WO2013120361A1 - 同步信号处理的方法和装置 - Google Patents

同步信号处理的方法和装置 Download PDF

Info

Publication number
WO2013120361A1
WO2013120361A1 PCT/CN2012/083668 CN2012083668W WO2013120361A1 WO 2013120361 A1 WO2013120361 A1 WO 2013120361A1 CN 2012083668 W CN2012083668 W CN 2012083668W WO 2013120361 A1 WO2013120361 A1 WO 2013120361A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
processed
synchronization
synchronization signal
pulses
Prior art date
Application number
PCT/CN2012/083668
Other languages
English (en)
French (fr)
Inventor
邹建龙
习勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12868522.9A priority Critical patent/EP2712081B1/en
Publication of WO2013120361A1 publication Critical patent/WO2013120361A1/zh
Priority to US14/133,972 priority patent/US9306581B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/153Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
    • H03K5/1536Zero-crossing detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator

Definitions

  • the present invention relates to the field of power supply technologies, and more particularly to a method and apparatus for synchronizing signal processing between a plurality of power sources.
  • Using hardware or software to obtain the positive zero crossing/negative zero crossing of the original signal, generating a pulse of the same width at the positive zero crossing corresponding to the original signal, the rising edge/fall of the pulse The edge is aligned with the positive zero crossing, or a pulse of the same width is generated at the negative zero crossing corresponding to the original signal, and the rising/falling edge of the pulse is aligned with the negative zero crossing, and the signal composed of these pulses is the synchronization of the original signal.
  • the signal, the sync signal contains only one pulse per cycle.
  • synchronizing the synchronization signal may include: detecting the synchronization signal and synchronizing the synchronization signal.
  • the synchronization signal of the original signal Before synchronizing the original signal, it is first necessary to detect the synchronization signal of the original signal, and determine whether the time interval between the rising edge/falling edge of each two pulses in the synchronization signal is within a preset range, if it is in a preset range. If the synchronization signal is normal, if the synchronization signal is not normal, the synchronization signal is abnormal. If the synchronization signal is normal, the pulses in the synchronization signals of the two power sources are time-aligned to realize the between the two power sources. Synchronous operation, the number of pulses included in the synchronization signal is the number of times the synchronization signal is detected and the synchronization signal is synchronized.
  • the synchronization signal is the same signal as the original signal period, and one period of the synchronization signal contains only one pulse, in one cycle of the original signal, that is, the synchronization signal of the original signal In the corresponding one cycle, only one synchronization operation can be performed on the synchronization signal, thereby causing the synchronization operation to be performed at a slower speed; in the prior art, by determining the time between the rising edge/falling edge of the two pulses in the synchronization signal The method of whether the interval is within the preset range can only judge whether the time interval between the pulses is normal, and can not judge whether a certain pulse is normal, so that the accuracy of performing the synchronization operation is low.
  • Embodiments of the present invention provide a method and apparatus for synchronizing signal processing, which solves the problem of low accuracy and slow speed of synchronizing synchronization signals.
  • a method for synchronizing signal processing comprising:
  • a signal to be processed of a plurality of power sources wherein the signal to be processed is a periodically changing signal; generating a synchronization signal with the same period of the signal to be processed by generating a pulse in each period of the signal to be processed, ???each period of the synchronization signal includes at least two of the pulses; by determining whether the parameters of all the pulses in the synchronization signal are accurate, detecting whether the synchronization signal is normal;
  • the pulses in the synchronization signal are time-aligned to synchronize the signals to be processed.
  • a method for synchronizing signal processing comprising:
  • the signal to be processed is a periodically changing signal; generating a synchronization signal with the same period of the signal to be processed by generating a pulse in each period of the signal to be processed,
  • the processing signal includes at least one of the pulses;
  • Detecting whether the synchronization signal is normal by determining whether the width of all the pulses in the synchronization signal is within a preset range
  • the pulses in the synchronization signal are time-aligned to synchronize the signals to be processed.
  • a device for synchronizing signal processing comprising: a first acquiring unit, configured to acquire a to-be-processed signal of multiple power sources, where the to-be-processed signal is a periodically changing signal;
  • a first generating unit configured to generate a synchronization signal with the same period of the signal to be processed by generating a pulse in each period of the to-be-processed signal acquired by the first acquiring unit, each of the synchronization signals Included in the cycle are at least two of the pulses;
  • a first detecting unit configured to determine whether the synchronization signal is normal by determining whether a parameter of all the pulses in the synchronization signal generated by the first generating unit is accurate;
  • the first synchronization unit is configured to perform time calibration on the pulse in the synchronization signal if the first detection unit detects that the synchronization signal is normal, so as to synchronize the to-be-processed signal.
  • a device for synchronizing signal processing comprising:
  • a second acquiring unit configured to acquire a to-be-processed signal of the multiple power sources, where the to-be-processed signal is a periodically changing signal
  • a second generating unit configured to generate a synchronization signal with the same period of the signal to be processed by generating a pulse in each period of the to-be-processed signal acquired by the second acquiring unit, where the to-be-processed signal includes at least One of the pulses;
  • a second detecting unit configured to detect whether the synchronization signal is normal by determining whether a width of all the pulses in the synchronization signal generated by the second generating unit is within a preset range
  • a second synchronization unit configured to perform time calibration on the pulse in the synchronization signal if the second detection unit detects that the synchronization signal is normal, so as to synchronize the to-be-processed signal.
  • the method and device for synchronizing signal processing synchronize the signals to be processed of a plurality of power sources by synchronizing the synchronization signals.
  • the synchronization signal is first detected; the detection of the synchronization signal is specifically detected by determining whether the pulse included in the synchronization signal is normal, and the synchronization is performed.
  • the signal contains the number of pulses, which is the number of times the synchronization operation is performed on the synchronization signal.
  • At least two pulses are included in each period of the synchronization signal, so that the synchronization operation can be performed at least twice in one cycle of the synchronization signal.
  • the accuracy, and speed of performing synchronous operations are high.
  • FIG. 1 is a flowchart of a method for synchronizing signal processing according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for detecting synchronization signal processing of a synchronization signal by detecting a pulse width and a pulse sequence of a synchronization signal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for synchronizing signal processing according to the embodiment.
  • FIG. 4 is a waveform diagram of a single-phase signal and a synchronization signal thereof according to the embodiment
  • FIG. 5 is a waveform diagram of a three-phase signal and a synchronization signal thereof according to the embodiment
  • FIG. 6 is a flow chart of a method for generating a synchronization signal and synchronizing signal processing at a selected phase point according to the embodiment
  • FIG. 7 is a waveform diagram of generating a synchronization signal, a three-phase signal, and a synchronization signal thereof at a selected phase point according to the embodiment
  • FIG. 8 is a waveform diagram of generating a synchronization signal, a single-phase signal, and a synchronization signal thereof at a selected phase point according to the embodiment
  • FIG. 9 is a schematic structural diagram of an apparatus for synchronizing signal processing according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for synchronizing signal processing using another method for detecting a synchronization signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another apparatus for synchronizing signal processing according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of an apparatus for generating a synchronization signal and synchronizing signal processing at a selected phase point according to the embodiment.
  • This embodiment provides a method for synchronizing signal processing. As shown in FIG. 1, the method includes the following steps:
  • the signal to be processed is first obtained.
  • a synchronization signal having the same period as the signal to be processed is generated according to the signal to be processed.
  • the synchronizing operation performed on the synchronizing signal may include: synchronizing the synchronizing signal and detecting the synchronizing signal. Synchronization of the corresponding signals to be processed is achieved by synchronizing the synchronization signals; before synchronizing the signals to be processed using the synchronization signals, the synchronization signals need to be detected to ensure the accuracy of the synchronization signals.
  • the number of pulses included in one cycle of the sync signal is the number of times the sync operation is performed on the sync signal.
  • At least two pulses are included in each cycle of the synchronization signal.
  • Synchronization of the corresponding signals to be processed is achieved by synchronizing the synchronization signals. If the signals to be processed are synchronized using an abnormal synchronization signal, the signals to be processed are synchronized abnormally.
  • detecting the specific synchronization signal for example: detecting whether the time interval between two rising edges/falling edges of the synchronization signal is within a preset range, if the time interval is within a preset range, The synchronization signal is normal; if it is not within the preset range, the synchronization signal is not normal, and the parameter of the pulse is the time interval between the pulses.
  • the parameters of the pulse are not limited in this embodiment, and may be set according to actual needs, and will not be described here.
  • synchronization signal If the synchronization signal is normal, time-align the pulses in the synchronization signal to synchronize the signals to be processed.
  • synchronization of the signals to be processed is achieved by time-aligning the rising/falling edges of the pulses in the synchronization signal.
  • the synchronization signal processing method synchronizes the signals to be processed of the plurality of power sources by synchronizing the synchronization signals.
  • the synchronization signal is first detected; the detection of the synchronization signal is specifically detected by determining whether the pulse included in the synchronization signal is normal, and the synchronization is performed.
  • the signal contains the number of pulses, which is the number of times the synchronization operation is performed on the synchronization signal.
  • At least two pulses are included in each period of the synchronization signal, so that the number of synchronization operations can be performed on the synchronization signal at least twice in one cycle of the synchronization signal, thereby improving the accuracy of the synchronization operation, And speed.
  • This embodiment provides a method for synchronizing signal processing. As shown in FIG. 2, the method includes the following steps:
  • the signal to be processed is first obtained.
  • a synchronization signal of the signal to be processed is generated according to the signal to be processed.
  • the synchronizing operation performed on the synchronizing signal may include: synchronizing the synchronizing signal and detecting the synchronizing signal. Synchronizing the corresponding signals to be processed by synchronizing the synchronization signals, that is, realizing synchronous operation between multiple power sources; before synchronizing the signals to be processed using the synchronization signals, it is also necessary to detect the synchronization signals to ensure The accuracy of the sync signal.
  • Detect whether the synchronization signal is normal by determining whether the width of all the pulses in the synchronization signal is within a preset range.
  • the synchronization of the corresponding signals to be processed is realized, and the synchronous operation between the power sources is realized. If the signals to be processed are synchronized by using the abnormal synchronization signals, the signals to be processed are synchronized abnormally.
  • determining whether the time interval of the rising edge/falling edge of the two pulses in the synchronization signal is within a preset range if not in the preset range, indicating that the synchronization signal is abnormal; if it is within the preset range, determining synchronization Whether the width of all the pulses in the signal is within the preset range. If all the pulse widths of the synchronization signal are within the corresponding preset range, the synchronization signal is normal; if all the pulse widths included in the synchronization signal are not corresponding Within the preset range, the synchronization signal is abnormal.
  • each period of the synchronization signal includes at least two pulses, it may also be determined whether the order of all the pulses in the synchronization signal is correct according to the order of the pulses of the synchronization signal, if all the pulses included in the synchronization signal If the arrangement order is correct, the synchronization signal is normal; if the arrangement order of all the pulses included in the synchronization signal is incorrect, the synchronization signal is abnormal.
  • the synchronization signal is normal or not according to the pulse width of the synchronization signal and the arrangement order of the pulses.
  • the method for detecting the synchronization signal is not limited in this embodiment, and may be any method well known to those skilled in the art, and details are not described herein.
  • synchronization signal If the synchronization signal is normal, time-align the pulses in the synchronization signal to synchronize the signals to be processed.
  • the time calibration method synchronizes the synchronization signals to synchronize the signals to be processed.
  • the manner in which the synchronization signal is time-aligned in this embodiment is not limited, and may be any manner well known to those skilled in the art, and details are not described herein again.
  • this embodiment provides another synchronization signal processing method, as shown in FIG. 3, including the following steps:
  • the signal to be processed is first obtained.
  • the to-be-processed signal in this embodiment may be a single-signal, three-phase signal.
  • each period of the signal to be processed includes a positive zero crossing, and/or a negative zero crossing, and a positive zero crossing of the signal to be processed is obtained from each period of the signal to be processed, Or negative zero crossing.
  • the time point of the acquisition is the positive zero crossing of the signal to be processed, and / or the negative zero crossing.
  • the time points obtained may include: positive zero crossing, negative zero crossing, peak point, trough point, and the like.
  • the synchronization signal is composed of pulses generated at a time point. In order to include the same number of pulses of the same position in each cycle of the synchronization signal, each cycle of the signal to be processed contains the same number of cycles per cycle. The same time point between the corresponding time.
  • the period of the signal to be processed is 21 milliseconds
  • the 7 millisecond time point, the 14 millisecond time point, and the 21 millisecond time point of the first period of the to-be-processed signal are obtained; 7 millisecond time point, 14 millisecond time point, 21 milliseconds for the corresponding second period
  • the time point, that is, the 28 millisecond time point of the signal to be processed, the 35 millisecond time point, and the 42 millisecond time point; the time points of other cycles are sequentially acquired according to the above method.
  • the signal to be processed is a single-phase signal
  • a positive zero-crossing point and a negative zero-crossing point of the signal to be processed are obtained, and a positive zero-crossing point and a negative zero-crossing point are taken as each signal to be processed.
  • This embodiment does not specifically limit the time, and can be set according to actual needs, and will not be described again here.
  • a pulse is generated by the pulse generating means at each time point corresponding to the acquired signal to be processed, and all the pulses obtained are used as the same synchronization signal as the period of the signal to be processed.
  • each cycle of the signal to be processed contains the same number of time points at the same time between each cycle, each cycle of the synchronization signal contains the same number of pulses of the same position.
  • the pulses generated at the same time point at the same time between each cycle of the signal to be processed have the same width.
  • the period of the signal to be processed is 21 milliseconds
  • the period of the synchronization signal is also 21 milliseconds
  • the pulse width generated at the 7 millisecond time point of the first period of the signal to be processed is the same, that is, the same width as the pulse generated at the 28 millisecond time point of the signal to be processed; the same time as the corresponding period of the other periods
  • the pulse width generated at the time point is also the same.
  • the signal to be processed is a single-phase signal
  • the obtained time point is the positive zero-crossing point of the signal to be processed
  • the negative zero-crossing point the pulse generated at the positive zero-crossing point has the same width.
  • the pulse generated at the negative zero crossing has the same width; if the signal to be processed is three believes No.
  • the acquired time point is the positive zero crossing of each phase signal in the signal to be processed, and the pulse width generated at the positive zero crossing of one of the phase signals of the signal to be processed is the same.
  • the widths of the pulses generated at different points in time between the respective periods are different.
  • the period of the signal to be processed is 21 milliseconds
  • the period of the synchronization signal is also 21 milliseconds
  • the pulse width generated at the 7 millisecond time point of the first period of the signal to be processed is different, and the pulse width generated at a time point different from the corresponding time of the other cycle is also different.
  • the width of the pulse generated at the positive zero-crossing point is The pulse width generated at the negative zero crossing point is different; if the signal to be processed is a three-phase signal, the time point of acquisition is the positive zero crossing of the signal of each phase in the signal to be processed, then the positive zero crossing of the signal of the different phase of the signal to be processed The pulse widths generated are not the same.
  • Figure 4 is a waveform diagram of the synchronization signal of the signal to be processed and the signal to be processed when the signal to be processed is a single-phase signal.
  • Figure 5 is a waveform diagram of the synchronization signal of the signal to be processed and the signal to be processed when the signal to be processed is a three-phase signal.
  • the signal to be processed is a three-phase signal, including: phase A signal, phase B signal, phase C signal.
  • the pulse generating device provided in this embodiment may be any device including a pulse generating circuit.
  • the pulse generating device is not limited in this embodiment, and may be any device well known to those skilled in the art, and details are not described herein.
  • the synchronizing operation performed on the synchronizing signal may include: synchronizing the synchronizing signal and detecting the synchronizing signal.
  • the synchronization of the signals to be processed is achieved by synchronizing the synchronization signals of the signals to be processed.
  • the synchronization signal is first detected before synchronization.
  • the parameters of the pulse provided in this embodiment may be: the width of the pulse, the order of the pulses, the time interval between the pulses, and the like.
  • the synchronization signal is normal according to the time interval of the pulse of the synchronization signal.
  • the parameters of all the pulses in the synchronization signal are accurate, whether the synchronization signal is normal or not can be determined by: judging whether the width of all the pulses in the synchronization signal is within a preset range, and/or by judging whether the order of all the pulses in the synchronization signal is For the preset sequence, check if the sync signal is normal.
  • the time interval between the rising edge and the falling edge of the two pulses in the synchronization signal is obtained, and it is determined whether each time interval is within a preset range. If not in the preset range, the synchronization signal is illustrated.
  • the synchronization signal is not used to synchronize the processed signal; if it is within the preset range, the width of each pulse in the synchronization signal is obtained, and it is determined whether the width of each pulse is within a preset range, if the width of the pulse is in advance Within the range, it means that each pulse in the synchronization signal is normal, and the synchronization signal is also normal; if it is not within the preset range, it means that some pulses in the synchronization signal are abnormal, and the synchronization signal is abnormal.
  • determining whether the order of all the pulses in the synchronization signal is correct If the order of all the pulses included in the synchronization signal is correct, the synchronization signal is normal; if the arrangement order of all the pulses included in the synchronization signal is incorrect, The sync signal is abnormal.
  • the synchronization signal is normal or not according to the pulse width of the synchronization signal and the arrangement order of the pulses.
  • the parameters of the pulse are not limited in this embodiment, and may be set according to actual needs, and will not be described here.
  • the method for detecting the synchronization signal is not limited in this embodiment, and may be any method well known to those skilled in the art, and details are not described herein again.
  • synchronization signal If the synchronization signal is normal, time calibrate the pulse in the synchronization signal to synchronize the signal to be processed.
  • the synchronization of the signals to be processed is achieved by synchronizing the synchronization signals of the signals to be processed.
  • the synchronization signal is synchronized by performing time calibration on the rising edge/falling edge of the pulse of the synchronization signal, thereby synchronizing the signal to be processed.
  • the synchronization signal can be synchronized at least twice in one cycle of the signal to be processed, that is, in one cycle of the synchronization signal, that is, During one cycle of the signal to be processed, the signal to be processed is performed twice to improve the speed and accuracy of the synchronization operation.
  • the synchronization signal processing method synchronizes the signals to be processed of the plurality of power sources by synchronizing the synchronization signals.
  • the synchronization signal is first detected; the detection of the synchronization signal is specifically detected by determining whether the pulse included in the synchronization signal is normal, and the synchronization is performed.
  • the signal contains the number of pulses, which is the number of times the synchronization operation is performed on the synchronization signal.
  • each period of the synchronization signal includes at least two pulses, so that the number of times of performing the synchronization operation on the synchronization signal in one cycle of the synchronization signal is not less than 2, which improves the accuracy of performing the synchronization operation, and speed.
  • the embodiment provides another method for synchronizing signal processing. As shown in FIG. 6, the method includes the following steps:
  • the signal to be processed is first obtained.
  • the to-be-processed signal in this embodiment may be a single-signal, three-phase signal.
  • the method for obtaining a voltage phase signal of a signal to be processed may include: directly calculating a voltage phase signal of a signal to be processed according to a signal to be processed, and generating a voltage phase signal of the signal to be processed by using a phase lock manner .
  • the voltage phase signal of the signal to be processed is generated by using a phase-locked manner; if the signal to be processed is a three-phase signal, the data to be processed can be directly calculated.
  • the voltage phase signal of the signal, or the voltage phase signal of the signal to be processed is generated by phase locking.
  • the method for obtaining the voltage phase signal is not limited in this embodiment, and may be any method well known to those skilled in the art, and details are not described herein again.
  • phase points having the same phase angle value between each cycle of the same number of voltage phase signals Acquire, from each cycle of the voltage phase signal, phase points having the same phase angle value between each cycle of the same number of voltage phase signals, and acquire at least two phase points in each cycle.
  • the phase angle value of each phase of the voltage phase signal may be 0 to 360 degrees
  • the acquired phase points may include: 120 degrees, 240 degrees, 360 degrees, and the like.
  • the synchronization signal is composed of pulses generated at the phase point.
  • the voltage phase signal includes the same number of voltage phase signals in each cycle. A phase point with the same phase angle value between each cycle.
  • the signal to be processed is a three-phase signal, 120 degrees, 240 degrees, and 360 degrees are obtained from each cycle of the voltage phase signal; As shown in Fig. 8, if the signal to be processed is a single-phase signal, 180 degrees and 360 degrees are obtained from each cycle of the voltage phase signal.
  • the selection of the phase point is not limited, and may be set according to actual needs, and details are not described herein again.
  • each period of the synchronization signal contains the same number of pulses of the same position.
  • the width of the pulse generated at the phase point having the same phase angle value between all periods of the voltage phase signal is the same.
  • a pulse is generated at 120 degrees, 240 degrees, and 360 degrees in each cycle of the voltage phase signal, and 120 in each cycle of the voltage phase signal.
  • the pulse width generated at the point is the same, the pulse width generated at the 240 degree point in each cycle of the voltage phase signal is the same, and the pulse width generated at the 360 degree point in each cycle of the voltage phase signal is the same.
  • widths of the pulses generated at the phase points of the different phase angle values are different in all periods of the voltage phase signal.
  • Figure 7 is a waveform diagram of a synchronization signal for generating a synchronization signal, a three-phase signal, and a three-phase signal at a selected phase point
  • Figure 8 is a diagram for generating a synchronization signal, a single-phase signal, and a single phase at a selected phase point. Waveform of the synchronization signal of the signal.
  • Detect whether the synchronization signal is normal by determining whether the parameters of all the pulses in the synchronization signal are accurate.
  • the synchronizing operation performed on the synchronizing signal may include: synchronizing the synchronizing signal and detecting the synchronizing signal.
  • the synchronization of the signals to be processed is achieved by synchronizing the synchronization signals of the signals to be processed.
  • the synchronization signal is first detected before synchronization. Further, it is determined whether the synchronization signal is normal according to the time interval of the pulse of the synchronization signal.
  • whether the synchronization signal is normal or not can be determined by: judging whether the width of all the pulses in the synchronization signal is within a preset range, and/or by judging whether the order of all the pulses in the synchronization signal is For the preset sequence, check if the sync signal is normal.
  • the time interval between the rising edge and the falling edge of the two pulses in the synchronization signal is obtained, and it is determined whether each time interval is within a preset range. If not in the preset range, the synchronization signal is illustrated.
  • the synchronization signal is not used to synchronize the processed signal; if it is within the preset range, the width of each pulse in the synchronization signal is obtained, and it is determined whether the width of each pulse is within a preset range, if the width of the pulse is in advance Within the range, it means that each pulse in the synchronization signal is normal, and the synchronization signal is also normal; if it is not within the preset range, it means that some pulses in the synchronization signal are abnormal, and the synchronization signal is abnormal.
  • determining whether the order of all the pulses in the synchronization signal is correct If the order of all the pulses included in the synchronization signal is correct, the synchronization signal is normal; if the arrangement order of all the pulses included in the synchronization signal is incorrect, The sync signal is abnormal.
  • the method for detecting the synchronization signal is not limited in this embodiment, and may be any method well known to those skilled in the art, and details are not described herein.
  • the signal to be processed is synchronized by performing time calibration on the pulse in the synchronization signal.
  • the synchronization of the signals to be processed is achieved by synchronizing the synchronization signals of the signals to be processed.
  • the synchronization signals are synchronized by time-aligning the rising edge/falling edge of the pulse of the synchronization signal, thereby synchronizing the signals to be processed.
  • the synchronization signal can be synchronized at least twice in one cycle of the signal to be processed, that is, in one cycle of the synchronization signal, that is, During one cycle of the signal to be processed, the signals to be processed are synchronized at least twice to improve the speed and accuracy of the synchronization operation.
  • the method for performing time calibration on the synchronization signal in this embodiment is not limited, and may be a technology in the field. Any method known to the person is not repeated here.
  • the synchronization signal processing method synchronizes the signals to be processed of the plurality of power sources by synchronizing the synchronization signals.
  • the synchronization signal is first detected; the detection of the synchronization signal is specifically detected by determining whether the pulse included in the synchronization signal is normal, and the synchronization is performed.
  • the signal contains the number of pulses, which is the number of times the synchronization operation is performed on the synchronization signal.
  • At least two pulses are included in each period of the synchronization signal, so that at least one synchronization operation can be performed on the synchronization signal in one cycle of the synchronization signal, thereby improving the accuracy and speed of the synchronization operation.
  • the apparatus for synchronizing signal processing includes: a first acquiring unit 91, a first generating unit 92, a first detecting unit 93, and a first synchronizing unit 94.
  • the first obtaining unit 91 is configured to acquire a to-be-processed signal of multiple power sources, where the signal to be processed is a periodically changing signal.
  • a first generating unit 92 configured to generate a synchronization signal in the same period as the signal to be processed by generating a pulse in each period of the signal to be processed acquired by the first acquiring unit, where the synchronization signal includes at least two pulses in each period .
  • the first detecting unit 93 is configured to detect whether the synchronization signal is normal by determining whether the parameters of all the pulses in the synchronization signal generated by the first generating unit are accurate.
  • the first synchronization unit 94 is configured to synchronize the signals to be processed by performing time calibration on the pulses in the synchronization signal if the first detection unit detects that the synchronization signal is normal.
  • the apparatus for synchronizing signal processing may perform synchronization operation on the synchronization signal, and may include: synchronizing the synchronization signal and detecting the synchronization signal.
  • the first synchronization unit synchronizes the signal to be processed by synchronizing the synchronization signal; in order to make the synchronization of the signal to be processed more accurate, the first detection unit first detects the synchronization signal before synchronization; the first detection unit
  • the detection of the synchronization signal is specifically determined by determining whether the pulse included in the synchronization signal is normal.
  • the number of pulses included in one cycle of the synchronization signal is the number of times the synchronization operation is performed on the synchronization signal in one cycle of the synchronization signal.
  • each period of the synchronization signal includes at least two pulses, so that the number of times that the synchronization signal can perform the synchronization operation is not less than 2 in one cycle of the synchronization signal, which improves the accuracy and speed of the synchronization operation.
  • This embodiment provides another apparatus for synchronizing signal processing.
  • the apparatus includes: a second obtaining unit 101, a second generating unit 102, a second detecting unit 103, and a second synchronizing unit 104.
  • the second obtaining unit 101 is configured to acquire a to-be-processed signal of the plurality of power sources, where the signal to be processed is a periodically changing signal.
  • the second generating unit 102 is configured to generate a synchronization signal with the same period of the signal to be processed by generating a pulse in each period of the signal to be processed acquired by the second obtaining unit, and the signal to be processed is included in the pulse.
  • the second detecting unit 103 is configured to detect whether the synchronization signal is normal by determining whether the width of all the pulses in the synchronization signal generated by the second generating unit is within a preset range.
  • the second synchronization unit 104 is configured to: if the second detection unit detects that the synchronization signal is normal, synchronize the signals to be processed by performing time calibration on the pulses in the synchronization signal.
  • the apparatus includes: a first obtaining unit 111, a first generating unit 112, a first detecting unit 113, and a first synchronizing unit 114.
  • the first generating unit 112 includes: a first acquiring module 1121 and a first generating module 1122.
  • the first obtaining unit 111 is configured to acquire a to-be-processed signal of multiple power sources, where the signal to be processed is a periodically changing signal.
  • a synchronization signal of the signal to be processed is generated according to the signal to be processed, and a synchronization signal of the signal to be processed is synchronized to realize synchronization of the signal to be processed.
  • the first obtaining unit first acquires a signal to be processed.
  • the signal to be processed may be a single-phase signal or a three-phase signal.
  • a first generating unit 112 configured to pass each week of the to-be-processed signal acquired by the first acquiring unit A pulse is generated during the period to generate a synchronization signal having the same period as the signal to be processed, and the synchronization signal includes at least two pulses per period.
  • the first obtaining module 1121 is configured to acquire the same number of time points and the same time period between each period from each period of the to-be-processed signal, and acquire at least two time points in each period.
  • each period of the signal to be processed includes a positive zero crossing, and/or a negative zero crossing, and a positive zero crossing of the signal to be processed is obtained from each period of the signal to be processed, Or negative zero crossing.
  • the time point of the acquisition is the positive zero crossing of the signal to be processed, and / or the negative zero crossing.
  • the time points acquired by the first acquisition module may include: a positive zero crossing, a negative zero crossing, a peak point, a trough point, and the like.
  • the synchronization signal is composed of pulses generated at a time point.
  • each cycle of the signal to be processed contains the same number of cycles per cycle. The same time point between the corresponding time.
  • a first generating module 1122 configured to generate, by using a pulse generating device, a pulse at a time point acquired by each first acquiring module, and obtain the pulse as the same synchronization signal as the period of the signal to be processed, at the same time point at the corresponding time
  • the generated pulses are all the same width.
  • the first generation module generates a pulse at each time point of the acquired signal to be processed by the pulse generating means, and all the pulses obtained are the same synchronization signal as the period of the signal to be processed.
  • each cycle of the signal to be processed contains the same number of time points at the same time between each cycle, each cycle of the synchronization signal contains the same number of pulses of the same position.
  • the pulses generated by the first generation module have the same width.
  • widths of the pulses generated by the first generation module are different at all time points between the periods of the signals to be processed and the respective times between the periods.
  • the first detecting unit 113 is configured to determine all the pulses in the synchronization signal generated by the first generating unit Whether the parameters of the punch are accurate and whether the sync signal is detected.
  • the synchronizing operation performed on the synchronizing signal may include: synchronizing the synchronizing signal and detecting the synchronizing signal.
  • the synchronization of the signals to be processed is achieved by synchronizing the synchronization signals of the signals to be processed.
  • the first detecting unit first detects the synchronization signal before synchronizing.
  • the first detecting unit determines whether the synchronization signal is normal according to the width of the pulse of the synchronization signal, the pulse arrangement order, and the time interval of the pulse.
  • the first synchronization unit 114 is configured to: when the first detection unit detects that the synchronization signal is normal, synchronize the signals to be processed by performing time calibration on the pulses in the synchronization signal.
  • the first synchronization unit synchronizes the signals to be processed by synchronizing the synchronization signals of the signals to be processed.
  • the first synchronizing unit synchronizes the synchronizing signals by time-aligning the rising/falling edges of the pulses of the synchronizing signal, and then synchronizing the synchronizing signals.
  • the first synchronization unit synchronizes the signals to be processed by synchronizing the synchronization signals, so that the synchronization of the signals to be processed is more accurate, so before the synchronization, the first The detecting unit detects the synchronization signal; the first detecting unit detects the synchronization signal by determining whether the pulse included in the synchronization signal is normal, and the number of pulses included in one cycle of the synchronization signal, that is, in one cycle of the synchronization signal The number of times the synchronization operation is performed on the synchronization signal.
  • each period of the synchronization signal includes at least two pulses, so that in one cycle of the synchronization signal, the first detecting unit can perform at least two synchronization operations on the synchronization signal, thereby improving the accuracy of the synchronization operation. Sex, and speed.
  • the apparatus includes: a first obtaining unit 121, a first generating unit 122, a first detecting unit 123, and a first synchronizing unit 124.
  • the first generating unit 122 includes: a second generating module 1221, a second acquiring module 1222, and a third generating module 1223.
  • the first obtaining unit 121 is configured to acquire a to-be-processed signal of multiple power sources, where the signal to be processed is a periodically changing signal.
  • a synchronization signal of the signal to be processed is generated according to the signal to be processed, and a synchronization signal of the signal to be processed is synchronized to realize synchronization of the signal to be processed.
  • the first obtaining unit first acquires a signal to be processed.
  • the signal to be processed may be a single-phase signal or a three-phase signal.
  • the first generating unit 122 is configured to generate a synchronization signal with the same period of the signal to be processed by generating a pulse in each period of the signal to be processed acquired by the first acquiring unit, where the synchronization signal includes at least two pulses in each period .
  • the second generating module 1221 is configured to generate a voltage phase signal with the same signal period as the signal to be processed by using a phase locking manner, and if the signal to be processed is a three-phase signal, generate a voltage phase signal by using a phase locking manner, or The signal is processed to calculate the voltage phase signal.
  • the method for the second generation module to obtain the voltage phase signal may include: the second generation module directly calculates the voltage phase signal according to the to-be-processed signal, or the second generation module generates the voltage phase by using the phase-locked manner signal.
  • the second generation module if the signal to be processed is a single-phase signal, the second generation module generates a voltage phase signal of the signal to be processed by using a phase-locked manner; if the signal to be processed is a three-phase signal, The second generation module can directly calculate the voltage phase signal of the signal to be processed, or generate a voltage phase signal by using a phase lock method.
  • the method for generating the voltage phase signal of the second generation module is not limited in this embodiment, and may be any method well known to those skilled in the art, and details are not described herein again.
  • the second obtaining module 1222 is configured to acquire, from each cycle of the voltage phase signal, phase points having the same phase angle value between each cycle of the same number of voltage phase signals, and acquire at least two in each cycle. Site.
  • a third generation module 1223 configured to generate a pulse at each phase point by using a pulse generating device
  • the pulse obtained is the same synchronization signal as the period of the signal to be processed, and the pulse generated at the phase point having the same phase angle value between all periods of the voltage phase signal has the same width.
  • the third generation module generates a pulse at each phase point of the voltage phase signal, and all of the obtained pulses are used as synchronization signals of the signals to be processed.
  • each period of the synchronization signal contains the same number of pulses of the same position.
  • the third generation module has the same width of pulses generated at phase points having the same phase angle value between all periods of the voltage phase signal.
  • the third generation module generates different pulses having different widths at phase points of different phase angle values.
  • the first detecting unit 123 is configured to detect whether the synchronization signal is normal by determining whether the parameters of all the pulses in the synchronization signal generated by the first generating unit are accurate.
  • the synchronizing operation performed on the synchronizing signal may include: synchronizing the synchronizing signal and detecting the synchronizing signal.
  • the synchronization of the signals to be processed is achieved by synchronizing the synchronization signals of the signals to be processed.
  • the first detecting unit first detects the synchronization signal before synchronizing.
  • the first detecting unit determines whether the synchronization signal is normal according to the width of the pulse of the synchronization signal, the pulse arrangement order, and the time interval of the pulse.
  • the first synchronization unit 124 is configured to: if the first detection unit detects that the synchronization signal is normal, synchronize the signals to be processed by performing time calibration on the pulses in the synchronization signal.
  • the first synchronization unit synchronizes the signals to be processed by synchronizing the synchronization signals of the signals to be processed, that is, realizes synchronous operation between the plurality of power sources.
  • the first synchronization unit synchronizes the synchronization signals by synchronizing the rising edge/falling edge of the pulse of the synchronization signal, thereby synchronizing the signals to be processed.
  • the device for synchronizing signal processing synchronizes the synchronization signal
  • the method realizes synchronization of signals to be processed of a plurality of power sources.
  • the synchronization signal is first detected; the detection of the synchronization signal is specifically detected by determining whether the pulse included in the synchronization signal is normal, and the synchronization is performed.
  • the signal contains the number of pulses, which is the number of times the synchronization operation is performed on the synchronization signal.
  • At least two pulses are included in each period of the synchronization signal, so that at least one synchronization operation can be performed on the synchronization signal in one cycle of the synchronization signal, thereby improving the accuracy and speed of the synchronization operation.
  • the present invention can be implemented by means of software and hardware, such as: a microprocessor, a programmable logic device and the like.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明提供一种同步信号处理的方法和装置。涉及电源技术领域。解决了对同步信号的执行同步操作准确性较低、速度较慢的问题。具体步骤包括:获取多个电源的待处理信号,待处理信号为周期性变化的信号;通过在待处理信号的每个周期中产生脉冲,生成与待处理信号周期相同的同步信号,同步信号的每个周期内包含至少两个脉冲;通过判断同步信号中所有脉冲的参数是否准确,检测同步信号是否正常;若同步信号正常,则通过对同步信号中的脉冲进行时间校准,对待处理信号进行同步。可应用于信号之间的同步操作中。

Description

同步信号处理的方法和装置
技术领域
本发明涉及电源技术领域,尤其涉及多个电源之间的同步信号处理的方 法和装置。
背景技术
在电源系统中, 为了实现两个以上电源之间的同步运行, 需要对电源发 送同步信号, 电源跟踪同步信号。
人们可以通过对同步信号进行同步的方式, 实现对两个以上电源之间的 同步运行, 即对两个以上的电源中的原始信号进行同步, 同步信号为与原始 信号周期相同的信号。
生成同步信号的方式有很多, 可以包括: 釆用硬件或软件获取原始信号 的正过零点 /负过零点, 在对应于原始信号的正过零点处生成相同宽度的脉 冲, 脉冲的上升沿 /下降沿与正过零点对齐, 或者, 在对应于原始信号的负过 零点处生成相同宽度的脉冲, 脉冲的上升沿 /下降沿与负过零点对齐, 由这些 脉冲组成的信号即为原始信号的同步信号, 同步信号的每个周期内都只包含 一个脉冲。
通常的, 生成同步信号之后, 对同步信号进行同步操作可以包括: 对同 步信号进行检测、 对同步信号进行同步。
对原始信号进行同步之前, 首先需要对原始信号的同步信号进行检测, 判断同步信号中的每两个脉冲的上升沿 /下降沿之间的时间间隔是否在预设 范围内, 如果在预设范围内, 则说明该同步信号正常; 若不在预设范围内, 则说明该同步信号异常; 若同步信号正常, 则对两个电源的同步信号中的脉 冲进行时间校准, 以实现两个电源之间的同步运行, 同步信号包含的脉冲的 数量即为对同步信号进行检测、 对同步信号进行同步的次数。 现有技术中至少存在如下问题:由于同步信号为与原始信号周期相同的 信号, 且同步信号的一个周期只包含一个脉冲, 因此, 在原始信号的一个周 期内, 也就是在原始信号的同步信号相应的一个周期内, 只能对该同步信号 进行一次同步操作, 从而导致执行同步操作的速度较慢; 现有技术中通过判 断同步信号中的两个脉冲的上升沿 /下降沿之间的时间间隔是否在预设范围 内的方法, 只能判断出脉冲之间的时间间隔是否正常, 并且不能判断某个脉 冲是否正常, 使得执行同步操作准确度较低。
发明内容
本发明的实施例提供一种同步信号处理的方法、 装置, 解决了对同步信 号进行同步操作的准确性较低、 速度较慢的问题。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一种同步信号处理的方法, 包括:
获取多个电源的待处理信号, 所述待处理信号为周期性变化的信号; 通过在所述待处理信号的每个周期中产生脉冲, 生成与所述待处理信号 周期相同的同步信号, 所述同步信号的每个周期内包含至少两个所述脉冲; 通过判断所述同步信号中所有脉冲的参数是否准确, 检测所述同步信号 是否正常;
若所述同步信号正常, 则对所述同步信号中的脉冲进行时间校准, 以便 对所述待处理信号进行同步。
一种同步信号处理的方法, 包括:
获取多个电源的待处理信号, 所述待处理信号为周期性变化的信号; 通过在所述待处理信号的每个周期中产生脉冲, 生成与所述待处理信号 周期相同的同步信号, 所述待处理信号包含至少一个所述脉冲;
通过判断所述同步信号中所有脉冲的宽度是否在预设范围内, 检测所述 同步信号是否正常;
若所述同步信号正常, 则对所述同步信号中的脉冲进行时间校准, 以便 对所述待处理信号进行同步。
一种同步信号处理的装置, 包括: 第一获取单元, 用于获取多个电源的待处理信号, 所述待处理信号为周 期性变化的信号;
第一生成单元, 用于通过在所述第一获取单元获取的所述待处理信号的 每个周期中产生脉冲, 生成与所述待处理信号周期相同的同步信号, 所述同 步信号的每个周期内包含至少两个所述脉冲;
第一检测单元, 用于通过判断所述第一生成单元生成的所述同步信号中 所有脉冲的参数是否准确, 检测所述同步信号是否正常;
第一同步单元, 用于若所述第一检测单元检测所述同步信号正常, 则对 所述同步信号中的脉冲进行时间校准, 以便对所述待处理信号进行同步。
一种同步信号处理的装置, 包括:
第二获取单元, 用于获取多个电源的待处理信号, 所述待处理信号为周 期性变化的信号;
第二生成单元, 用于通过在所述第二获取单元获取的所述待处理信号的 每个周期中产生脉冲, 生成与所述待处理信号周期相同的同步信号, 所述待 处理信号包含至少一个所述脉冲;
第二检测单元, 用于通过判断所述第二生成单元生成的所述同步信号中 所有脉冲的宽度是否在预设范围内, 检测所述同步信号是否正常;
第二同步单元, 用于若所述第二检测单元检测所述同步信号正常, 则对 所述同步信号中的脉冲进行时间校准, 以便对所述待处理信号进行同步。
本发明实施例提供的同步信号处理的方法、 装置, 通过对同步信号进行 同步的方法, 实现对多个电源的待处理信号的同步。 为了使对待处理信号进 行同步更加准确, 因此, 在对待处理信号进行同步之前, 首先对同步信号进 行检测; 对同步信号的检测具体是通过判断同步信号中包含的脉冲是否正常 来进行检测的, 同步信号包含脉冲的数量, 即为对同步信号执行同步操作的 次数。
釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 可以对同步信号进行同步操作的次数为至少两次, 提 高了执行同步操作的准确性、 和速度。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本实施例提供的一种同步信号处理的方法流程图;
图 2 为本实施例提供的一种通过检测同步信号脉冲宽度、 脉冲顺序的方 法检测同步信号的同步信号处理的方法流程图;
图 3为本实施例提供的另一种同步信号处理的方法流程图;
图 4为本实施例提供的单相信号及其同步信号的波形图;
图 5为本实施例提供的三相信号及其同步信号的波形图;
图 6 为本实施例提供的釆用在选取的相位点处生成同步信号, 同步信号 处理的方法流程图;
图 7 为本实施例提供的釆用在选取的相位点处生成同步信号, 三相信号 及其同步信号的波形图;
图 8 为本实施例提供的釆用在选取的相位点处生成同步信号, 单相信号 及其同步信号的波形图;
图 9为本实施例提供的一种同步信号处理的装置结构示意图;
图 10为本实施例提供的釆用另一种检测同步信号方法的同步信号处理的 装置结构示意图;
图 11为本实施例提供的另一种同步信号处理的装置结构示意图; 图 12为本实施例提供的釆用在选取的相位点处生成同步信号, 同步信号 处理的装置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
本实施例提供一种同步信号处理的方法, 如图 1所示, 包括以下步骤:
101、 获取多个电源的待处理信号。
在对待处理信号进行同步之前, 首先根据待处理信号生成待处理信号的 同步信号, 通过对待处理信号的同步信号进行同步的方法, 实现对待处理信 号的同步, 其中, 待处理信号为周期性变化的信号。
为了为后续步骤做铺垫, 首先获取待处理信号。
102、 通过在待处理信号的每个周期中产生脉冲, 生成与待处理信号周期 相同的同步信号, 同步信号的每个周期内包含至少两个脉冲。
根据待处理信号生成与待处理信号周期相同的同步信号。
对同步信号执行的同步操作可以包括: 对同步信号进行同步、 对同步信 号进行检测。 通过对同步信号进行同步的方式, 实现对相应待处理信号的同 步; 在使用同步信号对待处理信号进行同步之前, 还需要对同步信号进行检 测, 以保证同步信号的准确性。
在同步信号的一个周期内中包含的脉冲的数量, 即为对同步信号执行同 步操作的次数。
为了在同步信号的一个周期内可以对同步信号执行同步操作的次数为至 少两次, 因此, 同步信号的每个周期内包含至少两个脉冲。
103、 通过判断同步信号中所有脉冲的参数是否准确, 检测同步信号是否 正常。
通过对同步信号进行同步的方式, 实现对相应待处理信号的同步, 若使 用不正常的同步信号对待处理信号进行同步, 导致待处理信号同步异常。
为了使对待处理信号进行同步更加准确, 在同步之前首先检测同步信号 是否正常。
具体的同步信号的检测方法有很多, 例如: 检测同步信号的两个上升沿 / 下降沿的时间间隔是否在预设范围内, 如果时间间隔在预设范围内, 则说明 该同步信号正常; 若不在预设范围内, 则说明该同步信号不正常, 此时脉冲 的参数为脉冲之间的时间间隔。
本实施例对脉冲的参数不作限定, 可以根据实际需要进行设定, 在此不 再赘述。
104、 若同步信号正常, 则对同步信号中的脉冲进行时间校准, 以便对待 处理信号进行同步。
作为本实施例的一种实施方式, 通过对同步信号中脉冲的上升沿 /下降沿 进行时间校准的方式, 实现对待处理信号的同步。
本实施例对同步信号进行时间校准的方式不作限定, 可以为本领域技术 人员熟知的任意方式, 在此不再赘述。
本发明实施例提供的同步信号处理的方法, 通过对同步信号进行同步的 方法, 实现对多个电源的待处理信号的同步。 为了使对待处理信号进行同步 更加准确, 因此, 在对待处理信号进行同步之前, 首先对同步信号进行检测; 对同步信号的检测具体是通过判断同步信号中包含的脉冲是否正常来进行检 测的, 同步信号包含脉冲的数量, 即为对同步信号执行同步操作的次数。
釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 可以对同步信号执行同步操作的次数为至少两次, 提 高了同步操作的准确性、 和速度。
本实施例提供一种同步信号处理的方法, 如图 2所示, 包括以下步骤:
201、 获取多个电源的待处理信号。
在对待处理信号进行同步之前, 首先根据待处理信号生成待处理信号的 同步信号, 通过对待处理信号的同步信号进行同步的方法, 实现对待处理信 号的同步, 其中, 待处理信号为周期性变化的信号。
为了为后续步骤做铺垫, 首先获取待处理信号。
202、 通过在待处理信号的每个周期中产生脉冲, 生成与待处理信号周期 相同的同步信号, 待处理信号包含至少一个脉冲。
根据待处理信号生成待处理信号的同步信号。 对同步信号执行的同步操作可以包括: 对同步信号进行同步、 对同步信 号进行检测。 通过对同步信号进行同步的方式, 实现对相应待处理信号的同 步, 即实现多个电源之间的同步运行; 在使用同步信号对待处理信号进行同 步之前, 还需要对同步信号进行检测, 以保证同步信号的准确性。
203、 通过判断同步信号中所有脉冲的宽度是否在预设范围内, 检测同步 信号是否正常。
通过对同步信号进行同步的方式, 实现对相应待处理信号的同步, 来实 现对个电源之间的同步运行, 若使用不正常的同步信号对待处理信号进行同 步, 导致待处理信号同步异常。
为了使对待处理信号进行同步更加准确, 在同步之前首先检测同步信号 是否正常。
具体的, 判断同步信号中的两个脉冲的上升沿 /下降沿的时间间隔是否在 预设范围内, 若不在预设范围内, 则说明同步信号异常; 若在预设范围内, 则判断同步信号中的所有脉冲的宽度是否在预设范围内, 若同步信号包含的 所有脉冲宽度均在相应的预设范围内, 则说明该同步信号正常; 若同步信号 包含的所有脉冲宽度不都在相应的预设范围内, 则说明该同步信号异常。
进一步可选的, 若同步信号的每个周期均包含至少两个脉冲, 则还可以 根据同步信号的脉冲的排列顺序判断同步信号中的所有脉冲的排列顺序是否 正确, 若同步信号包含的所有脉冲的排列顺序正确, 则说明该同步信号正常; 若同步信号包含的所有脉冲的排列顺序不正确, 则说明该同步信号异常。
或者, 根据同步信号的脉冲宽度、 和脉冲的排列顺序检测同步信号是否 正常。
本实施例对同步信号的检测方法不作限定, 可以为本领域技术人员熟知 的任意方法, 在此不在赘述。
204、 若同步信号正常, 则对同步信号中的脉冲进行时间校准, 以便对待 处理信号进行同步。
作为本实施例的一种实施方式, 通过对同步信号中脉冲的上升沿 /下降沿 进行时间校准的方式对同步信号进行同步, 进而实现对待处理信号的同步。 本实施例对同步信号进行时间校准的方式不作限定, 可以为本领域技术 人员熟知的任意方式, 在此不再赘述。
釆用上述方案后, 不仅可以判断同步信号中个脉冲之间的时间间隔是否 正常, 还可以判断同步信号中单个脉冲是否正常, 提高了同步操作的准确性。
作为实施例的一种改进, 本实施例提供另一种同步信号处理方法, 如图 3 所示, 包括以下步骤:
301、 获取多个电源的待处理信号。
在对待处理信号进行同步之前, 首先根据待处理信号生成待处理信号的 同步信号, 通过对待处理信号的同步信号进行同步的方法, 实现对待处理信 号的同步, 其中, 待处理信号为周期性变化的信号。
为了为后续步骤做铺垫, 首先获取待处理信号。
作为本实施例的一种实施方式, 本实施例中的待处理信号可以为单相信 号、 三相信号。
302、 从待处理信号的每个周期内获取相同数量、 每个周期之间相应时间 相同的时间点, 每个周期内至少获取两个时间点。
作为本实施例的以一种实施方式, 待处理信号的每个周期中均包含正过 零点、 和 /或负过零点, 从待处理信号的每个周期内获取待处理信号的正过零 点、 或负过零点。 此时, 获取的时间点即为待处理信号的正过零点、 和 /或负 过零点。
获取的时间点可以包括: 正过零点、 负过零点、 波峰点、 波谷点等。 同步信号是由在时间点处生成的脉冲组成的, 为了使同步信号的每个周 期内包含相同数量、 相应位置相同的脉冲, 因此, 待处理信号的每个周期内 包含相同数量、 每个周期之间相应时间相同的时间点。
作为本实施例的一种实施方式, 若待处理信号的周期为 21毫秒, 获取待 处理信号的第一个周期的 7毫秒时间点、 14毫秒时间点、 21毫秒时间点; 则 获取待处理信号相应的第二个周期的 7毫秒时间点、 14毫秒时间点、 21毫秒 时间点, 即待处理信号的 28毫秒时间点、 35毫秒时间点、 42毫秒时间点; 按照上述方法依次获取其它周期的时间点。
作为本实施例的一种实施方式, 若待处理信号为单相信号, 则获取待处 理信号的正过零点、 和负过零点, 并将正过零点、 和负过零点作为待处理信 号的每个周期内获取相同数量、 每个周期之间相应时间相同的时间点; 若待 处理信号为三相信号, 则获取三相信号中各相信号的正过零点、 或负过零点, 将正过零点、 或负过零点作为待处理信号的每个周期内获取相同数量、 每个 周期之间相应时间相同的时间点。
本实施对时间点不作具体限定, 可以根据实际需要进行设定, 在此不再 赘述。
303、 通过脉冲生成装置在每个时间点处生成一个脉冲, 获得的所有脉冲 作为与待处理信号周期相同的同步信号。
通过脉冲生成装置在对应于获取的待处理信号的每个时间点处生成一个 脉冲, 获得的所有脉冲作为与待处理信号周期相同的同步信号。
由于, 待处理信号的每个周期内包含相同数量、 每个周期之间相应时间 相同的时间点, 因此, 同步信号的每个周期内包含相同数量、 相应位置相同 的脉冲。
待处理信号的每个周期之间相应时间相同的时间点处生成的脉冲的宽度 都相同。
作为本实施例的一种实施方式, 若待处理信号的周期为 21毫秒, 则同步 信号的周期也为 21毫秒, 在待处理信号的第一个周期的 7毫秒时间点处生成 的脉冲宽度, 与在待处理信号相应的第二个周期的 7 毫秒时间点处生成的脉 冲宽度相同, 即与在待处理信号的 28毫秒时间点处生成的脉冲的宽度相同; 与其它周期的相应时间相同的时间点处生成的脉冲宽度也相同。
作为本实施力的一种实施方式, 若待处理信号为单相信号, 获取的时间 点为待处理信号的正过零点、 和负过零点, 则在正过零点处生成的脉冲的宽 度都相同, 在负过零点处生成的脉冲的宽度都相同; 若待处理信号为三相信 号, 获取的时间点为待处理信号中各相信号的正过零点, 则在待处理信号的 其中一相信号的正过零点处生成的脉冲宽度都相同。
进一步的, 在待处理信号的所有周期之间, 每个周期之间相应时间不同 的时间点处生成的脉冲的宽度不相同。
作为本实施例的一种实施方式, 若待处理信号的周期为 21毫秒, 则同步 信号的周期也为 21毫秒, 在待处理信号的第一个周期的 7毫秒时间点处生成 的脉冲宽度, 与在待处理信号相应的第一个周期的 14毫秒时间点处生成的脉 冲宽度不同, 与其它周期相应时间不同的时间点处生成的脉冲宽度也不同。
作为本实施例的一种实施方式, 若待处理信号为单相信号, 获取的时间 点为待处理信号的正过零点、 和负过零点, 则在正过零点处生成的脉冲的宽 度与在负过零点处生成的脉冲宽度不相同; 若待处理信号为三相信号, 获取 的时间点为待处理信号中各相信号的正过零点, 则在待处理信号的不同相信 号的正过零点处生成的脉冲宽度不相同。
图 4 为待处理信号为单相信号时, 待处理信号及待处理信号的同步信号 的波形图。
图 5 为待处理信号为三相信号时, 待处理信号及待处理信号的同步信号 的波形图, 图 5 中, 待处理信号为三相信号, 包括: A相信号、 B相信号、 C 相信号。
本实施例提供的脉冲生成装置可以为包含脉冲生成电路的任意装置。 本实施例对脉冲生成装置不作限定, 可以为本领域技术人员熟知的任意 装置, 在此不再赘述。
304、 通过判断同步信号中所有脉冲的参数是否准确, 检测同步信号是否 正常。
对同步信号执行的同步操作可以包括: 对同步信号进行同步、 对同步信 号进行检测。 通过对待处理信号的同步信号进行同步的方式, 实现对待处理 信号的同步。 为了使对待处理信号同步更加准确, 在进行同步之前, 首先对 同步信号进行检测。 作为本实施的一种实施方式, 本实施例提供的脉冲的参数可以为: 脉冲 的宽度、 脉冲的顺序、 脉冲之间的时间间隔等。
进一步的, 根据同步信号的脉冲的时间间隔判断同步信号是否正常。 通过判断同步信号中所有脉冲的参数是否准确, 检测同步信号是否正常 可以为: 通过判断同步信号中所有脉冲的宽度是否在预设范围内、 和 /或通过 判断同步信号中所有脉冲的排列顺序是否为预设顺序, 检测同步信号是否正 常。
作为本实施例的一种实施方式, 获取同步信号中两个脉冲的上升沿 /下降 沿的时间间隔, 判断各时间间隔是否在预设范围内, 若不在预设范围内, 在 说明该同步信号异常, 则不使用该同步信号对待处理信号进行同步; 若在预 设范围内, 则获取同步信号中每个脉冲的宽度, 判断各脉冲的宽度是否在预 设范围内, 若脉冲的宽度在预设范围内, 则说明同步信号中每个脉冲正常, 同步信号也正常; 若不在预设范围内, 则说明同步信号中的某些脉冲异常, 同步信号异常。
或者, 判断同步信号中的所有脉冲的排列顺序是否正确, 若同步信号包 含的所有脉冲的排列顺序正确, 则说明该同步信号正常; 若同步信号包含的 所有脉冲的排列顺序不正确, 则说明该同步信号异常。
或者, 根据同步信号的脉冲宽度、 和脉冲的排列顺序检测同步信号是否 正常。
本实施例对脉冲的参数不作限定, 可以根据实际需要进行设定, 在此不 再赘述。
本实施例对同步信号的检测方法不作限定, 可以为本领域技术人员熟知 的任意方法, 在此不再赘述。
305、 若同步信号正常, 则对同步信号中的脉冲进行时间校准, 以便对待 处理信号进行同步。
通过对待处理信号的同步信号进行同步的方式, 实现对待处理信号的同 步。 作为本实施例的一种实施方式, 通过对同步信号的脉冲的上升沿 /下降沿 进行时间校准的方式对同步信号进行同步, 进而实现对待处理信号的同步。
由于同步信号的每个周期均包含至少两个脉冲, 则在待处理信号的一个 周期内, 也就是同步信号的一个周期内, 可以对同步信号的进行至少两次的 同步操作, 即可以对在待处理信号的一个周期内, 对待处理信号进行两次, 提高同步操作的速度和准确性。
本实施例对同步信号进行时间校准的方式不作限定, 可以为本领域技术 人员熟知的任意方式, 在此不再赘述。
本发明实施例提供的同步信号处理的方法, 通过对同步信号进行同步的 方法, 实现对多个电源的待处理信号的同步。 为了使对待处理信号进行同步 更加准确, 因此, 在对待处理信号进行同步之前, 首先对同步信号进行检测; 对同步信号的检测具体是通过判断同步信号中包含的脉冲是否正常来进行检 测的, 同步信号包含脉冲的数量, 即为对同步信号执行同步操作的次数。
釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 对同步信号执行同步操作的次数不小于 2 , 提高了执行 同步操作的准确性、 和速度。
作为实施例的改进, 本实施例提供另一种同步信号处理的方法, 如图 6 所示, 包括以下步骤:
601、 获取多个电源的待处理信号。
在对待处理信号进行同步之前, 首先根据待处理信号生成待处理信号的 同步信号, 通过对待处理信号的同步信号进行同步的方法, 实现对待处理信 号的同步, 其中, 待处理信号为周期性变化的信号。
为了为后续步骤做铺垫, 首先获取待处理信号。
作为本实施例的一种实施方式, 本实施例中的待处理信号可以为单相信 号、 三相信号。
602、 通过锁相方式生成与待处理信号周期相同的电压相位信号, 若待处 理信号为三相信号, 则通过锁相方式生成电压相位信号, 或者, 根据待处理 信号计算电压相位信号。
作为本实施例的一种实施方式, 获取待处理信号的电压相位信号的方法 可以包括: 根据待处理信号直接计算待处理信号的电压相位信号、 釆用锁相 方式生成待处理信号的电压相位信号。
作为本实施例的一种实施方式, 若待处理信号为单相信号, 则通过釆用 锁相方式生成待处理信号的电压相位信号; 若待处理信号为三相信号, 则可 以直接计算待处理信号的电压相位信号、 或通过釆用锁相方式生成待处理信 号的电压相位信号。
本实施例对电压相位信号的获取方法不作限定, 可以为本领域技术人员 熟知的任意方法, 在此不再赘述。
603、 从电压相位信号的每个周期内获取相同数量、 电压相位信号的每个 周期之间相角数值相同的相位点, 每个周期内至少获取两个相位点。
作为本实施例的一种实施方式, 电压相位信号每个周期的相角数值可以 为 0度到 360度, 获取的相位点可以包括: 120度点、 240度点、 360度点等。
同步信号是由在相位点处生成的脉冲组成的, 为了使同步信号的每个周 期内包含相同数量、 相应位置相同的脉冲, 因此, 电压相位信号的每个周期 内包含相同数量、 电压相位信号的每个周期之间相角数值相同的相位点。
作为本实施例的一种实施方式, 如图 7所示, 若待处理信号为三相信号, 则从电压相位信号的每个周期中获取的 120度点、 240度点、 360度点; 如图 8 所示, 若待处理信号为单相信号, 则从电压相位信号的每个周期中获取的 180度点、 360度点。
本实施例对相位点的选取不作限定, 可以根据实际需要进行设定, 在此 不再赘述。
604、 通过脉冲生成装置在每个相位点处生成一个脉冲, 获得的所有脉冲 作为待处理信号的同步信号。
在对应于获取的电压相位信号的每个相位点处生成一个脉冲, 获得的所 有脉冲作为待处理信号的同步信号。
由于, 电压相位信号的每个周期内包含相同数量、 电压相位信号的所有 周期之间相角数值相同的相位点, 因此, 同步信号的每个周期内包含相同数 量、 相应位置相同的脉冲。
电压相位信号的所有周期之间相角数值相同的相位点处生成的脉冲的宽 度都相同。
作为本实施例的一种实施方式, 若从电压相位信号的每个周期中获取的
120度点、 240度点、 360度点, 则在电压相位信号每个周期中的 120度点、 240度点、 360度点处分别生成一个脉冲,且在电压相位信号每个周期中的 120 度点处生成的脉冲宽度相同, 在电压相位信号每个周期中的 240度点处生成 的脉冲宽度相同, 在电压相位信号每个周期中的 360度点处生成的脉冲宽度 相同。
进一步的, 电压相位信号的所有周期内, 在不同的相角数值的相位点处 生成的脉冲的宽度不相同。
作为本实施力的一种实施方式, 若获取电压相位信号的每个周期的 120 度点、 240度点、 360度点, 则在电压相位信号每个周期中的 120度点、 240 度点、 360度点处分别生成一个脉冲, 且在电压相位信号每个周期中的 120度 点、 240度点、 360度点处分别生成脉冲宽度不同。
图 7 为釆用在选取的相位点处生成同步信号, 三相信号及三相信号的同 步信号的波形图; 图 8 为釆用在选取的相位点处生成同步信号, 单相信号及 单相信号的同步信号的波形图。
605、 通过判断同步信号中所有脉冲的参数是否准确, 检测同步信号是否 正常。
对同步信号执行的同步操作可以包括: 对同步信号进行同步、 对同步信 号进行检测。 通过对待处理信号的同步信号进行同步, 实现对待处理信号的 同步。 为了使对待处理信号同步更加准确, 在进行同步之前, 首先对同步信 号进行检测。 进一步的, 根据同步信号的脉冲的时间间隔判断同步信号是否正常。 通过判断同步信号中所有脉冲的参数是否准确, 检测同步信号是否正常 可以为: 通过判断同步信号中所有脉冲的宽度是否在预设范围内、 和 /或通过 判断同步信号中所有脉冲的排列顺序是否为预设顺序, 检测同步信号是否正 常。
作为本实施例的一种实施方式, 获取同步信号中两个脉冲的上升沿 /下降 沿的时间间隔, 判断各时间间隔是否在预设范围内, 若不在预设范围内, 在 说明该同步信号异常, 则不使用该同步信号对待处理信号进行同步; 若再预 设范围内, 则获取同步信号中每个脉冲的宽度, 判断各脉冲的宽度是否在预 设范围内, 若脉冲的宽度在预设范围内, 则说明同步信号中每个脉冲正常, 同步信号也正常; 若不在预设范围内, 则说明同步信号中的某些脉冲异常, 同步信号异常。
或者, 判断同步信号中的所有脉冲的排列顺序是否正确, 若同步信号包 含的所有脉冲的排列顺序正确, 则说明该同步信号正常; 若同步信号包含的 所有脉冲的排列顺序不正确, 则说明该同步信号异常。
本实施例对同步信号的检测方法不作限定, 可以为本领域技术人员熟知 的任意方法, 在此不在赘述。
606、 若同步信号正常, 则通过对同步信号中的脉冲进行时间校准, 对待 处理信号进行同步。
通过对待处理信号的同步信号进行同步, 实现对待处理信号的同步。 作为本实施例的一种实施方式, 通过对同步信号的脉冲的上升沿 /下降沿 进行时间校准的方式对同步信号进行同步, 进而实现对待处理信号的同步。
由于同步信号的每个周期均包含至少两个脉冲, 则在待处理信号的一个 周期内, 也就是在同步信号的一个周期内, 可以对同步信号的进行至少两次 的同步操作, 即可以对在待处理信号的一个周期内, 对待处理信号进行至少 两次的同步, 提高同步操作的速度和准确性。
本实施例对同步信号进行时间校准的方式不作限定, 可以为本领域技术 人员熟知的任意方式, 在此不再赘述。
本发明实施例提供的同步信号处理的方法, 通过对同步信号进行同步的 方法, 实现对多个电源的待处理信号的同步。 为了使对待处理信号进行同步 更加准确, 因此, 在对待处理信号进行同步之前, 首先对同步信号进行检测; 对同步信号的检测具体是通过判断同步信号中包含的脉冲是否正常来进行检 测的, 同步信号包含脉冲的数量, 即为对同步信号执行同步操作的次数。
釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 可以对同步信号执行至少两次的同步操作, 提高了同 步操作的准确性、 和速度。
本实施例提供一种同步信号处理的装置, 如图 9 所示, 包括: 第一获取 单元 91、 第一生成单元 92、 第一检测单元 93、 第一同步单元 94。
其中, 第一获取单元 91 , 用于获取多个电源的待处理信号, 待处理信号 为周期性变化的信号。
第一生成单元 92 , 用于通过在第一获取单元获取的待处理信号的每个周 期中产生脉冲, 生成与待处理信号周期相同的同步信号, 同步信号的每个周 期内包含至少两个脉冲。
第一检测单元 93 , 用于通过判断第一生成单元生成的同步信号中所有脉 冲的参数是否准确, 检测同步信号是否正常。
第一同步单元 94 , 用于若第一检测单元检测同步信号正常, 则通过对同 步信号中的脉冲进行时间校准, 对待处理信号进行同步。
本发明实施例提供的同步信号处理的装置, 对同步信号执行同步操作可 以包括: 对同步信号进行同步、 对同步信号进行检测。 第一同步单元通过对 同步信号进行同步的方法, 实现对待处理信号的同步; 为了使对待处理信号 进行同步更加准确, 因此在同步之前, 首先第一检测单元对同步信号进行检 测; 第一检测单元对同步信号的检测具体是通过判断同步信号中包含的脉冲 是否正常, 同步信号的一个周期中包含脉冲的数量, 即为在同步信号的一个 周期中对同步信号执行同步操作的次数。 釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 可以同步信号执行同步操作的次数不小于 2 ,提高了同 步操作的准确性、 和速度。
本实施例提供另一种同步信号处理的装置, 如图 10所示, 包括: 第二获 取单元 101、 第二生成单元 102、 第二检测单元 103、 第二同步单元 104。
第二获取单元 101 , 用于获取多个电源的待处理信号, 待处理信号为周期 性变化的信号。
第二生成单元 102 ,用于通过在第二获取单元获取的待处理信号的每个周 期中产生脉冲, 生成与待处理信号周期相同的同步信号, 待处理信号包含至 脉冲。
第二检测单元 103 ,用于通过判断第二生成单元生成的同步信号中所有脉 冲的宽度是否在预设范围内, 检测同步信号是否正常。
第二同步单元 104 , 用于若第二检测单元检测同步信号正常, 则通过对同 步信号中的脉冲进行时间校准, 对待处理信号进行同步。
釆用上述方案后, 不仅可以判断同步信号中个脉冲之间的时间间隔是否 正常, 还可以判断同步信号中单个脉冲是否正常, 提高了同步操作的准确性。
本实施例提供另一种同步信号处理的装置, 如图 11所示, 包括: 第一获 取单元 111、 第一生成单元 112、 第一检测单元 113、 第一同步单元 114。
具体的 ,第一生成单元 112包括:第一获取模块 1121、第一生成模块 1122。 其中, 第一获取单元 111 , 用于获取多个电源的待处理信号, 待处理信号 为周期性变化的信号。
在对待处理信号进行同步之前, 首先根据待处理信号生成待处理信号的 同步信号, 通过对待处理信号的同步信号进行同步的方法, 实现对待处理信 号的同步。
为了为后续步骤做铺垫, 第一获取单元首先获取待处理信号。
作为本实施例的一种实施方式, 待处理信号可以为单相信号、 三相信号。 第一生成单元 112 ,用于通过在第一获取单元获取的待处理信号的每个周 期中产生脉冲, 生成与待处理信号周期相同的同步信号, 同步信号的每个周 期内包含至少两个脉冲。
具体的, 第一获取模块 1121 , 用于从待处理信号的每个周期内获取相同 数量、 每个周期之间相应时间相同的时间点, 每个周期内至少获取两个时间 点。
作为本实施例的以一种实施方式, 待处理信号的每个周期中均包含正过 零点、 和 /或负过零点, 从待处理信号的每个周期内获取待处理信号的正过零 点、 或负过零点。 此时, 获取的时间点即为待处理信号的正过零点、 和 /或负 过零点。
第一获取模块获取的时间点可以包括: 正过零点、 负过零点、 波峰点、 波谷点等。
同步信号是由在时间点处生成的脉冲组成的, 为了使同步信号的每个周 期内包含相同数量、 相应位置相同的脉冲, 因此, 待处理信号的每个周期内 包含相同数量、 每个周期之间相应时间相同的时间点。
第一生成模块 1122 , 用于通过脉冲生成装置在每个第一获取模块获取的 时间点处生成一个脉冲, 获得的所脉冲作为与待处理信号周期相同的同步信 号, 相应时间相同的时间点处生成的脉冲的宽度都相同。
第一生成模块通过脉冲生成装置在获取的待处理信号的每个时间点处生 成一个脉冲, 获得的所有脉冲作为与待处理信号周期相同的同步信号。
由于, 待处理信号的每个周期内包含相同数量、 每个周期之间相应时间 相同的时间点, 因此, 同步信号的每个周期内包含相同数量、 相应位置相同 的脉冲。
在待处理信号的每个周期之间相应时间相同的时间点处, 第一生成模块 生成的脉冲的宽度都相同。
进一步的, 在待处理信号的所有周期之间, 每个周期之间相应时间不同 的时间点处, 第一生成模块生成的脉冲的宽度不相同。
第一检测单元 113 ,用于通过判断第一生成单元生成的同步信号中所有脉 冲的参数是否准确, 检测同步信号是否正常。
对同步信号执行的同步操作可以包括: 对同步信号进行同步、 对同步信 号进行检测。 通过对待处理信号的同步信号进行同步的方法, 实现对待处理 信号的同步。 为了使对待处理信号同步更加准确, 在进行同步之前, 第一检 测单元首先对同步信号进行检测。
进一步的, 第一检测单元根据同步信号的脉冲的宽度、 脉冲排列顺序、 脉冲的时间间隔判断同步信号是否正常。
第一同步单元 114 , 用于若第一检测单元检测同步信号正常, 则通过对同 步信号中的脉冲进行时间校准, 对待处理信号进行同步。
第一同步单元通过对待处理信号的同步信号进行同步的方法, 实现对待 处理信号的同步。
作为本实施例的一种实施方式, 第一同步单元通过对同步信号的脉冲的 上升沿 /下降沿进行时间校准的方式对同步信号进行同步, 进而现对同步信号 的同步。
本发明实施例提供的同步信号处理的装置, 第一同步单元通过对同步信 号进行同步的方法, 实现对待处理信号的同步, 为了使对待处理信号进行同 步更加准确, 因此在同步之前, 首先第一检测单元对同步信号进行检测; 第 一检测单元对同步信号的检测具体是通过判断同步信号中包含的脉冲是否正 常, 同步信号的一个周期中包含脉冲的数量, 即为在同步信号的一个周期中 对同步信号执行同步操作的次数。
釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 第一检测单元可以对同步信号执行至少两次的同步操 作, 提高了同步操作的准确性、 和速度。
本实施例提供另一种同步信号处理的装置, 如图 12所示, 包括: 第一获 取单元 121、 第一生成单元 122、 第一检测单元 123、 第一同步单元 124。
具体的,第一生成单元 122包括:第二生成模块 1221、第二获取模块 1222、 第三生成模块 1223。 其中, 第一获取单元 121 , 用于获取多个电源的待处理信号, 待处理信号 为周期性变化的信号。
在对待处理信号进行同步之前, 首先根据待处理信号生成待处理信号的 同步信号, 通过对待处理信号的同步信号进行同步的方法, 实现对待处理信 号的同步。
为了为后续步骤做铺垫, 第一获取单元首先获取待处理信号。
作为本实施例的一种实施方式, 待处理信号可以为单相信号、 三相信号。 第一生成单元 122 ,用于通过在第一获取单元获取的待处理信号的每个周 期中产生脉冲, 生成与待处理信号周期相同的同步信号, 同步信号的每个周 期内包含至少两个脉冲。
具体的, 第二生成模块 1221 , 用于通过锁相方式生成与待处理信号周期 相同的电压相位信号, 若待处理信号为三相信号, 则通过锁相方式生成电压 相位信号, 或者, 根据待处理信号计算电压相位信号。
作为本实施例的一种实施方式, 第二生成模块获取电压相位信号的方法 可以包括: 第二生成模块根据待处理信号直接计算电压相位信号、 或第二生 成模块釆用锁相方式生成电压相位信号。
作为本实施例的一种实施方式, 若待处理信号为单相信号, 则第二生成 模块通过釆用锁相方式生成待处理信号的电压相位信号; 若待处理信号为三 相信号, 则第二生成模块可以直接计算待处理信号的电压相位信号、 或通过 釆用锁相方式生成电压相位信号。
本实施例对第二生成模块生成电压相位信号的方法不作限定, 可以为本 领域技术人员熟知的任意方法, 在此不再赘述。 第二获取模块 1222 , 用于从电压相位信号的每个周期内获取相同数量、 电压相位信号的每个周期之间相角数值相同的相位点, 每个周期内至少获取 两个? 1^目位点。
第三生成模块 1223 , 用于通过脉冲生成装置在每个相位点处生成一个脉 冲, 获得的所有脉冲作为与待处理信号周期相同的同步信号, 电压相位信号 的所有周期之间相角数值相同的相位点处生成的脉冲的宽度都相同。
第三生成模块在电压相位信号的每个相位点处生成一个脉冲, 获得的所 有脉冲作为待处理信号的同步信号。
由于, 电压相位信号的每个周期内包含相同数量、 电压相位信号的所有 周期之间相角数值相同的相位点, 因此, 同步信号的每个周期内包含相同数 量、 相应位置相同的脉冲。
第三生成模块在电压相位信号的所有周期之间相角数值相同的相位点处 生成的脉冲的宽度都相同。
进一步的, 电压相位信号的所有周期内, 第三生成模块在不同的相角数 值的相位点处生成的脉冲的宽度不相同。
第一检测单元 123 ,用于通过判断第一生成单元生成的同步信号中所有脉 冲的参数是否准确, 检测同步信号是否正常。
对同步信号执行的同步操作可以包括: 对同步信号进行同步、 对同步信 号进行检测。 通过对待处理信号的同步信号进行同步的方法, 实现对待处理 信号的同步。 为了使对待处理信号同步更加准确, 在进行同步之前, 第一检 测单元首先对同步信号进行检测。
进一步的, 第一检测单元根据同步信号的脉冲的宽度、 脉冲排列顺序、 脉冲的时间间隔判断同步信号是否正常。
第一同步单元 124 , 用于若第一检测单元检测同步信号正常, 则通过对同 步信号中的脉冲进行时间校准, 对待处理信号进行同步。
第一同步单元通过对待处理信号的同步信号进行同步的方法, 实现对待 处理信号的同步, 即实现多个电源之间的同步运行。
作为本实施例的一种实施方式, 第一同步单元通过对同步信号的脉冲的 上升沿 /下降沿进行同步的方法对同步信号进行同步, 进而实现对待处理信号 的同步。
本发明实施例提供的同步信号处理的装置, 通过对同步信号进行同步的 方法, 实现对多个电源的待处理信号的同步。 为了使对待处理信号进行同步 更加准确, 因此, 在对待处理信号进行同步之前, 首先对同步信号进行检测; 对同步信号的检测具体是通过判断同步信号中包含的脉冲是否正常来进行检 测的, 同步信号包含脉冲的数量, 即为对同步信号执行同步操作的次数。
釆用上述方案后, 同步信号的每个周期中包含至少两个脉冲, 使得在同 步信号的一个周期中, 可以对同步信号执行至少两次的同步操作, 提高了同 步操作的准确性、 和速度。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件和硬件的方式来实现, 例如: 微处理器、 可编程逻辑器件等。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取的存储 介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用以使得一台计算 机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实 施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种同步信号处理的方法, 其特征在于,
获取多个电源的待处理信号, 所述待处理信号为周期性变化的信号; 通过在所述待处理信号的每个周期中产生脉冲, 生成与所述待处理信号周 期相同的同步信号, 所述同步信号的每个周期内包含至少两个所述脉冲;
通过判断所述同步信号中所有脉冲的参数是否准确, 检测所述同步信号是 否正常;
若所述同步信号正常, 则对所述同步信号中的脉冲进行时间校准, 以便对 所述待处理信号进行同步。
2、 根据权利要求 1所述的同步信号处理的方法, 其特征在于, 所述通过判 断所述同步信号中所有脉冲的参数是否准确, 检测所述同步信号是否正常为: 通过判断所述同步信号中所有脉冲的宽度是否在预设范围内、 和 /或通过判断所 述同步信号中所有脉冲的排列顺序是否为预设顺序, 检测所述同步信号是否正 常。
3、 根据权利要求 1或 2所述的同步信号处理的方法, 其特征在于, 所述通 过在所述待处理信号的每个周期中产生脉冲, 生成与所述待处理信号周期相同 的同步信号包括:
从所述待处理信号的每个周期内获取相同数量、 所述每个周期之间相应时 间相同的时间点, 每个所述周期内至少获取两个所述时间点;
通过脉冲生成装置在每个所述时间点处生成一个脉冲, 获得的所有所述脉 冲作为与所述待处理信号周期相同的同步信号, 所述相应时间相同的时间点处 生成的脉冲的宽度都相同。
4、 根据权利要求 1或 2所述的同步信号处理的方法, 其特征在于, 所述通 过在所述待处理信号的每个周期中产生脉冲, 生成与所述待处理信号周期相同 的同步信号还包括:
通过锁相方式生成与所述待处理信号周期相同的电压相位信号, 若所述待 处理信号为三相信号, 则通过所述锁相方式生成所述电压相位信号, 或者, 根 据所述待处理信号计算所述电压相位信号;
从所述电压相位信号的每个周期内获取相同数量、 所述电压相位信号的每 个周期之间相角数值相同的相位点, 每个所述周期内至少获取两个所述相位点; 通过脉冲生成装置在每个所述相位点处生成一个脉冲, 获得的所有所述脉 冲作为与所述待处理信号周期相同的同步信号, 所述电压相位信号的所有周期 之间所述相角数值相同的相位点处生成的脉冲的宽度都相同。
5、 根据权利要求 3所述的同步信号处理的方法, 其特征在于, 在所述待处 理信号的所有周期之间, 所述相应时间不同的时间点处生成的脉冲的宽度不相 同。
6、 根据权利要求 4所述的同步信号处理的方法, 其特征在于, 在所述电压 相位信号的所有周期之间, 所述相角数值不同的相位点处生成的脉冲的宽度不 相同。
7、 一种同步信号处理的方法, 其特征在于,
获取多个电源的待处理信号, 所述待处理信号为周期性变化的信号; 通过在所述待处理信号的每个周期中产生脉冲, 生成与所述待处理信号周 期相同的同步信号, 所述待处理信号包含至少一个所述脉冲;
通过判断所述同步信号中所有脉冲的宽度是否在预设范围内, 检测所述同 步信号是否正常;
若所述同步信号正常, 则对所述同步信号中的脉冲进行时间校准, 以便对 所述待处理信号进行同步。
8、 一种同步信号处理的装置, 其特征在于,
第一获取单元, 用于获取多个电源的待处理信号, 所述待处理信号为周期 性变化的信号;
第一生成单元, 用于通过在所述第一获取单元获取的所述待处理信号的每 个周期中产生脉冲, 生成与所述待处理信号周期相同的同步信号, 所述同步信 号的每个周期内包含至少两个所述脉冲; 第一检测单元, 用于通过判断所述第一生成单元生成的所述同步信号中所 有脉冲的参数是否准确, 检测所述同步信号是否正常;
第一同步单元, 用于若所述第一检测单元检测所述同步信号正常, 则通过 对所述同步信号中的脉冲进行时间校准, 以便对所述待处理信号进行同步。
9、 根据权利要求 8所述的同步信号处理的装置, 其特征在于, 所述第一检 测单元通过判断所述同步信号中所有脉冲的参数是否准确, 检测所述同步信号 是否正常为: 所述第一检测单元用于通过判断所述同步信号中所有脉冲的宽度 是否在预设范围内、 和 /或通过判断所述同步信号中所有脉冲的排列顺序是否为 预设顺序, 检测所述同步信号是否正常。
10、 根据权利要求 8或 9所述的同步信号处理的装置, 其特征在于, 所述 第一生成单元包括:
第一获取模块, 用于从所述待处理信号的每个周期内获取相同数量、 所述 每个周期之间相应时间相同的时间点, 每个所述周期内至少获取两个所述时间 点;
第一生成模块, 用于通过脉冲生成装置在每个所述第一获取模块获取的所 述时间点处生成一个脉冲, 获得的所有所述脉冲作为与所述待处理信号周期相 同的同步信号, 所述相应时间相同的时间点处生成的脉冲的宽度都相同。
11、 根据权利要求 8或 9所述的同步信号处理的装置, 其特征在于, 所述 第一生成单元还包括:
第二生成模块, 用于通过锁相方式生成与所述待处理信号周期相同的电压 相位信号, 若所述待处理信号为三相信号, 则通过所述锁相方式生成所述电压 相位信号, 或者, 根据所述待处理信号计算所述电压相位信号;
第二获取模块, 用于从所述电压相位信号的每个周期内获取相同数量、 所 述电压相位信号的每个周期之间相角数值相同的相位点, 每个所述周期内至少 获取两个所述相位点;
第三生成模块, 用于通过脉冲生成装置在每个所述相位点处生成一个脉冲, 获得的所有所述脉冲作为与所述待处理信号周期相同的同步信号, 所述电压相 位信号的所有周期之间所述相角数值相同的相位点处生成的脉冲的宽度都相 同。
12、 根据权利要求 10所述的同步信号处理的装置, 其特征在于, 所述第一 生成模块在所述待处理信号的所有周期之间, 所述相应时间不同的时间点处生 成的脉冲的宽度不相同。
13、 根据权利要求 11所述的同步信号处理的装置, 其特征在于, 所述第三 生成模块在所述电压相位信号的所有周期之间, 所述相位数值不同的相位点处 生成的脉冲的宽度不相同。
14、 一种同步信号处理的装置, 其特征在于,
第二获取单元, 用于获取多个电源的待处理信号, 所述待处理信号为周期 性变化的信号;
第二生成单元, 用于通过在所述第二获取单元获取的所述待处理信号的每 个周期中产生脉冲, 生成与所述待处理信号周期相同的同步信号, 所述待处理 信号包含至少一个所述脉冲;
第二检测单元, 用于通过判断所述第二生成单元生成的所述同步信号中所 有脉冲的宽度是否在预设范围内, 检测所述同步信号是否正常;
第二同步单元, 用于若所述第二检测单元检测所述同步信号正常, 则对所 述同步信号中的脉冲进行时间校准, 以便对所述待处理信号进行同步。
PCT/CN2012/083668 2012-02-13 2012-10-29 同步信号处理的方法和装置 WO2013120361A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12868522.9A EP2712081B1 (en) 2012-02-13 2012-10-29 Synchronization signal processing method and device
US14/133,972 US9306581B2 (en) 2012-02-13 2013-12-19 Synchronization signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210031522.9 2012-02-13
CN201210031522.9A CN102594304B (zh) 2012-02-13 2012-02-13 同步信号处理的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/133,972 Continuation US9306581B2 (en) 2012-02-13 2013-12-19 Synchronization signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2013120361A1 true WO2013120361A1 (zh) 2013-08-22

Family

ID=46482574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083668 WO2013120361A1 (zh) 2012-02-13 2012-10-29 同步信号处理的方法和装置

Country Status (4)

Country Link
US (1) US9306581B2 (zh)
EP (1) EP2712081B1 (zh)
CN (1) CN102594304B (zh)
WO (1) WO2013120361A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594304B (zh) 2012-02-13 2014-12-03 华为技术有限公司 同步信号处理的方法和装置
CN111711224B (zh) * 2020-05-20 2023-05-26 深圳科士达科技股份有限公司 交流电源并联时输出电压和载波信号的同步处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172978A (ja) * 2007-01-15 2008-07-24 Omron Corp 単独運転検出装置及びその同期方法
CN101742078A (zh) * 2008-01-31 2010-06-16 华为技术有限公司 一种同步时钟提取装置和方法
CN102075072A (zh) * 2010-11-19 2011-05-25 国网电力科学研究院武汉南瑞有限责任公司 交错并联高稳定度模块化直流稳流电源系统及其交错并联方法
US20110129039A1 (en) * 2009-11-30 2011-06-02 Mitsuo Yamazaki Signal receiving apparatus and signal processing method
CN102594304A (zh) * 2012-02-13 2012-07-18 华为技术有限公司 同步信号处理的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127259C (zh) * 1997-08-29 2003-11-05 松下电器产业株式会社 同步信号发生器
CA2628211C (en) * 2001-07-06 2014-09-16 Lutron Electronics Company, Inc. Electronic control systems and methods
US7362149B1 (en) * 2006-10-23 2008-04-22 Agilent Technologies, Inc. Zero crossing detection and correction upon a distorted primary AC power line voltage
JP4955485B2 (ja) 2007-08-28 2012-06-20 ルネサスエレクトロニクス株式会社 水平同期検出装置
US8217640B2 (en) * 2007-10-29 2012-07-10 Power-One Italy S.P.A. Method and device for determining the phases in a multi-phase electrical system
US8035944B2 (en) * 2008-02-22 2011-10-11 Liebert Corporation Power supply system with adaptive blown fuse detection using negative sequence component
US8248109B2 (en) * 2010-01-11 2012-08-21 Asco Power Technologies, L.P. Methods and systems for detection of zero crossings in a signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172978A (ja) * 2007-01-15 2008-07-24 Omron Corp 単独運転検出装置及びその同期方法
CN101742078A (zh) * 2008-01-31 2010-06-16 华为技术有限公司 一种同步时钟提取装置和方法
US20110129039A1 (en) * 2009-11-30 2011-06-02 Mitsuo Yamazaki Signal receiving apparatus and signal processing method
CN102075072A (zh) * 2010-11-19 2011-05-25 国网电力科学研究院武汉南瑞有限责任公司 交错并联高稳定度模块化直流稳流电源系统及其交错并联方法
CN102594304A (zh) * 2012-02-13 2012-07-18 华为技术有限公司 同步信号处理的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2712081A4 *

Also Published As

Publication number Publication date
EP2712081A4 (en) 2014-10-29
US20140103974A1 (en) 2014-04-17
CN102594304A (zh) 2012-07-18
CN102594304B (zh) 2014-12-03
EP2712081B1 (en) 2016-04-06
US9306581B2 (en) 2016-04-05
EP2712081A1 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
CN108923876A (zh) 时间同步方法、装置及系统
WO2018137548A1 (zh) 一种时钟同步装置及方法
JP6670061B2 (ja) 複数任意波形発生装置の同期システム、マルチawgシステム同期方法及び複数装置同期方法
US11075743B2 (en) Adjustable high resolution timer
WO2013120361A1 (zh) 同步信号处理的方法和装置
CN111711224A (zh) 交流电源并联时输出电压和载波信号的同步处理方法
CN115528739A (zh) 单相逆变器并机同步方法及系统、单相逆变器及存储介质
CN103326716B (zh) 一种时钟同步系统
CN102097855B (zh) 一种数字化控制不间断电源并联运行锁相方法
CN108008676B (zh) 一种多处理单元继电保护系统及其同步方法
CN105528014A (zh) 一种基于fpga的可控硅触发脉冲的控制方法
JP2011083841A (ja) ロボット制御装置、ロボット制御システム及びロボット制御方法
US20170357556A1 (en) Frequency Converter
JP2001186690A (ja) 交流無停電電源装置
JP6227196B2 (ja) クロック診断装置及びクロック診断方法
JP5314755B2 (ja) 受信装置、試験装置、受信方法および試験方法
WO2019046999A1 (zh) 一种高频载波同步的实现方法及相关装置
JP6167855B2 (ja) 信号制御回路、情報処理装置及び信号制御方法
CN106452120A (zh) 一种锁相同步补偿处理方法及系统
JP2010212763A (ja) データ再生装置
JP5232913B2 (ja) クロック生成装置、試験装置およびクロック生成方法
JP2015015540A5 (zh)
CN105977983B (zh) 载波移相方法和系统
JP2011124747A (ja) クロック位相同期回路
CN116455545B (zh) 一种信号同步的方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012868522

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE