WO2010134434A1 - (メタ)アクリル酸の製造方法 - Google Patents

(メタ)アクリル酸の製造方法 Download PDF

Info

Publication number
WO2010134434A1
WO2010134434A1 PCT/JP2010/057815 JP2010057815W WO2010134434A1 WO 2010134434 A1 WO2010134434 A1 WO 2010134434A1 JP 2010057815 W JP2010057815 W JP 2010057815W WO 2010134434 A1 WO2010134434 A1 WO 2010134434A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic acid
temperature
meth
crude
crystallizer
Prior art date
Application number
PCT/JP2010/057815
Other languages
English (en)
French (fr)
Inventor
良武 石井
上野 晃嗣
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US13/266,672 priority Critical patent/US8530699B2/en
Priority to EP10777668.4A priority patent/EP2433924B1/en
Priority to JP2011514377A priority patent/JP5581316B2/ja
Priority to CN201080009469.1A priority patent/CN102333753B/zh
Publication of WO2010134434A1 publication Critical patent/WO2010134434A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Definitions

  • the present invention relates to a method for producing (meth) acrylic acid.
  • (Meth) acrylic acid is generally purified by introducing a (meth) acrylic acid-containing reaction gas obtained by a gas-phase catalytic oxidation reaction into a condensation tower or collection tower to obtain a crude (meth) acrylic acid solution. Manufactured by. As such a purification method, crystallization is used in addition to distillation, diffusion, extraction and the like.
  • Patent Document 1 in order to more easily obtain high-purity (meth) acrylic acid, a (meth) acrylic acid-containing gas obtained by catalytic gas phase oxidation is condensed, and (meth) is further obtained from the obtained solution.
  • a technique for crystallizing acrylic acid is disclosed. Examples of the crystallization temperature include temperature ranges of ⁇ 25 ° C. to + 14 ° C. and 12 ° C. to ⁇ 5 ° C.
  • the crude solution is cooled from room temperature to ⁇ 0.9 ° C. to form the first acrylic acid crystals, and further cooled to ⁇ 4.4 ° C. over 3 hours and 54 minutes. is doing.
  • Patent Document 2 discloses a technique in which a crude solution is preliminarily cooled to a temperature below the freezing point before the crystallization step to precipitate crystals, and then a mixture of the crystals and the crude solution is supplied to the crystallization tank. Yes. According to this technique, it is said that a coarse crystal having excellent filterability and the like can be obtained, and scale formation in the crystallization tank can be suppressed.
  • a crude solution having a freezing point of 8.5 ° C. is preliminarily cooled to 8.3 ° C. and supplied to the crystallization tank together with the generated crystals.
  • this technique is characterized in that crystals are preliminarily obtained before the crude solution is introduced into the crystallization tank, and the purity of the crystals is not considered.
  • an object of the present invention is to provide a method for stably and efficiently obtaining high-purity (meth) acrylic acid by crystallization.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, before the crude (meth) acrylic acid solution is cooled to below the freezing point and crystallized, the crude solution is cooled to such an extent that crystals do not precipitate, and then the crude solution is cooled to below the freezing point. In this state, it was found that (meth) acrylic acid with higher purity could be stably obtained, and the present invention was completed.
  • the method for producing (meth) acrylic acid according to the present invention is such that the temperature of the cooling medium discharged from the crystallizer is above the freezing point of the crude (meth) acrylic acid solution in the crystallizer and the freezing point is + 5 ° C. or lower.
  • a step of bringing the crude (meth) acrylic acid solution in the crystallizer into a supercooled state and a step of crystallizing (meth) acrylic acid from the crude (meth) acrylic acid solution.
  • the temperature of the cooling medium supplied to the crystallizer for bringing the crude (meth) acrylic acid solution into a supercooled state is 1-10 ° C. lower than the freezing point of the crude (meth) acrylic acid solution. It is preferable that If the crude (meth) acrylic acid solution is cooled in a short time with an excessively low temperature cooling medium, crystallization proceeds rapidly after supercooling, and the purity of the crystal may be reduced. However, if the temperature of the cooling medium is set to a temperature 1 to 10 ° C. lower than the freezing point of the crude solution, the crude solution can be more reliably obtained without excessively cooling the crude solution.
  • the method of the present invention it is preferable to use a falling film type crystallizer.
  • the falling film type crystallizer the cold heat of the cooling medium is easily efficiently transferred to the crude (meth) acrylic acid solution through the heat transfer surface, the temperature of the crude solution is easily controlled, and high-purity crystals can be obtained. It is easy to be done.
  • FIG. 1 is a schematic view showing an embodiment of a crystallization apparatus used in the method of the present invention.
  • 1 is a crystallizer
  • 2 is a cooling medium inlet
  • 3 is a cooling medium outlet
  • 4 is a pump
  • 5 is a pressure gauge
  • 6 is a valve
  • 7 is heat exchange.
  • 8 is a crude (meth) acrylic acid solution tank.
  • Pre-cooling step In the method of the present invention, first, until the temperature of the cooling medium discharged from the crystallizer is stabilized above the freezing point of the crude (meth) acrylic acid solution in the crystallizer and below the freezing point + 5 ° C. The crude (meth) acrylic acid solution in the crystallizer is cooled.
  • the crude (meth) acrylic acid solution is not particularly limited as long as it contains impurities in addition to the target compound (meth) acrylic acid.
  • a crude (meth) acrylic acid solution obtained by bringing a (meth) acrylic acid-containing gas obtained by a catalytic gas phase oxidation reaction into contact with a collection liquid or condensing can be mentioned.
  • the crude (meth) acrylic acid solution obtained by bringing the (meth) acrylic acid-containing gas into contact with the collection liquid or condensing includes water, acetic acid, propionic acid in addition to (meth) acrylic acid and unreacted raw materials.
  • By-product impurities such as maleic acid, acetone, acrolein, furfural and formaldehyde are contained.
  • the (meth) acrylic acid once purified by crystallization is melted and then supplied to the crystallizer instead of the crude (meth) acrylic acid solution.
  • the purification may be repeated twice or more.
  • crystallization purification is repeated twice or more, even if (meth) acrylic acid purified one or more times is further crystallized, it is referred to as a crude solution.
  • (meth) acrylic acid is crystallized and purified using a crystallizer
  • the type of crystallizer is not particularly limited.
  • a crystallizing apparatus for dynamic crystallization such as a falling liquid film type or a completely poured tube type. This is because the cold heat of the cooling medium is easily transmitted to the crude (meth) acrylic acid solution via the heat transfer surface of the crystallizer, and the temperature control of the crude solution becomes easier.
  • a falling film type crystallizer is suitable.
  • FIG. An example of a dynamic crystallizer used in the method of the present invention is shown in FIG.
  • the present invention is not limited to such an embodiment.
  • the crystallization apparatus 1 shown in FIG. 1 can adjust the temperature or crystallization of (meth) acrylic acid while circulating a crude (meth) acrylic acid solution. That is, the crude (meth) acrylic acid solution supplied to the falling liquid film crystallizer 1 is supplied from the upper part of the crystallizer 1 by the pump 4. The supplied crude solution falls inside the crystallization tube in the crystallizer.
  • the crystallization tube is not particularly limited, but is made of a material having excellent corrosion resistance such as stainless steel and copper, and having a high thermal conductivity. Cold or warm heat is transferred to the crude solution in the crystallization tube via the heat transfer surface.
  • the crude solution stored in the tank 8 may be adjusted in temperature by the heat exchanger 7 before being supplied to the crystallizer 1, or may be supplied to the crystallizer 1 as it is and the temperature in the crystallizer 1. May be adjusted. However, if the temperature of the crude solution stored in the tank 8 is too high, cooling in the crystallizer 1 takes time, leading to a decrease in productivity. Therefore, the temperature is about 3 to 20 ° C. as the freezing point. It is preferable to do. Such temperature control can be performed by the valve 6.
  • the crystallizer 1 is configured so that the heat of the heat medium can be sufficiently transferred to the crude (meth) acrylic acid.
  • the diameter of the crystallization tube is about 50 mm or more and 100 mm or less, but the tube length is about 15 m or more and 25 m or less, the surface area of the heat transfer surface can be sufficiently increased.
