合わせて積層する。
 図4のコンデンサ1004は4つの構造体61積層して実現しているが、構造体61の数は、必要な容量やコンデンサ1004の所望サイズ等を勘案して決定する。
 第4工程の後、最上層に絶縁コート層11が配置される。これにより、導電層8および導電層9を外部環境から保護することができる。
 その後、コンデンサ素子4001の側面4001Cに端子5を溶射工法により形成し、同様に、コンデンサ4001の側面4001Dに端子6を溶射工法により形成する。コンデンサ素子4001内に配置された複数の導電層8は、側面4001Cにおいて端子5と直流的に接続されており、コンデンサ素子4001内に配置された複数の導電層9は、側面4001Dにおいて端子6と直流的に接続されている。
 コンデンサ1004は、導電層8、9が、0.3nm以上50nm以下の厚みで且つ高い比誘電率を有している1つのナノシートである誘電体層4を介して対向するので、大きな容量を確保することが可能となる。
 尚、図4のコンデンサ1004は、4つの構造体61を積層して形成したが、これに限る必要はなく、1つの構造体61を巻回すことで重ね合わせ、巻回された構造体61の一端側に端子5を溶射工法により形成し、巻回された構造体61の他端側に端子6を溶射工法により形成しても良い。
 図4に示す実施の形態4のコンデンサ1004は、同一形状の構造体61を積層するだけで実現できるため、生産効率を高くすることもできる。
 尚、基材2は、樹脂フィルム等の有機フィルムで構成され、その厚みは誘電体層4よりも厚いものが用いられる。これにより、基材2の上面2Aに導電層8、誘電体層4を形成することが可能となる。
 また、図4中の基材2は有機化合物により実現され、図4中の誘電体層4は無機化合物により実現されている。
 尚、図4に示すコンデンサ1004の断面図は、上記工程後、図4における上下方向から加圧し、各層を密着させた後のものを記載している。図4においては、誘電体層4が平坦なものとして表現されているが、これに限る必要はなく、凹凸を有した形状のものであっても問題ない。
 前述のように、コンデンサ1004は複数の構造体61を少なくとも備える。それぞれの構造体61は、有機フィルムから成る基材2と、基材2の片面2Aに形成された導電層8と、導電層8の表面8Aに形成された誘電体層4と、誘電体層4の表面4Aに形成された導電層9とを備える。導電層8は、基材2の少なくとも一端辺に達する接続部8Tを有する。導電層9は、基材2の少なくとも一端辺に達する接続部9Tを有する。誘電体層4は、数原子分程度の厚みを有した金属酸化物または、この金属酸化物の積層体である。接続部8T、9Tは互いに逆方向に位置する。複数の構造体61は、同方向に重ねられて巻回または積層されている。
 また、前述のように、有機フィルムから成る基材2を用意する。基材2の片面に導電層8を形成する。導電層8は、基材2の少なくとも一端辺に達した接続部8Tを有する。導電層8の表面に誘電体層4を形成する。誘電体層4の表面に導電層9を形成する。導電層9は基材2の少なくとも一端辺に達した接続部9Tを有する。これにより複数の構造体61を製造する。接続部8T、9Tは互いに逆方向に配置されている。複数の構造体61を同方向に重ねて積層または巻回することによりコンデンサ1004を製造することができる。
 (実施の形態5)
 図5は実施の形態5に係るコンデンサ1005の断面図である。図5において、図1Aに示す実施の形態1におけるコンデンサ1001と同じ部分には同じ参照番号を付す。
 図5に示す実施の形態5に係るコンデンサ1005では、導電層3の下面3Bは方向1001Cの端に位置する誘電体非形成部15を有し、導電層103の上面103Aは方向1001Dの端に位置する誘電体非形成部16を有する。誘電体層4は、誘電体非形成部16を除く導電層3の上面3Aの部分に形成されている。誘電体層104は、誘電体非形成部15を除く導電層103の下面103Bの部分に形成されている。
 図5に示すように、誘電体非形成部15に誘電体層4、104を形成しないことにより、導電層3の側面まで誘電体層104が回り込み、端子6と導電層3とが直流的に導通しないという不良の発生を抑圧できる。また、誘電体層104の影響で、導電層103と端子5とが直流的に導通しないという不良の発生を抑圧できる。
 同様に、誘電体非形成部16に誘電体層4、104を形成しないことにより、導電層103の側面まで誘電体層4、104が回り込み、端子5と導電層103とが直流的に導通しないという不良の発生を抑圧できる。また、誘電体層4、104の影響で、導電層3と端子6とが直流的に導通しないという不良の発生を抑圧できる。
 (実施の形態6)
 図6は実施の形態6に係るコンデンサ1006の断面図である。図6において、図2に示す実施の形態2におけるコンデンサ1002と同じ部分には同じ参照番号を付す。
 図6に示す実施の形態6に係るコンデンサ1006では、導電層9の下面9Bは方向1002Cの端に位置する誘電体非形成部15を有し、導電層9の上面9Aは方向1002Dの端に位置する誘電体非形成部16を有する。誘電体層4、10は導電層8の上面8Aの誘電体非形成部15を除く部分に形成され、誘電体層4、10が導電層8の上面8Aの誘電体非形成部16を除く部分に形成されている。
