WO2010137058A1 - 受信装置、試験装置、受信方法および試験方法 - Google Patents

受信装置、試験装置、受信方法および試験方法 Download PDF

Info

Publication number
WO2010137058A1
WO2010137058A1 PCT/JP2009/002294 JP2009002294W WO2010137058A1 WO 2010137058 A1 WO2010137058 A1 WO 2010137058A1 JP 2009002294 W JP2009002294 W JP 2009002294W WO 2010137058 A1 WO2010137058 A1 WO 2010137058A1
Authority
WO
WIPO (PCT)
Prior art keywords
received signal
clock
signal
unit
capturing
Prior art date
Application number
PCT/JP2009/002294
Other languages
English (en)
French (fr)
Inventor
鷲津信栄
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2011515743A priority Critical patent/JP5314755B2/ja
Priority to PCT/JP2009/002294 priority patent/WO2010137058A1/ja
Priority to CN2009801592174A priority patent/CN102422173A/zh
Priority to TW099115315A priority patent/TW201105990A/zh
Publication of WO2010137058A1 publication Critical patent/WO2010137058A1/ja
Priority to US13/209,428 priority patent/US20120013343A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31922Timing generation or clock distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • G01R31/31932Comparators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise

Definitions

  • the present invention relates to a receiving device, a testing device, a receiving method, and a testing method.
  • a device such as a DDR-SDRAM that outputs a data signal and a clock signal representing the acquisition timing of the data signal in parallel is known.
  • As a test apparatus for testing these devices there is a test apparatus using a multi-strobe function.
  • Devices that output a signal in which a clock component is superimposed on a data signal are also known.
  • a test apparatus that tests a device that outputs a signal in which a clock component is superimposed on a data signal must reproduce the clock from the data signal output from the device and acquire it according to the strobe signal.
  • the test apparatus uses the multi-strobe function of the test apparatus for such a device, it is difficult to regenerate the clock from the data signal by the multi-strobe function.
  • a receiving device for capturing the received signal using a recovered clock recovered from an edge of the received signal, wherein the recovered clock is generated.
  • a plurality of strobes based on values of the reception signals at respective timings of the plurality of strobes, a multi-strobe generation unit that generates a plurality of strobes having different phases according to the pulse of the reproduction clock,
  • a detection unit that detects an edge position of the reception signal with respect to the signal, an adjustment unit that adjusts a phase of the reproduction clock according to the edge position of the reception signal, and a preset phase difference that is set in advance with respect to the reproduction clock
  • a receiving device including a capturing unit that captures the received signal at a shifted timing.
  • FIG. 1 shows a configuration of a test apparatus 10 according to this embodiment together with a device under test 300.
  • FIG. 2 shows a configuration of the receiving device 20 according to the present embodiment.
  • FIG. 3 shows an example of processing by the adjustment unit 34 and capture timing by the capture unit 36 according to the present embodiment.
  • FIG. 4 shows a processing flow of the receiving apparatus 20 according to this embodiment.
  • FIG. 5 shows a configuration of a receiving device 20 according to a modification of the present embodiment.
  • FIG. 1 shows a configuration of a test apparatus 10 according to this embodiment together with a device under test 300.
  • the test apparatus 10 tests the device under test 300.
  • the device under test 300 may be a device that outputs both a data signal and a clock signal indicating the acquisition timing of the data signal, such as DDR-SDRAM (Double-Data-Rate Synchronous Dynamic Random Access Memory). .
  • DDR-SDRAM Double-Data-Rate Synchronous Dynamic Random Access Memory
  • the device under test 300 may transmit the data signal and the reference timing for capturing the data signal as one clock embedded signal.
  • the test apparatus 10 branches one clock embedded signal into two signals. Then, the test apparatus 10 receives one branched signal as a data signal and the other signal as a clock signal. Further, the device under test 300 may transmit two separate clock embedded signals. In this case, the test apparatus 10 receives one clock embedded signal as a data signal and receives the other clock embedded signal as a clock signal.
  • the test apparatus 10 includes a receiving device 20, a determination unit 22, and a control unit 24.
  • the receiving apparatus 20 receives a data signal and a clock signal output from the device under test 300.
  • the receiving device 20 receives a clock embedded signal transmitted from the device under test 300.
  • the receiving apparatus 20 takes in the received signal using a recovered clock recovered from the edge of the received signal received from the device under test 300.
  • the determination unit 22 determines pass / fail of the device under test 300 based on the result of the data signal taken in by the receiving device 20.
  • the control unit 24 controls operations of the receiving device 20 and the determination unit 22.
  • FIG. 2 shows a configuration inside the receiving apparatus 20 according to the present embodiment.
  • the receiving device 20 includes a reproduction clock generation unit 26, a multi-strobe generation unit 28, a first comparator 30, a detection unit 32, an adjustment unit 34, a capture unit 36, a clock signal generation unit 38, a phase difference A setting unit 40 and a measurement unit 42 are included.
  • the regenerated clock generator 26 generates a regenerated clock for the received signal.
  • the reproduction clock generator 26 changes the phase of the reproduction clock according to the control amount given from the adjustment unit 34.
  • the multi-strobe generation unit 28 generates a plurality of strobes whose phases are slightly different from each other in accordance with the pulse of the reproduction clock. As an example, the multi-strobe generation unit 28 generates a plurality of strobes delayed at predetermined intervals from the reference phase in the recovered clock.
  • the first comparator 30 compares a received signal received from the outside with a threshold value and outputs a signal representing a logical value.
  • the detection unit 32 acquires the value of the reception signal output from the first comparator 30 at each timing of the plurality of strobes generated by the multi-strobe generation unit 28.
  • the detection unit 32 detects the edge position of the reception signal with respect to the plurality of strobes based on the value of the reception signal at the timing of each of the plurality of strobes. That is, the detection unit 32 determines which strobe of the plurality of strobes has detected the edge position of the reception signal from the change point in the value of the reception signal arranged in time series.
  • the change point in the value of the received signal may be, for example, a rising edge whose value has changed from 0 to 1, or a falling edge whose value has changed from 1 to 0. Then, the detecting unit 32 outputs the strobe position where the edge position of the received signal is detected to the adjusting unit 34.
  • the adjustment unit 34 adjusts the phase of the recovered clock according to the edge position of the received signal. More specifically, the adjustment unit 34 adjusts the phase of the reproduction clock by giving a control amount to the reproduction clock generation unit 26, and determines the position of the boundary strobe determined in advance among the plurality of strobes as the edge position of the clock signal. Adjust to match.
  • the position of the boundary strobe may be one strobe position of the plurality of strobes, or may be a position between two adjacent strobes of the plurality of strobes. Further, the position of the boundary strobe may be changeable from the outside, for example.
  • the adjustment unit 34 adjusts the phase of the recovered clock according to the edge position of the received signal.
  • the adjustment unit 34 includes a difference calculation unit 44, a calculation unit 46, and an integration unit 48.
  • the difference calculation unit 44 detects difference data indicating a difference between the position of the boundary strobe and the position of the strobe where the edge position of the received signal is detected, and a code indicating the order of the edge position of the received signal and the position of the boundary strobe. To do.
  • the difference calculation unit 44 outputs a code representing EARLY when the position of the boundary strobe is before the edge position of the received signal. Further, the difference calculation unit 44 outputs a code representing LATE when the position of the first boundary strobe is after the edge position of the clock signal.
  • the calculation unit 46 generates a control amount for adjusting the phase of the recovered clock for each cycle based on the first difference data and the code detected by the difference calculation unit 44.
  • the integration unit 48 integrates the control amount and provides it to the reproduction clock generation unit 26.
  • the integration unit 48 may low-pass filter the control amount output for each cycle and provide it to the recovered clock generation unit 26.
  • the adjustment unit 34 adjusts the phase of the reproduction clock every cycle of the reproduction clock or a predetermined number of cycles of the reproduction clock.
  • the recovered clock generation unit 26 can generate a recovered clock that is phase-locked with respect to the received signal, that is, synchronized with the phase of the edge position of the received signal, for example.
  • the capturing unit 36 captures a received signal at a timing shifted in advance by a set phase difference with respect to the reproduction clock. Since the reproduction clock is synchronized with the phase of the edge position of the reception signal, the acquisition unit 36 can acquire a signal component at a timing that is deviated from the intended phase difference from the edge position of the reception signal.
  • the clock signal generation unit 38 generates a clock signal having a set phase difference with respect to the reproduction clock.
  • the capturing unit 36 captures a received signal according to the clock generated by the clock signal generating unit 38.
  • the phase difference setting unit 40 sets each of a plurality of phase differences as a set phase difference.
  • the capturing unit 36 captures a received signal at a timing at which a plurality of phase differences set by the phase difference setting unit 40 are shifted from the reproduction clock.
  • the measuring unit 42 measures the value of the received signal captured by the capturing unit when each of the plurality of phase differences is set as the set phase difference. That is, the measurement unit 42 captures the value of the received signal at a timing when each of the plurality of phase differences set by the phase difference setting unit 40 is shifted from the reproduction clock. At this time, the recovered clock generator 26 generates a recovered clock that is synchronized with the phase of the edge position of the received signal, so that the measuring unit 42 is shifted by a plurality of phase differences from the edge position of the received signal. Can measure the value of the received signal.
  • the measurement unit 42 can obtain a shmoo waveform of a data signal corresponding to each phase by obtaining measurement data corresponding to each phase difference.
  • FIG. 3 shows an example of processing by the adjustment unit 34 and capture timing by the capture unit 36 according to the present embodiment.
  • the adjustment unit 34 shifts the phase of the recovered clock in accordance with the position difference between the strobe position where the edge position of the received signal is detected and the boundary strobe position. In this case, the adjustment unit 34 shifts the phase of the recovered clock so that the position of the boundary strobe approaches the edge position of the received signal.
  • the adjustment unit 34 detects the phase of the recovered clock and the edge position of the received signal.
  • the strobe position is shifted by a time corresponding to the position difference between the strobe position and the boundary strobe position.
  • the adjusting unit 34 determines the phase of the recovered clock and the strobe that has detected the edge position of the received signal. The position is shifted in the direction to advance by the time corresponding to the position difference between the position of the position and the position of the boundary strobe.
  • the adjustment unit 34 adjusts the phase of the recovered clock so as to move the position of the boundary strobe among the plurality of strobes to the vicinity of the edge position of the clock signal. be able to. Thereby, according to the adjustment part 34, the position of a boundary strobe can be synchronized with the edge position of a received signal.
  • a plurality of strobes are formed by 16 strobes and are generated in synchronization with the reproduction clock.
  • the position of the boundary strobe is the eighth strobe.
  • the adjustment unit 34 matches the edge position of the received signal with the position of the eighth strobe.
  • the capturing unit 36 captures a received signal at a timing shifted by a preset phase with respect to the reproduction clock.
  • the position where the set phase difference is 0.5 UI which is a half of the time 1 UI (unit interval) between two clocks of the received signal is set.
  • the phase of the received signal is shifted due to jitter, wander and drift. Since the capturing unit 36 acquires data at a position 0.5 UI away from the edge, that is, an intermediate point between the change points, the data can be acquired correctly even if the edge position is shifted during reception of the reception signal.
  • FIG. 4 shows a processing flow of the receiving device 20 according to the present embodiment.
  • the receiving device 20 performs initial setting used for data acquisition (S400).
  • the initial setting may include a boundary strobe position and / or a setting phase difference that is a timing at which the capturing unit 36 captures.
  • the receiving device 20 receives a signal (S410).
  • the first comparator 30 compares the received signal with a threshold value and outputs a signal representing a logical value.
  • the regenerated clock generator 26 generates a regenerated clock for the received signal (S420).
  • the timing for generating the recovered clock may be the same as the signal reception timing or may be a preset timing.
  • the multi-strobe generating unit 28 generates a plurality of strobes having different phases according to the pulse of the reproduction clock (S430). As an example, the multi-strobe generation unit 28 generates a plurality of strobes delayed at predetermined intervals from the reference phase in the recovered clock.
  • the detection unit 32 acquires the value of the reception signal output from the first comparator 30 at each timing of the plurality of strobes generated by the multi-strobe generation unit 28.
  • the detection unit 32 detects the edge position of the reception signal for the plurality of strobes based on the value of the reception signal at each timing of the plurality of strobes (S440). Then, the detecting unit 32 outputs the strobe position where the edge position of the received signal is detected to the adjusting unit 34.
  • the adjusting unit 34 adjusts the phase of the recovered clock according to the edge position of the received signal (S450).
  • the adjustment unit 34 delays the phase of the recovered clock when the boundary strobe position is earlier than the edge position of the received signal, and adjusts the recovered clock when the boundary strobe position is later than the edge position of the received signal. Advance the phase of.
  • the multi-strobe generator 28 generates a plurality of strobes according to the adjusted reproduction clock.
  • the detection unit 32 detects the edge position of the received signal with respect to a plurality of strobes, and confirms whether the edge position matches the boundary strobe position or is the intended interval (S460). If the confirmed result is No, the process returns to S450, and if Yes, the process proceeds to S470.
  • the capturing unit 36 captures the received signal at a timing shifted by a preset phase with respect to the reproduction clock (S470). At this time, if a plurality of phase differences are set as set phase differences in the phase difference setting unit 40, the capturing unit 36 captures a received signal according to the corresponding phase difference.
  • the measurement unit 42 measures the value of the received reception signal.
  • the data of the received signal can be measured in accordance with the timing of the edge of the received signal.
  • the test apparatus 10 can test the device under test 300 by the determination unit 22 determining the quality of the device under test 300 based on the result of the captured data signal.
  • FIG. 5 shows a configuration of the receiving device 20 according to a modification of the present embodiment. Since the receiving apparatus 20 according to this modification employs substantially the same configuration and function as the receiving apparatus 20 according to the present embodiment illustrated in FIG. 2, the receiving apparatus 20 according to the present embodiment illustrated in FIG. Members having substantially the same configuration and function as the members provided are assigned the same reference numerals, and the description thereof will be omitted except for differences.
  • the receiving device 20 further includes a second comparator 50 that outputs a logical value of the received signal, and a threshold value setting unit 52.
  • the threshold setting unit 52 sets a threshold used by the second comparator 50 to determine the logical value of the received signal.
  • the detecting unit 32 detects the edge position of the received signal from the logical value of the received signal received from the first comparator 30. Further, the capturing unit 36 captures the logical value of the received signal received from the second comparator at a timing shifted by a set phase difference with respect to the reproduction clock.
  • the first comparator 30 allows the receiving device 20 to appropriately detect the edge of the received signal and generate a reproduction clock having an appropriate phase regardless of the setting of the threshold value of the second comparator.
  • the measurement unit 42 may measure the value of the reception signal captured by the capture unit 36 when each of the plurality of threshold values is set in the second comparator 50.
  • the measurement unit 42 obtains measurement data corresponding to each threshold value and each phase difference, thereby obtaining a data signal shmoo waveform corresponding to each level and each phase of the data signal.
  • the capturing unit 36 captures a received signal at a timing shifted by a preset phase with respect to the reproduction clock.
  • the capturing unit 36 may capture the reception signal at a timing of a predetermined capturing strobe among a plurality of strobes.
  • the capturing unit 36 can capture the received signal at a timing separated from the edge of the received signal by the phase difference between the boundary strobe and the capturing strobe.
  • the acquisition unit 36 may acquire the reception signal at the timing of the acquisition strobe corresponding to the position shifted by a half cycle of the reception signal with respect to the position of the boundary strobe.
  • the capturing unit 36 can capture data at a position separated from the boundary strobe by a value close to 0.5 UI or 0.5 UI.
  • the received signal is transmitted through one transmission line. Instead, the received signal is separated from the clock signal and the data signal of the clock embedded signal by two transmission lines. May be transmitted. In that case, it is desirable that the detection unit 32 receives the clock signal via the first comparator 30, and the capture unit 36 captures the data signal via the second comparator 50.
  • test apparatus for testing a device that outputs a data signal and a clock signal that represents the acquisition timing of the data signal in parallel or outputs a signal in which a clock component is superimposed on the data signal is described.
  • the present embodiment is not limited to a test apparatus, and may be a receiving apparatus that receives signals from these devices using a multi-strobe.
  • test device 20 receiving device, 22 determination unit, 24 control unit, 26 regenerative clock generation unit, 28 multi-strobe generation unit, 30 first comparator, 32 detection unit, 34 adjustment unit, 36 capture unit, 38 clock signal generation Unit, 40 phase difference setting unit, 42 measuring unit, 44 difference calculating unit, 46 calculating unit, 48 integrating unit, 50 second comparator, 52 threshold setting unit, 300 device under test

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 受信信号のエッジから再生した再生クロックを用いて前記受信信号を取り込む受信装置であって、再生クロックを生成する再生クロック生成部と、再生クロックのパルスに応じて、互いに位相が異なる複数のストローブを発生するマルチストローブ発生部と、複数のストローブのそれぞれのタイミングにおける受信信号の値に基づいて、複数のストローブに対する受信信号のエッジ位置を検出する検出部と、受信信号のエッジ位置に応じて再生クロックの位相を調整する調整する調整部と、再生クロックに対して予め設定された設定位相差分ずれたタイミングにおいて、受信信号を取り込む取込部と、を備える受信装置を提供する。

Description

受信装置、試験装置、受信方法および試験方法
 本発明は、受信装置、試験装置、受信方法および試験方法に関する。
 データ信号および当該データ信号の取得タイミングを表すクロック信号を並走して出力するデバイス(DDR-SDRAM等)が知られている。これらのデバイスを試験する試験装置として、マルチストローブ機能を用いる試験装置がある。また、データ信号にクロック成分が重畳された信号を出力するデバイス(シリアルATAのIF規格を採用するデバイス等)も知られている。
特開2003-315428号公報 特開2004-127455号公報
 ところで、データ信号およびクロック信号を並走して出力するデバイスを試験する場合、試験装置は、適切なタイミングでマルチストローブを発生させるように、試験に先立って調整することが望ましい。
 また、データ信号にクロック成分が重畳された信号を出力するデバイスを試験する試験装置は、デバイスから出力されたデータ信号からクロックを再生してストローブ信号に応じて取得しなければならない。しかしながら、試験装置は、このようなデバイスに試験装置のマルチストローブ機能を用いたとすると、データ信号からマルチストローブ機能によってクロックを再生することが難しかった。
 さらに、デバイスの出力信号から再生したクロックを調整したとしても、試験装置内部で発生するデータストローブ信号を再生クロックに応じてさらに調整する必要が生じ、再生したクロックとストローブ信号との間に位相誤差が生じうる。
 上記課題を解決するために、本発明の第1の態様においては、受信信号のエッジから再生した再生クロックを用いて前記受信信号を取り込む受信装置であって、前記再生クロックを生成する再生クロック生成部と、前記再生クロックのパルスに応じて、互いに位相が異なる複数のストローブを発生するマルチストローブ発生部と、前記複数のストローブのそれぞれのタイミングにおける前記受信信号の値に基づいて、前記複数のストローブに対する前記受信信号のエッジ位置を検出する検出部と、前記受信信号のエッジ位置に応じて前記再生クロックの位相を調整する調整する調整部と、前記再生クロックに対して予め設定された設定位相差分ずれたタイミングにおいて、前記受信信号を取り込む取込部と、を備える受信装置を提供する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
図1は、本実施形態に係る試験装置10の構成を被試験デバイス300とともに示す。 図2は、本実施形態に係る受信装置20の構成を示す。 図3は、本実施形態に係る調整部34による処理および取込部36による取り込みタイミングの一例を示す。 図4は、本実施形態に係る受信装置20の処理フローを示す。 図5は、本実施形態の変形例に係る受信装置20の構成を示す。
 以下、発明の実施の形態を通じて本発明のを説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る試験装置10の構成を被試験デバイス300とともに示す。試験装置10は、被試験デバイス300を試験する。被試験デバイス300は、例えばDDR-SDRAM(Double-Data-Rate Synchronous Dynamic Random Access Memory)等の、データ信号と当該データ信号の取得タイミングを示すクロック信号とを併走して出力するデバイスであってよい。
 これに代えて被試験デバイス300は、データ信号およびデータ信号を取り込む基準タイミングを、1本のクロックエンベデッド信号として送信してもよい。この場合、試験装置10は、1本のクロックエンベデッド信号を2本の信号に分岐する。そして、試験装置10は、分岐した一方の信号をデータ信号として受信するとともに他方の信号をクロック信号として受信する。また、被試験デバイス300は、別個の2本のクロックエンベデッド信号を送信してもよい。この場合、試験装置10は、一方のクロックエンベデッド信号をデータ信号として受信するとともに、他方のクロックエンベデッド信号をクロック信号として受信する。
 試験装置10は、受信装置20と、判定部22と、制御部24とを備える。受信装置20は、被試験デバイス300から出力されたデータ信号およびクロック信号を受信する。
 受信装置20は、被試験デバイス300から送信されるクロックエンベデッド信号を受信する。受信装置20は、被試験デバイス300から受信した受信信号のエッジから再生した再生クロックを用いて受信信号を取り込む。
 判定部22は、受信装置20によりデータ信号を取り込んだ結果に基づいて、被試験デバイス300の良否を判定する。制御部24は、受信装置20および判定部22の動作を制御する。
 図2は、本実施形態に係る受信装置20内の構成を示す。受信装置20は、再生クロック生成部26と、マルチストローブ発生部28と、第1コンパレータ30と、検出部32と、調整部34と、取込部36と、クロック信号生成部38と、位相差設定部40と、測定部42とを含む。
 再生クロック生成部26は、受信信号の再生クロックを生成する。再生クロック生成部26は、調整部34から与えられる制御量に応じて、再生クロックの位相を変化させる。
 マルチストローブ発生部28は、再生クロックのパルスに応じて、互いにわずかずつ位相が異なる複数のストローブを発生する。マルチストローブ発生部28は、一例として、再生クロックにおける基準位相から、所定間隔毎に遅延された複数のストローブを発生する。
 第1コンパレータ30は、外部から受け取った受信信号をしきい値とレベル比較して、論理値を表す信号を出力する。検出部32は、マルチストローブ発生部28により発生された複数のストローブのそれぞれのタイミングにおいて、第1コンパレータ30から出力された受信信号の値を取得する。
 検出部32は、複数のストローブのそれぞれのタイミングにおける受信信号の値に基づいて、複数のストローブに対する受信信号のエッジ位置を検出する。すなわち、検出部32は、時系列に並んだ受信信号の値における変化点から、複数のストローブのうちの何れのストローブにより受信信号のエッジ位置が検出されたかを判断する。受信信号の値における変化点は、例えば、値が0から1へと変化した立ち上がりエッジでもよく、あるいは1から0に変化した立ち下がりエッジでもよい。そして、検出部32は、受信信号のエッジ位置を検出したストローブの位置を調整部34に出力する。
 調整部34は、受信信号のエッジ位置に応じて再生クロックの位相を調整する。より詳しくは、調整部34は、再生クロック生成部26に制御量を与えることにより再生クロックの位相を調整して、複数のストローブのうち予め定められた境界ストローブの位置を、クロック信号のエッジ位置に一致させるように調整する。
 なお、境界ストローブの位置は、複数のストローブのうちの一のストローブ位置であってもよく、複数のストローブのうちの隣接する2つのストローブ間の位置であってもよい。また、境界ストローブの位置は、例えば外部から変更可能であってもよい。
 調整部34は、受信信号のエッジ位置に応じて再生クロックの位相を調整する。一例として、調整部34は、差分算出部44と、演算部46と、積分部48とを有する。差分算出部44は、境界ストローブの位置と受信信号のエッジ位置を検出したストローブの位置との差分を示す差分データ、および、受信信号のエッジ位置および境界ストローブの位置の前後関係を表す符号を検出する。
 差分算出部44は、境界ストローブの位置が受信信号のエッジ位置よりも前である場合には、EARLYを表す符号を出力する。また、差分算出部44は、第1境界ストローブの位置がクロック信号のエッジ位置よりも後である場合には、LATEを表す符号を出力する。
 演算部46は、差分算出部44により検出された第1差分データおよび符号に基づき、再生クロックの位相を調整するための制御量をサイクル毎に生成する。積分部48は、制御量を積分して再生クロック生成部26に与える。積分部48は、一例として、サイクル毎に出力される制御量をローパスフィルタリングして再生クロック生成部26に与えてよい。
 以上のように調整部34は、再生クロックの周期または再生クロックの所定数倍周期のサイクル毎に、再生クロックの位相の調整を実行する。これにより、再生クロック生成部26は、受信信号に対して位相ロックされた、すなわち例えば受信信号のエッジ位置の位相に同期した再生クロックを生成することができる。
 取込部36は、再生クロックに対して予め設定された設定位相差分ずれたタイミングにおいて、受信信号を取り込む。取込部36は、再生クロックが受信信号のエッジ位置の位相に同期しているので、受信信号のエッジ位置から意図した位相差分ずれたタイミングの信号成分を取り込むことができる。
 クロック信号生成部38は、再生クロックに対して設定位相差分ずれたクロック信号を生成する。取込部36は、クロック信号生成部38が生成したクロックに応じて受信信号を取り込む。
 位相差設定部40は、複数の位相差のそれぞれを設定位相差として設定する。取込部36は、位相差設定部40が設定した複数の位相差を再生クロックからずらしたタイミングで受信信号を取り込む。
 測定部42は、複数の位相差のそれぞれを設定位相差として設定した場合において取込部が取り込んだ受信信号の値を測定する。すなわち、測定部42は、位相差設定部40が設定した複数の位相差のそれぞれ分を再生クロックからずらしたタイミングで受信信号の値を取り込む。このとき、再生クロック生成部26は、受信信号のエッジ位置の位相に同期した再生クロックを生成しているので、測定部42は、受信信号のエッジ位置から複数の位相差のそれぞれ分ずらしたタイミングで受信信号の値を測定できる。測定部42は、それぞれの位相差に対応した測定データを得ることにより、各位相に応じたデータ信号のシュムー波形を取得することができる。
 図3は、本実施形態に係る調整部34による処理および取込部36による取り込みタイミングの一例を示す。調整部34は、受信信号のエッジ位置を検出したストローブの位置と境界ストローブの位置との位置の差に応じて、再生クロックの位相をずらす。この場合において、調整部34は、境界ストローブの位置を、受信信号のエッジ位置に近付ける方向に、再生クロックの位相をずらす。
 調整部34は、一例として、境界ストローブの位置が受信信号のエッジ位置よりも前である場合(EARLYを表す符号が検出された場合)、再生クロックの位相を、受信信号のエッジ位置を検出したストローブの位置と境界ストローブの位置との位置の差に応じた時間分遅らせる方向にずらす。また、調整部34は、境界ストローブの位置が受信信号のエッジ位置よりも後である場合(LATEを表す符号が検出された場合)、再生クロックの位相を、受信信号のエッジ位置を検出したストローブの位置と境界ストローブの位置との位置の差に応じた時間分進ませる方向にずらす。
 このような処理をサイクル毎に実行することにより、調整部34は、複数のストローブのうちの境界ストローブの位置を、クロック信号のエッジ位置の近傍に移動させるように、再生クロックの位相を調整することができる。これにより、調整部34によれば、境界ストローブの位置を受信信号のエッジ位置に同期させることができる。
 図中において、複数のストローブは、16のストロ-ブによって形成され、再生クロックに同期して生成される。境界ストローブの位置は、8番目のストローブとしている。調整部34は、受信信号のエッジ位置と8番目のストローブの位置とを一致させる。取込部36は、再生クロックに対して予め設定された設定位相分ずれたタイミングにおいて、受信信号を取り込む。ここで設定位相差は、受信信号の2つのクロック間の時間1UI(ユニット・インターバル)の半分である0.5UIとなる位置を設定している。
 受信信号の位相は、ジッタ、ワンダおよびドリフト等によりずれる。取込部36は、エッジから0.5UI離れた位置すなわち変化点同士の中間点のデータを取得するので、受信信号の受信中にエッジ位置がずれても正しくデータを取得しうる。
 図4は、本実施形態に係る受信装置20の処理フローを示す。受信装置20は、データの取得に用いる初期設定をする(S400)。初期設定には、境界ストローブの位置および/または取込部36が取り込むタイミングである設定位相差等が含まれてもよい。
 受信装置20は、信号を受信する(S410)。第1コンパレータ30は、受信信号をしきい値とレベル比較して、論理値を表す信号を出力する。
 再生クロック生成部26は、受信信号の再生クロックを生成する(S420)。信号の受信を開始した段階では、再生クロックを発生するタイミングは信号の受信タイミングと同時でもよく、あるいは予め設定したタイミングでもよい。
 マルチストローブ発生部28は、再生クロックのパルスに応じて、互いに位相が異なる複数のストローブを発生する(S430)。マルチストローブ発生部28は、一例として、再生クロックにおける基準位相から、所定間隔毎に遅延された複数のストローブを発生する。検出部32は、マルチストローブ発生部28により発生された複数のストローブのそれぞれのタイミングにおいて、第1コンパレータ30から出力された受信信号の値を取得する。
 検出部32は、複数のストローブのそれぞれのタイミングにおける受信信号の値に基づいて、複数のストローブに対する受信信号のエッジ位置を検出する(S440)。そして、検出部32は、受信信号のエッジ位置を検出したストローブの位置を調整部34に出力する。
 調整部34は、受信信号のエッジ位置に応じて再生クロックの位相を調整する(S450)。調整部34は、境界ストローブの位置が受信信号のエッジ位置よりも前である場合には再生クロックの位相を遅らせ、境界ストローブの位置が受信信号のエッジ位置よりも後である場合には再生クロックの位相を進ませる。
 マルチストローブ発生部28は、調整された再生クロックに応じて複数のストローブを発生させる。検出部32は、複数のストローブに対する受信信号のエッジ位置を検出して、エッジ位置と境界ストローブの位置とが合致もしくは意図した間隔であるかを確認する(S460)。確認した結果が、NoであればS450に戻り、YesならばS470に進む。
 取込部36は、再生クロックに対して予め設定された設定位相分ずれたタイミングにおいて、受信信号を取り込む(S470)。このとき、取込部36は、位相差設定部40に複数の位相差が設定位相差として設定されてあれば、対応する位相差に応じて受信信号を取り込む。測定部42は、取り込んだ受信信号の値を測定する。
 以上のような受信装置20によれば、受信信号のエッジのタイミングに合わせて、受信信号のデータを測定することができる。また、判定部22が、取り込んだデータ信号の結果に基づいて被試験デバイス300の良否を判定することで、試験装置10は、被試験デバイス300を試験することができる。
 図5は、本実施形態の変形例に係る受信装置20の構成を示す。本変形例に係る受信装置20は、図2に示された本実施形態に係る受信装置20と略同一の構成および機能を採るので、図2に示された本実施形態に係る受信装置20が備える部材と略同一の構成および機能の部材に同一の符号を付け、以下相違点を除き説明を省略する。
 本変形例に係る受信装置20は、受信信号の論理値を出力する第2コンパレータ50と、しきい値設定部52とを更に含む。しきい値設定部52は、第2コンパレータ50が受信信号の論理値を判定するために用いるしきい値を設定する。
 検出部32は、第1コンパレータ30から受け取った受信信号の論理値から受信信号のエッジ位置を検出する。また、取込部36は、第2コンパレータから受け取った受信信号の論理値を、再生クロックに対して設定位相差分ずれたタイミングにおいて取り込む。第1コンパレータ30により、受信装置20は、第2コンパレータのしきい値の設定によらず、受信信号のエッジを適切にとらえて適切な位相の再生クロックを生成できる。
 また、測定部42は、複数のしきい値のそれぞれを第2コンパレータ50に設定した場合において取込部36が取り込んだ受信信号の値を測定してもよい。測定部42は、それぞれのしきい値およびそれぞれの位相差に対応した測定データを得ることにより、データ信号の各レベルおよび各位相に応じたデータ信号のシュムー波形を取得することができる。
 以上の実施形態においては、受信信号のデータ取り込み方法の一例として、取込部36が再生クロックに対して予め設定された設定位相分ずれたタイミングにおいて、受信信号を取り込む例を示した。ここで取込部36は、複数のストローブのうち、予め定められた取込用ストローブのタイミングで、受信信号を取り込んでもよい。取込部36は、受信信号のエッジから境界ストローブと取込用ストローブの位相差だけ離れたタイミングで、受信信号を取り込むことができる。
 取込部36は、境界ストローブの位置に対して受信信号の半周期ずれた位置に対応する取込用ストローブのタイミングで、受信信号を取り込んでもよい。これより、取込部36は、境界ストローブより0.5UIもしくは0.5UIに近い値離れた位置のデータを取り込むことができる。
 以上の実施形態においては、受信信号が、1本の伝送ラインを伝わる場合について説明したが、これに代えて受信信号がクロックエンベデット信号のクロック信号とデータ信号を分離して2本の伝送ラインにより伝送されてもよい。その場合、検出部32は、第1コンパレータ30を経てクロック信号を受信して、取込部36は、第2コンパレータ50を経てデータ信号を取り込むことが望ましい。
 以上の実施形態において、データ信号および当該データ信号の取得タイミングを表すクロック信号を並走して出力するデバイス、もしくはデータ信号にクロック成分が重畳された信号を出力するデバイスを試験する試験装置について説明した。しかしながら本実施形態は、試験装置には限らず、マルチストローブを用いてこれらのデバイスの信号を受信する受信装置であってもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 試験装置、20 受信装置、22 判定部、24 制御部、26 再生クロック生成部、28 マルチストローブ発生部、30 第1コンパレータ、32 検出部、34 調整部、36 取込部、38 クロック信号生成部、40 位相差設定部、42 測定部、44 差分算出部、46 演算部、48 積分部、50 第2コンパレータ、52 しきい値設定部、300 被試験デバイス

Claims (10)

  1.  受信信号のエッジから再生した再生クロックを用いて前記受信信号を取り込む受信装置であって、
     前記再生クロックを生成する再生クロック生成部と、
     前記再生クロックのパルスに応じて、互いに位相が異なる複数のストローブを発生するマルチストローブ発生部と、
     前記複数のストローブのそれぞれのタイミングにおける前記受信信号の値に基づいて、前記複数のストローブに対する前記受信信号のエッジ位置を検出する検出部と、
     前記受信信号のエッジ位置に応じて前記再生クロックの位相を調整する調整する調整部と、
     前記再生クロックに対して予め設定された設定位相差分ずれたタイミングにおいて、前記受信信号を取り込む取込部と、
     を備える受信装置。
  2.  前記再生クロックに対して前記設定位相差分ずれたクロック信号を生成するクロック信号生成部を更に備え、
     前記取込部は、前記クロック信号のタイミングにおいて前記受信信号を取り込む
     請求項1に記載の受信装置。
  3.  複数の位相差のそれぞれを前記設定位相差として設定する位相差設定部と、
     前記複数の位相差のそれぞれを前記設定位相差として設定した場合において前記取込部が取り込んだ前記受信信号の値を測定する測定部と、
     を更に備える請求項1または2に記載の受信装置。
  4.  前記受信信号を受け取って前記受信信号の論理値を出力する第1コンパレータおよび第2コンパレータを更に備え、
     前記検出部は、前記第1コンパレータから受け取った前記受信信号の論理値から前記受信信号のエッジ位置を検出し、
     前記取込部は、前記第2コンパレータから受け取った前記受信信号の論理値を、前記再生クロックに対して前記設定位相差分ずれたタイミングにおいて取り込む
     請求項3に記載の受信装置。
  5.  前記第2コンパレータが前記受信信号の論理値を判定するために用いるしきい値を設定するしきい値設定部を更に備え、
     前記測定部は、複数のしきい値のそれぞれを前記第2コンパレータに設定した場合において前記取込部が取り込んだ前記受信信号の値を測定する
     請求項4に記載の受信装置。
  6.  前記取込部は、前記複数のストローブのうち、予め定められた取込用ストローブのタイミングで、前記受信信号を取り込む請求項1に記載の受信装置。
  7.  前記調整部は、前記再生クロックの位相を調整して、前記複数のストローブのうち予め定められた境界ストローブの位置を、前記受信信号のエッジ位置に調整し、
     前記取込部は、前記境界ストローブの位置に対して前記受信信号の半周期ずれた位置に対応する前記取込用ストローブのタイミングで、前記受信信号を取り込む
     請求項6に記載の受信装置。
  8.  被試験デバイスを試験する試験装置であって、
     請求項1から7のいずれかに記載の受信装置と、
     前記受信装置により前記受信信号を取り込んだ結果に基づいて、前記被試験デバイスの良否を判定する判定部と、
     を備える試験装置。
  9.  受信信号のエッジから再生した再生クロックを用いて前記受信信号を取り込む受信方法であって、
     前記再生クロックを生成する再生クロック生成ステップと、
     前記再生クロックのパルスに応じて、互いに位相が異なる複数のストローブを発生するマルチストローブ発生ステップと、
     前記複数のストローブのそれぞれのタイミングにおける前記受信信号の値に基づいて、前記複数のストローブに対する前記受信信号のエッジ位置を検出する検出ステップと、
     前記受信信号のエッジ位置に応じて前記再生クロックの位相を調整する調整する調整ステップと、
     前記再生クロックに対して予め設定された設定位相差分ずれたタイミングにおいて、前記受信信号を取り込む取込ステップと、
     を備える受信方法。
  10.  試験装置により被試験デバイスを試験する試験方法であって、
     請求項9に記載の受信方法により受信した前記受信信号を取り込んだ結果に基づいて、前記試験装置によって前記被試験デバイスの良否を判定する
     試験方法。
PCT/JP2009/002294 2009-05-25 2009-05-25 受信装置、試験装置、受信方法および試験方法 WO2010137058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011515743A JP5314755B2 (ja) 2009-05-25 2009-05-25 受信装置、試験装置、受信方法および試験方法
PCT/JP2009/002294 WO2010137058A1 (ja) 2009-05-25 2009-05-25 受信装置、試験装置、受信方法および試験方法
CN2009801592174A CN102422173A (zh) 2009-05-25 2009-05-25 接收装置、测试装置、接收方法及测试方法
TW099115315A TW201105990A (en) 2009-05-25 2010-05-13 Reception device, test device, reception method, and test method
US13/209,428 US20120013343A1 (en) 2009-05-25 2011-08-14 Receiving apparatus, test apparatus, receiving method, and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002294 WO2010137058A1 (ja) 2009-05-25 2009-05-25 受信装置、試験装置、受信方法および試験方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/209,428 Continuation US20120013343A1 (en) 2009-05-25 2011-08-14 Receiving apparatus, test apparatus, receiving method, and test method

Publications (1)

Publication Number Publication Date
WO2010137058A1 true WO2010137058A1 (ja) 2010-12-02

Family

ID=43222213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002294 WO2010137058A1 (ja) 2009-05-25 2009-05-25 受信装置、試験装置、受信方法および試験方法

Country Status (5)

Country Link
US (1) US20120013343A1 (ja)
JP (1) JP5314755B2 (ja)
CN (1) CN102422173A (ja)
TW (1) TW201105990A (ja)
WO (1) WO2010137058A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646282A (zh) * 2017-01-03 2017-05-10 中国地质大学(武汉) 一种基于量化时延法提高fid信号测频精度的方法及电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839528B (zh) * 2014-02-20 2016-02-10 北京京东方显示技术有限公司 拼接显示屏的同步显示方法、时钟控制器及拼接显示屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792228A (ja) * 1993-09-20 1995-04-07 Hitachi Electron Eng Co Ltd Icロジックテスターのテスト回路
JP2001201532A (ja) * 2000-01-18 2001-07-27 Advantest Corp 半導体デバイス試験方法・半導体デバイス試験装置
WO2003052768A1 (fr) * 2001-12-18 2003-06-26 Advantest Corporation Appareil d'essai a semi-conducteurs
JP2004127455A (ja) * 2002-10-04 2004-04-22 Advantest Corp マルチストローブ生成装置、試験装置、及び調整方法
WO2008114508A1 (ja) * 2007-03-22 2008-09-25 Advantest Corporation データ受信回路それを利用した試験装置ならびにストローブ信号のタイミング調節回路、方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406646B2 (en) * 2002-10-01 2008-07-29 Advantest Corporation Multi-strobe apparatus, testing apparatus, and adjusting method
WO2005050231A1 (ja) * 2003-11-20 2005-06-02 Advantest Corporation タイミングコンパレータ、データサンプリング装置、及び試験装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792228A (ja) * 1993-09-20 1995-04-07 Hitachi Electron Eng Co Ltd Icロジックテスターのテスト回路
JP2001201532A (ja) * 2000-01-18 2001-07-27 Advantest Corp 半導体デバイス試験方法・半導体デバイス試験装置
WO2003052768A1 (fr) * 2001-12-18 2003-06-26 Advantest Corporation Appareil d'essai a semi-conducteurs
JP2004127455A (ja) * 2002-10-04 2004-04-22 Advantest Corp マルチストローブ生成装置、試験装置、及び調整方法
WO2008114508A1 (ja) * 2007-03-22 2008-09-25 Advantest Corporation データ受信回路それを利用した試験装置ならびにストローブ信号のタイミング調節回路、方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646282A (zh) * 2017-01-03 2017-05-10 中国地质大学(武汉) 一种基于量化时延法提高fid信号测频精度的方法及电路
CN106646282B (zh) * 2017-01-03 2023-05-26 中国地质大学(武汉) 一种基于量化时延法提高fid信号测频精度的方法及电路

Also Published As

Publication number Publication date
JPWO2010137058A1 (ja) 2012-11-12
CN102422173A (zh) 2012-04-18
TW201105990A (en) 2011-02-16
US20120013343A1 (en) 2012-01-19
JP5314755B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP3920318B1 (ja) 試験装置および試験方法
WO2007123055A1 (ja) 試験装置、試験方法、ジッタフィルタ回路、及びジッタフィルタ方法
US8111082B2 (en) Test apparatus
JP4895551B2 (ja) 試験装置および試験方法
KR101081545B1 (ko) 복조 장치, 시험장치 및 전자 디바이스
JP5243545B2 (ja) 試験装置、送信装置、受信装置、試験方法、送信方法、および受信方法
JP5314755B2 (ja) 受信装置、試験装置、受信方法および試験方法
WO2010092800A1 (ja) 試験装置および試験方法
JP5232913B2 (ja) クロック生成装置、試験装置およびクロック生成方法
JP5211239B2 (ja) 受信装置、試験装置、受信方法および試験方法
JP5210646B2 (ja) 被測定信号の変化点を検出する装置、方法および試験装置
JP5225925B2 (ja) 調整装置、調整方法および試験装置
WO2013120361A1 (zh) 同步信号处理的方法和装置
JP5249357B2 (ja) 電子デバイス、試験装置および試験方法
JP2021081430A (ja) 試験測定装置及びエラー検出方法
WO2010087009A1 (ja) 電子デバイス、試験装置および試験方法
JP4944771B2 (ja) 試験装置、回路および電子デバイス
JP2006180029A (ja) テスト回路
JP2010011518A (ja) 試験装置
JP2006003221A (ja) 試験装置及び試験方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159217.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515743

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845132

Country of ref document: EP

Kind code of ref document: A1