WO2010137240A1 - 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 - Google Patents

熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 Download PDF

Info

Publication number
WO2010137240A1
WO2010137240A1 PCT/JP2010/003114 JP2010003114W WO2010137240A1 WO 2010137240 A1 WO2010137240 A1 WO 2010137240A1 JP 2010003114 W JP2010003114 W JP 2010003114W WO 2010137240 A1 WO2010137240 A1 WO 2010137240A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
stretching
less
longitudinal direction
Prior art date
Application number
PCT/JP2010/003114
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
向山 幸伸
野瀬 克彦
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to PL10780202T priority Critical patent/PL2436508T3/pl
Priority to ES10780202.7T priority patent/ES2461849T3/es
Priority to JP2010524273A priority patent/JP5633808B2/ja
Priority to US13/266,326 priority patent/US9352508B2/en
Priority to EP10780202.7A priority patent/EP2436508B1/en
Priority to CN201080022756.6A priority patent/CN102448705B/zh
Publication of WO2010137240A1 publication Critical patent/WO2010137240A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/04Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • B29C63/423Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a heat-shrinkable polyester film, a method for producing the same, and a package. Specifically, the present invention relates to a heat-shrinkable polyester film suitable for label applications, a method for producing the same, and a package using a label. Is.
  • the heat shrinkable film a film that greatly shrinks in the width direction is generally used from the viewpoint of handling during label production. Therefore, the conventional heat-shrinkable polyester film has been produced by stretching at a high magnification in the width direction in order to develop a sufficient shrinkage force in the width direction during heating.
  • the conventional heat-shrinkable polyester film is hardly stretched in the longitudinal direction perpendicular to the main shrinkage direction, the mechanical strength is low, and when it is covered by being shrunk on a plastic bottle or the like as a label, There is a defect that the label cannot be torn well along the perforation (that is, the perforation opening is poor).
  • the film is stretched in the longitudinal direction during production in order to improve the perforation opening of the heat-shrinkable polyester film, the mechanical strength increases and the perforation opening improves to some extent, but in the longitudinal direction. Since the shrinkage force is expressed, when the plastic bottle is shrunk as a label and coated, a problem that the appearance (shrinkage finish) is very poor is exposed.
  • the present invention was devised in order to solve the problems of the conventional heat-shrinkable polyester film, and its purpose is that the perforation openability is very good and the heat shrinkage is extremely high in productivity. It is in providing a conductive polyester film.
  • the first invention of the present invention comprises a polyester-based resin containing ethylene terephthalate as a main constituent component and containing at least 13 mol% of one or more monomer components that can be an amorphous component in all polyester-based resin components, And satisfying the following requirements (1) to (4): (1) The difference in hot-water heat shrinkage in the film width direction between 3% and 15% when treated for 10 seconds in warm water at 80 ° C. and 3 seconds; (2) The hot-water heat shrinkage in the width direction and the longitudinal direction when treated in hot water at 90 ° C.
  • the perpendicular tear strength in the longitudinal direction per unit thickness after shrinking in the width direction by 10% in warm water at 80 ° C. is 180 N / mm or more and 310 N / mm or less;
  • the tensile fracture strength in the longitudinal direction is 90 MPa or more and 300 MPa or less.
  • Preferred embodiments of the first invention of the present invention are as follows.
  • the Elmendorf ratio is 0.3 or more and 1.5 or less when the Elmendorf tear load in the width direction and the longitudinal direction is measured after shrinking 10% in the width direction in warm water at 80 ° C.
  • the thickness is from 10 ⁇ m to 70 ⁇ m, and the haze is from 2.0 to 13.0.
  • the dynamic friction coefficient is 0.1 or more and 0.55 or less.
  • the main component of the monomer that can be an amorphous component in all the polyester resin components is any one of neopentyl glycol, 1,4-cyclohexanedimethanol, and isophthalic acid.
  • a second invention of the present invention is a production method for continuously producing the heat-shrinkable polyester film of the first invention, comprising the following steps (a) to (g): Features: (A) After stretching an unstretched polyester film at a temperature of Tg to (Tg + 30 ° C.) and below in the longitudinal direction at a magnification of 2.2 times to 3.0 times, (Tg + 10 ° C.) to (Tg + 40 ° C.) A longitudinal stretching step in which the film is stretched in the longitudinal direction so as to have a total magnification of 2.8 times or more and 4.5 times or less by stretching at a temperature of 1.2 times to 1.5 times in the longitudinal direction; (B) An annealing step in which the film after longitudinal stretching is relaxed by 10% to 70% in the longitudinal direction while being heated in the width direction using an infrared heater; (C) Intermediate heat treatment in which the annealed film is heat-treated at a temperature of 130 ° C.
  • the film after transverse stretching is finally heat-treated at a temperature of 80 ° C. or higher and 130 ° C. or lower for 1.0 second or more and 9.0 seconds or less in a state where both ends in the width direction are held by clips in the tenter. Heat treatment process.
  • a label having a heat-shrinkable polyester film of the first aspect as a base material, and a perforation or a pair of notches provided on the base material, on at least the outer periphery of the packaging object. It is a package characterized in that it is formed by partially covering and heat shrinking.
  • the heat-shrinkable polyester film of the present invention is highly shrinkable in the width direction, which is the main shrinkage direction, has high mechanical strength in the longitudinal direction perpendicular to the width direction, and has a perforation opening property when used as a label. It is good and can be cut cleanly along the perforation from the beginning of tearing to the completion of tearing when opened.
  • the stiffness (the so-called “waist” strength) is high, and the wearability of the label is excellent.
  • the processing characteristics during printing and tubing are good.
  • the heat-shrinkable polyester film of the present invention can be suitably used as a label for a container such as a bottle, and when used as a label, it can be attached to a container such as a bottle very efficiently within a short time. It is possible to develop a good finish with very little wrinkles and insufficient shrinkage when it is heat-shrinked after mounting, and the mounted label exhibits a very good perforation opening property. .
  • the package of the present invention has a good tearing condition of the coated label, and can be torn the coated label cleanly along the perforation with an appropriate force.
  • the heat-shrinkable polyester film of the present invention can be produced very efficiently because it is produced by being stretched biaxially and vertically.
  • the heat-shrinkable polyester film of the present invention has an extremely high adhesive force when the front and back surfaces (or the same surface) are bonded with a solvent. Therefore, it can be suitably used for various coated labels including labels such as PET bottles.
  • the polyester used for the heat-shrinkable polyester film of the present invention is mainly composed of ethylene terephthalate. That is, it contains 50 mol% or more, preferably 60 mol% or more of ethylene terephthalate.
  • Other dicarboxylic acid components constituting the polyester of the present invention include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, And alicyclic dicarboxylic acid.
  • the aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
  • the content is preferably less than 3 mol%.
  • a heat-shrinkable polyester film obtained using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high-speed mounting.
  • the polyester does not contain a trivalent or higher polyvalent carboxylic acid (for example, trimellitic acid, pyromellitic acid, and anhydrides thereof).
  • a trivalent or higher polyvalent carboxylic acid for example, trimellitic acid, pyromellitic acid, and anhydrides thereof.
  • diol component constituting the polyester examples include ethylene glycol, 1-3 propanediol, 1-4 butanediol, neopentyl glycol, aliphatic diol such as hexanediol, and alicyclic diol such as 1,4-cyclohexanedimethanol, Examples thereof include aromatic diols such as bisphenol A.
  • Polyester includes cyclic diols such as 1,4-cyclohexanedimethanol and diols having 3 to 6 carbon atoms (for example, 1-3 propanediol, 1-4 butanediol, neopentyl glycol, hexanediol, etc.).
  • a polyester having a glass transition point (Tg) adjusted to 60 to 80 ° C. by containing at least one of the above is preferable.
  • the polyester has a total of 13 mol% or more, preferably a total of one or more monomer components that can be amorphous components in 100 mol% of the polyhydric alcohol component or 100 mol% of the polycarboxylic acid component in the total polyester resin. Is 14 mol% or more, more preferably 15 mol% or more, and particularly preferably 16 mol% or more.
  • the upper limit of the total amount of monomer components that can be amorphous components is not particularly limited, but can be, for example, 30 mol%.
  • Examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2- Diethyl 1,3-propanediol, 2-n-butyl 2-ethyl 1,3-propanediol, 2,2-isopropyl 1,3-propanediol, 2,2-di-n-butyl 1,3-propanediol, Examples thereof include 1,4-butanediol and hexanediol. Of these, neopentyl glycol, 1,4-cyclohexanedimethanol, or isophthalic acid is preferably used.
  • the polyester preferably does not contain a diol having 8 or more carbon atoms (for example, octanediol) or a trihydric or higher polyhydric alcohol (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.).
  • a diol having 8 or more carbon atoms for example, octanediol
  • a trihydric or higher polyhydric alcohol for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.
  • the polyester does not contain diethylene glycol, triethylene glycol, or polyethylene glycol as much as possible.
  • the resin forming the heat-shrinkable polyester film of the present invention various additives as necessary, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents, A heat stabilizer, a coloring pigment, a coloring inhibitor, an ultraviolet absorber, and the like can be added.
  • fine particles any one can be selected. For example, as inorganic fine particles, silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, etc.
  • organic fine particles for example, acrylic resin
  • acrylic resin examples thereof include particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter) and can be appropriately selected as necessary.
  • the above particles into the resin forming the heat-shrinkable polyester film for example, it can be added at any stage for producing the polyester resin, but it can be added at the esterification stage or transesterification reaction. After completion, it is preferable to add as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction, and proceed with the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin material, or a dried particle and a polyester resin material using a kneading extruder It is also preferable to carry out by a method of blending and the like.
  • the heat-shrinkable polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
  • the heat-shrinkable polyester film of the present invention is a film width direction calculated by the following formula (1) from the length before and after shrinkage when treated for 10 seconds in 90 ° C. warm water under no load.
  • the heat shrinkage ratio (that is, the hot water heat shrinkage ratio in the width direction at 90 ° C.) is 40% or more and 80% or less.
  • Thermal shrinkage ⁇ (length before shrinkage ⁇ length after shrinkage) / length before shrinkage ⁇ ⁇ 100 (%)
  • the shrinkage amount in the width direction at 90 ° C. is less than 40%, the shrinkage amount is small, and therefore, it is not preferable because wrinkles and tarmi are generated on the label after heat shrinkage. If the heat shrinkage rate of hot water exceeds 80%, it is not preferable because when used as a label, the shrinkage tends to occur during heat shrinkage, or so-called “jumping” occurs.
  • the lower limit of the hot water heat shrinkage in the width direction at 90 ° C. is preferably 41% or more, more preferably 43% or more, and particularly preferably 45% or more.
  • the upper limit of the hot water heat shrinkage in the width direction at 90 ° C. is preferably 75% or less, more preferably 70% or less, and particularly preferably 65% or less.
  • the heat-shrinkable polyester film of the present invention has a heat shrinkage rate in the longitudinal direction of the film calculated by the above formula (1) when treated in warm water at 90 ° C. for 10 seconds without load (ie, 90 °
  • the hot water heat shrinkage in the longitudinal direction at 0 ° C. is 0% or more and 12% or less.
  • the hot water heat shrinkage in the longitudinal direction at 90 ° C. is less than 0% (that is, when the heat shrinkage exceeds 2% by heat treatment), since a good shrink appearance cannot be obtained when used as a bottle label.
  • the hot water heat shrinkage rate in the longitudinal direction at 90 ° C. is preferably 0.5% or more and 10% or less, and more preferably 1% or more and 8% or less.
  • the difference in hot shrinkage in the width direction at 80 ° C. is less than 3%, the hot water heat shrinkage rate is increased, and when the heat shrinks to form a label, wrinkles, tarmi and distortion are likely to occur.
  • the larger the difference in hot shrinkage in the width direction at 80 ° C. the better, but at present 15% is the limit.
  • the lower limit of the hot water heat shrinkage difference in the width direction at 80 ° C. is preferably 3.5% or more, and particularly preferably 4% or more.
  • the right-angled tear strength in the longitudinal direction needs to be 180 N / mm or more and 310 N / mm or less.
  • the film is attached to a rectangular frame having a predetermined length in a state of being loosened in advance (that is, both ends of the film are gripped by the frame). Then, the film is contracted by 10% in the width direction by being immersed in warm water at 80 ° C. for about 5 seconds until the slack film becomes a tension state in the frame (until the slack disappears). Thereafter, according to JIS-K-7128, the test piece was sampled into the shape shown in FIG. 1 (note that in the sampling, the tearing direction of the test piece was taken as the longitudinal direction).
  • the right-angled tear strength after shrinking 10% in the width direction in warm water at 80 ° C is less than 180 N / mm, it may be easily broken by impact such as dropping during transportation when used as a label.
  • the right-angled tear strength exceeds 310 N / mm, the cutting property (easy to tear) at the initial stage of tearing the label becomes poor.
  • the lower limit of the right-angled tear strength is preferably 185 N / mm or more, more preferably 190 N / mm or more, further preferably 195 N / mm or more, and particularly preferably 200 N / mm or more.
  • the upper limit of the right-angled tear strength is preferably 300 N / mm or less, more preferably 295 N / mm or less, and particularly preferably 290 N / mm or less. If a cavity is formed in the film by increasing the amount of the additive in the resin, the right angle tear strength can be adjusted low.
  • the heat-shrinkable polyester film of the present invention was subjected to 10% shrinkage in the width direction in warm water at 80 ° C., and then the Elmendorf tear load in the width direction and the longitudinal direction was measured by the following method.
  • the Elmendorf tear ratio which is the ratio of the Elmendorf tear load, is preferably 0.3 or more and 1.5 or less.
  • the lower limit value of the Elmendorf ratio is preferably 0.4 or more, more preferably 0.42 or more, and particularly preferably 0.45 or more.
  • the upper limit value of the Elmendorf ratio is preferably 1.4 or less, more preferably 1.3 or less, and particularly preferably 1.2 or less.
  • the heat-shrinkable polyester film of the present invention needs to have a tensile fracture strength of 90 MPa or more and 300 MPa or less when the tensile fracture strength in the longitudinal direction is determined by the following method.
  • the tensile breaking strength in the longitudinal direction is less than 90 MPa, the “waist” (stiffness) when labeling and attaching to a bottle or the like is weakened. On the contrary, if the tensile breaking strength exceeds 300 MPa, the label This is not preferable because the cutability (ease of tearing) in the initial stage when tearing the film becomes poor.
  • the lower limit of the tensile fracture strength is preferably 100 MPa or more, more preferably 110 MPa or more, and particularly preferably 120 MPa or more.
  • the upper limit value of the tensile fracture strength is preferably 290 MPa or less, more preferably 280 MPa or less, and particularly preferably 270 MPa or less.
  • the heat-shrinkable polyester film of the present invention preferably has a thickness of 10 ⁇ m to 70 ⁇ m and a haze value of 2.0 to 13.0. If the haze value exceeds 13.0, the transparency becomes poor and the appearance may be deteriorated during label production.
  • the haze value is more preferably 11.0 or less, and particularly preferably 9.0 or less. Further, the haze value is preferably as small as possible. However, in consideration of the necessity of adding a predetermined amount of lubricant to the film for the purpose of imparting slipperiness that is practically necessary, the lower limit is about 2.0.
  • the heat-shrinkable polyester film of the present invention preferably has a dynamic friction coefficient (dynamic friction coefficient when the front and back surfaces of the heat-shrinkable polyester film are bonded) of 0.1 or more and 0.55 or less. . If the dynamic friction coefficient is less than 0.1 or more than 0.55, it is not preferable because the processing characteristics at the time of processing into a label deteriorate.
  • the lower limit value of the dynamic friction coefficient is more preferably 0.15 or more, and particularly preferably 0.2 or more.
  • the upper limit value of the dynamic friction coefficient is more preferably 0.53 or less, and particularly preferably 0.50 or less.
  • the above-described heat-shrinkable polyester film of the present invention is formed by melt-extruding the above-described polyester raw material with an extruder to form an unstretched film, and the unstretched film is biaxially stretched by a predetermined method shown below and heat treated Can be obtained.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer.
  • the polyester raw material is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
  • any existing method such as a T-die method or a tubular method can be employed.
  • an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
  • a method for rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotating drum from a die and rapidly solidifying the resin can be employed.
  • the obtained unstretched film is stretched in the longitudinal direction under predetermined conditions, and the film after the longitudinal stretching is annealed and then rapidly cooled, and then heat-treated once, and the film after the heat treatment After being cooled under predetermined conditions, it is possible to obtain the heat-shrinkable polyester film of the present invention by stretching in the width direction under predetermined conditions and heat treating again.
  • a preferable film forming method for obtaining the heat-shrinkable polyester film of the present invention will be described in detail in consideration of a difference from a conventional heat-shrinkable polyester film forming method.
  • the heat-shrinkable polyester film is usually produced by stretching only in the direction in which the unstretched film is desired to be shrunk (that is, the main shrinkage direction, usually the width direction).
  • the main shrinkage direction usually the width direction.
  • the present inventors need to have “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” in the film in order to satisfy good perforation opening and shrinkage finishing properties at the same time. I came to think that there is. Then, a trial and error was carried out by paying attention to what kind of stretching would allow “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” to exist in the film.
  • the total longitudinal stretching ratio (that is, the first stage longitudinal stretching ratio ⁇ second stage longitudinal stretching ratio) is 2.8 times or more and 4.5 times or less. More preferably, the longitudinal stretching ratio is 2.9 times or more and 4.3 times or less so that the total longitudinal stretching ratio is 2.9 times or more and 4.3 times or less.
  • the longitudinal refractive index of the film after longitudinal stretching is in the range of 1.600 to 1.630, and the heat shrinkage in the longitudinal direction of the film after longitudinal stretching. It is preferable to adjust the longitudinal stretching conditions so that the stress is 10 MPa or less.
  • the contraction rate in the longitudinal direction tends to increase, but by stretching in two stages in the longitudinal direction as described above, The stretching stress in the direction can be reduced, and the shrinkage in the longitudinal direction can be kept low.
  • the stress at the time of stretching in the width direction tends to be high, and it tends to be difficult to control the final shrinkage in the lateral direction, but by stretching in two stages, The stretching stress in the transverse direction can be reduced, and the shrinkage rate in the transverse direction can be easily controlled.
  • the total longitudinal draw ratio increases, the right-angle tear strength decreases and the tensile strength in the longitudinal direction increases. Further, by bringing the total longitudinal draw ratio close to the transverse draw ratio, the Elmendorf ratio can be made close to 1.0, and the perforation opening property when used as a label can be improved. Furthermore, by stretching in the longitudinal direction in two steps, it is possible to increase the longitudinal orientation due to the ability to reduce the stretching stress in the transverse direction, further lowering the right-angled tear strength and the tensile strength in the longitudinal direction. Strength will be greater. Therefore, it is possible to obtain a label having very good perforation tearability by stretching in two stages in the longitudinal direction and increasing the total longitudinal stretching ratio.
  • the total longitudinal draw ratio exceeds 4.5 times, the orientation in the longitudinal direction becomes high and the solvent adhesive strength becomes low, but by controlling the total longitudinal draw ratio to 4.5 times or less, The orientation in the width direction can be suppressed, and the solvent adhesive strength can be kept high.
  • the total longitudinal draw ratio exceeds 4.5 times, the roughness of the surface layer decreases, so the dynamic friction coefficient increases, but by controlling the total longitudinal draw ratio to 4.5 times or less It is possible to keep the coefficient of dynamic friction low by suppressing the decrease in surface roughness.
  • the stretching stress in the longitudinal direction is reduced, so that the thickness unevenness in the longitudinal direction and the thickness unevenness in the width direction tend to increase, but the total longitudinal stretching ratio is increased.
  • the thickness unevenness of a longitudinal direction can be made small, and a haze can also be reduced in connection with it.
  • the stress during transverse stretching increases, so that thickness unevenness in the width direction can also be reduced.
  • the orientation in the longitudinal direction can be increased, and the slit property when the film after biaxial stretching is finally wound on a roll can be improved.
  • the inventors examined a means for reducing the residual shrinkage stress in the longitudinal direction of the film after longitudinal stretching even a little before the transverse stretching step. Then, the film after longitudinal stretching is heated with an infrared heater while relaxing in the longitudinal direction using the difference in speed between the rolls, so that the decrease in residual shrinkage stress is larger than the decrease in orientation in the longitudinal direction. It was found that the stress was more than halved.
  • the orientation does not decrease, but the contraction stress in the longitudinal direction is not sufficiently reduced.
  • the film may not be sufficiently relaxed between the rolls and may sag and wind around the roll.
  • the relaxation rate is 10% or more and 70% or less in the longitudinal direction. When the relaxation rate is lower than 10%, it is difficult to halve the contraction stress in the longitudinal direction of the film after longitudinal stretching. On the other hand, when the relaxation rate is higher than 70%, the film shrinkage stress after longitudinal stretching is reduced by half or more, but the orientation in the longitudinal direction also decreases, the cutting property in the longitudinal direction becomes worse, and the productivity becomes worse.
  • the film temperature is preferably (Tg + 10 ° C.) or more (Tg + 40 ° C.) for the heating of the infrared heater during the annealing treatment. If it is lower than (Tg + 10 ° C.), it cannot be said that the film is sufficiently heated, and the film sag when relaxed, and the film is wound around the roll and wrinkled. When the heating is higher than (Tg + 40 ° C.), the crystallization of the film proceeds, and the transverse stretching in the next step becomes difficult.
  • the film heating means in the annealing process may be other heating means such as a hot-air dryer, instead of an infrared heater, but an infrared heater is suitable for space saving of equipment.
  • longitudinal stretching is performed under certain conditions
  • intermediate heat treatment is performed under predetermined conditions according to the state of the film after the longitudinal stretching
  • transverse stretching is performed under predetermined conditions according to the state of the film after the intermediate heat treatment
  • an unstretched film is longitudinally stretched and annealed, and then is held at 130 ° C. or higher in a state where both ends in the width direction are held by clips in a tenter. It is necessary to perform heat treatment (hereinafter referred to as intermediate heat treatment) at a temperature of not higher than ° C. for a time of 1.0 second or more and 9.0 seconds or less.
  • intermediate heat treatment heat treatment
  • “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” can be present in the film.
  • the perforation is good and the shrinkage spots are not generated. A film that does not occur can be obtained.
  • the lower limit of the temperature of the intermediate heat treatment is preferably 133 ° C. or higher, and more preferably 135 ° C. or higher.
  • the upper limit of the temperature of the intermediate heat treatment is preferably 180 ° C. or less, and more preferably 170 ° C. or less.
  • the time for the intermediate heat treatment needs to be appropriately adjusted in accordance with the raw material composition within a range of 1.0 second to 9.0 seconds, and is adjusted within a range of 3.0 seconds to 7.0 seconds. Is preferred.
  • the longitudinal refractive index of the film after the intermediate heat treatment is in the range of 1.58 to 1.61, and the heat shrinkage stress in the longitudinal direction of the film after the intermediate heat treatment is 0. It is preferable to adjust the conditions of the intermediate heat treatment so that the pressure is 5 MPa or less. Furthermore, it is preferable to adjust the conditions of the intermediate heat treatment so that the tensile fracture elongation in the longitudinal direction of the film after the intermediate heat treatment is 100% or more and 170% or less.
  • the intermediate heat treatment when performing the intermediate heat treatment as described above, it is preferable to adjust the conditions for the intermediate heat treatment so that the perpendicular tear strength in the longitudinal direction of the film after the intermediate heat treatment is 310 N / mm or less.
  • the perpendicular tear strength in the longitudinal direction of the film after the intermediate heat treatment is 310 N / mm or less.
  • the stress that contracts in the longitudinal direction can be reduced by maintaining the processing temperature at 130 ° C. or more, and the contraction rate in the longitudinal direction can be extremely reduced. Further, by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to reduce the variation in the shrinkage rate in the lateral direction.
  • the longitudinal orientation can be increased, the right-angle tear strength can be kept low, and the longitudinal Elmendorf ratio is brought close to 1.0. Can do.
  • the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to suppress the crystallization of the film and keep the tensile strength in the longitudinal direction high.
  • the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to suppress the crystallization of the surface layer of the film and keep the solvent adhesive strength high.
  • the treatment temperature at 130 ° C. or higher, the surface roughness of the surface layer can be increased appropriately, thereby reducing the friction coefficient.
  • the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to keep the thickness unevenness in the longitudinal direction small.
  • the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to suppress the crystallization of the film and keep the thickness variation in the width direction due to the variation in stress during transverse stretching small.
  • the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it is possible to suppress the film breakage due to the occurrence of film shrinkage spots and maintain good slit property.
  • the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or lower, it becomes possible to suppress the haze of the film that is increased due to the crystallization of the film.
  • the intermediate zone when the strip-shaped piece of paper is suspended without passing through the film, the accompanying flow and cooling zone accompanying the flow of the film so that the piece of paper hangs down almost completely in the vertical direction. It is preferable to block the hot air from. If the time for passing through the intermediate zone is less than 0.5 seconds, the transverse stretching becomes high-temperature stretching, and the shrinkage rate in the transverse direction cannot be sufficiently increased. On the contrary, it is sufficient that the time for passing through the intermediate zone is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment.
  • the lower limit of the time for passing through the intermediate zone is preferably 0.7 seconds or more, and more preferably 0.9 seconds or more. Further, the upper limit of the time for passing through the intermediate zone is preferably 2.8 seconds or less, and more preferably 2.6 seconds or less.
  • the naturally cooled film as described above is not stretched as it is, but the film temperature is 80 ° C. or higher and 120 ° C. It is necessary to actively cool down so that the temperature is below °C. By performing such forced cooling treatment, it becomes possible to obtain a film having good perforation opening properties when used as a label.
  • the minimum of the temperature of the film after forced cooling is preferable in it being 85 degreeC or more, and more preferable in it being 90 degreeC or more.
  • the upper limit of the temperature of the film after forced cooling is preferably 115 ° C. or lower, and more preferably 110 ° C. or lower.
  • the film when the film is forcibly cooled, if the temperature of the film after forced cooling remains above 120 ° C., the film crystallizes, haze increases, the tensile strength in the longitudinal direction decreases, and the solvent Although the adhesive strength tends to decrease, the haze is kept low and the tensile strength in the longitudinal direction and the solvent adhesive strength are kept high by applying forced cooling so that the temperature of the cooled film becomes 120 ° C. or lower. It becomes possible to do.
  • the film after longitudinal stretching, annealing, intermediate heat treatment, natural cooling, forced cooling is laterally stretched under predetermined conditions to be finally Heat treatment is required. That is, the transverse stretching is performed at a temperature of (Tg + 10 ° C.) or higher and (Tg + 40 ° C.) or lower, for example, at a temperature of 80 ° C. or higher and 120 ° C. or lower, 2.0 times or higher in a state where both ends in the width direction are held by clips in the tenter It is necessary to carry out so that the magnification is 6.0 times or less.
  • the lower limit of the transverse stretching temperature is preferably 85 ° C. or higher, and more preferably 90 ° C. or higher.
  • the upper limit of the temperature of transverse stretching is preferably 115 ° C. or less, and more preferably 110 ° C. or less.
  • the lower limit of the transverse stretching ratio is preferably 2.5 times or more, and more preferably 3.0 times or more. Further, the upper limit of the transverse stretching ratio is preferably 5.5 times or less, and more preferably 5.0 times or less.
  • the stretching temperature exceeds 120 ° C.
  • the shrinkage rate in the longitudinal direction becomes high and the shrinkage rate in the width direction becomes low.
  • the stretching temperature By controlling the stretching temperature to 120 ° C. or less, the shrinkage rate in the longitudinal direction is reduced. Can be kept low, and the shrinkage rate in the width direction can be kept high.
  • the stretching temperature in the transverse stretching is increased, the transverse orientation is lowered, the solvent adhesive strength is increased, the crushing of the lubricant can be prevented, and the friction coefficient can be kept low.
  • the stretching temperature in the transverse stretching increases, the voids inside the film decrease, and the haze of the film decreases.
  • the stretching temperature exceeds 120 ° C.
  • the thickness variation in the width direction tends to increase, but by controlling the stretching temperature to 120 ° C. or less, the thickness variation in the width direction can be reduced.
  • the stretching temperature is lower than 80 ° C.
  • the orientation in the width direction becomes too high, and it becomes easy to break at the time of transverse stretching, or the slit property when the film after biaxial stretching is finally wound on a roll.
  • the stretching temperature is controlled to 80 ° C. or higher, it is possible to reduce breakage during transverse stretching and improve the slit property during winding.
  • the film after transverse stretching is finally heat-treated at a temperature of 80 ° C. or higher and 130 ° C. or lower for a period of 1.0 second or more and 9.0 seconds or less in a state where both ends in the width direction are held by clips in the tenter. It is necessary to When the temperature is higher than 130 ° C., the shrinkage rate in the width direction is lowered, and the thermal shrinkage rate at 90 ° C. is lower than 40%, which is not preferable. On the other hand, when the temperature is lower than 80 ° C., it cannot relax sufficiently in the width direction, and when the final product is stored at room temperature, shrinkage in the width direction (so-called natural shrinkage rate) increases with time, which is not preferable. Moreover, although the heat processing time is so preferable that it is long, since an installation will become huge if too long, time of 9.0 second or less is preferable.
  • the perpendicular tear strength in the longitudinal direction it is necessary to adjust the perpendicular tear strength in the longitudinal direction to 180 N / mm or more and 310 N / mm or less, and preferably the longitudinal perpendicular tear strength is 190 N / mm or more to 300 N / mm. mm or less, more preferably 200 N / mm or more and 290 N / mm or less, and the Elmendorf ratio is adjusted to 0.3 or more and 1.5 or less.
  • the Elmendorf ratio and the perpendicular tear strength in the longitudinal direction are: The interaction between the longitudinal stretching process and the intermediate heat treatment process has a great influence. Moreover, if a cavity is made by increasing the amount of additives in the resin as described above, the right-angled tear strength in the longitudinal direction can be adjusted small.
  • the heat-shrinkable polyester film of the present invention needs to adjust the tensile fracture strength in the longitudinal direction to 90 MPa or more and 300 MPa or less.
  • the interaction of the three processes, the process and the transverse stretching process, has a great influence.
  • the heat-shrinkable polyester film of the present invention is preferably adjusted to 1.0% or more and 10.0% or less of the thickness variation in the width direction.
  • the interaction of the three processes, the process and the transverse stretching process, has a great influence.
  • the heat-shrinkable polyester film of the present invention is preferably adjusted to have a dynamic friction coefficient adjusted to 0.1 or more and 0.55 or less, but the dynamic friction coefficient has a very high interaction between the longitudinal stretching process and the intermediate heat treatment process. Greatly affects.
  • the heat-shrinkable polyester film of the present invention is preferably adjusted to have a thickness variation in the longitudinal direction of 1.0% or more and 12.0% or less. Interaction with the process is very significant.
  • the package of the present invention has a heat-shrinkable polyester film as a base material, and the base material has a perforation or a pair of notches provided on at least a part of the outer periphery of the packaging object. It is formed by heat shrinking.
  • the package object include plastic bottles for beverages, various bottles, cans, plastic containers such as confectionery and lunch boxes, paper boxes, and the like.
  • the label is heat-shrinked by about 2 to 15% to form a package. Adhere closely.
  • printing may be given to the label coat
  • the label can be made by applying an organic solvent slightly inside from the edge of one side of the rectangular film, and immediately rolling the film and bonding the edges together to form a label, or roll Apply the organic solvent slightly inside from the edge of one side of the film wound up in the shape of a film, immediately roll up the film, overlap the edges and adhere, cut the tube to make a label .
  • organic solvent for adhesion cyclic ethers such as 1,3-dioxolane or tetrahydrofuran are preferable.
  • aromatic hydrocarbons such as benzene, toluene, xylene and trimethylbenzene
  • halogenated hydrocarbons such as methylene chloride and chloroform
  • phenols such as phenol, and mixtures thereof
  • the present invention will be specifically described with reference to examples and comparative examples.
  • the present invention is not limited to the mode of the examples, and may be appropriately changed without departing from the gist of the present invention. Is possible.
  • the evaluation method of a film is shown below.
  • Heat shrinkage hot water heat shrinkage
  • the film is cut into a 10 cm ⁇ 10 cm square, heat-shrinked by treatment in warm water at a predetermined temperature ⁇ 0.5 ° C. for 10 seconds under no load condition, and then measured in the vertical and horizontal dimensions of the film.
  • the thermal shrinkage rate was determined.
  • the direction in which the heat shrinkage rate is large was taken as the main shrinkage direction.
  • Thermal shrinkage ⁇ (length before shrinkage ⁇ length after shrinkage) / length before shrinkage ⁇ ⁇ 100 (%)
  • the film is attached to a rectangular frame having a predetermined length in a state of being loosened in advance (that is, both ends of the film are gripped by the frame). Then, the film is contracted by 10% in the width direction by being immersed in warm water at 80 ° C. for about 5 seconds until the slack film becomes a tension state in the frame (until the slack disappears). Thereafter, according to JIS-K-7128, the test piece was sampled into the shape shown in FIG. 1 (note that in the sampling, the tearing direction of the test piece was taken as the longitudinal direction).
  • Tg glass transition point
  • DSC220 differential scanning calorimeter
  • Seiko Denshi Kogyo Co., Ltd. 5 mg of an unstretched film was heated from ⁇ 40 ° C. to 120 ° C. at a heating rate of 10 ° C./min, and the obtained endothermic curve I asked more.
  • a tangent line was drawn before and after the inflection point of the endothermic curve, and the intersection was defined as Tg (glass transition point).
  • the film was sampled into a long roll of 12 m long ⁇ 40 mm wide, and along the longitudinal direction of the film sample at a speed of 5 (m / min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd. The thickness was continuously measured (measurement length was 10 m). The maximum thickness during measurement is Tmax. , The minimum thickness is Tmin. , The average thickness is Tave. And the thickness variation in the longitudinal direction of the film was calculated from the above formula (5).
  • a cylindrical label (a label with the main shrinkage direction of the heat-shrinkable film as the circumferential direction) was prepared by adhering both ends to the heat-shrinkable film with dioxolane. After that, using a steam tunnel (model: SH-1500-L) manufactured by Fuji Astec Inc., passing time 2.5 seconds, zone temperature 80 ° C, 500 ml PET bottle (bottle diameter 62 mm, minimum neck diameter 25 mm) The label was attached by heat shrinking. At the time of mounting, the neck portion was adjusted so that a portion with a diameter of 40 mm was one end of the label.
  • the strain in the 360 degree direction on the top of the attached label was measured using a gauge to obtain the maximum value of the strain. At that time, evaluation was performed according to the following criteria. ⁇ : Maximum strain less than 1.5 mm ⁇ : Maximum strain 1.5 mm or more and less than 2.5 mm ⁇ : Maximum strain 2.5 mm or more
  • Label adhesion The label was attached under the same conditions as those described above for measuring shrinkage finish. Then, when the attached label and the PET bottle were lightly twisted, they were evaluated as “good” if the label did not move, and “x” if the label slipped or the bottle shifted.
  • Perforation opening A label having a perforation in a direction perpendicular to the main shrinkage direction in advance was attached to a PET bottle under the same conditions as those for measuring the shrinkage finish. However, the perforations were formed by putting holes having a length of 1 mm at intervals of 1 mm, and two perforations were provided in the longitudinal direction (height direction) of the label over a width of 22 mm and a length of 120 mm.
  • the bottle is then filled with 500 ml of water, refrigerated to 5 ° C., tearing the perforation of the bottle label immediately after removal from the refrigerator with the fingertips, tearing it cleanly along the perforation in the vertical direction, and removing the label from the bottle
  • the number of pieces that could be removed was counted, and the perforation unsuccessful rate (%) was calculated by subtracting the number from 50 samples.
  • Tables 1 and 2 show the compositions of the polyester raw materials used in Examples and Comparative Examples, and resin compositions and production conditions (stretching / heat treatment conditions, etc.) of the films in Examples and Comparative Examples, respectively.
  • polyesters (A2, B, C, D) shown in Table 1 were synthesized by the same method as described above.
  • NPG is neopentyl glycol
  • CHDM is 1,4-cyclohexanedimethanol
  • BD is 1,4-butanediol.
  • the intrinsic viscosities of the polyesters A2, B, C, and D were 0.70 dl / g, 0.72 dl / g, 0.80 dl / g, and 1.15 dl / g, respectively. Each polyester was appropriately formed into a chip shape.
  • Example 1 The above-mentioned polyester A, polyester A2, polyester B, and polyester D were mixed at a weight ratio of 5: 5: 80: 10 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 204 ⁇ m. At this time, the take-up speed of the unstretched film (rotational speed of the metal roll) is about 20 m / min. Met. Moreover, Tg of the unstretched film was 67 degreeC.
  • the unstretched film obtained as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and stretched in two stages in the longitudinal direction using the rotational speed difference of the rolls. That is, after preheating an unstretched film on a preheating roll until the film temperature reaches 78 ° C., a low-speed rotating roll set at a surface temperature of 78 ° C. and a medium-speed rotating roll set at a surface temperature of 78 ° C. The film was stretched 2.6 times using the rotational speed difference (first-stage longitudinal stretching). Further, the longitudinally stretched film is longitudinally stretched 1.4 times using a rotational speed difference between a medium-speed rotating roll set at a surface temperature of 95 ° C. and a high-speed rotating roll set at a surface temperature of 30 ° C. Stretched (second-stage longitudinal stretching) (therefore, the total longitudinal stretching ratio was 3.64 times).
  • the film immediately after longitudinal stretching was annealed by relaxing 30% in the longitudinal direction using the difference in speed between rolls while heating to a film temperature of 93 ° C. with an infrared heater.
  • the film after the annealing treatment is forcibly cooled at a cooling rate of 40 ° C./second by a cooling roll set at a surface temperature of 30 ° C. (a high-speed roll positioned immediately after the second longitudinal stretching roll).
  • a cooling roll set at a surface temperature of 30 ° C. (a high-speed roll positioned immediately after the second longitudinal stretching roll).
  • the cooled film is guided to the tenter, and the intermediate heat treatment zone, the first intermediate zone (natural cooling zone), the cooling zone (forced cooling zone), the second intermediate zone, the transverse stretching zone, and the final heat treatment zone are continuously formed. I let it pass.
  • the length of the first intermediate zone is set to about 40 cm, between the intermediate heat treatment zone and the first intermediate zone, between the first intermediate zone and the cooling zone, between the cooling zone and the second intermediate zone.
  • Shielding plates were provided between the intermediate zone and between the second intermediate zone and the transverse stretching zone, respectively. Further, in the first intermediate zone and the second intermediate zone, when the strip-shaped paper piece is hung in a state where the film is not passed through, the paper piece from the intermediate heat treatment zone is almost completely hung down in the vertical direction. Hot air, cooling air from the cooling zone, and hot air from the transverse stretching zone were blocked. In addition, when passing the film, the film and the shielding plate are arranged so that most of the accompanying flow accompanying the film flow is blocked by the shielding plate provided between the intermediate heat treatment zone and the first intermediate zone. Adjusted the distance.
  • the annealed film guided to the tenter is first heat-treated at a temperature of 140 ° C. for 5.0 seconds in the intermediate heat treatment zone, and then the film after the intermediate heat treatment is guided to the first intermediate zone.
  • Was allowed to cool (by passing time about 1.0 second).
  • the film after passing through the second intermediate zone is guided to the transverse stretching zone, preheated until the surface temperature of the film reaches 95 ° C., and then 4.0 times in the width direction (lateral direction) at 95 ° C. Stretched.
  • the laterally stretched film is guided to the final heat treatment zone, where it is heat-treated at a temperature of 85 ° C. for 5.0 seconds and then cooled, and both edges are cut and removed to roll with a width of 500 mm.
  • a biaxially stretched film having a thickness of about 20 ⁇ m was continuously produced over a predetermined length. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 2 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that polyester B was changed to polyester C. The Tg of the unstretched film was 67 ° C. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 3 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 175 ⁇ m and the annealing treatment after the longitudinal stretching was set to a relaxation rate of 40%. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 4 Polyester A, polyester A2, polyester B, and polyester D were mixed at a weight ratio of 5: 30: 55: 10.
  • the Tg of the unstretched film was 67 ° C.
  • a film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 168 ⁇ m, and the temperature and magnification in the longitudinal stretching step, the temperature in the transverse stretching step, and the temperature of the intermediate heat treatment were changed. .
  • the evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 5 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 233 ⁇ m and the temperature and relaxation rate in the annealing step were changed. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 6 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 146 ⁇ m and the annealing treatment after the longitudinal stretching was performed with a relaxation rate of 50%. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 7 The thickness of the unstretched film was set to 168 ⁇ m, the first-stage longitudinal stretch ratio was 3 times, the second-stage longitudinal stretch ratio was 1.4 times, and the total longitudinal stretch ratio was 4.2 times.
  • the annealing treatment after the longitudinal stretching of this longitudinally stretched film was set to 50% relaxation rate, and the intermediate heat treatment zone temperature of the annealed film guided to the tenter was changed to 5.0 seconds at a temperature of 145 ° C.
  • a film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
  • Example 8 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 7 except that the thickness of the unstretched film was 202 ⁇ m and the annealing treatment after the longitudinal stretching was performed with a relaxation rate of 40%. The evaluation results are shown in Table 3. Compared to Example 7, the film had better transparency and cutability.
  • the unstretched film obtained as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and stretched in two stages in the longitudinal direction using the rotational speed difference of the rolls. That is, after preheating an unstretched film on a preheating roll until the film temperature reaches 78 ° C., a low-speed rotating roll set at a surface temperature of 78 ° C. and a medium-speed rotating roll set at a surface temperature of 78 ° C. The film was stretched 2.6 times using the rotational speed difference (first-stage longitudinal stretching). Further, the longitudinally stretched film is longitudinally stretched 1.4 times using a rotational speed difference between a medium-speed rotating roll set at a surface temperature of 95 ° C. and a high-speed rotating roll set at a surface temperature of 30 ° C. Stretched (second-stage longitudinal stretching) (therefore, the total longitudinal stretching ratio was 3.64 times).
  • the film after longitudinal stretching is forcibly cooled at a cooling rate of 40 ° C./second by a cooling roll set at a surface temperature of 30 ° C. (a high-speed roll positioned immediately after the second-stage longitudinal stretching roll).
  • a cooling roll set at a surface temperature of 30 ° C.
  • the cooled film is guided to the tenter, and the intermediate heat treatment zone, the first intermediate zone (natural cooling zone), the cooling zone (forced cooling zone), the second intermediate zone, the transverse stretching zone, and the final heat treatment zone are continuously formed. I let it pass.
  • the length of the first intermediate zone is set to about 40 cm, between the intermediate heat treatment zone and the first intermediate zone, between the first intermediate zone and the cooling zone, between the cooling zone and the second intermediate zone.
  • Shielding plates were provided between the intermediate zone and between the second intermediate zone and the transverse stretching zone, respectively. Further, in the first intermediate zone and the second intermediate zone, when the strip-shaped paper piece is hung in a state where the film is not passed through, the paper piece from the intermediate heat treatment zone is almost completely hung down in the vertical direction. Hot air, cooling air from the cooling zone, and hot air from the transverse stretching zone were blocked. In addition, when passing the film, the film and the shielding plate are arranged so that most of the accompanying flow accompanying the film flow is blocked by the shielding plate provided between the intermediate heat treatment zone and the first intermediate zone. Adjusted the distance.
  • the laterally stretched film is guided to the final heat treatment zone, where it is heat-treated at a temperature of 85 ° C. for 5.0 seconds and then cooled, and both edges are cut and removed to roll with a width of 500 mm.
  • a biaxially stretched film having a thickness of about 20 ⁇ m was continuously produced over a predetermined length. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The cutting property was good, but the shrinkage spots were slightly inferior.
  • Example 3 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 277 ⁇ m and the relaxation rate in the annealing process was 5%. The evaluation results are shown in Table 3. The film had good cutability and shrink finish. The cutting property was good, but the shrinkage spots were slightly inferior.
  • Example 4 The thickness of the unstretched film was set to 202 ⁇ m, and the annealed film was stretched 4 times at a stretching temperature of 80 ° C. without an intermediate heat treatment with a tenter, and the final heat treatment was performed at 80 ° C. A film was taken. The evaluation results are shown in Table 3. Compared to Example 1, it was a film having a high hot-water heat shrinkage in the longitudinal direction at 90 ° C. and poor shrinkage distortion.
  • Table 3 shows the evaluation results of Examples and Comparative Examples.
  • the heat-shrinkable polyester film of the present invention has excellent processing characteristics as described above, it can be suitably used for labeling applications such as bottles, and a bottle obtained by using the film as a label. Etc. have a beautiful appearance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 ミシン目開封性が非常に良好である熱収縮性ポリエステルフィルムを提供する。エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を13モル%以上含有しているポリエステル系樹脂からなる熱収縮性ポリエステル系フィルムであって、特定の熱収縮特性と特定の熱収縮処理後の力学的特性を有する熱収縮性ポリエステル系フィルム。

Description

熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
 本発明は、熱収縮性ポリエステル系フィルム、およびその製造方法、包装体に関するものであり、詳しくは、ラベル用途に好適な熱収縮性ポリエステル系フィルム、およびその製造方法、ラベルを用いた包装体に関するものである。
 近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(いわゆる、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムのうち、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広範に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
 また、熱収縮性フィルムとしては、ラベル製造時の取扱いの面から、一般的に、幅方向に大きく収縮させるものが利用される。それゆえ、従来の熱収縮性ポリエステル系フィルムは、加熱時に幅方向への十分な収縮力を発現させるために、幅方向へ高倍率で延伸することによって製造されていた。
 ところが、従来の熱収縮性ポリエステルフィルムは、主収縮方向と直交する長手方向については、ほとんど延伸されていないため、機械的強度が低く、ラベルとしてペットボトル等に収縮させて被覆させた場合に、ラベルをミシン目に沿ってうまく引き裂くことができない(すなわち、ミシン目開封性が悪い)、という不具合がある。また、熱収縮性ポリエステルフィルムのミシン目開封性を良好なものとすべく、製造時にフィルムを長手方向に延伸すると、機械的強度が高くなり、ミシン目開封性はある程度向上するものの、長手方向に収縮力が発現してしまうため、ラベルとしてペットボトル等に収縮させて被覆させた場合に、非常に見栄え(収縮仕上り性)が悪くなる、という不具合が露呈する。
 それゆえ、熱収縮性ポリエステルフィルムのミシン目開封性を向上させるべく、熱収縮性ポリエステルフィルムの主原料中に非相溶な熱可塑性樹脂を混合する方法(特許文献1参照)等も提案されている。
 特許文献1の方法によれば、熱収縮性ポリエステルフィルムのミシン目開封性がある程度向上するものの、必ずしもミシン目開封性が十分な熱収縮性ポリエステルフィルムが得られているとは言い難い。また、特許文献1の方法を採用した場合でも、製造時には幅方向にしか延伸することができないため、効率良く熱収縮性ポリエステルフィルムを製造することはできない。
特開平2002-363312号公報
 本発明は、上記従来の熱収縮性ポリエステルフィルムが有する問題点を解消するために創案されたものであり、その目的は、ミシン目開封性が非常に良好な上、極めて生産性の高い熱収縮性ポリエステルフィルムを提供することにある。
 本発明の第1発明は、エチレンテレフタレートを主たる構成成分とし、全ポリエステル系樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を13モル%以上含有しているポリエステル系樹脂からなり、かつ下記(1)~(4)の要件を満たすことを特徴とするものである:
(1)80℃の温水中で10秒間にわたって処理したときと3秒間にわたって処理したときのフィルム幅方向の温湯熱収縮率の差が3%以上15%以下である;
(2)90℃の温水中で10秒間にわたって処理した場合における幅方向及び長手方向の温湯熱収縮率がそれぞれ40%以上80%以下、0%以上12%以下である;
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が180N/mm以上310N/mm以下である;
(4)長手方向の引張破壊強さが90MPa以上300MPa以下である。
 本発明の第1の発明の好ましい態様は以下の通りである。
(1)80℃の温水中で幅方向に10%収縮させた後に幅方向および長手方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が0.3以上1.5以下である。
(2)厚みが10μm以上70μm以下であり、ヘイズが2.0以上13.0以下である。
(3)動摩擦係数が0.1以上0.55以下である。
(4)全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸のうちのいずれかである。
 本発明の第2の発明は、上記第1の発明の熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)~(g)の各工程を含むことを特徴とするものである:
(a)未延伸ポリエステル系フィルムを、Tg以上(Tg+30℃)以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、(Tg+10℃)以上(Tg+40℃)以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程;
(b)縦延伸後のフィルムに、赤外線ヒータを用いて幅方向に加熱しながら、長手方向に10%以上70%以下のリラックスを実施するアニール工程;
(c)アニール後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で130℃以上190℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する中間熱処理工程;
(d)中間熱処理後のフィルムを、各工程の加熱ゾーンから遮断されかつ積極的な加熱操作を実行しない中間ゾーンに通過させることによって自然に冷却する自然冷却工程;
(e)自然冷却後のフィルムを、表面温度が80℃以上120℃以下の温度となるまで積極的に冷却する強制冷却工程;
(f)強制冷却後のフィルムを、(Tg+10℃)以上(Tg+40℃)以下の温度で幅方向に2.0倍以上6.0倍以下の倍率で延伸する横延伸工程;
(g)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上130℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する最終熱処理工程。
 本発明の第3の発明は、上記第1の発明の熱収縮性ポリエステル系フィルムを基材とし、その基材にミシン目あるいは一対のノッチが設けられたラベルを、包装対象物の少なくとも外周の一部に被覆して熱収縮させて形成されることを特徴とする包装体である。
 本発明の熱収縮性ポリエステル系フィルムは、主収縮方向である幅方向への収縮性が高く、幅方向と直交する長手方向における機械的強度も高い上、ラベルとした際のミシン目開封性が良好であり、開封する際に引き裂き初めから引き裂き完了に至るまでミシン目に沿って綺麗にカットすることができる。また、スティフネス(いわゆる“腰”の強さ)が高く、ラベルとした際の装着適性に優れている。加えて、印刷加工やチュービング加工をする際の加工特性が良好である。したがって、本発明の熱収縮性ポリエステル系フィルムは、ボトル等の容器のラベルとして好適に用いることができ、ラベルとして使用した際には、ボトル等の容器に短時間の内に非常に効率良く装着することができ、装着後に熱収縮させた際にシワや収縮不足の極めて少ない良好な仕上りを発現させることができる上、装着されたラベルが非常に良好なミシン目開封性を発現するものとなる。本発明の包装体は、被覆されたラベルの引き裂き具合が良好であり、被覆されたラベルを適度な力でミシン目に沿って綺麗に引裂くことができる。
 加えて、本発明の熱収縮性ポリエステル系フィルムは、縦横の二軸に延伸して製造されるものであるので、非常に効率良く生産することができる。
 また、本発明の熱収縮性ポリエステル系フィルムは、溶剤によって表裏(あるいは同面同士)を接着させた際の接着力が極めて高い。したがって、PETボトル等のラベルを始めとする各種被覆ラベル等に好適に用いることができる。
直角引裂強度の測定における試験片の形状を示す説明図である(なお、図中における試験片の各部分の長さの単位はmmである)。
 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、エチレンテレフタレートを主たる構成成分とするものである。すなわち、エチレンテレフタレートを50モル%以上、好ましくは60モル%以上含有するものである。本発明のポリエステルを構成する他のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。
 脂肪族ジカルボン酸(例えば、アジピン酸、セバシン酸、デカンジカルボン酸等)をポリエステルに含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不十分である。
 また、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)をポリエステルに含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 ポリエステルを構成するジオール成分としては、エチレングリコール、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
 ポリエステルは、1,4-シクロヘキサンジメタノール等の環状ジオールや、炭素数3~6個を有するジオール(例えば、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)のうちの1種以上を含有させて、ガラス転移点(Tg)を60~80℃に調整したポリエステルが好ましい。
 また、ポリエステルは、全ポリステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計が13モル%以上、好ましくは14モル%以上、より好ましくは15モル%以上、特に好ましくは16モル%以上である。また非晶質成分となりうるモノマー成分の合計の上限は特に制限はないが、例えば30モル%であることができる。ここで、非晶質成分となりうるモノマーとしては、例えば、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル2-エチル1,3-プロパンジオール、2,2-イソプロピル1,3-プロパンジオール、2,2-ジn-ブチル1,3-プロパンジオール、1,4-ブタンジオール、ヘキサンジオールを挙げることができる。その中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、またはイソフタル酸を用いるのが好ましい。
 ポリエステルには、炭素数8個以上のジオール(例えば、オクタンジオール等)、または3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
 また、ポリエステルには、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないことが好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、滑剤としてフィルムの作業性(滑り性)を良好なものにする微粒子を添加するのが好ましい。微粒子としては、任意のものを選択することができるが、例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等、有機系微粒子としては、例えば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、例えば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
 さらに、本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間にわたって処理したときに、収縮前後の長さから、下記式(1)により算出したフィルムの幅方向の熱収縮率(即ち、90℃の幅方向の温湯熱収縮率)が、40%以上80%以下である。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}
                    ×100(%)・・・式(1)
 90℃における幅方向の温湯熱収縮率が40%を下回ると、収縮量が小さいために、熱収縮した後のラベルにシワやタルミが生じてしまうので好ましくなく、反対に、90℃における幅方向の温湯熱収縮率が80%を上回ると、ラベルとして用いて場合に熱収縮時に収縮に歪みが生じ易くなったり、いわゆる“飛び上がり”が発生してしまうので好ましくない。なお、90℃における幅方向の温湯熱収縮率の下限値は、41%以上であると好ましく、43%以上であるとより好ましく、45%以上であると特に好ましい。また、90℃における幅方向の温湯熱収縮率の上限値は、75%以下であると好ましく、70%以下であるとより好ましく、65%以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間にわたって処理したときの上記式(1)により算出したフィルムの長手方向の熱収縮率(即ち、90℃の長手方向の温湯熱収縮率)が0%以上12%以下である。90℃における長手方向の温湯熱収縮率が0%未満であると(即ち、熱処理により2%を超えて伸長すると)、ボトルのラベルとして使用する際に良好な収縮外観を得ることができないので好ましくなく、反対に、90℃における長手方向の温湯熱収縮率が12%を超えると、ラベルとして用いた場合に熱収縮時に収縮に歪みが生じ易くなるので好ましくない。90℃の長手方向の温湯熱収縮率は、好ましくは0.5%以上10%以下であり、より好ましくは1%以上8%以下である。
 本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で無荷重状態で10秒間にわたって処理したときの上記式(1)により算出したフィルム幅方向の熱収縮率と3秒間にわたって処理したときの上記式(1)により算出したフィルム幅方向の熱収縮率の差、即ち下記式(2)で示された差が3%以上15%以下である。
 80℃熱収縮率の差(ΔSHW)=80℃・10秒の幅方向温湯熱収縮率
       -80℃・3秒の幅方向温湯熱収縮率(%)・・・式(2)
 80℃における幅方向の温湯熱収縮率差が3%を下回ると、温湯熱収縮速度が速くなり、熱収縮してラベルにする際、シワやタルミや歪みが生じ易くなるので好ましくない。反対に、80℃における幅方向の温湯熱収縮率差が大きければ大きい程好ましいが、現状では15%が限界である。なお、80℃における幅方向の温湯熱収縮率差の下限値は、3.5%以上が好ましく、4%以上が特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で幅方向に10%収縮させた後に、以下の方法で単位厚み当たりの長手方向の直角引裂強度を求めたときに、その長手方向の直角引裂強度が180N/mm以上310N/mm以下であることが必要である。
[直角引裂強度の測定方法]
 所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、図1に示す形状にサンプリングすることによって試験片を作製した(なお、サンプリングにおいては、試験片の引裂く方向を長手方向とした)。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ)で試験片の両端(幅方向)を掴み、引張速度200mm/分の条件にて、引張破壊時の強度の測定を行い、下記式(3)を用いて単位厚み当たりの直角引裂強度を算出する。
 直角引裂強度=引張破壊時の強度÷厚み ・・・式(3)
 80℃の温水中で幅方向に10%収縮させた後の直角引裂強度が180N/mmを下回ると、ラベルとして使用した場合に運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる可能性があるので好ましくなく、反対に、直角引裂強度が310N/mmを上回ると、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるため好ましくない。なお、直角引裂強度の下限値は、185N/mm以上であると好ましく、190N/mm以上であるとより好ましく、195N/mm以上であると更に好ましく、200N/mm以上であると特に好ましい。また、直角引裂強度の上限値は、300N/mm以下であると好ましく、295N/mm以下であるとより好ましく、290N/mm以下であると特に好ましい。樹脂中の添加剤量を増やすなどしてフィルム中に空洞を作ると直角引裂強度を低く調節することができる。
 また、本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で幅方向に10%収縮させた後に、以下の方法で幅方向および長手方向のエルメンドルフ引裂荷重を測定したときに、それらのエルメンドルフ引裂荷重の比であるエルメンドルフ比が0.3以上1.5以下であることが好ましい。
[エルメンドルフ比の測定方法]
 所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、フィルムの幅方向および長手方向のエルメンドルフ引裂荷重の測定を行い、下記式(4)を用いてエルメンドルフ比を算出する。
 エルメンドルフ比=幅方向のエルメンドルフ引裂荷重
         ÷長手方向のエルメンドルフ引裂荷重 ・・・式(4)
 エルメンドルフ比が0.3未満であると、ラベルとして使用した場合にミシン目に沿って真っ直ぐに引き裂きにくいので好ましくない。反対に、エルメンドルフ比が1.5を上回ると、ミシン目とずれた位置で裂け易くなるので好ましくない。なお、エルメンドルフ比の下限値は、0.4以上であると好ましく、0.42以上であるとより好ましく、0.45以上であると特に好ましい。また、エルメンドルフ比の上限値は、1.4以下であると好ましく、1.3以下であるとより好ましく、1.2以下であると特に好ましい。
 また、本発明の熱収縮性ポリエステル系フィルムは、以下の方法で長手方向の引張破壊強さを求めたときに、その引張破壊強さが90MPa以上300MPa以下であることが必要である。
[引張破壊強さの測定方法]
 JIS-K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
 長手方向の引張破壊強さが90MPaを下回ると、ラベルしてボトル等に装着する際の“腰”(スティフネス)が弱くなるので好ましくなく、反対に、引張破壊強さが300MPaを上回ると、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるので好ましくない。なお、引張破壊強さの下限値は、100MPa以上であると好ましく、110MPa以上であるとより好ましく、120MPa以上であると特に好ましい。また、引張破壊強さの上限値は、290MPa以下であると好ましく、280MPa以下であるとより好ましく、270MPa以下であると特に好ましい。
 加えて、本発明の熱収縮性ポリエステル系フィルムは、厚みが10μm以上70μm以下であり、ヘイズ値が2.0以上13.0以下であることが好ましい。ヘイズ値が13.0を超えると、透明性が不良となり、ラベル作成の際に見栄えが悪くなる可能性があるので好ましくない。なお、ヘイズ値は、11.0以下であるとより好ましく、9.0以下であると特に好ましい。また、ヘイズ値は、小さいほど好ましいが、実用上必要な滑り性を付与する目的でフィルムに所定量の滑剤を添加せざるを得ないこと等を考慮すると、2.0程度が下限になる。
 また、本発明の熱収縮性ポリエステル系フィルムは、動摩擦係数(熱収縮性ポリエステル系フィルムの表面と裏面とを接合させた場合の動摩擦係数)が0.1以上0.55以下であることが好ましい。動摩擦係数が0.1を下回ったり0.55を上回ったりすると、ラベルに加工する際の加工特性が悪くなるので好ましくない。なお、動摩擦係数の下限値は、0.15以上であるとより好ましく、0.2以上であると特に好ましい。また、動摩擦係数の上限値は、0.53以下であるとより好ましく、0.50以下であると特に好ましい。
 上述した本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により二軸延伸して熱処理することによって得ることができる。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200~300℃の温度で溶融しフィルム状に押し出す。かかる押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金より回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を採用することができる。
 さらに、得られた未延伸フィルムを、後述するように、所定の条件で長手方向に延伸し、その縦延伸後のフィルムをアニール処理した後に急冷した後に、一旦、熱処理し、その熱処理後のフィルムを所定の条件で冷却した後に、所定の条件で幅方向に延伸し、再度、熱処理することによって本発明の熱収縮性ポリエステル系フィルムを得ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい製膜方法について、従来の熱収縮性ポリエステル系フィルムの製膜方法との差異を考慮しつつ詳細に説明する。
[本発明の熱収縮性ポリエステル系フィルムの製膜方法]
 上述したように、熱収縮性ポリエステル系フィルムは、通常、未延伸フィルムを収縮させたい方向(すなわち、主収縮方向、通常は幅方向)のみに延伸することによって製造される。本発明者らが従来の製造方法について検討した結果、従来の熱収縮性ポリエステル系フィルムの製造においては、以下のような問題点があることが判明した。
・単純に幅方向に延伸するだけであると、上述の如く、長手方向の機械的強度が小さくなり、ラベルとした場合のミシン目開封性が悪くなる。その上、製膜装置のライン速度を上げることが困難である。
・幅方向に延伸した後に長手方向に延伸する方法を採用すると、どのような延伸条件を採用しても、幅方向の収縮力を十分に発現させることができない。さらに、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上りが悪くなる。
・長手方向に延伸した後に幅方向に延伸する方法を採用すると、幅方向の収縮力は発現させることができるものの、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上りが悪くなる。
 さらに、上記従来の熱収縮性ポリエステル系フィルムの製造における問題点に基づいて、本発明者らが、ミシン目開封性が良好で生産性の高い熱収縮性ポリエステル系フィルムを得ることについてさらなる考察を進めた結果、次のような知見を得るに至った。
・ラベルとした際のミシン目開封性を良好なものとするためには、長手方向へ配向した分子をある程度残しておく必要があると考えられる。
・ラベルとした際の収縮装着後の仕上りを良好なものとするためには、長手方向への収縮力を発現させないことが不可欠であり、そのためには長手方向へ配向した分子の緊張状態を解消する必要があると考えられる。
 そして、本発明者らは、上記知見から、良好なミシン目開封性と収縮仕上り性を同時に満たすためには、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させる必要がある、と考えるに至った。そして、どのような延伸を施せば“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることができるかに注目して試行錯誤した。その結果、長手方向に延伸した後に幅方向に延伸する、いわゆる縦-横延伸法によるフィルム製造の際に、以下の手段を講じることにより、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることを実現し、良好なミシン目開封性と収縮仕上り性を同時に満たす熱収縮性ポリエステル系フィルムを得ることが可能となり、本発明を完成するに至った。
(1)縦延伸条件の制御
(2)縦延伸後に長手方向へのアニール処理
(3)縦延伸後における中間熱処理
(4)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
(5)自然冷却後のフィルムの強制冷却
(6)横延伸条件の制御
 以下、上記した各手段について順次説明する。
(1)縦延伸条件の制御
 本発明の縦-横延伸法によるフィルムの製造においては、本発明のフィルムロールを得るためには、縦延伸を二段で行うことが必要である。すなわち、実質的に未配向(未延伸)のフィルムを、まずTg以上(Tg+30℃)以下の温度で2.2倍以上3.0倍以下の倍率となるように縦延伸し(一段目の延伸)、次にTg以下に冷却することなく、(Tg+10)以上(Tg+40℃)以下の温度で1.2倍以上1.5倍以下の倍率となるように縦延伸する(二段目の延伸)ことにより、トータルの縦延伸倍率(すなわち、一段目の縦延伸倍率×二段目の縦延伸倍率)が2.8倍以上4.5倍以下となるように縦延伸することが必要である。トータルの縦延伸倍率は2.9倍以上4.3倍以下となるように縦延伸するとより好ましい。
 また、上記の如く二段で縦延伸する際には、縦延伸後のフィルムの長手方向の屈折率が1.600~1.630の範囲内となり、縦延伸後のフィルムの長手方向の熱収縮応力が10MPa以下となるように、縦延伸の条件を調整するのが好ましい。そのような所定の条件の縦延伸を施すことにより、後述する中間熱処理、横延伸、最終熱処理時にフィルムの長手方向・幅方向への配向度合い、分子の緊張度合いをコントロールすることが可能となり、ひいては、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。
 上記の如く縦方向に延伸する際に、トータルの縦延伸倍率が高くなると、長手方向の収縮率が高くなってしまう傾向にあるが、上記の如く縦方向に二段で延伸することにより、長手方向の延伸応力を小さくすることが可能となり、長手方向の収縮率を低く抑えることが可能となる。また、トータルの縦延伸倍率が高くなると、幅方向の延伸時の応力が高くなってしまい、最終的な横方向の収縮率のコントロールが難しくなる傾向にあるが、二段で延伸することにより、横方向の延伸応力も小さくすることができ、横方向の収縮率のコントロールが容易なものとなる。
 さらに、トータルの縦延伸倍率が高くなると、直角引裂強度が低くなり、長手方向の引張強さが高くなる。また、トータルの縦延伸倍率を横延伸倍率に近づけることによって、エルメンドルフ比を1.0に近づけることが可能となり、ラベルとした際のミシン目開封性を良好なものとすることができる。さらに、縦方向に二段で延伸することにより、横方向の延伸応力を低下できることに起因して、長手方向の配向を高くすることが可能となり、直角引裂強度が一層低くなり、長手方向の引張強さがより大きなものとなる。したがって、縦方向に二段で延伸し、トータルの縦延伸倍率を高くすることによって、非常にミシン目引裂性の良好なラベルを得ることが可能となる。
 一方、トータルの縦延伸倍率が4.5倍を上回ると、長手方向の配向が高くなって溶剤接着強度が低くなってしまうが、トータルの縦延伸倍率を4.5倍以下にコントロールすることによって、幅方向への配向を抑えて、溶剤接着強度を高く保持することが可能となる。また、トータルの縦延伸倍率が4.5倍を上回ると、表層の粗さが少なくなるため、動摩擦係数が高くなってしまうが、トータルの縦延伸倍率を4.5倍以下にコントロールすることによって、表層の粗さの減少を抑えて、動摩擦係数を低く保持することが可能となる。
 また、縦方向に二段で延伸することにより、長手方向の延伸応力が小さくなるため、長手方向の厚み斑および幅方向の厚み斑が大きくなる傾向にあるが、トータルの縦延伸倍率を高くすることにより、長手方向の厚み斑を小さくすることができ、それに伴ってヘイズも低減することができる。加えて、トータルの縦延伸倍率を高くすることによって、横延伸時の応力が高くなるため、幅方向の厚み斑も低減することができる。
 加えて、トータルの縦延伸倍率を高くすることにより、長手方向への配向を高くすることができ、二軸延伸後のフィルムを最終的にロールに巻き取る際のスリット性を向上させることができる。
(2)縦延伸後に長手方向へのアニール処理
 上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましい。縦延伸後フィルムの長手方向の残留収縮応力が高いと、横延伸後のフィルム長手方向の温湯収縮率が高くなり収縮仕上り性が悪くなる欠点がある。横延伸工程で熱処理を加えることがフィルム長手方向の温湯収縮率を下げるのに有効であるが、熱による緩和だけでは十分にフィルム長手方向の温湯収縮率を下げることができるとはいえず、高い熱量が必要となる。そこで、発明者らは、横延伸工程前に少しでも縦延伸後フィルムの長手方向の残留収縮応力を下げる手段を検討した。そして、縦延伸後のフィルムに赤外線ヒータで加熱しながらロール間の速度差を利用して長手方向にリラックスを実施することで、長手方向の配向の減少より残留収縮応力の減少が大きく、残留収縮応力が半減以上することが分かった。
 赤外線ヒータだけで加熱してリラックスを用いないと、配向は減少しないが長手方向の収縮応力の減少は十分でない。赤外線ヒータで加熱しないでリラックスのみ実施すると、ロール間で十分にフィルムがリラックスできずにたるんでしまい、ロールに巻き付くという悪さがある。リラックス率は長手方向に10%以上70%以下である。10%より低いリラックス率では、縦延伸後フィルムの長手方向の収縮応力を半減させることが難しい。また、70%より高いリラックス率では、縦延伸後のフィルム収縮応力は半減以上するが、長手方向の配向も減少し、長手方向のカット性が悪くなり、かつ生産性が悪くなる。
 アニール処理時の赤外線ヒータの加熱はフィルム温度が(Tg+10℃)以上(Tg+40℃)以下が好ましい。(Tg+10℃)より低いと十分に加熱しているとはいえずリラックス時にフィルムがたるみ、ロールへの巻きつきやシワが発生する。(Tg+40℃)より高く加熱すると、フィルムの結晶化が進み、次工程の横延伸が困難となる。アニール処理工程でのフィルム加熱手段は、赤外線ヒータで無くても熱風ドライヤー等の他の加熱手段でも良いが、設備の省スペース化には赤外線ヒータが適している。
 また、アニール処理によりフィルム幅方向の80℃の温湯熱収縮率の10秒と3秒による熱収縮率差(ΔSHW)が大きくなることが分かった。アニール処理された縦延伸後フィルムは、長手方向の収縮応力が小さくなるため、フィルム幅方向への延伸する際の延伸応力が小さくなり、フィルム幅方向延伸後のフィルム幅方向残留応力が小さくなる。その結果、フィルム幅方向の80℃の温湯熱収縮率差(ΔSHW)が大きくなったと考えられる。
(3)縦延伸後における中間熱処理
 上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、本発明者らが試行錯誤した結果、縦-横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させ得る、という驚くべき事実が判明した。
 すなわち、本発明の縦-横延伸法によるフィルムの製造においては、未延伸フィルムを縦延伸してアニール処理した後に、テンター内で幅方向の両端際をクリップによって把持した状態で、130℃以上190℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理(以下、中間熱処理という)することが必要である。かかる中間熱処理を行うことによって、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となり、ひいては、ラベルとした場合にミシン目開封性が良好で収縮斑が生じないフィルムを得ることが可能となる。なお、どのような縦延伸を行った場合でも、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となるわけではなく、前述した所定の縦延伸を実施することによって、中間熱処理後に、初めて“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となる。そして、後述する所定の自然冷却、強制冷却、横延伸を施すことによって、フィルム内に形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向への収縮力を発現させることが可能となる。
 なお、中間熱処理の温度の下限は、133℃以上であると好ましく、135℃以上であるとより好ましい。また、中間熱処理の温度の上限は、180℃以下であると好ましく、170℃以下であるとより好ましい。一方、中間熱処理の時間は、1.0秒以上9.0秒以下の範囲内で原料組成に応じて適宜調整する必要があり、3.0秒以上7.0秒以下の範囲内で調整するのが好ましい。
 また、上記の如く中間熱処理する際には、中間熱処理後のフィルムの長手方向の屈折率が1.58~1.61の範囲内となり、中間熱処理後のフィルムの長手方向の熱収縮応力が0.5MPa以下となるように、中間熱処理の条件を調整するのが好ましい。さらに、中間熱処理後のフィルムの長手方向の引張破壊伸びが100%以上170%以下となるように、中間熱処理の条件を調整するのが好ましい。そのような所定の条件の中間熱処理を施すことにより、横延伸、最終熱処理時にフィルムの長手方向・幅方向への配向度合い、分子の緊張度合いをコントロールすることが可能となり、ひいては、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。なお、中間熱処理後のフィルムの長手方向の引張破壊伸びが100%を下回ると、フィルムが脆いために横延伸性が悪く、横延伸時に破断が起こり易くなってしまう。反対に、中間熱処理後のフィルムの長手方向の引張破壊伸びが170%を上回ると、横延伸、最終熱処理の条件を調整しても、ミシン目開封性の良好なフィルムを得ることが困難となる。
 さらに、上記の如く中間熱処理する際には、中間熱処理後のフィルムの長手方向の直角引裂強度が310N/mm以下となるように、中間熱処理の条件を調整するのが好ましい。そのような所定の条件の中間熱処理を施すことにより、横延伸時における長手方向の直角引裂強度の急激な増加を抑えることが可能となり、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。
 上記の如く中間熱処理する際に、処理温度を130℃以上に保つことにより、長手方向へ収縮する応力を低減することが可能となり、長手方向の収縮率を極めて低くすることが可能となる。また、中間熱処理の温度を190℃以下にコントロールすることによって、横方向の収縮率のバラツキを低減することが可能となる。
 また、処理温度を130℃以上に保つことにより、長手方向の配向を高くすることが可能となり、直角引裂強度を低く保つことが可能となるとともに、長手方向のエルメンドルフ比を1.0に近づけることができる。また、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの結晶化を抑えて長手方向の引張強さを高く保つことが可能となる。
 また、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの表層の結晶化を抑えて溶剤接着強度を高く保つことが可能となる。加えて、処理温度を130℃以上に保つことにより、表層の表面粗度を適度に高くすることによって、摩擦係数を低くすることが可能となる。
 さらに、中間熱処理の温度を190℃以下にコントロールすることによって、長手方向の厚み斑を小さく保つことが可能となる。加えて、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの結晶化を抑えて横延伸時の応力のばらつきに起因する幅方向の厚み斑を小さく保つことが可能となる。
 また、中間熱処理の温度を190℃以下にコントロールすることによって、フィルム収縮斑の発生に起因するフィルムの破断を抑えて、良好なスリット性を保つことが可能となる。加えて、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムが結晶化することに起因して高くなるフィルムのヘイズを低く抑えることが可能となる。
(4)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
 本発明の縦-横延伸法によるフィルムの製造においては、上記の如く、縦延伸後に中間熱処理を施す必要があるが、その縦延伸と中間熱処理の後において、好ましくは0.5秒以上3.0秒以下の時間にわたって、積極的な加熱操作を実行しない中間ゾーンを通過させる必要がある。すなわち、横延伸用のテンターの横延伸ゾーンの前方に中間ゾーンを設けておき、縦延伸後のフィルムをテンターに導き、所定時間をかけて当該中間ゾーンを通過させた後に、横延伸を実施するのが好ましい。加えて、その中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの流れに伴う随伴流および冷却ゾーンからの熱風を遮断するのが好ましい。なお、中間ゾーンを通過させる時間が0.5秒を下回ると、横延伸が高温延伸となり、横方向の収縮率を十分に高くすることができなくなるので好ましくない。反対に中間ゾーンを通過させる時間は3.0秒もあれば十分であり、それ以上の長さに設定しても、設備のムダとなるので好ましくない。なお、中間ゾーンを通過させる時間の下限は、0.7秒以上であると好ましく、0.9秒以上であるとより好ましい。また、中間ゾーンを通過させる時間の上限は、2.8秒以下であると好ましく、2.6秒以下であるとより好ましい。
(5)自然冷却後のフィルムの強制冷却
 本発明の縦-横延伸法によるフィルムの製造においては、上記の如く自然冷却したフィルムをそのまま横延伸するのではなく、フィルムの温度が80℃以上120℃以下となるように積極的に強制冷却することが必要である。かかる強制冷却処理を施すことによって、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、強制冷却後のフィルムの温度の下限は、85℃以上であると好ましく、90℃以上であるとより好ましい。また、強制冷却後のフィルムの温度の上限は、115℃以下であると好ましく、110℃以下であるとより好ましい。
 上記の如くフィルムを強制冷却する際に、強制冷却後のフィルムの温度が120℃を上回ったままであると、フィルムの幅方向の収縮率が低くなってしまい、ラベルとした際の収縮性が不十分となってしまうが、冷却後のフィルムの温度が120℃以下となるようにコントロールすることによって、フィルムの幅方向の収縮率を高く保持することが可能となる。
 また、フィルムを強制冷却する際に、強制冷却後のフィルムの温度が120℃を上回ったままであると、フィルムが結晶化してしまい、ヘイズが高くなり、長手方向の引張強さが低下し、溶剤接着強度が低下する傾向にあるが、冷却後のフィルムの温度が120℃以下となるような強制冷却を施すことによって、ヘイズを低く保持し、長手方向の引張強さおよび溶剤接着強度を高く保持することが可能となる。
 さらに、フィルムを強制冷却する際に、強制冷却後のフィルムの温度が120℃を上回ったままであると、冷却後に行う横延伸の応力が小さくなり、幅方向の厚み斑が大きくなり易い傾向にあるが、冷却後のフィルムの温度が120℃以下となるような強制冷却を施すことによって、冷却後に行う横延伸の応力を高めて、幅方向の厚み斑を小さくすることが可能となる。
 加えて、フィルムを強制冷却する際に、強制冷却後のフィルムの温度が120℃を上回ったままであると、フィルムが結晶化することに起因して、フィルムの破断が生じ易くなってしまうが、冷却後のフィルムの温度が120℃以下となるような強制冷却を施すことによって、フィルムの破断を抑えることが可能となる。
(6)横延伸条件の制御
 本発明の縦-横延伸法によるフィルムの製造においては、縦延伸、アニール、中間熱処理、自然冷却、強制冷却の後のフィルムを所定の条件で横延伸して最終的な熱処理を行う必要がある。すなわち、横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、(Tg+10℃)以上(Tg+40℃)以下の温度、例えば80℃以上120℃以下の温度で2.0倍以上6.0倍以下の倍率となるように行う必要がある。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱処理によって形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、横延伸の温度の下限は、85℃以上であると好ましく、90℃以上であるとより好ましい。また、横延伸の温度の上限は、115℃以下であると好ましく、110℃以下であるとより好ましい。一方、横延伸の倍率の下限は、2.5倍以上であると好ましく、3.0倍以上であるとより好ましい。また、横延伸の倍率の上限は、5.5倍以下であると好ましく、5.0倍以下であるとより好ましい。
 上記の如く横方向に延伸する際に、延伸温度を高くすると、長手方向の引張強さが大きくなり、長手方向のエルメンドルフ比が1.0に近づき、直角引裂強度が低くなり、ラベルとした際のミシン目開封性が良好なものとなる。
 また、延伸温度が120℃を上回ると、長手方向の収縮率が高くなるとともに、幅方向の収縮率が低くなってしまうが、延伸温度を120℃以下にコントロールすることによって、長手方向の収縮率を低く抑えるとともに、幅方向の収縮率を高く保持することが可能となる。
 さらに、横延伸における延伸温度が高くなると、横方向の配向が低くなって、溶剤接着強度が高くなるとともに、滑剤の圧潰を防止することが可能となり、摩擦係数を低く保つことが可能となる。加えて、横延伸における延伸温度が高くなると、フィルムの内部のボイドが減少することによって、フィルムのヘイズが低くなる。
 また、延伸温度が120℃を上回ると、幅方向の厚み斑が大きくなり易い傾向にあるが、延伸温度を120℃以下にコントロールすることによって、幅方向の厚み斑を小さくすることができる。
 一方、延伸温度が80℃を下回ると、幅方向への配向が高くなりすぎて、横延伸時に破断し易くなったり、二軸延伸後のフィルムを最終的にロールに巻き取る際のスリット性が悪くなったりするが、延伸温度を80℃以上にコントロールすることによって、横延伸時における破断を低減し、巻き取り時のスリット性を改善することが可能となる。
 横延伸後のフィルムは、テンター内で幅方向の両端際をクリップで把持した状態で、80℃以上130℃以下の温度で1.0秒以上9.0秒以下の時間にわたって最終的に熱処理されることが必要である。温度が130℃より高いと幅方向の収縮率が低下し、90℃の熱収縮率が40%より低くなり好ましくない。また、80℃より低いと、幅方向へ充分に弛緩できず、最終的な製品を常温下で保管した時に、経時で幅方向の収縮(いわゆる自然収縮率)が大きくなり好ましくない。また、熱処理時間は長いほど好ましいが、あまりに長いと設備が巨大化するので、9.0秒以下の時間が好ましい。
[製造工程の相互作用がフィルム特性に与える影響]
 本発明の熱収縮性ポリエステル系フィルムの製造に当たっては、縦延伸工程、中間熱処理工程、自然冷却工程、強制冷却工程、横延伸工程のうちのいずれかの工程のみが、単独でフィルムの特性を良好なものとすることができるものではなく、縦延伸工程、中間熱処理工程、自然冷却工程、強制冷却工程、横延伸工程のすべてを所定の条件にて行うことにより、非常に効率的にフィルムの特性を良好なものとすることが可能となる。また、フィルムの特性の中でも、エルメンドルフ比、長手方向の直角引裂強度、長手方向の引張破壊強さ、幅方向の厚み斑、動摩擦係数、長手方向の厚み斑といった重要な特性は、特定の複数の工程同士の相互作用によって大きく数値が変動する。
 すなわち、本発明の熱収縮性ポリエステル系フィルムは、長手方向の直角引裂強度を180N/mm以上310N/mm以下に調整する必要があり、好ましくは長手方向の直角引裂強度を190N/mm以上300N/mm以下、更に好ましくは200N/mm以上290N/mm以下に調節し、エルメンドルフ比を0.3以上1.5以下に調整するものであるが、当該エルメンドルフ比および長手方向の直角引裂強度には、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。また、上述のように樹脂中の添加剤を増量することにより空洞を作れば、長手方向の直角引裂強度を小さく調節することができる。
 また、本発明の熱収縮性ポリエステル系フィルムは、長手方向の引張破壊強さを90MPa以上300MPa以下に調整する必要があるが、当該長手方向の引張破壊強さには、縦延伸工程、中間熱処理工程、および横延伸工程という3つの工程の相互作用が非常に大きく影響する。
 さらに、本発明の熱収縮性ポリエステル系フィルムは、幅方向の厚み斑を1.0%以上10.0%以下に調整すると好ましいが、当該幅方向の厚み斑には、縦延伸工程、中間熱処理工程、および横延伸工程という3つの工程の相互作用が非常に大きく影響する。
 加えて、本発明の熱収縮性ポリエステル系フィルムは、動摩擦係数を0.1以上0.55以下に調整すると好ましいが、当該動摩擦係数には、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。
 また、本発明の熱収縮性ポリエステル系フィルムは、長手方向の厚み斑を1.0%以上12.0%以下に調整すると好ましいが、当該幅方向の厚み斑には、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。
 したがって、熱収縮性ポリエステル系フィルムのエルメンドルフ比、長手方向の直角引裂強度、引張破壊強さ、幅方向の厚み斑、動摩擦係数、長手方向の厚み斑を本発明の範囲内に調整するためには、上記した工程同士の相互作用を考慮しつつ、上記(1)~(6)のようなデリケートな条件調整が必要となる。
 本発明の包装体は、上述の熱収縮性ポリエステル系フィルムを基材とし、その基材にミシン目あるいは一対のノッチが設けられたラベルを、包装対象物の少なくとも外周の一部に被覆して熱収縮させて形成されるものである。包装体対象物としては、飲料用のペットボトルをはじめ、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙製の箱等を挙げることができる。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムを基材とするラベルを熱収縮させて被覆させる場合には、当該ラベルを約2~15%程度熱収縮させて包装体に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても良いし、印刷が施されていなくても良い。
 ラベルを作成する方法としては、長方形状のフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着してラベル状にするか、あるいは、ロール状に巻き取ったフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着して、チューブ状体としたものをカットしてラベル状とする。接着用の有機溶剤としては、1,3-ジオキソランあるいはテトラヒドロフラン等の環状エーテル類が好ましい。この他、ベンゼン、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素、塩化メチレン、クロロホルム等のハロゲン化炭化水素やフェノール等のフェノール類あるいはこれらの混合物が使用できる。
 次に、実施例及び比較例を用いて本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。なお、フィルムの評価方法を以下に示す。
[熱収縮率(温湯熱収縮率)]
 フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、下記式(1)にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大きい方向を主収縮方向とした。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}
                    ×100(%)・・・式(1)
[80℃の熱収縮率差(温湯熱収縮率差)]
 上記式(1)により算出するフィルム幅方向の80℃熱収縮率において、温水中で無荷重状態で3秒間にわたって処理したときの値と10秒間にわたって処理したときの値から下記式(2)より求めた。
 80℃熱収縮率の差(ΔSHW)=80℃・10秒の幅方向温湯熱収縮率
       -80℃・3秒の幅方向温湯熱収縮率(%)・・・式(2)
[直角引裂強度]
 所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、図1に示す形状にサンプリングすることによって試験片を作製した(なお、サンプリングにおいては、試験片の引裂く方向を長手方向とした)。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ)で試験片の両端(幅方向)を掴み、引張速度200mm/分の条件にて、引張破壊時の強度の測定を行い、下記式(3)を用いて単位厚み当たりの直角引裂強度を算出した。
 直角引裂強度=引張破壊時の強度÷厚み ・・・式(3)
[エルメンドルフ比]
 所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、フィルムの幅方向および長手方向のエルメンドルフ引裂荷重の測定を行い、下記式(4)を用いてエルメンドルフ比を算出する。
 エルメンドルフ比=幅方向のエルメンドルフ引裂荷重
         ÷長手方向のエルメンドルフ引裂荷重 ・・・式(4)
[Tg(ガラス転移点)]
 セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、未延伸フィルム5mgを、-40℃から120℃まで昇温速度10℃/分で昇温し、得られた吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点をTg(ガラス転移点)とした。
[屈折率]
 アタゴ社製の「アッベ屈折計4T型」を用いて、各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に測定した。
[幅方向厚み斑]
 フィルムを長さ40mm×幅1.2mの幅広な帯状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で、フィルム試料の幅方向に沿って連続的に厚みを測定した(測定長さは500mm)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下記式(5)からフィルムの長手方向の厚み斑を算出した。
 厚み斑={(Tmax.-Tmin.)/Tave.}×100(%)
                           ・・・式(5)
[長手方向厚み斑]
 フィルムを長さ12m×幅40mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度でフィルム試料の長手方向に沿って連続的に厚みを測定した(測定長さは10m)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、上記式(5)からフィルムの長手方向の厚み斑を算出した。
[ラベルでの収縮歪み]
 熱収縮性フィルムに、両端部をジオキソランで接着することにより、円筒状のラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を作成した。しかる後、Fuji Astec Inc製スチームトンネル(型式;SH-1500-L)を用い、通過時間2.5秒、ゾーン温度80℃で、500mlのPETボトル(胴直径 62mm、ネック部の最小直径25mm)に熱収縮させることにより、ラベルを装着した。なお、装着の際には、ネック部においては、直径40mmの部分がラベルの一方の端になるように調整した。収縮後の仕上り性の評価として、装着されたラベル上部の360度方向の歪みをゲージを使用して測定を行い、歪みの最大値を求めた。その時、以下の基準に従って評価した。
  ◎:最大歪み 1.5mm未満
  ○:最大歪み 1.5mm以上2.5mm未満
  ×:最大歪み 2.5mm以上
[ラベル密着性]
 上記した収縮仕上り性の測定条件と同一の条件でラベルを装着した。そして、装着したラベルとPETボトルとを軽くねじったときに、ラベルが動かなければ○、すり抜けたり、ラベルとボトルがずれたりした場合には×として評価した。
[ミシン目開封性]
 予め主収縮方向とは直向する方向にミシン目を入れておいたラベルを、上記した収縮仕上り性の測定条件と同一の条件でPETボトルに装着した。ただし、ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、ラベルの縦方向(高さ方向)に幅22mm、長さ120mmにわたって2本設けた。その後、このボトルに水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本から前記の本数を差し引いて、ミシン目開封不良率(%)を算出した。
 次に、実施例、比較例で使用したポリエステル原料の組成、実施例、比較例におけるフィルムの樹脂組成と製造条件(延伸・熱処理条件等)を、それぞれ表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<ポリエステル原料の調製>
 撹拌機、温度計及び部分環流式冷却器を備えたステンレススチール製オートクレーブに、二塩基酸成分としてジメチルテレフタレート(DMT)100モル%と、グリコール成分としてエチレングリコール(EG)100モル%とを、グリコールがモル比でメチルエステルの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)用いて、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、重縮合触媒として三酸化アンチモン0.025モル%(酸成分に対して)を添加し、280℃で26.6Pa(0.2トール)の減圧条件下、重縮合反応を行い、固有粘度0.70dl/gのポリエステル(A)を得た。このポリエステルはポリエチレンテレフタレートである。なお、上記ポリエステル(A)の製造の際には、滑剤としてSiO(富士シリシア社製サイリシア266)をポリエステルに対して8,000ppmの割合で添加した。また、上記と同様な方法により、表1に示すポリエステル(A2,B,C,D)を合成した。なお、表中、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、BDは1,4-ブタンジオールである。ポリエステルA2,B,C,Dの固有粘度は、それぞれ、0.70dl/g,0.72dl/g,0.80dl/g,1.15dl/gであった。なお、各ポリエステルは、適宜チップ状にした。
[実施例1]
 上記したポリエステルAとポリエステルA2とポリエステルBとポリエステルDとを重量比5:5:80:10で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが204μmの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約20m/min.であった。また、未延伸フィルムのTgは67℃であった。
 そして、上記の如く得られた未延伸フィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、ロールの回転速度差を利用して、縦方向に二段階で延伸した。すなわち、未延伸フィルムを、予熱ロール上でフィルム温度が78℃になるまで予備加熱した後に、表面温度78℃に設定された低速回転ロールと表面温度78℃に設定された中速回転ロールとの間で回転速度差を利用して2.6倍に延伸した(1段目の縦延伸)。さらに、その縦延伸したフィルムを、表面温度95℃に設定された中速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して1.4倍に縦延伸した(2段目の縦延伸)(したがって、トータルの縦延伸倍率は、3.64倍であった)。
 上記の如く縦延伸直後のフィルムを、赤外線ヒータでフィルム温度93℃に加熱しながらロール間の速度差を利用して30%長手方向にリラックスしてアニール処理を施した。
 上記の如くアニール処理後のフィルムを、表面温度30℃に設定された冷却ロール(二段目の縦延伸ロールの直後に位置した高速ロール)によって、40℃/秒の冷却速度で強制的に冷却した後に、冷却後のフィルムをテンターに導き、中間熱処理ゾーン、第一中間ゾーン(自然冷却ゾーン)、冷却ゾーン(強制冷却ゾーン)、第二中間ゾーン、横延伸ゾーン、最終熱処理ゾーンを連続的に通過させた。なお、当該テンターにおいては、第一中間ゾーンの長さを、約40cmに設定し、中間熱処理ゾーンと第一中間ゾーンとの間、第一中間ゾーンと冷却ゾーンとの間、冷却ゾーンと第二中間ゾーンとの間、第二中間ゾーンと横延伸ゾーンとの間に、それぞれ遮蔽板を設けた。さらに、第一中間ゾーンおよび第二中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、中間熱処理ゾーンからの熱風、冷却ゾーンからの冷却風および横延伸ゾーンからの熱風を遮断した。加えて、フィルムの通紙時には、フィルムの流れに伴う随伴流の大部分が、中間熱処理ゾーンと第一中間ゾーンとの間に設けられた遮蔽板によって遮断されるように、フィルムと遮蔽板との距離を調整した。加えて、フィルムの通紙時には、中間熱処理ゾーンと第一中間ゾーンとの境界、および、冷却ゾーンと第二中間ゾーンとの境界においては、フィルムの流れに伴う随伴流の大部分が遮蔽板によって遮断されるようにフィルムと遮蔽板との距離を調整した。
 そして、テンターに導かれたアニール後のフィルムを、まず、中間熱処理ゾーンにおいて、140℃の温度で5.0秒間にわたって熱処理した後に、その中間熱処理後のフィルムを第一中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)自然冷却した。しかる後に、自然冷却後のフィルムを冷却ゾーンに導き、フィルムの表面温度が100℃になるまで、低温の風を吹き付けることによって積極的に強制冷却し、その冷却後のフィルムを第二中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)再度自然冷却した。さらに、その第二中間ゾーンを通過した後のフィルムを横延伸ゾーンに導き、フィルムの表面温度が95℃になるまで予備加熱した後に、95℃で幅方向(横方向)に4.0倍に延伸した。
 しかる後、その横延伸後のフィルムを最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、85℃の温度で5.0秒間にわたって熱処理した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、約20μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例2]
 ポリエステルBをポリエステルCに変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。未延伸フィルムのTgは67℃であった。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例3]
 未延伸フィルムの厚みを175μmとして、縦延伸後のアニール処理を40%のリラックス率にした以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例4]
 ポリエステルAとポリエステルA2とポリエステルBとポリエステルDとを重量比5:30:55:10で混合した。未延伸フィルムのTgは67℃であった。未延伸フィルムの厚みを168μmとして、縦延伸工程での温度と倍率、横延伸工程での温度、中間熱処理の温度を変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例5]
 未延伸フィルムの厚みを233μmとして、アニール工程での温度及びリラックス率を変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例6]
 未延伸フィルムの厚みを146μmとして、縦延伸後のアニール処理を50%のリラックス率にした以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例7]
 未延伸フィルムの厚みを168μmとして、1段目の縦延伸倍率を3倍、2段目の縦延伸倍率を1.4倍にして、トータルの縦延伸倍率を4.2倍にした。この縦延伸されたフィルムの縦延伸後のアニール処理を50%のリラックス率にし、テンターに導かれたアニール後のフィルムの中間熱処理ゾーン温度を145℃の温度で5.0秒間に変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
[実施例8]
 未延伸フィルムの厚みを202μmとして、縦延伸後のアニール処理を40%のリラックス率にした以外は実施例7と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。実施例7に比較し、透明性、カット性が良好なフィルムであった。
[比較例1]
 上記したポリエステルAとポリエステルA2とポリエステルBとポリエステルDとを重量比5:5:80:10で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが291μmの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約20m/min.であった。また、未延伸フィルムのTgは67℃であった。
 そして、上記の如く得られた未延伸フィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、ロールの回転速度差を利用して、縦方向に二段階で延伸した。すなわち、未延伸フィルムを、予熱ロール上でフィルム温度が78℃になるまで予備加熱した後に、表面温度78℃に設定された低速回転ロールと表面温度78℃に設定された中速回転ロールとの間で回転速度差を利用して2.6倍に延伸した(1段目の縦延伸)。さらに、その縦延伸したフィルムを、表面温度95℃に設定された中速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して1.4倍に縦延伸した(2段目の縦延伸)(したがって、トータルの縦延伸倍率は、3.64倍であった)。
 上記の如く縦延伸後のフィルムを、表面温度30℃に設定された冷却ロール(二段目の縦延伸ロールの直後に位置した高速ロール)によって、40℃/秒の冷却速度で強制的に冷却した後に、冷却後のフィルムをテンターに導き、中間熱処理ゾーン、第一中間ゾーン(自然冷却ゾーン)、冷却ゾーン(強制冷却ゾーン)、第二中間ゾーン、横延伸ゾーン、最終熱処理ゾーンを連続的に通過させた。なお、当該テンターにおいては、第一中間ゾーンの長さを、約40cmに設定し、中間熱処理ゾーンと第一中間ゾーンとの間、第一中間ゾーンと冷却ゾーンとの間、冷却ゾーンと第二中間ゾーンとの間、第二中間ゾーンと横延伸ゾーンとの間に、それぞれ遮蔽板を設けた。さらに、第一中間ゾーンおよび第二中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、中間熱処理ゾーンからの熱風、冷却ゾーンからの冷却風および横延伸ゾーンからの熱風を遮断した。加えて、フィルムの通紙時には、フィルムの流れに伴う随伴流の大部分が、中間熱処理ゾーンと第一中間ゾーンとの間に設けられた遮蔽板によって遮断されるように、フィルムと遮蔽板との距離を調整した。加えて、フィルムの通紙時には、中間熱処理ゾーンと第一中間ゾーンとの境界、および、冷却ゾーンと第二中間ゾーンとの境界においては、フィルムの流れに伴う随伴流の大部分が遮蔽板によって遮断されるようにフィルムと遮蔽板との距離を調整した。
 そして、テンターに導かれた縦延伸フィルムを、まず、中間熱処理ゾーンにおいて、160℃の温度で5.0秒間にわたって熱処理した後に、その中間熱処理後のフィルムを第一中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)自然冷却した。しかる後に、自然冷却後のフィルムを冷却ゾーンに導き、フィルムの表面温度が100℃になるまで、低温の風を吹き付けることによって積極的に強制冷却し、その冷却後のフィルムを第二中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)再度自然冷却した。さらに、その第二中間ゾーンを通過した後のフィルムを横延伸ゾーンに導き、フィルムの表面温度が95℃になるまで予備加熱した後に、95℃で幅方向(横方向)に4.0倍に延伸した。
 しかる後、その横延伸後のフィルムを最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、85℃の温度で5.0秒間にわたって熱処理した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、約20μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。カット性は良好であったが収縮斑が若干劣る結果となった。
[比較例2]
 吐出量を変更した以外は実施例1と同様にして得られたフィルム厚み80μmの未延伸フィルムを、フィルムの表面温度が75℃になるまで予備加熱した後に、75℃で幅方向(横方向)に4.0倍に横一軸延伸した。しかる後、その横延伸後のフィルムを最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、85℃の温度で5.0秒間にわたって熱処理した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、約20μmの横一軸延伸フィルムを所定の長さにわたって連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。収縮斑は良好であったが、実施例に比べカット性が劣る結果となった。
[比較例3]
 未延伸フィルムの厚みを277μmとして、アニール工程でのリラックス率を5%とした以外は、実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。カット性は良好であったが収縮斑が若干劣る結果となった。
[比較例4]
 未延伸フィルムの厚みを202μmとして、アニール後のフィルムをテンターで中間熱処理無しで延伸温度80℃で4倍延伸し、80℃で最終熱処理した以外は、実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。実施例1に比較して、90℃長手方向の温湯熱収縮率が高く、収縮歪みが悪いフィルムであった。
 実施例、比較例の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れた加工特性を有しているので、ボトル等のラベル用途に好適に用いることができ、同フィルムがラベルとして用いられて得られたボトル等の包装体は美麗な外観を有するものである。

Claims (7)

  1.  エチレンテレフタレートを主たる構成成分とし、全ポリエステル系樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を13モル%以上含有しているポリエステル系樹脂からなり、かつ下記(1)~(4)の要件を満たすことを特徴とする熱収縮性ポリエステル系フィルム:
    (1)80℃の温水中で10秒間にわたって処理したときと3秒間にわたって処理したときのフィルム幅方向の温湯熱収縮率の差が3%以上15%以下である;
    (2)90℃の温水中で10秒間にわたって処理した場合における幅方向及び長手方向の温湯熱収縮率がそれぞれ40%以上80%以下、0%以上12%以下である;
    (3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が180N/mm以上310N/mm以下である;
    (4)長手方向の引張破壊強さが90MPa以上300MPa以下である。
  2.  80℃の温水中で幅方向に10%収縮させた後に幅方向および長手方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が0.3以上1.5以下であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。
  3.  厚みが10μm以上70μm以下であり、ヘイズが2.0以上13.0以下であることを特徴とする請求項1または2に記載の熱収縮性ポリエステル系フィルム。
  4.  動摩擦係数が0.1以上0.55以下であることを特徴とする請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
  5.  全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸のうちのいずれかであることを特徴とする請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルム。
  6.  請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)~(g)の各工程を含むことを特徴とする製造方法:
    (a)未延伸ポリエステル系フィルムを、Tg以上(Tg+30℃)以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、(Tg+10℃)以上(Tg+40℃)以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程;
    (b)縦延伸後のフィルムに、赤外線ヒータを用いて幅方向に加熱しながら、長手方向に10%以上70%以下のリラックスを実施するアニール工程;
    (c)アニール後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で130℃以上190℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する中間熱処理工程;
    (d)中間熱処理後のフィルムを、各工程の加熱ゾーンから遮断されかつ積極的な加熱操作を実行しない中間ゾーンに通過させることによって自然に冷却する自然冷却工程;
    (e)自然冷却後のフィルムを、表面温度が80℃以上120℃以下の温度となるまで積極的に冷却する強制冷却工程;
    (f)強制冷却後のフィルムを、(Tg+10℃)以上(Tg+40℃)以下の温度で幅方向に2.0倍以上6.0倍以下の倍率で延伸する横延伸工程;
    (g)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上130℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する最終熱処理工程。
  7.  請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルムを基材とし、その基材にミシン目あるいは一対のノッチが設けられたラベルを、包装対象物の少なくとも外周の一部に被覆して熱収縮させて形成されることを特徴とする包装体。 
PCT/JP2010/003114 2009-05-26 2010-05-06 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 WO2010137240A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL10780202T PL2436508T3 (pl) 2009-05-26 2010-05-06 Termokurczliwa folia poliestrowa, sposób jej wytwarzania oraz produkt opakowany z jej użyciem
ES10780202.7T ES2461849T3 (es) 2009-05-26 2010-05-06 Película de poliéster termocontraíble, método de fabricación de la misma y producto envasado usando la misma
JP2010524273A JP5633808B2 (ja) 2009-05-26 2010-05-06 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
US13/266,326 US9352508B2 (en) 2009-05-26 2010-05-06 Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same
EP10780202.7A EP2436508B1 (en) 2009-05-26 2010-05-06 Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same
CN201080022756.6A CN102448705B (zh) 2009-05-26 2010-05-06 热收缩性聚酯类膜及其制造方法、包装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009126776 2009-05-26
JP2009-126776 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137240A1 true WO2010137240A1 (ja) 2010-12-02

Family

ID=43222372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003114 WO2010137240A1 (ja) 2009-05-26 2010-05-06 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Country Status (8)

Country Link
US (1) US9352508B2 (ja)
EP (1) EP2436508B1 (ja)
JP (1) JP5633808B2 (ja)
KR (1) KR101639101B1 (ja)
CN (1) CN102448705B (ja)
ES (1) ES2461849T3 (ja)
PL (1) PL2436508T3 (ja)
WO (1) WO2010137240A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240387B1 (ja) * 2012-07-26 2013-07-17 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2014185442A1 (ja) 2013-05-16 2014-11-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2014199787A1 (ja) * 2013-06-11 2014-12-18 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2015151695A1 (ja) * 2014-04-01 2015-10-08 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2015199909A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2015199337A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2016039044A1 (ja) * 2014-09-09 2016-03-17 東洋紡株式会社 熱収縮性ポリエステル系フィルム及び包装体
JP2019051727A (ja) * 2014-04-01 2019-04-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6909936B1 (ja) * 2020-05-29 2021-07-28 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルム及びポリエステル系シュリンクフィルム成形品
JP6992211B1 (ja) * 2020-11-30 2022-02-15 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルム
JP7039154B1 (ja) 2020-11-30 2022-03-22 タキロンシーアイ株式会社 ラベル付き容器及びラベル付き容器の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882919B2 (ja) * 2006-08-30 2012-02-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP4560740B2 (ja) * 2007-09-25 2010-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
KR101491876B1 (ko) * 2008-02-27 2015-02-09 도요보 가부시키가이샤 백색 열수축성 폴리에스테르계 필름, 백색 열수축성 폴리에스테르계 필름의 제조방법, 라벨, 및 포장체
EP2548913B1 (en) * 2010-03-15 2016-03-02 Toyobo Co., Ltd. Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film
TWI454371B (zh) * 2013-01-31 2014-10-01 Far Eastern New Century Corp Preparation of Heat Shrinkable Polyester Films
US10421835B2 (en) 2013-04-26 2019-09-24 Toyobo Co., Ltd. Polyester film for sealant use, laminate, and packaging bag
KR102459356B1 (ko) * 2015-03-20 2022-10-25 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
US10543656B2 (en) 2018-01-11 2020-01-28 Eastman Chemical Company Tough shrinkable films
US12116452B2 (en) 2018-10-08 2024-10-15 Eastman Chemical Company Crystallizable shrinkable films and thermoformable sheets made from resins blends
CN116096551A (zh) 2020-08-27 2023-05-09 东洋纺株式会社 热收缩性聚酯系薄膜、热收缩性标签、及包装体
WO2022173140A1 (ko) * 2021-02-09 2022-08-18 에스케이씨 주식회사 폴리에스테르계 필름 및 이의 제조 방법
US11970303B2 (en) 2022-01-26 2024-04-30 The Procter & Gamble Company Infrared-assisted shrink wrap product bundling

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363312A (ja) 2001-06-05 2002-12-18 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
WO2008026530A1 (fr) * 2006-08-30 2008-03-06 Toyo Boseki Kabushiki Kaisha Film polyester thermoretractable, procede de production et emballage associes
JP2008274160A (ja) * 2007-05-01 2008-11-13 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2009073145A (ja) * 2007-09-25 2009-04-09 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
WO2009075312A1 (ja) * 2007-12-13 2009-06-18 Toyo Boseki Kabushiki Kaisha ラベル
JP2009202445A (ja) * 2008-02-28 2009-09-10 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体
JP2009227337A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd ラベル
JP2009227970A (ja) * 2008-02-28 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2009226939A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812972A (en) * 1955-03-28 1959-05-06 Du Pont Improvements in or relating to polymeric films
US4059667A (en) * 1975-10-20 1977-11-22 E. I. Du Pont De Nemours And Company Biaxially oriented polyethylene terephthalate film and method of making such film
US5885501A (en) * 1997-06-24 1999-03-23 E. I. Du Pont De Nemours And Company Process for preparing dimensionally stabilized biaxially stretched thermoplastic film
MXPA01012379A (es) 1999-06-01 2002-07-22 Du Pont Canada Pelicula de polietilentereftalato de alta resistencia a la tension y proceso para su produccion.
US20050119359A1 (en) * 2003-12-02 2005-06-02 Shelby Marcus D. Void-containing polyester shrink film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363312A (ja) 2001-06-05 2002-12-18 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
WO2008026530A1 (fr) * 2006-08-30 2008-03-06 Toyo Boseki Kabushiki Kaisha Film polyester thermoretractable, procede de production et emballage associes
JP2008274160A (ja) * 2007-05-01 2008-11-13 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2009073145A (ja) * 2007-09-25 2009-04-09 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
WO2009075312A1 (ja) * 2007-12-13 2009-06-18 Toyo Boseki Kabushiki Kaisha ラベル
JP2009202445A (ja) * 2008-02-28 2009-09-10 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体
JP2009227970A (ja) * 2008-02-28 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2009227337A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd ラベル
JP2009226939A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2436508A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017483A1 (ja) 2012-07-26 2014-01-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US9017782B2 (en) 2012-07-26 2015-04-28 Toyobo Co., Ltd. Heat-shrinkable polyester film and packages
JP5240387B1 (ja) * 2012-07-26 2013-07-17 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2014185442A1 (ja) 2013-05-16 2014-11-20 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10336871B2 (en) 2013-05-16 2019-07-02 Toyobo Co., Ltd. Heat-shrinkable polyester film and package
KR20160010490A (ko) 2013-05-16 2016-01-27 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
JP6036832B2 (ja) * 2013-06-11 2016-11-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2014199787A1 (ja) * 2013-06-11 2014-12-18 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10287433B2 (en) 2013-06-11 2019-05-14 Toyobo Co., Ltd. Heat-shrinkable polyester film and packages
JPWO2014199787A1 (ja) * 2013-06-11 2017-02-23 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US10035335B2 (en) 2014-04-01 2018-07-31 Toyobo Co., Ltd. Heat-shrinkable polyester film and package
TWI693997B (zh) * 2014-04-01 2020-05-21 日商東洋紡股份有限公司 熱收縮性聚酯系膜及包裝體
JP2015199337A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2015151695A1 (ja) * 2014-04-01 2015-10-08 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2015199336A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2019051727A (ja) * 2014-04-01 2019-04-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2015199909A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2019081378A (ja) * 2014-04-01 2019-05-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JPWO2016039044A1 (ja) * 2014-09-09 2017-06-22 東洋紡株式会社 熱収縮性ポリエステル系フィルム及び包装体
WO2016039044A1 (ja) * 2014-09-09 2016-03-17 東洋紡株式会社 熱収縮性ポリエステル系フィルム及び包装体
JP6909936B1 (ja) * 2020-05-29 2021-07-28 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルム及びポリエステル系シュリンクフィルム成形品
JP6965472B1 (ja) * 2020-05-29 2021-11-10 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルムの製造方法及びポリエステル系シュリンクフィルムの使用方法
WO2021240809A1 (ja) * 2020-05-29 2021-12-02 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルム及びポリエステル系シュリンクフィルム成形品
JP2021187162A (ja) * 2020-05-29 2021-12-13 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルムの製造方法及びポリエステル系シュリンクフィルムの使用方法
JP6992211B1 (ja) * 2020-11-30 2022-02-15 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルム
JP7039154B1 (ja) 2020-11-30 2022-03-22 タキロンシーアイ株式会社 ラベル付き容器及びラベル付き容器の製造方法
WO2022113364A1 (ja) * 2020-11-30 2022-06-02 タキロンシーアイ株式会社 ポリエステル系シュリンクフィルム
JP2022087090A (ja) * 2020-11-30 2022-06-09 タキロンシーアイ株式会社 ラベル付き容器及びラベル付き容器の製造方法

Also Published As

Publication number Publication date
US20120043248A1 (en) 2012-02-23
JP5633808B2 (ja) 2014-12-03
EP2436508B1 (en) 2014-04-09
CN102448705A (zh) 2012-05-09
PL2436508T3 (pl) 2014-09-30
CN102448705B (zh) 2015-04-29
KR101639101B1 (ko) 2016-07-12
EP2436508A1 (en) 2012-04-04
US9352508B2 (en) 2016-05-31
ES2461849T3 (es) 2014-05-21
JPWO2010137240A1 (ja) 2012-11-12
EP2436508A4 (en) 2013-05-01
KR20120028935A (ko) 2012-03-23

Similar Documents

Publication Publication Date Title
JP5633808B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP4882919B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP6337774B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP5240387B1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP5664548B2 (ja) 熱収縮性ポリエステル系フィルム、その包装体、及び熱収縮性ポリエステル系フィルムの製造方法
JP6036832B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP4877056B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP6572907B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP6485054B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JPWO2016152517A1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP5408250B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
WO2015151695A1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP5339061B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2019147954A (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP2009202445A (ja) 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体
JP5278821B2 (ja) 熱収縮性ポリエステル系フィルム
JP5067473B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP5895283B2 (ja) ラベル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022756.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010524273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13266326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010780202

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117030557

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9626/CHENP/2011

Country of ref document: IN