JP2009227337A - ラベル - Google Patents

ラベル Download PDF

Info

Publication number
JP2009227337A
JP2009227337A JP2009037796A JP2009037796A JP2009227337A JP 2009227337 A JP2009227337 A JP 2009227337A JP 2009037796 A JP2009037796 A JP 2009037796A JP 2009037796 A JP2009037796 A JP 2009037796A JP 2009227337 A JP2009227337 A JP 2009227337A
Authority
JP
Japan
Prior art keywords
film
label
heat
stretching
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009037796A
Other languages
English (en)
Other versions
JP5895283B2 (ja
Inventor
Masayuki Haruta
雅幸 春田
Yukinobu Mukoyama
幸伸 向山
Katsuhiko Nose
克彦 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009037796A priority Critical patent/JP5895283B2/ja
Publication of JP2009227337A publication Critical patent/JP2009227337A/ja
Application granted granted Critical
Publication of JP5895283B2 publication Critical patent/JP5895283B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】ミシン目開封性が非常に良好な上、きわめて生産性の高く包装対象物の補強効果に優れている熱収縮性ポリエステルフィルムを得て、そのような熱収縮性フィルムからなる引き裂き具合が良好なラベルを提供すること。
【解決手段】フィルム幅方向を主収縮方向として熱収縮する熱収縮性フィルムを基材とし、包装対象物に応じてカットされ、フィルム幅方向の両端が接着された環状体が、包装対象物の外周の少なくとも一部を熱収縮して被覆しているラベルであって、主収縮方向と直交する方向(フィルム長手方向)の直角引裂強度が100N/mm〜310N/mmであり、かつ、主収縮方向と直交する方向(フィルム長手方向)の引張破壊強さが50MPa以上300MPa以下、かつ主収縮方向の最大熱収縮応力が7(MPa)以上であるラベル。
【選択図】なし

Description

本発明は、熱収縮性フィルムによって形成されたラベルに関するものであり、詳しくは、被覆された熱収縮性フィルムからなる引き裂き具合が良好なラベルに関するものである。
近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
ところが、従来の熱収縮性ポリエステルフィルムは、主収縮方向と直交する長手方向については、ほとんど延伸されていないため、機械的強度が低く、ラベルとしてペットボトル等に収縮させて被覆させた場合に、ラベルをミシン目に沿ってうまく引き裂くことができない(すなわち、ミシン目開封性が悪い)、という不具合がある。また、熱収縮性ポリエステルフィルムのミシン目開封性を良好なものとすべく、製造時にフィルムを長手方向に延伸すると、機械的強度が高くなり、ミシン目開封性はある程度向上するものの、長手方向に収縮力が発現してしまうため、ラベルとしてペットボトル等に収縮させて被覆させた場合に、非常に見栄え(収縮仕上がり性)が悪くなる、という不具合が露呈する。また従来の熱収縮性ポリエステルフィルムは、主収縮方向と直交する長手方向については、ほとんど延伸されていないため、機械的強度が低く 印刷等の加工時に長手方向に破断し易いという問題や フィルムをボトル等に装着させる時の高速装着時のフィルム腰が不十分という問題がある。
それゆえ、熱収縮性ポリエステルフィルムのミシン目開封性を向上させるべく、熱収縮性ポリエステルフィルムの主原料中に非相溶な熱可塑性樹脂を混合する方法(特許文献1)等も提案されている。
特開2002−363312号公報
上記特許文献1の如き熱収縮性ポリエステルフィルムの主原料中に非相溶な熱可塑性樹脂を混合する方法によれば、熱収縮性ポリエステルフィルムのミシン目開封性がある程度向上するものの、必ずしもミシン目開封性が十分な熱収縮性ポリエステルフィルムが得られているとは言い難い。また、特許文献1の如き方法を採用した場合でも、製造時には幅方向にしか延伸することができないため、効率良く熱収縮性ポリエステルフィルムを製造することはできない。
加えて最近では、PETボトルなどの各種包装対象物に用いられるラベルには、これらの包装対象物を補強する作用も期待されつつある。しかし、従来の熱収縮性ポリエステル系フィルムから得られるラベルは、こうした補強作用が満足できるものではなかった。
本発明の目的は、上記従来の熱収縮性ポリエステルフィルムが有する問題点を解消し、ミシン目開封性が非常に良好な上、きわめて生産性が高く、収縮被覆した包装対象物を補強し得る機能を有する熱収縮性ポリエステル系フィルムと、該フィルムを用いた熱収縮性ラベルを提供することにある。
即ち、本発明は以下の構成よりなる。
1. フィルム幅方向を主収縮方向として熱収縮する熱収縮性フィルムを基材とし、包装対象物に応じてカットされ、フィルム幅方向の両端が接着された環状体が、包装対象物の外周の少なくとも一部を熱収縮して被覆しているラベルであって、被覆されているラベルの主収縮方向(フィルム幅方向)の最大熱収縮応力が7(MPa)以上であり、主収縮方向と直交する方向(フィルム長手方向)の直角引裂強度が100N/mm〜310N/mmであり、かつ、主収縮方向と直交する方向(フィルム長手方向)の引張破壊強さが50MPa以上300MPa以下であることを特徴とするラベル。
2. 接着が、有機溶剤によりなされていることを特徴とする上記第1に記載のラベル。
3. 主収縮方向と直交する方向(フィルム長手方向)のエルメンドルフ引裂荷重と主収縮方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が0.1以上2.0以下であることを特徴とする上記第1又は第2に記載のラベル。
4. 被覆されているラベルの分子配向比(MOR)が1.05以上4.1以下であることを特徴とする上記第1〜第3のいずれかに記載のラベル。
5. 主収縮方向と直交する方向(フィルム長手方向)に沿って、ミシン目あるいはノッチが設けられていることを特徴とする上記第1〜第4のいずれかに記載のラベル。
6. 熱収縮性フィルムが、熱収縮性ポリエステル系フィルムであることを特徴とする上記第1〜第5のいずれかに記載のラベル。
なお、本発明に好ましく用いられる熱収縮性フィルムとしては、熱収縮性ポリエステル系フィルム、熱収縮性ポリスチレン系フィルム、熱収縮性ポリオレフィン系フィルム、熱収縮性ポリ塩化ビニル系フィルム等を挙げることができる。また、ミシン目とは複数のスリットが直線状あるいは曲線状に連続して設けられたものを言うが、1つだけスリットが設けられたものも含まれる。さらに、ミシン目を構成するスリットの形状は特に限定されない。一方、ノッチとはラベルの端縁に設けられた切り込みのことを言い、その形状は特に限定されない。
本発明のラベルに使用される熱収縮性フィルムは、主収縮方向であるフィルム幅方向への収縮性が高く、主収縮方向と直交するフィルム長手方向における機械的強度も高い上、製造されたロール状のフィルムにおいて巻き締まりが起こらず、フィルムロールにシワが入りにくく、開封性が良好である。したがって、当該熱収縮性ポリエステル系フィルムは、ボトル等の包装対象物のラベルとして好適に用いることができ、ボトル等の包装対象物に短時間の内に非常に効率良く装着することが可能となる上、装着後に熱収縮させた場合に、熱収縮によるシワや収縮不足のきわめて少ない良好な仕上がりを発現させることができる。加えて、装着されたラベルは、非常に良好な開封性を発現するものとなる。したがって、本発明のラベルは引き裂き具合が良好であり、被覆されたラベルを適度な力で、主収縮方向と直交する方向に、ミシン目が設けられた場合にはミシン目に沿って綺麗に引き裂くことができ、収縮被覆した包装対象物を補強し得る機能を有する。
直角引裂強度の測定における試験片の形状を示す説明図である(なお、図中における試験片の各部分の長さの単位はmmである)。
本発明のラベルは、熱収縮性ポリエステル系フィルムを基材とし、少なくとも外周の一部に被覆して熱収縮させてなるものであり、ラベルの対象物としては、飲料用のペットボトルをはじめ、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙製の箱等を挙げることができる(以下、これらを総称して包装対象物という)。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムを基材とするラベルを熱収縮させて被覆させる場合には、当該ラベルを約2〜15%程度熱収縮させて包装対象物に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても良いし、印刷が施されていなくても良く、ラベルの主収縮方向と直交する方向にミシン目が設けられていてもよい。
また、包装対象物にラベルを被覆させる場合には、予め、主収縮方向が周方向になるように環状体を形成した上で、その環状体を包装対象物に被せて熱収縮させる方法を採用することもできるが、そのように環状体を形成する場合には、各種の接着剤を用いて熱収縮性フィルムを接着する方法の他に、高温発熱体を利用して熱収縮性フィルムを融着させ接着させる方法(溶断シール法)等を利用することも可能である。なお、熱収縮性フィルムを溶断シールする場合には、所定の自動製袋機械(たとえば、共栄印刷機械材料社製−RP500)を用いて、溶断刃の温度、角度を所定の条件(たとえば、溶断刃の温度=240℃、刃角=70°)に調整した上で、所定の速度(たとえば、100個/分)で環状体や袋を形成する方法等を採用することができる。加えて、包装対象物にラベルを被覆させる場合には、包装対象物の周囲にラベルを捲回させて重なった部分を溶断シールすることにより包装対象物の周囲にラベルを被せた後に熱収縮させる方法を採用することも可能である。
また、本発明のラベルは印刷されていても、印刷されていなくても構わないが、その評価手段としてラベルの印刷層の測定外乱要素を除くため、ラベルの印刷層のないフィルム基材だけを測定する場合がある。即ち、印刷が施されていないラベルはそのもの自体がフィルム基材であり、印刷が施されているラベルは有機溶剤で印刷層を拭取るなどして透明なフィルム基材のみとして評価する場合がある。このことを以下、「印刷層を除いたフィルム基材」と記載することがある。
一方、ラベル形成用の熱収縮性フィルムとしては、熱収縮性ポリエステル系フィルム、熱収縮性ポリスチレン系フィルム、熱収縮性ポリオレフィン系フィルム、熱収縮性ポリ塩化ビニル系フィルム等の各種のプラスチックからなる熱収縮性フィルムを挙げることができるが、その中でも、熱収縮性ポリエステル系フィルムを用いると、ラベルの耐熱性が高くなり、ラベルが耐溶剤性に優れたものとなる上、ラベルが容易に焼却できるものとなるので好ましい。それゆえ、以下の説明においては、熱収縮性ポリエステル系フィルムを中心に説明する。
また、本発明のラベルは、被覆されているラベル(印刷層を除いたフィルム基材)において、主収縮方向(フィルム幅方向)の最大熱収縮応力が7(MPa)以上20(MPa)であることが好ましい。最大熱収縮応力が7(MPa)より小さいと、包装対象物の補強効果が不十分となる。なお、最大熱収縮応力は7.4(MPa)以上だとより好ましく、7.8(MPa)以上だと特に好ましい。
また最大熱収縮応力が高いほど包装対象物の補強効果としては好ましい。しかし、あまりに高すぎると熱収縮フィルムからラベルに収縮する際の収縮仕上り性が悪くなり、ラベルにシワや飛び上がりが生じやすくなり好ましくない。よって最大熱収縮応力は20(MPa)が上限と考える。被覆されているラベル(印刷層を除いたフィルム基材)において、主収縮方向(フィルム幅方向)の最大熱収縮応力は19(MPa)以下だとより好ましく、18(MPa)以下だと特に好ましい。
[最大熱収縮応力値の測定方法]
被覆されているラベル(印刷層を除いたフィルム基材)において、主収縮方向(幅方向)×主収縮方向と直交する方向(長手方向)=200mm×15mmのサイズにカットした。しかる後、(株)ボールドウィン社製 万能引張試験機 STM−50を温度90℃に調整した上で、カットしたフィルムをセットし、10秒間保持したときの主収縮方向の応力値を測定した。
また、本発明のラベルは、被覆されているラベル(印刷層を除いたフィルム基材)の単位厚み当たりの主収縮方向と直交する方向における直角引裂強度を以下の方法で測定した場合に、当該直角引裂強度が100N/mm以上310N/mm以下であることが好ましい。ここで、ラベルは熱処理されて収縮し、包装対象物に装着されたものであるので、そのもの自体が熱収縮処理前のラベルほどの大きな熱収縮特性を有するものではないが、ラベルが装着される際に主として収縮した方向を主収縮方向と述べている(以下ラベルに関して同じ記載である)。
[直角引裂強度の測定方法]
ラベルをJIS−K−7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機(たとえば、(株)島津製作所製 オートグラフ)で試験片の両端を掴み、引張速度200mm/分の条件にて、ラベルの主収縮方向と直交する方向における引張破壊時の強度の測定を行う。そして、下式1を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・式1
ラベルの主収縮方向と直交する方向における直角引裂強度が100N/mm未満であると、運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる可能性があるので好ましくなく、反対に、ラベルの主収縮方向と直交する向における直角引裂強度が310N/mmを上回ると、引き裂く際の初期段階におけるカット性(引き裂き易さ)が不良となるため好ましくない。なお、直角引裂強度の下限値は、130N/mm以上であると好ましく、160N/mm以上であるとより好ましく、190)N/mm以上であると特に好ましい。また、直角引裂強度の上限値は、290N/mm以下であると好ましく、270N/mm以下であるとより好ましく、250N/mm以下であると特に好ましい。
また、本発明のラベルは、被覆されているラベル(印刷層を除いたフィルム基材)のフィルム長手方向における引張破壊強さを以下の方法で測定した場合に、当該引張破壊強さが50MPa以上300MPa以下であることが好ましい。
[引張破壊強さの測定方法]
ラベルをJIS−K−7127に準じて、所定の大きさにサンプリングして試験片とし、万能引張試験機(たとえば、(株)島津製作所製 オートグラフ)で試験片の両端(フィルム長手方向)を掴み、引張速度200mm/分の条件にて引張試験を行い、破断時の応力値(印刷層を除いたフィルム基材の応力値)を算出する。
ラベルの主収縮方向と直交する方向(フィルム長手方向)における引張破壊強さが50MPa未満であると、フィルムからラベルに加工する際 印刷等のフィルム長手方向に張力をかける加工時に 破断しやすくなる欠点がある。なお、引張破壊強さの下限値は、90MPa以上であると好ましく、130MPa以上であるとより好ましく、170MPa以上であると特に好ましい。
また、本発明のラベルは、被覆されているラベル(印刷層を除いたフィルム基材)の主収縮方向と直交する方向のエルメンドルフ引裂荷重および主収縮方向のエルメンドルフ引裂荷重を、以下の方法で測定した場合におけるエルメンドルフ比が0.1以上2.0以下であることが好ましい。
[エルメンドルフ比の測定方法]
JIS−K−7128に準じて、ラベルを主収縮方向(フィルム幅方向)が長尺な長方形状に切断した後に長手方向の中央に端縁から切り込みを入れることによって試験片を作製し、ラベルの主収縮方向と直交する方向のエルメンドルフ引裂荷重(ラベルの印刷層を除いたフィルム基材のエルメンドルフ引裂荷重)を測定する。また、ラベルを主収縮方向と直交する方向が長尺な長方形状に切断した後に長手方向の中央に端縁から切り込みを入れることによって試験片を作製し、ラベルの主収縮方向のエルメンドルフ引裂荷重(ラベルの印刷層を除いたフィルム基材のエルメンドルフ引裂荷重)を測定する。しかる後、下式2を用いてエルメンドルフ比を算出する。
エルメンドルフ比=主収縮方向(フィルム幅方向)のエルメンドルフ引裂荷重÷主収縮方向と直交する方向(フィルム長手方向)のエルメンドルフ引裂荷重 ・・式2
ラベルのエルメンドルフ比が0.1未満であると、主収縮方向と直交する方向に、ミシン目がある場合にはミシン目に沿って、真っ直ぐに引き裂きにくいので好ましくない。反対にラベルのエルメンドルフ比が2.0を上回ると、ミシン目とずれた位置で裂け易くなるので好ましくない。なお、ラベルのエルメンドルフ比の下限値は、0.12以上であると好ましく、0.14以上であるとより好ましく、0.16以上であると特に好ましい。また、ラベルの印刷層を除いたフィルム基材のエルメンドルフ比の上限値は、1.8以下であると好ましく、1.6以下であるとより好ましく、1.5以下であると特に好ましい。
