WO2010140505A1 - レーザアニール方法及びレーザアニール装置 - Google Patents

レーザアニール方法及びレーザアニール装置 Download PDF

Info

Publication number
WO2010140505A1
WO2010140505A1 PCT/JP2010/058787 JP2010058787W WO2010140505A1 WO 2010140505 A1 WO2010140505 A1 WO 2010140505A1 JP 2010058787 W JP2010058787 W JP 2010058787W WO 2010140505 A1 WO2010140505 A1 WO 2010140505A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lens
tft
lens array
tft formation
Prior art date
Application number
PCT/JP2010/058787
Other languages
English (en)
French (fr)
Inventor
梶山 康一
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020117027330A priority Critical patent/KR101688129B1/ko
Priority to CN201080022772.5A priority patent/CN102449740B/zh
Publication of WO2010140505A1 publication Critical patent/WO2010140505A1/ja
Priority to US13/310,024 priority patent/US9012338B2/en
Priority to US14/664,696 priority patent/US9687937B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Definitions

  • the present invention relates to a laser annealing method for condensing laser light by a microlens array and annealing only a thin film transistor formation region of an amorphous silicon film. Specifically, the microlens array is moved following the movement of a substrate being conveyed.
  • the present invention relates to a laser annealing method and a laser annealing apparatus for improving the laser beam irradiation position accuracy.
  • a plurality of laser beams are formed by a microlens array, a focal point is formed for each beam, and each focal point of the beam is transferred to an amorphous silicon film surface to form an image.
  • Laser processing is performed by beam irradiation on the surface, and an amorphous silicon film in a region where a thin film transistor (hereinafter referred to as “TFT”) is formed is converted into polysilicon (see, for example, Patent Document 1).
  • TFT thin film transistor
  • the laser light is condensed by the microlens array and only the amorphous silicon film in a plurality of TFT forming regions is annealed, so that the laser light utilization efficiency is high.
  • the microlens array is moved following the movement of the substrate being conveyed while meandering, and each lens of the microlens array is positioned in each TFT formation region and irradiated with laser light. Is not disclosed. Therefore, when annealing while transporting a large substrate having a side of 1 m or more, if the substrate is transported while meandering due to the mechanical accuracy of the transport mechanism, it may not be possible to reliably anneal only each TFT formation region. was there.
  • the present invention addresses such problems, moves the microlens array following the movement of the substrate being conveyed, and improves the laser beam irradiation position accuracy and laser annealing apparatus.
  • the purpose is to provide.
  • a laser annealing method includes a plurality of lenses of a lens array in a plurality of thin film transistor (hereinafter referred to as “TFT”) formation regions set in a matrix at a predetermined arrangement pitch on a substrate.
  • TFT thin film transistor
  • a laser annealing method for condensing the laser beam by annealing and annealing the amorphous silicon film in each TFT formation region wherein the substrate is arranged in either the vertical or horizontal arrangement direction of the TFT formation region set in the matrix shape
  • the substrate surface is picked up by the imaging means while detecting the reference position of the alignment preset on the substrate surface based on the picked-up image, and the transport direction of the substrate corresponding to the plurality of TFT formation regions
  • At least one row of lens arrays in which a plurality of lenses are arranged in a direction intersecting with the substrate in a direction intersecting with the transport direction of the substrate The lens array and the TFT formation region of the substrate are aligned with respect to the alignment reference position, and the substrate is moved so that the TFT formation region is directly below the corresponding lens of the lens array. When it reaches, the lens array is irradiated with the laser beam.
  • the substrate surface is imaged by the imaging means while the substrate is transported in either the vertical or horizontal arrangement direction of the TFT formation region set in a matrix, and the substrate surface is preset based on the captured image.
  • the reference position of the alignment is detected, and at least one row of lens arrays in which a plurality of lenses are arranged in a direction intersecting the substrate transport direction corresponding to the plurality of TFT formation regions is moved in the direction intersecting the substrate transport direction. Align the lens of the lens array and the TFT formation area of the substrate with reference to the alignment reference position.
  • the laser light is applied to the lens array.
  • the laser light is condensed by a plurality of lenses to anneal the amorphous silicon film in each TFT formation region.
  • the lens array is composed of a plurality of lens rows in which lenses are arranged in parallel at a pitch that is an integer multiple of 2 or more of the arrangement pitch of the TFT formation regions in the same direction in a direction intersecting the transport direction of the substrate.
  • the following lens array is formed by shifting by a predetermined dimension in the juxtaposition direction of the plurality of lenses so as to complement each lens of the lens array located on the leading side in the transport direction of the substrate. Is.
  • Each TFT formation region is formed by a lens array having a configuration in which a subsequent lens row is formed by shifting by a predetermined dimension in a parallel arrangement direction of a plurality of lenses so as to complement each lens of the lens row located at Condensed on the amorphous silicon film.
  • the substrate is a TFT substrate in which wirings are formed vertically and horizontally, and the TFT formation region is set at an intersection of the vertically and horizontally wirings, and the alignment reference position is a wire parallel to the transport direction of the TFT substrate. It is set at the edge.
  • the lens of the lens array and the TFT substrate are aligned with respect to the alignment reference position set at the edge of the wiring parallel to the transport direction of the TFT substrate in which the TFT formation region is set at the intersection of the vertical and horizontal wirings. Alignment with the TFT formation region.
  • the laser annealing apparatus condenses laser light by a plurality of lenses of a lens array on a plurality of TFT formation regions set in a matrix at a predetermined arrangement pitch on a substrate, and each of the TFT formation regions
  • a plurality of condensing light sources arranged in parallel with the plurality of TFT formation regions in the same direction in a direction crossing the substrate transport direction in a plane parallel to the substrate surface.
  • the lens array made of lenses and the condensing position of the laser beam by the lens array are separated by a certain distance in the direction opposite to the substrate transport direction.
  • An image pickup means for picking up an image of the surface of the substrate with a position as an image pickup position, and moving the lens array in a direction intersecting the transport direction of the substrate to align the lens of the lens array with the TFT formation region of the substrate.
  • An alignment unit and a control unit that drives and controls each of the components.
  • the control unit images the surface of the substrate being transported, processes images sequentially input from the imaging unit, and applies the image to the substrate surface.
  • a reference position of alignment set in advance is detected, and the lens of the lens array and the TFT formation area of the substrate are aligned with respect to the alignment reference position, and the substrate moves so that the TFT formation area Control so that laser light is emitted from the laser light source toward the lens array when it reaches directly below the corresponding lens of the lens array Is shall.
  • the control means images the substrate surface being transported, processes images sequentially input from the imaging means, detects the reference position of alignment preset on the substrate surface, and drives the alignment means
  • the lens array is controlled to move in a direction crossing the substrate transport direction, the lens of the lens array is aligned with the TFT formation region of the substrate based on the alignment reference position, and the substrate is moved by the transport means.
  • control is performed so that laser light is emitted from the laser light source toward the lens array, and a plurality of matrixes are set on the substrate in a predetermined array pitch.
  • Laser light is focused on the TFT formation area by a plurality of lenses of the lens array, and the amorphous silicon film in each TFT formation area is animated.
  • the lens array comprises a plurality of lens rows in which lenses are arranged in parallel at a pitch that is an integer multiple of 2 or more of the arrangement pitch of the TFT formation regions in the same direction in a direction intersecting the transport direction of the substrate,
  • the following lens array is formed by shifting by a predetermined dimension in the juxtaposition direction of the plurality of lenses so as to complement each lens of the lens array located on the leading side in the transport direction of the substrate. Is.
  • Each TFT formation region is formed by a lens array having a configuration in which a subsequent lens row is formed by shifting by a predetermined dimension in a parallel arrangement direction of a plurality of lenses so as to complement each lens of the lens row located at Condensed on the amorphous silicon film.
  • the substrate is a TFT substrate in which a plurality of wirings are formed vertically and horizontally, and the TFT formation region is set at an intersection of the plurality of wires, and the alignment reference position is parallel to the transport direction of the TFT substrate. It is set at one edge of a simple wiring. As a result, the lens of the lens array and the TFT substrate are aligned with respect to the alignment reference position set at the edge of the wiring parallel to the transport direction of the TFT substrate in which the TFT formation region is set at the intersection of the vertical and horizontal wirings. Alignment with the TFT formation region.
  • the microlens array can be moved following the movement of the substrate being conveyed, and the laser beam irradiation position accuracy can be improved. Therefore, when annealing while transporting a large substrate having a side of 1 m or more, even if the substrate is transported while meandering due to the mechanical accuracy of the transport mechanism, only the TFT formation region can be reliably annealed. .
  • the shape of each lens of the lens array can be increased to increase the amount of laser light taken up, and the irradiation energy of the laser light onto the amorphous silicon film can be increased. . Therefore, the burden on the laser light source that emits the laser light can be reduced, and the reliability of the apparatus can be improved.
  • FIG. 1 It is a schematic diagram showing an embodiment of a laser annealing apparatus according to the present invention. It is a top view which shows the TFT substrate used for the laser annealing apparatus by this invention. It is explanatory drawing which shows one structural example of the micro lens array which comprises the laser annealing apparatus by this invention, and shows the positional relationship with an imaging means. It is a block diagram which shows one structural example of the control means which comprises the laser annealing apparatus by this invention. It is explanatory drawing shown about the detection of the edge part of the gate line of the said TFT substrate. 3 is a flowchart illustrating a laser annealing method according to the present invention.
  • FIG. 1 is a schematic view showing an embodiment of a laser annealing apparatus according to the present invention.
  • This laser annealing apparatus condenses laser light by a micro lens array and anneals only the TFT formation region of the amorphous silicon film formed on the substrate.
  • the lens array 3, the imaging unit 4, the alignment unit 5, and the control unit 6 are provided.
  • the substrate has a plurality of data lines 7 and gate lines 8 formed vertically and horizontally, and a gate electrode 30 (see FIG. 8) at the intersection of the data lines 7 and the gate lines 8.
  • the TFT substrate 10 has, for example, a data line 7 in which an alignment reference position serving as a reference for alignment between the TFT formation region 9 and a microlens 15 of the microlens array 3 described later is parallel to the substrate transport direction (arrow A direction).
  • the alignment reference position is set at the right edge of the data line 7 located at the left end in the substrate transport direction (arrow A direction). At this time, the horizontal distance between the right edge of the data line 7 and the center of the TFT formation region 9 is determined by the design value.
  • the transport means 1 is configured to place the TFT substrate 10 on the upper surface and transport it at a constant speed in one of the vertical and horizontal arrangement directions of the TFT formation region 9, for example, in the direction of arrow A shown in FIG.
  • a plurality of unit stages 12 having a plurality of ejection holes for ejecting gas and a plurality of suction holes for sucking gas are juxtaposed in the transport direction of the TFT substrate 10 (hereinafter referred to as “substrate transport direction”).
  • substrate transport direction the transport direction of the TFT substrate 10
  • a laser light source 2 is provided above the conveying means 1.
  • the laser light source 2 is an excimer laser that emits laser light 14 having a wavelength of, for example, 308 nm or 353 nm at a repetition period of, for example, 50 Hz.
  • a microlens array 3 is provided on the optical path of the laser light 14 emitted from the laser light source 2.
  • the microlens array 3 focuses the laser beam 14 on a plurality of TFT formation regions 9 set on the TFT substrate 10, and is a surface parallel to the surface of the TFT substrate 10 as shown in FIG.
  • a pitch (indicated by 2W in FIG. 3) that is an integer multiple of 2 or more of the array pitch W of the plurality of TFT formation regions 9 that intersect with the substrate transport direction (the direction of arrow A shown in FIG. 2).
  • first lenses three lens rows
  • second lens group 17 six lens rows in which microlenses 15 are arranged in parallel are arranged parallel to each other by a distance L, and three lens rows (hereinafter referred to as “first lenses”) positioned on the front side in the substrate transport direction.
  • the subsequent three lens rows (hereinafter referred to as “second lens group 17”) are complemented with a predetermined dimension (in FIG. Is indicated by W) And it has a configuration.
  • a specific configuration example of the microlens array 3 includes a plurality of microlenses 15 formed on one surface of a transparent substrate 34, and openings corresponding to the microlenses 15 on the other surface.
  • An opaque light-shielding film 35 having a portion is formed.
  • the light shielding film 35 is formed with an elongated opening window 36 parallel to the lens array at a certain distance in the direction opposite to the substrate transport direction of the second lens group 17.
  • An N-shaped alignment mark 37 is provided in the opening window 36. The alignment mark 37 is used for alignment with the TFT substrate 10, and the center line parallel to the substrate transport direction of the oblique thin wire 37 a is set to one of the first lens group 16 and the second lens group 17.
  • each microlens 15 of the microlens array 3 has a certain positional relationship with respect to the center of the alignment mark 37.
  • each microlens 15 has a relationship in which the horizontal distance in the direction orthogonal to the substrate transport direction with respect to the center of the alignment mark 37 is nW (n is an integer of 1 or more).
  • an image pickup means 4 is provided corresponding to the opening window 36 of the microlens array 3.
  • the imaging means 4 has a surface through the substrate from the back side of the TFT substrate 10 with a position that is a fixed distance away from the condensing position of the laser light 14 by the microlens array 3 in the direction opposite to the substrate transport direction.
  • a line camera (line) having a plurality of light receiving elements arranged in a straight line crossing the substrate transport direction indicated by arrow A in FIG.
  • the lens array 17a is provided at a distance D from the lens array 17a located on the top side in the substrate transport direction.
  • Alignment means 5 is provided so that the microlens array 3 can be moved in a direction crossing the substrate transport direction.
  • the alignment means 5 has an alignment reference position (hereinafter referred to as “substrate-side alignment reference position”) set in advance on the data line 7 of the TFT substrate 10 and the center position of the oblique thin line 37a of the alignment mark 37 of the microlens array 3 (see FIG.
  • the microlens array 3 is moved so that the distance to the “lens side alignment reference position” becomes a predetermined value, and each microlens 15 of the microlens array 3 and the TFT substrate 10 are For example, a stage and a motor for moving the microlens array 3 in a direction crossing the substrate transport direction (arrow A direction) are provided. Further, if necessary, another motor that rotates the microlens array 3 within a certain angular range around its optical axis may be provided.
  • reference numeral 18 denotes a homogenizer that uniformizes the intensity distribution in the cross section of the laser light 14 emitted from the laser light source 2
  • reference numeral 19 denotes the microlens array 3 that converts the laser light 14 into parallel light. It is a condenser lens to be irradiated.
  • Reference numeral 20 denotes an illumination light source that illuminates the imaging position of the imaging means 4.
  • a control means 6 is provided in connection with the conveying means 1, the laser light source 2, the imaging means 4, and the alignment means 5.
  • the control means 6 performs real-time processing on the substrate surface and the one-dimensional image of the alignment mark 37 of the microlens array 3 that are simultaneously imaged by the imaging means 4 and is set on the data line 7 of the TFT substrate 10.
  • the lens side alignment reference position of the microlens array 3 is detected, and the alignment unit 5 is driven so that the distance between the two becomes a predetermined value, and the microlens array 3 is moved in a direction intersecting the substrate transport direction.
  • each microlens 15 of the microlens array 3 and the TFT formation region 9 of the TFT substrate 10 are aligned, and the edge of the gate line 8 of the TFT substrate 10 is aligned with the alignment mark 37 based on the captured image of the imaging means 4.
  • the TFT substrate 10 moves a certain distance after it is detected that it matches the center of
  • the laser light source 2 is turned on for a certain period of time and the laser light 14 is irradiated onto the microlens array 3.
  • the image processing unit 21, the memory 22, the calculation unit 23, the transport unit drive controller 24, the alignment unit drive controller 25, the laser light source drive controller 26, and the control unit 27 are provided. I have.
  • the image processing unit 21 performs real-time processing on the one-dimensional image picked up by the image pickup unit 4 to detect a luminance change in the arrangement direction (major axis direction) of the plurality of light receiving elements of the image pickup unit 4, and the TFT substrate.
  • the substrate-side alignment reference position set for the ten data lines 7 and the lens-side alignment reference position of the microlens array 3 are detected, and the edge of the gate line 8 of the TFT substrate 10 is detected based on the captured image of the imaging means 4. It is detected that the alignment mark 37 is matched with the center.
  • the memory 22 also includes, for example, the distance D between the lens array 17a located on the top side in the substrate transport direction of the second lens group 17 of the microlens array 3 and the imaging means 4, the first lens of the microlens array 3.
  • the distance D between the lens array 17a located on the top side in the substrate transport direction of the second lens group 17 of the microlens array 3 and the imaging means 4, the first lens of the microlens array 3.
  • calculation unit 23 calculates the amount of positional deviation between the substrate-side alignment reference position of the TFT substrate 10 detected by the image processing unit 21 and the lens-side alignment reference position of the microlens array 3.
  • the transfer means drive controller 24 controls the drive of the transfer means with pulses having a constant period so that the TFT substrate 10 is transferred at a constant speed.
  • the alignment unit drive controller 25 reads the amount of positional deviation between the substrate-side alignment reference position of the TFT substrate 10 calculated by the calculation unit 23 and the lens-side alignment reference position of the microlens array 3 from the memory 22. Compared with a reference value, the alignment means 5 is driven so that the two match, and the microlens array 3 is moved in a direction crossing the substrate transport direction.
  • the laser light source drive controller 26 controls turning on and off of the laser light source 2. And the control part 27 is integrated and controlled so that each said component may operate
  • the operation of the laser annealing apparatus configured as described above will be described.
  • the value and the distance or elapsed time that the TFT substrate 10 moves from when the edge of the gate line 8 of the TFT substrate 10 is detected to when the laser light source 2 is turned on are stored in the memory 22.
  • the TFT substrate 10 on which the amorphous silicon film is formed so as to cover the entire surface is positioned so that the data line 7 is parallel to the transport direction with the amorphous silicon film facing upward and placed on the upper surface of the transport means 1.
  • the transfer means 1 When the start switch is turned on, the transfer means 1 is pulse-controlled by the transfer means drive controller 24 in a state where the TFT substrate 10 is floated on the upper surface of the transfer means 1 by a pulse control of the TFT substrate 10 as shown in FIG. Is conveyed at a constant speed in the direction of arrow A shown in FIG.
  • the TFT substrate 10 reaches above the image pickup unit 4, the data line 7 and the gate line 8 formed on the surface of the TFT substrate 10 through the TFT substrate 10 by the image pickup unit 4 and the alignment mark of the microlens array 3. 37 is imaged simultaneously. Then, the one-dimensional image picked up by the image pickup means 4 and sequentially input is processed in real time by the image processing unit 21, and the edge 8a of the gate line 8 of the TFT substrate 10 is aligned with the alignment mark of the microlens array 3 as shown in FIG.
  • pulses of the transport means drive controller 24 are counted based on the detection time, and measurement of the movement distance of the TFT substrate 10 is started, or the detection time is used as a reference. Start counting elapsed time.
  • the coincidence between the edge 8a of the gate line 8 of the TFT substrate 10 and the center of the alignment mark 37 of the microlens array 3 is the gate between the parallel thin lines 37b on both sides of the alignment mark 37 as shown in FIG.
  • the edge 8a of the line 8 can be detected by detecting the moment when the left and right dimensions 8b and 8c become equal in the substrate transport direction obtained by being divided by the slanted thin line 37a.
  • step S1 a one-dimensional image picked up by the image pickup unit 4 is processed in real time by the image processing unit 21, and a plurality of data is obtained by luminance change in the arrangement direction (major axis direction) of the plurality of light receiving elements of the image pickup unit 4.
  • the position of the right edge of the line 7 in the substrate transport direction and the center position (lens side alignment reference position) of the oblique thin line 37a of the alignment mark 37 of the microlens array 3 are detected.
  • substrate conveyance direction among the detected right edge parts of the some data line 7 is specified as a board
  • step S ⁇ b> 2 a position shift amount between the specified substrate side alignment reference position and the lens side alignment reference position is calculated by the calculation unit 23, and the position shift amount and the alignment reference value stored in the memory 22 are calculated. And compare. Then, the alignment means drive controller 25 drives the alignment means 5 so that they match, and the microlens array 3 is moved in a direction intersecting the substrate transport direction to align the microlens 15 and the TFT formation region 9. To do.
  • step S3 after it is detected that the edge 8a of the gate line 8 located on the leading side in the transport direction matches the center of the alignment mark 37, the TFT substrate 10 moves a certain distance or after a certain time, As shown in FIG. 7A, when one row of TFT formation regions 9 positioned on the leading side in the transport direction reaches directly below the lens row 17a on the leading side in the transport direction of the second lens group 17 of the microlens array 3, The light source drive controller 26 is driven to turn on the laser light source 2 for a certain period of time, the laser light 14 is irradiated to the microlens array 3, and the amorphous silicon film in the TFT formation region 9 corresponding to the second lens group 17 is annealed. . Specifically, as shown in FIG.
  • the laser beam 14 is focused on the TFT formation region 9 on the gate electrode 30 by the microlens 15, and the amorphous silicon film 28 in the TFT formation region 9 is annealed. . That is, the irradiation with the laser beam 14 melts the amorphous silicon film 28 in the TFT formation region 9 as shown in FIG. Recrystallization is performed to form a polysilicon film. At this time, the irradiation position of the laser beam 14 by the first lens group 16 is outside the region where the pixel 11 is formed, and is so-called idle shot.
  • reference numeral 29 is a glass substrate
  • reference numeral 31 is a SiN insulating film.
  • step S4 the conveyance means 1 is pulse-controlled by the conveyance means drive controller 24, and the TFT substrate 10 is positioned at the leading side in the substrate conveyance direction of the first lens group 16 and the second lens group 17 of the microlens array 3, respectively.
  • the laser light source drive controller 26 turns on the laser light source 2 for a predetermined time.
  • all the TFT formation regions 9 set on the TFT substrate 10 are sequentially annealed to become polysilicon, and a polysilicon film 32 (see FIG. 9) is formed.
  • 7B shows a state in which the TFT substrate 10 has moved by a distance 3L from the state of FIG. 7A, and the TFT formation region 9 between the TFT formation regions 9 corresponding to the second lens group 17 is shown.
  • a state where the first lens group 16 is annealed is shown.
  • the alignment between the microlens 15 of the microlens array 3 and the TFT formation region 9 of the TFT substrate 10 in the above step S3 is always performed even while the TFT substrate 10 is being transported. Therefore, even if the TFT substrate 10 is conveyed while swinging left and right, the microlens 15 can be positioned on the TFT formation region 9 following the movement of the substrate. Thereby, only the amorphous silicon film 28 in the TFT forming region 9 can be surely annealed to form the polysilicon film 32.
  • the annealing of the TFT substrate 10 is finished, as shown in FIG. 9A, after a resist mask 33 having a fixed shape is formed on the polysilicon film 32 on the gate electrode 30, as shown in FIG. 9B. Further, the amorphous silicon film 28 and the polysilicon film 32 around the resist mask 33 and the SiN insulating film 31 formed thereunder are etched and removed by a known etching technique. Then, by removing the resist mask 33, the TFT substrate 10 in which the polysilicon film 32 having a fixed shape is formed on the gate electrode 30 as shown in FIG. Thereafter, if a source electrode and a drain electrode are formed on the polysilicon film 32, a low-temperature polysilicon thin film transistor substrate is completed.
  • the TFT formation region 9 of the TFT substrate 10 having the amorphous silicon film 28 formed on the entire surface is annealed to become polysilicon, and then the polysilicon film 32 having a predetermined shape in the TFT formation region 9 is left.
  • the present invention is not limited to this, and after removing the unnecessary film around the amorphous silicon film 28 having a fixed shape in the TFT formation region 9, The remaining amorphous silicon film 28 may be annealed to form polysilicon.
  • the image pickup means 4 is provided on the transport means side, and the data lines 7 and gate lines 8 on the substrate surface and the alignment marks 37 of the microlens array 3 are picked up through the substrate from the back side of the TFT substrate 10.
  • the present invention is not limited to this, and the image pickup means 4 is provided above the transport means 1 and picks up the data lines 7 and gate lines 8 on the substrate surface and the alignment marks 37 of the microlens array 3 from above. You may make it do.
  • a plurality of microlenses 15 are arranged in parallel in the direction in which the microlens array 3 intersects the substrate transport direction at a pitch (2W) twice the arrangement pitch W of the TFT formation regions 9 in the same direction. Subsequent lens rows are formed by being shifted by W in the parallel arrangement direction of the plurality of microlenses 15 so as to complement each other between the microlenses 15 of the lens row located on the front side in the substrate transport direction.
  • the present invention is not limited to this, and at least one row in which a plurality of microlenses 15 are arranged in parallel at the same pitch W as the arrangement pitch W of the TFT formation regions 9 in the same direction in the direction intersecting the substrate transport direction. It may be configured with a lens array.
  • the alignment unit 5 moves the microlens array 3 in a direction intersecting the substrate transport direction.
  • the present invention is not limited to this, and the microlens array 3, the imaging unit 4, May be moved together.
  • the microlens array 3 is formed by one lens array having substantially the same length as the entire width of the TFT substrate 10 intersecting the substrate transport direction.
  • the present invention is not limited to this. Instead, the microlens array 3 may be formed by alternately arranging a plurality of unit lens arrays having a length shorter than the width of the TFT substrate 10 to have the same length as the width. In this case, one imaging means 4 may be provided for each unit lens array.
  • the substrate is the TFT substrate 10
  • the present invention is not limited to this and may be a semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Laser Beam Processing (AREA)

Abstract

 本発明は、マトリクス状に設定されたTFT形成領域の縦横いずれか一方の配列方向に基板を搬送しながら撮像手段により基板表面を撮像し、該撮像画像に基づいて基板表面に予め設定されたアライメントの基準位置を検出し、複数のTFT形成領域に対応して基板の搬送方向と交差する方向に複数のレンズを配置した少なくとも一列のレンズアレイを基板の搬送方向と交差方向に移動して、レンズアレイのレンズと基板のTFT形成領域とをアライメント基準位置を基準にして位置合わせし、基板が移動してTFT形成領域がレンズアレイの対応レンズの真下に到達したときにレンズアレイにレーザ光を照射し、複数のレンズによりレーザ光を集光して各TFT形成領域のアモルファスシリコン膜をアニール処理する。これにより、搬送される基板の動きに追従してマイクロレンズアレイを移動してレーザ光の照射位置精度を向上する。

Description

レーザアニール方法及びレーザアニール装置
 本発明は、マイクロレンズアレイによりレーザ光を集光してアモルファスシリコン膜の薄膜トランジスタ形成領域のみをアニールするレーザアニール方法に関し、詳しくは、搬送される基板の動きに追従してマイクロレンズアレイを移動し、レーザ光の照射位置精度を向上しようとするレーザアニール方法及びレーザアニール装置に係るものである。
 従来のレーザアニール方法は、マイクロレンズアレイにより複数のレーザビームを形成すると共に、ビーム毎に焦点を形成し、該ビームの各焦点をアモルファスシリコン膜面側に転写して結像させ、アモルファスシリコン膜面に対するビーム照射によりレーザ処理を施して、薄膜トランジスタ(以下、「TFT」という)形成領域のアモルファスシリコン膜をポリシリコン化するようになっていた(例えば、特許文献1参照)。
特開2004-311906号公報
 しかし、このような従来のレーザアニール方法においては、マイクロレンズアレイによりレーザ光を集光して複数のTFT形成領域のアモルファスシリコン膜のみをアニール処理するものであるため、レーザ光の利用効率が高くなる利点を有しているが、蛇行しながら搬送される基板の動きに追従してマイクロレンズアレイを移動させ、マイクロレンズアレイの各レンズを各TFT形成領域に位置付けてレーザ光を照射することに関しては開示されていない。したがって、一辺が1m以上の大型基板を搬送しながらアニールする際に、搬送機構の機械精度により基板が蛇行しながら搬送された場合に、各TFT形成領域のみを確実にアニール処理することができないおそれがあった。
 そこで、本発明は、このような問題点に対処し、搬送される基板の動きに追従してマイクロレンズアレイを移動し、レーザ光の照射位置精度を向上しようとするレーザアニール方法及びレーザアニール装置を提供することを目的とする。
上記目的を達成するために、本発明によるレーザアニール方法は、基板上に所定の配列ピッチでマトリクス状に設定された複数の薄膜トランジスタ(以下、「TFT」という)形成領域にレンズアレイの複数のレンズによりレーザ光を集光して、前記各TFT形成領域のアモルファスシリコン膜をアニール処理するレーザアニール方法であって、前記マトリクス状に設定されたTFT形成領域の縦横いずれか一方の配列方向に前記基板を搬送しながら撮像手段により前記基板表面を撮像し、該撮像画像に基づいて基板表面に予め設定されたアライメントの基準位置を検出し、前記複数のTFT形成領域に対応して前記基板の搬送方向と交差する方向に複数のレンズを配置した少なくとも一列のレンズアレイを前記基板の搬送方向と交差方向に移動して、前記レンズアレイのレンズと前記基板のTFT形成領域とを前記アライメント基準位置を基準にして位置合わせし、前記基板が移動して前記TFT形成領域が前記レンズアレイの対応レンズの真下に到達したときに前記レンズアレイに前記レーザ光を照射するものである。
 このような構成により、マトリクス状に設定されたTFT形成領域の縦横いずれか一方の配列方向に基板を搬送しながら撮像手段により基板表面を撮像し、該撮像画像に基づいて基板表面に予め設定されたアライメントの基準位置を検出し、複数のTFT形成領域に対応して基板の搬送方向と交差する方向に複数のレンズを配置した少なくとも一列のレンズアレイを基板の搬送方向と交差方向に移動して、レンズアレイのレンズと基板のTFT形成領域とをアライメント基準位置を基準にして位置合わせし、基板が移動してTFT形成領域がレンズアレイの対応レンズの真下に到達したときにレンズアレイにレーザ光を照射し、複数のレンズによりレーザ光を集光して各TFT形成領域のアモルファスシリコン膜をアニール処理する。
 また、前記レンズアレイは、前記基板の搬送方向と交差する方向に、同方向の前記TFT形成領域の配列ピッチの2以上の整数倍のピッチでレンズを並設した複数列のレンズ列から成り、前記基板の搬送方向先頭側に位置する前記レンズ列の各レンズ間を補完するように後続のレンズ列を前記複数のレンズの前記並設方向に予め定められた寸法だけずらして形成した構成を有するものである。これにより、基板の搬送方向と交差する方向に、同方向のTFT形成領域の配列ピッチの2以上の整数倍のピッチでレンズを並設した複数列のレンズ列から成り、基板の搬送方向先頭側に位置するレンズ列の各レンズ間を補完するように後続のレンズ列を複数のレンズの並設方向に予め定められた寸法だけずらして形成した構成を有するレンズアレイでレーザ光を各TFT形成領域のアモルファスシリコン膜上に集光する。
 さらに、前記基板は、縦横に配線が形成され、該縦横の配線の交差部に前記TFT形成領域が設定されたTFT基板であり、前記アライメント基準位置は、前記TFT基板の搬送方向に平行な配線の縁部に設定されたものである。これにより、縦横の配線の交差部に前記TFT形成領域が設定されたTFT基板の搬送方向に平行な配線の縁部に設定されたアライメント基準位置を基準にして、レンズアレイのレンズとTFT基板のTFT形成領域との位置合わせをする。
また、本発明によるレーザアニール装置は、基板上に所定の配列ピッチでマトリクス状に設定された複数のTFT形成領域にレンズアレイの複数のレンズによりレーザ光を集光し、前記各TFT形成領域のアモルファスシリコン膜をアニール処理するレーザアニール装置であって、前記マトリクス状に設定されたTFT形成領域の縦横いずれか一方の配列方向に前記基板を一定速度で搬送する搬送手段と、前記レーザ光を放射するレーザ光源と、前記基板面に平行な面内にて前記基板の搬送方向と交差する方向に、同方向の前記複数のTFT形成領域に対応させて並設された少なくとも一列の複数の集光レンズから成るレンズアレイと、前記レンズアレイによるレーザ光の集光位置に対して前記基板の搬送方向と反対方向に一定距離はなれた位置を撮像位置とし前記基板表面を撮像する撮像手段と、前記レンズアレイを前記基板の搬送方向と交差する方向に移動させて前記レンズアレイのレンズと前記基板のTFT形成領域との位置合わせをするアライメント手段と、前記各構成要素を駆動制御する制御手段と、を備え、前記制御手段は、搬送中の前記基板表面を撮像して前記撮像手段から逐次入力する画像を処理して前記基板表面に予め設定されたアライメントの基準位置を検出し、該アライメント基準位置を基準にして前記レンズアレイのレンズと前記基板のTFT形成領域との位置合わせをさせ、前記基板が移動して前記TFT形成領域が前記レンズアレイの対応レンズの真下に到達したときに前記レーザ光源から前記レンズアレイに向けてレーザ光を放射させるように制御するものである。
このような構成により、制御手段で、搬送中の前記基板表面を撮像して撮像手段から逐次入力する画像を処理して基板表面に予め設定されたアライメントの基準位置を検出し、アライメント手段を駆動制御してレンズアレイを基板の搬送方向と交差する方向に移動させ、アライメント基準位置を基準にしてレンズアレイのレンズと基板のTFT形成領域との位置合わせをさせ、搬送手段により基板が移動されてTFT形成領域がレンズアレイの対応レンズの真下に到達したときにレーザ光源からレンズアレイに向けてレーザ光を放射させるように制御し、基板上に所定の配列ピッチでマトリクス状に設定された複数のTFT形成領域にレンズアレイの複数のレンズによりレーザ光を集光し、各TFT形成領域のアモルファスシリコン膜をアニール処理する。
さらに、前記レンズアレイは、前記基板の搬送方向と交差する方向に、同方向の前記TFT形成領域の配列ピッチの2以上の整数倍のピッチでレンズを並設した複数列のレンズ列から成り、前記基板の搬送方向先頭側に位置する前記レンズ列の各レンズ間を補完するように後続のレンズ列を前記複数のレンズの前記並設方向に予め定められた寸法だけずらして形成した構成を有するものである。これにより、基板の搬送方向と交差する方向に、同方向のTFT形成領域の配列ピッチの2以上の整数倍のピッチでレンズを並設した複数列のレンズ列から成り、基板の搬送方向先頭側に位置するレンズ列の各レンズ間を補完するように後続のレンズ列を複数のレンズの並設方向に予め定められた寸法だけずらして形成した構成を有するレンズアレイでレーザ光を各TFT形成領域のアモルファスシリコン膜上に集光する。
そして、前記基板は、縦横に複数の配線が形成され、該複数の配線の交差部に前記TFT形成領域が設定されたTFT基板であり、前記アライメント基準位置は、前記TFT基板の搬送方向に平行な配線の一方の縁部に設定されたものである。これにより、縦横の配線の交差部に前記TFT形成領域が設定されたTFT基板の搬送方向に平行な配線の縁部に設定されたアライメント基準位置を基準にして、レンズアレイのレンズとTFT基板のTFT形成領域との位置合わせをする。
 請求項1又は4に係る発明によれば、搬送される基板の動きに追従してマイクロレンズアレイを移動することができ、レーザ光の照射位置精度を向上することができる。したがって、一辺が1m以上の大型基板を搬送しながらアニールする際に、搬送機構の機械精度により基板が蛇行しながら搬送された場合にも、各TFT形成領域のみを確実にアニール処理することができる。
 また、請求項2又は5に係る発明によれば、レンズアレイの各レンズの形状を大きくしてレーザ光の取り込み量を大きくし、アモルファスシリコン膜へのレーザ光の照射エネルギーを大きくすることができる。したがって、レーザ光を放射するレーザ光源に対する負担を軽減することができ、装置の信頼性を向上することができる。
 そして、請求項3又は6に係る発明によれば、基板を搬送しながら、液晶表示パネルや有機EL表示パネルのTFT基板に設けられた基板搬送方向に連続して延びる配線の縁部を基準にレンズとTFT形成領域との位置合わせを常時実行することができ、レンズとTFT形成領域との位置合わせ精度をより向上することができる。
本発明によるレーザアニール装置の実施形態を示す概要図である。 本発明によるレーザアニール装置に使用するTFT基板を示す平面図である。 本発明によるレーザアニール装置を構成するマイクロレンズアレイの一構成例を示し、撮像手段との位置関係を示す説明図である。 本発明によるレーザアニール装置を構成する制御手段の一構成例を示すブロック図である。 上記TFT基板のゲート線の縁部の検出について示す説明図である。 本発明によるレーザアニール方法を示すフローチャートである。 上記TFT基板の全TFT形成領域がマイクロレンズアレイにより順次レーザアニールされる様子を示す説明図である。 上記マイクロレンズアレイによるTFT基板のTFT形成領域のアニール処理について説明する断面図である。 本発明のレーザアニール方法によりアニールして形成されたポリシリコン膜を一定形状にエッチングする工程を説明するための断面図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザアニール装置の実施形態を示す概要図である。このレーザアニール装置は、マイクロレンズアレイによりレーザ光を集光して、基板上に成膜されたアモルファスシリコン膜のTFT形成領域のみをアニールするもので、搬送手段1と、レーザ光源2と、マイクロレンズアレイ3と、撮像手段4と、アライメント手段5と、制御手段6とを備えてなる。
 ここで、上記基板は、図2に示すように、縦横に複数のデータ線7及びゲート線8が形成され、該データ線7とゲート線8との交差部にてゲート電極30(図8参照)上にTFT形成領域9が設定されたTFT基板10であり、複数のTFT形成領域9が画素11の配列ピッチと同じ配列ピッチ(矢印A方向に向かって横がW、縦がL)でマトリクス状に設定されている。そして、TFT基板10には、TFT形成領域9と後述のマイクロレンズアレイ3のマイクロレンズ15との位置合わせの基準となるアライメント基準位置が基板搬送方向(矢印A方向)に平行な例えばデータ線7の縁部に設定されている。具体的には、本実施形態においては、上記アライメント基準位置は、基板搬送方向(矢印A方向)に向かって左端に位置するデータ線7の右側縁部に設定されている。このとき、データ線7の右側縁部とTFT形成領域9の中心との間の水平距離は、設計値によって決まる。
 上記搬送手段1は、上面にTFT基板10を載置して上記TFT形成領域9の縦横いずれか一方の配列方向、例えば図2に示す矢印A方向に一定速度で搬送するものであり、上面に気体を噴出する複数の噴出孔と気体を吸引する複数の吸引孔とを有した複数の単位ステージ12をTFT基板10の搬送方向(以下、「基板搬送方向」という)に並設し、気体の噴出と吸引とのバランスによりTFT基板10を複数の単位ステージ12上に一定量だけ浮かせた状態で、搬送ローラ13によりTFT基板10の両端縁部を支持して搬送するようになっている。
 上記搬送手段1の上方には、レーザ光源2が設けられている。このレーザ光源2は、例えば波長が308nm又は353nmのレーザ光14を例えば50Hzの繰り返し周期で放射するエキシマレーザである。
 上記レーザ光源2から放射されるレーザ光14の光路上には、マイクロレンズアレイ3が設けられている。このマイクロレンズアレイ3は、レーザ光14をTFT基板10上に設定された複数のTFT形成領域9に集光するものであり、図3(a)に示すようにTFT基板10面に平行な面内にて基板搬送方向(図2に示す矢印A方向)に交差して、複数設定されたTFT形成領域9の配列ピッチWの2以上の整数倍のピッチ(図3においては2Wで示す)でマイクロレンズ15を並設した例えば6列のレンズ列を互いに距離Lだけ離して平行に配置した構成を有し、さらに基板搬送方向先頭側に位置する3列のレンズ列(以下、「第1のレンズ群16」という)の各レンズ間を補完するように後続の3列のレンズ列(以下、「第2のレンズ群17」という)をマイクロレンズ15の並設方向に所定寸法(図3においてはWで示す)だけずらして形成した構成を有している。
 マイクロレンズアレイ3の具体的構成例は、図3(b)に示すように、透明な基板34の一面に複数のマイクロレンズ15が形成され、他面には、マイクロレンズ15に対応して開口部を有した不透明な遮光膜35が形成されている。さらに、遮光膜35には、第2のレンズ群17の基板搬送方向と反対方向に一定距離はなれてレンズ列に平行な細長状の開口窓36が形成されている。そして、この開口窓36内には、N字状のアライメントマーク37が設けられている。このアライメントマーク37は、TFT基板10との位置合わせをするためのものであり、斜めの細線37aの基板搬送方向に平行な中心線を第1又は第2のレンズ群16,17のいずれかのマイクロレンズ15の中心に合致させ、左右の平行な細線37bを基板搬送方向に平行にして配置されている。これにより、マイクロレンズアレイ3の各マイクロレンズ15は、アライメントマーク37の中心に対して一定の位置関係をなすことになる。即ち、各マイクロレンズ15は、アライメントマーク37の中心に対する基板搬送方向と直交方向の水平距離がnW(nは1以上の整数)の関係をなす。
 上記搬送手段1の隣接する単位ステージ12の間には、上記マイクロレンズアレイ3の開口窓36に対応して撮像手段4が設けられている。この撮像手段4は、マイクロレンズアレイ3によるレーザ光14の集光位置に対して基板搬送方向と反対方向に一定距離はなれた位置を撮像位置としてTFT基板10の裏面側から基板を透して表面に形成された配線パターン及びマイクロレンズアレイ3のアライメントマーク37を同時に撮像するもので、図3において矢印Aで示す基板搬送方向に交差して複数の受光素子を一直線状に並べて有するラインカメラ(ラインCCD)であり、ライン状の受光面の長軸の中心線をマイクロレンズアレイ3のアライメントマーク37の基板搬送方向に交差する中心線と合致させると共に、マイクロレンズアレイ3の例えば第2のレンズ群17の基板搬送方向先頭側に位置するレンズ列17aに対して距離Dだけ隔てて設けられている。
 上記マイクロレンズアレイ3を基板搬送方向に交差する方向に移動可能にアライメント手段5が設けられている。このアライメント手段5は、TFT基板10のデータ線7に予め設定されたアライメント基準位置(以下、「基板側アライメント基準位置」という)とマイクロレンズアレイ3のアライメントマーク37の斜め細線37aの中心位置(以下、「レンズ側アライメント基準位置」という)との間の距離が予め定められた値となるようにマイクロレンズアレイ3を移動して、マイクロレンズアレイ3の各マイクロレンズ15と、TFT基板10のTFT形成領域9との位置合わせをするものであり、例えばマイクロレンズアレイ3を基板搬送方向(矢印A方向)に交差する方向に移動させるステージ及びモータを備えている。また、必要に応じて、マイクロレンズアレイ3をその光軸を中心に一定の角度範囲内を回転させる別のモータを備えてもよい。
 なお、図1において符号18は、レーザ光源2から放射されたレーザ光14の横断面内強度分布を均一化するホモジナイザーであり、符号19は、レーザ光14を平行光にしてマイクロレンズアレイ3に照射させるコンデンサーレンズである。また、符号20は、撮像手段4の撮像位置を照明する照明用光源である。
 上記搬送手段1、レーザ光源2、撮像手段4、及びアライメント手段5に結線して制御手段6が設けられている。この制御手段6は、撮像手段4により同時に撮像された基板表面及びマイクロレンズアレイ3のアライメントマーク37の一次元画像をリアルタイム処理してTFT基板10のデータ線7に設定された基板側アライメント基準位置及びマイクロレンズアレイ3のレンズ側アライメント基準位置を検出し、両者間の距離が予め定められた値となるようにアライメント手段5を駆動してマイクロレンズアレイ3を基板搬送方向と交差する方向に移動し、マイクロレンズアレイ3の各マイクロレンズ15とTFT基板10のTFT形成領域9との位置合わせをし、撮像手段4の撮像画像に基づいてTFT基板10のゲート線8の縁部がアライメントマーク37の中心に合致したことが検知されてからTFT基板10が一定距離移動して、又は一定時間経過してTFT形成領域9がマイクロレンズアレイ3の対応レンズの真下に到達したときに、レーザ光源2を一定時間点灯してレーザ光14をマイクロレンズアレイ3に照射させるように制御するものであり、図4に示すように、画像処理部21と、メモリ22と、演算部23と、搬送手段駆動コントローラ24と、アライメント手段駆動コントローラ25と、レーザ光源駆動コントローラ26と、制御部27と、を備えている。
 ここで、画像処理部21は、撮像手段4により撮像された一次元画像をリアルタイム処理して撮像手段4の複数の受光素子の並び方向(長軸方向)における輝度変化を検出して、TFT基板10のデータ線7に設定された基板側アライメント基準位置及びマイクロレンズアレイ3のレンズ側アライメント基準位置を検出すると共に、撮像手段4の撮像画像に基づいてTFT基板10のゲート線8の縁部がアライメントマーク37の中心に合致したことを検知するものである。
また、メモリ22は、例えばマイクロレンズアレイ3の第2のレンズ群17の基板搬送方向先頭側に位置するレンズ列17aと撮像手段4との間の距離D、マイクロレンズアレイ3の第1のレンズ群16及び第2のレンズ群17の夫々基板搬送方向先頭側に位置するレンズ列16a,17a間の距離(例えば、図3においては3L)、TFT基板10とマイクロレンズアレイ3を位置合わせするためのアライメント基準値、及びTFT基板10のゲート線8の縁部が検出されてからレーザ光源2を点灯させるまでにTFT基板10が移動する距離又は経過時間等を記憶するものである。
さらに、演算部23は、画像処理部21で検出されたTFT基板10の基板側アライメント基準位置とマイクロレンズアレイ3のレンズ側アライメント基準位置との間の位置ずれ量を演算するものである。
そして、搬送手段駆動コントローラ24は、TFT基板10が一定速度で搬送されるように一定周期のパルスにより搬送手段の駆動を制御するものである。
また、アライメント手段駆動コントローラ25は、演算部23で演算されたTFT基板10の基板側アライメント基準位置とマイクロレンズアレイ3のレンズ側アライメント基準位置との間の位置ずれ量をメモリ22から読み出したアライメント基準値と比較し、両者が合致するようにアライメント手段5を駆動してマイクロレンズアレイ3を基板搬送方向と交差する方向に移動させるものである。
さらに、レーザ光源駆動コントローラ26は、レーザ光源2の点灯及び消灯を制御するものである。そして、制御部27は、上記各構成要素が適切に動作するように全体を統合して制御するものである。
 次に、このように構成されたレーザアニール装置の動作について説明する。
 先ず、テンキー等の入力手段を操作して、マイクロレンズアレイ3の第2のレンズ群17の基板搬送方向先頭側に位置するレンズ列17aと撮像手段4との間の距離D、マイクロレンズアレイ3の第1のレンズ群16及び第2のレンズ群17の夫々基板搬送方向先頭側に位置するレンズ列16a,17a間の距離3L、TFT基板10とマイクロレンズアレイ3を位置合わせするためのアライメント基準値、及びTFT基板10のゲート線8の縁部が検出されてからレーザ光源2を点灯させるまでにTFT基板10が移動する距離又は経過時間等をメモリ22に記憶する。
 次に、表面全面を覆ってアモルファスシリコン膜が成膜されたTFT基板10を、アモルファスシリコン膜を上にし、データ線7が搬送方向と平行となるように位置決めして搬送手段1の上面に載置する。
 そして、起動スイッチがオン起動されると、TFT基板10を搬送手段1の上面に一定量だけ浮上させた状態で、搬送手段駆動コントローラ24により搬送手段1をパルス制御してTFT基板10を図1に示す矢印A方向に一定速度で搬送する。
 続いて、TFT基板10が撮像手段4の上方に達すると、撮像手段4によりTFT基板10を透してTFT基板10表面に形成されたデータ線7及びゲート線8並びにマイクロレンズアレイ3のアライメントマーク37が同時に撮像される。そして、撮像手段4で撮像されて逐次入力する一次元画像を画像処理部21でリアルタイム処理し、図5に示すようにTFT基板10のゲート線8の縁部8aがマイクロレンズアレイ3のアライメントマーク37の中心に合致したことを検知すると、該検知時刻を基準にして例えば搬送手段駆動コントローラ24のパルスをカウントしてTFT基板10の移動距離の計測を開始し、又は上記検知時刻を基準にして経過時間の計時を開始する。
 ここで、TFT基板10のゲート線8の縁部8aとマイクロレンズアレイ3のアライメントマーク37の中心との合致は、図5に示すように、アライメントマーク37の両側の平行な細線37b間におけるゲート線8の縁部8aが、斜めの細線37aによって分断されて得られた基板搬送方向に向かって左右の寸法8b,8cが等しくなった瞬間をとらえて検知することができる。
 以下、本発明のレーザアニール方法を図6のフローチャートを参照して説明する。
 先ず、ステップS1においては、撮像手段4で撮像された一次元画像を画像処理部21でリアルタイム処理し、撮像手段4の複数の受光素子の並び方向(長軸方向)における輝度変化により複数のデータ線7の基板搬送方向に向かって右側縁部の位置、及びマイクロレンズアレイ3のアライメントマーク37の斜めの細線37aの中心位置(レンズ側アライメント基準位置)を検出する。そして、検出された複数のデータ線7の右側縁部のうちから、例えば基板搬送方向に向かって左端のデータ線7の右側縁部の位置を基板側アライメント基準位置として特定する。
 ステップS2においては、上記特定された基板側アライメント基準位置と上記レンズ側アライメント基準位置との間の位置ずれ量を演算部23で演算し、該位置ずれ量とメモリ22に記憶されたアライメント基準値とを比較する。そして、両者が合致するようにアライメント手段駆動コントローラ25によりアライメント手段5を駆動し、マイクロレンズアレイ3を基板搬送方向と交差する方向に移動してマイクロレンズ15とTFT形成領域9との位置合わせをする。
 ステップS3においては、搬送方向先頭側に位置するゲート線8の縁部8aがアライメントマーク37の中心に合致したことが検出されてから、TFT基板10が一定距離移動し又は一定時間経過して、図7(a)に示すように搬送方向先頭側に位置する一列のTFT形成領域9がマイクロレンズアレイ3の第2のレンズ群17の搬送方向先頭側のレンズ列17aの真下に到達すると、レーザ光源駆動コントローラ26が駆動してレーザ光源2が一定時間点灯し、レーザ光14がマイクロレンズアレイ3に照射され、第2のレンズ群17に対応したTFT形成領域9のアモルファスシリコン膜がアニールされる。具体的には、図8(a)に示すように、レーザ光14は、マイクロレンズ15によりゲート電極30上のTFT形成領域9に集光され、TFT形成領域9のアモルファスシリコン膜28をアニールする。即ち、レーザ光14の照射により、図8(b)に示すようにTFT形成領域9のアモルファスシリコン膜28が溶融し、その後レーザ光源2の消灯と共に溶融したアモルファスシリコン膜28aが急速に冷却されて再結晶し、ポリシリコン膜が形成される。このとき、第1のレンズ群16によるレーザ光14の照射位置は、画素11の形成領域外であり、いわゆる空打ちとなる。なお、図8において、符号29はガラス基板であり、符号31はSiN絶縁膜である。
 ステップS4においては、搬送手段駆動コントローラ24により搬送手段1がパルス制御されてTFT基板10がマイクロレンズアレイ3の第1のレンズ群16及び第2のレンズ群17の夫々基板搬送方向先頭側に位置するレンズ列16a,17a間の距離3Lと等しい距離だけ移動される毎にレーザ光源駆動コントローラ26によりレーザ光源2が一定時間だけ点灯駆動される。これにより、TFT基板10上に設定された全TFT形成領域9が順次アニールされてポリシリコン化され、ポリシリコン膜32(図9参照)が形成される。なお、図7(b)は、同図(a)の状態からTFT基板10が距離3Lだけ移動した状態を示し、第2のレンズ群17に対応したTFT形成領域9間のTFT形成領域9が第1のレンズ群16でアニールされた状態を示している。
 本実施形態においては、上記ステップS3におけるマイクロレンズアレイ3のマイクロレンズ15とTFT基板10のTFT形成領域9との位置合わせは、TFT基板10の搬送中も常時実行される。したがって、TFT基板10が左右に振れながら搬送されても基板の動きに追従してマイクロレンズ15をTFT形成領域9上に位置付けることができる。これにより、TFT形成領域9のアモルファスシリコン膜28のみを確実にアニールしてポリシリコン膜32を形成することができる。
 TFT基板10のアニールが終了すると、図9(a)に示すように、ゲート電極30上のポリシリコン膜32上に一定形状のレジストマスク33が形成された後、同図(b)に示すようにレジストマスク33の周辺のアモルファスシリコン膜28及びポリシリコン膜32並びにそれらの下に形成されたSiN絶縁膜31が公知のエッチング技術によりエッチングして除去される。そして、レジストマスク33を除去することにより、同図(c)に示すようにゲート電極30上に一定形状のポリシリコン膜32が形成されたTFT基板10が出来上がる。その後、ポリシリコン膜32上にソース電極及びドレイン電極を形成すれば低温ポリシリコン薄膜トランジスタ基板が完成する。
 なお、上記実施形態においては、全面にアモルファスシリコン膜28を形成したTFT基板10のTFT形成領域9をアニールしてポリシリコン化した後、TFT形成領域9の所定形状のポリシリコン膜32を残してその周辺の不要な膜をエッチングする場合について述べたが、本発明はこれに限られず、TFT形成領域9の一定形状のアモルファスシリコン膜28を残してその周辺の不要な膜を除去した後に、上記残ったアモルファスシリコン膜28をアニールしてポリシリコン化してもよい。
 また、上記実施形態においては、撮像手段4を搬送手段側に設け、TFT基板10の裏面側から基板を透かして基板表面のデータ線7及びゲート線8並びにマイクロレンズアレイ3のアライメントマーク37を撮像する場合について説明したが、本発明はこれに限られず、撮像手段4は搬送手段1の上方に設け、上方から基板表面のデータ線7及びゲート線8並びにマイクロレンズアレイ3のアライメントマーク37を撮像するようにしてもよい。
 さらに、上記実施形態においては、マイクロレンズアレイ3が基板搬送方向と交差する方向に、同方向のTFT形成領域9の配列ピッチWの2倍のピッチ(2W)でマイクロレンズ15を並設した複数列のレンズ列から成り、基板搬送方向先頭側に位置するレンズ列の各マイクロレンズ15間を補完するように後続のレンズ列を複数のマイクロレンズ15の上記並設方向にWだけずらして形成した場合について説明したが、本発明はこれに限られず、基板搬送方向と交差する方向に、同方向のTFT形成領域9の配列ピッチWと同じピッチWで複数のマイクロレンズ15を並設した少なくとも一列のレンズ列で構成したものであってもよい。
 また、上記実施形態においては、アライメント手段5がマイクロレンズアレイ3を基板搬送方向と交差する方向に移動する場合について説明したが、本発明はこれに限られず、マイクロレンズアレイ3と撮像手段4とを一体的に移動してもよい。
 さらに、上記実施形態においては、マイクロレンズアレイ3が基板搬送方向に交差するTFT基板10の全幅と略同じ長さの一つのレンズアレイで形成された場合について説明したが、本発明はこれに限られず、マイクロレンズアレイ3は、TFT基板10の上記幅よりも長さの短い複数の単位レンズアレイを互い違いに並べて上記幅と略同じ長さに形成したものであってもよい。この場合、各単位レンズアレイに対応して夫々一つ撮像手段4を設けるとよい。
 そして、以上の説明においては、基板がTFT基板10である場合について述べたが、本発明はこれに限られず、半導体基板であってもよい。
 1…搬送手段
 2…レーザ光源
 3…マイクロレンズアレイ
 4…撮像手段
 5…アライメント手段
 6…制御手段
 7…データ線
 8…ゲート線
 9…TFT形成領域
 10…TFT基板
 14…レーザ光
 15…マイクロレンズ
 28…アモルファスシリコン膜

Claims (6)

  1.  基板上に所定の配列ピッチでマトリクス状に設定された複数の薄膜トランジスタ(以下、「TFT」という)形成領域にレンズアレイの複数のレンズによりレーザ光を集光して、前記各TFT形成領域のアモルファスシリコン膜をアニール処理するレーザアニール方法であって、
     前記マトリクス状に設定されたTFT形成領域の縦横いずれか一方の配列方向に前記基板を搬送しながら撮像手段により前記基板表面を撮像し、該撮像画像に基づいて基板表面に予め設定されたアライメントの基準位置を検出し、
    前記複数のTFT形成領域に対応して前記基板の搬送方向と交差する方向に複数のレンズを配置した少なくとも一列のレンズアレイを前記基板の搬送方向と交差方向に移動して、前記レンズアレイのレンズと前記基板のTFT形成領域とを前記アライメント基準位置を基準にして位置合わせし、
    前記基板が移動して前記TFT形成領域が前記レンズアレイの対応レンズの真下に到達したときに前記レンズアレイに前記レーザ光を照射する、
    ことを特徴とするレーザアニール方法。
  2. 前記レンズアレイは、前記基板の搬送方向と交差する方向に、同方向の前記TFT形成領域の配列ピッチの2以上の整数倍のピッチでレンズを並設した複数列のレンズ列から成り、前記基板の搬送方向先頭側に位置する前記レンズ列の各レンズ間を補完するように後続のレンズ列を前記複数のレンズの前記並設方向に予め定められた寸法だけずらして形成した構成を有することを特徴とする請求項1記載のレーザアニール方法。
  3.  前記基板は、縦横に配線が形成され、該縦横の配線の交差部に前記TFT形成領域が設定されたTFT基板であり、
     前記アライメント基準位置は、前記TFT基板の搬送方向に平行な配線の縁部に設定されたことを特徴とする請求項1又は2記載のレーザアニール方法。
  4. 基板上に所定の配列ピッチでマトリクス状に設定された複数のTFT形成領域にレンズアレイの複数のレンズによりレーザ光を集光し、前記各TFT形成領域のアモルファスシリコン膜をアニール処理するレーザアニール装置であって、
     前記マトリクス状に設定されたTFT形成領域の縦横いずれか一方の配列方向に前記基板を一定速度で搬送する搬送手段と、
     前記レーザ光を放射するレーザ光源と、
     前記基板面に平行な面内にて前記基板の搬送方向と交差する方向に、同方向の前記複数のTFT形成領域に対応させて並設された少なくとも一列の複数の集光レンズから成るレンズアレイと、
     前記レンズアレイによるレーザ光の集光位置に対して前記基板の搬送方向と反対方向に一定距離はなれた位置を撮像位置とし前記基板表面を撮像する撮像手段と、
     前記レンズアレイを前記基板の搬送方向と交差する方向に移動させて前記レンズアレイのレンズと前記基板のTFT形成領域との位置合わせをするアライメント手段と、
    前記各構成要素を駆動制御する制御手段と、を備え、
    前記制御手段は、搬送中の前記基板表面を撮像して前記撮像手段から逐次入力する画像を処理して前記基板表面に予め設定されたアライメントの基準位置を検出し、該アライメント基準位置を基準にして前記レンズアレイのレンズと前記基板のTFT形成領域との位置合わせをさせ、前記基板が移動して前記TFT形成領域が前記レンズアレイの対応レンズの真下に到達したときに前記レーザ光源から前記レンズアレイに向けてレーザ光を放射させるように制御することを特徴とするレーザアニール装置。
  5. 前記レンズアレイは、前記基板の搬送方向と交差する方向に、同方向の前記TFT形成領域の配列ピッチの2以上の整数倍のピッチでレンズを並設した複数列のレンズ列から成り、前記基板の搬送方向先頭側に位置する前記レンズ列の各レンズ間を補完するように後続のレンズ列を前記複数のレンズの前記並設方向に予め定められた寸法だけずらして形成した構成を有することを特徴とする請求項4記載のレーザアニール装置。
  6.  前記基板は、縦横に複数の配線が形成され、該複数の配線の交差部に前記TFT形成領域が設定されたTFT基板であり、
     前記アライメント基準位置は、前記TFT基板の搬送方向に平行な配線の一方の縁部に設定されたことを特徴とする請求項4又は5記載のレーザアニール装置。
     
PCT/JP2010/058787 2009-06-03 2010-05-25 レーザアニール方法及びレーザアニール装置 WO2010140505A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117027330A KR101688129B1 (ko) 2009-06-03 2010-05-25 레이저 어닐링 방법 및 레이저 어닐링 장치
CN201080022772.5A CN102449740B (zh) 2009-06-03 2010-05-25 激光退火方法及激光退火装置
US13/310,024 US9012338B2 (en) 2009-06-03 2011-12-02 Laser annealing method and laser annealing apparatus
US14/664,696 US9687937B2 (en) 2009-06-03 2015-03-20 Laser annealing method and laser annealing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-134181 2009-06-03
JP2009134181A JP5471046B2 (ja) 2009-06-03 2009-06-03 レーザアニール方法及びレーザアニール装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/310,024 Continuation US9012338B2 (en) 2009-06-03 2011-12-02 Laser annealing method and laser annealing apparatus

Publications (1)

Publication Number Publication Date
WO2010140505A1 true WO2010140505A1 (ja) 2010-12-09

Family

ID=43297641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058787 WO2010140505A1 (ja) 2009-06-03 2010-05-25 レーザアニール方法及びレーザアニール装置

Country Status (6)

Country Link
US (2) US9012338B2 (ja)
JP (1) JP5471046B2 (ja)
KR (1) KR101688129B1 (ja)
CN (1) CN102449740B (ja)
TW (1) TWI492306B (ja)
WO (1) WO2010140505A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158630A1 (ja) * 2010-06-17 2011-12-22 株式会社ブイ・テクノロジー フォトマスク及びそれを使用するレーザアニール装置並びに露光装置
WO2012077495A1 (ja) * 2010-12-09 2012-06-14 株式会社ブイ・テクノロジー レーザアニール装置及びレーザアニール方法
WO2014006943A1 (ja) * 2012-07-05 2014-01-09 株式会社ブイ・テクノロジー 光配向露光方法及び光配向露光装置
US9012338B2 (en) 2009-06-03 2015-04-21 V Technology Co., Ltd. Laser annealing method and laser annealing apparatus

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191065A (ja) * 2011-03-11 2012-10-04 V Technology Co Ltd レーザアニール装置及び方法
CN102290362B (zh) * 2011-07-22 2013-05-22 清华大学 一种激光加工中晶圆片定位误差的校正方法
US8785815B2 (en) * 2012-06-22 2014-07-22 Applied Materials, Inc. Aperture control of thermal processing radiation
CN103553311B (zh) * 2013-09-30 2016-04-13 上海大学 玻璃基板的预贴合方法和系统
CN103553309B (zh) * 2013-09-30 2016-04-13 上海大学 实现玻璃基板预贴合的方法和系统
JP6378974B2 (ja) * 2014-08-20 2018-08-22 城戸 淳二 レーザアニール装置及びレーザアニール方法
CN105702880B (zh) * 2014-11-28 2018-04-17 上海和辉光电有限公司 光学对位补偿装置、贴合度检测装置、蒸镀系统及其方法
JP6086394B2 (ja) 2015-03-11 2017-03-01 株式会社ブイ・テクノロジー 薄膜トランジスタ基板、表示パネル、レーザーアニール方法
JP6655301B2 (ja) 2015-05-19 2020-02-26 株式会社ブイ・テクノロジー レーザアニール装置及び薄膜トランジスタの製造方法
JP6615658B2 (ja) * 2016-03-16 2019-12-04 株式会社ブイ・テクノロジー マスク及び薄膜トランジスタの製造方法
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
GB201614342D0 (en) * 2016-08-22 2016-10-05 M-Solv Ltd An apparatus for annealing a layer of amorphous silicon, a method of annealing a layer of amorphous silicon, and a flat panel display
US10811286B2 (en) * 2016-09-28 2020-10-20 Sakai Display Products Corporation Laser annealing device and laser annealing method
JP6764305B2 (ja) * 2016-10-04 2020-09-30 株式会社日本製鋼所 レーザ照射装置、半導体装置の製造方法、及び、レーザ照射装置の動作方法
JP2018107403A (ja) 2016-12-28 2018-07-05 株式会社ブイ・テクノロジー レーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法
JP6844347B2 (ja) * 2017-03-15 2021-03-17 株式会社リコー レーザ処理装置
WO2018189899A1 (ja) * 2017-04-14 2018-10-18 堺ディスプレイプロダクト株式会社 光照射装置
WO2018189900A1 (ja) * 2017-04-14 2018-10-18 堺ディスプレイプロダクト株式会社 光照射装置
JP2020098867A (ja) 2018-12-18 2020-06-25 株式会社ブイ・テクノロジー レーザアニール方法および薄膜トランジスタの製造方法
CN109742042B (zh) * 2019-01-10 2020-07-31 京东方科技集团股份有限公司 低温多晶硅的激光退火装置和退火方法
KR20210087723A (ko) * 2020-01-03 2021-07-13 에스케이하이닉스 주식회사 프로브 카드 및 프로브 카드를 구비한 테스트 장치
JP7492478B2 (ja) 2021-03-23 2024-05-29 株式会社東海理化電機製作所 レーザリフトオフ装置およびレーザリフトオフ方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463200A (en) * 1993-02-11 1995-10-31 Lumonics Inc. Marking of a workpiece by light energy
JP2001269789A (ja) * 2000-01-20 2001-10-02 Komatsu Ltd レーザ加工装置
JP2004311906A (ja) * 2003-04-10 2004-11-04 Phoeton Corp レーザ処理装置及びレーザ処理方法
JP2008055467A (ja) * 2006-08-31 2008-03-13 Semiconductor Energy Lab Co Ltd レーザビーム照射装置及びレーザビーム照射方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903761B2 (ja) * 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
TWI310849B (en) * 2002-02-06 2009-06-11 Au Optronics Corp Pixel structure
JP4347546B2 (ja) * 2002-06-28 2009-10-21 株式会社 液晶先端技術開発センター 結晶化装置、結晶化方法および光学系
JP2005129769A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
WO2006104219A1 (en) * 2005-03-29 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method for manufacturing semiconductor device
JP4754924B2 (ja) * 2005-10-07 2011-08-24 株式会社ブイ・テクノロジー 露光装置
JP2007214388A (ja) * 2006-02-09 2007-08-23 Shimadzu Corp 結晶化装置、および位置決めステージ
JP2009277808A (ja) * 2008-05-13 2009-11-26 Shimadzu Corp 結晶化装置、および結晶化装置のレーザー光の照射位置補正制御方法
JP5471046B2 (ja) 2009-06-03 2014-04-16 株式会社ブイ・テクノロジー レーザアニール方法及びレーザアニール装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463200A (en) * 1993-02-11 1995-10-31 Lumonics Inc. Marking of a workpiece by light energy
JP2001269789A (ja) * 2000-01-20 2001-10-02 Komatsu Ltd レーザ加工装置
JP2004311906A (ja) * 2003-04-10 2004-11-04 Phoeton Corp レーザ処理装置及びレーザ処理方法
JP2008055467A (ja) * 2006-08-31 2008-03-13 Semiconductor Energy Lab Co Ltd レーザビーム照射装置及びレーザビーム照射方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012338B2 (en) 2009-06-03 2015-04-21 V Technology Co., Ltd. Laser annealing method and laser annealing apparatus
WO2011158630A1 (ja) * 2010-06-17 2011-12-22 株式会社ブイ・テクノロジー フォトマスク及びそれを使用するレーザアニール装置並びに露光装置
JP2012003038A (ja) * 2010-06-17 2012-01-05 V Technology Co Ltd フォトマスク及びそれを使用するレーザアニール装置並びに露光装置
KR101780368B1 (ko) 2010-06-17 2017-09-21 브이 테크놀로지 씨오. 엘티디 포토마스크 및 그것을 사용하는 레이저 어닐링 장치 및 노광 장치
WO2012077495A1 (ja) * 2010-12-09 2012-06-14 株式会社ブイ・テクノロジー レーザアニール装置及びレーザアニール方法
JP2012124366A (ja) * 2010-12-09 2012-06-28 V Technology Co Ltd レーザアニール装置及びレーザアニール方法
US8999865B2 (en) 2010-12-09 2015-04-07 V Technology Co., Ltd. Laser annealing apparatus and laser annealing method
WO2014006943A1 (ja) * 2012-07-05 2014-01-09 株式会社ブイ・テクノロジー 光配向露光方法及び光配向露光装置
JP2014016379A (ja) * 2012-07-05 2014-01-30 V Technology Co Ltd 光配向露光方法及び光配向露光装置
US9244311B2 (en) 2012-07-05 2016-01-26 V Technology Co., Ltd. Photo-alignment exposure method and photo-alignment exposure device

Also Published As

Publication number Publication date
JP2010283073A (ja) 2010-12-16
CN102449740A (zh) 2012-05-09
TWI492306B (zh) 2015-07-11
JP5471046B2 (ja) 2014-04-16
US9687937B2 (en) 2017-06-27
TW201110236A (en) 2011-03-16
US9012338B2 (en) 2015-04-21
US20120077351A1 (en) 2012-03-29
US20160279736A9 (en) 2016-09-29
KR20120027243A (ko) 2012-03-21
KR101688129B1 (ko) 2016-12-20
CN102449740B (zh) 2014-05-21
US20150258630A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5471046B2 (ja) レーザアニール方法及びレーザアニール装置
US10651294B2 (en) Laser annealing method, laser annealing apparatus, and manufacturing process for thin film transistor
US10535778B2 (en) Thin film transistor, manufacturing process for thin film transistor, and laser annealing apparatus
KR101872469B1 (ko) 레이저 어닐링 장치 및 레이저 어닐링 방법
JP5224343B2 (ja) レーザ加工装置
US10950437B2 (en) Laser annealing method, laser annealing apparatus, and thin film transistor substrate
KR101780368B1 (ko) 포토마스크 및 그것을 사용하는 레이저 어닐링 장치 및 노광 장치
JP4822977B2 (ja) ブラックマトリクスのパターン形成方法及び露光装置
JP7102280B2 (ja) レーザ照射装置及び半導体装置の製造方法
WO2018189900A1 (ja) 光照射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022772.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117027330

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783289

Country of ref document: EP

Kind code of ref document: A1