 図6に示すように、誘電体非形成部15に誘電体層4を形成しないことにより、導電層8の側面まで誘電体層4が回り込み、端子6と導電層8とが直流的に導通しないという不良の発生を抑圧できる。また、誘電体層4の影響で、導電層9と端子5とが直流的に導通しないという不良の発生を抑圧できる。
 同様に、誘電体非形成部16に誘電体層10を形成しないことにより、導電層9の一端部側面まで誘電体層10が回り込み、端子5と導電層9とが直流的に導通しないという不良の発生を抑圧できる。また、誘電体層10の影響で、導電層8と端子6とが直流的に導通しないという不良の発生を抑圧できる。
 (実施の形態7)
 図7は、実施の形態7に係るコンデンサ1007の断面図である。図7において、図3に示す実施の形態3におけるコンデンサ1003と同じ部分には同じ参照番号を付す。
 図7に示す実施の形態7に係るコンデンサ1007では、導電層8の上面8Aは方向1003Dの端に位置する誘電体非形成部117を有し、導電層9の下面9Bは方向1003Cの端に位置する誘電体非形成部17を有する。誘電体層4は、誘電体非形成部117を除く導電層8の上面8Aの部分と、誘電体非形成部17を除く導電層9の下面9Bの部分に形成されている。
 図7に示すように、誘電体非形成部17、117に誘電体層4を形成しないことにより、導電層8の側面まで誘電体層4が回り込み、端子6と導電層8とが直流的に導通しないという不良の発生を抑圧できる。また、誘電体層4の影響で、導電層9と端子5とが直流的に導通しないという不良の発生を抑圧できる。
 (実施の形態8)
 図8は実施の形態8に係るコンデンサ1008の断面図である。図8において、図4に示す実施の形態4のコンデンサ1004と同じ部分には同じ参照符号を付す。
 図8に示す実施の形態8に係るコンデンサ1008では、導電層8の上面8Aは方向1004Dの端に位置する誘電体非形成部117を有し、導電層9の下面9Bは方向1004Cの端に位置する誘電体非形成部17を有する。誘電体層4は、誘電体非形成部117を除く導電層8の上面8Aの部分と、誘電体非形成部17を除く導電層9の下面9Bの部分に形成されている。
 図8に示すように、誘電体非形成部17に誘電体層4を形成しないことにより、導電層8の側面まで誘電体層4が回り込み、端子6と導電層8とが直流的に導通しないという不良の発生を抑圧できる。また、誘電体層4の影響で、導電層9と端子5とが直流的に導通しないという不良の発生を抑圧できる。
 尚、図1Aから図8はコンデンサ1001~1008を概念的に示したものであり、厳密に、現実のコンデンサの断面図を示すものではない。また、誘電体層4、104、10、110は、多層のナノシートの積層体であってもよいし、単層のナノシートであってもよい。
 (実施の形態9)
 図9は実施の形態9に係るコンデンサ1009の拡大断面図である。図9は、実施の形態1~8のコンデンサ1001~1008の基材2、導電層8、誘電体層4、導電層9の界面を示す。
 導電層8が設けられた基材2の上面2Aには多数の凸凹部が形成されている。このような多数の凸凹部の表面に、スパッタや蒸着等のプロセスにより導電層8を形成する事により、基材2と導電層8との接着強度を増す事ができる。
 基材2の上面2Aに多数の凸凹部を形成する方法としては、ドライエッチングや湿式エッチング等により、基材2の表面を荒らす方法が考えられる。
 誘電体層4が設けられる導電層8の上面8Aにも、多数の凸凹部が形成されている。これにより、導電層8の表面積を増やす事が可能となり、コンデンサの容量を向上させることができる。
 導電層8の表面の多数の凸凹部は、基材2の表面上に形成された多数の凸凹部を基に形成してもよいし、導電層8の形成プロセス(スパッタや蒸着)の条件を調整する事のみで形成してもよい。また、これらの2つの方法を組合わせて、導電層8の表面に多数の凸凹部を形成してもよい。
 チタン酸化物やニオブ酸化物等のナノシートからなる誘電体層4は、導電層8の多数の凸凹部の表面上を概ね一定の厚みで覆うように形成される。
 図9において、導電層9は、誘電体層4の上面4A上に設けられた導電性高分子層18と、導電性高分子層18の上面18Aに設けられたバックアップ金属層19とで構成されている。導電性高分子層18は、導電性を有した樹脂であり、金属と比較して、硬度が低く、柔軟性を有している。
 よって、導電層8の表面に形成された多数の凹凸部を変形させることを極力回避しながら誘電体層4の凹部に入り込む事ができる。これにより、コンデンサの電極間(導電層8と導電層9の間)に空域が発生する事を極力回避しつつ、電極間の対向面積を向上させることが可能となる。
 導電性高分子層18を形成する方法としては、例えば、導電性高分子の粒子と分散剤とを含む分散液を誘電体層4上に配置した後、分散剤を少なくとも部分的に除去または/および硬化させる方法が考えられる。また、モノマーを誘電体層4上に配置した後、酸化剤や陽極酸化等の方法を用いて重合し、導電性高分子層18を実現してもよい。
 図9において、導電性高分子層18とバックアップ金属層19との界面は平坦ではなく、適度に粗面化されている。これにより、導電性高分子層18とバックアップ金属層19の接着強度を向上させることができると共に、両者の接触面積が増えるため、抵抗率を下げる事ができる。導電性高分子層18とバックアップ金属層19との界面を粗面化する方法としては、導電性高分子層18の上面をエッチングする方法が考えられる。エッチング剤としては、過マンガン酸カリなどが用いられる。尚、バックアップ金属層19は、スパッタ、蒸着等により形成される。
 図9において、導電性高分子層18の上面にバックアップ金属層19を設けたのは、導電層9の実効的な導電率を高くするためである。通常、導電性高分子の導電率は、金属の導電率の数百分の一であり、バックアップ金属層19を配置する事により、導電層9の実効的な導電率を小さくすることができる。
 具体的には、実施の形態4における第3工程の導電層9を形成するプロセスを実施の形態5における導電層9の形成に置き換えた構成が考えられる。
 図9においては、導電層9がバックアップ金属層19を有した構成としたが、これに限る必要はなく、バックアップ金属層19が無く、導電性高分子層18のみで導電層9が構成されていてもよい。これにより、製造プロセスを簡略化できる。
 図10Aは、実施の形態9における他のコンデンサ1009Aの拡大断面図である。図10Aにおいて、図9に示す実施の形態9におけるコンデンサ1009と同じ部分には同じ参照番号を付す。図10Aに示す導電層9はバックアップ金属層19を備えず、導電層9は導電層8よりも柔らかい。導電層8と比較して導電層9が柔らかいので、図10Aにおける上下方向に加圧すると、導電層8が概ね形状変化しない反面、導電層9のみが概ね形状変化し、誘電体層4の凹部に入り込む。これにより、コンデンサの電極間(導電層8と導電層9の間)に空域が発生する事を極力回避しつつ、電極間の対向面積を向上させることが可能となる。
 図10Aにおいて、導電層8と導電層9とは異なる金属を用いてもよいし、同一の金属を用いても良い。同一の金属を用いる場合には、導電層9が導電層8よりも柔らかくなるように導電層8と導電層9との形成プロセスの条件を異ならせる。
 実施の形態1におけるコンデンサ1001では、第2工程で得られる一対の構造体50、150での導電層3、103の硬度は概ね同様の値となっているが、上記のように、対となる構造体50、150の導電層3、103の硬度を異ならせると共に、誘電体層の表面に多数の凸凹部を設け、さらに導電層3の表面に多数の凸凹部を設けることにより、導電層8、9の表面積を増大させて高容量化を図る事ができると共に、構造体50、160の接着強度を向上させることもできる。
 実施の形態2においても、導電層8の硬度と導電層9の硬度を異ならせると共に、誘電体層4、10の少なくとも1つの表面に多数の凸凹部を設けることで、導電層8.9の表面積を増大させて高容量化を図る事ができると共に、各層の密着性を向上できる。
 実施の形態3においても、導電層8の硬度と導電層9の硬度を異ならせると共に、誘電体層4と導電層9の少なくとも1つの表面に多数の凸凹部を設けることで、導電層8、9の表面積を増大させて高容量化を図る事ができると共に、各層の密着性を向上できる。
 実施の形態4においても、導電層8の硬度と導電層9の硬度を異ならせると共に、誘電体層4の表面に多数の凸凹部を設ければ、導電層8、9の表面積を増大させて高容量化を図る事ができると共に、各層の密着性を向上できる。
 尚、ナノシートを形成する上で用いられる酸化物ナノシート単体は、数原子相当の厚さしか有しておらず、その厚さは概ね0.3nm~2nm、長さと幅は10nmから1mm程度のサイズを有している。例えば、導電層8の表面に配置された付着補助層(具体的にはカチオン等の層)を接着層として、導電層8の表面に多数の酸化物ナノシート単体が敷き詰められていき、誘電体層4は形成される。ここで、図9において、導電層8の表面に形成された凹凸部の凸部間の平均距離は、上記の酸化物ナノシート単体の長さ及び幅よりも大きく設定されても良い。これにより、凹部にも酸化物ナノシート単体が入り込みやすくなり、誘電体層4に小孔が形成される事を防止できる。
 尚、図9においては、導電層8が形成される基材2の上面2Aのみに多数の凸凹部を形成したが、基材2の下面2Bにも多数の凸凹部を形成してもよい。
 図10Bは、実施の形態9におけるさらに他のコンデンサ1009Bの拡大断面図である。図10Bにおいて、図9に示す実施の形態9におけるコンデンサ1009と同じ部分には同じ参照番号を付す。図10Bに示すコンデンサ1009Bでは、導電層8の上面8Aには、上面8A全体を被覆する絶縁コート層68が設けられている。これにより、もしもナノシートにより実現された誘電体層4に小孔が空いていた場合に、導電層8と導電層9とが短絡する事を防止できる。
 図10Cは、実施の形態9におけるさらに他のコンデンサ1009Cの拡大断面図である。図10Cにおいて、図9に示す実施の形態9におけるコンデンサ1009と同じ部分には同じ参照番号を付す。図10Cに示すコンデンサ1009Cでは、ナノシートにより実現された誘電体層4の上面4A全体を被覆する絶縁コート層64が設けられている。これによっても、もしもナノシートにより実現された誘電体層4に小孔が空いていた場合に、ナノシートの小孔に絶縁コート層64が入り込み、結果、導電層8の一部表面が絶縁コート剤で被覆され、導電層8と導電層9とが短絡する事を防止できる。また、この場合に、導電層8の上面に塗布された絶縁コート層の表面を平坦化すれば、導電層8の小孔や凹部を中心に絶縁コート層が入り込み、誘電体層4の一部表面にのみ絶縁コート層が被覆された状態となる。これにより、導電層8と導電層9との間に空域が発生する事を回避でき、コンデンサの容量が低減されることを防止できる。
 尚、絶縁コート層64、68は、被覆対象に塗布する前はペースト状又は液体状で、塗布後、硬化させる事が可能な絶縁材料からなる。その絶縁材料として例えば、ポリプロピレンやポリフェニレンサルファイドなどが挙げられるが、これら材料に限定されない。
 (実施の形態10)
 図11は実施の形態10に係るコンデンサ1010の拡大断面図である。図11は、実施の形態1~8におけるコンデンサ1001~1008の基材2、導電層8、誘電体層4、導電層9の界面を示す。
 基材2の上面2A、下面2Bには、その製造プロセス上において、凹凸が発生している。これを平坦化するため、基材2の上面2Aには絶縁コート層20が形成されており、基材2の下面2Bには絶縁コート層21が形成されている。
 平坦化された絶縁コート層20の上面には、導電層8がスパッタや蒸着により形成され、平坦化された絶縁コート層21の下面には、導電層9がスパッタや蒸着により形成される。平坦化された絶縁コート層20や絶縁コート層21の表面に導電層8や導電層9が形成されるので、導電層8や導電層9の表面も概ね平坦なものとなる。
 更に、導電層8の表面には誘電体層4が形成され、導電層9の表面には誘電体層10が形成されている。誘電体層4と誘電体層10は、概ね平坦な導電層8と導電層9の表面に形成されるので、誘電体層4と誘電体層10の表面も概ね平坦なものとなる。
 図11に示した構成を積層してコンデンサを実現した場合、相互に密着される面が概ね平坦なものとなるため、導電層8と導電層9の間に空域が発生しにくく、コンデンサの容量が低減されることを防止できる。
 図12は実施の形態10における他のコンデンサ1010Aの拡大断面図である。図12において、図11に示すコンデンサ1010と同じ部分には同じ参照番号を付す。図12に示すコンデンサ1010Aは、絶縁コート層20、21を有しておらず、導電層8、9が導電性高分子よりなり、基材2の表面の凹凸を平坦化することができ、製造工程を簡略化できる。また、図9に示すコンデンサ1009と同様に、導電層8、9のそれぞれが導電性高分子層とバックアップ金属層よりなっていてよく、これにより導電層8、9の導電率を大きくすることができる。
 上記の実施の形態において、「上面」「下面」等の方向を示す用語は誘電体層や導電層等のコンデンサの構成部品の相対的な位置関係にのみ依存する相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 本発明のコンデンサは小型でありながら大きな容量を有しているので、移動体通信用携帯電話やノートパソコン等の小型の電子機器に利用する事ができる。
2  基材
3  導電層(第1の導電層)
4  誘電体層(第1の誘電体層)
7  導体非形成部
8  導電層(第1の導電層)
9  導電層(第2の導電層)
10  誘電体層(第2の誘電体層)
13  導体非形成部
14  導体非形成部
15  誘電体非形成部
16  誘電体非形成部
17  誘電体非形成部
18  導電性高分子層
19  バックアップ金属層
20  絶縁コート層
21  絶縁コート層
50  構造体(第1の構造体、第2の構造体)
51  構造体(第1の構造体、第2の構造体)
60  構造体(第1の構造体、第2の構造体)
61  構造体(第1の構造体、第2の構造体)
103  導電層(第2の導電層)
104  誘電体層(第2の誘電体層)

Claims (25)

  1. 有機フィルムよりなる基材と、
    前記基材の上面に設けられた第1の導電層と、
    前記第1の導電層の上面に設けられた第1の誘電体層と、
    前記第1の誘電体層の上面に設けられた第2の誘電体層と、
    前記第2の誘電体層の上面に設けられた第2の導電層と、
    を備え、
    前記第1の誘電体層は、前記第1の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第2の誘電体層は、前記第2の導電層の下面に敷き詰められた複数の金属酸化物片よりなる、コンデンサ。
  2. 前記基材の前記上面は、第1の方向の端に位置する第1の導体非形成部を有し、
    前記第1の導電層は、第1の導体非形成部を除く前記基材の前記上面の部分に設けられ、
    前記第2の誘電体層の前記上面は、前記第1の方向の反対の第2の方向の端に位置する第2の導体非形成部を有し、
    前記第2の導電層は、前記第2の導体非形成部を除く前記第2の誘電体層の前記上面の部分に設けられ、
    前記第1の導電層の前記上面は前記第2の方向の端に位置する第1の誘電体非形成部を有し、
    前記第1の誘電体層は、前記第1の誘電体非形成部を除く前記第1の導電層の前記上面の部分に設けられている、請求項1に記載のコンデンサ。
  3. 前記第1の誘電体層は、前記第1の方向の端に前記第2の誘電体非形成部を除く前記基材の前記上面の部分に設けられている、請求項2に記載のコンデンサ。
  4. 基材と、
    前記基材の上面に設けられた第1の導電層と、
    前記第1の導電層の上面に設けられた第1の誘電体層と、
    前記第1の誘電体層の上面に設けられた第2の導電層と、
    前記第2の導電層の上面に設けられた第2の誘電体層と、
    を備え、
    前記第1の誘電体層は、前記第1の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第2の誘電体層は、前記第2の導電層の上面に敷き詰められた複数の金属酸化物片よりなる、コンデンサ。
  5. 前記第1の誘電体層の前記上面は、第1の方向の端に位置する第1の導体非形成部を有し、
    前記第2の誘電体層の前記上面は、前記第1の方向の反対の第2の方向の端に位置する第2の導体非形成部を有し、
    前記第1の導電層は、前記第1の導体非形成部を除く前記第1の誘電体層の前記上面の部分に設けられ、
    前記第2の導電層は、前記第2の導体非形成部を除く前記第2の誘電体層の前記上面の部分に設けられ、
    前記第1の導電層の前記上面は、前記第1の方向と前記第2の方向のうちの一方の端に位置する誘電体非形成部を有し、
    前記第2の誘電体層は、前記誘電体非形成部を除く前記第1の導電層の前記上面の部分に設けられている、請求項4に記載のコンデンサ。
  6. 前記第1の誘電体層の厚みと前記第2の誘電体層の厚みは0.3nm以上50nm以下である、請求項1または4に記載のコンデンサ。
  7. 前記第1の誘電体層と前記第2の誘電体層の比誘電率は30以上である、請求項1または4に記載のコンデンサ。
  8. 前記第1の導電層と前記第2の導電層の内、少なくとも一方は、その一部又は全部が導電性高分子よりなる、請求項1または4に記載のコンデンサ。
  9. 前記第1の導電層と前記第2の導電層のうちの少なくとも一方の表面は凹凸部を有している、請求項1または4に記載のコンデンサ。
  10. 前記第1の導電層と前記第2の導電層の硬度は異なっている、請求項9に記載のコンデンサ。
  11. 前記基材の表面は凹凸部を有している、請求項1または4に記載のコンデンサ。
  12. 前記第1の導電層と前記第2の導電層の硬度は異なっている、請求項11に記載のコンデンサ。
  13. 前記基材の上面と下面のうちの少なくとも一方の少なくとも一部を被覆する絶縁コート層をさらに備えた、請求項1または4に記載のコンデンサ。
  14. 有機フィルムよりなる第1の基材の上面に第1の導電層を設けるステップと、
    前記第1の導電層を設けるステップの後で、前記第1の導電層の上面に第1の誘電体層を設けることにより第1の構造体を作製するステップと、
    有機フィルムよりなる第2の基材の下面に第2の導電層を設けるステップと、
    前記第2の導電層を設けるステップの後で、第2の誘電体層を前記第2の導電層の下面に設けることにより第2の構造体を作製するステップと、
    前記第1の導電層と前記第2の導電層が前記第1の誘電体層と前記第2の誘電体層とを介して対向するように、前記第1の構造体と前記第2の構造体とを重ね合わせるステップと、
    を含み、
    前記第1の誘電体層は、前記第1の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第2の誘電体層は、前記第2の導電層の前記下面に敷き詰められた複数の金属酸化物片よりなる、コンデンサの製造方法。
  15.    有機フィルムよりなる第1の基材の上面に第1の導電層を設けるステップと、
       前記第1の導電層を設けるステップの後で、前記第1の導電層の上面に第1の誘電体層を設けるステップと、
       前記第1の基材の下面に第2の導電層を設けるステップと、
       前記第2の導電層を設けるステップの後で、第2の誘電体層を前記第2の導電層の下面に設けるステップと、
    を含む第1の構造体を作製するステップと、
       有機フィルムよりなる第2の基材の上面に第3の導電層を設けるステップと、
       前記第3の導電層を設けるステップの後で、第3の誘電体層を前記第3の導電層の上面に設けるステップと、
       前記第2の基材の下面に第4の導電層を設けるステップと、
       前記第4の導電層を設けるステップの後で、第4の誘電体層を前記第4の導電層の下面に設けるステップと、
    を含む第2の構造体を作製するステップと、
    前記第2の誘電体層と前記第4の誘電体層とを介して前記第2の導電層と前記第4の導電層とが対向するように、前記第1の構造体と前記第2の構造体とを重ね合わせるステップと、
    を含み、
    前記第1の誘電体層は、前記第1の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第2の誘電体層は、前記第2の導電層の前記下面に敷き詰められた複数の金属酸化物片よりなり、
    前記第3の誘電体層は、前記第3の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第4の誘電体層は、前記第4の導電層の前記下面に敷き詰められた複数の金属酸化物片よりなる、コンデンサの製造方法。
  16.    有機フィルムよりなる第1の基材の上面に第1の導電層を設けるステップと、
       前記第1の導電層を設けるステップの後で、第1の誘電体層を前記第1の導電層の上面に設けるステップと、
       前記第1の基材の下面に第2の導電層を設けるステップと、
    を含む第1の構造体を設けるステップと、
       有機フィルムよりなる第2の基材の上面に第3の導電層を設けるステップと、
       前記第3の導電層を設けるステップの後で、第2の誘電体層を前記第3の導電層の上面に設けるステップと、
       前記第2の基材の下面に第4の導電層を設けるステップと、
    を含む第2の構造体を設けるステップと、
    前記第1の導電層が、前記第1の誘電体層を介して、前記第4の導電層と対向するように前記第1の構造体と前記第2の構造体とを重ね合わせるステップと、
    を含み、
    前記第1の誘電体層は、前記第1の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第2の誘電体層は、前記第3の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなる、コンデンサの製造方法。
  17.    有機フィルムよりなる第1の基材の上面に第1の導電層を配置するステップと、
       第1の誘電体層を前記第1の導電層の上面に設けるステップと、
       前記第1の誘電体層を設けるステップの後で、前記第1の誘電体層の上面に第2の導電層を設けるステップと、
    を含む、第1の構造体を作製するステップと、
       有機フィルムよりなる第2の基材の上面に第3の導電層を配置するステップと、
       第2の誘電体層を前記第3の導電層の上面に設けるステップと、
       前記第2の誘電体層を設けるステップの後で、前記第2の誘電体層の上面に第4の導電層を設けるステップと、
    を含む、第2の構造体を作製するステップと、
    前記第2の導電層の上面が、前記第2の基材を介して、前記第3の導電層と対向するように前記第1の構造体と前記第2の構造体とを重ね合わせるステップと、
    を含み、
    前記第1の誘電体層は、前記第1の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなり、
    前記第2の誘電体層は、前記第3の導電層の前記上面に敷き詰められた複数の金属酸化物片よりなる、コンデンサの製造方法。
  18. 前記第1の導電層と前記第2の導電層と前記第3の導電層と前記第4の導電層のうちの少なくとも1つは導電性高分子を含有する、請求項15から17のいずれか1つに記載のコンデンサの製造方法。
  19. 前記第1の導電層と前記第2の導電層と前記第3の導電層と前記第4の導電層のうちの少なくとも1つの表面に凹凸部が形成されている、請求項15から17のいずれか1つに記載のコンデンサの製造方法。
  20. 前記第1の導電層と前記第2の導電層の硬度は異なっている、請求項19に記載のコンデンサの製造方法。
  21. 前記第1の基材の表面に凹凸部が形成されている、請求項15から17のいずれか1つに記載のコンデンサの製造方法。
  22. 前記第1の導電層と前記第2の導電層の硬度は異なっている請求項21に記載のコンデンサの製造方法。
  23. 前記第1の基材は、前記第1の誘電体層の上面と下面のうち少なくとも一方の表面の少なくとも一部に設けられた絶縁コート層を有する、請求項14から17のいずれか1つに記載のコンデンサの製造方法。
  24. 前記第1の導電層と前記第2の導電層のうちの少なくとも一方の表面の少なくとも一部は絶縁コート層により被覆されている、請求項14から17のいずれか1つに記載のコンデンサの製造方法。
  25. 前記第1の誘電体層の表面の少なくとも一部は絶縁コート層により被覆されている、請求項14から17のいずれか1つに記載のコンデンサの製造方法。
PCT/JP2010/003792 2009-06-11 2010-06-08 コンデンサおよびコンデンサの製造方法 WO2010143410A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/377,212 US20120087059A1 (en) 2009-06-11 2010-06-08 Capacitor and method for manufacturing capacitor
EP10785942A EP2400514A1 (en) 2009-06-11 2010-06-08 Capacitor and method for manufacturing capacitor
JP2011518301A JPWO2010143410A1 (ja) 2009-06-11 2010-06-08 コンデンサおよびコンデンサの製造方法
CN201080025206XA CN102804298A (zh) 2009-06-11 2010-06-08 电容器以及电容器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009139739 2009-06-11
JP2009-139739 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010143410A1 true WO2010143410A1 (ja) 2010-12-16

Family

ID=43308673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003792 WO2010143410A1 (ja) 2009-06-11 2010-06-08 コンデンサおよびコンデンサの製造方法

Country Status (5)

Country Link
US (1) US20120087059A1 (ja)
EP (1) EP2400514A1 (ja)
JP (1) JPWO2010143410A1 (ja)
CN (1) CN102804298A (ja)
WO (1) WO2010143410A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136669A (ja) * 2013-01-18 2014-07-28 Mitsubishi Gas Chemical Co Inc ナノシート、ナノ積層体及びナノシートの製造方法
JP2019083315A (ja) * 2017-10-27 2019-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. セラミック電子部品およびその製造方法、ならびに電子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459875B (zh) * 2012-04-20 2014-11-01 Far Eastern New Century Corp A method for preparing a circuit board having a patterned conductive layer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425408A (en) * 1987-07-21 1989-01-27 Matsushita Electric Ind Co Ltd Metallized plastic film capacitor
JPS6477903A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Capacitor
JPH02290008A (ja) * 1989-04-28 1990-11-29 Marcon Electron Co Ltd 金属化プラスチックフィルムコンデンサ
JPH03227005A (ja) * 1990-02-01 1991-10-08 Nissei Denki Kk 積層フィルムコンデンサ及びその製造方法
JPH0422013A (ja) * 1990-05-16 1992-01-27 Ricoh Co Ltd 複合体の製造方法
JPH09283389A (ja) * 1996-04-10 1997-10-31 Matsushita Electric Ind Co Ltd コンデンサおよびその製造方法
JP2000124061A (ja) 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd フィルムコンデンサの製造方法及びその製造装置
JP2007036088A (ja) * 2005-07-29 2007-02-08 Toray Ind Inc コンデンサ用フィルムおよびそれを用いてなるコンデンサ
WO2007094244A1 (ja) * 2006-02-13 2007-08-23 National Institute For Materials Science ナノ超薄膜誘電体とその製造方法及びナノ超薄膜誘電体素子
JP2008277724A (ja) * 2007-03-30 2008-11-13 Sanyo Electric Co Ltd コンデンサ及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555746A (en) * 1983-01-12 1985-11-26 Matsushita Electric Industrial Co., Ltd. Organic chip capacitor
US7316962B2 (en) * 2005-01-07 2008-01-08 Infineon Technologies Ag High dielectric constant materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425408A (en) * 1987-07-21 1989-01-27 Matsushita Electric Ind Co Ltd Metallized plastic film capacitor
JPS6477903A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Capacitor
JPH02290008A (ja) * 1989-04-28 1990-11-29 Marcon Electron Co Ltd 金属化プラスチックフィルムコンデンサ
JPH03227005A (ja) * 1990-02-01 1991-10-08 Nissei Denki Kk 積層フィルムコンデンサ及びその製造方法
JPH0422013A (ja) * 1990-05-16 1992-01-27 Ricoh Co Ltd 複合体の製造方法
JPH09283389A (ja) * 1996-04-10 1997-10-31 Matsushita Electric Ind Co Ltd コンデンサおよびその製造方法
JP2000124061A (ja) 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd フィルムコンデンサの製造方法及びその製造装置
JP2007036088A (ja) * 2005-07-29 2007-02-08 Toray Ind Inc コンデンサ用フィルムおよびそれを用いてなるコンデンサ
WO2007094244A1 (ja) * 2006-02-13 2007-08-23 National Institute For Materials Science ナノ超薄膜誘電体とその製造方法及びナノ超薄膜誘電体素子
JP2008277724A (ja) * 2007-03-30 2008-11-13 Sanyo Electric Co Ltd コンデンサ及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136669A (ja) * 2013-01-18 2014-07-28 Mitsubishi Gas Chemical Co Inc ナノシート、ナノ積層体及びナノシートの製造方法
JP2019083315A (ja) * 2017-10-27 2019-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. セラミック電子部品およびその製造方法、ならびに電子装置
JP7336758B2 (ja) 2017-10-27 2023-09-01 三星電子株式会社 セラミック電子部品およびその製造方法、ならびに電子装置

Also Published As

Publication number Publication date
EP2400514A1 (en) 2011-12-28
CN102804298A (zh) 2012-11-28
JPWO2010143410A1 (ja) 2012-11-22
US20120087059A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
KR100855160B1 (ko) 엘리먼트들의 열화없이 엘리먼트 적층수가 증가된 적층형 고체 전해질 캐패시터 및 적층형 전송 라인 장치
JP5210717B2 (ja) キャパシタの製造方法
US7701696B2 (en) Multilayer capacitor
JP2013247206A (ja) フィルムコンデンサ素子及びフィルムコンデンサ並びにフィルムコンデンサ素子の製造方法
US9824821B2 (en) Thin film capacitor with intermediate electrodes
KR102551219B1 (ko) 적층 세라믹 커패시터 및 그 제조 방법
WO2010143410A1 (ja) コンデンサおよびコンデンサの製造方法
KR20190121141A (ko) 적층 세라믹 커패시터 및 그 제조 방법
JP2020035991A (ja) 積層セラミックキャパシタ及びその製造方法
US20140133068A1 (en) Capacitor
JP2020027927A (ja) 積層セラミックキャパシタ及びその製造方法
KR20190121135A (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR101661141B1 (ko) 접철형 커패시터
JP5094598B2 (ja) キャパシタ
JP4708905B2 (ja) 薄膜エンベディッドキャパシタンス、その製造方法、及びプリント配線板
WO2012014647A1 (ja) 基板内蔵用キャパシタ、これを備えたキャパシタ内蔵基板、及び基板内蔵用キャパシタの製造方法
WO2012014646A1 (ja) 基板内蔵用キャパシタの製造方法、及びこれを備えたキャパシタ内蔵基板
KR20190121160A (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR102192947B1 (ko) 산화알루미늄층을 포함하는 접철형 커패시터
JP2015018933A (ja) 多層基板の製造方法
KR101396744B1 (ko) 홀 구조를 갖는 커패시터 및 그 제조방법
WO2021065487A1 (ja) フィルムコンデンサ素子
KR102662851B1 (ko) 적층 세라믹 커패시터 및 그 제조 방법
KR20170100198A (ko) 단층 박막 커패시터 및 이의 제조 방법
JPH02222129A (ja) フィルムコンデンサおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025206.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518301

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010785942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13377212

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE