WO2012120912A1 - 淡水製造システム - Google Patents

淡水製造システム Download PDF

Info

Publication number
WO2012120912A1
WO2012120912A1 PCT/JP2012/050013 JP2012050013W WO2012120912A1 WO 2012120912 A1 WO2012120912 A1 WO 2012120912A1 JP 2012050013 W JP2012050013 W JP 2012050013W WO 2012120912 A1 WO2012120912 A1 WO 2012120912A1
Authority
WO
WIPO (PCT)
Prior art keywords
osmosis membrane
osmotic pressure
fresh water
solution
membrane treatment
Prior art date
Application number
PCT/JP2012/050013
Other languages
English (en)
French (fr)
Inventor
浩人 横井
晃治 陰山
豊 三宮
田所 秀之
隆広 舘
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012120912A1 publication Critical patent/WO2012120912A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to a fresh water production system that obtains fresh water from seawater or sewage effluent using a forward osmosis membrane.
  • the reverse osmosis membrane is made of materials such as cellulose and polyamide.
  • the reverse osmosis membrane is applied with a pressure more than twice the osmotic pressure of seawater (about 2.5 MPa), and water permeates the membrane, Fresh water can be obtained without permeating the membrane.
  • the power of the high-pressure pump for applying a pressure more than twice the osmotic pressure of seawater to the reverse osmosis membrane accounts for most of the cost of seawater desalination by the reverse osmosis membrane.
  • Patent Document 1 discloses a method for obtaining fresh water from seawater using a reverse osmosis membrane.
  • a high-pressure pump that supplies raw water to a predetermined high pressure, a high-pressure reverse osmosis device equipped with a high-pressure reverse osmosis membrane that concentrates the salinity of the high-pressure supply water set to high pressure, and a permeate line that supplies permeate to the downstream side
  • a first drainage valve that is interposed and temporarily drains the permeated water in the initial stage of startup from the drainage line; and a permeate water line that is downstream of the first drainage valve, and passes the permeate to a predetermined low pressure.
  • a low pressure reverse osmosis device equipped with a low pressure reverse osmosis membrane for concentrating salt in the low pressure feed water that has been made low pressure by the low pressure pump, and a low pressure reverse osmosis device. It has a configuration including a second drain valve that temporarily discharges the low-pressure feed water at the start-up time supplied to the reverse osmosis device. It is said that high-quality water can be produced by reverse osmosis of high pressure and low pressure.
  • water in seawater is once recovered into a high-concentration (high osmotic pressure) solution through an osmotic membrane made of a material such as cellulose, and then salted from the high osmotic pressure solution.
  • This method is called the forward osmosis membrane method because water flows in the solution side where the osmotic pressure is high, that is, in the positive direction.
  • energy for freshwater production may be reduced by selecting a salt that can be easily separated from the solution as a salt added to the hyperosmotic pressure solution.
  • Non-Patent Document 1 discloses a method of recovering water from seawater using a forward osmosis membrane.
  • An NH 4 HCO 3 solution in which NH 3 and CO 2 are dissolved is used as a high osmotic pressure solution for recovering water.
  • Experiments are conducted in the range of 1.1 to 6 mol / L of the high osmotic pressure solution to measure the flux using the osmotic pressure as a driving force and the salt (NaCl) concentration to be transmitted.
  • 95% or more of salt in NaCl solution simulating seawater can be separated.
  • a process for separating NH 3 and CO 2 from a high osmotic pressure solution is proposed.
  • Patent Document 2 water to be treated is brought into contact with one surface of the first semipermeable membrane, and an intermediate solution whose solubility depends on temperature is kept at a relatively high temperature in the other side of the first semipermeable membrane.
  • a precipitation step for precipitating the solute) a moisture releasing step for bringing the mediator solution after the depositing step into contact with the second semipermeable membrane at a fluid pressure at which the moisture of the mediator solution can be released through the second semipermeable membrane,
  • An apparatus for producing fresh water is described.
  • Patent Document 2 The conventional technique described in [Patent Document 2] describes that an alum aqueous solution is used as a mediating solute, that is, a hyperosmotic solution.
  • This alum aqueous solution for example, AlK (SO 4 ) 2 has a characteristic that the concentration with respect to the temperature rises slowly, and it is necessary to raise the temperature to about 40 ° C. There is a problem that the cost is high. Further, AlK (SO 4 ) 2 has a problem that the pH is close to 3 and the apparatus is easily corroded.
  • An object of the present invention is to provide a fresh water production system that can obtain fresh water quality that is better than a predetermined quality and that can reduce running costs.
  • the present invention comprises a forward osmosis membrane treatment means for removing salt from raw water through a forward osmosis membrane to obtain permeated water into a solution having an osmotic pressure higher than that of the raw water, Separation means for separating the solute component of the high osmotic pressure solution from the high osmotic pressure solution containing the permeated water obtained by the forward osmosis membrane treatment means and the solute component is either Na 2 HPO 4 or ethylene carbonate, and separation means
  • the solution after separating the solute component in the raw water is desalted with a reverse osmosis membrane and reverse osmosis membrane treatment means to obtain fresh water, a pump for supplying the raw water to the reverse osmosis membrane treatment means, and separation and recovery by the separation means
  • This is a fresh water production system provided with a pipe for mixing the solute component with the high osmotic pressure solution supplied to the forward osmosis membrane treatment means.
  • the fresh water production system operates by lowering the osmotic pressure of the raw water obtained by the separation means and supplied to the reverse osmosis membrane treatment means to be lower than the osmotic pressure of the raw water supplied to the forward osmosis membrane treatment means.
  • the temperature of the raw water and the high osmotic pressure solution supplied to the forward osmosis membrane treatment and the reverse osmosis membrane treatment has means for adjusting the temperature of the raw water and the high osmotic pressure solution supplied to the forward osmosis membrane treatment and the reverse osmosis membrane treatment, and when the solute component is Na 2 HPO 4 , the temperature of the raw water or the high osmotic pressure solution is 25.
  • a fresh water production system with a temperature of °C or less.
  • the system is a fresh water production system which has a temperature adjusting means in the separating means or in the preceding stage, and the temperature of the solution in the separating means is 10 ° C. or lower when the solute component is Na 2 HPO 4 .
  • a heat exchange means for recovering the heat of the high osmotic pressure solution discharged from the forward osmosis membrane treatment, another heat exchange means for supplying heat to the slurry or supernatant discharged from the crystallization means, and these two kinds And a means for circulating a fluid as a heat medium between the heat exchange means.
  • a fresh water production system provided with a pressure transducer that transmits the pressure of the hyperosmotic solution discharged from the forward osmosis membrane treatment means to the raw water of the reverse osmosis membrane treatment means.
  • water can be recovered from seawater by forward osmosis membrane treatment without using a high-pressure pump, and the adjustment range of water temperature can be reduced in a fresh water production flow, and as a result, necessary energy can be reduced.
  • 1 is a block diagram of a fresh water production system according to a first embodiment of the present invention. It is explanatory drawing of the water treatment in 1st Embodiment of this invention. It is a block diagram of the fresh water manufacturing system which concerns on 2nd Embodiment of this invention. It is a block diagram of the fresh water manufacturing system which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram of a fresh water production system according to a first embodiment of the present invention.
  • the fresh water production system of the present embodiment includes pretreatment means 2 for taking in seawater, forward osmosis membrane treatment means 3 connected to the pretreatment means 2, and crystallization connected via the forward osmosis membrane treatment means 3 and the cooling means 4.
  • a storage tank 14 connected to the switching means 8, and the crystallization means 5 is connected to the forward osmosis membrane treatment means 3 via the heating means 6a.
  • 8 is connected to the forward osmosis membrane treatment means 3.
  • the pretreatment means 2 filters the seawater 1 taken by a pump (not shown) with an MF membrane (Microfiltlation, microfiltration membrane), thereby removing turbidity and having a water quality suitable for the forward osmosis membrane treatment means 3. Get seawater.
  • the pretreatment means 2 measures the differential pressure of the MF membrane and the filtration duration, and when either the preset filtration duration or the preset differential pressure is exceeded, the MF membrane is backwashed for a predetermined time. To do.
  • the sludge 9 discharged by backwashing is disposed after concentration and dehydration processes.
  • the forward osmosis membrane treatment means 3 includes rooms on both sides of the forward osmosis membrane, supplies seawater filtered by the pretreatment means 2 to one room, and supplies a high osmotic pressure solution to the other room. At this time, the osmotic pressure of each liquid can be calculated from Equation 1.
  • is the osmotic pressure
  • R is the gas constant
  • T is the absolute temperature
  • C is the molar concentration of the solution
  • i is the Phanto-Hoff coefficient.
  • the Phanto-Hoff coefficient i is a coefficient representing the effect of ionization when the solute is an electrolyte.
  • a driving force corresponding to the difference in osmotic pressure between the two solutions and the membrane pressure is generated between the forward osmosis membranes.
  • the osmotic pressure of the high osmotic pressure solution is made larger than the osmotic pressure of seawater, and water is recovered from the seawater into the high osmotic pressure solution. At this time, some of the ions in the seawater are not removed and leak to the highly osmotic solution side.
  • the driving force increases as the osmotic pressure increases, so that the recovery rate of water from the raw water can be increased, and the permeation flow rate of the membrane can be increased.
  • the substance used as the solute is preferably a substance that is suitable for the subsequent crystallization treatment and can obtain a high osmotic pressure (that is, a substance that can increase the molar concentration). Specific types of solutes will be described later.
  • a material such as cellulose acetate or polyamide can be applied to the forward osmosis membrane.
  • the liquid temperature inside the forward osmosis membrane treatment means 3 is kept at about 30 ° C. in order to reduce the permeation resistance of the membrane.
  • the concentrated waste liquid 10 discharged from the forward osmosis membrane treatment means 3 is discharged to the ocean.
  • the cooling means 4 is installed after the high osmotic pressure solution outlet of the forward osmosis membrane treatment means 3.
  • the water temperature of the solution is lowered to the set temperature for the crystallization process.
  • the water temperature is at least 20 ° C. or less, depending on the solubility of the solute in the hypertonic solution.
  • the internal structure of the crystallization means 5 is composed of a crystal growth part and a solid-liquid separation part as in a general crystallization tank. A quantity of solute exceeding the solubility at the set water temperature is deposited on the seed crystal. The grown crystals settle and are drawn out at predetermined time intervals. This slurry is sent to the heating means 6a. On the other hand, the supernatant liquid separated in the solid-liquid separation part overflows and is sent to a heating means 6b different from the heating means 6a. In the heating means 6a and 6b, each solution is heated to the water temperature (50 degreeC) in a forward osmosis membrane process and a reverse osmosis membrane process.
  • the supernatant liquid is supplied to the reverse osmosis treatment means 7 from the heating means 6a by the pump 15, and is filtered by reverse osmosis membrane treatment to recover the target fresh water.
  • the concentrated waste liquid is sent from the reverse osmosis treatment means 7 to the switching means 8.
  • the chloride ion concentration in the liquid is measured by the chloride ion sensor 13.
  • the switching unit 8 supplies the concentrated waste liquid to the high osmotic pressure solution side of the forward osmosis membrane treatment unit 3.
  • the switching means 8 switches to the drainage 11 side and discharges it outside the process, and supplies a new high osmotic pressure solution from the storage tank 14 to the forward osmosis membrane treatment means 3. .
  • the waste water 11 is discarded after the concentration / dehydration treatment, or is added as a flocculant in the pretreatment means 2 when the solute of the high osmotic pressure solution contains a component that functions as a flocculant such as aluminum or iron. You can also.
  • FIG. 2 is an explanatory diagram of water treatment in the first embodiment of the present invention.
  • the ion concentration is equal to the concentration of seawater at the entrance of the pretreatment means 2 and the forward osmosis membrane treatment means 3.
  • the high osmotic pressure solution has a higher concentration than this, and water in seawater is transferred to the high osmotic pressure solution side through the membrane.
  • the crystallization step in the crystallization means 5 the high osmotic pressure solution is cooled to precipitate a solid, thereby reducing the ion concentration.
  • the operation is performed under such a temperature condition that the ion concentration in the crystallization supernatant is lower than the concentration of seawater.
  • the reverse osmosis treatment means 7 further removes ions to obtain fresh water.
  • a high-pressure pump intended for the osmotic pressure of seawater is required, but in the first embodiment, a pump necessary for reverse osmosis treatment is provided by interposing a solution suitable for crystallization. It is possible to reduce the pressure. This has the effect of reducing the initial cost of the pump as well as the power of the pump.
  • a solution that satisfies the conditions (a) to (e) is selected as the hyperosmotic solution.
  • the ion concentration is higher than the concentration of seawater at the water temperature for forward osmosis membrane treatment (conditions for forward osmosis membrane treatment).
  • B The temperature dependence of solubility is large (conditions for crystallization treatment).
  • C Ion concentration after crystallization treatment is lower than seawater concentration (conditions for reverse osmosis membrane treatment).
  • D) The corrosiveness of the metal is low.
  • E The degree of mixing of seawater components into the high osmotic pressure solution can be determined.
  • the difference in ion concentration in the forward osmosis membrane treatment affects the osmotic pressure difference, that is, the magnitude of water driving force.
  • a solute that can increase the ion concentration the membrane area of the forward osmosis membrane treatment means 3 can be reduced.
  • the temperature difference between the forward osmosis membrane treatment and the crystallization treatment can be reduced by selecting a solute whose solubility is highly temperature dependent. As a result, the capacity of the heating means and the cooling means and the energy required during operation can be reduced.
  • natural water of a reverse osmosis membrane process can reduce required pump power, so that it is a low ion concentration.
  • the life of equipment can be extended by selecting a system with low corrosivity.
  • the impurity concentration can be monitored, and a reduction in the processing efficiency of each process due to the mixing thereof can be suppressed.
  • the solute of the high osmotic pressure solution used in the first embodiment of the present invention may be any substance that satisfies the above, but for example, Na 2 HPO 4 or ethylene carbonate can be applied.
  • Table 1 shows the molar concentration at each water temperature estimated from the solubility of Na 2 HPO 4 .
  • the concentration of NaCl in seawater is about 0.513 mol / L (3 wt%), and satisfies the above conditions (a), (b) and (c) in the range of at least 25 ° C. to 0 ° C.
  • Na 2 HPO 4 is a substance having a pH close to 7 and applicable from the viewpoint of the corrosiveness and impurities of the apparatus.
  • the solubility of Na 2 HPO 4 is low at 0 to 20 ° C., increases rapidly at 25 ° C. or higher, and becomes 10 times or more at 25 ° C. compared to 0 ° C. That is, since the osmotic pressure 6 times higher than seawater can be obtained at a relatively low temperature ( ⁇ 25 ° C.), the forward osmosis membrane treatment can be carried out efficiently. In the crystallization operation, most of the Na 2 HPO 4 solid (hydrate) can be recovered simply by cooling the solution to a relatively high temperature ( ⁇ 10 ° C.).
  • the above substance is a substance which exists as a single substance in the temperature range (0 ° C. to 25 ° C.) assumed by the fresh water production system. These are dissolved in water to obtain a high osmotic pressure solution.
  • substances that change phase in the above temperature range can also be used as the solute.
  • a method using a substance having a freezing point in this temperature range and mutually soluble in water In the forward osmosis membrane treatment, a temperature higher than at least the freezing point of the solute is maintained. In the crystallization treatment, the temperature is lower than the freezing point, and precipitation of solute components and solid recovery are performed by phase change from liquid to solid.
  • An example of such a material is ethylene carbonate (1,3-dioxolan-2-one, C 3 H 4 O 3 ). Ethylene carbonate has a freezing point of 34-37 ° C. and is easily soluble in water.
  • Main energy consumption in the fresh water production system is the energy for water supply by the pump, the energy for adjusting the water temperature in the crystallization process, and the energy for the filtration by the high pressure pump in the reverse osmosis membrane treatment.
  • the thermal energy used for water temperature adjustment in the crystallization step can be made smaller than that of the evaporation method because the temperature range to be adjusted is narrower than that of the evaporation method and does not require latent heat of evaporation. Efficiency is further improved by using heat exchange, seawater, or the like described in the examples described later for the cooling water.
  • the energy of the high-pressure pump in reverse osmosis is roughly proportional to the osmotic pressure of raw water. Therefore, energy can be reduced by making the osmotic pressure of the raw water of the reverse osmosis membrane treatment in the fresh water production system of the present embodiment at least lower than the osmotic pressure of seawater. That is, the concentration of the high osmotic pressure solution obtained in the crystallization step may be set to a lower concentration. Na 2 HPO 4 and ethylene carbonate can adjust the concentration to 1/5 or less of seawater, which is advantageous for energy reduction. In addition, since it is possible to use a pump with a low pressure (lifting) at the time of supply, there is an effect of reducing the initial equipment cost.
  • pretreatment means 2 has been described for the case of the MF membrane treatment, but any method that can achieve a level of turbidity removal performance suitable for forward osmosis membrane treatment (for example, SDI (silt concentration index) ⁇ 2). Coagulation sedimentation and sand filtration may be used.
  • FIG. 3 is a block diagram of a fresh water production system according to the second embodiment of the present invention.
  • the system of the present embodiment has a configuration in which heat exchangers 31a and 31b are provided between the crystallization unit 5 and the heating units 6a and 6b in the configuration of the first embodiment.
  • heat is recovered from the high osmotic pressure solution discharged from the forward osmosis membrane treatment means 3.
  • the recovered heat is transferred to the heat exchanger 31b through a fluid as a medium, and is again heat-exchanged with the slurry and supernatant discharged from the crystallization means 5.
  • the fluid serving as the heat medium circulates between the heat exchangers 31a and 31b, and continuously cools the high osmotic pressure solution before the crystallization treatment and heats the slurry and the supernatant after the crystallization treatment. Used to.
  • the cooling means 4 or the heating means 6a, 6b is operated to adjust the water temperature.
  • the structure of the heat exchanger is a partition type multi-tubular cylindrical heat exchanger, and water can be used as a fluid as a heat medium.
  • Heat exchange methods other than this combination include direct type, heat storage type, heat pipe type, and fluids include MEA (monoethanolamine) aqueous solution, oil, heavy oil, brine (sodium chloride solution), There are organic solvents and caustic soda solutions, which can be used.
  • This example is an example in which direct heat transfer through a fluid is applied in heat recovery and reuse.
  • a heat pump as another means for efficiently using heat.
  • the heat pump is a device that assembles heat energy from a low temperature to a high temperature, and can utilize unused energy such as in the air or other exhaust heat.
  • the heat transfer by a heat pump using a heat medium utilizes both reversible exothermic phenomenon and endothermic phenomenon, and can be applied to both heating and cooling. Therefore, the same effect as the heat exchange can be obtained by applying the heat recovery / heating / cooling means of the present embodiment.
  • FIG. 4 is a block diagram of a fresh water production system according to the third embodiment of the present invention.
  • the converter 41 is provided.
  • the high osmotic pressure solution discharged from the forward osmosis membrane treatment means 3 is introduced into the pressure converter 41.
  • the pressure of the high osmotic pressure solution is transmitted to the supernatant water of the crystallization means 5 connected to the pressure transducer 41.
  • the pressurized supernatant water is supplied to the reverse osmosis membrane treatment means 7 after further obtaining a pressure necessary for the reverse osmosis membrane treatment from the pump 15.
  • the high osmotic pressure solution whose pressure has been reduced is introduced into the crystallization means 5 through the cooling means 4.
  • the method of pressure conversion is not particularly limited, and for example, a motor shaft direct connection type Pelton turbine or a turbocharger can be used.
  • water can be recovered from seawater by forward osmosis membrane treatment without using a high-pressure pump, and by reducing the concentration of the stock solution during reverse osmosis treatment for freshwater recovery. Since the power consumption of the high-pressure pump can be reduced, the total energy amount related to fresh water production can be reduced.
  • the exhaust heat in the system is used to adjust the temperature of the raw water and the high osmotic pressure solution, the total amount of energy related to fresh water production can be reduced.
  • Pretreatment means 3 Forward osmosis membrane treatment means 4 Cooling means 5 Crystallization means 6a, 6b Heating means 7 Reverse osmosis membrane treatment means 8 Switching means 13 Chloride ion sensor 14 Storage tank 15 Pumps 31a, 31b Heat exchanger 41 Pressure transducer

Abstract

 本発明の目的は、海水等の塩を含む原水から、浸透膜を使って淡水を得るシステムにおいて、より小さな消費エネルギーで淡水を製造するためのシステムを提供することである。本発明によれば、正浸透膜を介して原水中から塩分を除去して、原水の浸透圧より高い浸透圧を有する溶液へ透過水を得る正浸透膜処理手段と、正浸透膜処理手段で得られた透過水を含み、溶質成分がNa2HPO4又は炭酸エチレンのいずれかである高浸透圧溶液から、高浸透圧溶液の溶質成分を分離する分離手段と、分離手段で溶質成分を分離した後の溶液を原水として、逆浸透膜により脱塩処理し、淡水を得逆浸透膜処理手段と、逆浸透膜処理手段へ原水を供給するポンプと、分離手段で分離回収した溶質成分を正浸透膜処理手段に供給される高浸透圧溶液と混合する配管を備えた淡水製造システムが提供される。

Description

淡水製造システム
 本発明は、正浸透膜を用いて海水もしくは下水放流水から淡水を得る淡水製造システムに関する。
 近年、逆浸透膜を用い、ろ過処理を行う海水淡水化装置が増加する傾向にある。逆浸透膜は、セルロースやポリアミド等の素材で作られており、この逆浸透膜に海水の浸透圧(約2.5MPa)の二倍以上の圧力を加え、水は膜を透過させ、塩分は膜を透過させないようにして淡水を得ることができる。逆浸透膜に海水の浸透圧の二倍以上の圧力を加えるための高圧ポンプの動力が逆浸透膜による海水淡水化のコストの大部分を占めている。
 例えば、〔特許文献1〕には、逆浸透膜を使って海水から淡水を得る方法が開示されている。
 原水を所定の高圧力とする高圧ポンプと、高圧とされた高圧供給水中の塩分を濃縮する高圧逆浸透膜を備えた高圧逆浸透装置と、透過水を後流側に供給する透過水ラインに介装され、起動初期の透過水を一時的に排水ラインから排水する第1の排水弁と、第1の排水弁の下流側の透過水ラインに介装され、透過水を所定の低圧力とする低圧ポンプと、低圧ポンプにより低圧とされた低圧供給水中の塩分を濃縮する低圧逆浸透膜を備えた低圧逆浸透装置と、低圧逆浸透装置の濃縮水側の排出ラインに介装され、低圧逆浸透装置に供給する起動初期の低圧供給水を一時的に排出する第2の排水弁とを備えた構成となっている。高圧と低圧の逆浸透を実施することで、高品質の水を製造することができるとしている。
 しかし、これを得るためには高圧逆浸透を実施することとなり、そのために大きな動力が必要という問題がある。
 これとは別の方法として、セルロース等の素材で作られた浸透膜を介して海水中の水を一旦高濃度(高浸透圧)の溶液に回収し、その後に、高浸透圧の溶液から塩を除去する方法がある。この方法は、浸透圧が高い溶液側、すなわち正方向へ水を流すことから、正浸透膜法と呼ばれている。正方向への駆動力を利用するだけでなく、高浸透圧溶液に添加する塩として、溶液からの分離が容易なものを選択することで、淡水製造に係るエネルギーを低減できる可能性がある。
 〔非特許文献1〕には、正浸透膜を使って、海水から水を回収する方法が示されている。水を回収する高浸透圧溶液として、NH3とCO2を溶解したNH4HCO3溶液を使用している。高浸透圧溶液の濃度を1.1~6mol/Lの範囲で実験し、浸透圧を駆動力とする流束や透過する塩(NaCl)濃度を測定している。この方法により、海水を模擬したNaCl溶液中の95%以上の塩を分離できるとしている。また、最終的な淡水回収処理では、高浸透圧溶液からNH3とCO2を分離するプロセスを提案している。
 この方法では、NH3に由来する高pHのアンモニア水による金属構造物の腐食や浸透膜の劣化が生じるという問題がある。また、正浸透膜による塩の除去率は100%ではないため、高浸透圧溶液を循環して長期間使用すると、NH3とCO2の分離工程では除去されない塩が濃縮され、得られる淡水の純度が低下したり、海水中のカチオンと炭酸塩を形成して装置内で析出するという問題もある。
 〔特許文献2〕には、被処理水を第1半透膜の一方の面に接触させるとともに、溶解度が温度に依存する仲介溶液を相対的に高温の状態で第1半透膜の他方の面に接触させ、被処理水の水分を第1半透膜を介して仲介溶液に吸収させる水分吸収工程と、水分吸収工程後の仲介溶液を相対的に低温にし、前記仲介溶液の溶質(仲介溶質)を析出させる析出工程と、析出工程後の仲介溶液を第2半透膜に、仲介溶液の水分が第2半透膜を介して放出可能な液圧にて接触させる水分放出工程と、を備えた淡水製造装置が記載されている。そして、析出工程で析出させた仲介溶質の析出体を水分放出工程に供される仲介溶液から分離する分離工程と、分離した析出体を水分放出工程後の仲介溶液と混合して溶解工程に供する混合工程と、を更に備えることが好ましいことが記載されている。
特開2010-125395号公報 特開2010-162527号公報
J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, J. Membrane Science, 278(2006), pp114-123.
 〔特許文献2〕に記載の従来の技術では、仲介溶質、すなわち高浸透圧溶液としてミョウバン水溶液が用いられることが記載されている。このミョウバン水溶液、例えばAlK(SO4)2は、温度上昇に対する濃度が緩く上昇する特性を有しており、40℃くらいまで温度を上昇させる必要があるため、水温の調節幅が大きく、設備運転コストが高いという問題がある。又、AlK(SO4)2は、PHが3に近く、装置の腐食が生じやすいという問題がある。
 本発明の目的は、定められた水質より良好な水質の淡水水質を得られ、ランニングコストを低減できる淡水製造システムを提供することにある。
 上記の目的を達成するため、本発明は、正浸透膜を介して原水中から塩分を除去して、原水の浸透圧より高い浸透圧を有する溶液へ透過水を得る正浸透膜処理手段と、正浸透膜処理手段で得られた透過水を含み、溶質成分がNa2HPO4又は炭酸エチレンのいずれかである高浸透圧溶液から高浸透圧溶液の溶質成分を分離する分離手段と、分離手段で溶質成分を分離した後の溶液を原水として、逆浸透膜により脱塩処理し、淡水を得る逆浸透膜処理手段と、逆浸透膜処理手段へ原水を供給するポンプと、分離手段で分離回収した溶質成分を、正浸透膜処理手段に供給される高浸透圧溶液と混合する配管を備えた淡水製造システムである。
 又、高浸透圧溶液からの溶質の分離手段として晶析処理を用い、溶質成分を析出させ、スラリーと上澄み液を分離する淡水製造システムである。
 又、分離手段で得られ、逆浸透膜処理手段へ供給される原水の浸透圧を、正浸透膜処理手段に供給される原水の浸透圧より低く運転する淡水製造システムである。
 又、正浸透膜処理と逆浸透膜処理に供給する原水と高浸透圧溶液の温度を調整する手段を有し、溶質成分がNa2HPO4の場合、原水または高浸透圧溶液の温度を25℃以下とする淡水製造システムである。
 又、分離手段又はその前段に温度調整手段を有し、溶質成分がNa2HPO4の場合、分離手段における溶液の温度を10℃以下とする淡水製造システムである。
 又、正浸透膜処理から排出される高浸透圧溶液の熱を回収する熱交換手段と、晶析手段から排出されるスラリーまたは上澄み液へ熱を供給する別の熱交換手段と、これら2種の熱交換手段の間で熱の媒体となる流体を循環させる手段とを備える淡水製造システムである。
 又、正浸透膜処理手段から排出される高浸透圧溶液の圧力を、逆浸透膜処理手段の原水へ伝達する圧力変換器を備える淡水製造システムである。
 本発明によれば、高圧ポンプを用いない正浸透膜処理によって海水から水を回収することができ、淡水製造フローにおいて水温の調整幅を小さくでき、その結果、必要なエネルギーを低減することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明の第1実施形態に係る淡水製造システムのブロック図である。 本発明の第1実施形態における水処理の説明図である。 本発明の第2実施形態に係る淡水製造システムのブロック図である。 本発明の第3実施形態に係る淡水製造システムのブロック図である。
 以下に図面を用いて本発明の各実施形態を説明する。
〔第1実施形態〕
 図1は本発明の第1実施形態に係る淡水製造システムのブロック図である。本実施例の淡水製造システムは、海水を取り込む前処理手段2、前処理手段2に接続される正浸透膜処理手段3、正浸透膜処理手段3と冷却手段4を介して接続される晶析手段5、晶析手段5と加熱手段6b、ポンプ15を介して接続される逆浸透膜処理手段7、逆浸透膜処理手段7と接続される切り替え手段8、逆浸透膜処理手段7と切り替え手段8を接続する配管に取付けられる塩化物イオンセンサ13、切り替え手段8に接続される貯槽14で構成され、晶析手段5は加熱手段6aを介して正浸透膜処理手段3と接続され、切り替え手段8は正浸透膜処理手段3と接続されている。
 前処理手段2は、図示しないポンプで取水した海水1をMF膜(Microfiltlation,精密ろ過膜)でろ過処理するもので、これにより濁質を除去し、正浸透膜処理手段3に適合する水質の海水を得る。前処理手段2では、MF膜の差圧とろ過継続時間を計測し、予め設定したろ過継続時間、又は予め設定した差圧のいずれかを超えた時点で、MF膜の逆洗を所定時間実行する。逆洗で排出される汚泥9は、濃縮,脱水の処理を実施した後に廃棄する。
 正浸透膜処理手段3は、正浸透膜を挟んだ両側にそれぞれ部屋を備え、一方の部屋に前処理手段2でろ過した海水を供給し、他方の部屋に高浸透圧溶液を供給する。このとき、各液の浸透圧は数1から算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Πは浸透圧、Rは気体定数、Tは絶対温度、Cは溶液のモル濃度、iはファント・ホッフの係数である。ファント・ホッフの係数iは、溶質が電解質の場合で電離が生じる影響を表す係数である。
 正浸透膜間には、2種の溶液の浸透圧の差および膜圧に応じた駆動力が生じる。高浸透圧溶液の浸透圧を海水の浸透圧より大きくし、海水から高浸透圧溶液に水を回収する。このとき、海水中のイオンの一部は除去されず、高浸透溶液側に漏えいする。
 高浸透圧溶液の浸透圧は、少なくとも海水の2倍となるように溶質の濃度を調整する。この浸透圧が高いほど駆動力が大きくなるため、原水からの水の回収率を高くしたり、膜の透過流速を大きくしたりすることができる。
 溶質として用いる物質は、後段の晶析処理に適し、高い浸透圧が得られる物質(すなわち、モル濃度が高くできる物質)が望ましい。具体的な溶質の種類については後述する。正浸透膜は、酢酸セルロースやポリアミド等の材質を適用することができる。また、正浸透膜処理手段3内部の液温は、膜の透過抵抗を低減させるため30℃程度に保持する。正浸透膜処理手段3から排出される濃縮廃液10は、海洋へ放流される。
 正浸透膜処理手段3から排出された高浸透圧溶液から、淡水回収量と逆浸透膜処理手段7における淡水回収率を考慮した必要量を冷却手段4に分配する。冷却手段4は、正浸透膜処理手段3の高浸透圧溶液出口の後段に設置する。溶液の水温を晶析処理のための設定温度に低下させる。水温は、高浸透圧溶液の溶質の溶解度によるが、少なくとも20℃以下にする。
 晶析手段5の内部構造は、一般的な晶析槽と同様、結晶成長部と固液分離部で構成する。設定された水温における溶解度を超える量の溶質は、種結晶に析出する。成長した結晶は沈降し、所定の時間間隔で引き抜かれる。このスラリーは加熱手段6aに送られる。一方、固液分離部で分離された上澄み液は、オーバーフローし、加熱手段6aとは別の加熱手段6bに送られる。加熱手段6a,6bでは、正浸透膜処理および逆浸透膜処理における水温(50℃)までそれぞれの溶液を加熱する。
 逆浸透処理手段7には、ポンプ15により加熱手段6aから上澄み液が供給され、逆浸透膜処理でろ過して目的とする淡水を回収する。一方、濃縮廃液は、逆浸透処理手段7から切り替え手段8へ送られる。このとき、塩化物イオンセンサ13で液中の塩化物イオン濃度を測定する。塩化物イオン濃度が所定の濃度未満のときは、切り替え手段8で濃縮廃液を正浸透膜処理手段3の高浸透圧溶液側に供給する。一方、塩化物イオン濃度が所定の濃度以上のときは、切り替え手段8で排水11側に切り替えてプロセス外へ排出させ、貯槽14から新規の高浸透圧溶液を正浸透膜処理手段3へ供給する。
 排水11は、濃縮・脱水の処理後に廃棄するか、高浸透圧溶液の溶質にアルミニウムや鉄など凝集剤として機能する成分が含まれている場合は、前処理手段2における凝集剤として添加することもできる。
 図2は、本発明の第1実施形態における水処理の説明図である。イオン濃度は、前処理手段2および正浸透膜処理手段3の入り口では、海水の濃度と等しい。高浸透圧溶液はこれより高濃度とし、膜を介して海水中の水を高浸透圧溶液側に移行させる。次に、晶析手段5での晶析工程では、高浸透圧溶液を冷却することで固体を析出させ、イオン濃度を低下させる。このとき、晶析の上澄み液中のイオン濃度が、海水の濃度より低くなるような温度条件で運転する。逆浸透処理手段7により、さらにイオンを除去して淡水を得る。
 従来の逆浸透膜処理では、海水の浸透圧を対象とした高圧ポンプが必要であったが、第1実施形態では、晶析に適した溶液を介在させることで、逆浸透処理で必要なポンプ圧力を低減することが可能である。このことは、ポンプの動力だけでなく、ポンプの初期費用を低減させる効果がある。
 次に、本発明の第1実施形態の処理で用いる高浸透圧溶液について説明する。高浸透圧溶液には(a)から(e)の条件を満足する溶液を選択する。
(a)正浸透膜処理の水温においてイオン濃度が海水の濃度よりも高い(正浸透膜処理のための条件)。
(b)溶解度の温度依存性が大きい(晶析処理のための条件)。
(c)晶析処理後のイオン濃度が海水の濃度よりも低い(逆浸透膜処理のための条件)。
(d)金属の腐食性が低い。
(e)高浸透圧溶液への海水成分の混入の程度が判断できる。
 正浸透膜処理におけるイオン濃度の差は、浸透圧差、すなわち水の駆動力の大きさに影響する。イオン濃度が高くできる溶質を選定することで、正浸透膜処理手段3の膜面積を小さくできる。また、溶解度の温度依存性が大きい溶質を選定することで、正浸透膜処理と晶析処理での温度差を小さくすることができる。この結果、加熱手段および冷却手段の容量や運転時に必要なエネルギーを低減できる。そして、逆浸透膜処理の原水は低いイオン濃度であるほど必要なポンプ動力が低減できる。
 又、腐食性が低い系を選択することで、機器の寿命を延長できる。又、例えば、海水中の主要な成分である塩化物イオンやナトリウムイオンを含まない系を選択することで、不純物濃度をモニタリングでき、これらの混入による各工程の処理効率低下を抑制できる。
 本発明の第1実施形態で用いる高浸透圧溶液の溶質としては、上記を満足する物質であればいずれでもよいが、例えば、Na2HPO4,炭酸エチレンを適用することができる。表1にNa2HPO4の溶解度から推定した各水温におけるモル濃度を示す。海水中のNaClの濃度は約0.513mol/L(3wt%)であり、少なくとも25℃~0℃の範囲で上記の(a)(b)(c)の条件を満足する。
Figure JPOXMLDOC01-appb-T000002
 具体的には、数1において、NaClのi=2,C=0.5mol/Lとすると、Π=22.4atm(0℃),24.5atm(25℃)となる。一方、Na2HPO4のi=4(最大値)とした場合、Π=9.9atm(0℃,C=0.11mol/L),146.7atm(25℃,C=1.5mol/L)となり、条件(a)(b)(c)を満足する。また、Na2HPO4は、pHが7に近く、装置の腐食性や不純物の点でも適用可能な物質である。
 Na2HPO4の溶解度は、表1に示すように、0~20℃で低く、25℃以上で急激に増加し、25℃では0℃に比べて10倍以上の濃度となる。すなわち、比較的低温(~25℃)で海水よりもかなり高い6倍の浸透圧が得られるため、正浸透膜処理が効率よく実施できる。晶析操作では、この溶液を比較的高い温度(~10℃)まで冷却するだけで大部分のNa2HPO4の固体(水和物)を回収できる。したがって、Na2HPO4を適用すれば、一連の淡水製造フローにおいて水温の調整幅を小さくでき、その結果、必要なエネルギーを低減することができる。また、過熱・冷却に要する時間の短縮や設備の小型化にもつながるため、淡水製造のスループット向上や初期の設備コストの低減が可能という利点もある。
 上記の物質は、淡水製造システムの想定する温度範囲(0℃~25℃)において、単体として固体で存在する物質である。これらを水に溶解させて高浸透圧溶液を得ている。このような物質以外に、上記の温度範囲で相変化する物質を溶質に用いることもできる。例えば、凝固点がこの温度範囲にあり、液体の状態で水と相互に溶解する物質を使用する方法である。正浸透膜処理においては、少なくともこの溶質の凝固点より高い温度を維持する。そして、晶析処理では凝固点よりも低い温度とし、液体から固体への相変化による溶質成分の析出・固体回収を実施する。このような物質を用いることで、水温の調整幅を小さくすることが可能である。このような物質の例として炭酸エチレン(1,3-ジオキソラン-2-オン,C343)がある。炭酸エチレンの凝固点は34~37℃で、水に容易に溶解する。
 淡水製造システムにおける主な消費エネルギーは、ポンプによる送水エネルギー、晶析工程での水温調整のためのエネルギー、逆浸透膜処理における高圧ポンプによるろ過のためのエネルギーである。このうち、晶析工程で水温調整に用いる熱エネルギーは、調整する温度範囲が蒸発法に比べて狭く、蒸発潜熱を必要としないことから、蒸発法に比べて小さくできる。後述の実施例に記載した熱交換や海水等を冷却水に用いることで、さらに効率が向上する。
 一方、逆浸透における高圧ポンプのエネルギーは原水の浸透圧に概ね比例する。したがって、本実施形態の淡水製造システムにおける逆浸透膜処理の原水の浸透圧を、少なくとも海水の浸透圧より低くすることで、エネルギーの低減が可能となる。すなわち、晶析工程で得られる高浸透圧溶液の濃度をより低濃度にすればよい。Na2HPO4や炭酸エチレンは濃度を海水の1/5以下に調整することが可能であり、エネルギー低減に有利である。また、供給時の圧力(揚程)が低いポンプの使用が可能となるため、初期の設備コストを低減させる効果もある。
 また、前処理手段2は、MF膜処理の場合を記載したが、正浸透膜処理に適当なレベルの濁質除去性能(例えば、SDI(シルト濃度指数)≦2)を達成できる方法であれば、凝集沈殿・砂ろ過でもよい。
〔第2実施形態〕
 図3は、本発明の第2実施形態に係る淡水製造システムのブロック図である。本実施形態のシステムは、第1実施形態の構成において、晶析手段5と加熱手段6a,6bとの間に熱交換器31a,31bを設けた構成となっている。
 熱交換器31aでは、正浸透膜処理手段3から排出される高浸透圧溶液から熱を回収する。回収された熱は、媒体となる流体を介して熱交換器31bに移送し、晶析手段5から排出されるスラリーおよび上澄み液と再度熱交換する。熱の媒体となる流体は、熱交換器31a,31bの間を循環し、連続的に、晶析処理前の高浸透圧溶液の冷却、および晶析処理後のスラリーと上澄み液の加熱を行うのに使用される。熱交換だけでは所定の水温に到達しない場合は、冷却手段4又は加熱手段6a,6bを運転して水温を調整する。
 熱交換器の構造としては、隔壁式の多管円筒熱交換器で、熱の媒体となる流体としては水を使用することができる。この組み合わせ以外の熱交換の方式には、直接式,蓄熱式,ヒートパイプ式があり、また、流体としては、MEA(モノエタノールアミン)水溶液,油,重質油,ブライン(塩化ナトリウム溶液),有機溶剤,苛性ソーダ溶液があり、これらを用いることができる。
 このような構成とすると、第1実施形態で述べた効果に加え、膜処理や晶析処理での水温調整に必要なエネルギーの一部をシステム内で循環して使用できるため、淡水製造に必要なエネルギーの低減が可能となる。
 本実施例は、熱の回収・再利用において、流体を通じた直接的な熱伝動を適用した例である。これ以外の熱の効率的な利用手段としてヒートポンプがある。ヒートポンプは、熱エネルギーを低い温度から高い温度に組み上げる装置であり、空気中やその他の排熱などの未利用エネルギーを利用することができる。熱媒体を用いるヒートポンプによる熱移動では可逆な発熱現象と吸熱現象を共に利用し、加熱・冷却のいずれにも適用可能である。そのため、本実施形態の熱回収・加熱・冷却の手段として、適用することで、熱交換と同様の効果が得られる。
〔第3実施形態〕
 図4は本発明の第3実施形態に係る淡水製造システムのブロック図である。本実施形態のシステムは、第1実施形態の構成において、正浸透膜処理手段3と冷却手段4とを接続する流路と、加熱手段6bとポンプ15とを接続する流路との間に圧力変換器41を設けた構成としている。
 圧力変換器41には、正浸透膜処理手段3から排出される高浸透圧溶液を導入する。高浸透圧溶液の圧力は、圧力変換器41に接続された晶析手段5の上澄み水に伝達される。加圧された上澄み水は、逆浸透膜処理に必要なだけの圧力をさらにポンプ15から得た後に、逆浸透膜処理手段7に供給される。圧力が低下した高浸透圧溶液は冷却手段4を経て、晶析手段5に導入される。
 圧力変換の方式は特に限定されず、例えば、モータ軸直結型ペルトン水車,ターボチャージャーを使用することができる。
 ポンプ15に必要とされる性能は、海水(浸透圧=p1atm),正浸透膜処理の高浸透圧溶液(浸透圧=p2atm)の浸透圧および逆浸透膜処理の原水に必要な浸透圧(p3atm)の関係、ならびに、圧力回収器の効率(α)で決定され、理想的には、(p2-p1)×αだけの圧力が逆浸透膜処理の原水に与えられ、この圧力値とp3の差分を付与できる性能のポンプ15を使用すればよい。
 このような構成とすると、第1実施形態で述べた効果に加え、逆浸透膜処理に必要なエネルギーの一部をシステム内で回収して使用できるため、淡水製造に必要なエネルギーの低減が可能となる。
 このように、各実施形態によれば、高圧ポンプを用いない正浸透膜処理によって海水から水を回収することができ、また、淡水回収のための逆浸透処理時の原液濃度を低くすることで高圧ポンプの消費電力を少なくすることができることから、淡水製造に係る総エネルギー量を低減できる。
 又、原水や高浸透圧溶液の温度調整のために、システム内の排熱を利用する構成とすることから、淡水製造に係る総エネルギー量を低減できる。
 又、逆浸透膜処理に必要なエネルギーの一部をシステム内で回収して使用できる構成とすることから、淡水製造に係るエネルギー量を低減できる。又、これらの処理では、腐食性が低い高浸透圧溶液系を適用するため、設備機器の健全性を維持することが容易となる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 2 前処理手段
 3 正浸透膜処理手段
 4 冷却手段
 5 晶析手段
 6a,6b 加熱手段
 7 逆浸透膜処理手段
 8 切り替え手段
 13 塩化物イオンセンサ
 14 貯槽
 15 ポンプ
 31a,31b 熱交換器
 41 圧力変換器

Claims (7)

  1.  正浸透膜を介して原水中から塩分を除去して、原水の浸透圧より高い浸透圧を有する溶液へ透過水を得る正浸透膜処理手段と、前記正浸透膜処理手段で得られた透過水を含み、溶質成分がNa2HPO4又は炭酸エチレンのいずれかである高浸透圧溶液から、高浸透圧溶液の溶質成分を分離する分離手段と、前記分離手段で溶質成分を分離した後の溶液を原水として、逆浸透膜により脱塩処理し、淡水を得る逆浸透膜処理手段と、前記逆浸透膜処理手段へ原水を供給するポンプと、前記分離手段で分離回収した溶質成分を、正浸透膜処理手段に供給される高浸透圧溶液と混合する配管を備えたことを特徴とする淡水製造システム。
  2.  請求項1に記載の淡水製造システムにおいて、前記分離手段として晶析処理を用い、高浸透圧溶液の溶質成分を析出させ、スラリーと上澄み液を分離することを特徴とする淡水製造システム。
  3.  請求項1に記載の淡水製造システムにおいて、前記分離手段で得られ、逆浸透膜処理手段へ供給される原水の浸透圧を、正浸透膜処理手段に供給される原水の浸透圧より低くすることを特徴とする淡水製造システム。
  4.  請求項1又は2に記載の淡水製造システムにおいて、前記正浸透膜処理または逆浸透膜処理に供給する原水又は高浸透圧溶液の温度を調整する手段を有し、溶質成分がNa2HPO4の場合、原水または高浸透圧溶液の温度を25℃以下とすることを特徴とする淡水製造システム。
  5.  請求項1又は2に記載の淡水製造システムにおいて、前記分離手段またはその前段に温度調整手段を有し、溶質成分がNa2HPO4の場合、前記分離手段における溶液の温度を10℃以下とすることを特徴とする淡水製造システム。
  6.  請求項1又は2に記載の淡水製造システムにおいて、前記正浸透膜処理から排出される高浸透圧溶液の熱を回収する熱交換手段と、前記晶析処理装置から排出されるスラリー又は上澄み液へ熱を供給する別の熱交換手段と、これら2種の熱交換手段の間で熱の媒体となる流体を循環させる手段とを備えることを特徴とする淡水製造システム。
  7.  請求項1に記載の淡水製造システムにおいて、前記正浸透膜処理手段から排出される高浸透圧溶液の圧力を、前記逆浸透膜処理の原水へ伝達する圧力変換器を備えることを特徴とする淡水製造システム。
PCT/JP2012/050013 2011-03-07 2012-01-04 淡水製造システム WO2012120912A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-048483 2011-03-07
JP2011048483A JP5575015B2 (ja) 2011-03-07 2011-03-07 淡水製造システム

Publications (1)

Publication Number Publication Date
WO2012120912A1 true WO2012120912A1 (ja) 2012-09-13

Family

ID=46797883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050013 WO2012120912A1 (ja) 2011-03-07 2012-01-04 淡水製造システム

Country Status (3)

Country Link
JP (1) JP5575015B2 (ja)
CN (1) CN102674605A (ja)
WO (1) WO2012120912A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601327A (zh) * 2013-09-30 2014-02-26 宁夏宝塔石化科技实业发展有限公司 一种炼化企业含盐废水近零排放处理方法与装置
JP2014069094A (ja) * 2012-09-27 2014-04-21 Sharp Corp 淡水化システム
WO2016133464A1 (en) * 2015-02-17 2016-08-25 Nanyang Technological University Regenerable draw solute for osmotically driven processes
US10280097B2 (en) 2011-04-25 2019-05-07 Oasys Water LLC Osmotic separation systems and methods
US10427957B2 (en) 2013-02-08 2019-10-01 Oasys Water LLC Osmotic separation systems and methods
CN111995150A (zh) * 2020-08-19 2020-11-27 广东闻扬环境科技有限公司 含盐废水循环处理系统以及处理方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2934727A4 (en) 2012-12-21 2016-08-24 Porifera Inc SEPARATION SYSTEMS, ELEMENTS AND METHODS OF SEPARATION USING MEMBRANES AND STACKED SPACING DEVICES
JP5962538B2 (ja) * 2013-02-27 2016-08-03 Jfeエンジニアリング株式会社 水処理方法および装置
CN103145219B (zh) * 2013-03-05 2015-03-11 中国科学院生态环境研究中心 一种城市污水碳源回收处理方法及装置
EP2969145A4 (en) * 2013-03-15 2017-01-25 Porifera Inc. Advancements in osmotically driven membrane systems including multi-stage purification
JP6441808B2 (ja) * 2013-09-30 2018-12-19 水ing株式会社 淡水化装置及び淡水化方法
CN103787464B (zh) * 2014-01-10 2015-04-08 河海大学 一种基于浓度差的介质可循环的海水淡化系统
JP6333573B2 (ja) * 2014-02-19 2018-05-30 株式会社ササクラ 造水装置及び造水方法
JP6463620B2 (ja) * 2014-10-30 2019-02-06 株式会社日立製作所 淡水化システム及び淡水化方法
JP2016087504A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 淡水化システム及び淡水化方法
CN107922220B (zh) 2015-06-24 2022-11-08 波里费拉公司 经由正向渗透使酒精溶液脱水的方法及相关系统
CA3048017A1 (en) 2016-12-23 2018-06-28 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
KR101903771B1 (ko) * 2017-05-16 2018-11-13 롯데케미칼 주식회사 에너지 효율이 높은 담수화 방법 및 담수화 장치
JPWO2020158456A1 (ja) * 2019-01-30 2021-12-02 東洋紡株式会社 濃縮システムおよび濃縮方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081913A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 逆浸透法による海水淡水化方法
JP2007533884A (ja) * 2003-08-13 2007-11-22 ユニバーシティ オブ サリー 浸透エネルギー
JP2010162527A (ja) * 2008-12-16 2010-07-29 Sekisui Chem Co Ltd 淡水製造方法及び装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2583096Y (zh) * 2002-11-29 2003-10-29 曾郴林 海水淡化处理器
JP5383163B2 (ja) * 2008-11-27 2014-01-08 三菱重工業株式会社 多段海水淡水化装置及び多段海水淡水化装置の運転制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081913A (ja) * 2002-08-23 2004-03-18 Hitachi Zosen Corp 逆浸透法による海水淡水化方法
JP2007533884A (ja) * 2003-08-13 2007-11-22 ユニバーシティ オブ サリー 浸透エネルギー
JP2010162527A (ja) * 2008-12-16 2010-07-29 Sekisui Chem Co Ltd 淡水製造方法及び装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280097B2 (en) 2011-04-25 2019-05-07 Oasys Water LLC Osmotic separation systems and methods
JP2014069094A (ja) * 2012-09-27 2014-04-21 Sharp Corp 淡水化システム
US10427957B2 (en) 2013-02-08 2019-10-01 Oasys Water LLC Osmotic separation systems and methods
CN103601327A (zh) * 2013-09-30 2014-02-26 宁夏宝塔石化科技实业发展有限公司 一种炼化企业含盐废水近零排放处理方法与装置
CN103601327B (zh) * 2013-09-30 2015-09-30 宁夏宝塔石化科技实业发展有限公司 一种炼化企业含盐废水近零排放处理方法与装置
WO2016133464A1 (en) * 2015-02-17 2016-08-25 Nanyang Technological University Regenerable draw solute for osmotically driven processes
US20180015414A1 (en) * 2015-02-17 2018-01-18 Nanyang Technological University Regenerable draw solute for osmotically driven processes
US10549237B2 (en) 2015-02-17 2020-02-04 Nanyang Technological University Regenerable draw solute for osmotically driven processes
AU2016220549B2 (en) * 2015-02-17 2021-09-23 Nanyang Technological University Regenerable draw solute for osmotically driven processes
CN111995150A (zh) * 2020-08-19 2020-11-27 广东闻扬环境科技有限公司 含盐废水循环处理系统以及处理方法
CN111995150B (zh) * 2020-08-19 2021-04-16 广东闻扬环境科技有限公司 含盐废水循环处理系统以及处理方法

Also Published As

Publication number Publication date
JP5575015B2 (ja) 2014-08-20
CN102674605A (zh) 2012-09-19
JP2012183492A (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5575015B2 (ja) 淡水製造システム
AU2007310694B2 (en) Separation process
KR101943421B1 (ko) 삼투압 분리 시스템 및 방법
CA2663906C (en) Method and apparatus for desalination
US11339062B2 (en) Methods for sustainable membrane distillation concentration of hyper saline streams
AU2009326253B2 (en) Process for operating a cooling tower comprising the treatment of feed water by direct osmosis
WO2013033841A1 (en) Hybrid desalination system
US20130112603A1 (en) Forward osmotic desalination device using membrane distillation method
US20140299529A1 (en) Systems, Apparatus, and Methods for Separating Salts from Water
US20160040522A1 (en) Production of injection water by coupling direct-osmosis methods with other methods of filtration
KR20140105358A (ko) 삼투 에너지 회수가 가능한 멤브레인 기반의 담수화 장치 및 방법
WO2013134710A1 (en) Methods for osmotic concentration of hyper saline streams
JP2008100220A (ja) 造水方法
WO2015087063A1 (en) Forward osmosis
JP5867082B2 (ja) 淡水の製造方法
WO2020179594A1 (ja) Zero Liquid Dischargeシステム
KR102423788B1 (ko) 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
CN105198144A (zh) 一种高盐高硬度废水的零排放方法
CN105198141A (zh) 一种高温高盐废水的零排放方法
KR101344784B1 (ko) 정삼투법과 석출법 및 역삼투법을 조합한 해수담수화 방법 및 장치
Gilron et al. Brine treatment and high recovery desalination
Kim et al. Fundamentals and application of reverse osmosis membrane processes
JP7228492B2 (ja) 水処理装置および水処理方法
KR101903771B1 (ko) 에너지 효율이 높은 담수화 방법 및 담수화 장치
JP2006167533A (ja) 海水濃縮方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754200

Country of ref document: EP

Kind code of ref document: A1