WO2010140435A1 - バチルス・サーキュランス由来のβ-ガラクトシダーゼ - Google Patents

バチルス・サーキュランス由来のβ-ガラクトシダーゼ Download PDF

Info

Publication number
WO2010140435A1
WO2010140435A1 PCT/JP2010/057204 JP2010057204W WO2010140435A1 WO 2010140435 A1 WO2010140435 A1 WO 2010140435A1 JP 2010057204 W JP2010057204 W JP 2010057204W WO 2010140435 A1 WO2010140435 A1 WO 2010140435A1
Authority
WO
WIPO (PCT)
Prior art keywords
galactosidase
seq
amino acid
sequence
dna
Prior art date
Application number
PCT/JP2010/057204
Other languages
English (en)
French (fr)
Inventor
徹 片瀬
由紀子 星
美穂 長屋
庄太郎 山口
正史 箕田
中西 一弘
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to BRPI1012062A priority Critical patent/BRPI1012062A2/pt
Priority to DK10783220.6T priority patent/DK2439270T3/en
Priority to JP2011518356A priority patent/JP5643756B2/ja
Priority to AU2010255150A priority patent/AU2010255150B2/en
Priority to US13/375,860 priority patent/US9516888B2/en
Priority to KR1020117030832A priority patent/KR101729048B1/ko
Priority to RU2011150421/10A priority patent/RU2011150421A/ru
Priority to CN201080023941.7A priority patent/CN102449148B/zh
Priority to EP10783220.6A priority patent/EP2439270B1/en
Publication of WO2010140435A1 publication Critical patent/WO2010140435A1/ja
Priority to US15/342,342 priority patent/US9974318B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1206Lactose hydrolysing enzymes, e.g. lactase, beta-galactosidase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/938Hydrolases (3) acting on glycosyl compounds (3.2) acting on beta-galactose-glycoside bonds, e.g. beta-galactosidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/94Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha-galactose-glycoside bonds, e.g. alpha-galactosidase

Definitions

  • the present invention relates to ⁇ -galactosidase. Specifically, the present invention relates to a novel ⁇ -galactosidase isolated from Bacillus circulans, its gene, its use and the like.
  • the ⁇ -galactosidase of the present invention is used as, for example, low lactose milk, galactooligosaccharide which is an intestinal bifidobacterial growth factor, or an active ingredient of a medicine or supplement for lactose intolerant patients.
  • ⁇ -galactosidase (EC 3.2.1.23) is an enzyme that hydrolyzes ⁇ -D-galactoside bonds to release D-galactose, and is generally present in microorganisms and animals and plants.
  • ⁇ -galactosidase also known as lactase, is an enzyme for the production of whey syrup from low-lactose milk for lactose intolerance and whey produced as a by-product during cheese production, or a drug or supplement for lactose intolerant patients It is used as an active ingredient.
  • ⁇ -galactosidase has an ability to transfer a galactoside bond, and a method for producing a galactooligosaccharide (an oligosaccharide having a galactose residue) using this ability is known.
  • Aspergillus oryzae, yeast Kluyveromyces lactis, K. bermarys markinus (K. marxinus) and bacteria Bacillus circulans (Bacillus) circulans are known.
  • Non-patent Document 1 Mozaffer et al.
  • Non-patent Document 2 Vetere et al.
  • Non-patent Documents 3 and 4 Purification of two kinds of enzymes having a molecular weight of 240 kDa and 160 kDa is reported.
  • the former has a high degrading activity
  • the latter has a high galactose transfer activity
  • the former has a high degrading activity for the synthetic substrate p-nitrophenyl- ⁇ -D-galactopyranoside (ONPG) compared to the degrading activity for lactose. It has been reported.
  • ONPG synthetic substrate p-nitrophenyl- ⁇ -D-galactopyranoside
  • Non-patent Documents 3 and 4 the gene cloning of the 67 kDa enzyme and the properties of the recombinant protein have been reported.
  • the enzyme is an enzyme specific for ⁇ -1,3 binding, and is found in milk. It does not act on ⁇ -1,4 bonds, which are bonds in lactose. Therefore, it is different from ordinary ⁇ -galactosidase used for processing milk or milk-derived lactose.
  • two types of ⁇ -galactosidase genes derived from Bacillus circulans (GenBank accession number (L03424 and L03425)) are registered in GenBank. However, it is not clear whether it actually encodes an active protein.
  • the present invention provides a novel ⁇ -galactosidase derived from Bacillus circulans.
  • the inventors of the present invention have a molecular weight of 195 kDa (according to SDS-PAGE. 189.3 kDa by mass spectrometry), which has not been reported so far.
  • the present inventors have succeeded in cloning a gene encoding the enzyme (hereinafter referred to as “the present gene”).
  • the base sequence of this gene and the amino acid sequence deduced therefrom are three kinds of ⁇ -galactosidases derived from Bacillus circulans that have been reported so far (refer to Non-Patent Document 3 for amino acid sequences. GenBank accession No. L03424 and L03425) was found to be very different. The present inventors also show that Bacillus circulans has a low degrading activity against the synthetic substrate 2-nitrophenyl ⁇ -D-galactopyranoside (ONPG), that is, a high galactosyl transfer activity. It has also been found that three types of enzymes (referred to herein as “ ⁇ -Gal2”, “ ⁇ -Gal3”, and “ ⁇ -Gal4”) are produced.
  • a ⁇ -galactosidase comprising the amino acid sequence of SEQ ID NO: 7, or a fragment thereof exhibiting ⁇ -galactosidase activity.
  • the fragment comprises the amino acid sequence of any one of SEQ ID NOs: 8 to 10.
  • ⁇ -galactosidase gene comprising any DNA selected from the group consisting of the following (a) to (e): (a) DNA encoding the amino acid sequence of SEQ ID NO: 6 or 7; (b) DNA comprising the sequence of SEQ ID NO: 5; (c) DNA that hybridizes under stringent conditions to a sequence complementary to the sequence of SEQ ID NO: 5; (d) DNA that is a DNA sequence degenerate of the sequence of SEQ ID NO: 5; (e) DNA encoding a protein having a ⁇ -galactosidase activity, comprising a sequence containing substitution, deletion, insertion, addition or inversion of one or more bases based on the sequence of SEQ ID NO: 5.
  • the protein having ⁇ -galactosidase activity consists of a sequence or a fragment thereof causing a change of less than 60%, preferably less than 45%, more preferably less than 25% in the amino acid sequence of SEQ ID NO: 7.
  • a recombinant vector comprising the ⁇ -galactosidase gene according to any one of [7] to [9].
  • [12] The recombinant vector according to [11], which is an expression vector.
  • [13] A transformant into which the ⁇ -galactosidase gene according to any one of [7] to [9] has been introduced.
  • [14] A transformant into which the recombinant vector according to [11] or [12] has been introduced.
  • [15] The transformant according to [13] or [14], which is a bacterial cell, yeast cell or fungal cell.
  • a method for producing ⁇ -galactosidase comprising the following steps (1) and (2): (1) culturing the transformant according to any one of [13] to [15] under conditions that produce a protein encoded by the ⁇ -galactosidase gene; (2) recovering the produced protein.
  • An enzyme agent comprising the ⁇ -galactosidase according to any one of [1] to [6] and [10] as an active ingredient.
  • the active ingredient is ⁇ -galactosidase including the amino acid sequence of SEQ ID NO: 7, ⁇ -galactosidase including the amino acid sequence of SEQ ID NO: 8, ⁇ -galactosidase including the amino acid sequence of SEQ ID NO: 9, and the amino acid of SEQ ID NO: 10.
  • the enzyme agent according to [17] which is one or more ⁇ -galactosidases selected from the group consisting of ⁇ -galactosidase containing sequences.
  • FIG. 1 is an elution pattern of hydroxyapatite chromatography of a ⁇ -galactosidase crude enzyme solution derived from Bacillus circulans.
  • the absorbance at 280 nm represents the protein, and the absorbance at 420 nm represents the ⁇ -galactosidase activity measured by the ONPG method.
  • FIG. 2 is an elution pattern of the obtained fraction 1 (see FIG. 1) by affinity chromatography.
  • the absorbance at 280 nm represents the protein concentration, and the absorbance at 420 nm represents ⁇ -galactosidase activity measured by the ONPG method.
  • FIG. 3 is an elution pattern of the obtained fraction 2 (see FIG. 1) by affinity chromatography.
  • FIG. 4 shows SDS-polyacrylamide gels of four purified ⁇ -galactosidases ⁇ -Gal1 (lane 3), ⁇ -Gal2 (lane 4), ⁇ -Gal3 (lane 5) and ⁇ -Gal4 (lane 6). It is the result of electrophoresis. Lane 2 was provided with the crude enzyme powder. The left end represents the molecular weight of the molecular weight marker used (lanes 1 and 7). FIG.
  • Lane 5 shows the results of SDS-polyacrylamide gel electrophoresis of the centrifugal supernatant of cell disruption of E. coli transformants.
  • Lane 1 is ⁇ -Gal1
  • Lane 2 is ⁇ -Gal2
  • Lane 3 is ⁇ -Gal3
  • Lane 4 is ⁇ -Gal4.
  • Lanes 5 and 6 are centrifugation supernatants of cell disruptions of E. coli vector transformants.
  • the arrow indicates the expressed ⁇ -galactosidase protein.
  • the left end represents the molecular weight of the molecular weight marker used (lane M).
  • DNA encoding an amino acid sequence refers to a DNA from which a protein having the amino acid sequence is obtained when expressed, that is, a DNA having a base sequence corresponding to the amino acid sequence. Therefore, codon degeneracy is also considered.
  • isolated when used in reference to the enzyme of the present invention ( ⁇ -galactosidase) means that when the enzyme of the present invention is derived from a natural material, components other than the enzyme are substantially contained in the natural material.
  • the state which does not contain especially does not contain a contaminating protein substantially).
  • the content of contaminating protein is less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably in terms of weight. Is less than about 1%.
  • the term “isolated” in the case where the enzyme of the present invention is prepared by a genetic engineering technique substantially includes other components derived from the used host cell, culture medium, and the like. It means no state. Specifically, for example, in the isolated enzyme of the present invention, the content of contaminant components is less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably in terms of weight. Less than about 1%.
  • the term “ ⁇ -galactosidase” in this specification means “an isolated ⁇ -galactosidase”. The same applies to the term “present enzyme” used in place of ⁇ -galactosidase.
  • isolated when used with respect to DNA means that, in the case of naturally occurring DNA, it is typically separated from other nucleic acids that coexist in the natural state. However, some other nucleic acid components such as a nucleic acid sequence adjacent in the natural state (for example, a promoter region sequence and a terminator sequence) may be included.
  • an “isolated” state in the case of genomic DNA is preferably substantially free of other DNA components that coexist in the natural state.
  • the “isolated” state in the case of DNA prepared by genetic engineering techniques such as cDNA molecules is preferably substantially free of cell components, culture medium, and the like.
  • the “isolated” state in the case of DNA prepared by chemical synthesis is preferably substantially free of precursors (raw materials) such as dNTP, chemical substances used in the synthesis process, and the like.
  • precursors raw materials
  • dNTP chemical substances used in the synthesis process
  • DNA DNA in an isolated state.
  • ⁇ -galactosidase generally exhibits lactose-degrading activity (activity that acts on ⁇ -1,4 bonds to decompose lactose) and galactosyl transfer activity (activity to transfer galactose). Therefore, “ ⁇ -galactosidase activity” in the present invention includes these two activities.
  • the lactose decomposition activity can be measured by the lactose method shown in the Examples.
  • the other galactosyl transfer activity can be expressed using the ratio of the activity value by the ONPG method and the activity value by the lactose method shown in Examples as an index. It is known that the smaller the value of [activity value by ONPG method / activity value by the same lactose method shown in Examples], the higher the transfer activity (Non-patent Document 1).
  • Molecular weight in the present invention means a molecular weight measured by SDS-PAGE (SDS-polyacrylamide gel electrophoresis) unless otherwise specified.
  • the first aspect of the present invention provides a ⁇ -galactosidase from Bacillus circulans that we have successfully isolated and characterized.
  • the ⁇ -galactosidase of the present invention has a molecular weight of 195 kDa (according to SDS-PAGE).
  • the present inventors also added ⁇ -galactosidase having a molecular weight of 135 kDa ( ⁇ -Gal2), 86-kDa ⁇ -galactosidase ( ⁇ -Gal3) and 160 kDa ⁇ -
  • ⁇ -Gal4 galactosidase (all by SDS-PAGE) was produced, and found that all three types of ⁇ -galactosidase were derived from one gene.
  • the present invention provides, as another embodiment, a ⁇ -galactosidase comprising a fragment of the above ⁇ -galactosidase ( ⁇ -galactosidase derived from Bacillus circulans having a molecular weight of 195 kDa) (hereinafter referred to as “the present fragment”).
  • the present fragment a fragment of the above ⁇ -galactosidase ( ⁇ -galactosidase derived from Bacillus circulans having a molecular weight of 195 kDa) (hereinafter referred to as “the present fragment”).
  • the length of this fragment is not particularly limited as long as it exhibits ⁇ -galactosidase activity, but includes, for example, 5 to 98%, preferably 40 to 95%, most preferably 55 to 75% of the reference protein.
  • it preferably contains an N-terminal region of the reference protein.
  • this fragment examples include ⁇ -galactosidase ( ⁇ -Gal2) having a molecular weight of 135 kDa, 86 kDa ⁇ -galactosidase ( ⁇ -Gal3) and 160 kDa ⁇ -galactosidase ( ⁇ -Gal4), which the present inventors have found. It is.
  • This fragment can also be obtained by protease treatment.
  • this fragment is obtained by subjecting the purified ⁇ -galactosidase ( ⁇ -galactosidase derived from Bacillus circulans having a molecular weight of 195 kDa) to protease treatment.
  • the fragment may be obtained by treating a culture medium of Bacillus circulans containing the ⁇ -galactosidase with a protease.
  • protease There are no particular restrictions on the protease used. For example, a commercially available protease agent or an endogenous protease produced by Bacillus circulans can be used.
  • the ⁇ -galactosidase of the present invention includes the amino acid sequence of SEQ ID NO: 7 in one embodiment.
  • the amino acid sequence is obtained by removing the signal peptide portion from the amino acid sequence of SEQ ID NO: 6.
  • the amino acid sequence of SEQ ID NO: 6 is an amino acid sequence deduced from the base sequence (SEQ ID NO: 5) of the gene obtained by cloning from Bacillus circulans.
  • the ⁇ -galactosidase of the present invention having the amino acid sequence of SEQ ID NO: 7 has three types of ⁇ -derived ⁇ -galactosidase derived from Bacillus circulans that have been reported so far, due to the difference in the number of amino acids and low homology (10 to 12%). It is a novel enzyme that is clearly different from galactosidase.
  • Another aspect of the present invention is ⁇ -galactosidase consisting of a fragment of the amino acid sequence of SEQ ID NO: 7.
  • the fragment preferably includes a region from the N-terminal to WSIGNEIY (SEQ ID NO: 18) in the amino acid sequence of SEQ ID NO: 7.
  • the partial sequence (WSIGNEIY) is a putative active region.
  • Specific examples of the fragment include those having the amino acid sequence of any one of SEQ ID NOs: 8 to 10.
  • the amino acid sequence of SEQ ID NO: 8 corresponds to Gal2
  • the amino acid sequence of SEQ ID NO: 9 corresponds to Gal3
  • the amino acid sequence of SEQ ID NO: 10 corresponds to Gal4.
  • the modified protein when a part of the amino acid sequence of a protein is modified, the modified protein may have a function equivalent to that of the protein before modification. That is, the modification of the amino acid sequence does not substantially affect the function of the protein, and the function of the protein may be maintained before and after the modification.
  • the modification of the amino acid sequence does not substantially affect the function of the protein, and the function of the protein may be maintained before and after the modification.
  • Those in which no substantial difference is observed in the function of can be regarded as an enzyme that is substantially the same as ⁇ -galactosidase.
  • “Slight difference in amino acid sequence” as used herein typically means deletion of one to several amino acids (upper limit is 3, 5, 7, 10) constituting an amino acid sequence, It means that a mutation (change) has occurred in the amino acid sequence by substitution or addition, insertion, or a combination of 1 to several amino acids (the upper limit is 3, 5, 7, 10).
  • the identity (%) between the amino acid sequence of “substantially identical enzyme” and the reference ⁇ -galactosidase amino acid sequence is preferably 90% or more, more preferably 95% or more, and still more preferably Is 98% or more, and most preferably 99% or more.
  • the difference in amino acid sequence may occur at a plurality of positions.
  • “Slight amino acid sequence differences” are preferably caused by conservative amino acid substitutions.
  • “conservative amino acid substitution” refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties.
  • a basic side chain eg lysine, arginine, histidine
  • an acidic side chain eg aspartic acid, glutamic acid
  • an uncharged polar side chain eg glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan and histidine.
  • the identity (%) of two amino acid sequences can be determined by the following procedure, for example.
  • two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence).
  • a gap may be introduced into the first sequence to optimize alignment with the second sequence.
  • Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used.
  • the default parameters of the corresponding programs eg, XBLAST and NBLAST
  • XBLAST and NBLAST the default parameters of the corresponding programs
  • Examples of other mathematical algorithms that can be used for sequence comparison include those described in Myers and Miller (1988) Comput Appl Biosci. 4: 11-17.
  • Such an algorithm is incorporated in the ALIGN program available on, for example, the GENESTREAM network server (IGH (Montpellier, France) or the ISREC server.
  • the second aspect of the present invention relates to a ⁇ -galactosidase gene.
  • the gene of the present invention comprises DNA encoding the amino acid sequence of SEQ ID NO: 6 or 7.
  • a specific example of this embodiment is DNA consisting of the base sequence of SEQ ID NO: 5.
  • the protein encoded by the modified DNA may have the same function as the protein encoded by the DNA before modification. That is, the modification of the DNA sequence does not substantially affect the function of the encoded protein, and the function of the encoded protein may be maintained before and after the modification. Therefore, as another embodiment, the present invention provides a DNA (hereinafter also referred to as “equivalent DNA”) that encodes a protein having a base sequence equivalent to the base sequence of SEQ ID NO: 5 and having ⁇ -galactosidase activity.
  • the “equivalent base sequence” here is partly different from the nucleic acid shown in SEQ ID NO: 5, but the function of the protein encoded by it ( ⁇ -galactosidase activity here) has a substantial effect due to the difference.
  • a specific example of equivalent DNA is DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence of SEQ ID NO: 5.
  • the “stringent conditions” here are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • Such stringent conditions are known to those skilled in the art, such as Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M. Ausubel et al., 1987) Can be set with reference to.
  • hybridization solution 50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denaturation
  • 5 ⁇ Denhardt solution 1% SDS
  • 10% dextran sulfate 10 ⁇ g / ml denaturation
  • incubation at about 42 ° C to about 50 ° C using salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), followed by washing at about 65 ° C to about 70 ° C using 0.1 x SSC, 0.1% SDS can be mentioned.
  • Further preferable stringent conditions include, for example, 50% formamide, 5 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml as a hybridization solution. Of denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
  • the equivalent DNA from the base sequence containing one or more (preferably 1 to several) base substitutions, deletions, insertions, additions, or inversions based on the base sequence shown in SEQ ID NO: 5 And a DNA encoding a protein having ⁇ -galactosidase activity.
  • Base substitution or deletion may occur at a plurality of sites.
  • the term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it varies depending on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the DNA. It is.
  • Such equivalent DNAs include, for example, restriction enzyme treatment, treatment with exonuclease and DNA ligase, position-directed mutagenesis (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Including mutation, introduction, mutation, and / or inversion using mutation introduction methods (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Thus, it can obtain by modifying DNA which has a base sequence shown to sequence number 5.
  • the equivalent DNA can also be obtained by other methods such as ultraviolet irradiation.
  • Still another example of equivalent DNA is DNA in which a base difference as described above is recognized due to a polymorphism represented by SNP (single nucleotide polymorphism).
  • proteins consisting of the amino acid sequences of SEQ ID NOs: 8 to 10, which are fragments of the amino acid sequence of SEQ ID NO: 7 (Gal1), exhibit high ⁇ -galactosidase activity. It was. Based on this fact, one embodiment of the present invention encodes a protein comprising a sequence or a fragment thereof causing a change of less than 60%, preferably less than 45%, more preferably less than 25% in the amino acid sequence shown in SEQ ID NO: 7. A ⁇ -galactosidase gene is provided.
  • the gene of the present invention was isolated by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. Can be prepared in a state. Specifically, an oligonucleotide capable of specifically hybridizing to the gene of the present invention from an appropriate Bacillus circulans genomic DNA library or cDNA library, or an intracellular extract of Bacillus circulans It can be prepared using probes and primers as appropriate. Oligonucleotide probes and primers can be easily synthesized using a commercially available automated DNA synthesizer.
  • a gene having the base sequence of SEQ ID NO: 5 it can be isolated using a hybridization method using the whole base sequence or its complementary sequence as a probe. Further, it can be amplified and isolated using a nucleic acid amplification reaction (for example, PCR) using a synthetic oligonucleotide primer designed to specifically hybridize to a part of the base sequence.
  • a nucleic acid amplification reaction for example, PCR
  • a synthetic oligonucleotide primer designed to specifically hybridize to a part of the base sequence.
  • the target gene can also be obtained by chemical synthesis (Reference: Gene, 60 (1), 115-127 ( 1987)).
  • a further aspect of the present invention relates to a recombinant vector containing the ⁇ -galactosidase gene of the present invention.
  • the term “vector” refers to a nucleic acid molecule capable of transporting a nucleic acid molecule inserted thereinto into a target such as a cell, and the type and form thereof are not particularly limited. Accordingly, the vector of the present invention can take the form of a plasmid vector, a cosmid vector, a phage vector, or a viral vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.).
  • An appropriate vector is selected depending on the purpose of use (cloning, protein expression) and in consideration of the type of host cell.
  • Specific examples of vectors include vectors using E. coli as a host (M13 phage or a modified product thereof, ⁇ phage or a modified product thereof, pBR322 or a modified product thereof (pB325, pAT153, pUC8, etc.)), and yeast as a host.
  • Vectors pYepSec1, pMFa, pYES2, etc.
  • vectors using insect cells as hosts pAc, pVL, etc.
  • vectors using mammalian cells as hosts pCDM8, pMT2PC, etc.
  • the recombinant vector of the present invention is preferably an expression vector.
  • “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell.
  • Expression vectors usually contain a promoter sequence necessary for expression of the inserted nucleic acid, an enhancer sequence that promotes expression, and the like.
  • An expression vector containing a selectable marker can also be used. When such an expression vector is used, the presence or absence of the expression vector (and the degree thereof) can be confirmed using a selection marker.
  • Insertion of the gene of the present invention into a vector, insertion of a selectable marker gene (if necessary), insertion of a promoter (if necessary), etc. are performed using standard recombinant DNA techniques (for example, Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press and New York, which can be referred to, are known methods using restriction enzymes and DNA ligases).
  • the present invention further relates to a host cell (transformant) into which the gene of the present invention has been introduced.
  • the gene of the present invention exists as an exogenous molecule.
  • the transformant of the present invention is preferably prepared by transfection or transformation using the vector of the present invention.
  • transfection and transformation calcium phosphate coprecipitation method, electroporation (Potter, H. et al., Proc. Natl. Acad. Sci. USA 81, 7161-7165 (1984)), lipofection (Felgner, PL et al. , Proc. Natl. Acad. Sci.
  • the host cell is not particularly limited as long as the ⁇ -galactosidase of the present invention is expressed, for example, Bacillus bacteria such as Bacillus subtillus, Bacillus likemiformis, Bacillus circulans, Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium and other lactic acid bacteria, Escherichia, Other bacteria such as Streptomyces, yeasts such as Saccharomyces, Kluyveromyces, Candida, Torula, Torulopsis, Aspergillus genus such as Aspergillus oryzae, Aspergillus niger, filamentous fungi (fungi) such as Penicillium genus, Trichoderma genus, Fusarium genus etc.
  • Bacillus bacteria such as Bacillus subtillus, Bacillus likemiformis, Bacillus circulans, Lactococcus, Lactobacillus, Streptococcus,
  • a further aspect of the present invention provides a method for producing ⁇ -galactosidase.
  • ⁇ -galactosidase is produced using the above transformant.
  • the above-mentioned transformant is cultured under the condition that a protein encoded by the gene introduced therein is produced (step (1)).
  • Culture conditions for transformants are known for various vector host systems, and those skilled in the art can easily set appropriate culture conditions.
  • the culture method and culture conditions are not particularly limited as long as ⁇ -galactosidase, which is the target protein, is produced. That is, on the condition that ⁇ -galactosidase is produced, a method and culture conditions suitable for culturing microorganisms to be used can be appropriately set.
  • the culture method may be either liquid culture or solid culture, but preferably liquid culture is used. Taking liquid culture as an example, the culture conditions will be described.
  • any medium may be used as long as the transformant used can grow.
  • carbon sources such as glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acid, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein
  • Nitrogen sources such as hydrolysates, bran and meat extracts, and further added with inorganic salts such as potassium salts, magnesium salts, sodium salts, phosphates, manganese salts, iron salts and zinc salts can be used.
  • vitamins, amino acids and the like may be added to the medium.
  • the pH of the medium is adjusted to, for example, about 3 to 10, preferably about 7 to 8, and the culture temperature is usually about 10 to 50 ° C., preferably about 20 to 37 ° C. for 1 to 7 days, preferably 3 to Incubate under aerobic conditions for about 4 days.
  • the culture method for example, a shaking culture method or an aerobic deep culture method using a jar fermenter can be used.
  • the produced protein ( ⁇ -galactosidase) is recovered (step (2)).
  • the culture supernatant is filtered, centrifuged, etc. to remove insolubles, concentrated by ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis, ion exchange resin, etc.
  • the present enzyme can be obtained by performing separation and purification by appropriately combining various types of chromatography.
  • the bacterial cells are crushed by pressure treatment, ultrasonic treatment, etc., and then separated and purified in the same manner as described above to obtain the target protein.
  • recovering a microbial cell from a culture solution previously by filtration, a centrifugation process, etc. you may perform said series of processes (crushing, isolation
  • the degree of purification of ⁇ -galactosidase is not particularly limited.
  • the final form may be liquid or solid (including powder).
  • the ⁇ -galactosidase of the present invention is provided, for example, in the form of an enzyme agent.
  • the enzyme agent may contain excipients, buffers, suspension agents, stabilizers, preservatives, preservatives, physiological saline and the like in addition to the active ingredient ( ⁇ -galactosidase of the present invention).
  • excipient lactose, sorbitol, D-mannitol, sucrose and the like can be used.
  • Phosphate, citrate, acetate, etc. can be used as the buffer.
  • As the stabilizer propylene glycol, ascorbic acid or the like can be used.
  • phenol benzalkonium chloride
  • benzyl alcohol chlorobutanol
  • methylparaben and the like
  • benzalkonium chloride paraoxybenzoic acid, chlorobutanol and the like can be used.
  • ⁇ -galactosidase including the amino acid sequence of SEQ ID NO: 7
  • ⁇ -galactosidase including the amino acid sequence of SEQ ID NO: 8
  • ⁇ -galactosidase including the amino acid sequence of SEQ ID NO: 9 as active ingredients
  • one or more ⁇ -galactosidases selected from the group consisting of ⁇ -galactosidases comprising the amino acid sequence shown in SEQ ID NO: 10.
  • an enzyme agent comprising all these four types of ⁇ -galactosidase is provided.
  • a further aspect of the present invention provides the use of the ⁇ -galactosidase or enzyme agent of the present invention.
  • applications are the production of low-lactose milk, the production of galactooligosaccharides, which are intestinal bifidobacterial growth factors, or the manufacture of medicines and supplements for patients with lactose intolerance.
  • lactose in the raw material can be reduced.
  • ⁇ -galactosidase 1 U of ⁇ -galactosidase is added to 1 mL of raw milk and left at a low temperature of 10 ° C., whereby lactose is decomposed and low lactose milk is obtained.
  • 100 LU ⁇ -galactosidase is added to 40% lactose solution (pH 7.0) dissolved in advance, and left at 40 ° C. for 5 hours to produce galactooligosaccharide.
  • the galactooligosaccharide is represented by Gal- (Gal) n-Glc (n is usually 0 to 3) (Gal: galactose residue, Glc: glucose residue).
  • the binding modes include ⁇ 1-6, ⁇ 1-3, ⁇ 1-4, ⁇ 1-2, ⁇ 1-3, ⁇ 1-6, and the like.
  • ⁇ -galactosidase activity measurement method In the following purification, ⁇ -galactosidase activity measurement was performed using 2-nitrophenyl ⁇ -D-galactopyranoside (ONPG) as a substrate (i) and lactose as a substrate. It was measured by two types of method (ii). All were performed according to the method described in Non-Patent Document 1. The protein concentration was expressed as absorbance at 280 nm.
  • ONPG 2-nitrophenyl ⁇ -D-galactopyranoside
  • ONPG method 1.98 ml of 100 mM phosphate buffer (pH 6.0) containing 0.245% ONPG was pre-warmed at 40 ° C. for 10 minutes. 20 ⁇ l of a sample was added thereto, and after 10 minutes of reaction at 40 ° C., 2.0 ml of 10% sodium carbonate solution was added to stop the reaction. The absorbance of the reaction solution at 420 nm was measured, and ⁇ -galactosidase activity was calculated with 1 U as the activity when 1 ⁇ mol of 2-nitrophenol was produced per minute.
  • Lactose method 2 ml of 100 mM phosphate buffer solution (pH 6.0) containing 5% lactose was pre-warmed at 40 ° C. for 10 minutes. 50 ⁇ l of a sample was added thereto, reacted at 40 ° C. for 15 minutes, and then boiled in a boiling bath to stop the reaction. The glucose concentration of 100 ⁇ l of the reaction solution was measured by the glucostat method. That is, 100 ⁇ l of a 0.1 N sodium hydroxide solution was added to 100 ⁇ l of the reaction solution and allowed to stand for 1 minute, followed by addition of 0.1 N acetic acid and 3 ml of acetate buffer (pH 5.0).
  • the enzyme was eluted by a step elution method in which the sodium phosphate buffer concentration was changed in the order of 100 mM, 150 mM, 200 mM, 300 mM and 500 mM. This chromatography was performed at room temperature. As shown in FIG. 1, enzymes exhibiting ⁇ -galactosidase (ONPG) activity are eluted at sodium phosphate buffer concentrations of 100 mM, 150 mM, and 300-500 mM. 3. The enzyme contained in fraction 3 was an almost single protein having a molecular weight of 195 kDa as determined by SDS-polyacrylamide gel electrophoresis and was called ⁇ -Gal1.
  • ONPG ⁇ -galactosidase
  • fraction 1 was separated and purified by affinity chromatography.
  • Fraction 1 was dialyzed against 50 mM mM acetate buffer (pH 5.8).
  • the dialyzed enzyme solution is applied to an affinity gel column (p-Aminobenzyl-1-thio- ⁇ -D-galactopyranoside-agarose, Sigma, diameter 1.6 cm, length 18 cm) equilibrated with the same buffer.
  • affinity gel column p-Aminobenzyl-1-thio- ⁇ -D-galactopyranoside-agarose, Sigma, diameter 1.6 cm, length 18 cm
  • elute with linear gradient method 50 mM acetate buffer (pH 5.8) / 50 mM acetate buffer, (pH 3.5) changing pH from 5.8 to 3.5 at 4 °C I let you.
  • Fraction 1 the enzyme having ⁇ -galactosidase activity was eluted in the washed fraction and pH around 4.4, respectively. These showed almost single bands by SDS-polyacrylamide gel electrophoresis, and the molecular weights were 135 kDa and 86 kDa, respectively.
  • the former was called ⁇ -Gal2
  • the latter was called ⁇ -Gal3.
  • fraction 2 was separated and purified by affinity chromatography in the same manner as fraction 1.
  • Fraction 2 was dialyzed against 50 mM acetate buffer (pH 5.8) and applied to the affinity column equilibrated with the same buffer.
  • the unadsorbed protein was eluted with the same buffer, it was eluted by a linear gradient method in which the pH was changed from 5.8 to 3.5 at 4 ° C.
  • the enzyme having ⁇ -galactosidase activity was eluted in the washing fraction and about pH 4.4.
  • FIG. 4 shows 10% of the crude enzyme preparation (lane 2) and purified ⁇ -Gal1 (lane 3), ⁇ -Gal2 (lane 4), ⁇ -Gal3 (lane 5) and ⁇ -Gal4 (lane 6). The analysis result of SDS-PAGE is shown.
  • the amount of enzyme that produces 1 ⁇ mol of product glucose per minute under the condition of pH 6 was defined as 1 U.
  • Table 1 it can be seen that ⁇ -Gal1 has a higher degradation activity against ONPG and ⁇ -Gal2, ⁇ -Gal3 and ⁇ -Gal4 have a lower degradation activity against ONPG than lactose.
  • N-terminal amino acid sequences of four types of ⁇ -galactosidase were analyzed using a protein sequencer. As a result, it was revealed that ⁇ -Gal1 contains two types of sequences, GNSVSYDGERRVNFNEN (SEQ ID NO: 1) and SVSYDGERRVNFNEN (SEQ ID NO: 17). However, these two types of sequences are different depending on whether or not GN is present at the N-terminus, and were found to be basically the same sequence.
  • the N-terminal amino acid sequences of ⁇ -Gal2, ⁇ -Gal3, and ⁇ -Gal4 were also the same as ⁇ -Gal1.
  • sequences of the N-terminal 5 residues of the 70 kDa protein derived from each enzyme matched.
  • the amino acid sequence of the N-terminal 15 residues of the 70-kDa protein derived from ⁇ -Gal3 was EDRADVNIKTKISND (SEQ ID NO: 2).
  • ⁇ PCR reaction solution > 10 ⁇ PCR reaction buffer (TaKaRa) 5.0 ⁇ l dNTP mixture (2.5 mM each, TaKaRa) 8.0 ⁇ l 25 mM MgCl 2 5.0 ⁇ l 50 ⁇ M sense primer 0.5 ⁇ l 50 ⁇ M antisense primer 0.5 ⁇ l Distilled water 29.5 ⁇ l Chromosomal DNA solution (100 ⁇ g / ml) 1.0 ⁇ l LA Taq DNA polymerase (TaKaRa) 0.5 ⁇ l
  • (E) Determination of base sequence The base sequence of plasmid pBlue-Gal1 was determined according to a standard method.
  • the amino acid sequence (1738 amino acids) encoded by SEQ ID NO: 5 is shown in SEQ ID NO: 6.
  • SEQ ID NO: 1 The N-terminal region amino acid sequence (SEQ ID NO: 1) and internal amino acid sequence (SEQ ID NO: 2) determined in (1) were found. Interestingly, the start codon in this gene was considered GTG.
  • the amino acid sequence obtained by removing the signal peptide from the amino acid sequence of SEQ ID NO: 6 is shown in SEQ ID NO: 7.
  • PCR primers were used.
  • a SacI restriction enzyme recognition site was added to the sense primer F-Gal
  • a SalI restriction enzyme recognition site was added to the antisense primers R-Gal1, R-Gal2, and R-Gal4.
  • a PCR reaction was performed under the following conditions.
  • ⁇ PCR reaction solution 10 ⁇ PCR reaction buffer (TOYOBO) 5.0 ⁇ l dNTP mixture (2.5 mM each, TOYOBO) 5.0 ⁇ l 10 ⁇ M sense primer 1.5 ⁇ l 10 ⁇ M antisense primer 1.5 ⁇ l 25 mM MgSO 4 2.0 ⁇ l Distilled water 33.0 ⁇ l Chromosomal DNA solution (200 ⁇ g / ml) 1.0 ⁇ l KOD -Plus- DNA polymerase (TOYOBO) 1.0 ⁇ l ⁇ PCR reaction conditions> Stage 1: Denaturation (94 ° C, 2 minutes) 1 cycle Stage 2: Denaturation (94 ° C, 15 seconds) 30 cycles Annealing (57 ° C, 30 seconds) Elongation (68 °C, 5 minutes)
  • the obtained PCR product was confirmed by electrophoresis, and then desalted (69 ⁇ l) by ethanol precipitation. Subsequently, 15 ⁇ l of 10 ⁇ T buffer solution, 10 ⁇ l of 0.1% BSA solution and 3 ⁇ l of SacI and 3 ⁇ l of SalI were added, followed by enzyme treatment at 37 ° C. for 15 hours.
  • the vector pCold II DNA (Takara Bio) previously treated with SacI and SalI was ⁇ -Gal1, ⁇ -Gal2, The ⁇ -Gal4 fragment was ligated to obtain expression plasmids pCold-Gal1, Gal2, and Gal4.
  • the cells were suspended in 1.0 ml of 100 mM phosphate buffer (pH 6.0), 0.50 g of ⁇ 0.1 mm glass beads were added, and the cells were crushed with a multi-bead shocker (Yasui Kikai Co., Ltd.). The crushing condition was ON for 120 seconds and OFF for 60 seconds. The obtained Cell free-extract was subjected to centrifugation to obtain a soluble component.
  • NdeI restriction enzyme recognition site was added to the sense primer F-Gal3, and an XbaI restriction enzyme recognition site was added to the antisense primer R-Gal3.
  • a PCR reaction was performed under the following conditions.
  • ⁇ PCR reaction solution 10 ⁇ PCR reaction buffer (TOYOBO) 5.0 ⁇ l dNTP mixture (2.5 mM each, TOYOBO) 5.0 ⁇ l 10 ⁇ M sense primer 1.5 ⁇ l 10 ⁇ M antisense primer 1.5 ⁇ l 25 mM MgSO 4 2.0 ⁇ l Distilled water 33.0 ⁇ l Chromosomal DNA solution (200 ⁇ g / ml) 1.0 ⁇ l KOD-Plus-DNA polymerase (TOYOBO) 1.0 ⁇ l ⁇ PCR reaction conditions> Stage 1: Denaturation (94 ° C, 2 minutes) 1 cycle Stage 2: Denaturation (94 ° C, 15 seconds) 30 cycles Annealing (57 ° C, 30 seconds) Elongation (68 °C, 3 minutes)
  • the obtained PCR product was confirmed by electrophoresis, and then desalted (84 ⁇ l) by ethanol precipitation. Subsequently, 10 ⁇ l of an appropriate buffer and 3 ⁇ l of NdeI and 3 ⁇ l of XbaI were added, followed by enzyme treatment at 37 ° C. for 15 hours. The restriction enzyme treatment solution was confirmed by electrophoresis, purified with NucleoSpin Extract II, and then ligated to the vector pCold III DNA previously treated with NdeI and XbaI to obtain the expression plasmid pCold-Gal3.
  • ⁇ -galactosidase activity using ONPG and lactose as substrates was measured for the same sample.
  • the activity measurement results are shown in Table 3.
  • ONPG was used as a substrate
  • ⁇ -galactosidase activity was detected 5 times or more of the control
  • lactose was used as a substrate
  • ⁇ -galactosidase activity of 200 times or more of the control was detected, confirming the expression of the target ⁇ -galactosidase ⁇ -Gal3.
  • the present invention provides a novel ⁇ -galactosidase derived from Bacillus circulans.
  • the ⁇ -galactosidase of the present invention is industrially useful, and is used, for example, in the production of milk, dairy products, fermented dairy products, galactooligosaccharides or dietary supplements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

新規なβ-ガラクトシダーゼを提供することを課題とする。バチルス・サーキュランス由来のβ-ガラクトシダーゼ及びその遺伝子が提供される。本発明のβ-ガラクトシダーゼは、牛乳、乳製品、発酵乳製品、ガラクトオリゴ糖又は食事サプリメントの製造などに利用可能である。

Description

バチルス・サーキュランス由来のβ-ガラクトシダーゼ
 本発明はβ-ガラクトシダーゼに関する。詳しくは、バチルス・サーキュランス(Bacillus circulans)から単離された新規なβ-ガラクトシダーゼ及びその遺伝子並びにその用途等に関する。本発明のβ-ガラクトシダーゼは例えば、低乳糖牛乳の製造や、腸内ビフィズス菌増殖因子であるガラクトオリゴ糖の製造、或いは乳糖不耐症患者のための医薬又はサプリメントの有効成分として利用される。本出願は、2009年6月5日に出願された日本国特許出願第2009-136735号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 β-ガラクトシダーゼ(EC3.2.1.23)は、β-D-ガラクトシド結合を加水分解してD-ガラクトースを遊離する酵素であり、一般に微生物および動植物中に広く存在している。β-ガラクトシダーゼは別名ラクターゼとも呼ばれ、乳糖不耐症用の低乳糖牛乳やチーズ製造時に副産する乳清からのホエーシロップの製造用の酵素として、或いは乳糖不耐症患者用の医薬やサプリメントの有効成分として用いられている。また、β-ガラクトシダーゼはガラクトシド結合を転移させる能力をも有しており、この能力を利用してガラクトオリゴ糖(ガラクトース残基を有するオリゴ糖)を製造する方法が知られている。これらの用途に用いられるβ-ガラクトシダーゼとして麹菌アスペルギルス・オリゼ(Aspergillus oryzae)、酵母クルイベロマイセス・ラクティス(Kluyveromyces lactis)、クルイベロマイセス・マルキナス(K. marxinus)や細菌バチルス・サーキュランス(Bacillus circulans)などが知られている。
 この中で、バチルス・サーキュランスのβ-ガラクトシダーゼについては、Mozafferら(非特許文献1)、Vetereら(非特許文献2)、Itoら(非特許文献3、4)によって研究されている。非特許文献1によれば、分子量240 kDaと160 kDaの2種類の酵素の精製が報告されている。そして、前者は分解活性が高く、後者はガラクトース転移活性が高いこと、また前者はラクトースに対する分解活性に比べ合成基質p-ニトロフェニル-β-D-ガラクトピラノシド(ONPG)に対する分解活性が高いことが報告されている。一方、非特許文献2によれば分子量212 kDa、145 kDa及び86 kDaの3種類の酵素の精製が報告されている。しかしながら、これら複数の酵素の相互の蛋白質化学的相関や分子生物学的(遺伝子的)特性が明らかではなかった。また、非特許文献3、4においては67 kDaの酵素の遺伝子クローニングと組換え蛋白質の性質が報告されているが、当該酵素は、β-1,3結合に特異的な酵素であり、牛乳中のラクトース中の結合であるβ-1,4結合には作用しない。よって、牛乳や牛乳由来の乳糖の処理に使用される通常のβ-ガラクトシダーゼとは異なるものである。また、ジェンバンク(GenBank)にはバチルス・サーキュランス由来のβ-ガラクトシダーゼ遺伝子が2種類(ジェンバンク・アセッション・ナンバー(GenBank accession number) L03424及びL03425)登録されているが、これらについては遺伝子配列について報告されているのみで、実際に活性のある蛋白質をコードしているか定かではない。
Mozaffar, Z., Nakanishi, K., Matsuno, R., and Kamikubo, T. Agric. Biol. Chem., 48(12), 3053-3061, 1984 Vetere, A., and Paoletti, S. Biochem. Biophys. Acta., 1380, 223-231 (1998) Ito. Y., and Sasaki, T. Biosci. Biotech. Biochem., 61(8), 1270-1276 (1997) Fujimoto, H., Miyasato, M., Ito, Y., Sasaki, T., and Ajisaka, K. Glycoconjugate Journal, 15, 1550160 (1998) Saito, and Miura. Biochim. Biophys. Acta, 72, 619-629 (1963)
 この様にバチルス・サーキュランス由来のβ-ガラクトシダーゼとして複数の酵素が報告されているが、これらの相互の蛋白質化学的相関や分子生物学的(遺伝子的)特性が明らかではなかったため、低乳糖牛乳の製造やガラクトオリゴ糖の製造など、産業上のそれぞれの用途にあった酵素剤を製造する上において制限があった。
 本発明は、バチルス・サーキュランス由来の新規なβ-ガラクトシダーゼを提供する。本発明者らは、バチルス・サーキュランスの生産するβ-ガラクトシダーゼを研究する過程において、これまでに報告されていなかった分子量195 kDa(SDS-PAGEによる。質量分析では189.3 kDa)の酵素(本明細書において「β-Gal1」と呼称する)を見出すとともに、当該酵素をコードする遺伝子(以下、「本遺伝子」という)をクローニングすることにも成功した。そして本遺伝子の塩基配列及びそれから推定されるアミノ酸配列は、これまで報告されてきたバチルス・サーキュランス由来の3種のβ-ガラクトシダーゼ(アミノ酸配列について非特許文献3を参照。GenBank accession No. L03424及びL03425)と大きく相違する、新規なものであることが判明した。また本発明者らは、バチルス・サーキュランスが合成基質2-ニトロフェニルβ-D-ガラクトピラノシド(2-nitrophenyl β-D-Galactopyranoside:ONPG)に対する分解活性が低く、即ちガラクトシル転移活性が高い酵素を3種類(本明細書において「β-Gal2」、「β-Gal3」、「β-Gal4」と呼称する)生産することも見出した。さらには、これら3種類のβ-ガラクトシダーゼが本遺伝子(β-Gal1をコードする遺伝子)から派生して生産されることも見出した。加えて、本遺伝子及び本遺伝子の断片を適当な宿主に導入することにより、これらのβ-ガラクトシダーゼ蛋白質群の製造法も確立した。
 本発明は以上の成果に基づき完成されたものである。以下に本発明を示す。
 [1]分子量が195 kDa(SDS-PAGEによる)である、バチルス・サーキュランス由来のβ-ガラクトシダーゼ。
 [2][1]に記載のβ-ガラクトシダーゼの断片からなる、バチルス・サーキュランス由来のβ-ガラクトシダーゼ。
 [3]配列番号7のアミノ酸配列、又はβ-ガラクトシダーゼ活性を示すその断片からなる、β-ガラクトシダーゼ。
 [4]前記断片が、配列番号7のアミノ酸配列の内、N末端からWSIGNEIY(配列番号18)までの領域を含む、[3]に記載のβ-ガラクトシダーゼ。
 [5]前記断片が、配列番号8~10のいずれかの配列番号のアミノ酸配列を含む、[3]に記載のβ-ガラクトシダーゼ。
 [6]配列番号5の配列を含むDNAによってコードされる、[3]に記載のβ-ガラクトシダーゼ。
 [7]以下の(a)~(e)からなる群より選択されるいずれかのDNAからなるβ-ガラクトシダーゼ遺伝子:
 (a)配列番号6又は7のアミノ酸配列をコードするDNA;
 (b)配列番号5の配列を含むDNA;
 (c)配列番号5の配列に相補的な配列に対してストリンジェントな条件下でハイブリダイズするDNA;
 (d)配列番号5の配列のDNA配列縮重体であるDNA;
 (e)配列番号5の配列を基準として1若しくは複数の塩基の置換、欠失、挿入、付加又は逆位を含む配列からなり、β-ガラクトシダーゼ活性を有するタンパク質をコードするDNA。
 [8]β-ガラクトシダーゼ活性を有するタンパク質が、配列番号7のアミノ酸配列において60%未満、好ましくは45%未満、更に好ましくは25%未満の変化を生じている配列又はその断片からなる、[7]に記載のβ-ガラクトシダーゼ遺伝子。
 [9]前記変化が保存的アミノ酸置換である、[8]に記載のβ-ガラクトシダーゼ遺伝子。
 [10][7]~[9]のいずれか一項に記載のβ-ガラクトシダーゼ遺伝子がコードするβ-ガラクトシダーゼ。
 [11][7]~[9]のいずれか一項に記載のβ-ガラクトシダーゼ遺伝子を含む組換えベクター。
 [12]発現ベクターである、[11]に記載の組換えベクター。
 [13][7]~[9]のいずれか一項に記載のβ-ガラクトシダーゼ遺伝子が導入されている形質転換体。
 [14][11]又は[12]に記載の組換えベクターが導入されている形質転換体。
 [15]細菌細胞、酵母細胞又は真菌細胞である、[13]又は[14]に記載の形質転換体。
 [16]以下のステップ(1)及び(2)を含む、β-ガラクトシダーゼの製造法:
 (1)[13]~[15]のいずれか一項に記載の形質転換体を、前記β-ガラクトシダーゼ遺伝子がコードするタンパク質が産生される条件下で培養するステップ;
 (2)産生された前記タンパク質を回収するステップ。
 [17][1]~[6]及び[10]のいずれか一項に記載のβ-ガラクトシダーゼを有効成分とする酵素剤。
 [18]前記有効成分が、配列番号7のアミノ酸配列を含むβ-ガラクトシダーゼ、配列番号8のアミノ酸配列を含むβ-ガラクトシダーゼ、配列番号9のアミノ酸配列を含むβ-ガラクトシダーゼ、及び配列番号10のアミノ酸配列を含むβ-ガラクトシダーゼからなる群より選択される一以上のβ-ガラクトシダーゼである、[17]に記載の酵素剤。
 [19]低乳糖牛乳、腸内ビフィズス菌増殖因子であるガラクトオリゴ糖、乳糖不耐症患者のための医薬又はサプリメントからなる群より選択される製品の製造のための、[1]~[6]及び[10]のいずれか一項に記載のβ-ガラクトシダーゼ又は[17]若しくは[18]に記載の酵素剤の使用。
 [20][1]~[6]及び[10]のいずれか一項に記載のβ-ガラクトシダーゼ又は[17]若しくは[18]に記載の酵素剤を使用して得られた、低乳糖牛乳、腸内ビフィズス菌増殖因子であるガラクトオリゴ糖、乳糖不耐症患者のための医薬又はサプリメント。
図1は、バチルス・サーキュランス由来のβ-ガラクトシダーゼ粗酵素溶液のハイドロキシアパタイト・クロマトグラフィーの溶出パターンである。280nmの吸光度は蛋白質を、420nmの吸光度はONPG法で測定したβ-ガラクトシダーゼ活性をそれぞれ表す。 図2は、得られた画分1(図1を参照)のアフィニティー・クロマトグラフィーによる溶出パターンである。280nmの吸光度は蛋白質濃度を、420nmの吸光度はONPG法で測定したβ-ガラクトシダーゼ活性をそれぞれ表す。 図3は、得られた画分2(図1を参照)のアフィニティー・クロマトグラフィーによる溶出パターンである。280nmの吸光度は蛋白質濃度を、420nmの吸光度はONPG法で測定したβ-ガラクトシダーゼ活性をそれぞれ表す。 図4は、4種の精製されたβ-ガラクトシダーゼβ-Gal1(レーン3)、β-Gal2(レーン4)、β-Gal3(レーン5)及びβ-Gal4(レーン6)のSDS-ポリアクリルアミドゲル電気泳動の結果である。レーン2には粗酵素粉末を供した。左端には使用した分子量マーカー(レーン1及び7)の分子量を表す。 図5は、大腸菌形質転換体の細胞破砕物の遠心上清のSDS-ポリアクリルアミドゲル電気泳動の結果である。レーン1はβ-Gal1、レーン2はβ-Gal2、レーン3はβ-Gal3、レーン4はβ-Gal4である。レーン5及び6は、大腸菌ベクター形質転換体の細胞破砕物の遠心上清である。矢印は、発現したβ-ガラクトシダーゼ蛋白質を示す。左端には使用した分子量マーカー(レーンM)の分子量を表す。
(用語)
 本発明において「アミノ酸配列をコードするDNA」とは、それを発現させた場合に当該アミノ酸配列を有するタンパク質が得られるDNA、即ち、当該アミノ酸配列に対応する塩基配列を有するDNAのことをいう。従ってコドンの縮重も考慮される。
 本明細書において用語「単離された」は「精製された」と交換可能に使用される。本発明の酵素(β-ガラクトシダーゼ)に関して使用する場合の「単離された」とは、本発明の酵素が天然材料に由来する場合、当該天然材料の中で当該酵素以外の成分を実質的に含まない(特に夾雑タンパク質を実質的に含まない)状態をいう。具体的には例えば、本発明の単離された酵素では、夾雑タンパク質の含有量は重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。一方、本発明の酵素が遺伝子工学的手法によって調製されたものである場合の用語「単離された」とは、使用された宿主細胞に由来する他の成分や培養液等を実質的に含まない状態をいう。具体的には例えば、本発明の単離された酵素では夾雑成分の含有量は重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。尚、それと異なる意味を表すことが明らかでない限り、本明細書において単に「β-ガラクトシダーゼ」と記載した場合は「単離された状態のβ-ガラクトシダーゼ」を意味する。β-ガラクトシダーゼの代わりに使用される用語「本酵素」についても同様である。
 DNAについて使用する場合の「単離された」とは、もともと天然に存在しているDNAの場合、典型的には、天然状態において共存するその他の核酸から分離された状態であることをいう。但し、天然状態において隣接する核酸配列(例えばプロモーター領域の配列やターミネーター配列など)など一部の他の核酸成分を含んでいてもよい。例えばゲノムDNAの場合の「単離された」状態では、好ましくは、天然状態において共存する他のDNA成分を実質的に含まない。一方、cDNA分子など遺伝子工学的手法によって調製されるDNAの場合の「単離された」状態では、好ましくは、細胞成分や培養液などを実質的に含まない。同様に、化学合成によって調製されるDNAの場合の「単離された」状態では、好ましくは、dNTPなどの前駆体(原材料)や合成過程で使用される化学物質等を実質的に含まない。尚、それと異なる意味を表すことが明らかでない限り、本明細書において単に「DNA」と記載した場合には単離された状態のDNAを意味する。
 β-ガラクトシダーゼは一般にラクトース分解活性(β-1,4結合に作用してラクトースを分解する活性)とガラクトシル転移活性(ガラクトースを転移する活性)を示す。そこで、本発明における「β-ガラクトシダーゼ活性」は当該二つの活性を含むものとする。ラクトース分解活性は実施例に示したラクトース法によって測定することができる。他方のガラクトシル転移活性は、実施例に示したONPG法による活性値と同ラクトース法による活性値の比を指標にして、表すことができる。[実施例に示したONPG法による活性値/同ラクトース法による活性値]の値が小さい方が、転移活性が高いことが知られている(非特許文献1)。
 本発明における「分子量」とは、特に断りのない場合は、SDS-PAGE(SDS-ポリアクリルアミドゲル電気泳動)で測定される分子量をいう。
(β-ガラクトシダーゼ)
 本発明の第1の局面は本発明者らが単離及び特徴付けに成功した、バチルス・サーキュランス由来のβ-ガラクトシダーゼを提供する。本発明のβ-ガラクトシダーゼは一態様において、その分子量が195 kDa(SDS-PAGEによる)である。本発明者らは、本β-ガラクトシダーゼを単離精製する過程において、他に分子量135 kDaのβ-ガラクトシダーゼ(β-Gal2)、86 kDaのβ-ガラクトシダーゼ(β-Gal3)及び160 kDaのβ-ガラクトシダーゼ(β-Gal4)(いずれもSDS-PAGEによる)が生産されていることを見出すととともに、これら3種類のβ-ガラクトシダーゼがいずれも一つの遺伝子から派生することを見出した。一方で、実際、C末端領域を半分以上欠失させた遺伝子が活性のあるβ-ガラクトシダーゼを発現することを確認した。これらの知見に基づき本発明は他の態様として、上記β-ガラクトシダーゼ(分子量が195 kDaのバチルス・サーキュランス由来のβ-ガラクトシダーゼ)の断片(以下、「本断片」という)からなるβ-ガラクトシダーゼを提供する。β-ガラクトシダーゼ活性を示す限りにおいて、本断片の長さは特に限定されないが、基準となるタンパク質の例えば5~98%、好ましくは40~95%、最も好ましくは55~75%のタンパク質を含む。また、基準となるタンパク質のN末端領域を含有することが好ましい。本断片の具体例は、本発明者らが見出した分子量135 kDaのβ-ガラクトシダーゼ(β-Gal2)、86 kDaのβ-ガラクトシダーゼ(β-Gal3)及び160 kDaのβ-ガラクトシダーゼ(β-Gal4)である。
 本断片はプロテアーゼ処理によっても得ることが出来る。例えば、精製した上記β-ガラクトシダーゼ(分子量が195 kDaのバチルス・サーキュランス由来のβ-ガラクトシダーゼ)をプロテアーゼ処理に供することによって本断片を得る。或いは、上記β-ガラクトシダーゼを含む、バチルス・サーキュランスの培養液をプロテアーゼで処理することによって本断片を得ることにしてもよい。使用するプロテアーゼに特段の制限はない。例えば、市販のプロテアーゼ剤や、バチルス・サーキュランスの生産する内在性のプロテアーゼを用いることができる。
 本発明のβ-ガラクトシダーゼは一態様において配列番号7のアミノ酸配列を含む。当該アミノ酸配列は配列番号6のアミノ酸配列からシグナルペプチド部分を除いたものである。尚、配列番号6のアミノ酸配列は、バチルス・サーキュランスからクローニングして得られた遺伝子の塩基配列(配列番号5)から推定されたアミノ酸配列である。配列番号7のアミノ酸配列を有する本発明のβ-ガラクトシダーゼは、アミノ酸数の相違と相同性の低さ(10~12%)から、これまで報告されていた3種類のバチルス・サーキュランス由来β-ガラクトシダーゼとは明らかに異なる、新規な酵素である。
 本発明の他の一態様は、配列番号7のアミノ酸配列の断片からなるβ-ガラクトシダーゼである。ここで断片は、好ましくは、配列番号7のアミノ酸配列の内、N末端からWSIGNEIY(配列番号18)までの領域を含む。当該部分配列(WSIGNEIY)は、推定活性領域である。断片の具体例として、配列番号8~10のいずれかの配列番号のアミノ酸配列を有するものを挙げることができる。配列番号8のアミノ酸配列はGal2に対応し、配列番号9のアミノ酸配列はGal3に対応し、配列番号10のアミノ酸配列はGal4に対応する。
 一般に、あるタンパク質のアミノ酸配列の一部に改変を施した場合において改変後のタンパク質が改変前のタンパク質と同等の機能を有することがある。即ちアミノ酸配列の改変がタンパク質の機能に対して実質的な影響を与えず、タンパク質の機能が改変前後において維持されることがある。この技術常識を考慮すれば、本発明のβ-ガラクトシダーゼ(配列番号7~10のいずれかのアミノ酸配列からなる)と比較した場合に、アミノ酸配列の僅かな相違が認められるものの、β-ガラクトシダーゼとしての機能に実質的な差が認められないものは、上記β-ガラクトシダーゼと実質同一の酵素とみなすことができる。ここでの「アミノ酸配列の僅かな相違」とは、典型的には、アミノ酸配列を構成する1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の欠失、置換、若しくは1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列に変異(変化)が生じていることをいう。「実質同一の酵素」のアミノ酸配列と、基準となる上記β-ガラクトシダーゼのアミノ酸配列との同一性(%)は、好ましくは90%以上であり、更に好ましくは95%以上であり、更に更に好ましくは98%以上であり、最も好ましくは99%以上である。尚、アミノ酸配列の相違は複数の位置で生じていてもよい。
 「アミノ酸配列の僅かな相違」は、好ましくは保存的アミノ酸置換により生じている。ここでの「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は好ましくは、同一のファミリー内のアミノ酸残基間の置換である。
 ここで、二つのアミノ酸配列の同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。配列同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、同一性(%)=同一位置の数/位置の総数 × 100)、好ましくは、アライメントの最適化に要したギャップの数およびサイズも考慮に入れる。二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、KarlinおよびAltschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68に記載され、KarlinおよびAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら (1990) J. Mol. Biol. 215:403-10に記載のNBLASTプログラムおよびXBLASTプログラム(バージョン2.0)に組み込まれている。例えば、XBLASTプログラムでscore = 50、wordlength = 3としてBLASTポリペプチド検索を行えば、同一性の高いアミノ酸配列を得ることが可能である。比較のためのギャップアライメントを得るためには、Altschulら (1997) Amino Acids Research 25(17):3389-3402に記載のGapped BLASTが利用可能である。BLASTおよびGapped BLASTを利用する場合は、対応するプログラム(例えばXBLASTおよびNBLAST)のデフォルトパラメータを使用することができる。詳しくは例えばNCBIのウェブページを参照されたい。配列の比較に利用可能な他の数学的アルゴリズムの例としては、MyersおよびMiller (1988) Comput Appl Biosci. 4:11-17に記載のアルゴリズムがある。このようなアルゴリズムは、例えばGENESTREAMネットワークサーバー(IGH Montpellier、フランス)またはISRECサーバーで利用可能なALIGNプログラムに組み込まれている。アミノ酸配列の比較にALIGNプログラムを利用する場合は例えば、PAM120残基質量表を使用し、ギャップ長ペナルティ=12、ギャップペナルティ=4とすることができる。二つのアミノ酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、Blossom 62マトリックスまたはPAM250マトリックスを使用し、ギャップ加重=12、10、8、6、又は4、ギャップ長加重=2、3、又は4として決定することができる。
(β-ガラクトシダーゼ遺伝子)
 本発明の第2の局面はβ-ガラクトシダーゼ遺伝子に関する。一態様において本発明の遺伝子は、配列番号6又は7のアミノ酸配列をコードするDNAを含む。当該態様の具体例は、配列番号5の塩基配列からなるDNAである。
 ところで、一般に、あるタンパク質をコードするDNAの一部に改変を施した場合において、改変後のDNAがコードするタンパク質が、改変前のDNAがコードするタンパク質と同等の機能を有することがある。即ちDNA配列の改変が、コードするタンパク質の機能に実質的に影響を与えず、コードするタンパク質の機能が改変前後において維持されることがある。そこで本発明は他の態様として、配列番号5の塩基配列と等価な塩基配列を有し、β-ガラクトシダーゼ活性をもつタンパク質をコードするDNA(以下、「等価DNA」ともいう)を提供する。ここでの「等価な塩基配列」とは、配列番号5に示す核酸と一部で相違するが、当該相違によってそれがコードするタンパク質の機能(ここではβ-ガラクトシダーゼ活性)が実質的な影響を受けていない塩基配列のことをいう。
 等価DNAの具体例は、配列番号5の塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAである。ここでの「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。
 等価DNAの他の具体例として、配列番号5に示す塩基配列を基準として1若しくは複数(好ましくは1~数個)の塩基の置換、欠失、挿入、付加、又は逆位を含む塩基配列からなり、β-ガラクトシダーゼ活性を有するタンパク質をコードするDNAを挙げることができる。塩基の置換や欠失などは複数の部位に生じていてもよい。ここでの「複数」とは、当該DNAがコードするタンパク質の立体構造におけるアミノ酸残基の位置や種類によっても異なるが例えば2~40塩基、好ましくは2~20塩基、より好ましくは2~10塩基である。以上のような等価DNAは例えば、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)による変異の導入などを利用して、塩基の置換、欠失、挿入、付加、及び/又は逆位を含むように、配列番号5に示す塩基配列を有するDNAを改変することによって得ることができる。また、紫外線照射など他の方法によっても等価DNAを得ることができる。
 等価DNAの更に他の例として、SNP(一塩基多型)に代表される多型に起因して上記のごとき塩基の相違が認められるDNAを挙げることができる。
 ここで、後述の実施例に示す通り、配列番号7のアミノ酸配列(Gal1)の断片である配列番号8~10のアミノ酸配列からなるタンパク質(Gal2、Gal3及びGal4)が高いβ-ガラクトシダーゼ活性を示した。この事実に基づき本発明の一態様は、配列番号7に示すアミノ酸配列において60%未満、好ましくは45%未満、更に好ましくは25%未満の変化を生じている配列又はその断片からなるタンパク質をコードするβ-ガラクトシダーゼ遺伝子を提供する。
 本発明の遺伝子は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって単離された状態に調製することができる。具体的には、適当なバチルス・サーキュランスのゲノムDNAライブラリー又はcDNAライブラリー、或はバチルス・サーキュランスの菌体内抽出液から、本発明の遺伝子に対して特異的にハイブリダイズ可能なオリゴヌクレオチドプローブ・プライマーを適宜利用して調製することができる。オリゴヌクレオチドプローブ・プライマーは、市販の自動化DNA合成装置などを用いて容易に合成することができる。尚、本発明の遺伝子を調製するために用いるライブラリーの作製方法については、例えばMolecular Cloning, Third Edition, Cold Spring Harbor Laboratory Press, New Yorkを参照できる。
 例えば、配列番号5の塩基配列を有する遺伝子であれば、当該塩基配列又はその相補配列の全体又は一部をプローブとしたハイブリダイゼーション法を利用して単離することができる。また、当該塩基配列の一部に特異的にハイブリダイズするようにデザインされた合成オリゴヌクレオチドプライマーを用いた核酸増幅反応(例えばPCR)を利用して増幅及び単離することができる。また、配列番号6に示すアミノ酸配列や配列番号5の塩基配列の情報を元にして、化学合成によって目的とする遺伝子を得ることもできる(参考文献:Gene,60(1), 115-127 (1987))。
(組換えベクター)
 本発明のさらなる局面は本発明のβ-ガラクトシダーゼ遺伝子を含有する組換えベクターに関する。本明細書において用語「ベクター」は、それに挿入された核酸分子を細胞等のターゲット内へと輸送することができる核酸性分子をいい、その種類、形態は特に限定されるものではない。従って、本発明のベクターはプラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、ヘルペスウイルスベクター等)の形態をとり得る。
 使用目的(クローニング、タンパク質の発現)に応じて、また宿主細胞の種類を考慮して適当なベクターが選択される。ベクターの具体例を挙げれば、大腸菌を宿主とするベクター(M13ファージ又はその改変体、λファージ又はその改変体、pBR322又はその改変体(pB325、pAT153、pUC8など)など)、酵母を宿主とするベクター(pYepSec1、pMFa、pYES2等、昆虫細胞を宿主とするベクター(pAc、pVLなど)、哺乳類細胞を宿主とするベクター(pCDM8、pMT2PCなど)等である。
 本発明の組換えベクターは好ましくは発現ベクターである。「発現ベクター」とは、それに挿入された核酸を目的の細胞(宿主細胞)内に導入することができ、且つ当該細胞内において発現させることが可能なベクターをいう。発現ベクターは通常、挿入された核酸の発現に必要なプロモーター配列や発現を促進させるエンハンサー配列等を含む。選択マーカーを含む発現ベクターを使用することもできる。かかる発現ベクターを用いた場合には選択マーカーを利用して発現ベクターの導入の有無(及びその程度)を確認することができる。
 本発明の遺伝子のベクターへの挿入、選択マーカー遺伝子の挿入(必要な場合)、プロモーターの挿入(必要な場合)等は標準的な組換えDNA技術(例えば、Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press, New Yorkを参照することができる、制限酵素及びDNAリガーゼを用いた周知の方法)を用いて行うことができる。
(形質転換体)
 本発明は更に、本発明の遺伝子が導入された宿主細胞(形質転換体)に関する。本発明の形質転換体では、本発明の遺伝子が外来性の分子として存在することになる。本発明の形質転換体は、好ましくは、上記本発明のベクターを用いたトランスフェクション乃至はトランスフォーメーションによって調製される。トランスフェクション、トランスフォーメーションはリン酸カルシウム共沈降法、エレクトロポーレーション(Potter, H. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7161-7165(1984))、リポフェクション(Felgner, P.L. et al.,  Proc. Natl. Acad. Sci. U.S.A. 84,7413-7417(1984))、マイクロインジェクション(Graessmann, M. & Graessmann,A., Proc. Natl. Acad. Sci. U.S.A. 73,366-370(1976))、Hanahanの方法(Hanahan, D., J. Mol. Biol. 166, 557-580(1983))、酢酸リチウム法(Schiestl, R.H. et al., Curr. Genet. 16, 339-346(1989))、プロトプラスト-ポリエチレングリコール法(Yelton, M.M. et al., Proc. Natl. Acad. Sci. 81, 1470-1474(1984))等によって実施することができる。
 宿主細胞は、本発明のβ-ガラクトシダーゼが発現する限りにおいて特に限定されず、例えばBacillus subtillus、Bacillus likemiformis、Bacillus circulansなどのBacillus属細菌、Lactococcus、Lactobacillus、Streptococcus、Leuconostoc、Bifidobacteriumなどの乳酸菌、Escherichia、Streptomycesなどのその他の細菌、Saccharomyces、Kluyveromyces、Candida、Torula、Torulopsis、などの酵母、Aspergillus oryzae、Aspergillus nigerなどのAspergillus属、Penicillium属、Trichoderma属、Fusarium属などの糸状菌(真菌)などより選択される。
(β-ガラクトシダーゼの製造法)
 本発明の更なる局面はβ-ガラクトシダーゼの製造法を提供する。本発明の製造法の一態様では上記の形質転換体を用いてβ-ガラクトシダーゼを製造する。この態様の製造法ではまず、それに導入された遺伝子によってコードされるタンパク質が産生される条件下で上記の形質転換体を培養する(ステップ(1))。様々なベクター宿主系に関して形質転換体の培養条件が公知であり、当業者であれば適切な培養条件を容易に設定することができる。
 培養法及び培養条件は、目的のタンパク質であるβ-ガラクトシダーゼが生産されるものである限り特に限定されない。即ち、β-ガラクトシダーゼが生産されることを条件として、使用する微生物の培養に適合した方法や培養条件を適宜設定できる。培養法としては液体培養、固体培養のいずれでも良いが、好ましくは液体培養が利用される。液体培養を例にとり、その培養条件を説明する。
 培地としては、使用する形質転換体が生育可能な培地であれば、如何なるものでも良い。例えば、グルコース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩を添加したものを用いることができる。使用する形質転換体の生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。培地のpHは例えば約3~10、好ましくは約7~8程度に調整し、培養温度は通常約10~50℃、好ましくは約20~37℃程度で、1~7日間、好ましくは3~4日間程度好気的条件下で培養する。培養法としては例えば振盪培養法、ジャー・ファーメンターによる好気的深部培養法が利用できる。
 培養ステップに続き、産生されたタンパク質(β-ガラクトシダーゼ)を回収する(ステップ(2))。培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより本酵素を得ることができる。他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理などによって破砕した後、上記と同様に分離、精製を行うことにより目的のタンパク質を得ることができる。尚、ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。
 β-ガラクトシダーゼの精製度は特に限定されない。また、最終的な形態は液体状であっても固体状(粉体状を含む)であってもよい。
(酵素剤)
 本発明のβ-ガラクトシダーゼは例えば酵素剤の形態で提供される。酵素剤は、有効成分(本発明のβ-ガラクトシダーゼ)の他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水などを含有していてもよい。賦形剤としては乳糖、ソルビトール、D-マンニトール、白糖等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。
 本発明の酵素剤の一態様では、有効成分として、配列番号7のアミノ酸配列を含むβ-ガラクトシダーゼ、配列番号8のアミノ酸配列を含むβ-ガラクトシダーゼ、配列番号9に示すアミノ酸配列を含むβ-ガラクトシダーゼ、及び配列番号10に示すアミノ酸配列を含むβ-ガラクトシダーゼからなる群より選択される一以上のβ-ガラクトシダーゼが用いられる。一態様として、これら4種類のβ-ガラクトシダーゼを全て含む酵素剤が提供される。
(β-ガラクトシダーゼの用途)
 本発明の更なる局面は本発明のβ-ガラクトシダーゼ又は酵素剤の用途を提供する。用途の例は、低乳糖牛乳の製造、腸内ビフィズス菌増殖因子であるガラクトオリゴ糖の製造、或いは乳糖不耐症患者のための医薬やサプリメントの製造である。本発明のβ-ガラクトシダーゼ又は酵素剤の使用によって原材料中の乳糖を低減することができる。例えば、生乳1mLに対して1Uのβ-ガラクトシダーゼを添加し、10℃の低温下で放置することによって、乳糖が分解され、低乳糖牛乳が得られる。ガラクトオリゴ糖の製造においては、例えば、予め加熱溶解させた40%乳糖液(pH 7.0)に100LUのβ-ガラクトシダーゼを加え、40℃、5時間放置し、ガラクトオリゴ糖を生成させる。尚、ガラクトオリゴ糖はGal-(Gal)n-Glc(nは通常0~3)で表される(Gal:ガラクトース残基、Glc:グルコース残基)。結合様式にはβ1-6、β1-3、β1-4、β1-2の他、α1-3、α1-6などがある。
1.バチルス・サーキュランス由来のβ-ガラクトシダーゼの精製
(a)β-ガラクトシダーゼ活性測定法
 以下の精製においては、β-ガラクトシダーゼ活性測定は2-ニトロフェニルβ-D-ガラクトピラノシド(ONPG)を基質とした方法(i)とラクトースを基質とした方法(ii)の2種類で測定した。いずれも非特許文献1に記載の方法に従って実施した。また蛋白質濃度は280nmの吸光度で表した。
i) ONPG法
 0.245% ONPGを含む100mMリン酸緩衝液(pH 6.0)1.98 mlを40℃、10分予温した。ここにサンプル20μlを添加し、40℃、10分反応後、10%炭酸ナトリウム溶液2.0 mlを加えて反応を停止した。反応液の420 nmにおける吸光度を測定し、1分間につき1μmolの2-ニトロフェノールを生成する際の活性を1Uとしてβ-ガラクトシダーゼ活性を算出した。
ii) ラクトース法
 5%ラクトースを含む100 mMリン酸緩衝液(pH 6.0)2 mlを40℃、10分予温した。ここにサンプル50μlを添加し、40℃、15分反応後、沸騰浴中で煮沸して反応を停止した。反応液100μlについてグルコスタット法にてグルコース濃度を測定した。即ち、反応液100μlに0.1 N水酸化ナトリウム溶液100μlを加えて1分間放置し、続いて0.1 N酢酸、3 mlの酢酸緩衝液(pH 5.0)を添加した。この溶液にグルコスタット液(小野薬品工業社)500μlを添加して550 nmにおける吸光度の増加速度を測定し、1分間につき1μmolのグルコースを生成する際の活性を1Uとしてラクトース分解活性を算出した。
(b)β-ガラクトシダーゼの粗酵素粉末の調製
 バチルス・サーキュランス(Bacillus circulans)ATCC31382を、3.0%大豆ペプトン、2.5%肉エキス、1.0%酵母エキス、0.5%乳糖を含む液体培地に接種し、30℃、3日間振とう培養した。遠心分離により菌体を除いて得られた培養上清を、限外ろ過膜(AIP-1013D、旭化成社製)に供し5倍濃縮した。得られた濃縮液を噴霧乾燥し、β-ガラクトシダーゼの粗酵素粉末を得た。
(c)β-ガラクトシダーゼの精製
 得られた粗酵素粉末を10 mMリン酸ナトリウム緩衝液(pH 6.0)中に5.0%の濃度で溶解した溶液50 mlを、同緩衝液で平衡化したヒドロキシアパタイトゲルカラム(CHTTM Ceramic hydroxyapataite、BIO-RAD社製、内径2.5 cm、長さ25 cm)に供し、10 mMリン酸ナトリウム緩衝液(pH 6.0)を用いて未吸着タンパク質を溶出させた。その後、リン酸ナトリウム緩衝液濃度を100 mM、150 mM、200 mM、300 mM及び500 mMの順に変化させる段階溶出法で、酵素を溶出させた。本クロマトグラフィーは室温で行った。図1に示すように、リン酸ナトリウム緩衝液濃度が100 mM、150 mM、300-500 mMにおいてβ-ガラクトシダーゼ(ONPG)活性を示す酵素が溶出し、それぞれの画分を順に画分1、2、3とした。画分3に含まれる酵素は、SDS-ポリアクリルアミドゲル電気泳動で分子量195 kDaのほぼ単一の蛋白質であり、β-Gal1と呼称した。
 次に、画分1をアフィニティー・クロマトグラフィーにより分離精製を行った。先ず、画分1を50 mM 酢酸緩衝液(pH 5.8)に対して透析を行った。透析された酵素液を、同緩衝液により平衡化したアフィニティゲルカラム(p-Aminobenzyl-1-thio-β-D-galactopyranoside-agarose、Sigma社製、直径1.6 cm、長さ18 cm)にかけ、同緩衝液で未吸着タンパク質を溶出させた後に、4℃においてpHを5.8から3.5に変化させる直線勾配法(50 mM 酢酸緩衝液(pH 5.8)/50 mM 酢酸緩衝液, (pH 3.5))で溶出させた。画分1に示すように、洗浄画分とpH 4.4前後にそれぞれβ-ガラクトシダーゼ活性を有する酵素が溶出した。これらはSDS-ポリアクリルアミドゲル電気泳動でほぼ単一のバンドを示し、分子量はそれぞれ135 kDa、86 kDaであった。前者をβ-Gal2、後者をβ-Gal3と呼称した。
 一方、画分2を、画分1と同様にアフィニティー・クロマトグラフィーにより分離精製した。画分2を50 mM酢酸緩衝液(pH 5.8)に対して透析を行い、同緩衝液により平衡化した上記アフィニティカラムに供した。図2の場合と同様に、同緩衝液で未吸着タンパク質を溶出させた後に、4℃においてpHを5.8から3.5に変化させる直線勾配法により溶出させた。図3に示すように、洗浄画分とpH 4.4前後にそれぞれβ-ガラクトシダーゼ活性を有する酵素が溶出した。これらはSDS-ポリアクリルアミドゲル電気泳動でほぼ単一のバンドを示し、分子量はそれぞれ86 kDa、160 kDaであった。前者はβ-Gal3と同一であり、後者をβ-Gal4と呼称した。図4に、粗酵素標品(レーン2)と精製されたβ-Gal1(レーン3)、β-Gal2(レーン4)、β-Gal3(レーン5)及びβ-Gal4(レーン6)の10% SDS-PAGEの解析結果を示す。
2.バチルス・サーキュランス由来の精製β-ガラクトシダーゼの諸性質
 精製した4種類のβ-ガラクトシダーゼの主な性質を調べた。
(a)比活性の測定
 基質としてONPG(終濃度0.24%)及びラクトース(終濃度4.88%)を用いた場合の活性を、40℃、100 mMリン酸緩衝液pH 6中で測定した。結果を表1に示す。なお、基質としてONPGを用いた場合は、40℃、pH6の条件で、生成物ニトロフェノール1μmolを1分間に生成する酵素量を1Uと定義し、基質としてラクトースを用いた場合は、40℃、pH6の条件で、生成物グルコース1μmolを1分間に生成する酵素量を1Uと定義した。表1に示す通り、ラクトースに対する分解活性に比べONPGに対する分解活性がβ-Gal1は高く、β-Gal2、β-Gal3及びβ-Gal4は低いことが判る。
Figure JPOXMLDOC01-appb-T000001
(b)分子量の決定
 4種類のβ-ガラクトシダーゼの分子量を、Matrix Assisted Laser Desorption / Ionization, MALDI分析計を用いて求めた。サンプルは0.1μl 10 mg/ml Sinapinic acid/0.1μl 0.7-3mg/ml酵素溶液の混合溶液を用いた。結果、β-Gal1は189.283 kDa、β-Gal2は134.788 kDa、β-Gal3は91.027 kDa、β-Gal4は153.932 kDaであった(表1)。またSDS-ポリアクリルアミドゲル電気泳動で求めた分子量(図4)を表1のカッコ内に示した。質量分析計による分子量は、いずれの酵素の場合もSDS-ポリアクリルアミドゲル電気泳動から求めた分子量に近い結果を示した。
(c)N末端アミノ酸配列の決定
 プロテインシークエンサーにより、4種類のβ-ガラクトシダーゼのN末端アミノ酸配列の解析を行った。その結果、β-Gal1には2種類の配列、GNSVSYDGERRVNFNEN(配列番号1)及びSVSYDGERRVNFNEN(配列番号17)が含まれていることが明らかにされた。しかし、この2種類の配列は、N末端にGNが有るか否かの違いであり、基本的には同じ配列であることがわかった。またβ-Gal2、β-Gal3、β-Gal4のN末端アミノ酸配列もβ-Gal1と同様であった。
(d)内部アミノ酸配列の決定
 次にβ-Gal1、β-Gal2、β-Gal3の精製酵素を1~2mg/mlに調製し、これにトリプシン(0.5mg/ml)を加えて37℃でインキュベートした。48時間後に8% SDS-ポリアクリルアミドゲル電気泳動に供した。いずれの酵素からも70 kDaのバンドが検出された。泳動後のゲルをニトロセルロース膜に転写しクマージーブリリアントブルーで染色した。染色されたバンドの中から各酵素由来の70 kDaのバンドを切り出し、プロテインシーケンサーでアミノ酸配列を解析した。結果、各酵素由来の70 kDa蛋白質のN末端5残基の配列が一致した。また、β-Gal3由来の70 kDa蛋白質のN末端15残基のアミノ酸配列はEDRADVNIKTKISND(配列番号2)であった。
3.バチルス・サーキュランス由来のβ-ガラクトシダーゼをコードする遺伝子断片の取得
(a)染色体DNAの単離
 バチルス・サーキュランス(Bacillus circulans)ATCC31382の菌体から斉藤・三浦の方法(非特許文献5)により染色体DNAを調製した。
(b)PCRによるDNAプローブの作製
 2.で決定したN末端アミノ酸配列および内部アミノ酸配列をもとに2種のオリゴヌクレオチド(配列番号3、4)を合成し、PCRプライマーとした。これらのプライマーを用い、バチルス・サーキュランスの染色体DNAを鋳型として、以下の条件にてPCR反応を行った。
 <PCR 反応液>
 10×PCR反応緩衝液(TaKaRa社) 5.0μl
 dNTP混合液(それぞれ2.5 mM、TaKaRa社) 8.0μl
 25mM MgCl2 5.0μl
 50μM センス・プライマー 0.5μl
 50μM アンチセンス・プライマー 0.5μl
 蒸留水 29.5μl
 染色体DNA溶液(100μg/ml) 1.0μl
 LA Taq DNAポリメラーゼ(TaKaRa社) 0.5μl
 <PCR反応条件>
 ステージ1: 変性(95℃、5分) 1サイクル
 ステージ2: 変性(95℃、1分) 30サイクル
 アニール(52℃、1分)
 伸長(72℃、1分)
 ステージ3: 伸長(72℃、10分) 1サイクル
 得られた約0.6 kbのDNA断片をpGEM-Teasy(Promega社)にクローニング後、塩基配列を確認したところ、センス・プライマーの直後とアンチセンス・プライマーの直前に、上記の部分アミノ酸配列をコードする塩基配列が見出された。本DNA断片を全長遺伝子クローニングのためのDNAプローブとした。
(c)遺伝子ライブラリーの作製
 バチルス・サーキュランスの染色体DNAのサザン・ハイブリダイゼーション解析の結果、SpeI分解物中にプローブDNAとハイブリダイズする約8.2kbのシングルバンドが確認された。この約8.2kbのSpeI DNA断片をクローニングするため、以下の様に遺伝子ライブラリーを作製した。上記(a)で調製した染色体DNAのSpeI処理を行った。染色体DNA50μg、10×M 緩衝液40μl、蒸留水342.0μl、及びSpeIを8.0μl混合し、37℃で15時間処理した。得られた分解物をSpeI処理したpBluescript II KS+ベクター(Stratagene 社)にライゲーションし、遺伝子ライブラリーを得た。
(d)遺伝子ライブラリーのスクリーニング
 上記(b)で得た0.6 kbのDNA断片をDIG-High Prime(Roche社)を用いてラベルした。これをDNAプローブとして、(c)で得た遺伝子ライブラリーをコロニー・ハイブリダイゼーションによりスクリーニングした。得られたポジティブコロニーからプラスミドpBlue-Gal1を得た。
(e)塩基配列の決定
 プラスミドpBlue-Gal1の塩基配列を定法に従って決定した。バチルス・サーキュランス由来β-ガラクトシダーゼをコードする塩基配列(5214 bp)を配列番号5に示す。また、配列番号5によりコードされるアミノ酸配列(1738アミノ酸)を配列番号6に示す。このアミノ酸配列中には、2.で決定したN末端領域アミノ酸配列(配列番号1)及び内部アミノ酸配列(配列番号2)が見出された。興味深いことに、本遺伝子における開始コドンはGTGと考えられた。尚、配列番号6のアミノ酸配列からシグナルペプチドを除いたアミノ酸配列を配列番号7に示す。
4.バチルス・サーキュランス由来のβ-ガラクトシダーゼβ-Gal1、β-Gal2、β-Gal4の大腸菌での発現
(a)β-ガラクトシダーゼの大腸菌での発現プラスミドの構築
 分子量189.3 kDa、134.8 k Da、153.9 k Da(質量分析の値)のβ-Gal1、β-Gal2、β-Gal4に相当する蛋白質のN末端領域アミノ酸配列が共通であることから、これをコードするDNA配列をもとに、1種のオリゴヌクレオチドF-Gal(配列番号11)を合成した。また、それぞれ推定されるC末端領域アミノ酸配列をコードするDNA配列をもとに、3種のオリゴヌクレオチドR-Gal1、R-Gal2、R-Gal4(配列番号12、13、14)を合成し、PCRプライマーとした。センス・プライマーF-GalにはSacI制限酵素認識部位を、アンチセンス・プライマーR-Gal1、R-Gal2、R-Gal4にはSalI制限酵素認識部位を付加した。これらのプライマーと、β-ガラクトシダーゼ遺伝子を有する染色体DNAを鋳型として、以下の条件にてPCR反応を行った。
 <PCR反応液>
 10×PCR反応緩衝液(TOYOBO社) 5.0μl
 dNTP混合液(それぞれ2.5 mM、TOYOBO社) 5.0μl
 10μM センス・プライマー 1.5μl
 10μM アンチセンス・プライマー 1.5μl
 25mM MgSO4 2.0μl
 蒸留水 33.0μl
 染色体DNA溶液(200μg/ml) 1.0μl
 KOD -Plus- DNA ポリメラーゼ(TOYOBO社) 1.0μl
 <PCR反応条件>
 ステージ1: 変性(94℃、2分) 1サイクル
 ステージ2: 変性(94℃、15秒) 30サイクル
 アニール(57℃、30秒)
 伸長(68℃、5分)
 得られたPCR産物を電気泳動にて確認後、エタノール沈殿により脱塩(69μl)した。続いて15μlの10×T緩衝液、10μlの0.1% BSA溶液及びSacI 3μlとSalI 3μlを加え、37℃で15時間酵素処理した。制限酵素処理液を電気泳動にて確認し、NucleoSpin Extract II(日本ジェネティクス社)で精製後、予めSacIとSalIで処理したベクターpCold II DNA(タカラバイオ社)にβ-Gal1、β-Gal2、β-Gal4断片をライゲーションして発現プラスミドpCold-Gal1、Gal2、Gal4を得た。
(b)β-ガラクトシダーゼの大腸菌での発現
 発現プラスミドpCold-Gal1、Gal2、Gal4を大腸菌BL21 Competent Cells(タカラバイオ社)に導入した。アンピシリン耐性株として得られた形質転換体の中から、コロニーPCRにより目的のβ-ガラクトシダーゼ遺伝子が挿入されたpCold-Gal1、Gal2、Gal4を保有する菌株を選別した。また対照として発現ベクターpCold II DNAを有する大腸菌BL21の形質転換体も得た。これらの形質転換体を100μg/mlのアンピシリンを含有するLB培地1 mlに植菌し、37℃、170rpmでO.D600=0.4-1.0に到達するまで培養した(前培養)。続いて、前培養液300μlを100μg/mlのアンピシリンを含有するLB培地9 mlに植菌し、37℃、170rpmでO.D600=0.4-1.0に到達するまで培養した。15℃、30分放置後、0.1 M IPTGを9μl添加し、15℃、160rpmで24時間培養(本培養)、集菌した。菌体を1.0 mlの100mMリン酸緩衝液(pH 6.0)に懸濁し、φ0.1mmのガラスビーズを0.50g加え、マルチビーズショッカー(安井機械社)にて菌体を破砕した。破砕条件は、ON 120秒、OFF 60秒を 3.75 サイクル繰り返した。得られたCell free-extractを遠心分離に供し、可溶性成分を得た。
(c)β-ガラクトシダーゼの発現確認
 取得した可溶性成分をSDS-PAGEに供した。電気泳動装置としてPhastSystem(GE Healthcare 社)を、分離ゲルとしてPhastGel Homogeneous 7.5(GE Healthcare 社)を使用した。その結果、図5に示すように、pCold-Gal1では189kDa付近に、pCold-Gal2では135kDa付近に、pCold-Gal4では154kDa付近にそれぞれβ-Gal1、β-Gal2、β-Gal4と考えられる有意なタンパク質の生産が確認された。対照であるpCold II DNAでは同様のタンパク質の生産が確認されなかったため、本タンパク質はそれぞれβ-ガラクトシダーゼ遺伝子β-Gal1、β-Gal2、β-Gal4の導入に因るものと考えられた。
 また、同じサンプルについてONPG及びラクトースを基質としたβ-ガラクトシダーゼ活性を測定した。活性測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 いずれにおいても、ONPGを基質とした場合は対照の4倍以上、ラクトースを基質とした場合は対照に比べて明らかなβ-ガラクトシダーゼ活性が検出され、目的のβ-ガラクトシダーゼβ-Gal1、β-Gal2、β-Gal4の発現が確認された。
5.バチルス・サーキュランス由来のβ-ガラクトシダーゼβ-Gal3の大腸菌での発現
(a)β-ガラクトシダーゼの大腸菌での発現プラスミドの構築
 上記と同様に、β-Gal3の発現プラスミドを構築した。分子量91.0 kDa(質量分析の値)のβ-Gal3に相当する蛋白質のN末端領域アミノ酸配列および推定C末端領域アミノ酸配列をコードするDNA配列をもとに、2種のオリゴヌクレオチド(配列番号15、16)を合成し、PCRプライマーとした。センス・プライマーF-Gal3にはNdeI制限酵素認識部位を、アンチセンス・プライマーR-Gal3にはXbaI制限酵素認識部位を付加した。これらのプライマーと、β-ガラクトシダーゼ遺伝子を有する染色体DNAを鋳型として、以下の条件にてPCR反応を行った。
 <PCR反応液>
 10×PCR反応緩衝液(TOYOBO社) 5.0μl
 dNTP混合液(それぞれ2.5 mM、TOYOBO社) 5.0μl
 10μM センス・プライマー 1.5μl
 10μM アンチセンス・プライマー 1.5μl
 25mM MgSO4 2.0μl
 蒸留水 33.0μl
 染色体DNA溶液(200μg/ml) 1.0μl
 KOD-Plus-DNAポリメラーゼ(TOYOBO社) 1.0μl
 <PCR反応条件>
 ステージ1: 変性(94℃、2分) 1サイクル
 ステージ2: 変性(94℃、15秒) 30サイクル
 アニール(57℃、30秒)
 伸長(68℃、3分)
 得られたPCR産物を電気泳動にて確認後、エタノール沈殿により脱塩(84μl)した。続いて、10μlの適当な緩衝液及びNdeI 3μlとXbaI 3μlとを加え、37℃で15時間酵素処理した。制限酵素処理液を電気泳動にて確認し、NucleoSpin Extract IIで精製後、予めNdeI及びXbaIで処理したベクターpCold III DNAにライゲーションして発現プラスミドpCold-Gal3を得た。
(b)β-ガラクトシダーゼの大腸菌での発現
 発現プラスミドpCold-Gal3を大腸菌BL21 Competent Cellsに導入した。アンピシリン耐性株として得られた形質転換体の中から、コロニーPCRにより目的のβ-ガラクトシダーゼ遺伝子が挿入されたpCold-Gal3を保持する菌株を選別した。また対照として発現ベクターpCold III DNAを有する大腸菌BL21の形質転換体も得た。これらの形質転換体を100μg/mlのアンピシリンを含有するLB培地1 mlに植菌し、37℃、170rpmでO.D600=0.4-1.0に到達するまで培養した(前培養)。続いて、前培養液300μlを100μg/mlのアンピシリンを含有する LB培地9 mlに植菌し、37℃、170rpmでO.D600=0.4-1.0に到達するまで培養した。15℃、30分処理後、0.1 M IPTGを9μl添加し、15℃、160rpmで24時間培養(本培養)、集菌した。菌体を1.0 mlの100mMリン酸緩衝液(pH 6.0)に懸濁し、φ0.1mmのガラスビーズを0.50g加え、マルチビーズショッカーにて菌体を破砕した。破砕条件は、ON 120秒、OFF 60秒を3.75サイクル繰り返した。得られたCell free-extractを遠心分離に供し、可溶性成分を得た。
(c)β-ガラクトシダーゼの発現確認
 4.と同様に取得した可溶性成分をSDS-PAGEに供した。電気泳動装置としてPhastSystemを、分離ゲルとしてPhastGel Homogeneous 7.5を使用した。その結果、図5に示すように、pCold-Gal3では91kDa付近にβ-Gal3と考えられる有意なタンパク質の生産が確認された。対照であるpCold III DNAでは同様のタンパク質の生産が確認されなかったため、本タンパク質はβ-ガラクトシダーゼ遺伝子β-Gal3の導入に因るものと考えられた。
 また同じサンプルについてONPG及びラクトースを基質としたβ-ガラクトシダーゼ活性を測定した。活性測定結果を表3に示す。ONPGを基質とした場合は対照の5倍以上、ラクトースを基質とした場合は対照の200倍以上のβ-ガラクトシダーゼ活性が検出され、目的のβ-ガラクトシダーゼβ-Gal3の発現が確認された。
Figure JPOXMLDOC01-appb-T000003
 本発明はバチルス・サーキュランス由来の新規なβ-ガラクトシダーゼを提供する。本発明のβ-ガラクトシダーゼは産業上有用であり、例えば、牛乳、乳製品、発酵乳製品、ガラクトオリゴ糖又は食事サプリメントの製造に利用される。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
 配列番号3、4、11~16:人工配列の説明:プライマー

Claims (20)

  1.  分子量が195 kDa(SDS-PAGEによる)である、バチルス・サーキュランス由来のβ-ガラクトシダーゼ。
  2.  請求項1に記載のβ-ガラクトシダーゼの断片からなる、バチルス・サーキュランス由来のβ-ガラクトシダーゼ。
  3.  配列番号7のアミノ酸配列、又はβ-ガラクトシダーゼ活性を示すその断片からなる、β-ガラクトシダーゼ。
  4.  前記断片が、配列番号7のアミノ酸配列の内、N末端からWSIGNEIY(配列番号18)までの領域を含む、請求項3に記載のβ-ガラクトシダーゼ。
  5.  前記断片が、配列番号8~10のいずれかの配列番号のアミノ酸配列を含む、請求項3に記載のβ-ガラクトシダーゼ。
  6.  配列番号5の配列を含むDNAによってコードされる、請求項3に記載のβ-ガラクトシダーゼ。
  7.  以下の(a)~(e)からなる群より選択されるいずれかのDNAからなるβ-ガラクトシダーゼ遺伝子:
     (a)配列番号6又は7のアミノ酸配列をコードするDNA;
     (b)配列番号5の配列を含むDNA;
     (c)配列番号5の配列に相補的な配列に対してストリンジェントな条件下でハイブリダイズするDNA;
     (d)配列番号5の配列のDNA配列縮重体であるDNA;
     (e)配列番号5の配列を基準として1若しくは複数の塩基の置換、欠失、挿入、付加又は逆位を含む配列からなり、β-ガラクトシダーゼ活性を有するタンパク質をコードするDNA。
  8.  β-ガラクトシダーゼ活性を有するタンパク質が、配列番号7のアミノ酸配列において60%未満、好ましくは45%未満、更に好ましくは25%未満の変化を生じている配列又はその断片からなる、請求項7に記載のβ-ガラクトシダーゼ遺伝子。
  9.  前記変化が保存的アミノ酸置換である、請求項8に記載のβ-ガラクトシダーゼ遺伝子。
  10.  請求項7~9のいずれか一項に記載のβ-ガラクトシダーゼ遺伝子がコードするβ-ガラクトシダーゼ。
  11.  請求項7~9のいずれか一項に記載のβ-ガラクトシダーゼ遺伝子を含む組換えベクター。
  12.  発現ベクターである、請求項11に記載の組換えベクター。
  13.  請求項7~9のいずれか一項に記載のβ-ガラクトシダーゼ遺伝子が導入されている形質転換体。
  14.  請求項11又は12に記載の組換えベクターが導入されている形質転換体。
  15.  細菌細胞、酵母細胞又は真菌細胞である、請求項13又は14に記載の形質転換体。
  16.  以下のステップ(1)及び(2)を含む、β-ガラクトシダーゼの製造法:
     (1)請求項13~15のいずれか一項に記載の形質転換体を、前記β-ガラクトシダーゼ遺伝子がコードするタンパク質が産生される条件下で培養するステップ;
     (2)産生された前記タンパク質を回収するステップ。
  17.  請求項1~6及び10のいずれか一項に記載のβ-ガラクトシダーゼを有効成分とする酵素剤。
  18.  前記有効成分が、配列番号7のアミノ酸配列を含むβ-ガラクトシダーゼ、配列番号8のアミノ酸配列を含むβ-ガラクトシダーゼ、配列番号9のアミノ酸配列を含むβ-ガラクトシダーゼ、及び配列番号10のアミノ酸配列を含むβ-ガラクトシダーゼからなる群より選択される一以上のβ-ガラクトシダーゼである、請求項17に記載の酵素剤。
  19.  低乳糖牛乳、腸内ビフィズス菌増殖因子であるガラクトオリゴ糖、乳糖不耐症患者のための医薬又はサプリメントからなる群より選択される製品の製造のための、請求項1~6及び10のいずれか一項に記載のβ-ガラクトシダーゼ又は請求項17若しくは18に記載の酵素剤の使用。
  20.  請求項1~6及び10のいずれか一項に記載のβ-ガラクトシダーゼ又は請求項17若しくは18に記載の酵素剤を使用して得られた、低乳糖牛乳、腸内ビフィズス菌増殖因子であるガラクトオリゴ糖、乳糖不耐症患者のための医薬又はサプリメント。
PCT/JP2010/057204 2009-06-05 2010-04-23 バチルス・サーキュランス由来のβ-ガラクトシダーゼ WO2010140435A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI1012062A BRPI1012062A2 (pt) 2009-06-05 2010-04-23 ß-galactosidade derivada de bacillus circulans
DK10783220.6T DK2439270T3 (en) 2009-06-05 2010-04-23 Galactosidase SECONDARY obtained from Bacillus circulans
JP2011518356A JP5643756B2 (ja) 2009-06-05 2010-04-23 バチルス・サーキュランス由来のβ−ガラクトシダーゼ
AU2010255150A AU2010255150B2 (en) 2009-06-05 2010-04-23 Beta-galactosidase derived from Bacillus circulans
US13/375,860 US9516888B2 (en) 2009-06-05 2010-04-23 Beta-galactosidase derived from bacillus circulans
KR1020117030832A KR101729048B1 (ko) 2009-06-05 2010-04-23 바실러스 서쿨란스 유래의 β-갈락토시다제
RU2011150421/10A RU2011150421A (ru) 2009-06-05 2010-04-23 β-ГАЛАКТОЗИДАЗА, ПОЛУЧЕННАЯ ИЗ Bacillus circulans
CN201080023941.7A CN102449148B (zh) 2009-06-05 2010-04-23 来自环状芽孢杆菌的β-半乳糖苷酶
EP10783220.6A EP2439270B1 (en) 2009-06-05 2010-04-23 Galactosidase derived from bacillus circulans
US15/342,342 US9974318B2 (en) 2009-06-05 2016-11-03 Method for producing a low-lactose milk, medicine, supplement, or galacto-oligosaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009136735 2009-06-05
JP2009-136735 2009-06-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/375,860 A-371-Of-International US9516888B2 (en) 2009-06-05 2010-04-23 Beta-galactosidase derived from bacillus circulans
US15/342,342 Division US9974318B2 (en) 2009-06-05 2016-11-03 Method for producing a low-lactose milk, medicine, supplement, or galacto-oligosaccharide

Publications (1)

Publication Number Publication Date
WO2010140435A1 true WO2010140435A1 (ja) 2010-12-09

Family

ID=43297576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057204 WO2010140435A1 (ja) 2009-06-05 2010-04-23 バチルス・サーキュランス由来のβ-ガラクトシダーゼ

Country Status (10)

Country Link
US (1) US9516888B2 (ja)
EP (1) EP2439270B1 (ja)
JP (1) JP5643756B2 (ja)
KR (1) KR101729048B1 (ja)
CN (1) CN102449148B (ja)
AU (1) AU2010255150B2 (ja)
BR (1) BRPI1012062A2 (ja)
DK (1) DK2439270T3 (ja)
RU (1) RU2011150421A (ja)
WO (1) WO2010140435A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506597A (ja) * 2011-02-22 2014-03-17 コーディル・シード・カンパニー・インコーポレイテッド 噴霧乾燥ミロシナーゼ、及びイソチオシアネートを製造するための使用
WO2015046408A1 (ja) 2013-09-30 2015-04-02 天野エンザイム株式会社 改変型β-ガラクトシダーゼ
JP2015518729A (ja) * 2012-06-08 2015-07-06 デュポン ニュートリション バイオサイエンシス エーピーエス トランスガラクトシル化活性を有するポリペプチド
WO2016027747A1 (ja) * 2014-08-19 2016-02-25 天野エンザイム株式会社 改変型β-ガラクトシダーゼ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974318B2 (en) * 2009-06-05 2018-05-22 Amano Enzyme Inc. Method for producing a low-lactose milk, medicine, supplement, or galacto-oligosaccharide
CN102676614B (zh) * 2012-05-29 2015-04-01 量子高科(中国)生物股份有限公司 一种低聚半乳糖的制备方法
MX2016007636A (es) 2013-12-11 2016-10-13 Dupont Nutrition Biosci Aps Metodo para preparar un producto lacteo que tiene un contenido estable de galactooligosacarido(s).
KR101619863B1 (ko) * 2014-05-23 2016-05-24 주식회사 제노포커스 신규 베타-갈락토시다아제
EP3214942B1 (en) 2014-11-07 2021-02-24 DuPont Nutrition Biosciences ApS Recombinant host cell expressing beta-galactosidase and/or transgalactosylating activity deficient in mannanase, cellulase and pectinase.
KR20160141123A (ko) * 2015-05-28 2016-12-08 주식회사 제노포커스 고당전이 활성의 베타-갈락토시다제 변이체 및 그 용도
USD794266S1 (en) 2015-07-17 2017-08-08 Samsung Electronics Co., Ltd. Washing machine
CN105441365B (zh) * 2015-12-31 2019-05-31 南通励成生物工程有限公司 一种产β-半乳糖苷酶的菌株
WO2017146009A1 (ja) * 2016-02-24 2017-08-31 天野エンザイム株式会社 微生物の酵素生産性を制御する方法
KR101825456B1 (ko) 2017-03-07 2018-03-22 주식회사 제노포커스 고당전이 활성의 베타-갈락토시다제 변이체 및 그 용도
US12012622B1 (en) 2018-04-05 2024-06-18 Godo Shusei Co., Ltd. Paenibacillus pabuli-derived enzyme capable of producing galacto-oligosaccharide, and method for producing galacto-oligosaccharide
KR102030033B1 (ko) 2018-09-17 2019-10-08 주식회사 제노포커스 베타-갈락토시다제 생산성이 증가된 바실러스 서큘란스 변이 균주
CN109628340B (zh) * 2018-12-20 2022-06-07 量子高科(广东)生物有限公司 一种生产高活力β-半乳糖苷酶的环状芽孢杆菌菌株及其选育方法
CN111849940B (zh) * 2020-07-28 2022-03-25 量子高科(广东)生物有限公司 一种β-半乳糖苷酶的制备方法及其应用
CN112574977B (zh) * 2020-09-29 2022-07-19 天津科技大学 一种低聚半乳糖生产专用酶及其制备与应用
CN118056903A (zh) * 2022-11-20 2024-05-21 山东恒鲁生物科技有限公司 一种合成寡糖的成熟多肽

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111685A (ja) * 1985-11-08 1987-05-22 Nisshin Seito Kk 新規β−ガラクトシダ−ゼA及びその製造法
JPS62143685A (ja) * 1985-12-19 1987-06-26 Wakamoto Pharmaceut Co Ltd 新規な耐熱性β−ガラクトシダ−ゼ及びそれをコ−ドする遺伝子
JPH06319540A (ja) * 1994-06-08 1994-11-22 Wakamoto Pharmaceut Co Ltd 新規な耐熱性β−ガラクトシダーゼおよびその製造法
JPH09313177A (ja) * 1996-03-29 1997-12-09 Meiji Milk Prod Co Ltd 新規なβ−ガラクトシダーゼ
JPH1118763A (ja) * 1997-07-03 1999-01-26 Yakult Honsha Co Ltd β−ガラクトシダーゼの改質方法
JP2009136735A (ja) 2007-12-05 2009-06-25 Toyobo Co Ltd エレクトレット濾材およびフィルタユニット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148591A (en) 1977-05-31 1978-12-25 Daiwa Kasei Kk Production of novel lactase
JP2663013B2 (ja) * 1989-05-19 1997-10-15 雪印乳業株式会社 オリゴ糖含量を高めた牛乳の調製法
JPH0740870B2 (ja) * 1991-07-26 1995-05-10 株式会社いかるが牛乳 低乳糖牛乳の製造方法
JPH0759176B2 (ja) * 1992-03-18 1995-06-28 株式会社いかるが牛乳 低乳糖牛乳の製造方法
US6800744B1 (en) * 1997-07-02 2004-10-05 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
JP4095816B2 (ja) * 2002-03-20 2008-06-04 日本オリゴ株式会社 ガラクトオリゴ糖の製造法
JP4071037B2 (ja) * 2002-05-09 2008-04-02 株式会社ヤクルト本社 β−ガラクトシダーゼ高産生変異微生物の作出方法および当該方法により作出される変異微生物ならびにその利用
CN100383240C (zh) * 2005-07-21 2008-04-23 山东大学 一种快速制备转糖基β-半乳糖苷酶的方法
US20110177960A1 (en) 2006-03-10 2011-07-21 Ellen Murphy Microarray for monitoring gene expression in multiple strains of Streptococcus pneumoniae
GB0606112D0 (en) * 2006-03-28 2006-05-03 Product and process
US8354259B2 (en) * 2007-06-18 2013-01-15 Cornell University Method and system for lactose-free or lactose-reduced milk and associated products, production thereof, and associated processes
EP2573178A3 (en) * 2007-07-10 2013-07-24 Monsanto Technology LLC Transgenic plants with enhanced agronomic traits
CN101228904B (zh) * 2008-02-26 2012-03-21 内蒙古蒙牛乳业(集团)股份有限公司 一种低乳糖牛奶及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111685A (ja) * 1985-11-08 1987-05-22 Nisshin Seito Kk 新規β−ガラクトシダ−ゼA及びその製造法
JPS62143685A (ja) * 1985-12-19 1987-06-26 Wakamoto Pharmaceut Co Ltd 新規な耐熱性β−ガラクトシダ−ゼ及びそれをコ−ドする遺伝子
JPH06319540A (ja) * 1994-06-08 1994-11-22 Wakamoto Pharmaceut Co Ltd 新規な耐熱性β−ガラクトシダーゼおよびその製造法
JPH09313177A (ja) * 1996-03-29 1997-12-09 Meiji Milk Prod Co Ltd 新規なβ−ガラクトシダーゼ
JPH1118763A (ja) * 1997-07-03 1999-01-26 Yakult Honsha Co Ltd β−ガラクトシダーゼの改質方法
JP2009136735A (ja) 2007-12-05 2009-06-25 Toyobo Co Ltd エレクトレット濾材およびフィルタユニット

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
"Current protocols in molecular biology", 1987
"Molecular Cloning", COLD SPRING HARBOR LABORATORY PRESS
ALTSCHUL ET AL., AMINO ACIDS RESEARCH, vol. 25, no. 17, 1997, pages 3389 - 3402
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10
DATABASE DDBJ/EMBL/GENBANK [online] 7 October 2005 (2005-10-07), "Definition: Bacillus circulans beta-D-galactosidase (bgaA) gene, complete cds", XP008148663, Database accession no. L03424 *
DATABASE DDBJ/EMBL/GENBANK [online] 7 October 2005 (2005-10-07), "Definition: Bacillus circulans beta-D-galactosidase (bgaB) gene, complete cds", XP008148677, Database accession no. L03425 *
FELGNER, PL ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 84, 1984, pages 7413 - 7417
FUJIMOTO H ET AL.: "Purification and properties of recombinant beta-galactosidase from Bacillus circulans", GLYCOCONJ. J., vol. 15, no. 2, 1998, pages 155 - 160, XP019206902 *
FUJIMOTO, H.; MIYASATO, M.; ITO, Y.; SASAKI, T.; AJISAKA, K., GLYCOCONJUGATE JOURNAL, vol. 15, 1998, pages 155 - 160
GENE, vol. 60, no. 1, 1987, pages 115 - 127
GRAESSMANN, M.; GRAESSMANN, A., PROC. NATL. ACAD. SCI. U.S.A., vol. 73, 1976, pages 366 - 370
HANAHAN, D., J. MOL. BIOL., vol. 166, 1983, pages 557 - 580
ITO Y ET AL.: "Cloning and characterization of the gene encoding a novel beta-galactosidase from Bacillus circulans", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 61, no. 8, 1997, pages 1270 - 1276, XP008148671 *
ITO. Y.; SASAKI, T., BIOSCI. BIOTECH. BIOCHEM., vol. 61, no. 8, 1997, pages 1270 - 1276
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 68
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 77
KAZUHIRO NAKANISHI ET AL.: "P-galactosidase no Ten'i Sayo o Riyo shita Kinosei Shokuhin no Seisan", THE IIJIMA MEMORIAL FOUNDATION FOR PROMOTION OF FOOD SCIENCE AND TECHNOLOGY, August 1992 (1992-08-01), pages 227 - 232, XP008153433 *
MEYERS; MILLER, COMPUT. APPL. BIOSCI., vol. 4, 1988, pages 11 - 17
MOZAFFAR Z ET AL.: "Purification and properties of beta-galactosidases from Bacillus circulans", AGRIC. BIOL. CHEM., vol. 48, no. 12, 1984, pages 3053 - 3061, XP001312745 *
MOZAFFAR, Z.; NAKANISHI, K.; MATSUNO, R.; KAMIKUBO, T., AGRIC. BIOL. CHEM., vol. 48, no. 12, 1984, pages 3053 - 3061
POTTER, H. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 81, 1984, pages 7161 - 7165
SAITO; MIURA, BIOCHIM. BIOPHYS. ACTA, vol. 72, 1963, pages 619 - 629
SCHIESTL, R.H. ET AL., CURR. GENET., vol. 16, 1989, pages 339 - 346
See also references of EP2439270A4 *
VETERE A ET AL.: "Separation and characterization of three beta-galactosidases from Bacillus circulans", BIOCHIM. BIOPHYS. ACTA, vol. 1380, no. 2, 1998, pages 223 - 231, XP004276102 *
VETERE, A.; PAOLETTI, S., BIOCHEM. BIOPHYS. ACTA., vol. 1380, 1998, pages 223 - 231
YELTON, M.M. ET AL., PROC. NATL. ACAD. SCI., vol. 81, 1984, pages 1470 - 1474

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10925934B2 (en) 2011-02-22 2021-02-23 Caudill Seed and Warehouse Co., Inc. Spray dried myrosinase and use to produce isothiocynates
JP2014506597A (ja) * 2011-02-22 2014-03-17 コーディル・シード・カンパニー・インコーポレイテッド 噴霧乾燥ミロシナーゼ、及びイソチオシアネートを製造するための使用
JP2018148905A (ja) * 2012-06-08 2018-09-27 デュポン ニュートリション バイオサイエンシス エーピーエス トランスガラクトシル化活性を有するポリペプチド
JP2015518729A (ja) * 2012-06-08 2015-07-06 デュポン ニュートリション バイオサイエンシス エーピーエス トランスガラクトシル化活性を有するポリペプチド
US12089609B2 (en) 2012-06-08 2024-09-17 International N&H Denmark Aps Polypeptides having transgalactosylating activity
US10531672B2 (en) 2012-06-08 2020-01-14 Dupont Nutrition Biosciences Aps Polypeptides having transgalactosylating activity
EP4279604A3 (en) * 2013-09-30 2024-03-06 Amano Enzyme Inc. Modified beta-galactosidase
US11555214B2 (en) 2013-09-30 2023-01-17 Amano Enzyme Inc. Modified β-galactosidase
JPWO2015046408A1 (ja) * 2013-09-30 2017-03-09 天野エンザイム株式会社 改変型β−ガラクトシダーゼ
US10465219B2 (en) 2013-09-30 2019-11-05 Amano Enzyme Inc. Modified β-galactosidase
KR20160062155A (ko) 2013-09-30 2016-06-01 아마노 엔자임 가부시키가이샤 변형된 β-갈락토시다아제
WO2015046408A1 (ja) 2013-09-30 2015-04-02 天野エンザイム株式会社 改変型β-ガラクトシダーゼ
EP4279604A2 (en) 2013-09-30 2023-11-22 Amano Enzyme Inc. Modified beta-galactosidase
US10190107B2 (en) 2014-08-19 2019-01-29 Amano Enzyme Inc. Modified β-galactosidase
CN106604991B (zh) * 2014-08-19 2021-03-12 天野酶株式会社 修饰型β-半乳糖苷酶
CN106604991A (zh) * 2014-08-19 2017-04-26 天野酶株式会社 修饰型β‑半乳糖苷酶
WO2016027747A1 (ja) * 2014-08-19 2016-02-25 天野エンザイム株式会社 改変型β-ガラクトシダーゼ

Also Published As

Publication number Publication date
EP2439270B1 (en) 2015-11-11
EP2439270A1 (en) 2012-04-11
DK2439270T3 (en) 2016-01-11
RU2011150421A (ru) 2013-07-20
JPWO2010140435A1 (ja) 2012-11-15
AU2010255150B2 (en) 2014-02-27
US9516888B2 (en) 2016-12-13
KR101729048B1 (ko) 2017-04-21
US20120135468A1 (en) 2012-05-31
CN102449148A (zh) 2012-05-09
EP2439270A4 (en) 2012-11-14
KR20120024840A (ko) 2012-03-14
BRPI1012062A2 (pt) 2016-07-05
JP5643756B2 (ja) 2014-12-17
AU2010255150A1 (en) 2011-12-01
CN102449148B (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5643756B2 (ja) バチルス・サーキュランス由来のβ−ガラクトシダーゼ
JP6115921B2 (ja) マルトトリオシル転移酵素及びその製造方法並びに用途
US11859222B2 (en) Beta-galactosidase enzymes
JP5528333B2 (ja) β−アミラーゼ、それをコードする遺伝子及びその製造法
US9974318B2 (en) Method for producing a low-lactose milk, medicine, supplement, or galacto-oligosaccharide
WO2019194062A1 (ja) Paenibacillus pabuli由来のガラクトオリゴ糖を製造可能な酵素、およびガラクトオリゴ糖を製造する方法
US8911984B2 (en) Tannase, gene encoding same, and process for producing same
KR20160141123A (ko) 고당전이 활성의 베타-갈락토시다제 변이체 및 그 용도
JP2021093954A (ja) ガラクトオリゴ糖を製造可能な酵素、およびガラクトオリゴ糖を製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023941.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011518356

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4376/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010255150

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010255150

Country of ref document: AU

Date of ref document: 20100423

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117030832

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010783220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011150421

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13375860

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1012062

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1012062

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111123