  • there may be one crystallization tube it is possible to further increase the heat transfer surface area by using a plurality of crystallization tubes.
  • the crude solution before crystallizing (meth) acrylic acid from the crude solution, in the crystallizer, the crude solution is prepared so that (meth) acrylic acid does not precipitate and the temperature of the crude solution is as low as possible. Cooling. Such an operation then allows the crude solution to be brought into a well-defined supercooled state.
  • the freezing point of the crude (meth) acrylic acid solution may be measured by a preliminary experiment or the like. Specifically, a part of the crude solution is collected and gradually cooled, and the temperature at which crystals are formed can be set as the freezing point.
  • the melting point of acrylic acid is 13.5 ° C. and the melting point of methacrylic acid is 15.0 ° C.
  • the solution derived from the catalytic gas phase oxidation reaction contains impurities, its freezing point is determined by Also lower.
  • the temperature of the crude (meth) acrylic acid solution in the crystallizer may be measured before the crude solution reaches the liquid pool at the bottom of the crystallizer via the heat transfer surface in the crystallizer of FIG. .
  • the solution was excessively cooled from the beginning to precipitate (meth) acrylic acid.
  • the purity of the crystals obtained is not sufficient, and the number of crystallizations has to be increased in order to obtain crystals with satisfactory purity.
  • the temperature of the cooling medium discharged from the crystallizer is stabilized above the freezing point of the crude (meth) acrylic acid solution in the crystallizer and below the freezing point + 5 ° C.
  • the crude solution in the crystallizer is stabilized at approximately the same temperature.
  • the heat of the crude solution affected the heat transfer surface of the crystallizer.
  • the temperature of the cooling medium that is applied to the cooling medium and discharged from the crystallizer (the temperature at the outlet of the crystallizer of the cooling medium) is the temperature of the cooling medium that is supplied to the crystallizer (the inlet of the crystallizer of the cooling medium) Temperature).
  • the overall temperature of the crude solution is sufficiently lowered according to the set temperature of the cooling medium supplied to the crystallizer, and the temperature of the crude solution when it is circulated and supplied to the cooler (the crystallizer for the crude solution)
  • the cooling heat taken by the heat transfer surface becomes constant, and the temperature of the cooling medium discharged from the crystallizer is also stabilized.
  • the crude solution cooled on the heat transfer surface of the crystallizer is also obtained. It shall be regarded as stabilizing at the same temperature.
  • the temperature of the cooling medium supplied to the crystallizer (the temperature of the inlet of the crystallizer) is the temperature of the cooling medium discharged from the crystallizer (the temperature of the outlet of the crystallizer) or the temperature of the crystallizer. What is necessary is just to adjust suitably according to the change of the temperature (the crystallizer exit temperature of a crude solution) of a crude solution to be. For example, if the cooling medium inlet temperature of the crystallizer is set higher than the freezing point of the crude solution, it takes time until the crude solution is sufficiently cooled and the crystallizer outlet temperature of the cooling medium stabilizes. High (meth) acrylic acid crystals are obtained.
  • the cooling medium inlet temperature of the crystallizer is set below the freezing point of the crude solution, and the crystallizer outlet temperature of the cooling medium or the crystallizer outlet temperature of the crude solution is changed. If the inlet temperature of the crystallizer of the cooling medium is adjusted above the freezing point of the crude solution so that a part of the crude solution does not solidify, the purity of the resulting crystals may be slightly reduced, The time required for stabilizing the outlet temperature of the crystallizer can be shortened, and more efficient crystallization can be achieved.
  • the crystallization device outlet temperature of the cooling medium is stabilized at the freezing point of the crude solution + 5 ° C or less for the purpose of shortening the cooling time rather than the purification degree. If it does, you may raise gradually the crystallizer entrance temperature of a cooling medium from below the freezing point of a crude solution.
  • “to stabilize” the temperature of the cooling medium discharged from the crystallizer means that the temperature change per hour of the cooling medium becomes 1.0 ° C./min or less.
  • Subcooling step In the present invention, after the temperature of the cooling medium discharged from the crystallizer is stabilized within the above-mentioned predetermined temperature range, the set temperature of the cooling medium supplied to the crystallizer is lowered below the freezing point of the crude solution. A clear supercooling state is achieved by lowering the temperature of the crude solution in the analyzer beyond its freezing point.
  • the solution immediately before the compound crystallizes is in a supercooled state.
  • a clear supercooled state cannot often be confirmed.
  • the crude solution is cooled and stabilized as much as possible within the range in which (meth) acrylic acid does not precipitate, and then cooled beyond the freezing point to obtain a clear supercooled state.
  • the temperature of the cooling medium supplied to the crystallization apparatus is Set to a temperature 1 ° C. or more lower than the freezing point of the crude solution. If the temperature is set to a temperature lower by 1 ° C. or more than the freezing point of the crude solution, the crude solution can be clearly put into a supercooled state together with the preliminary cooling.
  • the supercooled state means that the temperature of the crude (meth) acrylic acid solution is once lowered by 0.1 ° C. or more from its freezing point without forming crystals of (meth) acrylic acid. To do.
  • the temperature of the cooling medium for bringing the crude solution into a supercooled state at a temperature 1 to 10 ° C. lower than the freezing point of the crude solution.
  • the crude solution can be brought into a supercooled state by cooling beyond the freezing point.
  • the cooling medium temperature is set to a temperature 1 to 10 ° C. lower than the freezing point of the crude solution, the Pure (meth) acrylic acid crystals can be obtained more reliably.
  • (meth) acrylic acid crystals are deposited on the heat transfer surface inside the crystallization tube.
  • a (meth) acrylic acid crystal grows by supplying the crude solution to the (meth) acrylic acid crystal crystallized through the supercooled state while cooling the crude solution. After sufficiently crystallization of (meth) acrylic acid from the crude solution, normal post-treatment may be performed.
  • impurities may be mixed in the vicinity of the crystal surface, or impurities may adhere to the crystal surface, so a sweating process is performed to partially melt the crystal surface to remove the impurities. Also good.
  • the cooling medium may be switched to the heating medium, and the crystal may be partially melted at an appropriate temperature. After a highly pure (meth) acrylic acid crystal is obtained, the temperature of the heating medium may be raised to melt the crystal and take it out of the crystallizer. In order to obtain higher-purity (meth) acrylic acid crystals, dissolved (meth) acrylic acid is supplied to a crystallizer and crystallization purification is repeated.
  • Example 1 Initiation of Crystallization Purification of Acrylic Acid
  • Crude acrylic acid solution Propylene was subjected to a catalytic gas phase oxidation reaction in a reactor.
  • the obtained reaction gas was introduced into a collection tower and brought into contact with the collection liquid, and a crude acrylic acid solution was obtained from the bottom of the collection tower.
  • the composition of the crude acrylic acid solution was acrylic acid 90.0% by mass, water 3.2% by mass, acetic acid 1.9% by mass, maleic acid 0.6% by mass, acrylic acid dimer 1.5% by mass, They were 0.07 mass% furfural, 0.27 mass% benzaldehyde, 0.06 mass% formaldehyde, 0.1 mass% hydroquinone, and 2.3 mass% other impurities.
  • the freezing point of the solution was measured and found to be 8.0 to 8.5 ° C.
  • the crystallization tube in the crystallization apparatus is a metal tube having a diameter of 70 mm and a length of 18 m. Further, the crystallizer can transfer the crude solution to the upper part of the tube by a circulation pump and flow the crude solution onto the wall surface of the crystallization tube in a falling film form (Falling Film).
  • thermometers were installed at the inlet and outlet portions of the heating medium and the portion immediately before the crystallization tube and the portion immediately after the crystallization tube of the crude solution supply pipe.
  • the crude solution was extracted from the bottom, and circulation supply was started at a supply rate of 0.34 m 3 / hr.
  • a cooling medium set at 25 to 30 ° C. was started to be supplied to the crystallizer at a supply rate of 0.82 m 3 / hr.
  • the inlet temperature of the cooling medium was lowered by ⁇ 1.5 ° C. (difference from the freezing point of the crude solution: ⁇ 9.5 to ⁇ 10 ° C.).
  • the outlet temperature of the crude solution once decreased to 7.5 ° C. and then increased to the above freezing point, and then the freezing point gradually decreased due to the concentration of impurities and the decrease in the purity of acrylic acid.
  • the inlet temperature of the cooling medium was lowered to ⁇ 1.5 ° C. and then the temperature was gradually lowered.
  • the circulation was stopped and the crude solution at the bottom of the crystallizer was extracted.
  • the cooling medium was switched to a heating medium having a temperature near the freezing point to perform a sweating process, and then the melted portion was extracted from the bottom of the crystallizer. Further, the temperature of the heating medium was raised to completely melt the crystal, and the crystal was extracted from the bottom of the crystallizer.
  • Example 2 Acrylic acid was obtained in the same manner as in Example 1 except that the inlet temperature of the cooling medium was changed to ⁇ 5.0 ° C. (difference from the freezing point of the crude solution: ⁇ 13 to ⁇ 13.5 ° C.) in the supercooling step. Manufactured. At this time, the outlet temperature of the crude acrylic acid solution once decreased to 7.5 ° C. due to the supercooled state. Thereafter, the measured value of the pressure gauge installed in the crystallizer during crystallization slightly increased, and it was confirmed that the upper part of the crystallization tube was clogged.
  • Example 1 When the purity of the obtained acrylic acid was measured in the same manner as in Example 1, the acetic acid content was 1.06% by mass, the hydroquinone content was 0.028% by mass, and the purity was slightly lower than in Example 1. Was. The reason is considered that the crystallization progressed rapidly by changing the temperature of the cooling medium at the time of supercooling from ⁇ 1.5 ° C. to ⁇ 5 ° C., and the state of crystal attachment to the crystallization tube deteriorated.
  • Comparative Example 1 The temperature of the cooling medium for cooling the crude acrylic acid solution was consistently 1 ° C (difference from the freezing point of the crude solution: -7 to -7.5 ° C), and the crystallization tube temperature of the crystallizer was crude acrylic.
  • Acrylic acid was produced in the same manner as in Example 1 except that the circulation of the crude acrylic acid solution was started from the state where the acid was below the freezing point. At this time, the heat transfer surface temperature of the crystallization tube is below the freezing point, and since crystallization starts immediately after the start of circulation of the crude solution, no clear supercooling state is observed, and the crude solution temperature continues to drop to the freezing point. It was only.
  • Example 3 Initiation of Crystallization Purification of Acrylic Acid (1) Acrylic Acid Melt Propylene was subjected to a catalytic gas phase oxidation reaction in a reactor. The obtained reaction gas was introduced into a collection tower and brought into contact with the collection liquid, and a crude acrylic acid solution was obtained from the bottom of the collection tower. The crude acrylic acid solution was purified several times with a crystallizer under normal conditions. The impurities contained in the obtained acrylic acid were acetic acid at 1500 mass ppm and hydroquinone at 1 mass ppm. When the freezing point of the melt was measured, it was 13 to 14 ° C.
  • the inlet temperature of the cooling medium was lowered by 7 ° C. (difference from the freezing point of the crude solution: ⁇ 6 to ⁇ 7 ° C.).
  • the outlet temperature of the melt once decreased to 12.8 ° C. and then increased to the above freezing point, and then the freezing point gradually decreased due to concentration of impurities and a decrease in acrylic acid purity.
  • the inlet temperature of the cooling medium was lowered to 7 ° C. and then gradually decreased.
  • the circulation was stopped and the melt at the bottom of the crystallizer was extracted.
  • the cooling medium was switched to a heating medium having a temperature near the freezing point to perform a sweating process, and then the melted portion was extracted from the bottom of the crystallizer. Further, the temperature of the heating medium was raised to completely melt the crystal, and the crystal was extracted from the bottom of the crystallizer.
  • Example 4 Acrylic acid was produced in the same manner as in Example 3 except that in the supercooling step, the inlet temperature of the cooling medium was changed to 2 ° C. (difference from the freezing point of the crude solution: ⁇ 11 to ⁇ 12 ° C.). At this time, the outlet temperature of the crude acrylic acid solution once decreased to 12.8 ° C. due to the supercooled state. Thereafter, the measured value of the pressure gauge installed in the crystallizer during crystallization slightly increased, and it was confirmed that the upper part of the crystallization tube was clogged.
  • Comparative Example 2 The temperature of the cooling medium for cooling the crude acrylic acid solution was consistently 7.5 ° C. (difference from the freezing point of the crude solution: ⁇ 5.5 to ⁇ 6.5 ° C.).
  • Acrylic acid was produced in the same manner as in Example 3 except that the circulation of the crude acrylic acid solution was started from the state where the temperature was not higher than the freezing point of the crude acrylic acid. At this time, the heat transfer surface temperature of the crystallization tube is below the freezing point, and since crystallization starts immediately after the start of circulation of the crude solution, no clear supercooling state is observed, and the crude solution temperature continues to drop to the freezing point. It was only.
  • Example 5 Start of Crystallization Purification of Acrylic Acid (1) Precooling Step After supplying the same acrylic acid melt as obtained in Example 3 (1) above to the tank and adjusting the temperature to 22 ° C., 68.6 kg was supplied to the bottom of a falling film crystallizer as shown in FIG.
  • thermometers were installed at the inlet and outlet portions of the heat medium, the portion immediately before the crystallization tube, and the portion immediately after the crystallization tube.
  • the melt was extracted from the bottom, and circulation supply was started at a supply rate of 0.34 m 3 / hr.
  • a cooling medium set at 25 to 30 ° C. was started to be supplied to the crystallizer at a supply rate of 0.82 m 3 / hr.
  • the temperature of the cooling medium was gradually lowered, and when the melt reached 20.2 kg, the circulation was stopped and the melt at the bottom of the crystallizer was extracted.
  • the cooling medium was switched to a heating medium having a temperature near the freezing point to perform a sweating process, and then the melted portion was extracted from the bottom of the crystallizer. Further, the temperature of the heating medium was raised to completely melt the crystal, and the crystal was extracted from the bottom of the crystallizer.
  • the impurity content in the obtained acrylic acid was measured by liquid chromatography (manufactured by Shimadzu Corporation)
  • the content of acetic acid was reduced to 500 ppm by mass, and was also measured by liquid chromatography (manufactured by Shimadzu Corporation).
  • the hydroquinone content was reduced to less than 0.1 ppm by mass.
  • the supercooled state of the crude acrylic acid solution is the same as in Examples 1-2 and Comparative Example 1 above.
  • NO was observed, the impurity concentration of the obtained acrylic acid was high, while when the supercooled state was clearly recognized, the impurity concentration of acrylic acid was low.
  • the purity is further increased when the cooling condition for creating the supercooled state is mild.
  • the method of the present invention even from a crude (meth) acrylic acid solution containing a large amount of impurities such as those derived from a catalytic gas phase oxidation reaction and having a composition that can vary greatly depending on the reaction conditions, high purity ( Meta) acrylic acid can be obtained stably and efficiently. Therefore, the method of the present invention is extremely useful industrially as contributing to industrial mass production of (meth) acrylic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、結晶化により、高純度の(メタ)アクリル酸を安定して効率的に得るための方法を提供することを目的とする。 本発明に係る(メタ)アクリル酸の製造方法は;晶析装置から排出される冷熱媒の温度が、晶析装置中の粗(メタ)アクリル酸溶液の凝固点超で且つ当該凝固点+5℃以下に安定化するまで、晶析装置中の粗(メタ)アクリル酸溶液を冷却する工程;次いで、晶析装置へ供給する冷熱媒の温度を、粗(メタ)アクリル酸溶液の凝固点から1℃以上低い温度とし、晶析装置中の粗(メタ)アクリル酸溶液を過冷却状態にする工程;および、粗(メタ)アクリル酸溶液から(メタ)アクリル酸を結晶化させる工程を含むことを特徴とする。

Description

(メタ)アクリル酸の製造方法
 本発明は、(メタ)アクリル酸を製造するための方法に関するものである。
 (メタ)アクリル酸は、一般的に、気相接触酸化反応により得られる(メタ)アクリル酸含有反応ガスを凝縮塔または捕集塔に導いて粗(メタ)アクリル酸溶液とし、さらに精製することにより製造される。かかる精製方法としては、蒸留や放散、抽出などの他に晶析が用いられる。
 化合物の結晶の純度や状態は、結晶化の際における冷却速度や冷却時間などに依存することが知られている。ところが、特に(メタ)アクリル酸の工業的な大量生産においては、当然に粗溶液をその凝固点以下まで冷却することにより実施されるが、その際における温度制御は必ずしも厳密には行われていないのが現状であった。
 例えば特許文献1には、高純度な(メタ)アクリル酸をより簡便に得るために、接触気相酸化により得られる(メタ)アクリル酸含有ガスを凝縮させ、さらに得られた溶液から(メタ)アクリル酸を結晶化するという技術が開示されている。この結晶化温度としては-25℃~+14℃と12℃~-5℃という温度範囲が例示されている。当該特許文献に記載されている実施例では、粗溶液を室温から-0.9℃まで冷却して第1のアクリル酸結晶を形成させ、さらに3時間54分かけて-4.4℃まで冷却している。しかし、比較的温度の高い粗溶液からアクリル酸結晶が晶出するまでの粗溶液の温度変化に関しては、詳しい記載は無い。アクリル酸の融点が13.5℃であるところ、結晶の生成途中の粗溶液温度が-0.9℃まで低下するということには技術的に疑問があるので、当該温度は粗溶液の温度ではなく晶析装置のジャケット温度であると考えられる。
 また、特許文献2には、晶析工程前に粗溶液を凝固点以下まで予備的に冷却して結晶を析出させ、次いで結晶と粗溶液の混合物を晶析槽へ供給するという技術が開示されている。当該技術によれば、晶析槽でのスケール形成を抑制でき、また、濾過性等に優れた粗大結晶が得られるとされている。当該特許文献に記載の実施例では、凝固点が8.5℃である粗溶液を予備的に8.3℃まで冷却し、生じた結晶と共に晶析槽へ供給している。しかし当該技術では、粗溶液を晶析槽へ導入する前に予備的に結晶を得ることを特徴としており、結晶の純度等は考慮されていない。
特表2000-514077号公報 国際公開第2007/088981号パンフレット
 上述したように、従来、(メタ)アクリル酸を晶析により精製することは一般的に行われてきた。しかしながら、結晶の状態は冷却条件に依存するにもかかわらず、(メタ)アクリル酸の製造においては結晶化時における厳密な温度制御は検討されていなかった。よって、不純物を多く含み、また、反応条件によってはその組成が大幅に変わる粗(メタ)アクリル酸溶液から高純度の(メタ)アクリル酸を安定して効率的に得るには難しいところがあった。
 そこで本発明は、結晶化により、高純度の(メタ)アクリル酸を安定して効率的に得るための方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を進めた。その結果、粗(メタ)アクリル酸溶液を凝固点以下に冷却して結晶化させる前に、結晶が析出しない程度に粗溶液を冷却し、次いで粗溶液を凝固点未満まで冷却することにより明確な過冷却状態とすれば、より高純度の(メタ)アクリル酸が安定して得られることを見出して、本発明を完成した。
 本発明に係る(メタ)アクリル酸の製造方法は;晶析装置から排出される冷熱媒の温度が、晶析装置中の粗(メタ)アクリル酸溶液の凝固点超で且つ当該凝固点+5℃以下に安定化するまで、晶析装置中の粗(メタ)アクリル酸溶液を冷却する工程;次いで、晶析装置へ供給する冷熱媒の温度を、粗(メタ)アクリル酸溶液の凝固点から1℃以上低い温度とし、晶析装置中の粗(メタ)アクリル酸溶液を過冷却状態にする工程;および、粗(メタ)アクリル酸溶液から(メタ)アクリル酸を結晶化させる工程を含むことを特徴とする。
 本発明方法においては、粗(メタ)アクリル酸溶液を過冷却状態にするための、晶析装置へ供給する冷熱媒の温度を、粗(メタ)アクリル酸溶液の凝固点から1~10℃低い温度とすることが好ましい。過剰に低温度の冷熱媒で粗(メタ)アクリル酸溶液を短時間で冷却すると、過冷却後に結晶化が急激に進行し、結晶の純度が低下するおそれがある。しかし冷熱媒の温度を粗溶液の凝固点から1~10℃低い温度までにしておけば、粗溶液は過剰に過冷却されることなく、高純度の結晶をより確実に得ることが可能になる。
 本発明方法では、晶析装置として流下液膜式のものを用いることが好ましい。流下液膜式の晶析装置では、伝熱面を通して冷熱媒の冷熱が粗(メタ)アクリル酸溶液へ効率的に伝わり易く、粗溶液の温度制御が容易であり、高純度の結晶がより得られ易い。
図1は、本発明方法で用いる晶析装置の一態様を示す概略図である。図中、1は晶析装置であり、2は冷熱媒入口であり、3は冷熱媒出口であり、4はポンプであり、5は圧力計であり、6はバルブであり、7は熱交換器であり、8は粗(メタ)アクリル酸溶液タンクである。
 本発明方法は上記のとおりのものである。以下、実施の順番に従って、本発明方法を詳細に説明する。
 1.予備冷却工程
 本発明方法では、先ず、晶析装置から排出される冷熱媒の温度が、晶析装置中の粗(メタ)アクリル酸溶液の凝固点超で且つ当該凝固点+5℃以下に安定化するまで、晶析装置中の粗(メタ)アクリル酸溶液を冷却する。
 粗(メタ)アクリル酸溶液は、目的化合物である(メタ)アクリル酸に加えて不純物を含むものであれば、特に制限されない。例えば、接触気相酸化反応により得られた(メタ)アクリル酸含有ガスを、捕集液に接触させるか或いは凝縮することにより得られる粗(メタ)アクリル酸溶液を挙げることができる。(メタ)アクリル酸含有ガスを捕集液に接触させるか或いは凝縮することにより得られる粗(メタ)アクリル酸溶液には、(メタ)アクリル酸や未反応原料の他、水、酢酸、プロピオン酸、マレイン酸、アセトン、アクロレイン、フルフラール、ホルムアルデヒドなどの副生不純物が含まれている。
 また、より高純度の(メタ)アクリル酸を得るために、いったん晶析精製した(メタ)アクリル酸を溶融した上で粗(メタ)アクリル酸溶液の代わりに晶析装置へ供給し、晶析精製を2回以上繰り返してもよい。本発明において、晶析精製を2回以上繰り返す場合には、1回以上精製された(メタ)アクリル酸であっても、さらに晶析される際には粗溶液というものとする。
 本発明方法では、晶析装置を使って(メタ)アクリル酸を晶析精製するが、晶析装置の種類は特に制限されない。例えば、流下液膜式や完全流し込みチューブ式などの動的結晶化用の晶析装置を用いることが好ましい。冷熱媒の冷熱が晶析装置の伝熱面を介して粗(メタ)アクリル酸溶液に伝わり易く、当該粗溶液の温度制御がより容易になるからである。特に、結晶化の進行に伴うパイプの目詰まりや粗溶液の圧力上昇を抑制できることから、流下液膜式の晶析装置が好適である。
 本発明方法で用いる動的晶析装置の一例を図1に示す。勿論、本発明はかかる態様に限定されるものではない。
 図1に示す晶析装置1は、粗(メタ)アクリル酸溶液を循環させつつその温度を調節したり、(メタ)アクリル酸を晶析させることができる。即ち、流下液膜式晶析装置1に供給された粗(メタ)アクリル酸溶液は、ポンプ4により晶析装置1の上部から供給される。供給された粗溶液は、晶析装置内の晶析管の内側を落下する。当該晶析管は、特に制限はされないが、ステンレス鋼や銅など耐食性に優れ熱伝導率の良い材料で構成されており、また、その外側には熱媒が存在しているので、熱媒の冷熱または温熱は、伝熱面を介して晶析管内の粗溶液に伝えられる。タンク8に貯留されている粗溶液は、晶析装置1へ供給される前に熱交換器7で温度調節してもよいし、そのまま晶析装置1へ供給し、晶析装置1内で温度を調節してもよい。但し、タンク8内に貯留されている粗溶液の温度が高過ぎると、晶析装置1内での冷却に時間がかかり、生産性の低下をまねくため、当該温度は凝固点+3~20℃程度とすることが好ましい。かかる温度制御は、バルブ6により行うことができる。
 晶析装置1は、熱媒の熱を粗(メタ)アクリル酸へ十分に伝えられるように構成する。例えば、晶析装置1中の晶析管を細長くするなどして、伝熱面の表面積を大きくすることが好ましい。例えば、晶析管の直径を50mm以上、100mm以下程度にするのに対して、管長を15m以上、25m以下程度にすれば、伝熱面の表面積を十分に大きくすることができる。また、晶析管は一本でもよいが、複数本とすることにより伝熱面表面積をより一層大きくすることも可能である。
 本発明方法では、粗溶液から(メタ)アクリル酸を晶析させる前に、晶析装置において、(メタ)アクリル酸が析出しない程度で且つ粗溶液の温度ができるだけ低くなるように、粗溶液を冷却する。かかる操作は、次に粗溶液を明確な過冷却状態に導くことを可能にする。
 粗(メタ)アクリル酸溶液の凝固点は、予備実験などで測定すればよい。具体的には、粗溶液の一部を採取し、徐々に冷却していき、結晶が生じた際の温度を凝固点とすることができる。なお、アクリル酸の融点は13.5℃であり、メタクリル酸の融点は15.0℃であるが、接触気相酸化反応由来の溶液には不純物が含まれるので、その凝固点はこれら各融点よりも低くなる。
 晶析装置における粗(メタ)アクリル酸溶液の温度は、図1の晶析装置でいえば、粗溶液が伝熱面を経由して晶析装置底部の液溜りに至る前に測定すればよい。しかし、この時点での粗溶液の温度や、或いは伝熱面の最下部の温度を測定することは難しい場合がある。そこで本発明では、より簡便な方法として、粗溶液を冷却した後に晶析装置から排出される冷熱媒の温度の変化により、晶析装置内における粗溶液の冷却状況を把握することにした。
 従来方法では、(メタ)アクリル酸溶液を晶析器へ導入後、最初から過剰に冷却し、(メタ)アクリル酸を析出させていた。しかしそれでは、得られる結晶の純度は十分なものではなく、満足な純度の結晶を得るためには晶析回数を増やさなければならなかった。一方、本発明においては、先ず、晶析装置から排出される冷熱媒の温度を、晶析装置中の粗(メタ)アクリル酸溶液の凝固点超で且つ当該凝固点+5℃以下に安定化させることにより、晶析装置中の粗溶液をほぼ同様の温度で安定化させる。
 より具体的には、比較的温度の高い粗溶液を晶析装置の晶析管へ導入してから十分に時間が経過していない段階では、粗溶液の熱が晶析装置の伝熱面を介して冷熱媒に付与され、晶析装置から排出される冷熱媒の温度(冷熱媒の晶析装置出口温度)は、晶析装置へ供給される冷熱媒の温度(冷熱媒の晶析装置入口温度)よりも高いものとなる。しかし、晶析装置へ供給される冷熱媒の設定温度に応じて粗溶液の全体的な温度が十分に低下し、冷却装置へ循環供給される際の粗溶液の温度(粗溶液の晶析装置入口温度)が安定してくると、伝熱面で奪われる冷熱媒の冷熱も一定となり、晶析装置から排出される冷熱媒の温度も安定化する。本発明では、まず、晶析装置から排出される冷熱媒の温度が粗溶液の凝固点超で且つ当該凝固点+5℃以下で安定化すれば、晶析装置の伝熱面で冷却される粗溶液も同様の温度で安定化するとみなすものとする。
 晶析装置へ供給する冷熱媒の温度(冷熱媒の晶析装置入口温度)は、晶析装置から排出される冷熱媒の温度(冷熱媒の晶析装置出口温度)や晶析装置から排出される粗溶液の温度(粗溶液の晶析装置出口温度)の変化に応じて、適宜調整すればよい。例えば、冷熱媒の晶析装置入口温度を粗溶液の凝固点よりも高く設定すると、粗溶液が十分に冷却されて冷熱媒の晶析装置出口温度が安定化するまで時間がかかるものの、より一層純度の高い(メタ)アクリル酸結晶が得られる。一方、例えば、粗溶液の導入当初においては、冷熱媒の晶析装置入口温度を粗溶液の凝固点未満とし、冷熱媒の晶析装置出口温度や粗溶液の晶析装置出口温度の変化に応じて、粗溶液の一部が凝固しないように冷熱媒の晶析装置入口温度を粗溶液の凝固点より上に調整していけば、得られる結晶の純度は多少低下するおそれがあるものの、冷熱媒の晶析装置出口温度の安定化に要する時間を短縮でき、より一層効率的な晶析が可能になる。また、晶析精製を複数回繰り返す場合、第一回目など初期においては、精製度よりも冷却時間の短縮を目的として、冷熱媒の晶析装置出口温度が粗溶液の凝固点+5℃以下で安定化するのであれば、冷熱媒の晶析装置入口温度を粗溶液の凝固点未満から徐々に高めてもよい。
 本発明において、晶析装置から排出される冷熱媒の温度が「安定化する」とは、当該冷熱媒の時間当たりの温度変化が1.0℃/min以下になることをいうものとする。
 2.過冷却工程
 本発明では、晶析装置から排出される冷熱媒の温度が上記所定温度範囲で安定化した後、晶析装置へ供給する冷熱媒の設定温度を粗溶液の凝固点以下まで下げ、晶析装置内の粗溶液の温度を、その凝固点を超えて低下させることにより明確な過冷却状態にする。
 なお、一般的に、化合物が晶析する直前における溶液は過冷却状態になるといえる。しかし、溶液をその凝固点以下まで急激に冷却した場合には、明確な過冷却状態は確認できないことが多い。一方、本発明においては、(メタ)アクリル酸が析出しない範囲で粗溶液をできるだけ冷却して安定化させた後に凝固点を超えて冷却することにより、明確な過冷却状態とする。
 より具体的には、晶析装置から排出される冷熱媒の温度を上記所定範囲で安定化するまで晶析装置内で粗溶液を冷却した後、晶析装置へ供給する冷熱媒の温度を、粗溶液の凝固点から1℃以上低い温度に設定する。当該温度を粗溶液の凝固点から1℃以上低い温度に設定すれば、上記の予備冷却とあいまって、粗溶液を明確に過冷却状態にすることが可能になる。なお、本発明において過冷却状態とは、(メタ)アクリル酸の結晶が形成されないまま、粗(メタ)アクリル酸溶液の温度がその凝固点よりも一旦0.1℃以上低下することをいうものとする。
 本発明においては、粗溶液を過冷却状態にするための上記冷熱媒の温度を、粗溶液の凝固点から1~10℃低い温度に設定することが好ましい。上記のとおり、凝固点を超えて冷却すれば、粗溶液を過冷却状態にすることができる。しかし、本発明者の知見によれば、粗溶液を急激に冷却して過冷却状態とするに当たり、上記冷熱媒温度を粗溶液の凝固点から1~10℃低い温度に設定しておけば、高純度の(メタ)アクリル酸結晶がより確実に得られる。
 3.晶析工程
 本発明方法においては、粗(メタ)アクリル酸溶液を過冷却状態にした後、(メタ)アクリル酸を晶析させる。但し、図1に示す様な動的晶析装置の場合には、基本的に特別な処理をする必要は無い。粗溶液は常に流動しているため、いったん過冷却状態になれば、(メタ)アクリル酸は自然に晶析する。
 本発明方法によれば、高純度の(メタ)アクリル酸結晶が得られる。本発明方法により結晶の純度が向上する理由は明らかではないが、一般的に最初の析出条件で結晶の状態は大きく変わるところ、明確な過冷却状態をつくることで最初に純度の高い結晶核が形成され、その後、高純度の結晶核へ目的化合物である(メタ)アクリル酸が選択的に晶出するのではと考えている。
 図1に示す晶析装置においては、(メタ)アクリル酸結晶は晶析管内側の伝熱面に析出する。過冷却状態を経て晶出した(メタ)アクリル酸結晶へ、粗溶液を冷却しつつ液膜状に供給することにより、(メタ)アクリル酸結晶が成長する。粗溶液から(メタ)アクリル酸を十分に晶出させた後は、通常の後処理を行えばよい。
 例えば、結晶の表面付近には不純物が混入していたり、また、結晶表面には不純物が付着していることもあるので、結晶表面を部分的に融解して不純物を除去する発汗工程を行ってもよい。その場合、冷熱媒を温熱媒に切り替えて、結晶を適温で部分融解すればよい。純度の高い(メタ)アクリル酸結晶が得られた後は、さらに熱媒の温度を挙げて結晶を融解し、晶析装置から取り出せばよい。より高純度の(メタ)アクリル酸結晶を得るためには、溶解した(メタ)アクリル酸を晶析装置へ供給し、晶析精製を繰り返せばよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 実施例1 アクリル酸の晶析精製の開始
 (1) 粗アクリル酸溶液
 反応器内でプロピレンを接触気相酸化反応に付した。得られた反応ガスを捕集塔に導入し、捕集液と接触させ、捕集塔の塔底より粗アクリル酸溶液を得た。当該粗アクリル酸溶液の組成は、アクリル酸90.0質量%、水3.2質量%、酢酸1.9質量%、マレイン酸0.6質量%、アクリル酸二量体1.5質量%、フルフラール0.07質量%、ベンズアルデヒド0.27質量%、ホルムアルデヒド0.06質量%、ハイドロキノン0.1質量%、その他の不純物2.3質量%であった。当該溶液の凝固点を測定したところ、8.0~8.5℃であった。
 (2) 予備冷却工程
 上記(1)で得た粗アクリル酸溶液をタンクへ供給し、温度を22℃に調節した後、図1に示すような流下液膜式晶析パイロット装置の底部へ55kg供給した。当該晶析装置中の晶析管は、直径70mm、長さ18mの金属管である。また、当該晶析装置は、循環ポンプにより粗溶液を管上部へ移送し、粗溶液を晶析管壁面へ落下被膜状(Falling Film)に流すことができるようになっている。当該晶析装置においては、熱媒の入口部分と出口部分および粗溶液供給管の晶析管直前部分と晶析管直後部分に温度計を設置した。当該粗溶液を底部から抜き出し、0.34m3/hrの供給速度で循環供給を開始した。また、同晶析装置へ、25~30℃に設定した冷熱媒を0.82m3/hrの供給速度で供給し始めた。
 先ず、晶析装置へ供給する冷熱媒の設定温度を5℃(粗溶液の凝固点との差:-3~-3.5℃)下げたところ、粗溶液の出口温度も下がり、冷熱媒の設定温度を下げてから約3分後に粗溶液の出口温度と冷熱媒の出口温度がほぼ同じになり、冷熱媒の出口温度は約3分間で10℃から9℃に変化したのみで安定化した。
 (3) 過冷却工程から結晶化工程
 次いで、冷熱媒の入口温度を-1.5℃(粗溶液の凝固点との差:-9.5~-10℃)下げた。その結果、粗溶液の出口温度は7.5℃までいったん下がった後、上記凝固点まで上がり、次いで、不純物の濃縮とアクリル酸純度の低下により凝固点は徐々に降下していった。
 冷熱媒の入口温度を-1.5℃まで下げてから温度を徐々に低下させ、粗溶液が12.2kgになった時点で循環を止め、晶析装置底部の粗溶液を抜き出した。次に、冷熱媒を凝固点付近の温度の温熱媒に切り替えて発汗工程を行った後、融解した部分を晶析装置の底部から抜き出した。さらに温熱媒の温度を上昇させて結晶を完全に融解し、晶析装置の底部から抜き出した。
 得られたアクリル酸中の不純物含有率をガスクロマトグラフィ(島津製作所社製)により測定したところ、酢酸の含有量は0.95質量%に減少し、また、液体クロマトグラフィ(島津製作所社製)でも測定したところ、ハイドロキノンの含有量は0.025質量%に減少していた。
 実施例2
 過冷却工程において、冷熱媒の入口温度を-5.0℃(粗溶液の凝固点との差:-13~-13.5℃)に変更した以外は上記実施例1と同様にして、アクリル酸を製造した。この際、粗アクリル酸溶液の出口温度は過冷却状態によりいったん7.5℃まで下がった。その後、結晶化中において晶析装置に設置された圧力計の測定値が若干上昇し、晶析管上部が閉塞気味であることが確認されたが、最後まで運転することができた。
 得られたアクリル酸の純度を上記実施例1と同様に測定したところ、酢酸含有量が1.06質量%、ハイドロキノン含有量が0.028質量%と、純度は実施例1よりも僅かに低下していた。その理由は、過冷却時における冷熱媒温度を-1.5℃から-5℃に変更したことにより結晶化が急激に進行し、晶析管への結晶付着状況が悪化したためと考えられる。
 比較例1
 粗アクリル酸溶液を冷却するための冷熱媒の温度を一貫して1℃(粗溶液の凝固点との差:-7~-7.5℃)とし、晶析装置の晶析管温度が粗アクリル酸の凝固点以下となった状態から粗アクリル酸溶液の循環を開始した以外は上記実施例1と同様にして、アクリル酸を製造した。この際、晶析管の伝熱面温度が凝固点以下となっており、粗溶液の循環開始直後から結晶化が始まるため、明確な過冷却状態は認められず、粗溶液温度は凝固点まで下がり続けたのみであった。
 得られたアクリル酸の純度を上記実施例1と同様に測定したところ、酢酸含有量が1.27質量%、ハイドロキノン含有量が0.033質量%と、得られたアクリル酸の純度は低下していた。
 上記実施例1~2および比較例1の結果を表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 上記結果のとおり、粗アクリル酸溶液の晶析管出口直後の温度や冷熱媒の晶析装置出口温度から、粗アクリル酸溶液の過冷却状態が認められない場合には得られたアクリル酸の純度が低い一方で、過冷却状態が明確に認められる場合にはアクリル酸純度は高くなる。また、過冷却状態をつくるための冷却条件が穏和であると、純度はより一層高くなることが明らかとなった。それに対して、明確な過冷却状態が認められなかった場合には、不純物濃度が上がり、想定した量まで不純物を低下させるためには、精製回数を増やす必要があった。
 実施例3 アクリル酸の晶析精製の開始
 (1) アクリル酸溶融液
 反応器内でプロピレンを接触気相酸化反応に付した。得られた反応ガスを捕集塔に導入し、捕集液と接触させ、捕集塔の塔底より粗アクリル酸溶液を得た。当該粗アクリル酸溶液を晶析装置で通常の条件で数回精製した。得られたアクリル酸に含まれる不純物は、酢酸が1500質量ppmであり、ハイドロキノンが1質量ppmであった。当該溶融液の凝固点を測定したところ、13~14℃であった。
 (2) 予備冷却工程
 上記(1)で得たアクリル酸溶融液をタンクへ供給し、温度を22℃に調節した後、図1に示すような流下液膜式晶析装置の底部へ68.6kg供給した。当該晶析装置においては、熱媒の入口部分と出口部分および晶析管直前部分と晶析管直後部分に温度計を設置した。当該溶融液を底部から抜き出し、0.34m3/hrの供給速度で循環供給を開始した。また、同晶析装置へ、25~30℃に設定した冷熱媒を0.82m3/hrの供給速度で供給し始めた。
 先ず、晶析装置へ供給する冷熱媒の設定温度を10℃(粗溶液の凝固点との差:-3~-4℃)下げたところ、溶融液の出口温度も下がり、冷熱媒の設定温度を下げてから約3分後に溶融液の出口温度と冷熱媒の出口温度がほぼ同じになり、冷熱媒の出口温度は約2分間で15℃から14℃に変化したのみで安定化した。
 (3) 過冷却工程から結晶化工程
 次いで、冷熱媒の入口温度を7℃(粗溶液の凝固点との差:-6~-7℃)下げた。その結果、溶融液の出口温度は12.8℃までいったん下がった後、上記凝固点まで上がり、次いで、不純物の濃縮とアクリル酸純度の低下により凝固点は徐々に降下していった。
 冷熱媒の入口温度を7℃まで下げてからさらに徐々に低下させ、溶融液が20.2kgになった時点で循環を止め、晶析装置底部の溶融液を抜き出した。次に、冷熱媒を凝固点付近の温度の温熱媒に切り替えて発汗工程を行った後、融解した部分を晶析装置の底部から抜き出した。さらに温熱媒の温度を上昇させて結晶を完全に融解し、晶析装置の底部から抜き出した。
 得られたアクリル酸中の不純物含有率を液体クロマトグラフィ(島津製作所社製)により測定したところ、酢酸の含有量は535質量ppmに減少し、また、液体クロマトグラフィ(島津製作所社製)でも測定したところ、ハイドロキノンの含有量は0.1質量ppm未満に減少していた。
 実施例4
 過冷却工程において、冷熱媒の入口温度を2℃(粗溶液の凝固点との差:-11~-12℃)に変更した以外は上記実施例3と同様にして、アクリル酸を製造した。この際、粗アクリル酸溶液の出口温度は過冷却状態によりいったん12.8℃まで下がった。その後、結晶化中において晶析装置に設置された圧力計の測定値が若干上昇し、晶析管上部が閉塞気味であることが確認されたが、最後まで運転することができた。
 得られたアクリル酸の純度を上記実施例3と同様に測定したところ、酢酸含有率は545質量ppmであり、純度は実施例3よりも僅かに低下していた。その理由は、過冷却時における冷熱媒温度を7℃から2℃に変更したことにより結晶化が急激に進行し、晶析管への結晶付着状況が悪化したためと考えられる。但し、ハイドロキノンの測定値に変化は無かった。
 比較例2
 粗アクリル酸溶液を冷却するための冷熱媒の温度を一貫して7.5℃(粗溶液の凝固点との差:-5.5~-6.5℃)とし、晶析装置の晶析管温度が粗アクリル酸の凝固点以下となった状態から粗アクリル酸溶液の循環を開始した以外は上記実施例3と同様にして、アクリル酸を製造した。この際、晶析管の伝熱面温度が凝固点以下となっており、粗溶液の循環開始直後から結晶化が始まるため、明確な過冷却状態は認められず、粗溶液温度は凝固点まで下がり続けたのみであった。
 得られたアクリル酸の純度を上記実施例3と同様に測定したところ、酢酸含有量が600質量ppm、ハイドロキノン含有量が0.1質量ppmであり、得られたアクリル酸の純度は上記実施例3と比べて低下していた。
 実施例5 アクリル酸の晶析精製の開始
 (1) 予備冷却工程
 上記実施例3(1)で得たものと同様のアクリル酸溶融液をタンクへ供給し、温度を22℃に調節した後、図1に示すような流下液膜式晶析装置の底部へ68.6kg供給した。当該晶析装置においては、熱媒の入口部分と出口部分および晶析管直前部分と晶析管直後部分に温度計を設置した。当該溶融液を底部から抜き出し、0.34m3/hrの供給速度で循環供給を開始した。また、同晶析装置へ、25~30℃に設定した冷熱媒を0.82m3/hrの供給速度で供給し始めた。
 先ず、晶析装置へ供給する冷熱媒の設定温度を15℃(粗溶液の凝固点との差:+1~+2℃)下げたところ、溶融液の出口温度も下がり、冷熱媒の設定温度を下げてから約3分後に溶融液の出口温度と冷熱媒の出口温度がほぼ同じになり、冷熱媒の出口温度は約3分間で17.5℃から17.0℃に変化したのみで安定化した。
 (2) 過冷却工程から結晶化工程
 次いで、冷熱媒の入口温度を降温速度0.8℃/分で下げた。その結果、冷熱媒の入口温度が9℃となった時点で、溶融液の出口温度は12.8℃までいったん下がった後、上記凝固点まで上がり、次いで、不純物の濃縮とアクリル酸純度の低下により凝固点は徐々に降下していった。
 その後も冷熱媒温度を徐々に低下させ、溶融液が20.2kgになった時点で循環を止め、晶析装置底部の溶融液を抜き出した。次に、冷熱媒を凝固点付近の温度の温熱媒に切り替えて発汗工程を行った後、融解した部分を晶析装置の底部から抜き出した。さらに温熱媒の温度を上昇させて結晶を完全に融解し、晶析装置の底部から抜き出した。
 得られたアクリル酸中の不純物含有率を液体クロマトグラフィ(島津製作所社製)により測定したところ、酢酸の含有量は500質量ppmに減少し、また、液体クロマトグラフィ(島津製作所社製)でも測定したところ、ハイドロキノンの含有量は0.1質量ppm未満に減少していた。
 上記実施例3~5および比較例2の結果を表2にまとめる。
Figure JPOXMLDOC01-appb-T000002
 上記結果のとおり、粗アクリル酸溶液に含まれるアクリル酸濃度が異なり、その凝固点が異なる場合であっても、上記実施例1~2および比較例1と同様に、粗アクリル酸溶液の過冷却状態が認められない場合には得られたアクリル酸の不純物濃度が高い一方で、過冷却状態が明確に認められる場合にはアクリル酸の不純物濃度は低くなった。また、過冷却状態をつくるための冷却条件が穏和であると、純度はより一層高くなることが再確認できた。
 本発明方法によれば、接触気相酸化反応由来のもののような不純物を多く含み、且つ反応条件により組成が大幅に変わり得る粗(メタ)アクリル酸溶液からでも、晶析により、高純度の(メタ)アクリル酸を安定して効率的に得ることができる。よって本発明方法は、(メタ)アクリル酸の工業的な大量生産に資するものとして、産業上極めて有用である。

Claims (3)

  1.  (メタ)アクリル酸を製造するための方法であって;
     晶析装置から排出される冷熱媒の温度が、晶析装置中の粗(メタ)アクリル酸溶液の凝固点超で且つ当該凝固点+5℃以下に安定化するまで、晶析装置中の粗(メタ)アクリル酸溶液を冷却する工程;
     次いで、晶析装置へ供給する冷熱媒の温度を、粗(メタ)アクリル酸溶液の凝固点から1℃以上低い温度とし、晶析装置中の粗(メタ)アクリル酸溶液を過冷却状態にする工程;および、
     粗(メタ)アクリル酸溶液から(メタ)アクリル酸を結晶化させる工程;
     を含むことを特徴とする方法。
  2.  粗(メタ)アクリル酸溶液を過冷却状態にするための、晶析装置へ供給する冷熱媒の温度を、粗(メタ)アクリル酸溶液の凝固点から1~10℃低い温度とする請求項1に記載の方法。
  3.  流下液膜式の晶析装置を用いる請求項1または2に記載の方法。
PCT/JP2010/057815 2009-05-19 2010-05-07 (メタ)アクリル酸の製造方法 WO2010134434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/266,672 US8530699B2 (en) 2009-05-19 2010-05-07 Process for production of (meth) acrylic acid
EP10777668.4A EP2433924B1 (en) 2009-05-19 2010-05-07 Process for production of (meth)acrylic acid
JP2011514377A JP5581316B2 (ja) 2009-05-19 2010-05-07 (メタ)アクリル酸の製造方法
CN201080009469.1A CN102333753B (zh) 2009-05-19 2010-05-07 (甲基)丙烯酸的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-120623 2009-05-19
JP2009120623 2009-05-19

Publications (1)

Publication Number Publication Date
WO2010134434A1 true WO2010134434A1 (ja) 2010-11-25

Family

ID=43126118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057815 WO2010134434A1 (ja) 2009-05-19 2010-05-07 (メタ)アクリル酸の製造方法

Country Status (5)

Country Link
US (1) US8530699B2 (ja)
EP (1) EP2433924B1 (ja)
JP (1) JP5581316B2 (ja)
CN (1) CN102333753B (ja)
WO (1) WO2010134434A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722771B2 (ja) * 2009-07-03 2015-05-27 株式会社日本触媒 (メタ)アクリル酸の晶析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514077A (ja) 1996-07-10 2000-10-24 ビーエーエスエフ アクチェンゲゼルシャフト アクリル酸及びメタクリル酸の精製法
JP2004535360A (ja) * 2001-01-12 2004-11-25 デグッサ アーゲー (メタ)アクリル酸の精製方法及びその製造装置
WO2007088981A1 (ja) 2006-02-03 2007-08-09 Mitsubishi Rayon Co., Ltd. カルボン酸の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA790625A (en) * 1968-07-23 R. Miller Thomas Purification of acrylic acid
TW305830B (ja) * 1993-03-26 1997-05-21 Sulzer Chemtech Ag
JPH11199524A (ja) * 1998-01-08 1999-07-27 Mitsubishi Chemical Corp 壁面降下型溶融晶析方法
DE10122788A1 (de) * 2001-05-10 2002-06-06 Basf Ag Verfahren der kristallisativen Reinigung einer Roh-Schmelze wenigstens eines Monomeren
JP2007088981A (ja) * 2005-09-26 2007-04-05 Murata Mach Ltd 通信端末装置
JP5144926B2 (ja) * 2006-01-20 2013-02-13 株式会社日本触媒 アクリル酸の精製方法および製造方法
KR101213953B1 (ko) * 2007-03-14 2012-12-18 미츠비시 레이온 가부시키가이샤 정석 장치 및 그 운전 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514077A (ja) 1996-07-10 2000-10-24 ビーエーエスエフ アクチェンゲゼルシャフト アクリル酸及びメタクリル酸の精製法
JP2004535360A (ja) * 2001-01-12 2004-11-25 デグッサ アーゲー (メタ)アクリル酸の精製方法及びその製造装置
WO2007088981A1 (ja) 2006-02-03 2007-08-09 Mitsubishi Rayon Co., Ltd. カルボン酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FISCHER ET AL.: "CRYSTALLIZATION WITHOUT SOLVENT", CHEM.ENG.WORLD 0009-2517, vol. 34, no. 1, 1999, pages 79 - 81, 84, XP008167933 *

Also Published As

Publication number Publication date
CN102333753B (zh) 2014-02-26
US20120046495A1 (en) 2012-02-23
EP2433924A1 (en) 2012-03-28
JPWO2010134434A1 (ja) 2012-11-08
CN102333753A (zh) 2012-01-25
EP2433924A4 (en) 2014-05-14
JP5581316B2 (ja) 2014-08-27
US8530699B2 (en) 2013-09-10
EP2433924B1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5722771B2 (ja) (メタ)アクリル酸の晶析方法
JP5962817B2 (ja) 晶析方法および晶析装置
JP5814118B2 (ja) アクリル酸の晶析装置およびこれを用いたアクリル酸の晶析方法
JP5112898B2 (ja) (メタ)アクリル酸の晶析方法およびその晶析システム
JP5929480B2 (ja) メタクリル酸の精製方法
JP6151884B2 (ja) (メタ)アクリル酸の製造方法
WO2010090143A1 (ja) (メタ)アクリル酸の製造方法
JP5581316B2 (ja) (メタ)アクリル酸の製造方法
JP6097181B2 (ja) (メタ)アクリル酸の製造方法
JP5336794B2 (ja) 原料粗結晶の精製方法
JP6635176B2 (ja) メタクリル酸の精製方法及び製造方法
JP5569108B2 (ja) (メタ)アクリル酸の精製方法
JP6214156B2 (ja) メタクリル酸の精製方法
JP5318602B2 (ja) アクリル酸結晶の融解方法
WO2020075762A1 (ja) (メタ)アクリル酸の精製方法
EP4349445A1 (en) Tank used in refining device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009469.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514377

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13266672

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010777668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010777668

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE