WO2010137185A1 - 塩及び淡水の併産装置及び方法 - Google Patents

塩及び淡水の併産装置及び方法 Download PDF

Info

Publication number
WO2010137185A1
WO2010137185A1 PCT/JP2009/064061 JP2009064061W WO2010137185A1 WO 2010137185 A1 WO2010137185 A1 WO 2010137185A1 JP 2009064061 W JP2009064061 W JP 2009064061W WO 2010137185 A1 WO2010137185 A1 WO 2010137185A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
salt
reverse osmosis
acid
concentrated
Prior art date
Application number
PCT/JP2009/064061
Other languages
English (en)
French (fr)
Inventor
竹内 和久
嘉晃 伊藤
英正 垣上
英夫 岩橋
克憲 松井
賢次 田中
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP09845246.9A priority Critical patent/EP2436657B1/en
Priority to ES09845246.9T priority patent/ES2651667T3/es
Priority to US13/202,927 priority patent/US8795531B2/en
Publication of WO2010137185A1 publication Critical patent/WO2010137185A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/18Details relating to membrane separation process operations and control pH control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2673Evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/19SO4-S
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a salt and fresh water co-production apparatus and method capable of producing salt and fresh water with a single facility.
  • Patent Document 2 proposes a method of re-supplying the diluted brine discharged from the electrodialyzer to the reverse osmosis device, which solves the problem of discharging concentrated seawater, but almost the total amount in seawater. There is a problem that the amount of water produced and the ratio of salt production cannot be adjusted. Furthermore, there is a problem that it is difficult to respond when there is a difference between the supply and demand of water and salt.
  • the present invention stably co-produces salt and water without discharging concentrated water having a higher concentration than seawater so as not to affect the environment while suppressing scale trouble in the reverse osmosis process. It is an object of the present invention to provide an apparatus and method for jointly producing salt and fresh water.
  • the first invention of the present invention for solving the above-mentioned problems includes a pretreatment device for filtering turbid components in raw water, an electrodialysis device for electrodialyzing pretreatment water from the pretreatment device, An evaporator for evaporating the concentrated brine that has been dialyzed by the electrodialyzer, a dryer for drying the condensed water from the evaporator to form a salt, and an acid addition unit for adding acid to the diluted brine from the electrodialyzer
  • a reverse osmosis membrane device having a reverse osmosis membrane that obtains fresh water as permeate by removing salt from the diluted brine containing the acid, and membrane separation concentrated water in which the salt from the reverse osmosis membrane device is concentrated Recycle line that returns a part of the wastewater to the downstream side of the pretreatment device, drainage line that drains the remaining branched concentrated water to the sea, and divalent ions and SO 4 2- ion in the recycled membrane separation concentrated water to be recycled
  • the second invention is a pretreatment device for filtering turbid components in raw water, an electrodialysis device for electrodialyzing pretreatment water from the pretreatment device, and evaporating concentrated brine water dialyzed by the electrodialysis device.
  • An evaporator that dries the condensed water from the evaporator to form a salt, an acid addition unit that adds acid to the diluted brine from the electrodialyzer, and a divalent solution from the diluted brine to which the acid has been added.
  • a nanofiltration membrane separation device that removes ions from the membrane, a reverse osmosis membrane device having a reverse osmosis membrane that obtains fresh water as permeated water by removing salt from the treated water from the nanofiltration membrane separation device, and the reverse osmosis membrane
  • a recycle line for returning the total amount of the membrane separation concentrated water concentrated in the apparatus to the downstream side of the pretreatment device, and a drainage line for draining the total amount of the membrane separation concentrated water from the nanofiltration membrane separation device to the sea area.
  • Recycled membrane separation for recycling in concentrated water Detecting the ion concentration of the valence of the ions and SO 4 2-ions, as these ions concentration is less than the saturation concentration of the gypsum, and emissions of exhaust membrane separation concentrated water discharged to sea, and the supply amount of the raw water
  • a salt and fresh water co-production device characterized in that the produced water is obtained by combining the evaporated water from the evaporator and the permeated water from the reverse osmosis membrane device.
  • a bypass line according to the second invention, wherein an acid is added to the diluted brine from the electrodialyzer, and a part of the bypass line bypasses the nanofiltration membrane separator and is supplied to the reverse osmosis membrane device. It is in the joint production apparatus of the salt and fresh water characterized by having.
  • a fourth invention is the salt and fresh water co-production apparatus according to the first or second invention, wherein the ion concentration is measured by an ion concentration meter.
  • turbid components in raw water are filtered with a pretreatment device, the pretreatment water is electrodialyzed, and the resulting concentrated brine is evaporated to produce a salt.
  • acid is added to brine and salt is removed from the acid-added dilute brine using a reverse osmosis membrane device to obtain fresh water as permeate, and the salt from the reverse osmosis membrane device is concentrated.
  • a part of the membrane separation concentrated water is returned to the downstream side of the pretreatment device, and when the remaining branched concentrated water is drained to the sea, the acid-added dilute brine is set to pH 7.3 or less to prevent scale generation.
  • turbid components in raw water are filtered with a pretreatment device, the pretreatment water is electrodialyzed, and the resulting concentrated brine is evaporated to produce a salt.
  • acid is added to the brine and the salt is removed from the acid-added diluted brine with a reverse osmosis membrane device to obtain permeated fresh water.
  • Membrane separation in which the pH of the brine is set to 7.3 or less to prevent the occurrence of scale, and divalent ions in dilute brine are removed using a nanofiltration membrane separator, and the salt content from the reverse osmosis membrane device is concentrated.
  • the total amount of the concentrated water is returned to the downstream side of the pretreatment device, and the total amount of the membrane separation concentrated water from the nanofiltration membrane separation device is drained to the sea area, and the divalent ions in the recycled membrane separation concentrated water are recycled.
  • ion concentration and SO 4 2-ions Salt and fresh water characterized by adjusting the ratio of the discharge amount of the membrane separation concentrated water discharged to the sea area and the supply amount of raw water so that the concentration of these ions is below the saturation concentration of gypsum It is in the method of concurrent birth.
  • the discharge amount of the membrane separation concentrated water discharged to the sea area and the supply amount of raw water so that the ion concentration in the membrane separation concentrated water to be recycled is equal to or lower than the saturated concentration of gypsum by the ion concentration meter.
  • FIG. 1 is a schematic diagram of a salt and fresh water co-production apparatus according to Example 1.
  • FIG. FIG. 2 is a schematic diagram of the salt and fresh water co-production apparatus according to the second embodiment.
  • FIG. 3 is a schematic diagram of another salt and fresh water co-production apparatus according to the second embodiment.
  • FIG. 4 is a graph showing the relationship between the discharge amount of membrane separation concentrated water / the amount of supplied seawater and the gypsum saturation.
  • FIG. 5 is a diagram showing the relationship between pH in dilute brackish water and Stiff and. Davis Stability Index.
  • FIG. 1 is a schematic view of a salt and fresh water co-production apparatus according to this embodiment.
  • the salt and freshwater co-production device 10 ⁇ / b> A includes a pretreatment device 12 that filters turbidity in supply seawater 11 that is raw water supplied through a line L 1, and the pretreatment device 12.
  • concentrated brine (concentrated salt water) 15 that is dialyzed by electrodialyzer 14 and supplied via line L 3.
  • an acid addition dilute brackish water 23 Remove the salt from the permeated water 24
  • a reverse osmosis membrane device 25 having a reverse osmosis membrane (RO membrane) 25a for obtaining fresh water and a part 26-1 of membrane separation concentrated water 26 in which the salt content from the reverse osmosis membrane device 25 is concentrated are pretreated.
  • RO membrane reverse osmosis membrane
  • a controller 31 for controlling the ratio between the amount of the membrane separation concentrated water 26-2 discharged and the amount of the supplied seawater 11 supplied, and the addition of the acid 21 from the acid adding unit 22 Reduce the pH of the added diluted brine 23 to 7.3 or less to prevent the occurrence of scale in the reverse osmosis unit 25, wherein with obtaining salt 18 from dryer 19, and supplies the vaporized water 28 supplied via the line L 9 from the evaporator 16 to a line L 9
  • the water (fresh water) 29 is obtained in combination with the permeated water 24 from the reverse osmosis membrane device 25.
  • the salt and fresh water co-production apparatus uses the ion concentration meter 30 to discharge the membrane into the sea area so that the ion concentration in the membrane separation concentrated water 26-1 to be recycled is equal to or lower than the saturated concentration of gypsum.
  • the control device 31 By controlling the ratio of the discharge amount of the separation concentrated water 26-2 and the supply amount of the supplied seawater 11 by the control device 31, a part 26-2 of the membrane separation concentrated water 26 is discharged to the sea area. The remaining portion 26-1 is recycled to the rear stage side of the pretreatment device 12.
  • the ratio of drained membrane separation concentrated water (drained to the sea area) 26-2 (the amount discharged into the sea area) / (membrane separated concentrated water (recycled)) is 0.32 or more and less than 1. I try to adjust the range. This is because, as shown in FIG. 4, when it is 0.32 or less, the gypsum saturation exceeds 100%, which is not preferable.
  • the acid supply to the diluted brine 20 supplied to the reverse osmosis membrane device 25 is adjusted by the acid addition unit 22 so that the pH is 7.3 or less. This is because, as shown in FIG. 5 showing the relationship between the pH in the diluted brine 20 and the Stiff and Davis Stability Index, the pH exceeds 0 when it exceeds 7.3, which is not preferable.
  • a membrane-separated concentrated water having a concentration equal to or less than the supplied seawater salt concentration a high salt concentration water is not supplied. It is possible to prevent adverse effects on the biological environment due to the accumulation of lumps on the coastal seabed. Further, by supplying the diluted brine 20 from the electrodialyzer 14 to the reverse osmosis membrane device 25, the supply pressure of the reverse osmosis membrane device 25 can be reduced, and energy efficiency can be saved. Can be made compact.
  • the pretreatment device 12 can be made compact. Therefore, as compared with the case where the membrane separation concentrated water is not recycled, the pretreatment device can be reduced to a maximum of 50%.
  • the diluted brine 20 and the membrane separation condensed water 26 from the electrodialysis device 14 are discharged. Since the Ca 2+ and SO 4 2 ⁇ concentration of the selenium can be reduced to a saturation concentration or less, the CaSO 4 is prevented from being deposited on the ion exchange membrane of the electrodialyzer 14 and the RO membrane 25a of the reverse osmosis membrane device 25. In addition, stable operation is possible.
  • the ion concentration meter 30 is provided to measure the ion concentration.
  • the present invention is not limited to this, for example, the electric conductivity in the supplied seawater 11 which is raw water. May be obtained by a conductivity meter, the concentration of divalent ions (Ca 2+ , Mg 2+ ) may be obtained, and the SO 4 2 ⁇ concentration may be obtained from the amount of acid added.
  • scale generation on the RO membrane 25a of the reverse osmosis membrane device 25 due to CaSO 4 which is similarly concerned about generation can be prevented by lowering the pH.
  • the acid 21 added from the acid addition part 22 it is preferable to use sulfuric acid practically, and it is preferable to use hydrochloric acid from the point of scale removal.
  • the membrane permeation characteristics of the Ca 2+ and SO 4 2 ⁇ ion concentrations differ. Therefore, each concentration in the RO concentrate with the highest Ca 2+ and SO 4 2- ion concentration was detected during operation, and “exhaust membrane separation concentrated water (drained into the sea area) so that it would be less than the gypsum saturation concentration”.
  • the control device 31 finely adjusts the valves V 1 and V 2 so that the ratio of “26-2 discharge to sea area” / “supply quantity of supplied seawater 11” is within the range of 0.32 to less than 1. I have to.
  • an existing method such as a chelate method or a gravimetric method can be applied.
  • the saturated concentration of gypsum is obtained in advance or experimentally.
  • the existing liquid density meter or electrical conductivity meter can be applied to the device for detecting the electrical conductivity of the membrane separation concentrated water and the discharge sea area.
  • the permeate recovery rate may be adjusted by changing the pressure of the acid-added diluted brine 23 supplied to the reverse osmosis membrane device 25.
  • the turbidity in the supplied seawater 11 as raw water is filtered by the pretreatment device 12, and the pretreatment water 13 is electrolyzed by the electrodialysis device 14.
  • the resulting concentrated brine 15 is evaporated to produce a salt 18, and an acid 21 is added to the diluted brine 20 after electrodialysis, and the salt content is removed from the acid-added diluted brine 23 by the reverse osmosis membrane device 25.
  • production water (fresh water) 29 as permeated water 24
  • a portion 26-1 of the membrane separation concentrated water 26 in which the salt content from the reverse osmosis membrane device 25 is concentrated is introduced.
  • the pH of the acid-added diluted brine 23 is set to 7.3 or less to prevent generation of scale and to recycle Recycled membrane separation concentrated water 26- Detecting the ion concentration of divalent ions and SO 4 2-ions in, so that these ions concentration is less than the saturation concentration of the gypsum, and emissions of exhaust membrane separation concentrated water 26-2 to discharge to waters Since the ratio with the supply amount of the raw water is adjusted, concentrated water having a higher concentration than seawater is discharged so as not to affect the environment while suppressing the scale trouble of the RO membrane 25a in the reverse osmosis membrane device 25. Without any problem, salt and water can be stably produced.
  • FIG. 2 is a schematic diagram of a salt and fresh water co-production apparatus according to the present embodiment.
  • the salt and fresh water co-production device 10 ⁇ / b> B is an acid obtained by adding an acid 21 to the diluted brine 20 from the electrodialysis device 14 in the salt and fresh water co-production device 10 ⁇ / b> A shown in FIG. 1.
  • a nanofiltration membrane separation device 41 for removing divalent ions from the added diluted brine 23 is provided.
  • the reverse osmosis membrane apparatus 25 which has the reverse osmosis membrane (RO membrane) 25a which removes the salt in the 1st permeated water 24A from this nanofiltration membrane separation apparatus 41, and obtains the fresh water which is the 2nd permeated water 24B Is provided on the rear side.
  • L 10 is a line for supplying the first permeated water 24A from the nanofiltration membrane separation device 41.
  • the entire amount of the second membrane separation concentrated water 26B enriched with the salt from the reverse osmosis membrane device 25 is returned to the line L 2 on the downstream side of the pretreatment device 12 by the recycle line L 6 , and the nanofiltration so that drained into the sea by the first film drainage the total amount of the separation concentrated water 26A line L 7 from the membrane separator 41.
  • the dilute brine 20 from the electrodialyzer 14 is all passed through the nanofiltration membrane separation device 41 to remove divalent ions, and as the first membrane separation concentrated water 26A, 2
  • the concentrated ion-concentrated water is drained to the sea area.
  • the treated water as the first permeated water 24A is supplied to the reverse osmosis device 25, and the total amount of the second membrane separation concentrated water 26B is recycled to the electrodialysis device 14 side, thereby reducing the amount of supplied seawater. I can do it.
  • the reverse osmosis membrane device 25 since the reverse osmosis membrane device 25 does not drain into the sea, the recovery rate of the production water 29 and the production amount of chlorine (salt 18) can be improved.
  • the turbidity in the supplied seawater 11 as raw water is filtered by the pretreatment device 12, and the pretreatment water 13 is filtered by the electrodialysis device 14.
  • Electrodialysis is performed to produce the salt 18 by evaporating the concentrated brine 15 obtained, and an acid 21 is added to the diluted brine 20 after the electrodialysis, and the salt content is reduced by the reverse osmosis membrane device 25 from the acid-added diluted brine 23.
  • the pH of the acid-added diluted brine 23 is set to 7.3 or less to prevent the occurrence of scale, and on the upstream side of the reverse osmosis membrane device 25 Then, divalent ions in the acid-added diluted brine 23 are removed using the nanofiltration membrane separator 41, and the total amount of the second membrane separation concentrated water 26B in which the salt content from the reverse osmosis membrane device 25 is concentrated is pretreated.
  • the total amount of the first membrane separation concentrated water 26A from the nanofiltration membrane separation device 41 is drained to the sea, and divalent ions and SO 4 2-ions in the second membrane separation concentrated water 26B to be recycled Since the concentration of the first membrane separation concentrated water discharged to the sea area and the supply amount of the raw water are adjusted so that these ion concentrations are below the saturated concentration of gypsum, While suppressing the scale trouble of the RO membrane 25a in the reverse osmosis membrane device 25, the salt and water can be stably co-produced without discharging concentrated water having a higher concentration than seawater so as not to affect the environment. It will be a thing.
  • FIG. 3 shows a modification of this embodiment.
  • co-producing apparatus 10C of salt and fresh water in co-producing apparatus 10B of salt and fresh water is shown in FIG. 2, further supplies the line L 5 for supplying dilute brine 20 from the electrodialysis device 14
  • a bypass line L 11 for bypassing the nanofiltration membrane separation device 41 to the line L 10 is provided to supply the acid-added diluted brine 23 directly to the reverse osmosis membrane device 25.
  • the bypass amount may be about 2/3 of the acid-added diluted brine 23. Therefore, about 1/3 of the acid-added diluted brine 23 is supplied to the nanofiltration membrane separator 41. Thereby, the equipment of the nanofiltration membrane separation apparatus 41 can be made compact.
  • Test Example 1 Fresh water of Test Example 1 using the apparatus of Example 1 that produces salt and fresh water, Test Example 2 using the apparatus of Example 2, Comparative Example 1 that does not recycle at all, and Comparative Example 2 that produces only salt
  • Table 1 shows the test results for the production ratio (vs. supply seawater), the wastewater ratio (vs supply seawater), and the chlorine recovery rate (concentrated brine / supply seawater).
  • the apparatus of Test Example 1 improved both the ratio of the amount of fresh water produced and the chlorine recovery rate. Also, the wastewater ratio was reduced.
  • the fresh water production ratio (vs. seawater supplied) was improved from 55.1 to 63.4% compared to Test Example 1 in which the nanofiltration membrane separation device 41 was not used.
  • Chlorine (proportional to salt recovery) improved from 72.9 to 85.8%.
  • the salt and freshwater co-production apparatus As described above, according to the salt and freshwater co-production apparatus according to the present invention, by draining water at a level equal to or less than the supply seawater salt concentration, It is possible to prevent adverse effects on the biological environment due to staying in the water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 前処理水13を電気透析する電気透析装置14と、電気透析装置14で透析された濃縮かん水15を蒸発する蒸発器16と、蒸発器16から供給される凝縮水17を乾燥して塩18とする乾燥器19と、酸が添加された希薄かん水から塩分を除去して透過水24である淡水を得るRO膜25aを有する逆浸透膜装置25と、塩分が濃縮された膜分離濃縮水26の一部を前処理装置12の後流側に戻すリサイクルラインと、残りの濃縮水を海域へ排水する排水ラインと、海域へ排出する排出膜分離濃縮水の排出量と、供給海水の供給量との割合を調整する制御を行う制御装置31とを具備してなり、酸21の添加によりpHを7.3以下とし、乾燥器19から塩18を得ると共に、蒸発器16からの蒸発水28と逆浸透膜装置25からの透過水24とを併合して製造水(淡水)29を得る。

Description

塩及び淡水の併産装置及び方法
 本発明は、塩及び淡水を一つの設備で製造することができる塩及び淡水の併産装置及び方法に関する。
 海水を最初に逆浸透装置に供給後脱塩し、透過水(造水)を得る一方、濃縮水を電気透析装置に供給し、濃縮水を蒸発器にてさらに濃縮し塩を得る(製塩)方法が提案されている(特許文献1及び2)。
 また、海水を最初に電気透析装置に供給後、濃縮かん水は蒸発装置でさらに濃縮後塩を得る一方、希薄かん水は、逆浸透装置に供給し透過水を得る方法が提案されている(特許文献3及び4)。
特開平9-276864号公報 特開2004-33848号公報 特開平8-318136号公報 特開平8-89958号公報
 しかしながら、従来の逆浸透法の場合、透過水(造水)が得られる一方、濃縮海水が生じるが、塩分が高いため、そのまま環境に排出すると生態系に影響を与えるのでその処理が近年課題になっている。
 特に、特許文献2の提案では、電気透析装置から排出される希薄かん水を逆浸透装置に再供給する方法が提案されており、濃縮海水の排出問題は解決されているが、海水中のほぼ全量の塩分を回収せざるを得ず、造水量と製塩量比の調整ができない、という問題がある。さらに、水と塩の供給量と需要量に差がある場合には、対応しにくい、という問題がある。
 一方、特許文献3及び4の提案では、電気透析装置から排出される希薄かん水は逆浸透装置に供給され、透過水が得られる。また同時に濃縮海水が生じるが、透過水の回収率を調整することで、濃縮海水濃度が電気透析装置に供給される原海水濃度以下とできる。
 その点においては、塩分の高い海水を環境中に排出する課題は解決されるが、以下の新たな課題が生じている。
1) 電気透析装置に使われているイオン交換膜はその一般的特性として、海水中の1価イオンに比較し2価イオンを通過させにくい性質をもつ。その結果海水の主成分である1価イオンのNa、Clは濃縮される一方、副成分のうち、2価のイオンとして溶解しているCa2+、Mg2+、CO3 2-、SO4 2-等は1価イオンに比較して濃縮されにくく、そのため希薄かん水中の上記イオン種の組成比は海水より高くなることとなる。
2) また、希薄かん水は後段の逆浸透膜に供給されて透過水を得るが、この際、濃縮側では上記2価イオンも濃縮され、これらは溶解度が小さいスケール成分として析出しやすく、逆浸透膜の表面に付着し、透過水量を減少させるいわゆるスケール付着が生じるという、問題がある。
 本発明は、前記問題に鑑み、逆浸透工程におけるスケールトラブルを抑制しつつ、環境に影響を与えないよう海水より濃度の高い濃縮水を排出することなく、塩と水を安定して併産する塩及び淡水の併産装置及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、原水中の濁質分を濾過する前処理装置と、前記前処理装置からの前処理水を電気透析する電気透析装置と、前記電気透析装置で透析された濃縮かん水を蒸発する蒸発器と、該蒸発器からの凝縮水を乾燥して塩とする乾燥器と、前記電気透析装置からの希薄かん水に酸を添加する酸添加部と、前記酸が添加された希薄かん水から塩分を除去して透過水である淡水を得る逆浸透膜を有する逆浸透膜装置と、前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の一部を前処理装置の後流側に戻すリサイクルラインと、分岐した残りの濃縮水を海域へ排水する排水ラインと、リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整する制御を行う制御装置とを具備してなり、前記酸添加部からの酸の添加により酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止し、前記乾燥器から塩を得ると共に、前記蒸発器からの蒸発水と逆浸透膜装置からの透過水とを併合して製造水を得る、ことを特徴とする塩及び淡水の併産装置にある。
 第2の発明は、原水中の濁質分を濾過する前処理装置と、前記前処理装置からの前処理水を電気透析する電気透析装置と、前記電気透析装置で透析された濃縮かん水を蒸発する蒸発器と、蒸発器からの凝縮水を乾燥して塩とする乾燥器と、前記電気透析装置からの希薄かん水に酸を添加する酸添加部と、酸が添加された希薄かん水から2価のイオンを除去するナノ濾過膜分離装置と、該ナノ濾過膜分離装置からの処理水中の塩分を除去して透過水である淡水を得る逆浸透膜を有する逆浸透膜装置と、前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の全量を前処理装置の後流側に戻すリサイクルラインと、前記ナノ濾過膜分離装置からの膜分離濃縮水の全量を海域へ排水する排水ラインと、リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整する制御を行う制御装置とを具備すると共に、酸添加部からの酸の添加により酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止し、前記乾燥器から塩を得ると共に、前記蒸発器からの蒸発水と逆浸透膜装置からの透過水とを併合して製造水を得る、ことを特徴とする塩及び淡水の併産装置にある。
 第3の発明は、第2の発明において、前記電気透析装置からの希薄かん水に酸を添加した後、その一部がナノ濾過膜分離装置を迂回して逆浸透膜装置へ供給するバイパスラインを有することを特徴とする塩及び淡水の併産装置にある。
 第4の発明は、第1又は第2の発明において、前記イオン濃度をイオン濃度計で計測することを特徴とする塩及び淡水の併産装置にある。
 第5の発明は、原水中の濁質分を前処理装置で濾過し、その前処理水を電気透析し、得られた濃縮かん水を蒸発して塩を製造すると共に、前記電気透析後の希薄かん水に酸を添加し、酸添加希薄かん水から逆浸透膜装置で塩分を除去して透過水である淡水を得る塩及び淡水の併産方法において、前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の一部を前処理装置の後流側に戻すと共に、分岐した残りの濃縮水を海域へ排水する際、前記酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止すると共に、リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整することを特徴とする塩及び淡水の併産方法にある。
 第6の発明は、原水中の濁質分を前処理装置で濾過し、その前処理水を電気透析し、得られた濃縮かん水を蒸発して塩を製造すると共に、前記電気透析後の希薄かん水に酸をし、酸添加希薄かん水から逆浸透膜装置で塩分を除去して透過水である淡水を得る塩及び淡水の併産方法において、逆浸透膜装置の前段側において、前記酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止すると共に、ナノ濾過膜分離装置を用いて希薄かん水中の2価イオンを除去し、前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の全量を前処理装置の後流側に戻すと共に、前記ナノ濾過膜分離装置からの膜分離濃縮水の全量を海域へ排水し、且つ、リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整することを特徴とする塩及び淡水の併産方法にある。
 本発明によれば、イオン濃度計により、リサイクルする膜分離濃縮水中のイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整する制御を制御装置で行うことにより、膜分離濃縮水の一部を海域に排出し、残部を前処理装置の後段側にリサイクルさせている。これによって、逆浸透膜装置におけるRO膜のスケールトラブルを抑制しつつ、環境に影響を与えないよう海水より濃度の高い濃縮水を排出することなく、塩と水を安定して併産することができるものとなる。
図1は、実施例1に係る塩及び淡水の併産装置の概略図である。 図2は、実施例2に係る塩及び淡水の併産装置の概略図である。 図3は、実施例2に係る他の塩及び淡水の併産装置の概略図である。 図4は、膜分離濃縮水の排出量/供給海水量と、石膏飽和度との関係を示す図である。 図5は、希薄かん水中のpHとStiff and. Davis Stability Indexとの関係を示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例1に係る塩及び淡水の併産装置について、図面を参照して説明する。図1は、本実施例に係る塩及び淡水の併産装置の概略図である。
 図1に示すように、塩及び淡水の併産装置10Aは、ラインL1により供給される原水である供給海水11中の濁質分を濾過する前処理装置12と、前記前処理装置12からラインL2を介して供給される前処理水13を電気透析する電気透析装置14と、前記電気透析装置14で透析され、ラインL3を介して供給される濃縮かん水(濃縮塩水)15を蒸発する蒸発器16と、該蒸発器16からラインL4を介して供給される凝縮水17を乾燥して塩18とする乾燥器19と、前記電気透析装置14からラインL5を介して供給される希薄かん水(Ca塩とMg塩が多くて、Na塩が少ない)20に酸(例えば硫酸又は塩酸等)21を添加する酸添加部22と、前記酸21が添加された酸添加希薄かん水23から塩分を除去して透過水24である淡水を得る逆浸透膜(RO膜)25aを有する逆浸透膜装置25と、前記逆浸透膜装置25からの塩分が濃縮された膜分離濃縮水26の一部26-1を前処理装置12の後流側のラインL2に戻すリサイクルラインL6と、分岐した残りの濃縮水26-2を海域へ排水する排水ラインL7と、前記リサイクルするリサイクル膜分離濃縮水26-1中の2価のイオン(Ca2+、Mg2+)及びSO4 2-イオンのイオン濃度をイオン濃度計30で検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水26-2の排出量と、供給海水11の供給量との割合を調整する制御を行う制御装置31とを具備してなり、前記酸添加部22からの酸21の添加により酸添加希薄かん水23のpHを7.3以下として前記逆浸透膜装置25でのスケールの発生を防止し、前記乾燥器19から塩18を得ると共に、前記蒸発器16からラインL9を介して供給される蒸発水28をラインL9に供給し、逆浸透膜装置25からの透過水24と併合して製造水(淡水)29を得るものである。
 本実施例に係る塩及び淡水の併産装置は、イオン濃度計30により、リサイクルする膜分離濃縮水26-1中のイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水26-2の排出量と、供給海水11の供給量との割合を調整する制御を制御装置31で行うことにより、膜分離濃縮水26の一部26-2を海域に排出し、残部26-1を前処理装置12の後段側にリサイクルさせている。これによって、逆浸透膜装置25におけるRO膜25aのスケールトラブルを抑制しつつ、環境に影響を与えないよう海水より濃度の高い濃縮水を排出することなく、塩と水を安定して併産することができるものとなる。
 また、スケールトラブルを解消するには、排水膜分離濃縮水(海域へ排水)26-2の(海域への排出量)/(膜分離濃縮水(リサイクル))比を0.32以上1未満の範囲に調整するようにしている。
 これは、図4に示すように、0.32以下であると、石膏飽和度が100%を超えることとなり、好ましくないからである。
 また、逆浸透膜装置25に供給する希薄かん水20への酸の供給は、pHは7.3以下となるよう酸添加部22により調整するようにしている。
 これは、希薄かん水20中のpHとStiff and. Davis Stability Indexとの関係を示す図5に示すように、pHが7.3を超えると0を超えることとなり、好ましくないからである。
 よって、本発明によれば、供給海水塩濃度と同程度かそれ以下の膜分離濃縮水とすることで、高塩濃度のものを供給することがないので、海底に高塩濃度高密度の水塊が沿岸海底に滞留することによる生物環境への悪影響を防止することができる。
 また、電気透析装置14からの希薄かん水20を逆浸透膜装置25に供給することで、逆浸透膜装置25の供給圧力を下げられることとなり、エネルギー効率の省力化を図ることができ、また装置のコンパクト化が図れる。
 また、膜分離濃縮水26の一部26-1を前処理装置12と電気透析装置14との間のラインL2にリサイクルすることで、原水である海水の供給量を減らせることとなるので、前処理装置12のコンパクト化を図ることができる。
 よって、膜分離濃縮水をリサイクルしない場合に比較して、前処理装置は最大50%にまでコンパクト化が可能となる。
 逆浸透膜装置25からの膜分離濃縮水26の一部26-1をリサイクルして、残り26-2を海域へ排出することで、電気透析装置14からの希薄かん水20及び膜分離縮水26中のCa2+及びSO4 2-濃度が飽和濃度以下とすることができるので、CaSO4が電気透析装置14のイオン交換膜及び逆浸透膜装置25のRO膜25a上に析出付着することを防止し、安定運転が可能となる。
 ここで、本実施例においては前記イオン濃度を計測するためにイオン濃度計30を設けているが、本発明はこれに限定されるものではなく、例えば原水である供給海水11中の電気伝導度を伝導度計で求め、2価イオン(Ca2+、Mg2+)の濃度を求め、また添加する酸の添加量からSO4 2-濃度を求めるようにしてもよい。
 また、pHを下げることで同様に発生が懸念されるCaSO4による逆浸透膜装置25のRO膜25a上のスケール発生を防止することができる。
 ここで、酸添加部22から添加する酸21としては、実用的には硫酸とするのが好ましく、スケール除去の点からは塩酸とするのが好ましい。
 これに対し、先願のRO濃縮水の海域への排出量をゼロとし、全量リサイクルする方法では、上記のスケール発生による不都合が起きるため、実用化できないものとなる。
 電気透析装置14と逆浸透膜装置25の運転条件、イオン交換膜、逆浸透膜の特性や経年変化によっては、Ca2+及びSO4 2-イオン濃度の膜透過特性が異なる。
 そこで、Ca2+及びSO4 2-イオン濃度が最も高くなるRO濃縮液中のそれぞれの濃度を運転中に検出し、石膏飽和濃度以下となるよう、「排出膜分離濃縮水(海域へ排水)26-2の海域への排出量」/「供給海水11の供給量」比を0.32以上1未満の範囲で、できるだけ小さくなるよう制御装置31でバルブV1、V2を微調整するようにしている。
 これにより、石膏の膜への析出付着を防止し、安定運転を確保しながら、供給海水量を最小とできるので、前処理の負荷が減少し、前処理装置の省エネ運転が可能となる。
 前記イオン濃度計30により、Ca2+及びSO4 2-イオン濃度の検出には、例えばキレート法、重量法等の既存の方法が適用可能である。石膏の飽和濃度はあらかじめ計算あるいは実験的に求めている。
 膜分離濃縮水と排出海域の電気伝導度を検出する装置も、既存の液密度計あるいは電気伝導度計が適用可能である。
 また、逆浸透膜装置25に供給する酸添加希薄かん水23の圧力を変化させることで透過水回収率を調整するようにしてもよい。
 このように、本発明の塩及び淡水の併産方法によれば、原水である供給海水11中の濁質分を前処理装置12で濾過し、その前処理水13を電気透析装置14で電気透析し、得られた濃縮かん水15を蒸発して塩18を製造すると共に、前記電気透析後の希薄かん水20に酸21を添加し、酸添加希薄かん水23から逆浸透膜装置25で塩分を除去して透過水24である製造水(淡水)29を得る塩及び淡水の併産方法において、前記逆浸透膜装置25からの塩分が濃縮された膜分離濃縮水26の一部26-1を前処理装置12の後流側に戻すと共に、分岐した残りの濃縮水26-2を海域へ排水する際、前記酸添加希薄かん水23のpHを7.3以下としてスケールの発生を防止すると共に、リサイクルするリサイクル膜分離濃縮水26-1中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水26-2の排出量と、原水の供給量との割合を調整するようにするので、逆浸透膜装置25におけるRO膜25aのスケールトラブルを抑制しつつ、環境に影響を与えないよう海水より濃度の高い濃縮水を排出することなく、塩と水を安定して併産することができるものとなる。
 本発明による実施例2に係る塩及び淡水の併産装置について、図面を参照して説明する。図2は、本実施例に係る塩及び淡水の併産装置の概略図である。
 図2に示すように、塩及び淡水の併産装置10Bは、図1に示す塩及び淡水の併産装置10Aにおいて、さらに、電気透析装置14からの希薄かん水20に酸21が添加された酸添加希薄かん水23から2価のイオンを除去するナノ濾過膜分離装置41を設けたものである。そして、該ナノ濾過膜分離装置41からの第1の透過水24A中の塩分を除去して第2の透過水24Bである淡水を得る逆浸透膜(RO膜)25aを有する逆浸透膜装置25をその後段側に設けている。なお、図2中、L10はナノ濾過膜分離装置41からの第1の透過水24Aを供給するラインである。
 そして、前記逆浸透膜装置25からの塩分が濃縮された第2の膜分離濃縮水26Bの全量をリサイクルラインL6により前処理装置12の後流側のラインL2に戻すと共に、前記ナノ濾過膜分離装置41からの第1の膜分離濃縮水26Aの全量を排水ラインL7により海域へ排水するようにしている。
 本実施例によれば、電気透析装置14からの希薄かん水20の全部をナノ濾過膜分離装置41に通過させることで、2価イオンを除去処理し、第1の膜分離濃縮水26Aとして、2価イオン濃縮水を海域へ排水するようにしている。これと共に、第1の透過水24Aである処理水を該逆浸透装置25に供給し、第2の膜分離濃縮水26Bの全量を電気透析装置14側にリサイクルすることで、供給海水量を減すことができる。
 また、逆浸透膜装置25からは海域に排水をしないので、製造水29の回収率及び塩素(塩18)の製造量を向上できる。
 また、逆浸透膜装置25からの第2の膜分離濃縮水26Bの全部をリサイクルすることで、系内にCa2+及びSO4 2-イオン濃度が蓄積し、石膏スケール生成の懸念が生じるが、ナノ濾過膜分離装置41により、2価イオンのCa2+及びSO4 2-イオンを除去し、系外に排出するので飽和濃度以下とすることができ、その不都合が解消できる。
 このように、本発明に係る塩及び淡水の併産方法によれば、原水である供給海水11中の濁質分を前処理装置12で濾過し、その前処理水13を電気透析装置14で電気透析し、得られた濃縮かん水15を蒸発して塩18を製造すると共に、前記電気透析後の希薄かん水20に酸21を添加し、酸添加希薄かん水23から逆浸透膜装置25で塩分を除去して透過水である淡水を得る塩及び淡水の併産方法において、前記酸添加希薄かん水23のpHを7.3以下としてスケールの発生を防止すると共に、逆浸透膜装置25の前段側において、ナノ濾過膜分離装置41を用いて酸添加希薄かん水23中の2価イオンを除去し、前記逆浸透膜装置25からの塩分が濃縮された第2の膜分離濃縮水26Bの全量を前処理装置12の後流側に戻すと共に、前記ナノ濾過膜分離装置41からの第1の膜分離濃縮水26Aの全量を海域へ排水し、且つ、リサイクルする第2の膜分離濃縮水26B中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する第1の膜分離濃縮水の排出量と、原水の供給量との割合を調整するので、逆浸透膜装置25におけるRO膜25aのスケールトラブルを抑制しつつ、環境に影響を与えないよう海水より濃度の高い濃縮水を排出することなく、塩と水を安定して併産することができるものとなる。
 また、図3に本実施例の変形例を示す。
 図3に示すように、塩及び淡水の併産装置10Cは、図2に示す塩及び淡水の併産装置10Bにおいて、さらに、電気透析装置14からの希薄かん水20を供給する供給するラインL5から分岐して、ナノ濾過膜分離装置41をラインL10にバイパスするバイパスラインL11を設け、酸添加希薄かん水23を直接逆浸透膜装置25に供給するようにしている。
 これは、海域へ排出するための第1の膜分離濃縮水26Aの処理量以上をナノ濾過膜分離装置41に送ることなく、リサイクルするためである。
 バイパスするバイパス量は、酸添加希薄かん水23の2/3程度とすればよい。
 よって、ナノ濾過膜分離装置41へは酸添加希薄かん水23を1/3程度供給するようにしている。
 これにより、ナノ濾過膜分離装置41の設備のコンパクト化を図ることができる。
 [試験例]
 塩と淡水を併産する実施例1の装置を用いた試験例1、実施例2の装置を用いた試験例2、リサイクルを全くしない比較例1、及び塩のみを製造する比較例2の淡水製造量比(対供給海水)、排水量比(対供給海水)及び塩素回収率(濃縮かん水/供給海水)について、試験した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 このように、試験例1の装置は、比較例1及び比較例2に較べて、淡水の製造量の比率及び塩素回収率が共に向上した。また排水量比は低減した。
 また、試験例2においては、ナノ濾過膜分離装置41を用いない試験例1に較べて、淡水製造量比(対供給海水)は55.1から63.4%に向上した。また、塩素(塩の回収率に比例)は72.9から85.8%に向上した。
 以上のように、本発明に係る塩及び淡水の併産装置によれば、供給海水塩濃度と同程度かそれ以下の排水をすることで、海底に高塩濃度高密度の水塊が沿岸海底に滞留することによる生物環境への悪影響を防止することができる。
 10A、10B、10C 塩及び淡水の併産装置
 11 供給海水
 12 前処理装置
 13 前処理水
 14 電気透析装置
 15 濃縮かん水(濃縮塩水)
 16 蒸発器
 17 凝縮水
 18 塩
 19 乾燥器
 20 希薄かん水
 21 酸
 22 酸添加部
 23 酸添加希薄かん水
 24 透過水
 25a 逆浸透膜(RO膜)
 25 逆浸透膜装置
 26、26-1、26-2 膜分離濃縮水
 26A 第1の膜分離濃縮水
 26B 第2の膜分離濃縮水
 28 蒸発水
 29 製造水(淡水)

Claims (6)

  1.  原水中の濁質分を濾過する前処理装置と、
     前記前処理装置からの前処理水を電気透析する電気透析装置と、
     前記電気透析装置で透析された濃縮かん水を蒸発する蒸発器と、
     該蒸発器からの凝縮水を乾燥して塩とする乾燥器と、
     前記電気透析装置からの希薄かん水に酸を添加する酸添加部と、
     前記酸が添加された希薄かん水から塩分を除去して透過水である淡水を得る逆浸透膜を有する逆浸透膜装置と、
     前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の一部を前処理装置の後流側に戻すリサイクルラインと、
     分岐した残りの濃縮水を海域へ排水する排水ラインと、
     リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整する制御を行う制御装置とを具備してなり、
     前記酸添加部からの酸の添加により酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止し、
     前記乾燥器から塩を得ると共に、前記蒸発器からの蒸発水と逆浸透膜装置からの透過水とを併合して製造水を得る、ことを特徴とする塩及び淡水の併産装置。
  2.  原水中の濁質分を濾過する前処理装置と、
     前記前処理装置からの前処理水を電気透析する電気透析装置と、
     前記電気透析装置で透析された濃縮かん水を蒸発する蒸発器と、
     蒸発器からの凝縮水を乾燥して塩とする乾燥器と、
     前記電気透析装置からの希薄かん水に酸を添加する酸添加部と、
     酸が添加された希薄かん水から2価のイオンを除去するナノ濾過膜分離装置と、該ナノ濾過膜分離装置からの処理水中の塩分を除去して透過水である淡水を得る逆浸透膜を有する逆浸透膜装置と、
     前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の全量を前処理装置の後流側に戻すリサイクルラインと、
     前記ナノ濾過膜分離装置からの膜分離濃縮水の全量を海域へ排水する排水ラインと、
     リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整する制御を行う制御装置とを具備すると共に、
     酸添加部からの酸の添加により酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止し、
     前記乾燥器から塩を得ると共に、前記蒸発器からの蒸発水と逆浸透膜装置からの透過水とを併合して製造水を得る、ことを特徴とする塩及び淡水の併産装置。
  3.  請求項2において、
     前記電気透析装置からの希薄かん水に酸を添加した後、その一部がナノ濾過膜分離装置を迂回して逆浸透膜装置へ供給するバイパスラインを有することを特徴とする塩及び淡水の併産装置。
  4.  請求項1又は2において、
     前記イオン濃度をイオン濃度計で計測することを特徴とする塩及び淡水の併産装置。
  5.  原水中の濁質分を前処理装置で濾過し、その前処理水を電気透析し、得られた濃縮かん水を蒸発して塩を製造すると共に、
     前記電気透析後の希薄かん水に酸を添加し、酸添加希薄かん水から逆浸透膜装置で塩分を除去して透過水である淡水を得る塩及び淡水の併産方法において、
     前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の一部を前処理装置の後流側に戻すと共に、
     分岐した残りの濃縮水を海域へ排水する際、
     前記酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止すると共に、
     リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整することを特徴とする塩及び淡水の併産方法。
  6.  原水中の濁質分を前処理装置で濾過し、その前処理水を電気透析し、得られた濃縮かん水を蒸発して塩を製造すると共に、
     前記電気透析後の希薄かん水に酸をし、酸添加希薄かん水から逆浸透膜装置で塩分を除去して透過水である淡水を得る塩及び淡水の併産方法において、
     前記酸添加希薄かん水のpHを7.3以下としてスケールの発生を防止すると共に、
     逆浸透膜装置の前段側において、ナノ濾過膜分離装置を用いて希薄かん水中の2価イオンを除去し、
     前記逆浸透膜装置からの塩分が濃縮された膜分離濃縮水の全量を前処理装置の後流側に戻すと共に、前記ナノ濾過膜分離装置からの膜分離濃縮水の全量を海域へ排水し、且つ、
     リサイクルするリサイクル膜分離濃縮水中の2価のイオン及びSO4 2-イオンのイオン濃度を検出し、これらのイオン濃度が石膏の飽和濃度以下となるように、海域へ排出する排出膜分離濃縮水の排出量と、原水の供給量との割合を調整することを特徴とする塩及び淡水の併産方法。
PCT/JP2009/064061 2009-05-28 2009-08-07 塩及び淡水の併産装置及び方法 WO2010137185A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09845246.9A EP2436657B1 (en) 2009-05-28 2009-08-07 Apparatus and process for producing both salt and fresh water
ES09845246.9T ES2651667T3 (es) 2009-05-28 2009-08-07 Aparato y procedimiento para producir tanto sal como agua dulce
US13/202,927 US8795531B2 (en) 2009-05-28 2009-08-07 Co-producing apparatus for salt and fresh water and co-producing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-129468 2009-05-28
JP2009129468A JP5330901B2 (ja) 2009-05-28 2009-05-28 塩及び淡水の併産装置及び方法

Publications (1)

Publication Number Publication Date
WO2010137185A1 true WO2010137185A1 (ja) 2010-12-02

Family

ID=43222321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064061 WO2010137185A1 (ja) 2009-05-28 2009-08-07 塩及び淡水の併産装置及び方法

Country Status (6)

Country Link
US (1) US8795531B2 (ja)
EP (1) EP2436657B1 (ja)
JP (1) JP5330901B2 (ja)
ES (1) ES2651667T3 (ja)
SA (1) SA109300678B1 (ja)
WO (1) WO2010137185A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902800A (zh) * 2017-12-01 2018-04-13 山东省盐业集团有限公司 海盐生产膜法海卤水浓缩方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046422A (ja) * 2011-11-02 2012-03-08 Mitsubishi Heavy Ind Ltd 製塩装置及び製塩方法
JP2013158750A (ja) * 2012-02-08 2013-08-19 Omega:Kk 淡水化方法
US20140091039A1 (en) * 2012-09-28 2014-04-03 General Electric Company System and method for the treatment of hydraulic fracturing backflow water
JP6189422B2 (ja) * 2013-04-18 2017-08-30 三菱重工業株式会社 水処理システム
AU2014285450B2 (en) * 2013-07-05 2016-11-24 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment method, and water treatment system
JP6189205B2 (ja) * 2013-12-18 2017-08-30 三菱重工業株式会社 濃縮装置のスケール検知装置及び方法、水の再生処理システム
CN106957119A (zh) * 2016-01-11 2017-07-18 深圳市嘉泉膜滤设备有限公司 反渗透电渗析海水淡化工艺
CN105540965A (zh) * 2016-01-29 2016-05-04 常州市鼎升环保科技有限公司 一种淋浴废水循环使用装置
US10207935B2 (en) * 2016-01-31 2019-02-19 Qatar Foundation For Education, Science And Community Development Hybrid desalination system
CN105859006A (zh) * 2016-05-23 2016-08-17 海博伦(苏州)环境科技股份有限公司 一种脱硫废水回用及零排放系统及工艺
TWI585046B (zh) * 2016-08-26 2017-06-01 A mixture of high magnesium content concentrate and high magnesium content of drinking water
US10647591B2 (en) 2016-08-26 2020-05-12 Quality Pure Co., Ltd. High-magnesium concentrated liquid
CN106746130A (zh) * 2017-01-20 2017-05-31 苏州新能环境技术股份有限公司 一种高含盐浓水零排放处理系统及工艺方法
CN108623054B (zh) * 2018-07-16 2024-01-19 南京工业大学 一种多膜集成的制浆造纸废水零排放处理方法及装置
SG10201908838XA (en) * 2019-09-24 2021-04-29 Bl Technologies Inc Wastewater treatment system with membrane bioreactor, electrodialysis and reverse osmosis
CN112850987A (zh) * 2021-01-27 2021-05-28 上海科保化工有限公司 一种零排放中水回用系统
US11331592B1 (en) * 2021-08-25 2022-05-17 Olimax Inc Salt recovery system
CN114656072A (zh) * 2022-02-27 2022-06-24 杭州美易环境科技有限公司 一种含有机物高含盐工业废水中有机物与盐的分离方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889958A (ja) 1994-09-26 1996-04-09 Ishigaki Mech Ind Co 海水の淡水化装置
JPH08318136A (ja) 1995-05-25 1996-12-03 Sumitomo Heavy Ind Ltd 海水の淡水化及び製塩法
JPH09276864A (ja) 1996-04-12 1997-10-28 Toray Eng Co Ltd 海水処理装置
JPH09290260A (ja) * 1996-04-24 1997-11-11 Sachiko Hayashi 飲料水および塩の製造方法および製造装置
JP2001087762A (ja) * 1999-09-27 2001-04-03 Nkk Corp 海洋深層水による水、その製造方法、その製造装置
JP2002292371A (ja) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk 海洋深層水より分離した淡水と濃縮深層水とミネラル濃縮液と濃縮塩水と苦汁と特殊塩
JP2004033848A (ja) 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd 逆浸透膜を用いたかん水製造装置及びかん水製造方法
JP2004290894A (ja) * 2003-03-27 2004-10-21 Taisei Corp 海洋深層水脱塩処理システム
JP2005279384A (ja) * 2004-03-29 2005-10-13 Aroma Kagaku Kikai Kogyo:Kk 海水から理想的な飲料水を製造する方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083781A (en) * 1976-07-12 1978-04-11 Stone & Webster Engineering Corporation Desalination process system and by-product recovery
US4539091A (en) * 1980-03-26 1985-09-03 Babcock-Hitachi, Ltd. Electrodialysis desalination process and system for seawater
US4574049B1 (en) * 1984-06-04 1999-02-02 Ionpure Filter Us Inc Reverse osmosis system
IT1243991B (it) * 1990-10-30 1994-06-28 Ionics Italba Spa Procedimento per la depurazione dell'acqua mediante una combinazione di unita' di separazione a membrane e relativo impianto
FR2678260B1 (fr) * 1991-06-26 1994-02-18 Otv Sa Chaine de traitement des eaux de surface a barriere de securite, barriere de securite, et applications correspondantes.
US5814224A (en) * 1996-08-12 1998-09-29 Institut Geokhimii I Analiticheskoi Khimii Im.V.I.Vernadskogo Ran (Geokhi Ran) Method for complex processing of sea-water
US6783682B1 (en) * 1999-08-20 2004-08-31 L.E.T., Leading Edge Technologies Limited Salt water desalination process using ion selective membranes
US7264737B2 (en) * 2001-10-05 2007-09-04 Ionics, Incorporated Control of water treatment system with low level boron detection
EP1329425A1 (en) * 2002-01-18 2003-07-23 Toray Industries, Inc. Desalination method and desalination apparatus
ES2393749T3 (es) * 2002-08-02 2012-12-27 University Of South Carolina Producción de agua purificada y productos químicos de alto valor a partir de agua salada
US6863822B2 (en) * 2002-10-16 2005-03-08 Anthony Pipes Method and apparatus for parallel desalting
US20050103717A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
ES2341547T3 (es) * 2003-12-07 2010-06-22 Ben-Gurion University Of The Negev Research And Development Authority Metodo y sistema para aumentar la recuperacion y prevenir el ensuciamiento por precipitacion en procedimientos de membrana sometidos a presion.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889958A (ja) 1994-09-26 1996-04-09 Ishigaki Mech Ind Co 海水の淡水化装置
JPH08318136A (ja) 1995-05-25 1996-12-03 Sumitomo Heavy Ind Ltd 海水の淡水化及び製塩法
JPH09276864A (ja) 1996-04-12 1997-10-28 Toray Eng Co Ltd 海水処理装置
JPH09290260A (ja) * 1996-04-24 1997-11-11 Sachiko Hayashi 飲料水および塩の製造方法および製造装置
JP2001087762A (ja) * 1999-09-27 2001-04-03 Nkk Corp 海洋深層水による水、その製造方法、その製造装置
JP2002292371A (ja) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk 海洋深層水より分離した淡水と濃縮深層水とミネラル濃縮液と濃縮塩水と苦汁と特殊塩
JP2004033848A (ja) 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd 逆浸透膜を用いたかん水製造装置及びかん水製造方法
JP2004290894A (ja) * 2003-03-27 2004-10-21 Taisei Corp 海洋深層水脱塩処理システム
JP2005279384A (ja) * 2004-03-29 2005-10-13 Aroma Kagaku Kikai Kogyo:Kk 海水から理想的な飲料水を製造する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902800A (zh) * 2017-12-01 2018-04-13 山东省盐业集团有限公司 海盐生产膜法海卤水浓缩方法

Also Published As

Publication number Publication date
JP5330901B2 (ja) 2013-10-30
EP2436657A1 (en) 2012-04-04
US20110303606A1 (en) 2011-12-15
JP2010274202A (ja) 2010-12-09
SA109300678B1 (ar) 2014-05-21
ES2651667T3 (es) 2018-01-29
EP2436657B1 (en) 2017-10-04
US8795531B2 (en) 2014-08-05
EP2436657A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5330901B2 (ja) 塩及び淡水の併産装置及び方法
Schütte et al. Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode
Zhang et al. Fracsis: Ion fractionation and metathesis by a NF-ED integrated system to improve water recovery
She et al. Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications
CN107089752B (zh) 脱硫废水的处理方法
JP5941629B2 (ja) 水浄化システム及び水浄化方法
JP5873771B2 (ja) 有機性廃水の処理方法及び処理装置
US9988293B2 (en) Desalination system and desalination method
US20140227151A1 (en) Recovery and purification of monovalent salt contaminated with divalent salt
WO2012120912A1 (ja) 淡水製造システム
AU2014367973B2 (en) Scale detection device and method for concentrating device, and water reclamation processing system
CN102381782B (zh) 一种羧甲基纤维素生产废水的资源化处理方法
US20180162753A1 (en) Desalination apparatus and desalination method using same
CN208120896U (zh) 可资源回收利用的电厂脱硫废水零排放处理装置
JP3800450B2 (ja) 高濃度の塩類を含有する有機性廃水の処理方法及び装置
Wang et al. Effects on the purification of tannic acid and natural dissolved organic matter by forward osmosis membrane
JP2019081134A (ja) 海水淡水化方法および海水淡水化システム
KR20150070895A (ko) 유기산 염을 이용한 정삼투용 유도 용액 및 이의 용도
CN110272061B (zh) 一种制盐方法
KR20150143062A (ko) 해수 중 음이온 제거 및 탄산이온 전환을 이용한 미네랄 농축수 제조방법
Fei et al. Calcium phosphate scaling in osmotically driven membrane processes: Limiting flux behavior and its implications for scaling mitigation
JP5277559B2 (ja) リン酸含有水からリン酸を回収する方法および装置
TWI325848B (en) High-effect manufacturing procedure for producing ro water and mineral water from deep seawater
JP3271744B2 (ja) 電気透析装置による脱塩方法
WO2019180788A1 (ja) 塩分濃縮装置及び塩分濃縮装置のスケール検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845246

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009845246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009845246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13202927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE