WO2010137623A1 - メタルボンド砥石の製造方法及び製造装置 - Google Patents
メタルボンド砥石の製造方法及び製造装置 Download PDFInfo
- Publication number
- WO2010137623A1 WO2010137623A1 PCT/JP2010/058922 JP2010058922W WO2010137623A1 WO 2010137623 A1 WO2010137623 A1 WO 2010137623A1 JP 2010058922 W JP2010058922 W JP 2010058922W WO 2010137623 A1 WO2010137623 A1 WO 2010137623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- metal bond
- temperature
- bond grindstone
- metal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 145
- 239000002184 metal Substances 0.000 title claims abstract description 145
- 238000000034 method Methods 0.000 title claims description 47
- 238000000227 grinding Methods 0.000 title abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 160
- 238000005245 sintering Methods 0.000 claims abstract description 94
- 238000010438 heat treatment Methods 0.000 claims abstract description 79
- 239000000843 powder Substances 0.000 claims abstract description 46
- 239000011230 binding agent Substances 0.000 claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 claims abstract description 34
- 239000006061 abrasive grain Substances 0.000 claims abstract description 11
- 238000002844 melting Methods 0.000 claims description 37
- 230000008018 melting Effects 0.000 claims description 36
- 238000009529 body temperature measurement Methods 0.000 claims description 20
- 239000003989 dielectric material Substances 0.000 claims description 7
- 230000035699 permeability Effects 0.000 claims description 7
- 238000010304 firing Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 description 31
- 239000004575 stone Substances 0.000 description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 14
- 229910052718 tin Inorganic materials 0.000 description 14
- 239000002245 particle Substances 0.000 description 12
- 229910052582 BN Inorganic materials 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910021418 black silicon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- DJPURDPSZFLWGC-UHFFFAOYSA-N alumanylidyneborane Chemical compound [Al]#B DJPURDPSZFLWGC-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0009—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
Definitions
- the present invention relates to a method and an apparatus for manufacturing a metal bond grindstone.
- the metal bond grindstone is formed by sintering a grindstone material (mixed powder) in which abrasive grains are dispersed in a metal bond powder such as copper, tin, or silver (see Patent Document 1). Conventionally, a hot press method or a discharge plasma method is used for sintering such a metal bond grindstone.
- the hot press method and the discharge plasma method have a problem that the power consumption for heating is about 16 kW, for example, and the power consumption is large.
- microwave heating is inappropriate for sintering of a metal bond grindstone, and there is no example using microwave heating for sintering of a metal bond grindstone.
- the present inventors have conducted experiments under the idea that microwave heating is used to sinter the metal bond grindstone, and as a result of experiments, the metal bond grindstone is sintered by microwave heating.
- the present invention has been completed successfully.
- an object of the present invention is to provide a novel method and apparatus for manufacturing a metal bond grindstone with reduced power consumption.
- the present inventors have found that when a metal bond grindstone material body containing a metal binder powder is heated by microwaves, sintering is possible because the binder is a powder of a metal. . That is, the present invention is a method for producing a metal bond grindstone for obtaining a sintered metal bond grindstone by a sintering step of sintering a metal bond grindstone material in which a metal binder powder and abrasive grains are mixed.
- the binding step is a method for manufacturing a metal bond grindstone characterized in that the metal bond grindstone material containing the metal binder powder is heated by microwaves to obtain a sintered metal bond grindstone.
- the sintering step is a pressure sintering step in which microwave heating is performed while pressing the metal bond grindstone material.
- the final pressure in the pressure sintering step is It is preferable that heating by microwaves is started at a low pressure, and the pressurization pressure reaches the final pressurization pressure by increasing the pressurization pressure during the temperature rise by the microwave heating.
- the increase of the pressurizing pressure to the final pressurizing pressure is performed when the temperature of the metal bond grindstone material reaches an intermediate temperature, and the intermediate temperature includes a plurality of types of metal bonds included in the metal bond grindstone material.
- the melting point of the metal binder powder made of a metal having a melting point lower than the target temperature for microwave heating is preferably at or near the melting point.
- the firing step has a pressure sintering configuration in which microwave heating is performed while pressurizing the metal bond grindstone material.
- the pressure applied in the pressure sintering step is the final applied at the start of microwave heating.
- the initial pressurization pressure is lower than the pressurization pressure, and before reaching the target temperature for microwave heating, it is increased to an intermediate pressurization pressure that is a pressure between the initial pressurization pressure and the final pressurization pressure. It is preferable to further increase to the final pressure.
- the increase of the pressurizing pressure to the intermediate pressurizing pressure is performed when the temperature of the metal bond grindstone material reaches the intermediate temperature, and the intermediate temperature is a plurality of kinds of metal bonds included in the metal bond grindstone material.
- the melting point of the metal binder powder made of a metal having a melting point lower than the target temperature for microwave heating is preferably at or near the melting point.
- Another aspect of the present invention is an apparatus for manufacturing a metal bond grindstone, in which a metal bond grindstone material in which a metal binder powder and abrasive grains are mixed is housed therein, and the metal housed in the mold It is a manufacturing apparatus of the metal bond grindstone characterized by including the microwave radiation part for heating bond grindstone material with the microwave radiated from the outside of the above-mentioned type.
- the mold is preferably made of a dielectric material having microwave permeability.
- the mold further includes a temperature measurement unit provided in the mold, and the mold has microwave permeability, and the temperature in the metal bond grindstone material is set to the temperature. It is preferable to include a material having a thermal conductivity that can be reflected in the position where the measurement unit is provided.
- the mold further includes a temperature measurement unit for measuring the temperature of the metal bond grindstone material in the mold, and the mold includes a first mold part formed of a dielectric material having microwave permeability, and the first mold part. And a second mold part that transmits the heat of the metal bond grindstone material to the temperature measurement part, and the temperature measurement part is interposed via the second mold part. It is preferable to measure the temperature of the metal bond grindstone material.
- the metal bond grindstone can be sintered by microwave heating that can save power, and the manufacturing cost of the grindstone can be reduced.
- FIG. 4 is a sectional view taken along line AA in FIG. 3. It is a graph which shows the 1st example of the microwave heating control method. It is a graph which shows the 2nd example of the microwave heating control method. It is a graph which shows the 3rd example of the microwave heating control method. It is a graph which shows the 4th example of a microwave heating control method. It is a graph which shows the microwave heating control method (temperature-pressure control) which concerns on 2nd Example. It is a graph which shows the microwave heating control method (temperature-pressure control) which concerns on 3rd Example.
- FIG. 1 shows a grindstone manufacturing apparatus 1 according to the embodiment.
- This manufacturing apparatus 1 is configured as a microwave heating apparatus with a pressurizing function, and this microwave heating apparatus is a single mode that performs heating by standing waves (combination of incident waves and reflected waves). Therefore, heating can be efficiently performed by installing the grindstone material (mold 10) at the position where the electric field is maximum or the magnetic field is maximum.
- the thing of a multi mode can also be used as a microwave heating apparatus.
- the manufacturing apparatus 1 includes a microwave generation unit (oscillation unit) 2 and a processing unit 3 for heating a grindstone material that is an object to be heated by microwaves, and transmits the microwave to the processing unit 3 side.
- a waveguide 4 is provided.
- the waveguide 4 includes a short-circuit plate 4a at the end.
- the microwave generation unit 2 is configured by, for example, a magnetron and can generate a microwave of 2.45 GHz, for example.
- the frequency is not limited to this, and for example, 915 MHz or 5.8 GHz. It may be.
- a semiconductor amplifier may be used as the microwave generator 2.
- the power consumption in the microwave generating unit 2 may be about 400 W, for example, and the power consumption in the conventional grindstone manufacturing method (for example, the hot press method) is 16 kW. Can be reduced.
- an isolator 5 and a stub tuner 6 are provided in the middle of the waveguide 4 leading to the processing unit 3.
- the isolator 5 includes a circulator 5a and a dummy load 5b.
- the microwave generated from the microwave generation unit 2 passes to the processing unit 3 side, but the microwave reflected from the processing unit 3 side does not return to the microwave generation unit 2, but to the dummy load 5b side.
- Sent. The apparatus 1 measures the power of the microwave (incident wave) emitted from the microwave generation unit 2 and the power of the microwave (reflected wave) reflected from the processing unit 3 side.
- a power meter 7 for obtaining the absorbed power is provided.
- the stub tuner (impedance matching unit) 6 can adjust the resonance length of the microwave.
- FIG. 2 to 4 show the configuration of the device 1 related to the processing unit 3.
- FIG. The processing unit 3 is provided in the waveguide 4 and is used for obtaining a grindstone (for example, a honing grindstone) obtained by pressure-sintering a grindstone material.
- sintering is performed by microwave heating using microwaves radiated from the microwave generating unit 2 and passing through the waveguide 4.
- a mold 10 for accommodating an unsintered grindstone material is disposed at a predetermined position of the maximum electric field or maximum magnetic field in the waveguide 4, and the microwave transmitted through the mold 10 is The grinding stone material in 10 is heated.
- the mold 10 includes a cylindrical mold body (first mold part) 11, an inner mold 13 (first mold part) that stores a grindstone material, and an inner mold 13 that enters the inner mold 13 from above and below.
- the upper and lower molds 14 and 15 (second mold part) for pressing the material M from above and below, and the pressing plates (second mold parts) 12a and 12b for pressing the upper and lower molds 14 and 15 are configured. Yes.
- the upper and lower pressing dies 14, 15 are pressed through the pressing plates 12 a, 12 b by the pressing rods 21, 22 included in the pressing device 20 to press the grinding stone material M. I do.
- the mold 10 is formed of a dielectric material such as ceramics that does not absorb much microwave and generates little heat by the microwave. Since the microwave absorption by the mold 10 itself is small, even if the microwave is irradiated from the outside of the mold 10, the microwave is absorbed mainly by the grindstone material M, and the microwave absorption by the mold 10 is reduced. Efficiency is good.
- the mold 10 may be entirely formed of a single type of material (for example, alumina) in accordance with the above viewpoint, but in this embodiment, the mold 10 is used for easy monitoring of the temperature of the grindstone material. 10 is constituted by a plurality of types (two types) of materials. More specifically, the cylindrical mold body (first mold part) 11 and the inner mold (first mold part) 13 are formed of alumina (aluminum oxide; Al 2 O 3 ), and the upper and lower pressing molds (second molds). The mold parts 14 and 15 and the pressing plates (second mold parts) 12a and 12b are made of an aluminum nitride-boron nitride composite (AlN-BN).
- AlN-BN aluminum nitride-boron nitride composite
- the alumina is a kind of ceramics and has microwave permeability, so that it is difficult to be heated by microwaves and is suitable for suppressing microwave absorption by the mold 10.
- ceramics such as alumina do not necessarily have high thermal conductivity. If the thermal conductivity of the mold 10 is low, the temperature difference between the mold 10 and the grindstone material M becomes large when attempting to measure the temperature of the grindstone material M during the sintering process via the mold 10, and the grindstone material M It becomes difficult to measure the exact temperature.
- both aluminum nitride and boron nitride are ceramics and have microwave permeability like alumina, but ceramics (dielectric) is a material with high thermal conductivity.
- nitriding which is a material having better heat conductivity than alumina, is desired to ensure good heat conduction for temperature measurement.
- An aluminum-boron nitride composite is used. That is, in the present embodiment, as described above, the mold body 11 and the inner mold 13 that are the first mold part are formed of alumina, and the upper and lower pressing molds 14 and 15 that are the second mold part and the pressing plate 12a. , 12b are formed of an aluminum nitride-boron nitride composite. Note that the second mold part may be formed of aluminum nitride or boron nitride.
- thermocouple which is a temperature detection unit 23a is provided on the outer surface of the pressing plate 12a in contact with the pressing dies 14.
- the temperature detection part 23a may be embedded in the second mold part in a non-contact state with the grindstone material M.
- the pressing die and the pressing plate are the main paths of heat conduction from the grindstone material M to the temperature detection unit 23a.
- the temperature of the grinding stone material M being heated is reflected in the temperature detection unit 23a, and the grinding stone material M Accurate temperature measurement is possible.
- the overall shape of the mold 10, the shape of the first mold part, and the shape of the second mold part are not limited to those shown in the drawings, and various changes can be made. Further, the material of the first mold part and the material of the second mold part are not limited to those described above. Furthermore, the mold 10 need not be formed of a plurality of materials, and may be formed of a single material.
- the material constituting the mold 10 for example, from the viewpoint of microwave transmission (low dielectric loss), in addition to alumina, aluminum nitride-boron nitride composite, aluminum nitride, or boron nitride described above, nitride is used. Silicon, silicon oxide, or the like can also be employed. Further, these materials may be used or these materials and other composite materials may be used. In addition, as long as it is a part of the mold 10, a material having a high dielectric loss (for example, SiC or carbon) may be included.
- a high dielectric loss for example, SiC or carbon
- microwave heating can be performed while suppressing power loss by mainly forming the mold 10 with a material having a dielectric loss lower than that of the grinding stone material to be heated at the microwave frequency used for heating.
- the use of a material having good thermal conductivity such as an aluminum nitride-boron nitride composite or aluminum nitride among the above materials facilitates temperature measurement of the grindstone material.
- a material having good thermal conductivity is preferable.
- a material having good hardness and impact resistance is preferable because pressure is applied.
- the temperature detection unit (thermocouple) 23 a is connected to the temperature measurement unit 23, and this temperature measurement unit 23 gives the measured temperature signal to the control unit 24.
- the control part 24 is for controlling the baking process of the apparatus 1, for example, can control the pressurization pressure of the pressurization apparatus 20 based on the measured temperature.
- the pressurizing device 20 applies pressure to the pressing dies 14 and 15 from the vertical direction via the pressing plates 12a and 12b by the pressure rods 21 and 22 which are paired up and down, and pressurizes the grinding stone material M. It is.
- the pressurizing device 20 is hydraulic and includes a hydraulic cylinder as a pressure generating unit 25 that generates a desired pressurizing pressure according to a pressure control signal given from the control unit 24.
- the pressure generating unit 25 is provided outside the waveguide 4, but since the pressure rods 21 and 22 are extended in the waveguide 4, the pressure generating unit 25 is connected to the mold 10 in the waveguide 4. It is possible to apply a load.
- the pressure generator 25 is to be provided in the waveguide 4, it is necessary to downsize the pressure generator 25 to a size that can be accommodated in the waveguide 4, or as a component of the pressure generator 25.
- restrictions such as the inability to use metal parts that reflect microwaves occur, the provision of the pressure generator 25 outside the waveguide 4 frees you from such restrictions.
- the pressure generating unit 25 is supported by a support body 26 outside the waveguide 4.
- the support body 26 includes an upper support portion 26a, a lower support portion 26b, and a connecting portion 26c that connects the upper and lower support portions 26a and 26b.
- the pressure generator 25 is supported by the upper support 26 b, and the upper pressure rod (movable rod) 21 is attached to the pressure generator 25.
- the lower pressure rod (fixed rod) 22 is fixed to the lower support portion 26b.
- the lower pressure rod 22 may also be a movable rod.
- the pressure rods 21 and 22 are made of a dielectric material such as ceramics having low microwave reflectivity and absorption. Specifically, the pressure rods 21 and 22 of this embodiment are made of alumina. In the present embodiment, the entire pressure rods 21 and 22 are made of alumina, but at least a portion that can be positioned in the waveguide 4 is made of alumina (a dielectric material such as ceramics). It's enough.
- the waveguide 4 is formed with a through hole 4b for allowing the pressure rods 21 and 22 to pass therethrough.
- the through-hole 4b cannot be made very large because it is necessary to suppress the microwave in the waveguide 4 to a size that does not leak from the through-hole 4b. Therefore, the pressure rods 21 and 22 inserted through the through hole 4b cannot be made too thick.
- a plurality of pressure rods 21 and 22 may be provided in each of the upper and lower parts. That is, a plurality of through holes 4 b may be provided on the upper and lower sides of the waveguide 4, and the mold 10 may be pressed by the plurality of pressure rods 21 and 22.
- the load concerning each pressurizing rod 21 and 22 can be disperse
- the pressing direction is not limited to the vertical direction, and may be, for example, the horizontal direction.
- the grindstone material processed by the apparatus 1 is a metal bond grindstone material, specifically, a mixture of metal binder powder and abrasive grains. A filler is added to the grindstone material as necessary.
- the metal binder powder is preferably a powder of one or more metal binders selected from the group consisting of copper, tin, silver, nickel, zinc, cobalt, iron, and aluminum. These metal binder powders constitute a binder phase of a grindstone by being sintered. The average particle size of the metal binder powder is about 2 ⁇ m to 65 ⁇ m.
- fusing point of each said material used as metal binder powder is as follows. That is, copper is 1084 ° C, tin is 232 ° C, silver is 962 ° C, nickel is 1455 ° C, zinc is 420 ° C, cobalt is 1495 ° C, iron is 1535 ° C, and aluminum is 660 ° C.
- the abrasive grains are diamond (C), CBN (cubic boron nitride; BN), GC (green silicon carbide; SiC), C (black silicon carbide; SiC), WA (white alumina; Al 2 O 3 ), A ( Gray alumina; one or more selected from the group consisting of Al 2 O 3 ).
- the concentration is preferably about 20 to 150.
- the fillers are GC (green silicon carbide; SiC), C (black silicon carbide; SiC), WA (white alumina; Al 2 O 3 ), A (gray alumina; Al 2 O 3 ), zirconia (ZrO 2 ), two One or more selected from the group consisting of molybdenum sulfide (MoS 2 ), boron nitride (BN), carbon (C), and ceramic hollow balloons.
- MoS 2 molybdenum sulfide
- BN boron nitride
- ceramic hollow balloons fusing point of each said material used as a filler is as follows. That is, GC and C are 2730 ° C, WA and A are 2054 ° C, zirconia is 2715 ° C, molybdenum disulfide is 1085 ° C, and the ceramic hollow balloon is 1600 ° C.
- the metal bond grindstone material contains the metal (metal binder powder) as described above.
- a metal (conductor) is not heated by microwaves because it reflects radio waves.
- the metal bond grindstone material as described above can be heated by microwave irradiation.
- the reason why the metal bond grindstone material containing the metal binder powder can be heated is that the electromagnetic wave scattered by the metal binder powder propagates in the metal binder powder, and thereby in the metal binder powder. It is estimated that eddy current is generated and heated by Joule heat due to the eddy current loss.
- the microwave absorption power to the metal bond grindstone material depends on the particle size of the metal binder powder. If the average particle size of the metal binder powder is about 2 ⁇ m to 65 ⁇ m as described above, the microwave of 2.45 GHz is used. Heating by was possible. If the particle size of the metal binder powder is too large or too small, heating by microwaves cannot be performed. Therefore, the average particle size of the metal binder powder is preferably about the above. The average particle size of the metal binder powder is more preferably about 5 ⁇ m to 10 ⁇ m.
- the metal bond grindstone material When microwave heating is performed on the metal bond grindstone material, the metal bond grindstone material itself self-heats and can be heated from the inside of the grindstone material.
- a conventional method for producing a metal bond grindstone for example, a hot press method
- heating is performed from the outside of the grindstone material.
- the outer side of the grindstone material is hardened first, and the gas generated inside the grindstone material during heating cannot escape to the outside, and the inner side tends to be soft.
- the polishing force becomes non-uniform, the life of the grindstone is shortened, heat generation during polishing is increased, and the quality of the grindstone is degraded.
- microwave heating there is little unevenness in heating, and the entire grinding stone material can be cured almost uniformly, so there are few problems as described above, and it is easy to obtain a grinding wheel of good quality compared to conventional manufacturing methods. become. Also, in microwave heating, the temperature can be increased in a shorter time than in the conventional manufacturing method, so that the heating time can be shortened and deterioration (oxidation) of the abrasive grains can be suppressed.
- FIG. 5 shows an example of a temperature change when microwave heating is performed without applying pressure to the grindstone material.
- the control unit 24 generates a microwave from the microwave generation unit 2 at the start of the sintering process.
- the output of the microwave generator 2 is 400 W, for example, and the time from the start of sintering to the end of sintering is about 20 to 30 minutes.
- Tt target temperature
- FIG. 6 shows an example of temperature and pressure when microwave heating is performed on the grindstone material at a constant pressure from the start to the end of the sintering process.
- the controller 24 presses the mold 10 set in the waveguide 4 by the pressurizing device 20 to press the grinding stone material.
- the pressurizing pressure is a predetermined sintering pressure Pt.
- the control unit 24 generates a microwave from the microwave generation unit 2 while maintaining the sintering pressure Pt, and performs a pressure sintering process. Also in this case, the output of the microwave generator 2 is, for example, 400 W, and the time from the start of sintering to the end of sintering is about 20 to 30 minutes.
- the control unit 24 stops the microwave generation from the microwave generation unit 2, and then After a while, the pressure sintering process is completed, and the sintered grindstone is taken out.
- the metal binder powder is composed of a plurality of types of metal powders, and the average particle size may differ for each type of metal.
- the ease of being heated by the microwave varies depending on the type of the metal powder, and if pressure is not applied as shown in FIG. 5, a local temperature rise may occur in the metal bond grindstone material. Even in such a case, by applying pressure as shown in FIG. 6 (or FIGS. 7 to 8), the temperature of the entire metal bond grindstone material is likely to rise uniformly.
- the sintering is generally performed at a temperature lower than the melting point of the object to be sintered.
- the sintering temperature Tt is generally around 500 ° C.
- a material having a melting point lower than the sintering temperature Tt (for example, tin or the like.
- the melting point of tin is 232 ° C.) is contained in the metal binder powder formed by mixing a plurality of types of metal powders. include.
- a low melting point material such as tin having a melting point lower than the sintering temperature Tt
- the microwave heating the grinding stone material is heated from the inside, so that the low melting point material melted inside the grinding stone material elutes on the surface of the grinding stone material and forms a glossy metallic surface on the surface of the grinding stone material.
- Cheap the low-melting point material eluted on the surface of the grindstone material reflects the microwave, making microwave heating difficult.
- FIG. 6 or FIGS.
- FIG. 7 shows an example of temperature and pressure when microwave heating is performed on the grindstone material while changing the pressurizing pressure in two stages from the start to the end of the sintering process.
- the control unit 24 Prior to the start of the sintering process, the control unit 24 causes the mold 10 set in the waveguide 4 to be pressed by the pressurizing device 20, and causes the grindstone material to be pressed at the initial pressurizing pressure (first pressure) Pi. Pressurize.
- the control unit 24 generates a microwave from the microwave generating unit 2 in the state of the initial pressurizing pressure Pi, and starts a pressure sintering process.
- the control unit 24 increases the pressure generated by the pressure generation unit 25 to increase the final pressurization pressure (sintering pressure).
- Second pressure) Pt The increase from the initial pressurizing pressure Pi to the final pressurizing pressure Pt may be performed instantaneously, but as shown in FIG. 7, it is preferably performed gradually (for example, over about 1 minute).
- control part 24 continues the microwave heating, maintaining the said last pressurization pressure Pt, and the temperature of the grindstone material measured by the temperature measurement part 23 is target temperature (sintering temperature) of microwave heating.
- Tt the microwave generation from the microwave generator 2 is stopped, and after a while, the pressure sintering process is completed, and the sintered grindstone is taken out.
- the power of the microwave generator 2 is, for example, 400 W, and the time from the start of sintering to the end of sintering is about 20 to 30 minutes.
- the load applied to the mold 10 and the pressure rods 21 and 22 can be suppressed as a whole of the sintering process.
- the mold 10 and the pressure rods 21 and 22 located in the waveguide 4 are preferably ceramic materials that are less affected by microwaves. Since the impact resistance is inferior to that of the material, it is preferable to suppress the load by two-stage pressing as shown in FIG.
- the grindstone material is rapidly heated from the inside. Therefore, considering that the gas comes out from the center of the grindstone material being heated, the escape of the gas to the outside of the grindstone material is promoted. Therefore, instead of applying a large pressure (Pt) from the initial stage of the sintering process as shown in FIG. 6, the pressurized pressure (Pi) at the initial stage of the sintering process is kept relatively small, and then the pressurized pressure is changed. It is desirable to increase to the final pressurizing pressure (sintering pressure) Pt.
- the initial pressurizing pressure Pi may be a relatively low pressure necessary to ensure the heating uniformity of the metal binder powder made of a plurality of types of metal materials, for example, about 1/2 of the final pressurizing pressure Pt. Or less.
- the initial pressurization pressure Pi can be set to about 18 MPa.
- the intermediate temperature Tm used to determine the timing of increasing from the initial pressurizing pressure Pi to the final pressurizing pressure Pt is the melting point of the low melting point material or a temperature in the vicinity thereof (more preferably, near the melting point of the low melting point material). And a temperature higher than the melting point).
- the intermediate temperature Tm can be set to about 250 ° C. to 300 ° C., for example. In this case, it is possible to change the pressure to a higher pressure Pt at the timing when the dissolution of tin begins to occur while pressing the grindstone material at a relatively low pressure Pi in the initial stage of the sintering process.
- FIG. 8 shows an example of the temperature and pressure when microwave heating is performed on the grindstone material while changing the pressurization pressure in three stages from the start to the end of the sintering process.
- the control unit 24 Prior to the start of the sintering process, the control unit 24 causes the mold 10 set in the waveguide 4 to be pressed by the pressurizing device 20, and causes the grindstone material to be pressed at the initial pressurizing pressure (first pressure) Pi. Pressurize.
- the control unit 24 generates a microwave from the microwave generating unit 2 in the state of the initial pressurizing pressure Pi, and starts a pressure sintering process.
- the control unit 24 increases the pressure generated by the pressure generation unit 25 to increase the intermediate pressurization pressure Pm ( Pi ⁇ Pm ⁇ Pm).
- the control unit 24 further increases the pressure generated by the pressure generation unit 25, and finally The pressure is set to Pm.
- the increase from the initial pressurization pressure Pi to the intermediate pressurization pressure Pm and the increase from the intermediate pressurization pressure Pm to the final pressurization pressure Pm may be performed instantaneously, but as shown in FIG. (For example, it takes about 1 minute).
- control part 24 continues the microwave heating, maintaining the said last pressurization pressure Pt, and the temperature of the grindstone material measured by the temperature measurement part 23 is target temperature (sintering temperature) of microwave heating.
- Tt the microwave generation from the microwave generator 2 is stopped, and after a while, the pressure sintering process is completed, and the sintered grindstone is taken out.
- the power of the microwave generator 2 is, for example, 400 W, and the time from the start of sintering to the end of sintering is about 20 to 30 minutes.
- the grinding stone material is rapidly heated from the inside. Therefore, considering that the gas comes out from the center of the grinding stone material being heated, the escape of the gas to the outside of the grinding stone material is promoted. Therefore, instead of applying a large pressure (Pt) from the initial stage of the sintering process as shown in FIG. 6, the pressurizing pressure (Pi) at the initial stage of the sintering process is kept relatively small, and then the pressurizing pressure is changed to It is desirable to increase to the final pressurizing pressure (sintering pressure) Pt.
- the initial pressurizing pressure Pi may be a relatively low pressure necessary to ensure the heating uniformity of the metal binder powder made of a plurality of types of metal materials, and is, for example, about 1/4 of the final pressurizing pressure Pt. Or less.
- the initial pressurization pressure Pi can be set to about 9 MPa.
- the first intermediate temperature Tm1 used for determining the timing for increasing the initial pressurization pressure Pi to the intermediate pressurization pressure Pm is a temperature near the melting point of the low melting point material (more preferably, near the melting point of the low melting point material). And a temperature higher than the melting point).
- the second intermediate temperature Tm2 used to determine the timing for increasing the intermediate pressurization pressure Pm to the final pressurization pressure Pt is slightly before the sintering temperature (sintering target temperature) Tt (about 50 ° C.). It is preferable that the temperature is set to the near side.
- the first intermediate temperature Tm1 is, for example, about 250 ° C. to 300 ° C. Can be set.
- the second intermediate temperature Tm2 can be set to about 450 ° C., for example.
- Example 1 In Example 1, the sintering process only by microwave heating was performed with respect to the said metal bond grindstone material (refer FIG. 5).
- the power of the microwave generator 2 was 400 W, and the time from the start of sintering to the end of sintering was 30 minutes.
- sintering by microwave heating was possible, but since the grinding stone material contains tin, which is a low melting point material, tin is deposited on the surface of the grinding stone after sintering, and the grinding stone is contracted. Observed.
- the pressing area per grindstone material 0.625 cm 2
- the total load to be applied is 0.956 [ton].
- the obtained metal bond grindstone was excellent in appearance, and the same density and hardness of the grindstone were obtained that were inferior to those produced by other manufacturing methods. .
- the life as a grindstone was longer than those produced by other production methods. This is considered to be because the wear amount is reduced because the hardness uniformity inside the grindstone is good even if polishing progresses.
- this invention is not limited to the said embodiment, A various deformation
- the apparatus 1 concerning this embodiment can be used not only for manufacture of a metal bond grindstone but also for sintering of a resin bond grindstone or a vitrified bond grindstone.
- the control conditions may be set according to the difference in the grindstone material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
このため、メタルボンド砥石の焼結にマイクロ波加熱は不適当である、と従来は考えられており、メタルボンド砥石の焼結にマイクロ波加熱を利用した例は存在しない。
すなわち、本発明は、金属結合剤粉末と砥粒とを混合したメタルボンド砥石材料を焼結する焼結工程によって、焼結したメタルボンド砥石を得るメタルボンド砥石の製造方法であって、前記焼結工程は、前記金属結合剤粉末を含む前記メタルボンド砥石材料をマイクロ波によって加熱して、焼結したメタルボンド砥石を得ることを特徴とするメタルボンド砥石の製造方法である。
[1.砥石製造装置]
図1は、実施形態に係る砥石製造装置1を示している。この製造装置1は、加圧機能付きのマイクロ波加熱装置として構成されており、このマイクロ波加熱装置は、定在波(入射波と反射波の合成)による加熱を行うシングルモードである。したがって、電界最大又は磁界最大の位置に砥石材料(型10)を設置することで、効率よく加熱を行うことができる。なお、マイクロ波加熱装置としては、マルチモードのものを用いることも可能ではある。
ここで、マイクロ波発生部2における使用電力は、例えば、400W程度でよく、従来の砥石製造方法(例えば、ホットプレス法)での使用電力が16kWであったのに比べて、消費電力を大幅に低減することができる。
前記アイソレータ5は、サーキュレータ5a及びダミーロード5bから構成されている。サーキュレータ5aでは、マイクロ波発生部2から発生したマイクロ波は処理部3側へ通過するが、処理部3側から反射してきたマイクロ波はマイクロ波発生部2へは戻らず、ダミーロード5b側へ送られる。また、装置1は、マイクロ波発生部2から出射されたマイクロ波(入射波)の電力と、処理部3側から反射してきたマイクロ波(反射波)の電力とをそれぞれ測定し、処理部3において吸収された電力を求めるパワーメータ7を備えている。
なお、前記スタブチューナ(インピーダンス整合器)6は、マイクロ波の共振長を調整することができる。
図3及び図4に示すように、上下の押型14,15は、加圧装置20が有する加圧ロッド21,22によって、押圧板12a,12bを介して加圧され、砥石材料Mの加圧を行う。
より具体的には、円筒状の型本体(第1型部)11及び内型(第1型部)13は、アルミナ(酸化アルミニウム;Al2O3)によって形成され、上下の押型(第2型部)14,15及び押圧板(第2型部)12a,12bは、窒化アルミニウム-窒化硼素複合体(AlN-BN)によって形成されている。
ただし、一般にアルミナのようなセラミックスは熱伝導性が必ずしも高くない。型10の熱伝導性が低いと、型10を介して焼結処理中の砥石材料Mの温度を測定しようとした場合に、型10と砥石材料Mとの温度差が大きくなり、砥石材料Mの正確な温度を測定するのが困難となる。
つまり、本実施形態では、上述のように、第1型部である型本体11や内型13は、アルミナによって形成されており、第2型部である上下の押型14,15や押圧板12a,12bは窒化アルミニウム-窒化硼素複合体によって形成されている。なお、第2型部は、窒化アルミニウム又は窒化硼素によって形成してもよい。
なお、その他の型10の材料の選定条件としては、加圧を行うため、硬度や耐衝撃性が良好なものが好ましい。
圧力発生部25は、上側支持部26bに支持されており、この圧力発生部25に上側の加圧ロッド(可動ロッド)21が取り付けられている。また、下側の加圧ロッド(固定ロッド)22は、下側支持部26bに固定されている。なお、下側の加圧ロッド22も可動ロッドとしてもよい。
なお、加圧方向は、上下方向に限られるものではなく、例えば、左右方向であってもよい。
装置1によって処理される砥石材料は、メタルボンド砥石の材料であり、具体的には、金属結合剤の粉末と砥粒とを混合したものである。砥石材料には、必要に応じて、フィラーが添加される。
なお、金属結合剤粉末となる上記各材料の融点は、次の通りである。すなわち、銅は1084℃、錫は232℃、銀は962℃、ニッケルは1455℃、亜鉛は420℃、コバルトは1495℃、鉄は1535℃、アルミニウムは660℃である。
なお、フィラーとなる上記各材料の融点は、下記の通りである。すなわち、GC及びCは2730℃、WA及びAは2054℃、ジルコニアは2715℃、二硫化モリブデンは1085℃、セラミック中空バルーンは1600℃である。
ここで、金属結合剤粉末を含んでいるメタルボンド砥石材料が加熱できる理由は、金属結合剤粉末によって散乱される電磁波が、金属結合剤粉末内を伝搬し、それにより、金属結合剤粉末内に渦電流が発生し、その渦電流損によるジュール熱により加熱されるものと推測される。
これに対し、従来のメタルボンド砥石の製造方法(例えば、ホットプレス法)では、砥石材料の外側から加熱が行われる。このため、砥石材料の外側が先に硬化し、加熱中において砥石材料内部で発生したガスが外に逃げられなくなり、内側が柔らかくなる状態が生じ易い。このような状態になると、砥石としての使用時に、研磨の力が不均一になり、砥石寿命が短くなり、研磨時の発熱が大きくなって、砥石品質が低下する。
また、マイクロ波加熱では、従来の製造方法に比べて、短時間で温度を上昇させることができるため、加熱時間を短くでき、砥粒の劣化(酸化)を抑えることができる。
以下、制御部24による焼結工程の制御方法のバリエーションについて説明する。
図5は、砥石材料に対し、加圧を行わずに、マイクロ波加熱を行った場合の温度変化の例を示している。制御部24は、焼結工程の開始の際に、マイクロ波発生部2からマイクロ波を発生させる。マイクロ波発生部2の出力は、例えば、400Wであり、焼結開始から焼結終了までの時間は、20~30分程度である。
制御部24は、温度測定部23によって測定された砥石材料の温度が、マイクロ波加熱の目標温度(焼結温度)Ttになると、マイクロ波発生部2からのマイクロ波発生を停止させ、その後、しばらく経つと、焼結工程が終了し、焼結した砥石の取り出しが行われる。
図6は、砥石材料に対し、焼結工程開始から終了まで一定の圧力で加圧を行いつつ、マイクロ波加熱を行った場合の温度と圧力の例を示している。制御部24は、焼結工程の開始に先立って、加圧装置20によって導波管4内にセットされた型10の押圧を行わせ、砥石材料の加圧を行う。加圧圧力は、所定の焼結圧力Ptである。焼結圧力Ptは、砥石材料の成分や所望される砥石性能によって適宜設定され、例えば、Pt=35MPaである。
制御部24は、温度測定部23によって測定された砥石材料の温度が、マイクロ波加熱の目標温度(焼結温度)Ttになると、マイクロ波発生部2からのマイクロ波発生を停止させ、その後、しばらく経つと、加圧焼結工程が終了し、焼結した砥石の取り出しが行われる。
このような場合であっても、図6(又は図7~8)に示すように加圧を行うことで、メタルボンド砥石材料全体の温度が均一に上がりやすくなる。
しかし、図6(又は図7~8)に示すように、加圧を行いながらマイクロ波加熱を行うと、加圧によって複数種類の金属粉末が混合された状態を維持でき、錫などの低融点材料が含まれていても、当該低融点材料の溶出を防止できる。
図7は、砥石材料に対し、焼結工程開始から終了までの間に二段階に加圧圧力を変化させつつ、マイクロ波加熱を行った場合の温度と圧力の例を示している。制御部24は、焼結工程の開始に先立って、加圧装置20によって導波管4内にセットされた型10の押圧を行わせ、砥石材料を初期加圧圧力(第1圧力)Piで加圧する。
なお、この場合も、マイクロ波発生部2の電力は、例えば、400Wであり、焼結開始から焼結終了までの時間は、20~30分程度である。
例えば、金属結合剤粉末に含まれる低融点材料が錫(融点:232℃)である場合、中間温度Tmは、例えば、250℃~300℃程度に設定することができる。この場合、焼結工程初期段階では比較的低い圧力Piで砥石材料を加圧しつつ、錫の溶解が生じ始めたタイミングで、より高い圧力Ptに変更することができる。
図8は、砥石材料に対し、焼結工程開始から終了までの間に三段階に加圧圧力を変化させつつ、マイクロ波加熱を行った場合の温度と圧力の例を示している。制御部24は、焼結工程の開始に先立って、加圧装置20によって導波管4内にセットされた型10の押圧を行わせ、砥石材料を初期加圧圧力(第1圧力)Piで加圧する。
初期加圧圧力Piから中間加圧圧力Pmへの増加や、中間加圧圧力Pmから最終加圧圧力Pmへの増加は、瞬間的に行っても良いが、図8に示すように、徐々に(例えば1分程度かけて)行うのが好ましい。
なお、この場合も、マイクロ波発生部2の電力は、例えば、400Wであり、焼結開始から焼結終了までの時間は、20~30分程度である。
また、中間加圧圧力Pmから最終加圧圧力Ptに増加させるタイミングを決定するのに用いられる前記第2中間温度Tm2は、焼結温度(焼結の目標温度)Ttのやや手前(50℃程度手前)の温度に設定されるのが好ましい。
また、第2中間温度Tm2は、例えば、450℃程度に設定することができる。これにより、最終加圧圧力(焼結圧力)Ptかつ目標温度(焼結温度)での加圧焼結を行うことができる。
以下、メタルボンド砥石の焼結をマイクロ波加熱にて実際に行った結果を示す。ここでは、メタルボンド砥石材料として、銅(平均粒径44μm)を50vol%、錫(平均粒径44μm)を20vol%、銀(平均粒径44μm)を10vol%、コバルト(平均粒径2μm)を20vol%の割合で混合した金属結合剤粉末(メタルボンド)に、粒度が#325(JIS B4130)のCBN砥粒を集中度75の割合で混合したものを用いた。
以下の各実施例において、上記メタルボンド砥石材料の焼結温度Tt=500℃とした。
また、一つの砥石のサイズは、幅2.5mm、高さ2.5mm、長さ25mmとし、一つの砥石分の砥石材料の重量は、1.215gとした。
実施例1では、上記メタルボンド砥石材料に対し、マイクロ波加熱のみでの焼結工程を行った(図5参照)。マイクロ波発生部2の電力は、400Wとし、焼結開始から焼結終了までの時間は、30分とした。
この場合、マイクロ波加熱による焼結は行えたが、砥石材料中に低融点材料である錫を含んでいるため、焼結後の砥石表面に錫が析出し、砥石が収縮しているのが観察された。
実施例2では、上記メタルボンド砥石材料に対し、二段階加圧を行った。実施例2における温度と圧力の変化を図9に示す。ここでは、初期加圧圧力Pi=18MPa、最終加圧圧力(焼結圧力)Pt=36MPaとした。また、中間温度Tm=300℃とし、砥石材料が中間温度に達したときに、初期加圧圧力Piから最終加圧圧力Ptまで圧力を上昇させるための時間を1分とした。さらに、焼結開始から完了までの時間を20分とした。
実施例3では、上記メタルボンド砥石材料に対し、三段階加圧を起こった。実施例3における温度と圧力の変化を図10に示す。ここでは、初期加圧圧力Pi=7.5MPa、中間加圧圧力Pm=15MPa、最終加圧圧力(焼結圧力)Pt=30MPaとした。また、第1中間温度Tm1=180℃、第2中間温度Tm2=320℃とした。焼結開始から完了までの時間を35分とした。
なお、図10では、加圧圧力を、5本の砥石材料にかかる総荷重[ton]で示した。すなわち、砥石材料1本あたりの加圧面積=0.625cm2であり、総加圧面積は、0.625cm2×5本=3.125cm2であるから、最終加圧圧力Pt=30MPaに対応する総荷重は、0.956[ton]となる。
2 マイクロ波発生部
3 処理部
10 型
11,13 第1型部
12a,12b、14,15 第2型部
20 加圧装置
23a 温度検出部
23 温度測定部
24 制御部
Claims (9)
- 金属結合剤粉末と砥粒とを混合したメタルボンド砥石材料を焼結する焼結工程によって、焼結したメタルボンド砥石を得るメタルボンド砥石の製造方法であって、
前記焼結工程は、前記金属結合剤粉末を含む前記メタルボンド砥石材料をマイクロ波によって加熱して、焼結したメタルボンド砥石を得ることを特徴とするメタルボンド砥石の製造方法。 - 前記焼結工程は、前記メタルボンド砥石材料を加圧しつつマイクロ波加熱を行う加圧焼結工程であり、
前記加圧焼結工程では、当該加圧焼結工程における最終加圧圧力よりも低い圧力でマイクロ波による加熱を開始し、マイクロ波加熱による温度の上昇中に加圧圧力を上昇させることで、加圧圧力が前記最終加圧圧力に至るようにする請求項1記載のメタルボンド砥石の製造方法。 - 加圧圧力の前記最終加圧圧力への上昇は、メタルボンド砥石材料の温度が、中間温度に至ったときに行われ、
前記中間温度は、前記メタルボンド砥石材料に含まれる複数種類の金属結合剤粉末のうち、マイクロ波加熱の目標温度よりも融点が低い金属からなる金属結合剤粉末の前記融点又はその近傍の温度である
請求項2記載のメタルボンド砥石の製造方法。 - 前記焼成工程は、前記メタルボンド砥石材料を加圧しつつマイクロ波加熱を行う加圧焼結構成であり、
前記加圧焼結工程における加圧圧力は、マイクロ波加熱の開始時においては、最終加圧圧力よりも低い初期加圧圧力であり、マイクロ波加熱の目標温度になる前に、初期加圧圧力と最終加圧圧力との間の圧力である中間加圧圧力にまで上昇させ、その後、前記最終加圧圧力にまで更に上昇させる請求項1記載のメタルボンド砥石の製造方法。 - 加圧圧力の前記中間加圧圧力への上昇は、メタルボンド砥石材料の温度が、中間温度に至ったときに行われ、
前記中間温度は、前記メタルボンド砥石材料に含まれる複数種類の金属結合剤粉末のうち、マイクロ波加熱の目標温度よりも融点が低い金属からなる金属結合剤粉末の前記融点又はその近傍の温度である
請求項4記載のメタルボンド砥石の製造方法。 - メタルボンド砥石の製造装置であって、
金属結合剤粉末と砥粒とを混合したメタルボンド砥石材料を内部に収容する型と、
前記型に収容された前記メタルボンド砥石材料を、前記型の外部から放射されるマイクロ波によって加熱するためのマイクロ波放射部と、
を備えていることを特徴とするメタルボンド砥石の製造装置。 - 前記型は、マイクロ波透過性を有する誘電体材料によって形成されている請求項6記載のメタルボンド砥石の製造装置。
- 前記型内のメタルボンド砥石材料の温度を測定するために当該型に設けられた温度測定部を更に備え、
前記型は、マイクロ波透過性を有するとともに、メタルボンド砥石材料における温度を、前記温度測定部が設けられた位置に反映させることができる程度の熱伝導性を有する材料を備えて構成されていることを特徴とする請求項6又は7記載のメタルボンド砥石の製造装置。 - 前記型内のメタルボンド砥石材料の温度を測定するための温度測定部を更に備え、
前記型は、マイクロ波透過性を有する誘電体材料によって形成された第1型部と、当該第1型部よりも熱伝導性の良い材料からなるとともにメタルボンド砥石材料の熱を前記温度測定部に伝える第2型部とを有して構成され、
前記温度測定部は、前記第2型部を介してメタルボンド砥石材料の温度を測定するものであることを特徴とする請求項6又は7記載のメタルボンド砥石の製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/263,156 US20120055100A1 (en) | 2009-05-29 | 2010-05-26 | Method and apparatus for producing metal bond grind stone |
CN2010800230465A CN102448671A (zh) | 2009-05-29 | 2010-05-26 | 金属结合剂砂轮的制造方法以及制造装置 |
DE112010002170T DE112010002170T5 (de) | 2009-05-29 | 2010-05-26 | Verfahren und vorrichtung zum herstellen eines schleifsteins mit metallbindung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-130949 | 2009-05-29 | ||
JP2009130949A JP2010274383A (ja) | 2009-05-29 | 2009-05-29 | メタルボンド砥石の製造方法及び製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137623A1 true WO2010137623A1 (ja) | 2010-12-02 |
Family
ID=43222730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058922 WO2010137623A1 (ja) | 2009-05-29 | 2010-05-26 | メタルボンド砥石の製造方法及び製造装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120055100A1 (ja) |
JP (1) | JP2010274383A (ja) |
CN (1) | CN102448671A (ja) |
DE (1) | DE112010002170T5 (ja) |
WO (1) | WO2010137623A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107900330A (zh) * | 2017-10-24 | 2018-04-13 | 嘉兴市鹏程磁钢有限公司 | 一种磁钢坯件烧结装置 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8945253B2 (en) | 2011-11-23 | 2015-02-03 | Saint-Gobain Abrasives, Inc. | Abrasive article for ultra high material removal rate grinding operations |
WO2013102173A1 (en) * | 2011-12-30 | 2013-07-04 | Saint-Gobain Abrasives, Inc. | Bonded abrasive article and method of forming |
US9873185B2 (en) * | 2012-07-19 | 2018-01-23 | Pradeep Metals Limited | Rapid curing of resin bonded grinding wheels |
KR101666258B1 (ko) * | 2013-01-23 | 2016-10-13 | 삼성에스디아이 주식회사 | 이차 전지 |
US20160133350A1 (en) | 2013-06-03 | 2016-05-12 | Showa Denko K.K. | Conductive resin composition for microwave heating |
CN104128897B (zh) * | 2014-08-11 | 2017-04-12 | 中原工学院 | 一种采用湿化学方法成型微波烧结制备陶瓷cBN砂轮的方法 |
CN104400672B (zh) * | 2014-10-29 | 2017-02-22 | 桂林融通科技有限公司 | 金属结合剂金刚石砂轮 |
CN104526578A (zh) * | 2014-11-20 | 2015-04-22 | 云南光电辅料有限公司 | 一种提高烧结型金属结合剂磨具密度的方法 |
CN106756422B (zh) * | 2016-11-30 | 2018-03-06 | 昆明理工大学 | 一种金刚石锯片刀头的制备方法 |
KR102550303B1 (ko) * | 2017-02-28 | 2023-07-03 | 서울대학교산학협력단 | 발열 시스템 및 발열체 |
CN107775012B (zh) * | 2017-11-05 | 2020-02-07 | 北京工业大学 | 一种烧结矿制备钛铁合金粉的方法 |
CN108127802A (zh) * | 2017-12-22 | 2018-06-08 | 郑州中南杰特超硬材料有限公司 | 一种大尺度多晶金刚石制品的加工方法 |
WO2019156142A1 (ja) * | 2018-02-08 | 2019-08-15 | 国立研究開発法人産業技術総合研究所 | マイクロ波加熱方法、マイクロ波加熱装置及び化学反応方法 |
JP6986264B2 (ja) * | 2018-02-08 | 2021-12-22 | 国立研究開発法人産業技術総合研究所 | 薄膜パターンの焼成方法及びマイクロ波焼成装置 |
JP7389444B2 (ja) * | 2018-02-08 | 2023-11-30 | 国立研究開発法人産業技術総合研究所 | マイクロ波加熱装置、加熱方法及び化学反応方法 |
TWI841549B (zh) * | 2018-02-08 | 2024-05-11 | 國立研究開發法人產業技術總合研究所 | 微波加熱方法、微波加熱裝置及化學反應方法 |
JP2020173958A (ja) * | 2019-04-10 | 2020-10-22 | 国立研究開発法人産業技術総合研究所 | マイクロ波加熱装置及びマイクロ波加熱方法 |
CN111496699B (zh) * | 2020-06-10 | 2021-08-20 | 郑州磨料磨具磨削研究所有限公司 | 一种光学曲线磨砂轮及其制备方法 |
CN116275049A (zh) * | 2023-03-24 | 2023-06-23 | 湖北重泰研磨工具有限公司 | 一种金属合金结合剂金刚石砂轮及其加工方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6458478A (en) * | 1987-05-19 | 1989-03-06 | Toshiba Corp | Metal bonding tool and its manufacture |
JPH03267304A (ja) * | 1990-03-19 | 1991-11-28 | Hitachi Ltd | マイクロ波焼結法 |
JPH0492870A (ja) * | 1990-08-06 | 1992-03-25 | Toyota Central Res & Dev Lab Inc | セラミックスの焼結方法 |
JP2002530212A (ja) * | 1998-11-23 | 2002-09-17 | アルティメイト アブレイシブ システムズ,リミティド ライアビリティ カンパニー | 焼結物品を製造する方法及びそれによって生産される製品 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413392A (en) * | 1966-10-17 | 1968-11-26 | Du Pont | Hot pressing process |
US3719479A (en) * | 1971-02-12 | 1973-03-06 | Du Pont | Method of fabricating ring shapes by hot pressing |
EP0298593A3 (en) * | 1987-05-19 | 1990-01-10 | Kabushiki Kaisha Toshiba | Matrix material for bonding abrasive material, and method of manufacturing same |
US6453899B1 (en) * | 1995-06-07 | 2002-09-24 | Ultimate Abrasive Systems, L.L.C. | Method for making a sintered article and products produced thereby |
JP4988271B2 (ja) | 2006-08-16 | 2012-08-01 | 株式会社日進製作所 | ホーニング砥石 |
CN101429015A (zh) * | 2008-12-18 | 2009-05-13 | 杭州电子科技大学 | 一种Mg2SiO4低介电常数微波介质陶瓷及其制备方法 |
-
2009
- 2009-05-29 JP JP2009130949A patent/JP2010274383A/ja active Pending
-
2010
- 2010-05-26 US US13/263,156 patent/US20120055100A1/en not_active Abandoned
- 2010-05-26 DE DE112010002170T patent/DE112010002170T5/de not_active Withdrawn
- 2010-05-26 WO PCT/JP2010/058922 patent/WO2010137623A1/ja active Application Filing
- 2010-05-26 CN CN2010800230465A patent/CN102448671A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6458478A (en) * | 1987-05-19 | 1989-03-06 | Toshiba Corp | Metal bonding tool and its manufacture |
JPH03267304A (ja) * | 1990-03-19 | 1991-11-28 | Hitachi Ltd | マイクロ波焼結法 |
JPH0492870A (ja) * | 1990-08-06 | 1992-03-25 | Toyota Central Res & Dev Lab Inc | セラミックスの焼結方法 |
JP2002530212A (ja) * | 1998-11-23 | 2002-09-17 | アルティメイト アブレイシブ システムズ,リミティド ライアビリティ カンパニー | 焼結物品を製造する方法及びそれによって生産される製品 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107900330A (zh) * | 2017-10-24 | 2018-04-13 | 嘉兴市鹏程磁钢有限公司 | 一种磁钢坯件烧结装置 |
CN107900330B (zh) * | 2017-10-24 | 2019-10-11 | 嘉兴市鹏程磁钢有限公司 | 一种磁钢坯件烧结装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112010002170T5 (de) | 2012-09-20 |
CN102448671A (zh) | 2012-05-09 |
US20120055100A1 (en) | 2012-03-08 |
JP2010274383A (ja) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010137623A1 (ja) | メタルボンド砥石の製造方法及び製造装置 | |
TWI501684B (zh) | 陶瓷加熱器及其製造方法 | |
CN101684520B (zh) | 超声辅助致密化装置 | |
US20030224082A1 (en) | Microwave molding of polymers | |
US6984352B1 (en) | Dielectric mold for uniform heating and molding of polymers and composites in microwave ovens | |
JP2012117125A (ja) | 粉末焼結体の製造方法および製造装置 | |
CA2009760A1 (en) | Isostatic pressing with microwave heating and method for same | |
US7223087B2 (en) | Microwave molding of polymers | |
JP5336852B2 (ja) | 一軸加圧及び加熱装置 | |
CN102166653A (zh) | 一种钨-钢/铁功能梯度材料的制备方法 | |
CN107217167A (zh) | 一种金属基复合材料的制备工艺 | |
JP2007261916A (ja) | セラミックスの接合方法およびセラミックス接合体 | |
JPH0784352B2 (ja) | 傾斜機能材の製造方法 | |
US20190284098A1 (en) | Method for thermal treatment of a ceramic part by microwaves | |
Binner et al. | The effect of composition on the microwave bonding of alumina ceramics | |
JP5565772B2 (ja) | 電磁波照射を用いた材料の接合方法及び接合装置 | |
US20100183469A1 (en) | Powder metallurgy method for producing an extruded profile | |
Rhee et al. | Investigation of high frequency (2.45 GHz, 30 GHz) sintering for Pb-based ferroelectrics and microscale functional devices | |
Hou et al. | Fabrication of FeCu matrixed diamond tool bits using microwave hot-press sintering | |
JP4148599B2 (ja) | 多孔質リン酸カルシウム系化合物/金属複合焼結体及びその製造方法 | |
JP4449847B2 (ja) | 放電表面処理用電極の製造方法およびその製造装置 | |
JP2007056959A (ja) | 摩擦部材の製造方法 | |
JP4656785B2 (ja) | ハイブリッドホットプレスとその制御方法 | |
JP2001058873A (ja) | 二硼化チタンセラミックス焼結体およびその製造方法 | |
RU2352540C1 (ru) | Устройство для спекания керамического изделия с использованием нагрева микроволновым излучением и приложением внешнего давления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080023046.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10780578 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13263156 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112010002170 Country of ref document: DE Ref document number: 1120100021708 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10780578 Country of ref document: EP Kind code of ref document: A1 |