WO2010137240A1 - 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 - Google Patents
熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 Download PDFInfo
- Publication number
- WO2010137240A1 WO2010137240A1 PCT/JP2010/003114 JP2010003114W WO2010137240A1 WO 2010137240 A1 WO2010137240 A1 WO 2010137240A1 JP 2010003114 W JP2010003114 W JP 2010003114W WO 2010137240 A1 WO2010137240 A1 WO 2010137240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- heat
- stretching
- less
- longitudinal direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
- B29C55/065—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/04—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/38—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
- B29C63/42—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
- B29C63/423—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0049—Heat shrinkable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the present invention relates to a heat-shrinkable polyester film, a method for producing the same, and a package. Specifically, the present invention relates to a heat-shrinkable polyester film suitable for label applications, a method for producing the same, and a package using a label. Is.
- the heat shrinkable film a film that greatly shrinks in the width direction is generally used from the viewpoint of handling during label production. Therefore, the conventional heat-shrinkable polyester film has been produced by stretching at a high magnification in the width direction in order to develop a sufficient shrinkage force in the width direction during heating.
- the conventional heat-shrinkable polyester film is hardly stretched in the longitudinal direction perpendicular to the main shrinkage direction, the mechanical strength is low, and when it is covered by being shrunk on a plastic bottle or the like as a label, There is a defect that the label cannot be torn well along the perforation (that is, the perforation opening is poor).
- the film is stretched in the longitudinal direction during production in order to improve the perforation opening of the heat-shrinkable polyester film, the mechanical strength increases and the perforation opening improves to some extent, but in the longitudinal direction. Since the shrinkage force is expressed, when the plastic bottle is shrunk as a label and coated, a problem that the appearance (shrinkage finish) is very poor is exposed.
- the present invention was devised in order to solve the problems of the conventional heat-shrinkable polyester film, and its purpose is that the perforation openability is very good and the heat shrinkage is extremely high in productivity. It is in providing a conductive polyester film.
- the first invention of the present invention comprises a polyester-based resin containing ethylene terephthalate as a main constituent component and containing at least 13 mol% of one or more monomer components that can be an amorphous component in all polyester-based resin components, And satisfying the following requirements (1) to (4): (1) The difference in hot-water heat shrinkage in the film width direction between 3% and 15% when treated for 10 seconds in warm water at 80 ° C. and 3 seconds; (2) The hot-water heat shrinkage in the width direction and the longitudinal direction when treated in hot water at 90 ° C.
- the perpendicular tear strength in the longitudinal direction per unit thickness after shrinking in the width direction by 10% in warm water at 80 ° C. is 180 N / mm or more and 310 N / mm or less;
- the tensile fracture strength in the longitudinal direction is 90 MPa or more and 300 MPa or less.
- Preferred embodiments of the first invention of the present invention are as follows.
- the Elmendorf ratio is 0.3 or more and 1.5 or less when the Elmendorf tear load in the width direction and the longitudinal direction is measured after shrinking 10% in the width direction in warm water at 80 ° C.
- the thickness is from 10 ⁇ m to 70 ⁇ m, and the haze is from 2.0 to 13.0.
- the dynamic friction coefficient is 0.1 or more and 0.55 or less.
- the main component of the monomer that can be an amorphous component in all the polyester resin components is any one of neopentyl glycol, 1,4-cyclohexanedimethanol, and isophthalic acid.
- a second invention of the present invention is a production method for continuously producing the heat-shrinkable polyester film of the first invention, comprising the following steps (a) to (g): Features: (A) After stretching an unstretched polyester film at a temperature of Tg to (Tg + 30 ° C.) and below in the longitudinal direction at a magnification of 2.2 times to 3.0 times, (Tg + 10 ° C.) to (Tg + 40 ° C.) A longitudinal stretching step in which the film is stretched in the longitudinal direction so as to have a total magnification of 2.8 times or more and 4.5 times or less by stretching at a temperature of 1.2 times to 1.5 times in the longitudinal direction; (B) An annealing step in which the film after longitudinal stretching is relaxed by 10% to 70% in the longitudinal direction while being heated in the width direction using an infrared heater; (C) Intermediate heat treatment in which the annealed film is heat-treated at a temperature of 130 ° C.
- the film after transverse stretching is finally heat-treated at a temperature of 80 ° C. or higher and 130 ° C. or lower for 1.0 second or more and 9.0 seconds or less in a state where both ends in the width direction are held by clips in the tenter. Heat treatment process.
- a label having a heat-shrinkable polyester film of the first aspect as a base material, and a perforation or a pair of notches provided on the base material, on at least the outer periphery of the packaging object. It is a package characterized in that it is formed by partially covering and heat shrinking.
- the heat-shrinkable polyester film of the present invention is highly shrinkable in the width direction, which is the main shrinkage direction, has high mechanical strength in the longitudinal direction perpendicular to the width direction, and has a perforation opening property when used as a label. It is good and can be cut cleanly along the perforation from the beginning of tearing to the completion of tearing when opened.
- the stiffness (the so-called “waist” strength) is high, and the wearability of the label is excellent.
- the processing characteristics during printing and tubing are good.
- the heat-shrinkable polyester film of the present invention can be suitably used as a label for a container such as a bottle, and when used as a label, it can be attached to a container such as a bottle very efficiently within a short time. It is possible to develop a good finish with very little wrinkles and insufficient shrinkage when it is heat-shrinked after mounting, and the mounted label exhibits a very good perforation opening property. .
- the package of the present invention has a good tearing condition of the coated label, and can be torn the coated label cleanly along the perforation with an appropriate force.
- the heat-shrinkable polyester film of the present invention can be produced very efficiently because it is produced by being stretched biaxially and vertically.
- the heat-shrinkable polyester film of the present invention has an extremely high adhesive force when the front and back surfaces (or the same surface) are bonded with a solvent. Therefore, it can be suitably used for various coated labels including labels such as PET bottles.
- the polyester used for the heat-shrinkable polyester film of the present invention is mainly composed of ethylene terephthalate. That is, it contains 50 mol% or more, preferably 60 mol% or more of ethylene terephthalate.
- Other dicarboxylic acid components constituting the polyester of the present invention include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, And alicyclic dicarboxylic acid.
- the aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
- the content is preferably less than 3 mol%.
- a heat-shrinkable polyester film obtained using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high-speed mounting.
- the polyester does not contain a trivalent or higher polyvalent carboxylic acid (for example, trimellitic acid, pyromellitic acid, and anhydrides thereof).
- a trivalent or higher polyvalent carboxylic acid for example, trimellitic acid, pyromellitic acid, and anhydrides thereof.
- diol component constituting the polyester examples include ethylene glycol, 1-3 propanediol, 1-4 butanediol, neopentyl glycol, aliphatic diol such as hexanediol, and alicyclic diol such as 1,4-cyclohexanedimethanol, Examples thereof include aromatic diols such as bisphenol A.
- Polyester includes cyclic diols such as 1,4-cyclohexanedimethanol and diols having 3 to 6 carbon atoms (for example, 1-3 propanediol, 1-4 butanediol, neopentyl glycol, hexanediol, etc.).
- a polyester having a glass transition point (Tg) adjusted to 60 to 80 ° C. by containing at least one of the above is preferable.
- the polyester has a total of 13 mol% or more, preferably a total of one or more monomer components that can be amorphous components in 100 mol% of the polyhydric alcohol component or 100 mol% of the polycarboxylic acid component in the total polyester resin. Is 14 mol% or more, more preferably 15 mol% or more, and particularly preferably 16 mol% or more.
- the upper limit of the total amount of monomer components that can be amorphous components is not particularly limited, but can be, for example, 30 mol%.
- Examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2- Diethyl 1,3-propanediol, 2-n-butyl 2-ethyl 1,3-propanediol, 2,2-isopropyl 1,3-propanediol, 2,2-di-n-butyl 1,3-propanediol, Examples thereof include 1,4-butanediol and hexanediol. Of these, neopentyl glycol, 1,4-cyclohexanedimethanol, or isophthalic acid is preferably used.
- the polyester preferably does not contain a diol having 8 or more carbon atoms (for example, octanediol) or a trihydric or higher polyhydric alcohol (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.).
- a diol having 8 or more carbon atoms for example, octanediol
- a trihydric or higher polyhydric alcohol for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.
- the polyester does not contain diethylene glycol, triethylene glycol, or polyethylene glycol as much as possible.
- the resin forming the heat-shrinkable polyester film of the present invention various additives as necessary, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents, A heat stabilizer, a coloring pigment, a coloring inhibitor, an ultraviolet absorber, and the like can be added.
- fine particles any one can be selected. For example, as inorganic fine particles, silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, etc.
- organic fine particles for example, acrylic resin
- acrylic resin examples thereof include particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles.
- the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter) and can be appropriately selected as necessary.
- the above particles into the resin forming the heat-shrinkable polyester film for example, it can be added at any stage for producing the polyester resin, but it can be added at the esterification stage or transesterification reaction. After completion, it is preferable to add as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction, and proceed with the polycondensation reaction.
- a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin material, or a dried particle and a polyester resin material using a kneading extruder It is also preferable to carry out by a method of blending and the like.
- the heat-shrinkable polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
- the heat-shrinkable polyester film of the present invention is a film width direction calculated by the following formula (1) from the length before and after shrinkage when treated for 10 seconds in 90 ° C. warm water under no load.
- the heat shrinkage ratio (that is, the hot water heat shrinkage ratio in the width direction at 90 ° C.) is 40% or more and 80% or less.
- Thermal shrinkage ⁇ (length before shrinkage ⁇ length after shrinkage) / length before shrinkage ⁇ ⁇ 100 (%)
- the shrinkage amount in the width direction at 90 ° C. is less than 40%, the shrinkage amount is small, and therefore, it is not preferable because wrinkles and tarmi are generated on the label after heat shrinkage. If the heat shrinkage rate of hot water exceeds 80%, it is not preferable because when used as a label, the shrinkage tends to occur during heat shrinkage, or so-called “jumping” occurs.
- the lower limit of the hot water heat shrinkage in the width direction at 90 ° C. is preferably 41% or more, more preferably 43% or more, and particularly preferably 45% or more.
- the upper limit of the hot water heat shrinkage in the width direction at 90 ° C. is preferably 75% or less, more preferably 70% or less, and particularly preferably 65% or less.
- the heat-shrinkable polyester film of the present invention has a heat shrinkage rate in the longitudinal direction of the film calculated by the above formula (1) when treated in warm water at 90 ° C. for 10 seconds without load (ie, 90 °
- the hot water heat shrinkage in the longitudinal direction at 0 ° C. is 0% or more and 12% or less.
- the hot water heat shrinkage in the longitudinal direction at 90 ° C. is less than 0% (that is, when the heat shrinkage exceeds 2% by heat treatment), since a good shrink appearance cannot be obtained when used as a bottle label.
- the hot water heat shrinkage rate in the longitudinal direction at 90 ° C. is preferably 0.5% or more and 10% or less, and more preferably 1% or more and 8% or less.
- the difference in hot shrinkage in the width direction at 80 ° C. is less than 3%, the hot water heat shrinkage rate is increased, and when the heat shrinks to form a label, wrinkles, tarmi and distortion are likely to occur.
- the larger the difference in hot shrinkage in the width direction at 80 ° C. the better, but at present 15% is the limit.
- the lower limit of the hot water heat shrinkage difference in the width direction at 80 ° C. is preferably 3.5% or more, and particularly preferably 4% or more.
- the right-angled tear strength in the longitudinal direction needs to be 180 N / mm or more and 310 N / mm or less.
- the film is attached to a rectangular frame having a predetermined length in a state of being loosened in advance (that is, both ends of the film are gripped by the frame). Then, the film is contracted by 10% in the width direction by being immersed in warm water at 80 ° C. for about 5 seconds until the slack film becomes a tension state in the frame (until the slack disappears). Thereafter, according to JIS-K-7128, the test piece was sampled into the shape shown in FIG. 1 (note that in the sampling, the tearing direction of the test piece was taken as the longitudinal direction).
- the right-angled tear strength after shrinking 10% in the width direction in warm water at 80 ° C is less than 180 N / mm, it may be easily broken by impact such as dropping during transportation when used as a label.
- the right-angled tear strength exceeds 310 N / mm, the cutting property (easy to tear) at the initial stage of tearing the label becomes poor.
- the lower limit of the right-angled tear strength is preferably 185 N / mm or more, more preferably 190 N / mm or more, further preferably 195 N / mm or more, and particularly preferably 200 N / mm or more.
- the upper limit of the right-angled tear strength is preferably 300 N / mm or less, more preferably 295 N / mm or less, and particularly preferably 290 N / mm or less. If a cavity is formed in the film by increasing the amount of the additive in the resin, the right angle tear strength can be adjusted low.
- the heat-shrinkable polyester film of the present invention was subjected to 10% shrinkage in the width direction in warm water at 80 ° C., and then the Elmendorf tear load in the width direction and the longitudinal direction was measured by the following method.
- the Elmendorf tear ratio which is the ratio of the Elmendorf tear load, is preferably 0.3 or more and 1.5 or less.
- the lower limit value of the Elmendorf ratio is preferably 0.4 or more, more preferably 0.42 or more, and particularly preferably 0.45 or more.
- the upper limit value of the Elmendorf ratio is preferably 1.4 or less, more preferably 1.3 or less, and particularly preferably 1.2 or less.
- the heat-shrinkable polyester film of the present invention needs to have a tensile fracture strength of 90 MPa or more and 300 MPa or less when the tensile fracture strength in the longitudinal direction is determined by the following method.
- the tensile breaking strength in the longitudinal direction is less than 90 MPa, the “waist” (stiffness) when labeling and attaching to a bottle or the like is weakened. On the contrary, if the tensile breaking strength exceeds 300 MPa, the label This is not preferable because the cutability (ease of tearing) in the initial stage when tearing the film becomes poor.
- the lower limit of the tensile fracture strength is preferably 100 MPa or more, more preferably 110 MPa or more, and particularly preferably 120 MPa or more.
- the upper limit value of the tensile fracture strength is preferably 290 MPa or less, more preferably 280 MPa or less, and particularly preferably 270 MPa or less.
- the heat-shrinkable polyester film of the present invention preferably has a thickness of 10 ⁇ m to 70 ⁇ m and a haze value of 2.0 to 13.0. If the haze value exceeds 13.0, the transparency becomes poor and the appearance may be deteriorated during label production.
- the haze value is more preferably 11.0 or less, and particularly preferably 9.0 or less. Further, the haze value is preferably as small as possible. However, in consideration of the necessity of adding a predetermined amount of lubricant to the film for the purpose of imparting slipperiness that is practically necessary, the lower limit is about 2.0.
- the heat-shrinkable polyester film of the present invention preferably has a dynamic friction coefficient (dynamic friction coefficient when the front and back surfaces of the heat-shrinkable polyester film are bonded) of 0.1 or more and 0.55 or less. . If the dynamic friction coefficient is less than 0.1 or more than 0.55, it is not preferable because the processing characteristics at the time of processing into a label deteriorate.
- the lower limit value of the dynamic friction coefficient is more preferably 0.15 or more, and particularly preferably 0.2 or more.
- the upper limit value of the dynamic friction coefficient is more preferably 0.53 or less, and particularly preferably 0.50 or less.
- the above-described heat-shrinkable polyester film of the present invention is formed by melt-extruding the above-described polyester raw material with an extruder to form an unstretched film, and the unstretched film is biaxially stretched by a predetermined method shown below and heat treated Can be obtained.
- the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
- a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer.
- the polyester raw material is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder.
- any existing method such as a T-die method or a tubular method can be employed.
- an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
- a method for rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotating drum from a die and rapidly solidifying the resin can be employed.
- the obtained unstretched film is stretched in the longitudinal direction under predetermined conditions, and the film after the longitudinal stretching is annealed and then rapidly cooled, and then heat-treated once, and the film after the heat treatment After being cooled under predetermined conditions, it is possible to obtain the heat-shrinkable polyester film of the present invention by stretching in the width direction under predetermined conditions and heat treating again.
- a preferable film forming method for obtaining the heat-shrinkable polyester film of the present invention will be described in detail in consideration of a difference from a conventional heat-shrinkable polyester film forming method.
- the heat-shrinkable polyester film is usually produced by stretching only in the direction in which the unstretched film is desired to be shrunk (that is, the main shrinkage direction, usually the width direction).
- the main shrinkage direction usually the width direction.
- the present inventors need to have “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” in the film in order to satisfy good perforation opening and shrinkage finishing properties at the same time. I came to think that there is. Then, a trial and error was carried out by paying attention to what kind of stretching would allow “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” to exist in the film.
- the total longitudinal stretching ratio (that is, the first stage longitudinal stretching ratio ⁇ second stage longitudinal stretching ratio) is 2.8 times or more and 4.5 times or less. More preferably, the longitudinal stretching ratio is 2.9 times or more and 4.3 times or less so that the total longitudinal stretching ratio is 2.9 times or more and 4.3 times or less.
- the longitudinal refractive index of the film after longitudinal stretching is in the range of 1.600 to 1.630, and the heat shrinkage in the longitudinal direction of the film after longitudinal stretching. It is preferable to adjust the longitudinal stretching conditions so that the stress is 10 MPa or less.
- the contraction rate in the longitudinal direction tends to increase, but by stretching in two stages in the longitudinal direction as described above, The stretching stress in the direction can be reduced, and the shrinkage in the longitudinal direction can be kept low.
- the stress at the time of stretching in the width direction tends to be high, and it tends to be difficult to control the final shrinkage in the lateral direction, but by stretching in two stages, The stretching stress in the transverse direction can be reduced, and the shrinkage rate in the transverse direction can be easily controlled.
- the total longitudinal draw ratio increases, the right-angle tear strength decreases and the tensile strength in the longitudinal direction increases. Further, by bringing the total longitudinal draw ratio close to the transverse draw ratio, the Elmendorf ratio can be made close to 1.0, and the perforation opening property when used as a label can be improved. Furthermore, by stretching in the longitudinal direction in two steps, it is possible to increase the longitudinal orientation due to the ability to reduce the stretching stress in the transverse direction, further lowering the right-angled tear strength and the tensile strength in the longitudinal direction. Strength will be greater. Therefore, it is possible to obtain a label having very good perforation tearability by stretching in two stages in the longitudinal direction and increasing the total longitudinal stretching ratio.
- the total longitudinal draw ratio exceeds 4.5 times, the orientation in the longitudinal direction becomes high and the solvent adhesive strength becomes low, but by controlling the total longitudinal draw ratio to 4.5 times or less, The orientation in the width direction can be suppressed, and the solvent adhesive strength can be kept high.
- the total longitudinal draw ratio exceeds 4.5 times, the roughness of the surface layer decreases, so the dynamic friction coefficient increases, but by controlling the total longitudinal draw ratio to 4.5 times or less It is possible to keep the coefficient of dynamic friction low by suppressing the decrease in surface roughness.
- the stretching stress in the longitudinal direction is reduced, so that the thickness unevenness in the longitudinal direction and the thickness unevenness in the width direction tend to increase, but the total longitudinal stretching ratio is increased.
- the thickness unevenness of a longitudinal direction can be made small, and a haze can also be reduced in connection with it.
- the stress during transverse stretching increases, so that thickness unevenness in the width direction can also be reduced.
- the orientation in the longitudinal direction can be increased, and the slit property when the film after biaxial stretching is finally wound on a roll can be improved.
- the inventors examined a means for reducing the residual shrinkage stress in the longitudinal direction of the film after longitudinal stretching even a little before the transverse stretching step. Then, the film after longitudinal stretching is heated with an infrared heater while relaxing in the longitudinal direction using the difference in speed between the rolls, so that the decrease in residual shrinkage stress is larger than the decrease in orientation in the longitudinal direction. It was found that the stress was more than halved.
- the orientation does not decrease, but the contraction stress in the longitudinal direction is not sufficiently reduced.
- the film may not be sufficiently relaxed between the rolls and may sag and wind around the roll.
- the relaxation rate is 10% or more and 70% or less in the longitudinal direction. When the relaxation rate is lower than 10%, it is difficult to halve the contraction stress in the longitudinal direction of the film after longitudinal stretching. On the other hand, when the relaxation rate is higher than 70%, the film shrinkage stress after longitudinal stretching is reduced by half or more, but the orientation in the longitudinal direction also decreases, the cutting property in the longitudinal direction becomes worse, and the productivity becomes worse.
- the film temperature is preferably (Tg + 10 ° C.) or more (Tg + 40 ° C.) for the heating of the infrared heater during the annealing treatment. If it is lower than (Tg + 10 ° C.), it cannot be said that the film is sufficiently heated, and the film sag when relaxed, and the film is wound around the roll and wrinkled. When the heating is higher than (Tg + 40 ° C.), the crystallization of the film proceeds, and the transverse stretching in the next step becomes difficult.
- the film heating means in the annealing process may be other heating means such as a hot-air dryer, instead of an infrared heater, but an infrared heater is suitable for space saving of equipment.
- longitudinal stretching is performed under certain conditions
- intermediate heat treatment is performed under predetermined conditions according to the state of the film after the longitudinal stretching
- transverse stretching is performed under predetermined conditions according to the state of the film after the intermediate heat treatment
- an unstretched film is longitudinally stretched and annealed, and then is held at 130 ° C. or higher in a state where both ends in the width direction are held by clips in a tenter. It is necessary to perform heat treatment (hereinafter referred to as intermediate heat treatment) at a temperature of not higher than ° C. for a time of 1.0 second or more and 9.0 seconds or less.
- intermediate heat treatment heat treatment
- “molecules that are oriented in the longitudinal direction but do not contribute to the shrinkage force” can be present in the film.
- the perforation is good and the shrinkage spots are not generated. A film that does not occur can be obtained.
- the lower limit of the temperature of the intermediate heat treatment is preferably 133 ° C. or higher, and more preferably 135 ° C. or higher.
- the upper limit of the temperature of the intermediate heat treatment is preferably 180 ° C. or less, and more preferably 170 ° C. or less.
- the time for the intermediate heat treatment needs to be appropriately adjusted in accordance with the raw material composition within a range of 1.0 second to 9.0 seconds, and is adjusted within a range of 3.0 seconds to 7.0 seconds. Is preferred.
- the longitudinal refractive index of the film after the intermediate heat treatment is in the range of 1.58 to 1.61, and the heat shrinkage stress in the longitudinal direction of the film after the intermediate heat treatment is 0. It is preferable to adjust the conditions of the intermediate heat treatment so that the pressure is 5 MPa or less. Furthermore, it is preferable to adjust the conditions of the intermediate heat treatment so that the tensile fracture elongation in the longitudinal direction of the film after the intermediate heat treatment is 100% or more and 170% or less.
- the intermediate heat treatment when performing the intermediate heat treatment as described above, it is preferable to adjust the conditions for the intermediate heat treatment so that the perpendicular tear strength in the longitudinal direction of the film after the intermediate heat treatment is 310 N / mm or less.
- the perpendicular tear strength in the longitudinal direction of the film after the intermediate heat treatment is 310 N / mm or less.
- the stress that contracts in the longitudinal direction can be reduced by maintaining the processing temperature at 130 ° C. or more, and the contraction rate in the longitudinal direction can be extremely reduced. Further, by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to reduce the variation in the shrinkage rate in the lateral direction.
- the longitudinal orientation can be increased, the right-angle tear strength can be kept low, and the longitudinal Elmendorf ratio is brought close to 1.0. Can do.
- the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to suppress the crystallization of the film and keep the tensile strength in the longitudinal direction high.
- the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to suppress the crystallization of the surface layer of the film and keep the solvent adhesive strength high.
- the treatment temperature at 130 ° C. or higher, the surface roughness of the surface layer can be increased appropriately, thereby reducing the friction coefficient.
- the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to keep the thickness unevenness in the longitudinal direction small.
- the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it becomes possible to suppress the crystallization of the film and keep the thickness variation in the width direction due to the variation in stress during transverse stretching small.
- the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or less, it is possible to suppress the film breakage due to the occurrence of film shrinkage spots and maintain good slit property.
- the temperature of the intermediate heat treatment by controlling the temperature of the intermediate heat treatment to 190 ° C. or lower, it becomes possible to suppress the haze of the film that is increased due to the crystallization of the film.
- the intermediate zone when the strip-shaped piece of paper is suspended without passing through the film, the accompanying flow and cooling zone accompanying the flow of the film so that the piece of paper hangs down almost completely in the vertical direction. It is preferable to block the hot air from. If the time for passing through the intermediate zone is less than 0.5 seconds, the transverse stretching becomes high-temperature stretching, and the shrinkage rate in the transverse direction cannot be sufficiently increased. On the contrary, it is sufficient that the time for passing through the intermediate zone is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment.
- the lower limit of the time for passing through the intermediate zone is preferably 0.7 seconds or more, and more preferably 0.9 seconds or more. Further, the upper limit of the time for passing through the intermediate zone is preferably 2.8 seconds or less, and more preferably 2.6 seconds or less.
- the naturally cooled film as described above is not stretched as it is, but the film temperature is 80 ° C. or higher and 120 ° C. It is necessary to actively cool down so that the temperature is below °C. By performing such forced cooling treatment, it becomes possible to obtain a film having good perforation opening properties when used as a label.
- the minimum of the temperature of the film after forced cooling is preferable in it being 85 degreeC or more, and more preferable in it being 90 degreeC or more.
- the upper limit of the temperature of the film after forced cooling is preferably 115 ° C. or lower, and more preferably 110 ° C. or lower.
- the film when the film is forcibly cooled, if the temperature of the film after forced cooling remains above 120 ° C., the film crystallizes, haze increases, the tensile strength in the longitudinal direction decreases, and the solvent Although the adhesive strength tends to decrease, the haze is kept low and the tensile strength in the longitudinal direction and the solvent adhesive strength are kept high by applying forced cooling so that the temperature of the cooled film becomes 120 ° C. or lower. It becomes possible to do.
- the film after longitudinal stretching, annealing, intermediate heat treatment, natural cooling, forced cooling is laterally stretched under predetermined conditions to be finally Heat treatment is required. That is, the transverse stretching is performed at a temperature of (Tg + 10 ° C.) or higher and (Tg + 40 ° C.) or lower, for example, at a temperature of 80 ° C. or higher and 120 ° C. or lower, 2.0 times or higher in a state where both ends in the width direction are held by clips in the tenter It is necessary to carry out so that the magnification is 6.0 times or less.
- the lower limit of the transverse stretching temperature is preferably 85 ° C. or higher, and more preferably 90 ° C. or higher.
- the upper limit of the temperature of transverse stretching is preferably 115 ° C. or less, and more preferably 110 ° C. or less.
- the lower limit of the transverse stretching ratio is preferably 2.5 times or more, and more preferably 3.0 times or more. Further, the upper limit of the transverse stretching ratio is preferably 5.5 times or less, and more preferably 5.0 times or less.
- the stretching temperature exceeds 120 ° C.
- the shrinkage rate in the longitudinal direction becomes high and the shrinkage rate in the width direction becomes low.
- the stretching temperature By controlling the stretching temperature to 120 ° C. or less, the shrinkage rate in the longitudinal direction is reduced. Can be kept low, and the shrinkage rate in the width direction can be kept high.
- the stretching temperature in the transverse stretching is increased, the transverse orientation is lowered, the solvent adhesive strength is increased, the crushing of the lubricant can be prevented, and the friction coefficient can be kept low.
- the stretching temperature in the transverse stretching increases, the voids inside the film decrease, and the haze of the film decreases.
- the stretching temperature exceeds 120 ° C.
- the thickness variation in the width direction tends to increase, but by controlling the stretching temperature to 120 ° C. or less, the thickness variation in the width direction can be reduced.
- the stretching temperature is lower than 80 ° C.
- the orientation in the width direction becomes too high, and it becomes easy to break at the time of transverse stretching, or the slit property when the film after biaxial stretching is finally wound on a roll.
- the stretching temperature is controlled to 80 ° C. or higher, it is possible to reduce breakage during transverse stretching and improve the slit property during winding.
- the film after transverse stretching is finally heat-treated at a temperature of 80 ° C. or higher and 130 ° C. or lower for a period of 1.0 second or more and 9.0 seconds or less in a state where both ends in the width direction are held by clips in the tenter. It is necessary to When the temperature is higher than 130 ° C., the shrinkage rate in the width direction is lowered, and the thermal shrinkage rate at 90 ° C. is lower than 40%, which is not preferable. On the other hand, when the temperature is lower than 80 ° C., it cannot relax sufficiently in the width direction, and when the final product is stored at room temperature, shrinkage in the width direction (so-called natural shrinkage rate) increases with time, which is not preferable. Moreover, although the heat processing time is so preferable that it is long, since an installation will become huge if too long, time of 9.0 second or less is preferable.
- the perpendicular tear strength in the longitudinal direction it is necessary to adjust the perpendicular tear strength in the longitudinal direction to 180 N / mm or more and 310 N / mm or less, and preferably the longitudinal perpendicular tear strength is 190 N / mm or more to 300 N / mm. mm or less, more preferably 200 N / mm or more and 290 N / mm or less, and the Elmendorf ratio is adjusted to 0.3 or more and 1.5 or less.
- the Elmendorf ratio and the perpendicular tear strength in the longitudinal direction are: The interaction between the longitudinal stretching process and the intermediate heat treatment process has a great influence. Moreover, if a cavity is made by increasing the amount of additives in the resin as described above, the right-angled tear strength in the longitudinal direction can be adjusted small.
- the heat-shrinkable polyester film of the present invention needs to adjust the tensile fracture strength in the longitudinal direction to 90 MPa or more and 300 MPa or less.
- the interaction of the three processes, the process and the transverse stretching process, has a great influence.
- the heat-shrinkable polyester film of the present invention is preferably adjusted to 1.0% or more and 10.0% or less of the thickness variation in the width direction.
- the interaction of the three processes, the process and the transverse stretching process, has a great influence.
- the heat-shrinkable polyester film of the present invention is preferably adjusted to have a dynamic friction coefficient adjusted to 0.1 or more and 0.55 or less, but the dynamic friction coefficient has a very high interaction between the longitudinal stretching process and the intermediate heat treatment process. Greatly affects.
- the heat-shrinkable polyester film of the present invention is preferably adjusted to have a thickness variation in the longitudinal direction of 1.0% or more and 12.0% or less. Interaction with the process is very significant.
- the package of the present invention has a heat-shrinkable polyester film as a base material, and the base material has a perforation or a pair of notches provided on at least a part of the outer periphery of the packaging object. It is formed by heat shrinking.
- the package object include plastic bottles for beverages, various bottles, cans, plastic containers such as confectionery and lunch boxes, paper boxes, and the like.
- the label is heat-shrinked by about 2 to 15% to form a package. Adhere closely.
- printing may be given to the label coat
- the label can be made by applying an organic solvent slightly inside from the edge of one side of the rectangular film, and immediately rolling the film and bonding the edges together to form a label, or roll Apply the organic solvent slightly inside from the edge of one side of the film wound up in the shape of a film, immediately roll up the film, overlap the edges and adhere, cut the tube to make a label .
- organic solvent for adhesion cyclic ethers such as 1,3-dioxolane or tetrahydrofuran are preferable.
- aromatic hydrocarbons such as benzene, toluene, xylene and trimethylbenzene
- halogenated hydrocarbons such as methylene chloride and chloroform
- phenols such as phenol, and mixtures thereof
- the present invention will be specifically described with reference to examples and comparative examples.
- the present invention is not limited to the mode of the examples, and may be appropriately changed without departing from the gist of the present invention. Is possible.
- the evaluation method of a film is shown below.
- Heat shrinkage hot water heat shrinkage
- the film is cut into a 10 cm ⁇ 10 cm square, heat-shrinked by treatment in warm water at a predetermined temperature ⁇ 0.5 ° C. for 10 seconds under no load condition, and then measured in the vertical and horizontal dimensions of the film.
- the thermal shrinkage rate was determined.
- the direction in which the heat shrinkage rate is large was taken as the main shrinkage direction.
- Thermal shrinkage ⁇ (length before shrinkage ⁇ length after shrinkage) / length before shrinkage ⁇ ⁇ 100 (%)
- the film is attached to a rectangular frame having a predetermined length in a state of being loosened in advance (that is, both ends of the film are gripped by the frame). Then, the film is contracted by 10% in the width direction by being immersed in warm water at 80 ° C. for about 5 seconds until the slack film becomes a tension state in the frame (until the slack disappears). Thereafter, according to JIS-K-7128, the test piece was sampled into the shape shown in FIG. 1 (note that in the sampling, the tearing direction of the test piece was taken as the longitudinal direction).
- Tg glass transition point
- DSC220 differential scanning calorimeter
- Seiko Denshi Kogyo Co., Ltd. 5 mg of an unstretched film was heated from ⁇ 40 ° C. to 120 ° C. at a heating rate of 10 ° C./min, and the obtained endothermic curve I asked more.
- a tangent line was drawn before and after the inflection point of the endothermic curve, and the intersection was defined as Tg (glass transition point).
- the film was sampled into a long roll of 12 m long ⁇ 40 mm wide, and along the longitudinal direction of the film sample at a speed of 5 (m / min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd. The thickness was continuously measured (measurement length was 10 m). The maximum thickness during measurement is Tmax. , The minimum thickness is Tmin. , The average thickness is Tave. And the thickness variation in the longitudinal direction of the film was calculated from the above formula (5).
- a cylindrical label (a label with the main shrinkage direction of the heat-shrinkable film as the circumferential direction) was prepared by adhering both ends to the heat-shrinkable film with dioxolane. After that, using a steam tunnel (model: SH-1500-L) manufactured by Fuji Astec Inc., passing time 2.5 seconds, zone temperature 80 ° C, 500 ml PET bottle (bottle diameter 62 mm, minimum neck diameter 25 mm) The label was attached by heat shrinking. At the time of mounting, the neck portion was adjusted so that a portion with a diameter of 40 mm was one end of the label.
- the strain in the 360 degree direction on the top of the attached label was measured using a gauge to obtain the maximum value of the strain. At that time, evaluation was performed according to the following criteria. ⁇ : Maximum strain less than 1.5 mm ⁇ : Maximum strain 1.5 mm or more and less than 2.5 mm ⁇ : Maximum strain 2.5 mm or more
- Label adhesion The label was attached under the same conditions as those described above for measuring shrinkage finish. Then, when the attached label and the PET bottle were lightly twisted, they were evaluated as “good” if the label did not move, and “x” if the label slipped or the bottle shifted.
- Perforation opening A label having a perforation in a direction perpendicular to the main shrinkage direction in advance was attached to a PET bottle under the same conditions as those for measuring the shrinkage finish. However, the perforations were formed by putting holes having a length of 1 mm at intervals of 1 mm, and two perforations were provided in the longitudinal direction (height direction) of the label over a width of 22 mm and a length of 120 mm.
- the bottle is then filled with 500 ml of water, refrigerated to 5 ° C., tearing the perforation of the bottle label immediately after removal from the refrigerator with the fingertips, tearing it cleanly along the perforation in the vertical direction, and removing the label from the bottle
- the number of pieces that could be removed was counted, and the perforation unsuccessful rate (%) was calculated by subtracting the number from 50 samples.
- Tables 1 and 2 show the compositions of the polyester raw materials used in Examples and Comparative Examples, and resin compositions and production conditions (stretching / heat treatment conditions, etc.) of the films in Examples and Comparative Examples, respectively.
- polyesters (A2, B, C, D) shown in Table 1 were synthesized by the same method as described above.
- NPG is neopentyl glycol
- CHDM is 1,4-cyclohexanedimethanol
- BD is 1,4-butanediol.
- the intrinsic viscosities of the polyesters A2, B, C, and D were 0.70 dl / g, 0.72 dl / g, 0.80 dl / g, and 1.15 dl / g, respectively. Each polyester was appropriately formed into a chip shape.
- Example 1 The above-mentioned polyester A, polyester A2, polyester B, and polyester D were mixed at a weight ratio of 5: 5: 80: 10 and charged into an extruder. Thereafter, the mixed resin was melted at 280 ° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C., and rapidly cooled to obtain an unstretched film having a thickness of 204 ⁇ m. At this time, the take-up speed of the unstretched film (rotational speed of the metal roll) is about 20 m / min. Met. Moreover, Tg of the unstretched film was 67 degreeC.
- the unstretched film obtained as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and stretched in two stages in the longitudinal direction using the rotational speed difference of the rolls. That is, after preheating an unstretched film on a preheating roll until the film temperature reaches 78 ° C., a low-speed rotating roll set at a surface temperature of 78 ° C. and a medium-speed rotating roll set at a surface temperature of 78 ° C. The film was stretched 2.6 times using the rotational speed difference (first-stage longitudinal stretching). Further, the longitudinally stretched film is longitudinally stretched 1.4 times using a rotational speed difference between a medium-speed rotating roll set at a surface temperature of 95 ° C. and a high-speed rotating roll set at a surface temperature of 30 ° C. Stretched (second-stage longitudinal stretching) (therefore, the total longitudinal stretching ratio was 3.64 times).
- the film immediately after longitudinal stretching was annealed by relaxing 30% in the longitudinal direction using the difference in speed between rolls while heating to a film temperature of 93 ° C. with an infrared heater.
- the film after the annealing treatment is forcibly cooled at a cooling rate of 40 ° C./second by a cooling roll set at a surface temperature of 30 ° C. (a high-speed roll positioned immediately after the second longitudinal stretching roll).
- a cooling roll set at a surface temperature of 30 ° C. (a high-speed roll positioned immediately after the second longitudinal stretching roll).
- the cooled film is guided to the tenter, and the intermediate heat treatment zone, the first intermediate zone (natural cooling zone), the cooling zone (forced cooling zone), the second intermediate zone, the transverse stretching zone, and the final heat treatment zone are continuously formed. I let it pass.
- the length of the first intermediate zone is set to about 40 cm, between the intermediate heat treatment zone and the first intermediate zone, between the first intermediate zone and the cooling zone, between the cooling zone and the second intermediate zone.
- Shielding plates were provided between the intermediate zone and between the second intermediate zone and the transverse stretching zone, respectively. Further, in the first intermediate zone and the second intermediate zone, when the strip-shaped paper piece is hung in a state where the film is not passed through, the paper piece from the intermediate heat treatment zone is almost completely hung down in the vertical direction. Hot air, cooling air from the cooling zone, and hot air from the transverse stretching zone were blocked. In addition, when passing the film, the film and the shielding plate are arranged so that most of the accompanying flow accompanying the film flow is blocked by the shielding plate provided between the intermediate heat treatment zone and the first intermediate zone. Adjusted the distance.
- the annealed film guided to the tenter is first heat-treated at a temperature of 140 ° C. for 5.0 seconds in the intermediate heat treatment zone, and then the film after the intermediate heat treatment is guided to the first intermediate zone.
- Was allowed to cool (by passing time about 1.0 second).
- the film after passing through the second intermediate zone is guided to the transverse stretching zone, preheated until the surface temperature of the film reaches 95 ° C., and then 4.0 times in the width direction (lateral direction) at 95 ° C. Stretched.
- the laterally stretched film is guided to the final heat treatment zone, where it is heat-treated at a temperature of 85 ° C. for 5.0 seconds and then cooled, and both edges are cut and removed to roll with a width of 500 mm.
- a biaxially stretched film having a thickness of about 20 ⁇ m was continuously produced over a predetermined length. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 2 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that polyester B was changed to polyester C. The Tg of the unstretched film was 67 ° C. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 3 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 175 ⁇ m and the annealing treatment after the longitudinal stretching was set to a relaxation rate of 40%. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 4 Polyester A, polyester A2, polyester B, and polyester D were mixed at a weight ratio of 5: 30: 55: 10.
- the Tg of the unstretched film was 67 ° C.
- a film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 168 ⁇ m, and the temperature and magnification in the longitudinal stretching step, the temperature in the transverse stretching step, and the temperature of the intermediate heat treatment were changed. .
- the evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 5 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 233 ⁇ m and the temperature and relaxation rate in the annealing step were changed. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 6 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 146 ⁇ m and the annealing treatment after the longitudinal stretching was performed with a relaxation rate of 50%. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 7 The thickness of the unstretched film was set to 168 ⁇ m, the first-stage longitudinal stretch ratio was 3 times, the second-stage longitudinal stretch ratio was 1.4 times, and the total longitudinal stretch ratio was 4.2 times.
- the annealing treatment after the longitudinal stretching of this longitudinally stretched film was set to 50% relaxation rate, and the intermediate heat treatment zone temperature of the annealed film guided to the tenter was changed to 5.0 seconds at a temperature of 145 ° C.
- a film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1. The evaluation results are shown in Table 3. The film had good cutability and shrink finish.
- Example 8 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 7 except that the thickness of the unstretched film was 202 ⁇ m and the annealing treatment after the longitudinal stretching was performed with a relaxation rate of 40%. The evaluation results are shown in Table 3. Compared to Example 7, the film had better transparency and cutability.
- the unstretched film obtained as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and stretched in two stages in the longitudinal direction using the rotational speed difference of the rolls. That is, after preheating an unstretched film on a preheating roll until the film temperature reaches 78 ° C., a low-speed rotating roll set at a surface temperature of 78 ° C. and a medium-speed rotating roll set at a surface temperature of 78 ° C. The film was stretched 2.6 times using the rotational speed difference (first-stage longitudinal stretching). Further, the longitudinally stretched film is longitudinally stretched 1.4 times using a rotational speed difference between a medium-speed rotating roll set at a surface temperature of 95 ° C. and a high-speed rotating roll set at a surface temperature of 30 ° C. Stretched (second-stage longitudinal stretching) (therefore, the total longitudinal stretching ratio was 3.64 times).
- the film after longitudinal stretching is forcibly cooled at a cooling rate of 40 ° C./second by a cooling roll set at a surface temperature of 30 ° C. (a high-speed roll positioned immediately after the second-stage longitudinal stretching roll).
- a cooling roll set at a surface temperature of 30 ° C.
- the cooled film is guided to the tenter, and the intermediate heat treatment zone, the first intermediate zone (natural cooling zone), the cooling zone (forced cooling zone), the second intermediate zone, the transverse stretching zone, and the final heat treatment zone are continuously formed. I let it pass.
- the length of the first intermediate zone is set to about 40 cm, between the intermediate heat treatment zone and the first intermediate zone, between the first intermediate zone and the cooling zone, between the cooling zone and the second intermediate zone.
- Shielding plates were provided between the intermediate zone and between the second intermediate zone and the transverse stretching zone, respectively. Further, in the first intermediate zone and the second intermediate zone, when the strip-shaped paper piece is hung in a state where the film is not passed through, the paper piece from the intermediate heat treatment zone is almost completely hung down in the vertical direction. Hot air, cooling air from the cooling zone, and hot air from the transverse stretching zone were blocked. In addition, when passing the film, the film and the shielding plate are arranged so that most of the accompanying flow accompanying the film flow is blocked by the shielding plate provided between the intermediate heat treatment zone and the first intermediate zone. Adjusted the distance.
- the laterally stretched film is guided to the final heat treatment zone, where it is heat-treated at a temperature of 85 ° C. for 5.0 seconds and then cooled, and both edges are cut and removed to roll with a width of 500 mm.
- a biaxially stretched film having a thickness of about 20 ⁇ m was continuously produced over a predetermined length. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 3. The cutting property was good, but the shrinkage spots were slightly inferior.
- Example 3 A film having a thickness of 20 ⁇ m was collected in the same manner as in Example 1 except that the thickness of the unstretched film was 277 ⁇ m and the relaxation rate in the annealing process was 5%. The evaluation results are shown in Table 3. The film had good cutability and shrink finish. The cutting property was good, but the shrinkage spots were slightly inferior.
- Example 4 The thickness of the unstretched film was set to 202 ⁇ m, and the annealed film was stretched 4 times at a stretching temperature of 80 ° C. without an intermediate heat treatment with a tenter, and the final heat treatment was performed at 80 ° C. A film was taken. The evaluation results are shown in Table 3. Compared to Example 1, it was a film having a high hot-water heat shrinkage in the longitudinal direction at 90 ° C. and poor shrinkage distortion.
- Table 3 shows the evaluation results of Examples and Comparative Examples.
- the heat-shrinkable polyester film of the present invention has excellent processing characteristics as described above, it can be suitably used for labeling applications such as bottles, and a bottle obtained by using the film as a label. Etc. have a beautiful appearance.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Polyesters Or Polycarbonates (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Wrappers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
(1)80℃の温水中で10秒間にわたって処理したときと3秒間にわたって処理したときのフィルム幅方向の温湯熱収縮率の差が3%以上15%以下である;
(2)90℃の温水中で10秒間にわたって処理した場合における幅方向及び長手方向の温湯熱収縮率がそれぞれ40%以上80%以下、0%以上12%以下である;
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が180N/mm以上310N/mm以下である;
(4)長手方向の引張破壊強さが90MPa以上300MPa以下である。
(1)80℃の温水中で幅方向に10%収縮させた後に幅方向および長手方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が0.3以上1.5以下である。
(2)厚みが10μm以上70μm以下であり、ヘイズが2.0以上13.0以下である。
(3)動摩擦係数が0.1以上0.55以下である。
(4)全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸のうちのいずれかである。
(a)未延伸ポリエステル系フィルムを、Tg以上(Tg+30℃)以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、(Tg+10℃)以上(Tg+40℃)以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程;
(b)縦延伸後のフィルムに、赤外線ヒータを用いて幅方向に加熱しながら、長手方向に10%以上70%以下のリラックスを実施するアニール工程;
(c)アニール後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で130℃以上190℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する中間熱処理工程;
(d)中間熱処理後のフィルムを、各工程の加熱ゾーンから遮断されかつ積極的な加熱操作を実行しない中間ゾーンに通過させることによって自然に冷却する自然冷却工程;
(e)自然冷却後のフィルムを、表面温度が80℃以上120℃以下の温度となるまで積極的に冷却する強制冷却工程;
(f)強制冷却後のフィルムを、(Tg+10℃)以上(Tg+40℃)以下の温度で幅方向に2.0倍以上6.0倍以下の倍率で延伸する横延伸工程;
(g)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上130℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する最終熱処理工程。
熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}
×100(%)・・・式(1)
80℃熱収縮率の差(ΔSHW)=80℃・10秒の幅方向温湯熱収縮率
-80℃・3秒の幅方向温湯熱収縮率(%)・・・式(2)
所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、図1に示す形状にサンプリングすることによって試験片を作製した(なお、サンプリングにおいては、試験片の引裂く方向を長手方向とした)。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ)で試験片の両端(幅方向)を掴み、引張速度200mm/分の条件にて、引張破壊時の強度の測定を行い、下記式(3)を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・・式(3)
所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、フィルムの幅方向および長手方向のエルメンドルフ引裂荷重の測定を行い、下記式(4)を用いてエルメンドルフ比を算出する。
エルメンドルフ比=幅方向のエルメンドルフ引裂荷重
÷長手方向のエルメンドルフ引裂荷重 ・・・式(4)
JIS-K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
上述したように、熱収縮性ポリエステル系フィルムは、通常、未延伸フィルムを収縮させたい方向(すなわち、主収縮方向、通常は幅方向)のみに延伸することによって製造される。本発明者らが従来の製造方法について検討した結果、従来の熱収縮性ポリエステル系フィルムの製造においては、以下のような問題点があることが判明した。
・単純に幅方向に延伸するだけであると、上述の如く、長手方向の機械的強度が小さくなり、ラベルとした場合のミシン目開封性が悪くなる。その上、製膜装置のライン速度を上げることが困難である。
・幅方向に延伸した後に長手方向に延伸する方法を採用すると、どのような延伸条件を採用しても、幅方向の収縮力を十分に発現させることができない。さらに、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上りが悪くなる。
・長手方向に延伸した後に幅方向に延伸する方法を採用すると、幅方向の収縮力は発現させることができるものの、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上りが悪くなる。
・ラベルとした際のミシン目開封性を良好なものとするためには、長手方向へ配向した分子をある程度残しておく必要があると考えられる。
・ラベルとした際の収縮装着後の仕上りを良好なものとするためには、長手方向への収縮力を発現させないことが不可欠であり、そのためには長手方向へ配向した分子の緊張状態を解消する必要があると考えられる。
(1)縦延伸条件の制御
(2)縦延伸後に長手方向へのアニール処理
(3)縦延伸後における中間熱処理
(4)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
(5)自然冷却後のフィルムの強制冷却
(6)横延伸条件の制御
以下、上記した各手段について順次説明する。
本発明の縦-横延伸法によるフィルムの製造においては、本発明のフィルムロールを得るためには、縦延伸を二段で行うことが必要である。すなわち、実質的に未配向(未延伸)のフィルムを、まずTg以上(Tg+30℃)以下の温度で2.2倍以上3.0倍以下の倍率となるように縦延伸し(一段目の延伸)、次にTg以下に冷却することなく、(Tg+10)以上(Tg+40℃)以下の温度で1.2倍以上1.5倍以下の倍率となるように縦延伸する(二段目の延伸)ことにより、トータルの縦延伸倍率(すなわち、一段目の縦延伸倍率×二段目の縦延伸倍率)が2.8倍以上4.5倍以下となるように縦延伸することが必要である。トータルの縦延伸倍率は2.9倍以上4.3倍以下となるように縦延伸するとより好ましい。
上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましい。縦延伸後フィルムの長手方向の残留収縮応力が高いと、横延伸後のフィルム長手方向の温湯収縮率が高くなり収縮仕上り性が悪くなる欠点がある。横延伸工程で熱処理を加えることがフィルム長手方向の温湯収縮率を下げるのに有効であるが、熱による緩和だけでは十分にフィルム長手方向の温湯収縮率を下げることができるとはいえず、高い熱量が必要となる。そこで、発明者らは、横延伸工程前に少しでも縦延伸後フィルムの長手方向の残留収縮応力を下げる手段を検討した。そして、縦延伸後のフィルムに赤外線ヒータで加熱しながらロール間の速度差を利用して長手方向にリラックスを実施することで、長手方向の配向の減少より残留収縮応力の減少が大きく、残留収縮応力が半減以上することが分かった。
上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、本発明者らが試行錯誤した結果、縦-横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させ得る、という驚くべき事実が判明した。
本発明の縦-横延伸法によるフィルムの製造においては、上記の如く、縦延伸後に中間熱処理を施す必要があるが、その縦延伸と中間熱処理の後において、好ましくは0.5秒以上3.0秒以下の時間にわたって、積極的な加熱操作を実行しない中間ゾーンを通過させる必要がある。すなわち、横延伸用のテンターの横延伸ゾーンの前方に中間ゾーンを設けておき、縦延伸後のフィルムをテンターに導き、所定時間をかけて当該中間ゾーンを通過させた後に、横延伸を実施するのが好ましい。加えて、その中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの流れに伴う随伴流および冷却ゾーンからの熱風を遮断するのが好ましい。なお、中間ゾーンを通過させる時間が0.5秒を下回ると、横延伸が高温延伸となり、横方向の収縮率を十分に高くすることができなくなるので好ましくない。反対に中間ゾーンを通過させる時間は3.0秒もあれば十分であり、それ以上の長さに設定しても、設備のムダとなるので好ましくない。なお、中間ゾーンを通過させる時間の下限は、0.7秒以上であると好ましく、0.9秒以上であるとより好ましい。また、中間ゾーンを通過させる時間の上限は、2.8秒以下であると好ましく、2.6秒以下であるとより好ましい。
本発明の縦-横延伸法によるフィルムの製造においては、上記の如く自然冷却したフィルムをそのまま横延伸するのではなく、フィルムの温度が80℃以上120℃以下となるように積極的に強制冷却することが必要である。かかる強制冷却処理を施すことによって、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、強制冷却後のフィルムの温度の下限は、85℃以上であると好ましく、90℃以上であるとより好ましい。また、強制冷却後のフィルムの温度の上限は、115℃以下であると好ましく、110℃以下であるとより好ましい。
本発明の縦-横延伸法によるフィルムの製造においては、縦延伸、アニール、中間熱処理、自然冷却、強制冷却の後のフィルムを所定の条件で横延伸して最終的な熱処理を行う必要がある。すなわち、横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、(Tg+10℃)以上(Tg+40℃)以下の温度、例えば80℃以上120℃以下の温度で2.0倍以上6.0倍以下の倍率となるように行う必要がある。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱処理によって形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、横延伸の温度の下限は、85℃以上であると好ましく、90℃以上であるとより好ましい。また、横延伸の温度の上限は、115℃以下であると好ましく、110℃以下であるとより好ましい。一方、横延伸の倍率の下限は、2.5倍以上であると好ましく、3.0倍以上であるとより好ましい。また、横延伸の倍率の上限は、5.5倍以下であると好ましく、5.0倍以下であるとより好ましい。
本発明の熱収縮性ポリエステル系フィルムの製造に当たっては、縦延伸工程、中間熱処理工程、自然冷却工程、強制冷却工程、横延伸工程のうちのいずれかの工程のみが、単独でフィルムの特性を良好なものとすることができるものではなく、縦延伸工程、中間熱処理工程、自然冷却工程、強制冷却工程、横延伸工程のすべてを所定の条件にて行うことにより、非常に効率的にフィルムの特性を良好なものとすることが可能となる。また、フィルムの特性の中でも、エルメンドルフ比、長手方向の直角引裂強度、長手方向の引張破壊強さ、幅方向の厚み斑、動摩擦係数、長手方向の厚み斑といった重要な特性は、特定の複数の工程同士の相互作用によって大きく数値が変動する。
フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、下記式(1)にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大きい方向を主収縮方向とした。
熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}
×100(%)・・・式(1)
上記式(1)により算出するフィルム幅方向の80℃熱収縮率において、温水中で無荷重状態で3秒間にわたって処理したときの値と10秒間にわたって処理したときの値から下記式(2)より求めた。
80℃熱収縮率の差(ΔSHW)=80℃・10秒の幅方向温湯熱収縮率
-80℃・3秒の幅方向温湯熱収縮率(%)・・・式(2)
所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、図1に示す形状にサンプリングすることによって試験片を作製した(なお、サンプリングにおいては、試験片の引裂く方向を長手方向とした)。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ)で試験片の両端(幅方向)を掴み、引張速度200mm/分の条件にて、引張破壊時の強度の測定を行い、下記式(3)を用いて単位厚み当たりの直角引裂強度を算出した。
直角引裂強度=引張破壊時の強度÷厚み ・・・式(3)
所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間にわたって80℃の温水に浸漬させることによって、フィルムを幅方向に10%収縮させる。しかる後に、JIS-K-7128に準じて、フィルムの幅方向および長手方向のエルメンドルフ引裂荷重の測定を行い、下記式(4)を用いてエルメンドルフ比を算出する。
エルメンドルフ比=幅方向のエルメンドルフ引裂荷重
÷長手方向のエルメンドルフ引裂荷重 ・・・式(4)
セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、未延伸フィルム5mgを、-40℃から120℃まで昇温速度10℃/分で昇温し、得られた吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点をTg(ガラス転移点)とした。
アタゴ社製の「アッベ屈折計4T型」を用いて、各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に測定した。
フィルムを長さ40mm×幅1.2mの幅広な帯状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で、フィルム試料の幅方向に沿って連続的に厚みを測定した(測定長さは500mm)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下記式(5)からフィルムの長手方向の厚み斑を算出した。
厚み斑={(Tmax.-Tmin.)/Tave.}×100(%)
・・・式(5)
フィルムを長さ12m×幅40mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度でフィルム試料の長手方向に沿って連続的に厚みを測定した(測定長さは10m)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、上記式(5)からフィルムの長手方向の厚み斑を算出した。
熱収縮性フィルムに、両端部をジオキソランで接着することにより、円筒状のラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を作成した。しかる後、Fuji Astec Inc製スチームトンネル(型式;SH-1500-L)を用い、通過時間2.5秒、ゾーン温度80℃で、500mlのPETボトル(胴直径 62mm、ネック部の最小直径25mm)に熱収縮させることにより、ラベルを装着した。なお、装着の際には、ネック部においては、直径40mmの部分がラベルの一方の端になるように調整した。収縮後の仕上り性の評価として、装着されたラベル上部の360度方向の歪みをゲージを使用して測定を行い、歪みの最大値を求めた。その時、以下の基準に従って評価した。
◎:最大歪み 1.5mm未満
○:最大歪み 1.5mm以上2.5mm未満
×:最大歪み 2.5mm以上
上記した収縮仕上り性の測定条件と同一の条件でラベルを装着した。そして、装着したラベルとPETボトルとを軽くねじったときに、ラベルが動かなければ○、すり抜けたり、ラベルとボトルがずれたりした場合には×として評価した。
予め主収縮方向とは直向する方向にミシン目を入れておいたラベルを、上記した収縮仕上り性の測定条件と同一の条件でPETボトルに装着した。ただし、ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、ラベルの縦方向(高さ方向)に幅22mm、長さ120mmにわたって2本設けた。その後、このボトルに水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本から前記の本数を差し引いて、ミシン目開封不良率(%)を算出した。
撹拌機、温度計及び部分環流式冷却器を備えたステンレススチール製オートクレーブに、二塩基酸成分としてジメチルテレフタレート(DMT)100モル%と、グリコール成分としてエチレングリコール(EG)100モル%とを、グリコールがモル比でメチルエステルの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)用いて、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、重縮合触媒として三酸化アンチモン0.025モル%(酸成分に対して)を添加し、280℃で26.6Pa(0.2トール)の減圧条件下、重縮合反応を行い、固有粘度0.70dl/gのポリエステル(A)を得た。このポリエステルはポリエチレンテレフタレートである。なお、上記ポリエステル(A)の製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して8,000ppmの割合で添加した。また、上記と同様な方法により、表1に示すポリエステル(A2,B,C,D)を合成した。なお、表中、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、BDは1,4-ブタンジオールである。ポリエステルA2,B,C,Dの固有粘度は、それぞれ、0.70dl/g,0.72dl/g,0.80dl/g,1.15dl/gであった。なお、各ポリエステルは、適宜チップ状にした。
上記したポリエステルAとポリエステルA2とポリエステルBとポリエステルDとを重量比5:5:80:10で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが204μmの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約20m/min.であった。また、未延伸フィルムのTgは67℃であった。
ポリエステルBをポリエステルCに変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。未延伸フィルムのTgは67℃であった。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
未延伸フィルムの厚みを175μmとして、縦延伸後のアニール処理を40%のリラックス率にした以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
ポリエステルAとポリエステルA2とポリエステルBとポリエステルDとを重量比5:30:55:10で混合した。未延伸フィルムのTgは67℃であった。未延伸フィルムの厚みを168μmとして、縦延伸工程での温度と倍率、横延伸工程での温度、中間熱処理の温度を変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
未延伸フィルムの厚みを233μmとして、アニール工程での温度及びリラックス率を変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
未延伸フィルムの厚みを146μmとして、縦延伸後のアニール処理を50%のリラックス率にした以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
未延伸フィルムの厚みを168μmとして、1段目の縦延伸倍率を3倍、2段目の縦延伸倍率を1.4倍にして、トータルの縦延伸倍率を4.2倍にした。この縦延伸されたフィルムの縦延伸後のアニール処理を50%のリラックス率にし、テンターに導かれたアニール後のフィルムの中間熱処理ゾーン温度を145℃の温度で5.0秒間に変更した以外は実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。
未延伸フィルムの厚みを202μmとして、縦延伸後のアニール処理を40%のリラックス率にした以外は実施例7と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。実施例7に比較し、透明性、カット性が良好なフィルムであった。
上記したポリエステルAとポリエステルA2とポリエステルBとポリエステルDとを重量比5:5:80:10で混合して押出機に投入した。しかる後、その混合樹脂を280℃で溶融させてTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが291μmの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約20m/min.であった。また、未延伸フィルムのTgは67℃であった。
吐出量を変更した以外は実施例1と同様にして得られたフィルム厚み80μmの未延伸フィルムを、フィルムの表面温度が75℃になるまで予備加熱した後に、75℃で幅方向(横方向)に4.0倍に横一軸延伸した。しかる後、その横延伸後のフィルムを最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、85℃の温度で5.0秒間にわたって熱処理した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、約20μmの横一軸延伸フィルムを所定の長さにわたって連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。収縮斑は良好であったが、実施例に比べカット性が劣る結果となった。
未延伸フィルムの厚みを277μmとして、アニール工程でのリラックス率を5%とした以外は、実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。カット性、収縮仕上り性が良好なフィルムであった。カット性は良好であったが収縮斑が若干劣る結果となった。
未延伸フィルムの厚みを202μmとして、アニール後のフィルムをテンターで中間熱処理無しで延伸温度80℃で4倍延伸し、80℃で最終熱処理した以外は、実施例1と同様の方法で厚さ20μmのフィルムを採取した。評価結果を表3に示す。実施例1に比較して、90℃長手方向の温湯熱収縮率が高く、収縮歪みが悪いフィルムであった。
Claims (7)
- エチレンテレフタレートを主たる構成成分とし、全ポリエステル系樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を13モル%以上含有しているポリエステル系樹脂からなり、かつ下記(1)~(4)の要件を満たすことを特徴とする熱収縮性ポリエステル系フィルム:
(1)80℃の温水中で10秒間にわたって処理したときと3秒間にわたって処理したときのフィルム幅方向の温湯熱収縮率の差が3%以上15%以下である;
(2)90℃の温水中で10秒間にわたって処理した場合における幅方向及び長手方向の温湯熱収縮率がそれぞれ40%以上80%以下、0%以上12%以下である;
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が180N/mm以上310N/mm以下である;
(4)長手方向の引張破壊強さが90MPa以上300MPa以下である。 - 80℃の温水中で幅方向に10%収縮させた後に幅方向および長手方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が0.3以上1.5以下であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。
- 厚みが10μm以上70μm以下であり、ヘイズが2.0以上13.0以下であることを特徴とする請求項1または2に記載の熱収縮性ポリエステル系フィルム。
- 動摩擦係数が0.1以上0.55以下であることを特徴とする請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
- 全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸のうちのいずれかであることを特徴とする請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルム。
- 請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)~(g)の各工程を含むことを特徴とする製造方法:
(a)未延伸ポリエステル系フィルムを、Tg以上(Tg+30℃)以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、(Tg+10℃)以上(Tg+40℃)以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程;
(b)縦延伸後のフィルムに、赤外線ヒータを用いて幅方向に加熱しながら、長手方向に10%以上70%以下のリラックスを実施するアニール工程;
(c)アニール後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で130℃以上190℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する中間熱処理工程;
(d)中間熱処理後のフィルムを、各工程の加熱ゾーンから遮断されかつ積極的な加熱操作を実行しない中間ゾーンに通過させることによって自然に冷却する自然冷却工程;
(e)自然冷却後のフィルムを、表面温度が80℃以上120℃以下の温度となるまで積極的に冷却する強制冷却工程;
(f)強制冷却後のフィルムを、(Tg+10℃)以上(Tg+40℃)以下の温度で幅方向に2.0倍以上6.0倍以下の倍率で延伸する横延伸工程;
(g)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上130℃以下の温度で1.0秒以上9.0秒以下の時間にわたって熱処理する最終熱処理工程。 - 請求項1~5のいずれかに記載の熱収縮性ポリエステル系フィルムを基材とし、その基材にミシン目あるいは一対のノッチが設けられたラベルを、包装対象物の少なくとも外周の一部に被覆して熱収縮させて形成されることを特徴とする包装体。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10780202T PL2436508T3 (pl) | 2009-05-26 | 2010-05-06 | Termokurczliwa folia poliestrowa, sposób jej wytwarzania oraz produkt opakowany z jej użyciem |
ES10780202.7T ES2461849T3 (es) | 2009-05-26 | 2010-05-06 | Película de poliéster termocontraíble, método de fabricación de la misma y producto envasado usando la misma |
JP2010524273A JP5633808B2 (ja) | 2009-05-26 | 2010-05-06 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
US13/266,326 US9352508B2 (en) | 2009-05-26 | 2010-05-06 | Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same |
EP10780202.7A EP2436508B1 (en) | 2009-05-26 | 2010-05-06 | Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same |
CN201080022756.6A CN102448705B (zh) | 2009-05-26 | 2010-05-06 | 热收缩性聚酯类膜及其制造方法、包装体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009126776 | 2009-05-26 | ||
JP2009-126776 | 2009-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137240A1 true WO2010137240A1 (ja) | 2010-12-02 |
Family
ID=43222372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003114 WO2010137240A1 (ja) | 2009-05-26 | 2010-05-06 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9352508B2 (ja) |
EP (1) | EP2436508B1 (ja) |
JP (1) | JP5633808B2 (ja) |
KR (1) | KR101639101B1 (ja) |
CN (1) | CN102448705B (ja) |
ES (1) | ES2461849T3 (ja) |
PL (1) | PL2436508T3 (ja) |
WO (1) | WO2010137240A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5240387B1 (ja) * | 2012-07-26 | 2013-07-17 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2014185442A1 (ja) | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2014199787A1 (ja) * | 2013-06-11 | 2014-12-18 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2015151695A1 (ja) * | 2014-04-01 | 2015-10-08 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2015199909A (ja) * | 2014-04-01 | 2015-11-12 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2015199337A (ja) * | 2014-04-01 | 2015-11-12 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2016039044A1 (ja) * | 2014-09-09 | 2016-03-17 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルム及び包装体 |
JP2019051727A (ja) * | 2014-04-01 | 2019-04-04 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP6909936B1 (ja) * | 2020-05-29 | 2021-07-28 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルム及びポリエステル系シュリンクフィルム成形品 |
JP6992211B1 (ja) * | 2020-11-30 | 2022-02-15 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルム |
JP7039154B1 (ja) | 2020-11-30 | 2022-03-22 | タキロンシーアイ株式会社 | ラベル付き容器及びラベル付き容器の製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4882919B2 (ja) * | 2006-08-30 | 2012-02-22 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
JP4560740B2 (ja) * | 2007-09-25 | 2010-10-13 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 |
KR101491876B1 (ko) * | 2008-02-27 | 2015-02-09 | 도요보 가부시키가이샤 | 백색 열수축성 폴리에스테르계 필름, 백색 열수축성 폴리에스테르계 필름의 제조방법, 라벨, 및 포장체 |
EP2548913B1 (en) * | 2010-03-15 | 2016-03-02 | Toyobo Co., Ltd. | Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film |
TWI454371B (zh) * | 2013-01-31 | 2014-10-01 | Far Eastern New Century Corp | Preparation of Heat Shrinkable Polyester Films |
US10421835B2 (en) | 2013-04-26 | 2019-09-24 | Toyobo Co., Ltd. | Polyester film for sealant use, laminate, and packaging bag |
KR102459356B1 (ko) * | 2015-03-20 | 2022-10-25 | 도요보 가부시키가이샤 | 열수축성 폴리에스테르계 필름 및 포장체 |
US10543656B2 (en) | 2018-01-11 | 2020-01-28 | Eastman Chemical Company | Tough shrinkable films |
US12116452B2 (en) | 2018-10-08 | 2024-10-15 | Eastman Chemical Company | Crystallizable shrinkable films and thermoformable sheets made from resins blends |
CN116096551A (zh) | 2020-08-27 | 2023-05-09 | 东洋纺株式会社 | 热收缩性聚酯系薄膜、热收缩性标签、及包装体 |
WO2022173140A1 (ko) * | 2021-02-09 | 2022-08-18 | 에스케이씨 주식회사 | 폴리에스테르계 필름 및 이의 제조 방법 |
US11970303B2 (en) | 2022-01-26 | 2024-04-30 | The Procter & Gamble Company | Infrared-assisted shrink wrap product bundling |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002363312A (ja) | 2001-06-05 | 2002-12-18 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム |
WO2008026530A1 (fr) * | 2006-08-30 | 2008-03-06 | Toyo Boseki Kabushiki Kaisha | Film polyester thermoretractable, procede de production et emballage associes |
JP2008274160A (ja) * | 2007-05-01 | 2008-11-13 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム、およびその製造方法 |
JP2009073145A (ja) * | 2007-09-25 | 2009-04-09 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 |
WO2009075312A1 (ja) * | 2007-12-13 | 2009-06-18 | Toyo Boseki Kabushiki Kaisha | ラベル |
JP2009202445A (ja) * | 2008-02-28 | 2009-09-10 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体 |
JP2009227337A (ja) * | 2008-02-29 | 2009-10-08 | Toyobo Co Ltd | ラベル |
JP2009227970A (ja) * | 2008-02-28 | 2009-10-08 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
JP2009226939A (ja) * | 2008-02-29 | 2009-10-08 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB812972A (en) * | 1955-03-28 | 1959-05-06 | Du Pont | Improvements in or relating to polymeric films |
US4059667A (en) * | 1975-10-20 | 1977-11-22 | E. I. Du Pont De Nemours And Company | Biaxially oriented polyethylene terephthalate film and method of making such film |
US5885501A (en) * | 1997-06-24 | 1999-03-23 | E. I. Du Pont De Nemours And Company | Process for preparing dimensionally stabilized biaxially stretched thermoplastic film |
MXPA01012379A (es) | 1999-06-01 | 2002-07-22 | Du Pont Canada | Pelicula de polietilentereftalato de alta resistencia a la tension y proceso para su produccion. |
US20050119359A1 (en) * | 2003-12-02 | 2005-06-02 | Shelby Marcus D. | Void-containing polyester shrink film |
-
2010
- 2010-05-06 EP EP10780202.7A patent/EP2436508B1/en active Active
- 2010-05-06 ES ES10780202.7T patent/ES2461849T3/es active Active
- 2010-05-06 WO PCT/JP2010/003114 patent/WO2010137240A1/ja active Application Filing
- 2010-05-06 US US13/266,326 patent/US9352508B2/en active Active
- 2010-05-06 KR KR1020117030557A patent/KR101639101B1/ko active IP Right Grant
- 2010-05-06 CN CN201080022756.6A patent/CN102448705B/zh active Active
- 2010-05-06 PL PL10780202T patent/PL2436508T3/pl unknown
- 2010-05-06 JP JP2010524273A patent/JP5633808B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002363312A (ja) | 2001-06-05 | 2002-12-18 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム |
WO2008026530A1 (fr) * | 2006-08-30 | 2008-03-06 | Toyo Boseki Kabushiki Kaisha | Film polyester thermoretractable, procede de production et emballage associes |
JP2008274160A (ja) * | 2007-05-01 | 2008-11-13 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム、およびその製造方法 |
JP2009073145A (ja) * | 2007-09-25 | 2009-04-09 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 |
WO2009075312A1 (ja) * | 2007-12-13 | 2009-06-18 | Toyo Boseki Kabushiki Kaisha | ラベル |
JP2009202445A (ja) * | 2008-02-28 | 2009-09-10 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体 |
JP2009227970A (ja) * | 2008-02-28 | 2009-10-08 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
JP2009227337A (ja) * | 2008-02-29 | 2009-10-08 | Toyobo Co Ltd | ラベル |
JP2009226939A (ja) * | 2008-02-29 | 2009-10-08 | Toyobo Co Ltd | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2436508A4 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014017483A1 (ja) | 2012-07-26 | 2014-01-30 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
US9017782B2 (en) | 2012-07-26 | 2015-04-28 | Toyobo Co., Ltd. | Heat-shrinkable polyester film and packages |
JP5240387B1 (ja) * | 2012-07-26 | 2013-07-17 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2014185442A1 (ja) | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
US10336871B2 (en) | 2013-05-16 | 2019-07-02 | Toyobo Co., Ltd. | Heat-shrinkable polyester film and package |
KR20160010490A (ko) | 2013-05-16 | 2016-01-27 | 도요보 가부시키가이샤 | 열수축성 폴리에스테르계 필름 및 포장체 |
JP6036832B2 (ja) * | 2013-06-11 | 2016-11-30 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2014199787A1 (ja) * | 2013-06-11 | 2014-12-18 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
US10287433B2 (en) | 2013-06-11 | 2019-05-14 | Toyobo Co., Ltd. | Heat-shrinkable polyester film and packages |
JPWO2014199787A1 (ja) * | 2013-06-11 | 2017-02-23 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
US10035335B2 (en) | 2014-04-01 | 2018-07-31 | Toyobo Co., Ltd. | Heat-shrinkable polyester film and package |
TWI693997B (zh) * | 2014-04-01 | 2020-05-21 | 日商東洋紡股份有限公司 | 熱收縮性聚酯系膜及包裝體 |
JP2015199337A (ja) * | 2014-04-01 | 2015-11-12 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
WO2015151695A1 (ja) * | 2014-04-01 | 2015-10-08 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2015199336A (ja) * | 2014-04-01 | 2015-11-12 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2019051727A (ja) * | 2014-04-01 | 2019-04-04 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2015199909A (ja) * | 2014-04-01 | 2015-11-12 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2019081378A (ja) * | 2014-04-01 | 2019-05-30 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JPWO2016039044A1 (ja) * | 2014-09-09 | 2017-06-22 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルム及び包装体 |
WO2016039044A1 (ja) * | 2014-09-09 | 2016-03-17 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルム及び包装体 |
JP6909936B1 (ja) * | 2020-05-29 | 2021-07-28 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルム及びポリエステル系シュリンクフィルム成形品 |
JP6965472B1 (ja) * | 2020-05-29 | 2021-11-10 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルムの製造方法及びポリエステル系シュリンクフィルムの使用方法 |
WO2021240809A1 (ja) * | 2020-05-29 | 2021-12-02 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルム及びポリエステル系シュリンクフィルム成形品 |
JP2021187162A (ja) * | 2020-05-29 | 2021-12-13 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルムの製造方法及びポリエステル系シュリンクフィルムの使用方法 |
JP6992211B1 (ja) * | 2020-11-30 | 2022-02-15 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルム |
JP7039154B1 (ja) | 2020-11-30 | 2022-03-22 | タキロンシーアイ株式会社 | ラベル付き容器及びラベル付き容器の製造方法 |
WO2022113364A1 (ja) * | 2020-11-30 | 2022-06-02 | タキロンシーアイ株式会社 | ポリエステル系シュリンクフィルム |
JP2022087090A (ja) * | 2020-11-30 | 2022-06-09 | タキロンシーアイ株式会社 | ラベル付き容器及びラベル付き容器の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20120043248A1 (en) | 2012-02-23 |
JP5633808B2 (ja) | 2014-12-03 |
EP2436508B1 (en) | 2014-04-09 |
CN102448705A (zh) | 2012-05-09 |
PL2436508T3 (pl) | 2014-09-30 |
CN102448705B (zh) | 2015-04-29 |
KR101639101B1 (ko) | 2016-07-12 |
EP2436508A1 (en) | 2012-04-04 |
US9352508B2 (en) | 2016-05-31 |
ES2461849T3 (es) | 2014-05-21 |
JPWO2010137240A1 (ja) | 2012-11-12 |
EP2436508A4 (en) | 2013-05-01 |
KR20120028935A (ko) | 2012-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5633808B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP4882919B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP6337774B2 (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JP5240387B1 (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JP5664548B2 (ja) | 熱収縮性ポリエステル系フィルム、その包装体、及び熱収縮性ポリエステル系フィルムの製造方法 | |
JP6036832B2 (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JP4877056B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法 | |
JP6572907B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP6485054B2 (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JPWO2016152517A1 (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JP5408250B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
WO2015151695A1 (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JP5339061B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP2019147954A (ja) | 熱収縮性ポリエステル系フィルムおよび包装体 | |
JP2009202445A (ja) | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体 | |
JP5278821B2 (ja) | 熱収縮性ポリエステル系フィルム | |
JP5067473B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP5895283B2 (ja) | ラベル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080022756.6 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2010524273 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10780202 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13266326 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010780202 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117030557 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9626/CHENP/2011 Country of ref document: IN |