また、本発明のラベルは、被覆されているラベル(印刷層を除いたフィルム基材)の分子配向比(MOR)が1.05以上4.1以下であると好ましい。分子配向比が4.1より大きいと 長手方向の配向が低いことになり フィルム長手方向の直角引裂強度や引張破壊強さを満足させることが困難となる場合があり、あまり好ましくない。好ましい分子配向比は3.8以下であり 更に好ましくは3.5以下である。分子配向比は1に近いほど好ましいが、1.05以上で構わない。
[分子配向比の測定方法]
フィルムを長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
本発明で使用するポリエステルは、エチレンテレフタレートを主たる構成成分とするものである。すなわち、エチレンテレフタレートを50モル%以上、好ましくは60モル%以上含有するものである。本発明において、ポリエステルを構成する他のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。
脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不十分である。
また、3価以上の多価カルボン酸(たとえば、トリメリット酸、ピロメリット酸およびこれらの無水物等)を含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
本発明で使用するポリエステルを構成するジオール成分としては、エチレングリコール、1−3プロパンジオール、1−4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。
本発明に好ましく用いられる熱収縮性ポリエステル系フィルムに用いるポリエステルは、1,4−シクロヘキサンジメタノール等の環状ジオールや、炭素数3〜6個を有するジオール(たとえば、1−3プロパンジオール、1−4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)のうちの1種以上を含有させて、ガラス転移点(Tg)を60〜80℃に調整したポリエステルが好ましい。
また、本発明において、熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計が15モル%以上であることが好ましく、17モル%以上であることがより好ましく、特に20モル%以上であることが好ましい。ここで、非晶質成分となりうるモノマーとしては、たとえば、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、イソフタル酸、1,4−シクロヘキサンジカルボン酸、2,6−ナフタレンジカルボン酸、2,2−ジエチル1,3−プロパンジオール、2−n−ブチル2−エチル1,3−プロパンジオール、2,2−イソプロピル1,3−プロパンジオール、2,2−ジn−ブチル1,3−プロパンジオール、1,4−ブタンジオール、ヘキサンジオールを挙げることができるが、その中でも、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールやイソフタル酸を用いるのが好ましい。
本発明において、熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数8個以上のジオール(たとえばオクタンジオール等)、または3価以上の多価アルコール(たとえば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を、含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
また、本発明において、熱収縮性ポリエステル系フィルムに用いるポリエステル中には、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないことが好ましい。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、たとえば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。本発明に好ましく用いられる熱収縮性ポリエステル系フィルムを形成する樹脂の中には、滑剤として微粒子を添加することによりポリエチレンテレフタレート系樹脂フィルムの作業性(滑り性)を良好なものとするのが好ましい。微粒子としては任意のものを選択することができるが、たとえば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等を挙げることができる。また、有機系微粒子としては、たとえば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05〜3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。
熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、たとえば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
さらに、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
また、熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式3により算出したフィルムの幅方向(主収縮方向)の熱収縮率(すなわち、90℃の湯温熱収縮率)が、40%以上80%以下であることが好ましい。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%) ・・式3
90℃における幅方向の湯温熱収縮率が40%を下回ると、収縮量が小さいために、熱収縮した後のラベルにシワやタルミが生じてしまうので好ましくなく、反対に、90℃における幅方向の湯温熱収縮率が80%を上回ると、ラベルとして用いて場合に熱収縮時に収縮に歪みが生じ易くなったり、いわゆる“飛び上がり”が発生してしまうので好ましくない。なお、90℃における幅方向の湯温熱収縮率の下限値は、45%以上であると好ましく、50%以上であるとより好ましく、55%以上であると特に好ましい。また、90℃における幅方向の湯温熱収縮率の上限値は、75%以下であると好ましく、70%以下であるとより好ましく、65%以下であると特に好ましい。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、上式3により算出したフィルムの長手方向(主収縮方向と直交する方向)の熱収縮率(すなわち、90℃の湯温熱収縮率)が、0%以上15%以下であることが好ましく、0%以上13%以下であるとより好ましく、0%以上12%以下であると更に好ましく、0%以上11%以下であると一層好ましく、0%以上9%以下であると特に好ましい。
90℃における長手方向の湯温熱収縮率が0%未満であると(すなわち、収縮率が負の値であると)、ボトルのラベルとして使用する際に良好な収縮外観を得ることができないので好ましくなく、反対に、90℃における長手方向の湯温熱収縮率が15%を上回ると、ラベルとして用いた場合に熱収縮時に収縮に歪みが生じ易くなるので好ましくない。なお、90℃における長手方向の湯温熱収縮率の下限値は、1%以上であると好ましく、2%以上であるとより好ましく、3%以上であると特に好ましい。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、90℃に加熱したときの幅方向の最大熱収縮応力が14MPa以上25MPa以下であると好ましい。90℃に加熱したときの幅方向の最大熱収縮応力が14MPaを下回ると、PETボトル等包装対象物のラベルとして使用する際の補強効果として不十分となり好ましくない。反対に、90℃に加熱したときの幅方向の最大熱収縮応力が25MPaを上回ると、ラベルとして用いた場合に熱収縮時に収縮に歪みが生じ易くなるので好ましくない。なお、90℃に加熱したときの幅方向の最大熱収縮応力の下限値は、15MPa以上であるとより好ましく、16MPa以上であると一層好ましく、17MPa以上であると特に好ましい。また、90℃に加熱したときの幅方向の収縮応力の上限値は、24MPa以下であるとより好ましく、24MPa以下であると一層好ましく、23MPa以下であるとさらに好ましく、22MPa以下であると特に好ましい。
さらに、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムの厚みは、特に限定するものではないが、ラベル用熱収縮性フィルムとして5〜200μmが好ましく、10〜70μmがより好ましい。
さらに、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、溶剤接着強度が4(N/15mm)以上であることが好ましい。溶剤接着強度が4(N/15mm)未満であると、ラベルが熱収縮した後に溶剤接着部から剥れ易くなるので好ましくない。なお、溶剤接着強度は、6(N/15mm)以上であるとより好ましく、8(N/15mm)以上であると特に好ましい。なお、溶剤接着強度は高いほど好ましいが、当該溶剤接着強度の上限は、製膜装置の性能上から15(N/15mm)程度が限界であると考えている。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により二軸延伸して熱処理することによって得ることができる。
原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200〜300℃の温度で溶融しフィルム状に押し出す。かかる押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金より回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
さらに、得られた未延伸フィルムを、後述するように、所定の条件で長手方向に延伸し、その縦延伸後のフィルムを急冷した後に、一旦、熱処理し、その熱処理後のフィルムを所定の条件で冷却した後に、所定の条件で幅方向に延伸し、再度、熱処理することによって本発明に好ましく用いられる熱収縮性ポリエステル系フィルムを得ることが可能となる。以下、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムを得るための好ましい製膜方法について、従来の熱収縮性ポリエステル系フィルムの製膜方法との差異を考慮しつつ詳細に説明する。
[本発明に好ましく用いられる熱収縮性ポリエステル系フィルムの製膜方法]
上述したように、通常、熱収縮性ポリエステル系フィルムは、未延伸フィルムを収縮させたい方向(すなわち、主収縮方向、通常は幅方向)のみに延伸することによって製造される。本発明者らが従来の製造方法について検討した結果、従来の熱収縮性ポリエステル系フィルムの製造においては、以下のような問題点があることが判明した。
・単純に幅方向に延伸するだけであると、上述の如く、長手方向の機械的強度が小さくなり、ラベルとした場合のミシン目開封性が悪くなる。その上、製膜装置のライン速度を上げることが困難である。
・幅方向に延伸した後に長手方向に延伸する方法を採用すると、どのような延伸条件を採用しても、幅方向の収縮力を十分に発現させることができない。さらに、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上がりが悪くなる。
・長手方向に延伸した後に幅方向に延伸する方法を採用すると、幅方向の収縮力は発現させることができるものの、長手方向の収縮力が同時に発現してしまい、ラベルとした際に収縮装着後の仕上がりが悪くなる。
さらに、上記従来の熱収縮性ポリエステル系フィルムの製造における問題点に基づいて、本発明者らが、ミシン目開封性が良好で生産性の高い熱収縮性ポリエステル系フィルムを得ることについてさらなる考察を進めた結果、次のような知見を得るに至った。
・ラベルとした際のミシン目開封性を良好なものとするためには、長手方向へ配向した分子をある程度残しておく必要があると考えられること
・ラベルとした際の収縮装着後の仕上がりを良好なものとするためには、長手方向への収縮力を発現させないことが不可欠であり、そのためには長手方向へ配向した分子の緊張状態を解消する必要があると考えられること
そして、本発明者らは、上記知見から、良好なミシン目開封性と収縮仕上がり性を同時に満たすためには、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させる必要がある、と考えるに至った。そして、どのような延伸を施せば“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることができるかに注目して試行錯誤した。その結果、長手方向に延伸した後に幅方向に延伸する所謂、縦−横延伸法によるフィルム製造の際に、以下の手段を講じることにより、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム中に存在させることを実現し、良好なミシン目開封性と収縮仕上がり性を同時に満たす熱収縮性ポリエステル系フィルムを得ることが可能となり、本発明を案出するに至った。
(1)縦延伸条件の制御
(2)縦延伸後における中間熱処理
(3)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
(4)自然冷却後のフィルムの強制冷却
(5)横延伸条件の制御
以下、上記した各手段について順次説明する。
(1)縦延伸条件の制御
本発明に好ましく採用される縦−横延伸法によるフィルムの製造においては、フィルムロールを得るためには、縦延伸を二段で行うのが好ましい。すなわち、実質的に未配向のフィルムを、Tg以上Tg+30℃以下の温度で2.2倍以上3.0倍以下の倍率となるように縦延伸し(一段目の延伸)、Tg以下に冷却することなく、Tg+10以上Tg+40℃以下の温度で1.2倍以上1.5倍以下の倍率となるように縦延伸する(二段目の延伸)ことにより、トータルの縦延伸倍率(すなわち、一段目の縦延伸倍率×二段目の縦延伸倍率)が2.8倍以上4.5倍以下となるように縦延伸するのが好ましく、トータルの縦延伸倍率が3.0倍以上4.3倍以下となるように縦延伸するとより好ましい。
また、上記の如く二段で縦延伸する際には、縦延伸後のフィルムの長手方向の屈折率が1.600〜1.630の範囲内となり、縦延伸後のフィルムの長手方向の熱収縮応力が10MPa以下となるように、縦延伸の条件を調整するのが好ましい。そのような所定の条件の縦延伸を施すことにより、後述する中間熱処理、横延伸、最終熱処理時にフィルムの長手方向・幅方向への配向度合い、分子の緊張度合いをコントロールすることが可能となり、ひいては、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。
上記の如く縦方向に延伸する際に、トータルの縦延伸倍率が高くなると、長手方向の収縮率が高くなってしまう傾向にあるが、上記の如く縦方向に二段で延伸することにより、長手方向の延伸応力を小さくすることが可能となり、長手方向の収縮率を低く抑えることが可能となる。また、トータルの縦延伸倍率が高くなると、幅方向の延伸時の応力が高くなってしまい、最終的な横方向の収縮率のコントロールが難しくなる傾向にあるが、二段で延伸することにより、横方向の延伸応力も小さくすることができ、横方向の収縮率のコントロールが容易なものとなる。
さらに、トータルの縦延伸倍率が高くなると、直角引裂強度が低くなり、長手方向の引張強さが高くなる。また、トータルの縦延伸倍率を横延伸倍率に近づけることによって、エルメンドルフ比を1.0に近づけることが可能となり、ラベルとした際のミシン目開封性を良好なものとすることができる。さらに、縦方向に二段で延伸することにより、横方向の延伸応力を低下できることに起因して、長手方向の配向を高くすることが可能となり、直角引裂強度が一層低くなり、長手方向の引張強さがより大きなものとなる。したがって、縦方向に二段で延伸し、トータルの縦延伸倍率を高くすることによって、非常にミシン目引裂性の良好なラベルを得ることが可能となる。
一方、トータルの縦延伸倍率が4.5倍を上回ると、長手方向の配向が高くなって溶剤接着強度が低くなってしまうが、トータルの縦延伸倍率を4.5倍以下にコントロールすることによって、幅方向への配向を抑えて、溶剤接着強度を高く保持することが可能となる、また、トータルの縦延伸倍率が4.5倍を上回ると、表層の粗さが少なくなるため、動摩擦係数が高くなってしまうが、トータルの縦延伸倍率を4.5倍以下にコントロールすることによって、表層の粗さの減少を抑えて、動摩擦係数を低く保持することが可能となる。
また、縦方向に二段で延伸することにより、長手方向の延伸応力が小さくなるため、長手方向の厚み斑および幅方向の厚み斑が大きくなる傾向にあるが、トータルの縦延伸倍率が高くすることにより、長手方向の厚み斑を小さくすることができ、それに伴ってヘイズも低減することができる。加えて、トータルの縦延伸倍率を高くすることによって、横延伸時の応力が高くなるため、幅方向の厚み斑も低減することができる。
加えて、トータルの縦延伸倍率が高くすることにより、長手方向への配向を高くすることができ、二軸延伸後のフィルムを最終的にロールに巻き取る際のスリット性を向上させることができる。
(2)縦延伸後における中間熱処理
上述の如く、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させるためには、長手方向に配向した分子を熱緩和させることが好ましいが、従来、フィルムの二軸延伸において、一軸目の延伸と二軸目の延伸との間において、高温の熱処理をフィルムに施すと、熱処理後のフィルムが結晶化してしまうため、それ以上延伸することができない、というのが業界での技術常識であった。しかしながら、本発明者らが試行錯誤した結果、縦−横延伸法において、ある一定の条件で縦延伸を行い、その縦延伸後のフィルムの状態に合わせて中間熱処理を所定の条件で行い、さらに、その中間熱処理後のフィルムの状態に合わせて所定の条件で横延伸を施すことによって、横延伸時に破断を起こさせることなく、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させ得る、という驚くべき事実が判明した。
すなわち、本発明に好ましく用いられる縦−横延伸法によるフィルムの製造においては、未延伸フィルムを縦延伸した後に、テンター内で幅方向の両端際をクリップによって把持した状態で、130℃以上190℃以下の温度で1.0秒以上9.0秒以下の時間に亘って熱処理(以下、中間熱処理という)することが好ましい。かかる中間熱処理を行うことによって、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となり、ひいては、ラベルとした場合にミシン目開封性が良好で収縮斑が生じないフィルムを得ることが可能となる。なお、どのような縦延伸を行った場合でも、“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となるわけではなく、前述した所定の縦延伸を実施することによって、中間熱処理後に、初めて“長手方向に配向しつつ収縮力に寄与しない分子”をフィルム内に存在させることが可能となる。そして、後述する所定の自然冷却、強制冷却、横延伸を施すことによって、フィルム内に形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向への収縮力を発現させることが可能となる。
なお、中間熱処理の温度の下限は、140℃以上であると好ましく、150℃以上であるとより好ましい。また、中間熱処理の温度の上限は、180℃以下であると好ましく、170℃以下であるとより好ましい。一方、中間熱処理の時間は、1.0秒以上9.0秒以下の範囲内で原料組成に応じて適宜調整することが好ましく、3.0秒以上7.0秒以下に調整するのがより好ましい。
また、上記の如く中間熱処理する際には、中間熱処理後のフィルムの長手方向の屈折率が1.595〜1.625の範囲内となり、中間熱処理後のフィルムの長手方向の熱収縮応力が0.5MPa以下となるように、中間熱処理の条件を調整するのが好ましい。さらに、中間熱処理後のフィルムの長手方向の引張破壊伸びが100%以上170%以下となるように、中間熱処理の条件を調整するのが好ましい。そのような所定の条件の中間熱処理を施すことにより、横延伸、最終熱処理時にフィルムの長手方向・幅方向への配向度合い、分子の緊張度合いをコントロールすることが可能となり、ひいては、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。なお、中間熱処理後のフィルムの長手方向の引張破壊伸びが100%を下回ると、フィルムが脆いために横延伸性が悪く、横延伸時に破断が起こり易くなってしまう。反対に、中間熱処理後のフィルムの長手方向の引張破壊伸びが170%を上回ると、横延伸、最終熱処理の条件を調整しても、ミシン目開封性の良好なフィルムを得ることが困難となる。
さらに、上記の如く中間熱処理する際には、中間熱処理後のフィルムの長手方向の直角引裂強度が260N/mm以下となるように、中間熱処理の条件を調整するのが好ましい。そのような所定の条件の中間熱処理を施すことにより、横延伸時における長手方向の直角引裂強度の急激な増加を抑えることが可能となり、最終的なフィルムのミシン目開封性を良好なものとすることが可能となる。
上記の如く中間熱処理する際に、処理温度を130℃以上に保つことにより、長手方向へ収縮する応力を低減することが可能となり、長手方向の収縮率をきわめて低くすることが可能となる。また、中間熱処理の温度を190℃より高くすると、横方向の収縮率のバラツキが大きくなってしまうが、中間熱処理の温度を190℃以下にコントロールすることによって、横方向の収縮率のバラツキを低減することが可能となる。
また、処理温度を130℃以上に保つことにより、長手方向の配向を高くすることが可
能となり、直角引裂強度を低く保つことが可能となるとともに、長手方向のエルメンドルフ比を1.0に近づけることができる。また、中間熱処理する際に、処理温度が190℃を上回ると、フィルムが結晶化して、長手方向の引張強さが低下してしまうが、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの結晶化を抑えて長手方向の引張強さを高く保つことが可能となる。
また、中間熱処理する際に、処理温度が190℃を上回ると、フィルムの表層が結晶化して溶剤接着強度が低くなってしまうが、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの表層の結晶化を抑えて溶剤接着強度を高く保つことが可能となる。加えて、処理温度を130℃以上に保つことにより、表層の表面粗度を適度に高くすることによって、摩擦係数を低くすることが可能となる。
さらに、中間熱処理する際に、処理温度が190℃を上回ると、フィルムに収縮斑が生じることにより、長手方向の厚み斑および幅方向の厚み斑が大きくなる傾向にあるが、中間熱処理の温度を190℃以下にコントロールすることによって、長手方向の厚み斑を小さく保つことが可能となる。加えて、中間熱処理する際に、処理温度が190℃を上回ると、フィルムが結晶化してしまい、横延伸時の応力がばらつくことに起因して、幅方向の厚み斑が大きくなる傾向にあるが、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの結晶化を抑えて幅方向の厚み斑を小さく保つことが可能となる。
また、中間熱処理する際に、処理温度が190℃を上回ると、フィルムに収縮斑が生じることに起因して、製造中にフィルムのスリット性が悪化したり、フィルムの破断が生じ易くなったりするが、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムの破断を抑えて、良好なスリット性を保つことが可能となる。
加えて、中間熱処理する際に、処理温度が190℃を上回ると、フィルムが結晶化することに起因して、フィルムのヘイズが高くなる傾向にあるが、中間熱処理の温度を190℃以下にコントロールすることによって、フィルムのヘイズを低く抑えることが可能となる。
(3)中間熱処理と横延伸との間における自然冷却(加熱の遮断)
本発明の縦−横延伸法によるフィルムの製造においては、上記の如く、縦延伸後に中間熱処理を施す必要があるが、その中間熱処理と横延伸との間において、0.5秒以上3.0秒以下の時間に亘って、積極的な加熱操作を実行しない中間ゾーンを通過させる必要がある。すなわち、横延伸用のテンターの横延伸ゾーンの前方に中間ゾーンを設けておき、縦延伸後のフィルムをテンターに導き、所定時間をかけて当該中間ゾーンを通過させた後に、横延伸を実施するのが好ましい。加えて、その中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの流れに伴う随伴流および冷却ゾーンからの熱風を遮断するのが好ましい。なお、中間ゾーンを通過させる時間が0.5秒を下回ると、横延伸が高温延伸となり、横方向の収縮率を十分に高くすることができなくなるので好ましくない。反対に中間ゾーンを通過させる時間は3.0秒もあれば十分であり、それ以上の長さに設定しても、設備のムダとなるので好ましくない。なお、中間ゾーンを通過させる時間の下限は、0.7秒以上であると好ましく、0.9秒以上であるとより好ましい。また、中間ゾーンを通過させる時間の上限は、2.8秒以下であると好ましく、2.6秒以下であるとより好ましい。
(4)自然冷却後のフィルムの強制冷却
本発明に好ましく用いられる縦−横延伸法によるフィルムの製造においては、上記の如く自然冷却したフィルムをそのまま横延伸するのではなく、フィルムの温度が70℃以上120℃以下となるように急冷することが好ましい。かかる急冷処理を施すことによって、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、急冷後のフィルムの温度の下限は、72℃以上であると好ましく、74℃以上であるとより好ましい。また、急冷後のフィルムの温度の上限は、115℃以下であると好ましく、110℃以下であるとより好ましい。
上記の如くフィルムを急冷する際に、急冷後のフィルムの温度が120℃を上回ったままであると、フィルムの幅方向の収縮率が低くなってしまい、ラベルとした際の収縮性が不十分となってしまうが、冷却後のフィルムの温度が120℃以下となるようにコントロールすることによって、フィルムの幅方向の収縮率を高く保持することが可能となる。
また、フィルムを急冷する際に、急冷後のフィルムの温度が120℃を上回ったままであると、フィルムが結晶化してしまい、ヘイズが高くなり、長手方向の引張強さが低下し、溶剤接着強度が低下する傾向にあるが、冷却後のフィルムの温度が120℃以下となるような急冷を施すことによって、ヘイズを低く保持し、長手方向の引張強さおよび溶剤接着強度を高く保持することが可能となる。
さらに、フィルムを急冷する際に、急冷後のフィルムの温度が120℃を上回ったままであると、冷却後に行う横延伸の応力が小さくなり、幅方向の厚み斑が大きくなり易い傾向にあるが、冷却後のフィルムの温度が120℃以下となるような急冷を施すことによって、冷却後に行う横延伸の応力を高めて、幅方向の厚み斑を小さくすることが可能となる。
加えて、フィルムを急冷する際に、急冷後のフィルムの温度が120℃を上回ったままであると、フィルムが結晶化することに起因して、フィルムの破断が生じ易くなってしまうが、冷却後のフィルムの温度が120℃以下となるような急冷を施すことによって、フィルムの破断を抑えることが可能となる。
(5)横延伸条件の制御
本発明に好ましく用いられる縦−横延伸法によるフィルムの製造においては、縦延伸、中間熱処理、急冷後のフィルムを所定の条件で横延伸することが好ましい。すなわち、横延伸は、テンター内で幅方向の両端際をクリップによって把持した状態で、65℃以上100℃以下の温度で4.5倍以上6.0倍以下の倍率となるように多段延伸を行うことが好ましい。かかる所定条件での横延伸を施すことによって、縦延伸および中間熱処理によって形成された“長手方向に配向しつつ収縮力に寄与しない分子”を保持したまま、幅方向へ分子を配向させて幅方向の収縮力を発現させることが可能となり、ラベルとした際のミシン目開封性が良好なフィルムを得ることが可能となる。なお、横延伸の温度の下限は、70℃以上であると好ましく、75℃以上であるとより好ましい。また、横延伸の温度の上限は、95℃以下であると好ましく、90℃以下であるとより好ましい。一方、横延伸の倍率の下限は、4.7倍以上であると好ましく、4.9倍以上であるとより好ましい。また、横延伸の倍率の上限は、5.8倍以下であると好ましく、5.5倍以下であるとより好ましい。
また、延伸温度が100℃を上回ると、長手方向の収縮率が高くなるとともに、幅方向の収縮率が低くなってしまうが、延伸温度を100℃以下にコントロールすることによって、長手方向の収縮率を低く抑えるとともに、幅方向の収縮率を高く保持することが可能となる。
さらに、横延伸における延伸温度が高くなると、横方向の配向が低くなって、溶剤接着強度が高くなるとともに、滑剤の圧潰を防止することが可能となり、摩擦係数を低く保つことが可能となる。加えて、横延伸における延伸温度が高くなると、フィルムの内部のボイドが減少することによって、フィルムのヘイズが低くなる。
また、延伸温度が100℃を上回ると、幅方向の厚み斑が大きくなり易い傾向にあるが、延伸温度を100℃以下にコントロールすることによって、幅方向の厚み斑を小さくすることができる。
一方、延伸温度が65℃を下回ると、幅方向への配向が高くなりすぎて、横延伸時に破断し易くなったり、二軸延伸後のフィルムを最終的にロールに巻き取る際のスリット性が悪くなったりするが、延伸温度を65℃以上にコントロールすることによって、横延伸時における破断を低減し、巻き取り時のスリット性を改善することが可能となる。
また横方向の延伸は、上記最大熱収縮応力を上記範囲内するには、延伸を2段階以上に分けて行えばよい。以下、2段階で延伸する場合を例にとって説明する。
まず、1段階目の延伸を行う。延伸倍率は、未延伸フィルムに対して4倍以上5.5倍以下、好ましくは4.2倍以上5.3倍以下とする。1段階目の延伸温度は、上記の温度とする。
次に、フィルムを延伸方向に緊張させた状態で熱固定を行うことが好ましい。熱固定温度は、1段階目の延伸温度と同じにするか、上記の温度範囲内で、1段階目の延伸温度よりも0〜5℃程度低くし、熱固定時間は0.5秒以上5秒以下、好ましくは1秒以上3秒以下とすることが望ましい。
次に、2段階目の延伸を行う。延伸倍率は、熱固定後(熱固定を実施しない場合は1段階目の延伸後)のフィルムに対して1.1倍以上1.5倍以下(好ましくは1.3倍以下)とする。2段階目の延伸温度は、熱固定温度と同じにするか、上記の温度範囲内で、熱固定温度よりも0〜5℃程度低くすることが好ましい。
なお、延伸の工程を3段階とする場合には、2段階目の延伸と3段階目の延伸の間に上記熱固定工程を入れることが望ましい。熱固定工程の条件は、上記の熱固定条件に準じて決定すればよい。また、3段階目の延伸条件も、上記2段階目の延伸条件に準じて決定すればよい。
フィルムの熱収縮率制御などの観点からは、延伸の段階数は多い方が好ましいが、あまり段階数が多過ぎる場合、工業生産における延伸設備の設計が困難となるため、6段階以下、好ましくは4段階以下とすることが望ましい。
[製造工程の工程条件がフィルム特性に与える影響]
本発明に好ましく用いられる熱収縮性ポリエステル系フィルムの製造に当たっては、縦延伸工程、中間熱処理工程、自然冷却工程、強制冷却工程、横延伸工程の内の何れかの工程のみが、単独でフィルムの特性を良好なものとすることができるものではなく、縦延伸工程、中間熱処理工程、自然冷却工程、強制冷却工程、横延伸工程のすべてを所定の条件にて行うことにより、非常に効率的にフィルムの特性を良好なものとすることが可能となるものと考えられる。また、フィルムの特性の中でも、最大熱収縮応力、エルメンドルフ比、長手方向の直角引裂強度、長手方向の引張破壊強さ、幅方向の厚み斑、長手方向の厚み斑といった重要な特性は、特定の複数の工程同士の相互作用によって大きく数値が変動する。
すなわち、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、長手方向の直角引裂強度を100N/mm以上310N/mm以下に調整することが好ましく、より好ましくは長手方向の直角引裂強度を130N/mm以上270N/mm以下、更に好ましくは290N/mm以上250N/mm以下に調節するものであるが、当該長手方向の直角引裂強度には、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、長手方向の引張破壊強さを50MPa以上300MPa以下に調整することが好ましいが、当該長手方向の引張破壊強さには、縦延伸工程、中間熱処理工程、および横延伸工程という3つの工程の相互作用が非常に大きく影響する。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、エルメンドルフ比を0.1以上2.0以下に調整することが好ましいが、当該エルメンドルフ比は、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、主収縮方向(フィルム幅方向)の最大熱収縮応力を14〜25(MPa)に調節することが好ましく、関係する要因として中間熱処理工程、中間熱処理後の強制冷却、横延伸工程の条件と関連が見られる。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、分子配向比(MOR)を1.05以上4.1以下に調整することが好ましいが、MORは、縦延伸工程と中間熱処理工程との相互作用が非常に大きく影響する。
また、本発明に好ましく用いられる熱収縮性ポリエステル系フィルムは、溶剤接着強度が2N/15mm以上10N/15mm以下に調節することが好ましい。溶剤接着強度の大きな要因はフィルム表面の非晶原料比率の大きさであり、非晶原料比率が大きいと溶剤接着強度が大きくなる傾向がある。例えば、後述の実施例において、フィルム表面の非晶原料比率が40質量%以上であれば、溶剤接着強度を2N/15mm以上とすることが容易となり好ましい。しかしながら、あまりにも非晶原料比率が大きくなると熱収縮特性が大きくなりすぎる場合があるので95質量%以下であることが好ましい。一般的にフィルム表面のポリステル樹脂中における多価アルコール成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計がどれだけ含まれているかを表す非晶モノマーのモル%で言えば、10モル%以上とすると溶剤接着強度を2N/15mm以上とすることが容易となり好ましい。更に好ましくはフィルム表面の13モル%以上であり、フィルム表面の20モル%以上であることが更に好ましいが、あまりに大きいと熱収縮特性が大きくなりすぎる場合があるので、50モル%以下でよく、40モル%以下であることが好ましく、更に好ましくは30モル%以下である。溶剤接着強度はその他のフィルム製造工程条件とも関連があり、中間熱セット工程や強制冷却工程条件とも関連が見られる。また、縦、横のトータルの延伸倍率(面積倍率)は、溶剤接着強度とも関係があり、通常トータルの延伸倍率が小さい方が溶剤接着強度が高まると言える。
したがって、熱収縮性ポリエステル系フィルム長手方向の直角引裂強度、フィルム長手方向の引張破壊強さ、最大熱収縮応力、溶剤接着強度を好ましい範囲内に調整するためには、上記した工程同士の相互作用を考慮しつつ、上記(1)〜(5)のようなデリケートな条件調整を施すことが好ましい。
本発明において包装体は、前記の熱収縮性ポリエステル系フィルムを基材とするミシン目が設けられたラベルを少なくとも外周の一部に被覆して熱収縮させてなるものであり、包装体の対象物としては、飲料用のペットボトルをはじめ、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙製の箱等を挙げることができる(以下、これらを総称して包装対象物という)。なお、通常、それらの包装対象物に、熱収縮性ポリエステル系フィルムを基材とするラベルを熱収縮させて被覆させる場合には、当該ラベルを約2〜15%程度熱収縮させて包装体に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても良いし、印刷が施されていなくても良い。
本発明において、熱収縮性ラベルを被覆収縮させたPETボトルは、例えば、従来のPETボトルよりも重さが30%程度少ないものであっても、例えば輸送や販売などの際に、従来のPETボトルと同様に取り扱うことができる程度に補強されている。なお、この場合、PETボトルの胴部表面積の75%以上がラベルで覆われていることが好ましい。
例えば、本発明に好ましく用いられる熱収縮性フィルムから以下のようにして得られるラベルでは、後記方法によって測定されるボトル径変化率が、好ましくは10%以下、より好ましくは7%以下であり、優れた包装対象物補強効果を発揮し得る。
フィルムの片端の片面の端縁から少し内側に1,3−ジオキソランを2±1mm幅で塗布し(塗布量:3.0±0.3g/mm)、該端部を重ね合わせた後、長さ14cm、直径6.7cmのサイズに裁断して円筒状ラベルを得る。質量20.5gの500mL丸型PETボトル[高さ21cm、中央部(胴部)直径6.5cm]に500mLの水を充填した後密封し、これに上記の円筒状ラベルを装着して、ゾーン温度80℃のスチームトンネルを2.5秒で通過させて該ラベルを収縮させる。このようにして得られるラベル被覆ボトルの側面中央部に、東洋精機社製「ストログラフV10−C」を用いて圧縮モードで15kgの荷重を掛けたときのボトル中央部の径(W)を測定し、下記式4に従ってボトル径変化率(%)を求める。
ボトル径変化率(%)=100×(W−W)/W ・・式4
ここで、Wは、荷重を掛ける前のボトル中央部の径である。
なお、上記ボトル径変化率が8%を超えるようなラベルでは、例えば自動販売機内でラベルが装着されたPETボトル等の包装体が落下した場合に、該包装体が変形し易く、詰まりなどの原因となることがあるため、あまり好ましくない。
次に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。
フィルムの評価方法は下記の通りである。
[極限粘度(IV)]
試料(チップまたはフィルム)0.1gを精秤し、25mlのフェノール/テトラクロロエタン=3/2(質量比)の混合溶媒に溶解した後、オストワルド粘度計で30±0.1℃で測定する。極限粘度[η]は、下式(Huggins式)によって求められる。
Figure 2009227337
ここで、ηsp:比粘度、t:オストワルド粘度計を用いた溶媒の落下時間、t:オスワルド粘度計を用いた溶液の落下時間、C:溶液の濃度である。なお、実際の測定では、Huggins式においてk=0.375とした下記近似式で極限粘度を算出した。
Figure 2009227337
ここで、ηr:相対粘度である。
[熱収縮率(湯温熱収縮率)]
フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、下式3にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大きい方向を主収縮方向とした。
熱収縮率={(収縮前の長さ−収縮後の長さ)/収縮前の長さ}×100(%)
・・・式3
[直角引裂強度]
80℃に調整された湯温中にてフィルムを幅方向に10%収縮させた後に、JIS−K−7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引張試験機で試験片の両端を掴み、引張速度200mm/分の条件にて、フィルムの長手方向における引張破壊時の強度の測定を行う。そして、下式1を用いて単位厚み当たりの直角引裂強度を算出する。
直角引裂強度=引張破壊時の強度÷厚み ・・式1
[引張破壊強さの測定方法]
JIS−K7113に準拠し、所定の大きさの短冊状の試験片を作製し、万能引張試験機でその試験片の両端を把持して、引張速度200mm/分の条件にて引張試験を行い、フィルムの長手方向の引張破壊時の強度(応力)を引張破壊強さとして算出する。
[エルメンドルフ比]
フィルムを矩形状の枠に予め弛ませた状態で装着し(フィルムの両端を枠によって把持させ)、弛んだフィルムが枠内で緊張状態となるまで(弛みがなくなるまで)、約5秒間に亘って80℃の温水に浸漬させることによって、フィルムを主収縮方向に10%収縮させた(以下、予備収縮という)。しかる後に、JIS−K−7128に準じて、主収縮方向×直交方向=75mm×63mmのサイズに切り取り、長尺な端縁(主収縮方向に沿った端縁)の中央から当該端縁に直交するように20mmのスリット(切り込み)を入れることによって試験片を作製した。そして、作製された試験片を用いて主収縮方向と直交する方向のエルメンドルフ引裂荷重の測定を行った。また、上記方法と同様な方法でフィルムを主収縮方向に予備収縮させた後に、フィルムの主収縮方向と直交方向とを入れ替えて試験片を作製し、主収縮方向のエルメンドルフ引裂荷重の測定を行った。そして、得られた主収縮方向および主収縮方向と直交する方向のエルメンドルフ引裂荷重から下式2を用いてエルメンドルフ比を算出した。
エルメンドルフ比=主収縮方向のエルメンドルフ引裂荷重÷主収縮方向と直交する方向のエルメンドルフ引裂荷重 ・・式2
[溶剤接着強度]
フィルムに1,3−ジオキソランを塗布して2枚を張り合わせることによってシールを施した。しかる後、シール部をフィルムの主収縮方向と直交する方向(以下、直交方向という)に15mmの幅に切り取り、それを(株)ボールドウィン社製 万能引張試験機 STM−50にセットし、引張速度200mm/分の条件で180°ピール試験を行った。そして、そのときの引張強度を溶剤接着強度とした。
[分子配向比]
フィルムを長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
[屈折率]
アタゴ社製の「アッベ屈折計4T型」を用いて、各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に測定した。
[最大熱収縮応力値]
主収縮方向(幅方向)×主収縮方向と直交する方向(長手方向)=200mm×15mmのサイズにカットした。しかる後、(株)ボールドウィン社製 万能引張試験機 STM−50を温度90℃に調整した上で、カットしたフィルムをセットし、10秒間保持したときの主収縮方向の応力値を測定した。
また、被覆後のラベルの評価方法は下記の通りである。
[引張破壊強さの測定方法]
包装対象物に装着されたラベルを引き剥がし、そのラベルに印刷が施されている場合には、印刷層を酢酸エチルをしみ込ませた布を使用して拭き取った。印刷が施されていないか又は印刷層を除いたラベルについて、JIS−K−7127に準じて、主収縮方向と直交する方向(フィルム長手方向)の長さ50mm×主収縮方向(フィルム幅方向)の長さ20mmの長方形状にサンプリングして試験片とし、万能引張試験機((株)島津製作所製 オートグラフ)を利用して、試験片の両端(長尺方向の両端)を掴み、引張速度200mm/分の条件にて引張試験を行い、破断時の応力値を引張破壊強さとして算出した。
[直角引裂強度]
包装対象物に装着されたラベルを引き剥がし、そのラベルに印刷が施されている場合には、印刷層を酢酸エチルをしみ込ませた布を使用して拭き取った。印刷が施されていないか又は印刷層を除いたラベルについて、JIS−K−7128に準じて、図1に示す形状にサンプリングすることによって試験片を作製した。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ)を利用して、試験片の両端を掴み、引張速度200mm/分の条件にて、ラベルの主収縮方向と直交する方向(フィルム長手方向)における引張破壊時の強度の測定を行い、上式1を用いて単位厚み当たりの直角引裂強度を算出した。
[エルメンドルフ比]
包装対象物に装着されたラベルを引き剥がし、そのラベルに印刷が施されている場合には、印刷層を酢酸エチルをしみ込ませた布を使用して拭き取った。印刷が施されていないか又は印刷層を除いたラベルについて、JIS−K−7128に準じて、主収縮方向×主収縮方向と直交する方向=37.5mm×31.5mmのサイズに切り取り、主収縮方向に沿った端縁の中央から当該端縁に直交するように10mmのスリット(切り込み)を入れることによって試験片を作製した。そして、ミシン目方向(=主収縮方向と直交する方向=長手方向)のエルメンドルフ引裂荷重を測定した。また、フィルムの主収縮方向と直交する方向と主収縮方向とを入れ替えて試験片を作製し、ミシン目と直交する方向(=主収縮方向=幅方向)のエルメンドルフ引裂荷重を測定した。そして、得られた主収縮方向および主収縮方向と直交する方向のエルメンドルフ引裂荷重から上式2を用いてエルメンドルフ比を算出した。
[最大熱収縮応力値の測定方法]
包装対象物に装着されたラベルを引き剥がし、そのラベルの表面に施された印刷を溶剤(酢酸エチル、メチルエチルケトン等)を含ませた布で拭取ることにより取り除き(印刷がなければ溶剤による拭取り作業は不要)、インクが落ち透明になったラベルについて、主収縮方向(幅方向)×主収縮方向と直交する方向(長手方向)=200mm×15mmのサイズにカットした。しかる後、(株)ボールドウィン社製 万能引張試験機 STM−50を温度90℃に調整した上で、カットしたフィルムをセットし、10秒間保持したときの主収縮方向の応力値を測定した。
[分子配向比]
包装対象物に装着されたラベルを引き剥がし、そのラベルの表面に施された印刷を溶剤(酢酸エチル、メチルエチルケトン等)を含ませた布で拭取ることにより取り除き(印刷がなければ溶剤による拭取り作業は不要)、インクが落ち透明になったラベルについて、長手方向×幅方向=140mm×100mmのサンプルを採取した。そして、そのサンプルについて、王子計測機器株式会社製の分子配向角測定装置(MOA−6004)を用いて分子配向比(MOR)を測定した。
[包装対象物補強効果]
チューブ状成形装置を用いて、フィルムの片端の片面の端縁から少し内側に1,3−ジオキソランを2±1mm幅で塗布し(塗布量:3.0±0.3g/mm)、直ちにフィルムを丸めて端部を重ね合わせて接着してチューブとし、平らにつぶした状態で巻き取る。このチューブを裁断して高さ14cm、直径6.7cmの円筒状ラベルとする。質量:20.5gの500mL丸型PETボトル[高さ21cm、中央部(胴部)直径6.5cm]に500mLの水を充填した後密封し、これに上記の円筒状ラベルを装着し、その後フジアステック社製のスチームトンネル(SH−1500−L)中を、トンネル通過時間2.5秒、ゾーン温度80℃の条件でラベル全量を通過させてラベルを収縮させる。
このようにして得られるラベル被覆ボトルの側面中央部に、東洋精機社製「ストログラフV10−C」を用いて圧縮モードで15kgの荷重を掛けたときのボトル中央部の径(W)を測定し、下式4に従ってボトル径変化率(%)を求める。
ボトル径変化率(%)=100×(W−W)/W・・式4
ここで、Wは、荷重を掛ける前のボトル中央部の径である。
[落下時の開封率]
ラベルを装着したペットボトル等の包装対象物に水を500ml充填し、そのペットボトルを約5℃に調整された冷蔵庫内で8時間以上放置した後、1mの高さからミシン目を設けた部分を下にして落下させ、ミシン目が引き裂かれたものの割合(%)を算出した(n=100)。
[収縮仕上り性]
包装対象物の周囲に装着されたラベルの仕上がり状態を、目視によって下記の基準により評価した。
◎:シワ,飛び上り、収縮不足の何れも未発生で、かつ色の斑も見られない
○:シワ,飛び上り、または収縮不足が確認できないが、若干、色の斑が見られる
△:飛び上り、収縮不足の何れも未発生だが、ネック部の斑が見られる
×:シワ、飛び上り、収縮不足が発生
[ラベル密着性]
装着されたラベルと包装対象物とを軽くねじったときのラベルのズレ具合を官能評価した。ラベルが動かなければ○、すり抜けたり、ラベルとボトルがずれたりした場合には×とした。
[ミシン目開封性]
ラベルを装着したペットボトル等の包装対象物に水を500ml充填し、5℃に冷蔵し、冷蔵庫から取り出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル50本に対する割合(%)を算出した。
また、実施例、比較例で使用したポリエステル原料の性状、組成、実施例、比較例におけるフィルムの製造条件(延伸・熱処理条件等)を、それぞれ表1、表2に示す。
<ポリエステル原料の調製>
撹拌機、温度計及び部分環流式冷却器を備えたステンレススチール製オートクレーブに、二塩基酸成分としてジメチルテレフタレート(DMT)100モル%と、グリコール成分としてエチレングリコール(EG)100モル%とを、グリコールがモル比でメチルエステルの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)を用いて、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、重縮合触媒として三酸化アンチモン0.025モル%(酸成分に対して)添加し、280℃で26.6Pa(0.2トール)の減圧条件下、重縮合反応を行い、固有粘度0.70dl/gのポリエステル(A)を得た。このポリエステルはポリエチレンテレフタレートである。なお、上記ポリエステル(A)の製造の際には、滑剤としてSiO(富士シリシア社製サイリシア266)をポリエステルに対して8,000ppmの割合で添加した。また、上記と同様な方法により、表1に示すポリエステル(A2,B,C,D)を合成した。なお、表中、NPGがネオペンチルグリコール、CHDMが1,4−シクロヘキサンジメタノール、BDが1,4−ブタンジオールである。それぞれのポリエステルの固有粘度は、Bが0.72dl/g、Cが0.80dl/g、Dが1.15dl/gであった。なお、各ポリエステルは、適宜チップ状にした。
Figure 2009227337
Figure 2009227337
各実施例、比較例において、仕上がりフィルムの厚みを40μmとすべく、縦、横
の延伸倍率設定に応じて、予め未延伸フィルムの厚みを調節すべく、吐出量を調節してい
る。
(実施例1)
コア層形成用の樹脂を単軸の押出機(第一押出機)内にて溶融させるとともに、スキン層形成用の樹脂を単軸の押出機(第二押出機)内にて溶融させ、それらの溶融樹脂を共押出法を利用して三層Tダイ内で積層して押し出し、その後急冷して、スキン層/コア層/スキン層の3層構造からなる728μmの厚みの未延伸フィルムを得た。なお、コア層形成用の樹脂として、ポリエステルA(IV=0.65dl/g):53質量%、ポリエステルB(IV=0.70dl/g):36質量%、ポリエステルC(IV=1.20dl/g):5質量%、ポリエステルE(IV=0.70dl/g):6質量%を混合したポリエステル系樹脂を用いた。また、表裏両方のスキン層形成用の樹脂として、ポリエステルA(IV=0.70):9質量%、ポリエステルB:80質量%、ポリエステルC:5質量%、ポリエステルE:6質量%を混合したポリエステル系樹脂を用いた。
この時のスキン層とコア層の厚み比は スキン層/コア層/スキン層=1/2/1となるように調整した。
なお、上記した未延伸フィルムの作製においては、コア層を形成するための第一押出機およびスキン層を形成するための第二押出機のホッパに供給する前のポリエステル系樹脂チップの水分率を、いずれも30ppmに調整した。また、上記した未延伸フィルムの作製においては、各押出機のスクリューを循環水によって冷却した。さらに、上記した未延伸フィルムの作製においては、各押出機の予熱温度を265℃に調整し、各押出機のコンプレッションゾーンの温度を300℃に調整した。加えて、上記した未延伸フィルムの作製においては、コア層押出し用の第一押出機の温度を280℃に調整し、スキン層押出し用の第二押出機の温度を275℃に調整した。
そして、上記の如く得られた未延伸フィルム(Tg:70℃)を、複数のロール群を連続的に配置した縦延伸機へ導き、ロールの回転速度差を利用して、縦方向に二段階で延伸した。すなわち、未延伸フィルムを、予熱ロール上でフィルム温度が78℃になるまで予備加熱した後に、表面温度78℃に設定された低速回転ロールと表面温度78℃に設定された中速回転ロールとの間で回転速度差を利用して2.6倍に延伸した(1段目の縦延伸)。さらに、その縦延伸したフィルムを、表面温度95℃に設定された中速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して1.4倍に縦延伸した(2段目の縦延伸)(したがって、トータルの縦延伸倍率は、3.64倍であった)。
上記の如く縦延伸直後のフィルムを、表面温度30℃に設定された冷却ロール(二段目の縦延伸ロールの直後に位置した高速ロール)によって、40℃/秒の冷却速度で強制的に冷却した後に、冷却後のフィルムをテンターに導き、中間熱処理ゾーン、第一中間ゾーン(自然冷却ゾーン)、冷却ゾーン(強制冷却ゾーン)、第二中間ゾーン、横延伸ゾーン、最終熱処理ゾーンを連続的に通過させた。なお、当該テンターにおいては、第一中間ゾーンの長さを、約40cmに設定し、中間熱処理ゾーンと第一中間ゾーンとの間、第一中間ゾーンと冷却ゾーンとの間、冷却ゾーンと第二中間ゾーンとの間、第二中間ゾーンと横延伸ゾーンとの間に、それぞれ遮蔽板を設けた。さらに、第一中間ゾーンおよび第二中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、中間熱処理ゾーンからの熱風、冷却ゾーンからの冷却風および横延伸ゾーンからの熱風を遮断した。加えて、フィルムの通紙時には、フィルムの流れに伴う随伴流の大部分が、中間熱処理ゾーンと第一中間ゾーンとの間に設けられた遮蔽板によって遮断されるように、フィルムと遮蔽板との距離を調整した。加えて、フィルムの通紙時には、中間熱処理ゾーンと第一中間ゾーンとの境界、および、冷却ゾーンと第二中間ゾーンとの境界においては、フィルムの流れに伴う随伴流の大部分が遮蔽板によって遮断されるようにフィルムと遮蔽板との距離を調整した。
そして、テンターに導かれた縦延伸フィルムを、まず、中間熱処理ゾーンにおいて、160℃の温度で5.0秒間に亘って熱処理した後に、その中間熱処理後のフィルムを第一中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約1.0秒)自然冷却した。しかる後に、自然冷却後のフィルムを冷却ゾーンに導き、フィルムの表面温度が75℃になるまで、低温の風を吹き付けることによって積極的に冷却し、その冷却後のフィルムを第二中間ゾーンに導き、当該ゾーンを通過させることによって(通過時間=約10秒)再度自然冷却した。さらに、その第二中間ゾーンを通過した後のフィルムを横延伸ゾーンに導き、フィルムの表面温度が77℃になるまで予備加熱した後に、72℃で幅方向(横方向)に4.5倍に延伸した。しかる後、72℃で3秒熱固定した後、幅方向に72℃で1.1倍に2度目の延伸を行った。(幅方向の総倍率5倍)
しかる後、その横延伸後のフィルムを幅方向の両端際をクリップによって把持した状態でテンター内の最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、80℃の温度で10秒間に亘って熱処理した後に冷却し、両縁部を裁断除去して幅400mmでロール状に巻き取ることによって、約40μm(スキン層/コア層/スキン層の各厚み:10μm/20μm/10μm)の二軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。得られた二軸延伸フィルムは、好ましい熱収縮特性、好ましいカット性と包装対象物補強効果で総合的に大変好ましいものであった。
(実施例2)
未延伸フィルムの厚みを620μmとし、縦延伸工程の1段目の延伸倍率を2.2倍、2段目の延伸倍率を1.4倍(トータルの延伸倍率3.1倍)とし、中間熱処理工程の温度を155℃に変更した他は実施例1と同様にして二軸延伸フィルムを得た。実施例1の二軸延伸フィルムに比べて直角引裂強度がやや大きく、ミシン目開封不良率もやや高めであったが、総合的には好ましいものであった。
(実施例3)
コア層及びスキン層形成用の樹脂として、ポリエステルBに替えてポリエステルD(IV=0.70dl/g)を混合したポリエステル系樹脂を用いた他は実施例1と同様にして二軸延伸フィルムを得た(未延伸フィルムのTgは70℃であった)。同二軸延伸フィルムは非晶原料を変更しても実施例1の二軸延伸フィルム同様、大変好ましいものであった。
(実施例4)
未延伸フィルムの厚みを620μmとし、縦延伸工程の1段目の延伸倍率を2.2倍、2段目の延伸倍率を1.3倍(トータルの延伸倍率2.86倍)とし、中間熱処理工程の温度を150℃に変更し、72℃で幅方向(横方向)に4.5倍に延伸した後、72℃で3秒熱固定した後、幅方向に72℃で1.2倍に2度目の延伸を行った。(幅方向の総倍率5.4倍)。その他は実施例1と同様にして二軸延伸フィルムを得た。実施例1の二軸延伸フィルムに比べて直角引裂強度がやや大きく、ミシン目開封不良率もやや高めであったが、総合的には好ましいものであった。
(実施例5)
未延伸フィルムの厚みを515μmとし、縦延伸工程の1段目の延伸倍率を2.2倍、2段目の延伸倍率を1.3倍(トータルの延伸倍率2.86倍)とし、中間熱処理工程の温度を150℃に変更し、72℃で幅方向(横方向)に4.4倍に延伸した後、72℃で3秒熱固定した後、幅方向に72℃で1.1倍に2度目の延伸を行った。(幅方向の総倍率4.5倍)。その他は実施例1と同様にして二軸延伸フィルムを得た。実施例1の二軸延伸フィルムに比べて直角引裂強度がやや大きく、ミシン目開封不良率やボトル径変化率もやや高めであったが、総合的には好ましいものであった。
(比較例1)
実施例1と同じ原料で厚み582μmの未延伸フィルムを得た。それを実施例1と同様の方法で縦延伸した後、実施例1と同様の方法で1段目の横延伸をした後、2段目の延伸をしないで幅方向の両端際をクリップによって把持した状態でテンター内の最終熱処理ゾーンに導き、当該最終熱処理ゾーンにおいて、80℃の温度で10秒間に亘って熱処理した後に冷却し、両縁部を裁断除去して幅400mmでロール状に巻き取ることによって、約40μm(スキン層/コア層/スキン層の各厚み:10μm/20μm/10μm)の二軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。得られた二軸延伸フィルムは、好ましい熱収縮特性、好ましいカット性を有しているが、包装対象物補強効果が劣る結果となった。
(比較例2)
コア層、スキン層共にポリエステルA(IV=0.70):9質量%、ポリエステルB:80質量%、ポリエステルC:5質量%、ポリエステルE:6質量%を混合したポリエステル系樹脂を用い、200μmの厚みの未延伸フィルムを得た(未延伸フィルムのTgは70℃であった)。縦延伸、中間熱処理は実施せずに 実施例1と同じ延伸方法(倍率と温度)で横延伸し 40μmの一軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表3に示す。包装対象物補強効果には優れているもののカット性が劣る結果となった。
Figure 2009227337
本発明のラベルは、上記の如く優れた特性を有しているので、ボトル等包装対象物用のラベル用途として好適に用いることができる。
F・・フィルム

Claims (6)

  1. フィルム幅方向を主収縮方向として熱収縮する熱収縮性フィルムを基材とし、包装対象物に応じてカットされ、フィルム幅方向の両端が接着された環状体が、包装対象物の外周の少なくとも一部を熱収縮して被覆しているラベルであって、被覆されているラベルの主収縮方向(フィルム幅方向)の最大熱収縮応力が7(MPa)以上であり、かつ 主収縮方向と直交する方向(フィルム長手方向)の直角引裂強度が100N/mm〜310N/mmであり、かつ、主収縮方向と直交する方向(フィルム長手方向)の引張破壊強さが50MPa以上300MPa以下であることを特徴とするラベル。
  2. 接着が、有機溶剤によりなされていることを特徴とする請求項1に記載のラベル。
  3. 主収縮方向と直交する方向(フィルム長手方向)のエルメンドルフ引裂荷重と主収縮方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が0.1以上2.0以下であることを特徴とする請求項1又は2に記載のラベル。
  4. 被覆されているラベルの分子配向比(MOR)が1.05以上4.1以下であることを特徴とする請求項1〜3のいずれかに記載のラベル。
  5. 主収縮方向と直交する方向(フィルム長手方向)に沿って、ミシン目あるいはノッチが設けられていることを特徴とする請求項1〜4のいずれかに記載のラベル。
  6. 熱収縮性フィルムが、熱収縮性ポリエステル系フィルムであることを特徴とする請求項1〜5のいずれかに記載のラベル。
JP2009037796A 2008-02-29 2009-02-20 ラベル Active JP5895283B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037796A JP5895283B2 (ja) 2008-02-29 2009-02-20 ラベル

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008049281 2008-02-29
JP2008049281 2008-02-29
JP2009037796A JP5895283B2 (ja) 2008-02-29 2009-02-20 ラベル

Publications (2)

Publication Number Publication Date
JP2009227337A true JP2009227337A (ja) 2009-10-08
JP5895283B2 JP5895283B2 (ja) 2016-03-30

Family

ID=41243214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037796A Active JP5895283B2 (ja) 2008-02-29 2009-02-20 ラベル

Country Status (1)

Country Link
JP (1) JP5895283B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137240A1 (ja) * 2009-05-26 2010-12-02 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
EP3339000A4 (en) * 2015-08-19 2019-04-17 Toyobo Co., Ltd. HEAT SHRINKABLE POLYESTER BASED FILM AND PACKAGING

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147963A (ja) * 1997-11-17 1999-06-02 Sumitomo Chem Co Ltd 易引裂フィルム、それよりなる易引裂包装用フィルム、それを用いてなる易引裂包装袋および易引裂蓋
JP2005194466A (ja) * 2004-01-09 2005-07-21 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよび熱収縮性ラベル
JP2006169285A (ja) * 2004-12-13 2006-06-29 Dainippon Ink & Chem Inc 熱収縮性粘着フィルム
JP2006233091A (ja) * 2005-02-25 2006-09-07 Mitsubishi Plastics Ind Ltd ポリエステル系樹脂組成物、ポリエステル系熱収縮性フィルム、熱収縮性ラベル、及び該ラベルを装着した容器
JP2006240716A (ja) * 2005-03-07 2006-09-14 Teijin Dupont Films Japan Ltd 熱収縮包装用フィルムおよびラベル
JP2006337933A (ja) * 2005-06-06 2006-12-14 Fuji Seal International Inc プラスチックラベル及びラベル付き容器
JP2007016120A (ja) * 2005-07-07 2007-01-25 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
WO2007086710A1 (en) * 2006-01-27 2007-08-02 Kolon Industries, Inc. Thermo-shrinkable polyester film
WO2007145231A1 (ja) * 2006-06-14 2007-12-21 Toyo Boseki Kabushiki Kaisha 熱収縮性ポリエステル系フィルム、およびその製造方法
WO2008018528A1 (fr) * 2006-08-09 2008-02-14 Toyo Boseki Kabushiki Kaisha Emballage
JP2008291200A (ja) * 2006-08-30 2008-12-04 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147963A (ja) * 1997-11-17 1999-06-02 Sumitomo Chem Co Ltd 易引裂フィルム、それよりなる易引裂包装用フィルム、それを用いてなる易引裂包装袋および易引裂蓋
JP2005194466A (ja) * 2004-01-09 2005-07-21 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよび熱収縮性ラベル
JP2006169285A (ja) * 2004-12-13 2006-06-29 Dainippon Ink & Chem Inc 熱収縮性粘着フィルム
JP2006233091A (ja) * 2005-02-25 2006-09-07 Mitsubishi Plastics Ind Ltd ポリエステル系樹脂組成物、ポリエステル系熱収縮性フィルム、熱収縮性ラベル、及び該ラベルを装着した容器
JP2006240716A (ja) * 2005-03-07 2006-09-14 Teijin Dupont Films Japan Ltd 熱収縮包装用フィルムおよびラベル
JP2006337933A (ja) * 2005-06-06 2006-12-14 Fuji Seal International Inc プラスチックラベル及びラベル付き容器
JP2007016120A (ja) * 2005-07-07 2007-01-25 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
WO2007086710A1 (en) * 2006-01-27 2007-08-02 Kolon Industries, Inc. Thermo-shrinkable polyester film
WO2007145231A1 (ja) * 2006-06-14 2007-12-21 Toyo Boseki Kabushiki Kaisha 熱収縮性ポリエステル系フィルム、およびその製造方法
WO2008018528A1 (fr) * 2006-08-09 2008-02-14 Toyo Boseki Kabushiki Kaisha Emballage
JP2008291200A (ja) * 2006-08-30 2008-12-04 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137240A1 (ja) * 2009-05-26 2010-12-02 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
US9352508B2 (en) 2009-05-26 2016-05-31 Toyo Boseki Kabushiki Kaisha Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same
EP3339000A4 (en) * 2015-08-19 2019-04-17 Toyobo Co., Ltd. HEAT SHRINKABLE POLYESTER BASED FILM AND PACKAGING

Also Published As

Publication number Publication date
JP5895283B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
JP4882919B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP5286829B2 (ja) ラベル
JP5633808B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP4877056B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
WO2009107591A1 (ja) 白色熱収縮性ポリエステル系フィルム、白色熱収縮性ポリエステル系フィルムの製造方法、ラベル、及び包装体
JP5339061B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP5761282B2 (ja) 白色熱収縮性ポリエステル系フィルムの製造方法、白色熱収縮性ポリエステル系フィルム及び包装体
JP5257147B2 (ja) ラベル
JP2010000800A (ja) 熱収縮性ポリエステル系フィルム
JP2009226940A (ja) 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体
JP2009202445A (ja) 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体
JP5761281B2 (ja) 白色熱収縮性ポリエステル系フィルムの製造方法、白色熱収縮性ポリエステル系フィルム及び包装体
JP5895283B2 (ja) ラベル
JP5278821B2 (ja) 熱収縮性ポリエステル系フィルム
JP2009114422A (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP5637272B2 (ja) ラベル
JP2013227080A (ja) 包装体
JP5067473B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2009226949A (ja) 熱収縮性ポリスチレン系積層フィルムの製造方法、熱収縮性ポリスチレン系積層フィルム及び包装体
JP2009230123A (ja) ラベル
JP2009226948A (ja) 熱収縮性ポリスチレン系積層フィルム、およびその製造方法、包装体
JP2008208270A (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2009145649A (ja) ラベル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R151 Written notification of patent or utility model registration

Ref document number: 5895283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350