JP2009227970A - 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 - Google Patents
熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 Download PDFInfo
- Publication number
- JP2009227970A JP2009227970A JP2009035051A JP2009035051A JP2009227970A JP 2009227970 A JP2009227970 A JP 2009227970A JP 2009035051 A JP2009035051 A JP 2009035051A JP 2009035051 A JP2009035051 A JP 2009035051A JP 2009227970 A JP2009227970 A JP 2009227970A
- Authority
- JP
- Japan
- Prior art keywords
- film
- less
- heat
- temperature
- longitudinal direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Packages (AREA)
- Wrappers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
【課題】ミシン目開封性が非常に良好な上、きわめて生産性の高く透明性に優れた熱収縮性ポリエステルフィルムを提供すること。
【解決手段】エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を13モル%以上含有しているポリエステル系樹脂からなる熱収縮性ポリエステル系フィルムであって、特定の熱収縮特性、特定の熱収縮処理後の力学的特性、透明度、及び光沢度を有する熱収縮性ポリエステル系フィルム。
【選択図】なし
【解決手段】エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を13モル%以上含有しているポリエステル系樹脂からなる熱収縮性ポリエステル系フィルムであって、特定の熱収縮特性、特定の熱収縮処理後の力学的特性、透明度、及び光沢度を有する熱収縮性ポリエステル系フィルム。
【選択図】なし
Description
本発明は、熱収縮性ポリエステル系フィルム、およびその製造方法、包装体に関するものであり、詳しくは、ラベル用途に好適な熱収縮性ポリエステル系フィルム、およびその製造方法、ラベルを用いた包装体に関するものである。
近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
また、熱収縮性フィルムとしては、ラベル製造時の取扱いの面から、一般的に、幅方向に大きく収縮させるものが利用される。それゆえ、従来の熱収縮性ポリエステル系フィルムは、加熱時に幅方向への十分な収縮力を発現させるために、幅方向へ高倍率の延伸することによって製造されていた。
ところが、従来の熱収縮性ポリエステルフィルムは、主収縮方向と直交する長手方向については、ほとんど延伸されていないため、機械的強度が低く、ラベルとしてペットボトル等に収縮させて被覆させた場合に、ラベルをミシン目に沿ってうまく引き裂くことができない(すなわち、ミシン目開封性が悪い)、という不具合がある。また、飲料容器用のラベルとして使用された場合の保管後の耐破れ性が不十分となり易い課題も見られる。更には、熱収縮性ポリエステルフィルムのミシン目開封性を良好なものとすべく、製造時にフィルムを長手方向に延伸すると、機械的強度が高くなり、ミシン目開封性はある程度向上するものの、長手方向に収縮力が発現してしまうため、ラベルとしてペットボトル等に収縮させて被覆させた場合に、非常に見栄え(収縮仕上がり性)が悪くなる、という不具合を露呈する。
それゆえ、熱収縮性ポリエステルフィルムのミシン目開封性を向上させるべく、熱収縮性ポリエステルフィルムの主原料中に非相溶な熱可塑性樹脂を混合する方法(特許文献1)等も提案されている。
上記特許文献1の如き熱収縮性ポリエステルフィルムの主原料中に非相溶な熱可塑性樹脂を混合する方法によれば、熱収縮性ポリエステルフィルムのミシン目開封性がある程度向上するものの、必ずしもミシン目開封性が十分な熱収縮性ポリエステルフィルムが得られているとは言い難い。また、特許文献1の如き方法を採用した場合でも、製造時には幅方向にしか延伸することができないため、効率良く熱収縮性ポリエステルフィルムを製造することはできない。
また容器ラベルに用いる熱収縮フィルムに求められる特性の中で透明性が挙げられる。上記の通り、多くの場合、容器ラベルに用いられるフィルムには各種製品名等の文字情報や図柄が印刷されるが、透明ラベルの場合、容器に接触する側に印刷が施されることが多く、透明性が低いと鮮明な印刷柄が表現できないことになる。そして、印刷が施されていない部分では透明容器内の飲料など内容物の色や充填量などが確認しにくいという問題もある。上記特許文献1の如き熱収縮性ポリエステルフィルムの主原料中に非相溶な熱可塑性樹脂を混合する方法によれば、透明性を良くすることは困難である。
また、収縮ラベル素材のなかで、ポリエステル系フィルムの特長として優れた光沢性が挙げられるが、この光沢性が低いと被覆商品の高級感を損なうなど商品イメージに悪影響を及ぼす場合がある。
本発明は、上記従来の熱収縮性ポリエステルフィルムが有する課題を解消し、ミシン目開封性が非常に良好であり、飲料容器用のラベルとして使用された場合の保管後の耐破れ性や透明性に優れた熱収縮性ポリエステルフィルムやその生産性の高い製造方法を提供することにある。
本発明者らは上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。即ち本発明は以下の構成よりなる。
1. エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を15モル%以上含有しているポリエステル系樹脂からなる下記要件(1)〜(5)を満たす熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)〜(f)の各工程を含むことを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
(1)90℃の温水中で10秒間に亘って処理した場合における幅方向の湯温熱収縮率が40%以上80%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向の湯温熱収縮率が0%以上15%以下であること
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が90N/mm以上280N/mm以下であること
(4)長手方向の引張破壊強さが130MPa以上300MPa以下であること
(5)ヘイズ2%以下で、少なくとも一方の面について測定角度45°における光沢度190%以上であること
(a)未延伸フィルムを、Tg以上Tg+30℃以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、Tg+10℃以上Tg+40℃以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程
(b)縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理する中間熱処理工程
(c)中間熱処理後のフィルムを、前後の各ゾーンと遮断されており積極的な加熱操作を実行しない中間ゾーンを通過させることによって自然に冷却する自然冷却工程
(d)自然冷却後のフィルムを、表面温度が70℃以上100℃以下の温度となるまで積極的に冷却する積極冷却工程
(e)積極冷却後のフィルムを、70℃以上95℃以下の温度で幅方向3.0倍以上6.0倍以下の倍率で延伸する横延伸工程
(f)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上100℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理する最終熱処理工程
2. エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を15モル%以上含有しているポリエステル系樹脂からなる熱収縮性ポリエステル系フィルムであって、下記要件(1)〜(5)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
(1)90℃の温水中で10秒間に亘って処理した場合における幅方向の湯温熱収縮率が40%以上80%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向の湯温熱収縮率が0%以上15%以下であること
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が90N/mm以上280N/mm以下であること
(4)長手方向の引張破壊強さが130MPa以上300MPa以下であること
(5)ヘイズ2%以下で、少なくとも一方の面について測定角度45°における光沢度190%以上であること
3. 溶剤接着強度が、2N/15mm幅以上10N/15mm幅以下であることを特徴とする上記第2に記載の熱収縮性ポリエステル系フィルム。
4. 長手方向の厚み斑が、1%以上18%以下であることを特徴とする上記第2又は第3に記載の熱収縮性ポリエステル系フィルム。
5. 幅方向の厚み斑が、1%以上18%以下であることを特徴とする上記第2〜第4のいずれかに記載の熱収縮性ポリエステル系フィルム。
6. 厚みが、20μm以上80μm以下であることを特徴とする上記第2〜第5のいずれかに記載の熱収縮性ポリエステル系フィルム。
7. 全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、イソフタル酸の内のいずれかであることを特徴とする上記第2〜第6のいずれかに記載の熱収縮性ポリエステル系フィルム。
8. 上記第3〜第7のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)〜(f)の各工程を含むことを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
(a)未延伸フィルムを、Tg以上Tg+30℃以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、Tg+10℃以上Tg+40℃以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程
(b)縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理する中間熱処理工程
(c)中間熱処理後のフィルムを、前後の各ゾーンと遮断されており積極的な加熱操作を実行しない中間ゾーンを通過させることによって自然に冷却する自然冷却工程
(d)自然冷却後のフィルムを、表面温度が70℃以上100℃以下の温度となるまで積極的に冷却する積極冷却工程
(e)積極冷却後のフィルムを、70℃以上95℃以下の温度で幅方向に3.0倍以上6.0倍以下の倍率で延伸する横延伸工程
(f)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上100℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理する最終熱処理工程
9. 上記第2〜第7のいずれかに記載の熱収縮性ポリエステル系フィルムを基材とし、ミシン目あるいは一対のノッチが設けられたラベルを少なくとも外周の一部に被覆して熱収縮させてなることを特徴とする包装体。
1. エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を15モル%以上含有しているポリエステル系樹脂からなる下記要件(1)〜(5)を満たす熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)〜(f)の各工程を含むことを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
(1)90℃の温水中で10秒間に亘って処理した場合における幅方向の湯温熱収縮率が40%以上80%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向の湯温熱収縮率が0%以上15%以下であること
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が90N/mm以上280N/mm以下であること
(4)長手方向の引張破壊強さが130MPa以上300MPa以下であること
(5)ヘイズ2%以下で、少なくとも一方の面について測定角度45°における光沢度190%以上であること
(a)未延伸フィルムを、Tg以上Tg+30℃以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、Tg+10℃以上Tg+40℃以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程
(b)縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理する中間熱処理工程
(c)中間熱処理後のフィルムを、前後の各ゾーンと遮断されており積極的な加熱操作を実行しない中間ゾーンを通過させることによって自然に冷却する自然冷却工程
(d)自然冷却後のフィルムを、表面温度が70℃以上100℃以下の温度となるまで積極的に冷却する積極冷却工程
(e)積極冷却後のフィルムを、70℃以上95℃以下の温度で幅方向3.0倍以上6.0倍以下の倍率で延伸する横延伸工程
(f)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上100℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理する最終熱処理工程
2. エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を15モル%以上含有しているポリエステル系樹脂からなる熱収縮性ポリエステル系フィルムであって、下記要件(1)〜(5)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
(1)90℃の温水中で10秒間に亘って処理した場合における幅方向の湯温熱収縮率が40%以上80%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向の湯温熱収縮率が0%以上15%以下であること
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が90N/mm以上280N/mm以下であること
(4)長手方向の引張破壊強さが130MPa以上300MPa以下であること
(5)ヘイズ2%以下で、少なくとも一方の面について測定角度45°における光沢度190%以上であること
3. 溶剤接着強度が、2N/15mm幅以上10N/15mm幅以下であることを特徴とする上記第2に記載の熱収縮性ポリエステル系フィルム。
4. 長手方向の厚み斑が、1%以上18%以下であることを特徴とする上記第2又は第3に記載の熱収縮性ポリエステル系フィルム。
5. 幅方向の厚み斑が、1%以上18%以下であることを特徴とする上記第2〜第4のいずれかに記載の熱収縮性ポリエステル系フィルム。
6. 厚みが、20μm以上80μm以下であることを特徴とする上記第2〜第5のいずれかに記載の熱収縮性ポリエステル系フィルム。
7. 全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、イソフタル酸の内のいずれかであることを特徴とする上記第2〜第6のいずれかに記載の熱収縮性ポリエステル系フィルム。
8. 上記第3〜第7のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)〜(f)の各工程を含むことを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
(a)未延伸フィルムを、Tg以上Tg+30℃以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、Tg+10℃以上Tg+40℃以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程
(b)縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理する中間熱処理工程
(c)中間熱処理後のフィルムを、前後の各ゾーンと遮断されており積極的な加熱操作を実行しない中間ゾーンを通過させることによって自然に冷却する自然冷却工程
(d)自然冷却後のフィルムを、表面温度が70℃以上100℃以下の温度となるまで積極的に冷却する積極冷却工程
(e)積極冷却後のフィルムを、70℃以上95℃以下の温度で幅方向に3.0倍以上6.0倍以下の倍率で延伸する横延伸工程
(f)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上100℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理する最終熱処理工程
9. 上記第2〜第7のいずれかに記載の熱収縮性ポリエステル系フィルムを基材とし、ミシン目あるいは一対のノッチが設けられたラベルを少なくとも外周の一部に被覆して熱収縮させてなることを特徴とする包装体。
本発明の熱収縮性ポリエステル系フィルムは、主収縮方向である幅方向への収縮性が高く、幅方向と直交する長手方向における機械的強度も高い上、ラベルとした際のミシン目開封性が良好であり、開封する際に引き裂き初めから引き裂き完了に至るまでミシン目に沿って綺麗にカットすることができる。また、スティフネス(所謂“腰”の強さ)が高く、ラベルとした際の装着適性に優れている。また、透明性と光沢性に優れている。加えて、印刷加工やチュービング加工をする際の加工特性が良好である。したがって、本発明の熱収縮性ポリエステル系フィルムは、ボトル等の容器のラベルとして好適に用いることができ、ラベルとして使用した際には、ボトル等の容器に短時間の内に非常に効率良く装着することができ、装着後に熱収縮させた際にシワや収縮不足のきわめて少ない良好な仕上がりを発現させることができる上、装着されたラベルが非常に良好なミシン目開封性を発現するものとなる。本発明の包装体は、被覆されたラベルの引き裂き具合が良好であり、被覆されたラベルを適度な力でミシン目に沿って綺麗に引裂くことができる。
加えて、本発明の熱収縮性ポリエステル系フィルムは、縦横の二軸に延伸して製造されるものであるので、非常に効率良く生産することができる。
本発明で使用するポリエステルは、エチレンテレフタレートを主たる構成成分とするものである。すなわち、エチレンテレフタレートを50モル%以上、好ましくは60モル%以上含有するものである。本発明のポリエステルを構成する他のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。
脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不十分である。
また、3価以上の多価カルボン酸(たとえば、トリメリット酸、ピロメリット酸およびこれらの無水物等)を含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
本発明で使用するポリエステルを構成するジオール成分としては、エチレングリコール、1−3プロパンジオール、1−4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、1,4−シクロヘキサンジメタノール等の環状ジオールや、炭素数3〜6個を有するジオール(たとえば、1−3プロパンジオール、1−4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)のうちの1種以上を含有させて、ガラス転移点(Tg)を60〜80℃に調整したポリエステルが好ましい。
また、本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計が15モル%以上であることが好ましく、17モル%以上であることがより好ましく、特に20モル%以上であることが好ましい。ここで、非晶質成分となりうるモノマーとしては、たとえば、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、イソフタル酸、1,4−シクロヘキサンジカルボン酸、2,6−ナフタレンジカルボン酸、2,2−ジエチル1,3−プロパンジオール、2−n−ブチル2−エチル1,3−プロパンジオール、2,2−イソプロピル1,3−プロパンジオール、2,2−ジn−ブチル1,3−プロパンジオール、1,4−ブタンジオール、ヘキサンジオールを挙げることができるが、その中でも、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールやイソフタル酸を用いるのが好ましい。
本発明の熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数8個以上のジオール(たとえばオクタンジオール等)、または3価以上の多価アルコール(たとえば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を、含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
また、本発明の熱収縮性ポリエステル系フィルムに用いるポリエステル中には、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないことが好ましい。
また、本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、たとえば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、滑剤として微粒子を添加することによりポリエチレンテレフタレート系樹脂フィルムの作業性(滑り性)を良好なものとするのが好ましい。微粒子としては任意のものを選択することができるが、たとえば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等を挙げることができる。また、有機系微粒子としては、たとえば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05〜3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。
熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、たとえば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
さらに、本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの幅方向の熱収縮率(すなわち、90℃の湯温熱収縮率)が、40%以上80%以下であることが好ましい。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%)・・式1
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%)・・式1
90℃における幅方向の湯温熱収縮率が40%を下回ると、収縮量が小さいために、熱収縮した後のラベルにシワやタルミが生じてしまうので好ましくなく、反対に、90℃における幅方向の湯温熱収縮率が80%を上回ると、ラベルとして用いて場合に熱収縮時に収縮に歪みが生じ易くなったり、いわゆる“飛び上がり”が発生してしまうので好ましくない。なお、90℃における幅方向の湯温熱収縮率の下限値は、45%以上であるとより好ましく、50%以上であると更に好ましく、55%以上であると特に好ましい。また、90℃における幅方向の湯温熱収縮率の上限値は、75%以下であると好ましく、70%以下であるとより好ましく、65%以下であると特に好ましい。
また、本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、上式1により算出したフィルムの長手方向の熱収縮率(すなわち、90℃の湯温熱収縮率)が、0%以上15%以下であることが好ましく、0%以上13%以下であるとより好ましく、0%以上12%以下であると更に好ましく、0%以上11%以下であると一層好ましく、0%以上9%以下であると特に好ましい。
90℃における長手方向の湯温熱収縮率が0%未満であると(すなわち、収縮率が負の値であると)、ボトルのラベルとして使用する際に良好な収縮外観を得ることができないので好ましくなく、反対に、90℃における長手方向の湯温熱収縮率が15%を上回ると、ラベルとして用いた場合に熱収縮時に収縮に歪みが生じ易くなるので好ましくない。なお、90℃における長手方向の湯温熱収縮率の下限値は、1%以上であると好ましく、2%以上であるとより好ましく、3%以上であると特に好ましい。また、90℃における長手方向の湯温熱収縮率の上限値は、15%以下であると好ましく、13%以下であるとより好ましく、11%以下であると特に好ましい。
また、本発明の熱収縮性ポリエステル系フィルムは、80℃の温水中で幅方向に10%収縮させた後に、以下の方法で単位厚み当たりの長手方向の直角引裂強度を求めたときに、その長手方向の直角引裂強度が90N/mm以上280N/mm以下であることが好ましく、210N/mm以上240N/mm以下であることがより好ましい。
[直角引裂強度の測定方法]
80℃に調整された湯温中にてフィルムを幅方向に10%収縮させた後に、JIS−K−7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件にて、フィルムの長手方向における引張破壊時の強度の測定を行う。そして、下式(2)を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・式(2)
80℃に調整された湯温中にてフィルムを幅方向に10%収縮させた後に、JIS−K−7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件にて、フィルムの長手方向における引張破壊時の強度の測定を行う。そして、下式(2)を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・式(2)
80℃の温水中で幅方向に10%収縮させた後の直角引裂強度が90N/mm未満であると、ラベルとして使用した場合に運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる恐れがあるので好ましくなく、反対に、直角引裂強度が280N/mmを超えると、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるため好ましくない。なお、直角引裂強度の下限値は、150N/mm以上であるとより好ましく、210N/mm以上であるとより好ましい。また、直角引裂強度の上限値は、260N/mm以下であるとより好ましく、240N/mm以下であるとより好ましい。
本発明の熱収縮性ポリエステル系フィルムにおいて、ヘイズ値が0.5%以上2%以下であることが好ましい。ヘイズ値が2%を超えると、透明性が損なわれ、ラベル作成後に容器に装着した際、印刷が施されていない部分では透明容器内の飲料など内容物の色や充填量などが確認しにくいという問題もある。なお、ヘイズは、1.5%以下であるとより好ましく、1%以下であると特に好ましい。また、ヘイズ値は、小さいほど好ましいが、実用上必要な滑り性を付与する目的でフィルムに所定量の滑剤を添加する場合があること等を考慮すると、0.5%程度が下限となっても十分な透明性である。
本発明の熱収縮性ポリエステル系フィルムにおいて、測定角度45°における光沢度190%以上220%以下であることが好ましい。測定角度45°における光沢度が190%より低くなると、光沢性が損なわれ、被覆商品の高級感を損なうなど商品イメージに悪影響を及ぼす場合がある。なお、測定角度45°における光沢度は、193%以上であるとより好ましく、196%以上であると特に好ましい。また、測定角度45°における光沢度は、高いほど好ましいが、実用上必要な滑り性を付与する目的でフィルムに所定量の滑剤を添加する場合があること等を考慮すると、220%程度が上限になる。
また、本発明の熱収縮性ポリエステル系フィルムは、以下の方法で長手方向の引張破壊強さを求めたときに、その引張破壊強さが130MPa以上300MPa以下であることが好ましい。
[引張破壊強さの測定方法]
JIS−K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
JIS−K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
長手方向の引張破壊強さが130MPaを下回ると、ラベルにしてボトル等に装着する際の“腰”(スティフネス)が弱くなるので好ましくなく、反対に、引張破壊強さが300MPaを上回ると、ラベルを引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるので好ましくない。なお、引張破壊強さの下限値は、150MPa以上であると好ましく、170MPa以上であるとより好ましく、190MPa以上であると特に好ましい。また、直角引裂強度の上限値は、270MPa以下であると好ましく、260MPa以下であるとより好ましく、250MPa以下であると特に好ましい。
本発明の熱収縮性ポリエステル系フィルムにおいては、溶剤接着強度が2N/15mm幅以上であることが好ましい。溶剤接着強度が2N/15mm幅未満であると、ラベルが熱収縮した後に溶剤接着部から剥れ易くなるので好ましくない。なお、溶剤接着強度は、3N/15mm幅以上であるとより好ましく、4N/15mm幅以上であると特に好ましい。尚、溶剤接着強度は大きいことが好ましいが、溶剤接着強度は、製膜装置の性能上から10(N/15mm)程度が現在のところ上限であると考えている。また、溶剤接着強度があまりにも高すぎると 2枚のフィルムを溶剤接着させてラベルとする際、不必要なフィルムに接着されてしまう事態が起きやすくなり、ラベルの生産性が低下する場合もあるので、8.5(N/15mm)以下でもよく、7(N/15mm)以下であっても実用上全く構わない。
本発明においては、後述のようにミシン目に沿って引き裂いて開封する際の引き裂き性を改善のために高IVポリエステル系樹脂X及び低IVポリエステル系樹脂Yが、各々X層及びY層を形成し、X/Y/X構造に積層されていることも好ましいが、その際、Y層に対しX層の非晶比率を大きくしておくことは、溶剤接着強度と溶剤耐浸透性を両立させる上で好ましい。X層の好ましい非晶比率を上記同様モル%で記載すれば、30モル%以下であり更に好ましくは20モル%以下である。但し、あまりにも少なくなるとX層の非晶比率によっては熱収縮特性が小さくなる場合があるので、5モル%以上としておくことが好ましく更に好ましくは8モル%以上である。
長手方向の厚み斑(測定長を10mとした場合の厚み斑)が18%以下であることが好ましい。長手方向の厚み斑が18%を超える値であると、ラベル作成の際の印刷時に印刷斑が発生し易くなったり、熱収縮後の収縮斑が発生し易くなったりするので好ましくない。なお、長手方向の厚み斑は、16%以下であるとより好ましく、14%以下であると特に好ましい。なお、長手方向の厚み斑は小さいほど好ましいが、当該厚み斑の下限は、製膜装置の性能上と生産しやすさから 5%以上が妥当と考えるが 最も好ましいのは0%に近い値であり 製膜装置の性能上1%が限界であると考えている。
本発明の熱収縮性ポリエステル系フィルムにおいては、幅方向の厚み斑(測定長を1mとした場合の厚み斑)が18%以下であることが好ましい。幅方向の厚み斑が18%を超える値であると、ラベル作成の際の印刷時に印刷斑が発生し易くなったり、熱収縮後の収縮斑が発生し易くなったりするので好ましくない。なお、幅方向の厚み斑は、16%以下であるとより好ましく、14%以下であると特に好ましい。なお、巾方向の厚み斑は小さいほど好ましいが、当該厚み斑の下限は、製膜装置の性能上と生産しやすさから 4%以上が妥当と考えるが 最も好ましいのは0%に近い値であり 製膜装置の性能上1%が限界であると考えている。
本発明の熱収縮性ポリエステル系フィルムの厚みは、特に限定するものではないが、ラベル用熱収縮性フィルムとして20μm以上80μm以下が好ましく、30μm以上70μm以下がより好ましい。加えて、本発明の熱収縮性ポリエステル系フィルムを積層構造のものとする場合には、各層の厚みは特に限定されないが、それぞれ5μm以上とすることが好ましい。
本発明における分子配向比(MOR)は1.05以上3以下が好ましい。分子配向比が3より大きいと 長手方向の配向が低いことになり フィルム長手方向の直角引裂強度や引張破壊強さを満足させることが困難となるのであまり好ましくない。好ましい分子配向比は2.8以下であり 更に好ましくは2.6以下である。分子配向比は1に近いほど好ましいが1.05以上であって構わない。
[分子配向角比の測定方法]
フィルムを長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
フィルムを長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
本発明の熱収縮性ポリエステル系フィルムにおいて、互いに極限粘度(IV)が相違する高IVポリエステル系樹脂X及び低IVポリエステル系樹脂Yが、各々X層及びY層を形成し、X/Y/X構造に積層されていることも好ましい(単層のフィルムを排除するものではない)。ポリエチレンテレフタレートを主原料とする熱収縮性ポリエステル系フィルムをラベルにした場合、ミシン目に沿って引き裂いて開封する際の引き裂き性を改善すべく、発明者らが研究開発を行った結果、ポリエステル系樹脂から熱収縮性フィルムを製造する際に、極限粘度(IV)の低いポリエステル系原料を大量に加えると、上記した引き裂き性を改善し得ることを見出した。ところが、低IVポリエステル系原料を大量に加えると、溶剤接着性、収縮仕上がり性の悪化等の好ましくない現象が発生する場合があることがわかった。
上記したような低IVポリエステル系原料を加えた熱収縮性フィルムに関する知見から、発明者らは、低IVポリエステル系原料に加える非晶成分の種類と量を調整することによって、引き裂き性、溶剤接着性、収縮仕上がり性、透明性、光沢がいずれも良好な熱収縮性フィルムを得ることができないか検討した。しかしながら、単層の熱収縮性フィルムでは、良好な引き裂き性、良好な溶剤接着性、良好な収縮仕上がり性、透明性をバランス良く具備させるのはやや困難であった。それゆえ、出願人らは、単層の熱収縮性フィルム以外に、低IVポリエステル系原料からなる層(以下、単に低IV層という)と高IVポリエステル系原料からなる層(以下、単に高IV層という)とを積層した積層フィルムとすることによって、低IVポリエステル系原料を加えた熱収縮性フィルムの溶剤接着性、収縮仕上がり性、初期破断率を向上できるのではないかと考え、鋭意検討を行った。
検討当初においては、低IV層と高IV層とを積層すると十分な幅方向への熱収縮特性が得られないのではないかという懸念もあったが、低IV層と高IV層との積層方法、積層態様と積層フィルムの引き裂き性、溶剤接着性、収縮仕上がり性、透明性、光沢との関係を詳細に調べた結果、当初の予測に反し、低IV層と高IV層とを積層した場合には、収縮特性に加成性が成り立つことが明らかとなった。そして、以下に示す特定の方法(共押出法)で低IV層と高IV層とを積層することにより、低IV層の特性を高IV層で補うことが可能となり、良好な引き裂き性とともに、良好な溶剤接着性、収縮仕上がり性、低い透明性と高い光沢感という相反する特性を同時に満たし得ることが判明した。また、そればかりではなく、上記の如く特定の方法で低IVポリエステル系原料からなる層と高IVポリエステル系原料からなる層とを積層することにより、短時間後の接着力強度が飛躍的に向上することも判明した。
本発明においては、フィルムの極限粘度(IV)が0.62dl/g以上であると好ましい。フィルムの極限粘度(IV)が0.62dl/gであれば、フィルムの耐破れ性を確保することができ、印刷加工や溶剤接着加工時の破断等のトラブルや不良の発生を低減化することができる。本発明の熱収縮性ポリエステル系フィルムの製造においては、通常のポリエステル系原料にリサイクル原料(PETボトル等のリサイクル原料)を混合することができるが、リサイクル原料の極限粘度(IV)は0.62より小さい場合もあり、フィルムの極限粘度を0.62dl/g以上とするためには、リサイクル原料以外の他のポリエステル原料の極限粘度を通常より高い値に制御することが好ましい。具体的には、他のポリエステル原料の極限粘度を、溶融押出しによる極限粘度の低下を考慮して、好ましくは0.68dl/g以上、より好ましくは0.70dl/g以上、さらに好ましくは0.72dl/g以上とすることが好ましい。なお、フィルムとしての極限粘度のより好ましい下限は0.63dl/g、さらに好ましくは0.64dl/gである。
上述のように、本発明の熱収縮性ポリエステル系フィルムにおいて、互いに極限粘度(IV)が相違する高IVポリエステル系樹脂X及び低IVポリエステル系樹脂Yが、各々X層及びY層を形成し、X/Y/X構造に積層されていることも好ましいが(単層のフィルムを排除するものではない)、X層とY層とは少なくとも極限粘度IVが0.01dl/g以上異なっていることが好ましい。その差が0.01dl/g未満の場合、単層のフィルムと特に差のないものとなる。但し、あまりにもIVの差が大きいと、力学的特性が弱くなるなど好ましくない面も現れるので、X層とY層とのIVの差は0.08dl/g以下でよい。
本発明の熱収縮性ポリエステル系フィルムの製造方法は特に限定されないが、例を挙げて説明する。本発明の熱収縮性ポリエステル系フィルムは、エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分をトータルで13モル%以上含有しているポリエステル系原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により二軸延伸して熱処理することによって得ることができる。
また、本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により二軸延伸して熱処理することによって得ることができる。
原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200〜300℃の温度で溶融しフィルム状に押し出す。かかる押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金より回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
さらに、得られた未延伸フィルムを、後述するように、所定の条件で長手方向に延伸し、その縦延伸後のフィルムを急冷した後に、一旦、熱処理し、その熱処理後のフィルムを所定の条件で冷却した後に、所定の条件で幅方向に延伸し、再度、熱処理することによって本発明の熱収縮性ポリエステル系フィルムを得ることが好ましい。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい製膜方法について、従来の熱収縮性ポリエステル系フィルムの製膜方法との差異を考慮しつつ詳細に説明する。
上述したように、従来は、熱収縮性ポリエステル系フィルムは、未延伸フィルムを収縮させたい方向(即ち、主収縮方向、通常は幅方向)のみに延伸することによって製造されて来た。本発明者らが従来の製造方法について検討した結果、従来の熱収縮性ポリエステル系フィルムの製造においては、以下のような問題点があることが判明した。
・単純に幅方向に延伸するだけであると、上述の如く、長手方向の直角引裂強度が大きくなり、ラベルとした場合のミシン目開封性が悪くなる。その上、製膜装置のライン速度を上げることが困難である。
・幅方向に延伸した後に長手方向に延伸する方法を採用すると、どのような延伸条件を採用しても、幅方向の収縮力を十分に発現させることができない。さらに、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上がりが悪くなる。
・長手方向に延伸した後に幅方向に延伸する方法を採用すると、幅方向の収縮力は発現させることができるものの、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上がりが悪くなる。
・単純に幅方向に延伸するだけであると、上述の如く、長手方向の直角引裂強度が大きくなり、ラベルとした場合のミシン目開封性が悪くなる。その上、製膜装置のライン速度を上げることが困難である。
・幅方向に延伸した後に長手方向に延伸する方法を採用すると、どのような延伸条件を採用しても、幅方向の収縮力を十分に発現させることができない。さらに、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上がりが悪くなる。
・長手方向に延伸した後に幅方向に延伸する方法を採用すると、幅方向の収縮力は発現させることができるものの、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上がりが悪くなる。
さらに、上記従来の熱収縮性ポリエステル系フィルムの製造における問題点に基づいて、本発明者らが、ミシン目開封性が良好で生産性の高い熱収縮性ポリエステル系フィルムを得ることについてさらなる考察を進めた結果、現在のところ次のように推定して考察している。
・ラベルとした際のミシン目開封性を良好なものとするためには、長手方向へ配向した分子をある程度残しておく必要があると考えられること
・ラベルとした際の収縮装着後の仕上がりを良好なものとするためには、長手方向への収縮力を発現させないことが不可欠であり、そのためには長手方向へ配向した分子の緊張状態を解消する必要があると考えられること
・ラベルとした際のミシン目開封性を良好なものとするためには、長手方向へ配向した分子をある程度残しておく必要があると考えられること
・ラベルとした際の収縮装着後の仕上がりを良好なものとするためには、長手方向への収縮力を発現させないことが不可欠であり、そのためには長手方向へ配向した分子の緊張状態を解消する必要があると考えられること
そして、本発明者らは、上記知見から、良好なミシン目開封性、収縮仕上がり性を同時に満たすためには、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させる必要がある、と考えるに至った。そして、どのような延伸を施せば“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることができるかに注目して試行錯誤した。その結果、長手方向に延伸した後に幅方向に延伸する所謂、縦−横延伸法によるフィルム製造の際に、以下の手段を講じることにより、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることを実現し、良好なミシン目開封性と収縮仕上がり性を同時に満たす熱収縮性ポリエステル系フィルムを得ることが可能となり、本発明を案出するに至った。
(1)フィルム中における滑剤の制御
(2)縦延伸条件の制御
(3)縦延伸後における中間熱処理と熱処理の時間
(4)中間熱処理後のフィルムの強制冷却
(5)横延伸条件の制御
以下、上記した各手段について順次説明する。
(1)フィルム中における滑剤の制御
(2)縦延伸条件の制御
(3)縦延伸後における中間熱処理と熱処理の時間
(4)中間熱処理後のフィルムの強制冷却
(5)横延伸条件の制御
以下、上記した各手段について順次説明する。
(1)フィルム中における滑剤の制御
フィルム中における滑剤の量が少ない程、透明性が良くなって好ましい。それにより滑り性が不良になると別の問題点が発生する為、3層以上の積層構成にして中間層を無滑剤にして外側の層だけ滑剤を添加する方法、又は、外側の層に易滑性のコート剤(樹脂、ワックス系)を塗布して滑り性を付与することが好ましい。
フィルム中における滑剤の量が少ない程、透明性が良くなって好ましい。それにより滑り性が不良になると別の問題点が発生する為、3層以上の積層構成にして中間層を無滑剤にして外側の層だけ滑剤を添加する方法、又は、外側の層に易滑性のコート剤(樹脂、ワックス系)を塗布して滑り性を付与することが好ましい。
例えば、3層の積層構成にしてコア層を無滑剤にしてスキン層だけ滑剤を添加する方法を採用する場合、スキン/コア/スキン構成で、片側のスキン層の厚みを2μm以上18μm以下としておくことが好ましい。更に好ましくは、片側スキン層の厚みを3μm以上16μm以下としておくことが好ましい。特に好ましくは、片側スキン層の厚みを4μm以上14μm以下としておくことである。片側スキン層が2μmより薄いと 溶剤接着性が悪化する場合があり、あまり好ましくない。一方、片側スキン層が15μmより厚いと透明性が悪化する場合があり、あまり好ましくない。
(2)縦延伸条件の制御
本発明の縦−横延伸法によるフィルムの製造においては、本発明のフィルムロールを得るためには、縦延伸を二段で行うのが好ましい。すなわち、実質的に未配向のフィルムを、Tg以上Tg+30℃以下の温度で2.2倍以上3.0倍以下の倍率となるように縦延伸し(一段目の延伸)、Tg以下に冷却することなく、Tg+10以上Tg+40℃以下の温度で1.2倍以上1.5倍以下の倍率となるように縦延伸する(二段目の延伸)ことにより、トータルの縦延伸倍率(すなわち、一段目の縦延伸倍率×二段目の縦延伸倍率)が2.8倍以上4.5倍以下となるように縦延伸するのが好ましく、トータルの縦延伸倍率が3.0倍以上4.3倍以下となるように縦延伸するとより好ましい。
本発明の縦−横延伸法によるフィルムの製造においては、本発明のフィルムロールを得るためには、縦延伸を二段で行うのが好ましい。すなわち、実質的に未配向のフィルムを、Tg以上Tg+30℃以下の温度で2.2倍以上3.0倍以下の倍率となるように縦延伸し(一段目の延伸)、Tg以下に冷却することなく、Tg+10以上Tg+40℃以下の温度で1.2倍以上1.5倍以下の倍率となるように縦延伸する(二段目の延伸)ことにより、トータルの縦延伸倍率(すなわち、一段目の縦延伸倍率×二段目の縦延伸倍率)が2.8倍以上4.5倍以下となるように縦延伸するのが好ましく、トータルの縦延伸倍率が3.0倍以上4.3倍以下となるように縦延伸するとより好ましい。
また、上記の如く二段で縦延伸する際には、縦延伸後のフィルムの長手方向の屈折率が1.600〜1.630の範囲内となり、縦延伸後のフィルムの長手方向の熱収縮応力が10MPa以下となるように、縦延伸の条件を調整するのが好ましい。そのような所定の条件の縦延伸を施すことにより、後述する中間熱処理、横延伸、最終熱処理時にフィルムの長手方向・幅方向への配向度合い、分子の緊張度合いをコントロールすることが可能となり、ひいては、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。
上記の如く縦方向に延伸する際に、トータルの縦延伸倍率が高くなると、長手方向の収縮率が高くなってしまう傾向にあるが、上記の如く縦方向に二段で延伸することにより、長手方向の延伸応力を小さくすることが可能となり、長手方向の収縮率を低く抑えることが可能となる。また、トータルの縦延伸倍率が高くなると、幅方向の延伸時の応力が高くなってしまい、最終的な横方向の収縮率のコントロールが難しくなる傾向にあるが、二段で延伸することにより、横方向の延伸応力も小さくすることができ、横方向の収縮率のコントロールが容易なものとなる。
さらに、トータルの縦延伸倍率が高くなると、直角引裂強度が低くなり、長手方向の引張強さが高くなる。また、トータルの縦延伸倍率を横延伸倍率に近づけることによって、分子配向比(MOR)を1.0に近づけることが可能となり、ラベルとした際のミシン目開封性を良好なものとすることができる。さらに、縦方向に二段で延伸することにより、横方向の延伸応力を低下できることに起因して、長手方向の配向を高くすることが可能となり、直角引裂強度が一層低くなり、長手方向の引張強さがより大きなものとなる。したがって、縦方向に二段で延伸し、トータルの縦延伸倍率を高くすることによって、非常にミシン目引裂性の良好なラベルを得ることが可能となる。
一方、トータルの縦延伸倍率が4.5倍を上回ると、長手方向の配向が高くなって溶剤接着強度が低くなってしまうが、トータルの縦延伸倍率を4.5倍以下にコントロールすることによって、幅方向への配向を抑えて、溶剤接着強度を高く保持することが可能となる。
また、縦方向に二段で延伸することにより、長手方向の延伸応力が小さくなるため、長手方向の厚み斑および幅方向の厚み斑が大きくなる傾向にあるが、トータルの縦延伸倍率が高くすることにより、長手方向の厚み斑を小さくすることができ、それに伴ってヘイズも低減することができる。加えて、トータルの縦延伸倍率を高くすることによって、横延伸時の応力が高くなるため、幅方向の厚み斑も低減することができる。
加えて、トータルの縦延伸倍率が高くすることにより、長手方向への配向を高くすることができ、二軸延伸後のフィルムを最終的にロールに巻き取る際のスリット性を向上させることができる。
(3)縦延伸後における中間熱処理と熱処理の時間
上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、本発明者らが試行錯誤した結果、縦−横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させ得る、という驚くべき事実が判明した。
上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、本発明者らが試行錯誤した結果、縦−横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させ得る、という驚くべき事実が判明した。
即ち、本発明の縦−横延伸法によるフィルムの製造においては、未延伸フィルムを縦延伸した後に、テンター内で幅方向の両端際をクリップによって把持した状態で、120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理(以下、中間熱処理という)することが好ましい。かかる中間熱処理を行うことによって、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となり、ひいては、ラベルとした場合にミシン目開封性が良好で収縮斑が生じないフィルムを得ることが可能となる。なお、どのような縦延伸を行った場合でも、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となるわけではなく、前述した所定の低倍率の縦延伸を実施することによって、中間熱処理後に、初めて“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となる。そして、後述する強制冷却、横延伸を施すことによって、フィルム内に形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向への収縮力を発現させることが可能となる。
なお、中間熱処理の温度は、120℃以上130℃以下であると好ましい。中間熱処理の温度の下限は120℃未満であるとフィルムの長手方向の収縮力が残り 横方向に延伸後フィルムの長手方向収縮率が高くなり好ましくない。また 中間熱処理の温度の上限は130℃より高いとフィルム表層が荒れ 透明性が損なわれ好ましくない。よって 好ましい中間熱処理の温度は120℃以上130℃以下であり より好ましくは122℃以上129℃以下、更に好ましくは124℃以上128℃以下である。また原料組成や縦方向の延伸倍率によっても中間熱処理の温度を多少考慮することが好ましい。
なお、中間熱処理の時間は18秒以上40秒以下が好ましい。40秒より長い時間中間熱処理する方が 低温で熱処理できるが 生産性が悪くなる。また18秒より短いと フィルムの長手方向の収縮力が残り、横方向に延伸後フィルムの長手方向収縮率が高くなり好ましくない。よって好ましい中間熱処理の時間は18秒以上40秒以下であり、より好ましくは22秒以上38秒以下、更に好ましくは25秒以上35秒以下である。また原料組成や縦方向の延伸倍率によっても中間熱処理の温度を多少考慮することが好ましい。
また、上記の如く中間熱処理する際には、中間熱処理後のフィルムの長手方向の屈折率が1.56〜1.595の範囲内となり、中間熱処理後のフィルムの長手方向の熱収縮応力が0.5MPa以下となるように、中間熱処理の条件を調整するのが好ましい。そのような所定の条件の中間熱処理を施すことにより、横延伸、最終熱処理時にフィルムの長手方向・幅方向への配向度合い、分子の緊張度合いをコントロールすることが可能となり、ひいては、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。なお、中間熱処理後のフィルムの長手方向の屈折率が1.56を下回ると横延伸、最終熱処理の条件を調整しても、ミシン目開封性の良好なフィルムを得ることが困難となりあまり好ましくない。また中間熱処理後のフィルムの長手方向の屈折率が1.595を上回ると横延伸、最終熱処理の条件を調整しても、長手方向の収縮率を小さくすることが困難となりあまり好ましくない。
(3)中間熱処理後のフィルムの強制冷却
本発明の縦−横延伸法によるフィルムの製造においては、上記の如く中間熱処理したフィルムをそのまま横延伸するのではなく、フィルムの温度が70℃以上100℃以下となるように急冷することが好ましい。かかる急冷処理を施すことによって、ラベルとした際のミシン目開封性が良好なフィルムを得ることができ好ましい。なお、急冷後のフィルムの温度の下限は、74℃以上であるとより好ましく、78℃以上であると更に好ましい。また、急冷後のフィルムの温度の上限は、90℃以下であるとより好ましく、85℃以下であると更に好ましい。
本発明の縦−横延伸法によるフィルムの製造においては、上記の如く中間熱処理したフィルムをそのまま横延伸するのではなく、フィルムの温度が70℃以上100℃以下となるように急冷することが好ましい。かかる急冷処理を施すことによって、ラベルとした際のミシン目開封性が良好なフィルムを得ることができ好ましい。なお、急冷後のフィルムの温度の下限は、74℃以上であるとより好ましく、78℃以上であると更に好ましい。また、急冷後のフィルムの温度の上限は、90℃以下であるとより好ましく、85℃以下であると更に好ましい。
上記の如くフィルムを急冷する際に、急冷後のフィルムの温度が100℃を上回ったままであると、フィルムの幅方向の収縮率が低くなってしまい、ラベルとした際の収縮性が不十分となってしまうが、冷却後のフィルムの温度が100℃以下となるようにコントロールすることによって、フィルムの幅方向の収縮率を高く保持することが可能となる。
さらに、フィルムを急冷する際に、急冷後のフィルムの温度が100℃を上回ったまま
であると、冷却後に行う横延伸の応力が小さくなり、幅方向の厚み斑が大きくなり易い傾向にあるが、冷却後のフィルムの温度が100℃以下となるような急冷を施すことによって、冷却後に行う横延伸の応力を高めて、幅方向の厚み斑を小さくすることが可能となる。
であると、冷却後に行う横延伸の応力が小さくなり、幅方向の厚み斑が大きくなり易い傾向にあるが、冷却後のフィルムの温度が100℃以下となるような急冷を施すことによって、冷却後に行う横延伸の応力を高めて、幅方向の厚み斑を小さくすることが可能となる。
加えて、フィルムを急冷する際に、急冷後のフィルムの温度が70℃を下回ったままであると、フィルムの延伸応力があがり 破断するし易くなるのであまり好ましくない。よって冷却工程後のフィルム温度は70℃以上100℃以下が好ましく、より好ましくは74℃以上90℃以下であり、更に好ましくは78℃以上85℃以下である。
(5)横延伸条件の制御
本発明の縦−横延伸法によるフィルムの製造においては、縦延伸、中間熱セット、急冷後のフィルムを所定の条件で横延伸することが好ましい。即ち、横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、70℃以上95℃以下の温度で3.0倍以上6.0倍以下の倍率となるように行うことが好ましい。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱セットによって形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、横延伸の温度の下限は、72℃以上であるとより好ましく、74℃以上であると更に好ましい。また、横延伸の温度の上限は、90℃以下であるとより好ましく、85℃以下であるとより好ましい。一方、横延伸の倍率の下限は、3.5倍以上であると好ましく、3.7倍以上であるとより好ましい。また、横延伸の倍率の上限は、5.5倍以下であると好ましく、5倍以下であるとより好ましい。
本発明の縦−横延伸法によるフィルムの製造においては、縦延伸、中間熱セット、急冷後のフィルムを所定の条件で横延伸することが好ましい。即ち、横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、70℃以上95℃以下の温度で3.0倍以上6.0倍以下の倍率となるように行うことが好ましい。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱セットによって形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、横延伸の温度の下限は、72℃以上であるとより好ましく、74℃以上であると更に好ましい。また、横延伸の温度の上限は、90℃以下であるとより好ましく、85℃以下であるとより好ましい。一方、横延伸の倍率の下限は、3.5倍以上であると好ましく、3.7倍以上であるとより好ましい。また、横延伸の倍率の上限は、5.5倍以下であると好ましく、5倍以下であるとより好ましい。
また、延伸温度が95℃を上回ると、長手方向の収縮率が高くなるとともに、幅方向の収縮率が低くなり易いが、延伸温度を95℃以下にコントロールすることによって、長手方向の収縮率を低く抑えるとともに、幅方向の収縮率を高く保持することが容易となり好ましい。
さらに、横延伸における延伸温度が95℃近くに高くなると、幅方向の配向が低くなって、溶剤接着強度が高くなるとともに、滑剤の圧潰を防止することが可能となり、摩擦係数を低く保つことが可能となるので好ましい。加えて、横延伸における延伸温度が95℃近くに高くなると、フィルムの内部のボイドが減少することによって、フィルムのヘイズが低くなる。
また、延伸温度が95℃を上回ると、幅方向の厚み斑が大きくなり易い傾向にあるが、延伸温度を95℃以下にコントロールすることによって、幅方向の厚み斑を小さくすることができる。
一方、延伸温度が70℃を下回ると、幅方向への配向が高くなりすぎて、横延伸時に破断し易くなるが、延伸温度を70℃以上にコントロールすることによって、横延伸時における破断を低減が可能となる。
[製造工程の工程条件がフィルム特性に与える影響]
本発明の熱収縮性ポリエステル系フィルムの製造に当たっては、縦延伸工程、中間熱処理工程、強制冷却工程、横延伸工程の条件を上記のような適切に設定して行うことにより、非常に効率的にフィルムの特性を良好なものとすることを可能とするものと考えられる。また、フィルムの特性の中でも、長手方向の直角引裂強度、幅方向の厚み斑、長手方向の厚み斑、溶剤接着強度、透明性と光沢といった重要な特性は、特定の複数の工程同士の複合的な作用によって数値が変動する場合がある。
本発明の熱収縮性ポリエステル系フィルムの製造に当たっては、縦延伸工程、中間熱処理工程、強制冷却工程、横延伸工程の条件を上記のような適切に設定して行うことにより、非常に効率的にフィルムの特性を良好なものとすることを可能とするものと考えられる。また、フィルムの特性の中でも、長手方向の直角引裂強度、幅方向の厚み斑、長手方向の厚み斑、溶剤接着強度、透明性と光沢といった重要な特性は、特定の複数の工程同士の複合的な作用によって数値が変動する場合がある。
すなわち、本発明の熱収縮性ポリエステル系フィルムは、長手方向の直角引裂強度を90N/mm以上280N/mm以下に調整することが好ましく、より好ましくは長手方向の直角引裂強度を150N/mm以上250N/mm以下、更に好ましくは210N/mm以上240N/mm以下に調節するものであるが、当該長手方向の直角引裂強度には、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。
また、本発明の熱収縮性ポリエステル系フィルムは、幅方向の厚み斑を1%以上18%以下に調整すると好ましいが、当該幅方向の厚み斑には、縦延伸工程、中間熱処理工程、および横延伸工程という3つの工程の工程条件の調節が重要である。
また、本発明の熱収縮性ポリエステル系フィルムは、長手方向の厚み斑を1%以上18%以下に調整すると好ましいが、当該幅方向の厚み斑には、縦延伸工程と中間熱処理工程での工程条件の調節が重要である。
また、本発明の熱収縮性ポリエステル系フィルムは、溶剤接着強度が2N/15mm以上10N/15mm以下に調節することが好ましい。溶剤接着強度の大きな要因はフィルム表面の非晶原料比率の大きさであり、非晶原料比率が大きいと溶剤接着強度が大きくなる傾向がある。例えば、後述の実施例において、フィルム表面の非晶原料比率が40質量%以上であれば、溶剤接着強度を2N/15mm以上とすることが容易となり好ましい。しかしながら、あまりにも非晶原料比率が大きくなると熱収縮特性が大きくなりすぎる場合があるので95質量%以下であることが好ましい。一般的にフィルム表面のポリステル樹脂中における多価アルコール成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計がどれだけ含まれているかを表す非晶モノマーのモル%で言えば、10モル%以上とすると溶剤接着強度を2N/15mm以上とすることが容易となり好ましい。更に好ましくはフィルム表面の13モル%以上であり、フィルム表面の20モル%以上であることが更に好ましいが、あまりに大きいと熱収縮特性が大きくなりすぎる場合があるので、50モル%以下でよく、40モル%以下であることが好ましく、更に好ましくは30モル%以下である。また、フィルムが複数の層がIVに差のあるポリエステル系樹脂の積層構造からなっている場合には、表層(X層)の非晶比率の大きさが重要であると言え、上記のフィルム表面の好ましい範囲がX層にも当てはまる。溶剤接着強度はその他のフィルム製造工程条件とも関連があり、中間熱セット工程や強制冷却工程条件とも関連が見られる。また、縦、横のトータルの延伸倍率(面積倍率)は、溶剤接着強度とも関係があり、通常トータルの延伸倍率が小さい方が溶剤接着強度が高まると言える。
また、本発明の熱収縮性ポリエステル系フィルムは、ヘイズを2%以下でかつ測定角度45°における光沢度190%以上に調節することが好ましく、関係する要因として滑剤の種類や量の他、縦延伸工程、中間熱処理工程、横延伸工程の条件と関連が見られる。
したがって、熱収縮性ポリエステル系フィルム長手方向の直角引裂強度、幅方向の厚み斑、長手方向の厚み斑、溶剤接着強度、透明性と光沢を本発明の範囲内に調整するためには、上記した工程同士の相互作用を考慮しつつ、上記(1)〜(5)のようなデリケートな条件調整を施すことが好ましい。
本発明の包装体は、前記の熱収縮性ポリエステル系フィルムを基材とするミシン目が設けられたラベルを少なくとも外周の一部に被覆して熱収縮させてなるものであり、包装体の対象物としては、飲料用のペットボトルをはじめ、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙製の箱等を挙げることができる(以下、これらを総称して包装対象物という)。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムを基材とするラベルを熱収縮させて被覆させる場合には、当該ラベルを約2〜15%程度熱収縮させて包装体に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても良いし、印刷が施されていなくても良い。
ラベルを作成する方法としては、長方形状のフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着してラベル状にするか、あるいは、ロール状に巻き取ったフィルムの片面の端部から少し内側に有機溶剤を塗布し、直ちにフィルムを丸めて端部を重ね合わせて接着して、チューブ状体としたものをカットしてラベル状とする。接着用の有機溶剤としては、1,3−ジオキソランあるいはテトラヒドロフラン等の環状エーテル類が好ましい。この他、ベンゼン、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素、塩化メチレン、クロロホルム等のハロゲン化炭化水素やフェノール等のフェノール類あるいはこれらの混合物が使用できる。
次に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。
本発明において用いた評価方法は下記の通りである。
[極限粘度(IV)]
試料(チップまたはフィルム)0.1gを精秤し、25mlのフェノール/テトラクロロエタン=3/2(質量比)の混合溶媒に溶解した後、オストワルド粘度計で30±0.1℃で測定する。極限粘度[η]は、下式(Huggins式)によって求められる。
[極限粘度(IV)]
試料(チップまたはフィルム)0.1gを精秤し、25mlのフェノール/テトラクロロエタン=3/2(質量比)の混合溶媒に溶解した後、オストワルド粘度計で30±0.1℃で測定する。極限粘度[η]は、下式(Huggins式)によって求められる。
ここで、ηsp:比粘度、t0:オストワルド粘度計を用いた溶媒の落下時間、t:オスワルド粘度計を用いた溶液の落下時間、C:溶液の濃度である。なお、実際の測定では、Huggins式においてk=0.375とした下記近似式で極限粘度を算出した。
ここで、ηr:相対粘度である。
[Tg(ガラス転移点)]
セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、未延伸フィルム5mgを、−40℃から120℃まで、昇温速度10℃/分で昇温し、得られた吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点をTg(ガラス転移点)とした。
セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、未延伸フィルム5mgを、−40℃から120℃まで、昇温速度10℃/分で昇温し、得られた吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点をTg(ガラス転移点)とした。
[熱収縮率(湯温熱収縮率)]
フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、下式(1)にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大きい方向を主収縮方向とした。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%)
・・・式(1)
フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、下式(1)にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大きい方向を主収縮方向とした。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%)
・・・式(1)
[直角引裂強度]
80℃に調整された湯温中にてフィルムを幅方向に10%収縮させた後に、JIS−K−7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件にて、フィルムの長手方向における引張破壊時の強度の測定を行う。そして、下式2を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・式2
80℃に調整された湯温中にてフィルムを幅方向に10%収縮させた後に、JIS−K−7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件にて、フィルムの長手方向における引張破壊時の強度の測定を行う。そして、下式2を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・式2
[引張破壊強さの測定方法]
JIS−K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
JIS−K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
[ヘイズ]
JIS−K−7136に準拠し、ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は2回行い、その平均値を求めた。
JIS−K−7136に準拠し、ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は2回行い、その平均値を求めた。
[光沢度]
光沢度はJIS Z8741に準じて、グロスメーター「VG2000」(日本電色工業株式会社製)を用いて測定した。
光沢度はJIS Z8741に準じて、グロスメーター「VG2000」(日本電色工業株式会社製)を用いて測定した。
[幅方向厚み斑]
フィルムを長さ40mm×幅1.2mの幅広な帯状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で、フィルム試料の幅方向に沿って連続的に厚みを測定した(測定長さは500mm)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式(3)からフィルムの長手方向の厚み斑を算出した。
厚み斑={(Tmax.−Tmin.)/Tave.}×100 (%) ・・・式(3)
フィルムを長さ40mm×幅1.2mの幅広な帯状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で、フィルム試料の幅方向に沿って連続的に厚みを測定した(測定長さは500mm)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式(3)からフィルムの長手方向の厚み斑を算出した。
厚み斑={(Tmax.−Tmin.)/Tave.}×100 (%) ・・・式(3)
[長手方向厚み斑]
フィルムを長さ12m×幅40mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度でフィルム試料の長手方向に沿って連続的に厚みを測定した(測定長さは10m)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、上式(3)からフィルムの長手方向の厚み斑を算出した。
フィルムを長さ12m×幅40mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度でフィルム試料の長手方向に沿って連続的に厚みを測定した(測定長さは10m)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、上式(3)からフィルムの長手方向の厚み斑を算出した。
[溶剤接着強度]
延伸したフィルムに1,3−ジオキソランを塗布して2枚を張り合わせることによってシールを施した。しかる後、シール部をフィルムの主収縮方向と直交する方向(以下、直交方向という)に15mmの幅に切り取り、それを(株)ボールドウィン社製 万能引張試験機 STM−50にセットし、引張速度200mm/分の条件で180°ピール試験を行った。そして、そのときの引張強度を溶剤接着強度とした。
延伸したフィルムに1,3−ジオキソランを塗布して2枚を張り合わせることによってシールを施した。しかる後、シール部をフィルムの主収縮方向と直交する方向(以下、直交方向という)に15mmの幅に切り取り、それを(株)ボールドウィン社製 万能引張試験機 STM−50にセットし、引張速度200mm/分の条件で180°ピール試験を行った。そして、そのときの引張強度を溶剤接着強度とした。
[分子配向比]
フィルムを長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
フィルムを長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
[屈折率]
アタゴ社製の「アッベ屈折計4T型」を用いて、各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に測定した。
アタゴ社製の「アッベ屈折計4T型」を用いて、各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に測定した。
[ラベルでの収縮歪み]
熱収縮性フィルムに、予め東洋インキ製造(株)の草・金・白色のインキで3色印刷を施した。そして、印刷したフィルムの両端部をジオキソランで接着することにより、円筒状のラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を作成した。しかる後、Fuji Astec Inc製スチームトンネル(型式;SH−1500−L)を用い、通過時間2.5秒、ゾーン温度80℃で、500mlのPETボトル(胴直径 62mm、ネック部の最小直径25mm)に熱収縮させることにより、ラベルを装着した。なお、装着の際には、ネック部においては、直径40mmの部分がラベルの一方の端になるように調整した。収縮後の仕上がり性の評価として、装着されたラベル上部の360度方向の歪みをゲージを使用して測定を行い、歪みの最大値を求めた。その時、基準を以下とした。
○:最大歪み 2mm未満
×:最大歪み 2mm以上
熱収縮性フィルムに、予め東洋インキ製造(株)の草・金・白色のインキで3色印刷を施した。そして、印刷したフィルムの両端部をジオキソランで接着することにより、円筒状のラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を作成した。しかる後、Fuji Astec Inc製スチームトンネル(型式;SH−1500−L)を用い、通過時間2.5秒、ゾーン温度80℃で、500mlのPETボトル(胴直径 62mm、ネック部の最小直径25mm)に熱収縮させることにより、ラベルを装着した。なお、装着の際には、ネック部においては、直径40mmの部分がラベルの一方の端になるように調整した。収縮後の仕上がり性の評価として、装着されたラベル上部の360度方向の歪みをゲージを使用して測定を行い、歪みの最大値を求めた。その時、基準を以下とした。
○:最大歪み 2mm未満
×:最大歪み 2mm以上
[ラベル密着性]
上記した収縮仕上り性の測定条件と同一の条件でラベルを装着した。そして、装着したラベルとPETボトルとを軽くねじったときに、ラベルが動かなければ○、すり抜けたり、ラベルとボトルがずれたりした場合には×とした。
上記した収縮仕上り性の測定条件と同一の条件でラベルを装着した。そして、装着したラベルとPETボトルとを軽くねじったときに、ラベルが動かなければ○、すり抜けたり、ラベルとボトルがずれたりした場合には×とした。
[ミシン目開封性]
予め主収縮方向とは直向する方向にミシン目を入れておいたラベルを、上記した収縮仕上り性の測定条件と同一の条件でPETボトルに装着した。ただし、ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、ラベルの縦方向(高さ方向)に幅22mm、長さ120mmに亘って2本設けた。その後、このボトルに水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本から前記の本数を差し引いて、ミシン目開封不良率(%)を算出した。
予め主収縮方向とは直向する方向にミシン目を入れておいたラベルを、上記した収縮仕上り性の測定条件と同一の条件でPETボトルに装着した。ただし、ミシン目は、長さ1mmの孔を1mm間隔で入れることによって形成し、ラベルの縦方向(高さ方向)に幅22mm、長さ120mmに亘って2本設けた。その後、このボトルに水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本から前記の本数を差し引いて、ミシン目開封不良率(%)を算出した。
また、実施例、比較例で使用したポリエステル系原料A〜Fの性状、組成等を表1に示す。さらに、実施例、比較例におけるポリエステル樹脂の混合組成、および、実施例、比較例で得られるフィルム組成及びフィルムの製膜条件を表2に示し、表1および表2においては、「TPA」,「EG」,「BD」,「NPG」,「CHDM」は、それぞれ、テレフタル酸、エチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールを意味する。尚、各実施例及び比較例において非晶原料比率を算出する際に、ポリエステル系原料B及びEを非晶原料として非晶原料の質量%を算出した。
また、実施例、比較例で使用したポリエステル系原料A〜Fの性状、組成等を表1に示す。さらに、実施例、比較例におけるポリエステル樹脂の混合組成、および、実施例、比較例で得られるフィルム組成及びフィルムの製膜条件を表2に示し、表1および表2においては、「TPA」,「EG」,「BD」,「NPG」,「CHDM」は、それぞれ、テレフタル酸、エチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールを意味する。尚、各実施例及び比較例において非晶原料比率を算出する際に、ポリエステル系原料B及びEを非晶原料として非晶原料の質量%を算出した。
各実施例、比較例において、最終仕上がりフィルムの厚みを45μmとすべく、縦、横
の延伸倍率設定に応じて、予め未延伸フィルムの厚みを調節すべく、吐出量を調節している。
の延伸倍率設定に応じて、予め未延伸フィルムの厚みを調節すべく、吐出量を調節している。
(実施例1)
コア層形成用の樹脂を単軸の押出機(第一押出機)内にて溶融させるとともに、スキン層形成用の樹脂を単軸の押出機(第二押出機)内にて溶融させ、それらの溶融樹脂を共押出法を利用して三層Tダイ内で積層して押し出し、その後急冷して、スキン層/コア層/スキン層の3層構造からなる656μmの厚みの未延伸フィルムを得た(スキン層/コア層/スキン層の厚みの比は1/2/1)。なお、コア層形成用の樹脂として、ポリエステルB(IV=0.70dl/g):36質量%、ポリエステルC(IV=1.20dl/g):10質量%、ポリエステルD(IV=0.65dl/g):54質量%を混合したポリエステル系樹脂を用いた。また、表裏両方のスキン層形成用の樹脂として、ポリエステルA(IV=0.70):9質量%、ポリエステルB:79質量%、ポリエステルC:10質量%、ポリエステルF:2質量%を混合したポリエステル系樹脂を用いた。
コア層形成用の樹脂を単軸の押出機(第一押出機)内にて溶融させるとともに、スキン層形成用の樹脂を単軸の押出機(第二押出機)内にて溶融させ、それらの溶融樹脂を共押出法を利用して三層Tダイ内で積層して押し出し、その後急冷して、スキン層/コア層/スキン層の3層構造からなる656μmの厚みの未延伸フィルムを得た(スキン層/コア層/スキン層の厚みの比は1/2/1)。なお、コア層形成用の樹脂として、ポリエステルB(IV=0.70dl/g):36質量%、ポリエステルC(IV=1.20dl/g):10質量%、ポリエステルD(IV=0.65dl/g):54質量%を混合したポリエステル系樹脂を用いた。また、表裏両方のスキン層形成用の樹脂として、ポリエステルA(IV=0.70):9質量%、ポリエステルB:79質量%、ポリエステルC:10質量%、ポリエステルF:2質量%を混合したポリエステル系樹脂を用いた。
なお、上記した未延伸フィルムの作製においては、コア層を形成するための第一押出機およびスキン層を形成するための第二押出機のホッパに供給する前のポリエステル系樹脂チップの水分率を、いずれも30ppmに調整した。また、上記した未延伸フィルムの作製においては、各押出機のスクリューを循環水によって冷却した。さらに、上記した未延伸フィルムの作製においては、各押出機の予熱温度を265℃に調整し、各押出機のコンプレッションゾーンの温度を300℃に調整した。加えて、上記した未延伸フィルムの作製においては、コア層押出し用の第一押出機の温度を280℃に調整し、スキン層押出し用の第二押出機の温度を275℃に調整した。
そして、上記の如く得られた未延伸フィルム(Tg:70℃)を、複数のロール群を連続的に配置した縦延伸機へ導き、ロールの回転速度差を利用して、縦方向に二段階で延伸した。すなわち、未延伸フィルムを、予熱ロール上でフィルム温度が78℃になるまで予備加熱した後に、表面温度78℃に設定された低速回転ロールと表面温度78℃に設定された中速回転ロールとの間で回転速度差を利用して2.6倍に延伸した(1段目の縦延伸)。さらに、その縦延伸したフィルムを、表面温度95℃に設定された中速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して1.4倍に縦延伸した(2段目の縦延伸)(したがって、トータルの縦延伸倍率は、3.64倍であった)。
上記の如く縦延伸直後のフィルムを、表面温度30℃に設定された冷却ロール(二段目の縦延伸ロールの直後に位置した高速ロール)によって、40℃/秒の冷却速度で強制的に冷却した後に、冷却後のフィルムをテンターに導き、中間熱処理ゾーン、第一中間ゾーン(自然冷却ゾーン)、冷却ゾーン(強制冷却ゾーン)、第二中間ゾーン、横延伸ゾーン、最終熱処理ゾーンを連続的に通過させた。なお、当該テンターにおいては、第一中間ゾーンの長さを、約40cmに設定し、中間熱処理ゾーンと第一中間ゾーンとの間、第一中間ゾーンと冷却ゾーンとの間、冷却ゾーンと第二中間ゾーンとの間、第二中間ゾーンと横延伸ゾーンとの間に、それぞれ遮蔽板を設けた。さらに、第一中間ゾーンおよび第二中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、中間熱処理ゾーンからの熱風、冷却ゾーンからの冷却風および横延伸ゾーンからの熱風を遮断した。加えて、フィルムの通紙時には、フィルムの流れに伴う随伴流の大部分が、中間熱処理ゾーンと第一中間ゾーンとの間に設けられた遮蔽板によって遮断されるように、フィルムと遮蔽板との距離を調整した。加えて、フィルムの通紙時には、中間熱処理ゾーンと第一中間ゾーンとの境界、および、冷却ゾーンと第二中間ゾーンとの境界においては、フィルムの流れに伴う随伴流の大部分が遮蔽板によって遮断されるようにフィルムと遮蔽板との距離を調整した。
そして、テンターに導かれた縦延伸フィルムを、まず、中間熱処理ゾーンにおいて、125℃の温度で32秒間に亘って熱処理した後に、その中間熱処理後のフィルムを第一中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)自然冷却した。しかる後に、自然冷却後のフィルムを冷却ゾーンに導き、フィルムの表面温度が80℃になるまで、低温の風を吹き付けることによって積極的に冷却し、その冷却後のフィルムを第二中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)再度自然冷却した。さらに、その第二中間ゾーンを通過した後のフィルムを横延伸ゾーンに導き、フィルムの表面温度が84℃になるまで予備加熱した後に、80℃で幅方向(横方向)に4.0倍に延伸した。
しかる後、その横延伸後のフィルムを最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、85℃の温度で5.0秒間に亘って熱処理した後に冷却し、両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、約40μm(スキン層/コア層/スキン層の厚みは10μm/20μm/10μm)の二軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す
(実施例2)
コア層及びスキン層形成用の樹脂として、ポリエステルBに替えてポリエステルE(IV=0.70dl/g)を混合したポリエステル系樹脂を用い、他は実施例1と同様にして二軸延伸フィルムを得た(未延伸フィルムのTgは70℃であった)。同二軸延伸フィルムは非晶原料を変更しても実施例1の二軸延伸フィルム同様、大変好ましいものであった。
コア層及びスキン層形成用の樹脂として、ポリエステルBに替えてポリエステルE(IV=0.70dl/g)を混合したポリエステル系樹脂を用い、他は実施例1と同様にして二軸延伸フィルムを得た(未延伸フィルムのTgは70℃であった)。同二軸延伸フィルムは非晶原料を変更しても実施例1の二軸延伸フィルム同様、大変好ましいものであった。
(実施例3)
スキン層とコア層の層比率を変更(スキン層/コア層/スキン層の厚みは6.7μm/26.6μm/6.7μm)に変更した以外は 実施例1と同様にして二軸延伸フィルムを得た。同二軸延伸フィルムは フィルム幅方向の収縮率が小さくなったが、透明性は低く、総合的には良好であった。
スキン層とコア層の層比率を変更(スキン層/コア層/スキン層の厚みは6.7μm/26.6μm/6.7μm)に変更した以外は 実施例1と同様にして二軸延伸フィルムを得た。同二軸延伸フィルムは フィルム幅方向の収縮率が小さくなったが、透明性は低く、総合的には良好であった。
(実施例4)
未延伸フィルムを、長手方向の延伸において、表面温度78℃に設定された低速回転ロールと表面温度78℃に設定された中速回転ロールとの間で回転速度差を利用して2.8倍に延伸した(1段目の縦延伸)。さらに、その縦延伸したフィルムを、表面温度95℃に設定された中速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して1.4倍に縦延伸した(2段目の縦延伸)(したがって、トータルの縦延伸倍率は、3.92倍であった)。そして、テンターに導かれた縦延伸フィルムを、まず、中間熱処理ゾーンにおいて、125℃の温度で38秒間に亘って熱処理に変更した以外は 実施例1と同様にして厚み40μmの二軸延伸フィルムを得た。同二軸延伸フィルムは 直角引裂強度が低く、ミシン目カット性が良好であった。
未延伸フィルムを、長手方向の延伸において、表面温度78℃に設定された低速回転ロールと表面温度78℃に設定された中速回転ロールとの間で回転速度差を利用して2.8倍に延伸した(1段目の縦延伸)。さらに、その縦延伸したフィルムを、表面温度95℃に設定された中速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して1.4倍に縦延伸した(2段目の縦延伸)(したがって、トータルの縦延伸倍率は、3.92倍であった)。そして、テンターに導かれた縦延伸フィルムを、まず、中間熱処理ゾーンにおいて、125℃の温度で38秒間に亘って熱処理に変更した以外は 実施例1と同様にして厚み40μmの二軸延伸フィルムを得た。同二軸延伸フィルムは 直角引裂強度が低く、ミシン目カット性が良好であった。
(比較例1)
テンター内での中間熱処理の温度を170℃、風速18m/Sで10秒に変更した以外は実施例1と同様の方法で実施した。結果、フィルム表層が荒れ透明性が悪くなった。
テンター内での中間熱処理の温度を170℃、風速18m/Sで10秒に変更した以外は実施例1と同様の方法で実施した。結果、フィルム表層が荒れ透明性が悪くなった。
(比較例2)
表裏両方のスキン層形成用の樹脂として、ポリエステルA(IV=0.70):6質量%、ポリエステルB:79質量%、ポリエステルC:10質量%、ポリエステルF:5質量%を混合したポリエステル系樹脂を用いた変更した以外は実施例1と同様の方法で実施した。結果、透明性が悪くなった。
表裏両方のスキン層形成用の樹脂として、ポリエステルA(IV=0.70):6質量%、ポリエステルB:79質量%、ポリエステルC:10質量%、ポリエステルF:5質量%を混合したポリエステル系樹脂を用いた変更した以外は実施例1と同様の方法で実施した。結果、透明性が悪くなった。
本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れた加工特性を有しているので、ボトル等のラベル用途に好適に用いることができ、同フィルムがラベルとして用いられて得られたボトル等の包装体は美麗な外観を有するものである。
F・・フィルム
Claims (9)
- エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を15モル%以上含有しているポリエステル系樹脂からなる下記要件(1)〜(5)を満たす熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)〜(f)の各工程を含むことを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
(1)90℃の温水中で10秒間に亘って処理した場合における幅方向の湯温熱収縮率が40%以上80%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向の湯温熱収縮率が0%以上15%以下であること
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が90N/mm以上280N/mm以下であること
(4)長手方向の引張破壊強さが130MPa以上300MPa以下であること
(5)ヘイズ2%以下で、少なくとも一方の面について測定角度45°における光沢度190%以上であること
(a)未延伸フィルムを、Tg以上Tg+30℃以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、Tg+10℃以上Tg+40℃以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程
(b)縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理する中間熱処理工程
(c)中間熱処理後のフィルムを、前後の各ゾーンと遮断されており積極的な加熱操作を実行しない中間ゾーンを通過させることによって自然に冷却する自然冷却工程
(d)自然冷却後のフィルムを、表面温度が70℃以上100℃以下の温度となるまで積極的に冷却する積極冷却工程
(e)積極冷却後のフィルムを、70℃以上95℃以下の温度で幅方向3.0倍以上6.0倍以下の倍率で延伸する横延伸工程
(f)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上100℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理する最終熱処理工程 - エチレンテレフタレートを主たる構成成分とし、全ポリエステル樹脂成分中において非晶質成分となりうる1種以上のモノマー成分を15モル%以上含有しているポリエステル系樹脂からなる熱収縮性ポリエステル系フィルムであって、下記要件(1)〜(5)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。
(1)90℃の温水中で10秒間に亘って処理した場合における幅方向の湯温熱収縮率が40%以上80%以下であること
(2)90℃の温水中で10秒間に亘って処理した場合における長手方向の湯温熱収縮率が0%以上15%以下であること
(3)80℃の温水中で幅方向に10%収縮させた後の単位厚み当たりの長手方向の直角引裂強度が90N/mm以上280N/mm以下であること
(4)長手方向の引張破壊強さが130MPa以上300MPa以下であること
(5)ヘイズ2%以下で、少なくとも一方の面について測定角度45°における光沢度190%以上であること - 溶剤接着強度が、2N/15mm幅以上10N/15mm幅以下であることを特徴とする請求項2に記載の熱収縮性ポリエステル系フィルム。
- 長手方向の厚み斑が、1%以上18%以下であることを特徴とする請求項2又は3に記載の熱収縮性ポリエステル系フィルム。
- 幅方向の厚み斑が、1%以上18%以下であることを特徴とする請求項2〜4のいずれかに記載の熱収縮性ポリエステル系フィルム。
- 厚みが、20μm以上80μm以下であることを特徴とする請求項2〜5のいずれかに記載の熱収縮性ポリエステル系フィルム。
- 全ポリステル樹脂成分中における非晶質成分となりうるモノマーの主成分が、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、イソフタル酸の内のいずれかであることを特徴とする請求項2〜6のいずれかに記載の熱収縮性ポリエステル系フィルム。
- 請求項3〜7のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製造するための製造方法であって、下記(a)〜(f)の各工程を含むことを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
(a)未延伸フィルムを、Tg以上Tg+30℃以下の温度で長手方向に2.2倍以上3.0倍以下の倍率で延伸した後、Tg+10℃以上Tg+40℃以下の温度で長手方向に1.2倍以上1.5倍以下の倍率で延伸することにより、トータルで2.8倍以上4.5倍以下の倍率となるように縦延伸する縦延伸工程
(b)縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で120℃以上130℃以下の温度で18秒以上40秒以下の時間に亘って熱処理する中間熱処理工程
(c)中間熱処理後のフィルムを、前後の各ゾーンと遮断されており積極的な加熱操作を実行しない中間ゾーンを通過させることによって自然に冷却する自然冷却工程
(d)自然冷却後のフィルムを、表面温度が70℃以上100℃以下の温度となるまで積極的に冷却する積極冷却工程
(e)積極冷却後のフィルムを、70℃以上95℃以下の温度で幅方向に3.0倍以上6.0倍以下の倍率で延伸する横延伸工程
(f)横延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で80℃以上100℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理する最終熱処理工程 - 請求項2〜7のいずれかに記載の熱収縮性ポリエステル系フィルムを基材とし、ミシン目あるいは一対のノッチが設けられたラベルを少なくとも外周の一部に被覆して熱収縮させてなることを特徴とする包装体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009035051A JP2009227970A (ja) | 2008-02-28 | 2009-02-18 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008047439 | 2008-02-28 | ||
JP2009035051A JP2009227970A (ja) | 2008-02-28 | 2009-02-18 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009227970A true JP2009227970A (ja) | 2009-10-08 |
Family
ID=41243720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009035051A Pending JP2009227970A (ja) | 2008-02-28 | 2009-02-18 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009227970A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010137240A1 (ja) * | 2009-05-26 | 2010-12-02 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
WO2011114934A1 (ja) * | 2010-03-15 | 2011-09-22 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルム、その包装体、及び熱収縮性ポリエステル系フィルムの製造方法 |
WO2014175313A1 (ja) * | 2013-04-26 | 2014-10-30 | 東洋紡株式会社 | シーラント用途のポリエステル系フィルム、積層体及び包装袋 |
WO2016039044A1 (ja) * | 2014-09-09 | 2016-03-17 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルム及び包装体 |
WO2017029999A1 (ja) * | 2015-08-19 | 2017-02-23 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JP2019177930A (ja) * | 2018-03-30 | 2019-10-17 | 東洋紡株式会社 | 包装体および包装容器 |
CN114728723A (zh) * | 2019-10-31 | 2022-07-08 | 东洋纺株式会社 | 热收缩性聚酯系薄膜卷 |
JP7537094B2 (ja) | 2020-02-18 | 2024-08-21 | 東レ株式会社 | ポリエステルフィルム |
-
2009
- 2009-02-18 JP JP2009035051A patent/JP2009227970A/ja active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9352508B2 (en) | 2009-05-26 | 2016-05-31 | Toyo Boseki Kabushiki Kaisha | Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same |
WO2010137240A1 (ja) * | 2009-05-26 | 2010-12-02 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 |
WO2011114934A1 (ja) * | 2010-03-15 | 2011-09-22 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルム、その包装体、及び熱収縮性ポリエステル系フィルムの製造方法 |
EP2548913A1 (en) * | 2010-03-15 | 2013-01-23 | Toyobo Co., Ltd. | Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film |
KR20130031242A (ko) * | 2010-03-15 | 2013-03-28 | 도요보 가부시키가이샤 | 열수축성 폴리에스테르계 필름, 그의 포장체, 및 열수축성 폴리에스테르계 필름의 제조방법 |
EP2548913A4 (en) * | 2010-03-15 | 2013-09-18 | Toyo Boseki | THERMALLY CONTRACTED POLYESTER FILM, PACKAGING THEREFOR, AND METHOD FOR MANUFACTURING THE SAME |
US9080027B2 (en) | 2010-03-15 | 2015-07-14 | Toyo Boseki Kabushiki Kaisha | Heat-shrinkable polyester film, packages, and process for production of heat-shrinkable polyester film |
TWI513729B (zh) * | 2010-03-15 | 2015-12-21 | Toyo Boseki | 熱收縮性聚酯系薄膜、其包裝體、及熱收縮性聚酯系薄膜之製造方法 |
KR101725576B1 (ko) | 2010-03-15 | 2017-04-10 | 도요보 가부시키가이샤 | 열수축성 폴리에스테르계 필름, 그의 포장체, 및 열수축성 폴리에스테르계 필름의 제조방법 |
WO2014175313A1 (ja) * | 2013-04-26 | 2014-10-30 | 東洋紡株式会社 | シーラント用途のポリエステル系フィルム、積層体及び包装袋 |
JPWO2014175313A1 (ja) * | 2013-04-26 | 2017-02-23 | 東洋紡株式会社 | シーラント用途のポリエステル系フィルム、積層体及び包装袋 |
CN105189687A (zh) * | 2013-04-26 | 2015-12-23 | 东洋纺株式会社 | 密封用途的聚酯系薄膜,层叠体以及包装袋 |
CN105189687B (zh) * | 2013-04-26 | 2018-03-02 | 东洋纺株式会社 | 密封用途的聚酯系薄膜,层叠体以及包装袋 |
US10421835B2 (en) | 2013-04-26 | 2019-09-24 | Toyobo Co., Ltd. | Polyester film for sealant use, laminate, and packaging bag |
WO2016039044A1 (ja) * | 2014-09-09 | 2016-03-17 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルム及び包装体 |
WO2017029999A1 (ja) * | 2015-08-19 | 2017-02-23 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
JPWO2017029999A1 (ja) * | 2015-08-19 | 2018-05-31 | 東洋紡株式会社 | 熱収縮性ポリエステル系フィルムおよび包装体 |
US11299595B2 (en) | 2015-08-19 | 2022-04-12 | Toyobo Co., Ltd. | Heat-shrinkable polyester film and package |
JP2019177930A (ja) * | 2018-03-30 | 2019-10-17 | 東洋紡株式会社 | 包装体および包装容器 |
JP2022095616A (ja) * | 2018-03-30 | 2022-06-28 | 東洋紡株式会社 | 包装体および包装容器 |
CN114728723A (zh) * | 2019-10-31 | 2022-07-08 | 东洋纺株式会社 | 热收缩性聚酯系薄膜卷 |
JP7537094B2 (ja) | 2020-02-18 | 2024-08-21 | 東レ株式会社 | ポリエステルフィルム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4560740B2 (ja) | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 | |
JP4882919B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP5633808B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP4877056B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法 | |
JP2009227970A (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP5408250B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP5339061B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP5761282B2 (ja) | 白色熱収縮性ポリエステル系フィルムの製造方法、白色熱収縮性ポリエステル系フィルム及び包装体 | |
KR102463003B1 (ko) | 열수축성 폴리에스테르계 필름 및 포장체 | |
JP2009226940A (ja) | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 | |
JP2009202445A (ja) | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体 | |
JP5761281B2 (ja) | 白色熱収縮性ポリエステル系フィルムの製造方法、白色熱収縮性ポリエステル系フィルム及び包装体 | |
JP5278821B2 (ja) | 熱収縮性ポリエステル系フィルム | |
JP5240241B2 (ja) | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 | |
JP2009226938A (ja) | 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体 | |
JP5067473B2 (ja) | 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体 | |
JP5895283B2 (ja) | ラベル | |
JP2009102529A (ja) | 熱収縮性ポリエステル系フィルム | |
WO2022071046A1 (ja) | 熱収縮性ポリエステル系フィルム | |
JP2009230123A (ja) | ラベル | |
JP2009226949A (ja) | 熱収縮性ポリスチレン系積層フィルムの製造方法、熱収縮性ポリスチレン系積層フィルム及び包装体 | |
WO2023145653A1 (ja) | 白色熱収縮性ポリエステル系フィルム | |
JP2009226948A (ja) | 熱収縮性ポリスチレン系積層フィルム、およびその製造方法、包装体 |