WO2010131566A1 - テトラカルボン酸二無水物、及び重合体 - Google Patents

テトラカルボン酸二無水物、及び重合体 Download PDF

Info

Publication number
WO2010131566A1
WO2010131566A1 PCT/JP2010/057382 JP2010057382W WO2010131566A1 WO 2010131566 A1 WO2010131566 A1 WO 2010131566A1 JP 2010057382 W JP2010057382 W JP 2010057382W WO 2010131566 A1 WO2010131566 A1 WO 2010131566A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bis
polymer
general formula
aminophenoxy
Prior art date
Application number
PCT/JP2010/057382
Other languages
English (en)
French (fr)
Inventor
朗 今國
拓馬 雨宮
義博 中井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010131566A1 publication Critical patent/WO2010131566A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a tetracarboxylic dianhydride useful as a functional material such as a liquid crystal material, a nonlinear optical material, an electronic material, and an adhesive material, and a polymer containing the tetracarboxylic dianhydride as a constituent component.
  • Polyimides are widely used in functional materials such as liquid crystal materials, nonlinear optical materials, electronic materials, adhesive materials, etc. because they have properties such as heat resistance, chemical resistance, insulation, and excellent mechanical properties. ing.
  • polyimides generally have a rigid skeleton, are insoluble in organic solvents, and have a glass transition point of 300 ° C. or higher. Therefore, it is not easy to mold the polyimide itself.
  • a method using a polyimide precursor exhibiting high solubility in an amide organic solvent is used. Specifically, after applying and drying an aprotic organic solvent solution of a polyimide precursor, the polyimide film is formed by heating at a high temperature of 250 ° C. to 350 ° C. and performing a dehydration cyclization (imidization) reaction.
  • the film forming process may not be applied in some fields.
  • the heat resistance temperature of a color filter which is indispensable for colorization of liquid crystal displays, is about 200 ° C. Even if an attempt is made to form a polyimide film for a liquid crystal alignment film via imidization of a polyimide precursor, at this temperature the imide of the coating film The chemical reaction cannot be completed.
  • the characteristics of the polyimide material are the heat treatment temperature as a countermeasure to lower the dielectric constant accompanying the miniaturization of the wiring pitch of the printed wiring board and the higher density of the semiconductor element.
  • the glass transition point it is desired to lower the glass transition point.
  • Polyesterimide is known as a polyimide having high solvent solubility (for example, JP 2005-298623 A, JP 2007-137960 A, and “High Performance Polymer”, 2006, Vol. 18, Vol. , P. 697-717).
  • examples of the polyesterimide having a low glass transition point include polyesterimide described in JP-A-2005-298623.
  • solvents capable of dissolving polyimide are limited to amide solvents having a high boiling point such as N-methylpyrrolidone (NMP) and N, N-dimethylacetamide (DMAc), and general-purpose solvents such as methyl ethyl ketone (MEK). Dissolving in a solvent is difficult. Furthermore, these polyimides have drawbacks such as a glass transition point of 200 ° C. or higher and a dielectric constant of 3.0 or higher. In response to the above demands for lowering the dielectric constant and lowering the glass transition point. Is insufficient.
  • An object is to incorporate a tetracarboxylic dianhydride having a specific structure into a polymer to improve the solvent solubility, lower the dielectric constant, and lower the glass transition point of the polymer.
  • Tetracarboxylic dianhydride represented by the following general formula (1):
  • A is a divalent linking group having at least one of substituted or unsubstituted structures represented by the following general formulas (2) to (4));
  • Z and Z ′ each independently represent an atomic group that forms a saturated or unsaturated carbocyclic or heterocyclic ring with two carbon atoms of the oxane ring).
  • L 1 , L 1 ′, L 2 , and L 2 ′ each independently represent a single bond, a cycloalkylene group, or a divalent aromatic ring group.
  • Z and Z ′ independently represent oxane.
  • R 1 and R 2 each independently represent a hydrogen atom or a cyclic or acyclic hydrocarbon group, which forms a saturated or unsaturated carbocycle or heterocycle together with 2 carbon atoms of the ring.
  • R 1 and R 2 may combine with each other to form a ring
  • n 1 independently represents an integer of 1 or more.
  • L 1 , L 1 ′, L 2 , and L 2 ′ are each independently a single bond, an alkylene group, or a cycloalkylene group. Tetracarboxylic dianhydride.
  • ⁇ 4> A polymer synthesized from at least one diamine compound and the tetracarboxylic dianhydride according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> The polymer according to ⁇ 3> or ⁇ 4>, wherein the diamine compound is an aromatic diamine compound.
  • ⁇ 6> The polymer according to ⁇ 4> or ⁇ 5>, wherein the polymer is a polyesterimide or a polyetheresterimide.
  • ⁇ 7> A composition comprising the polymer according to any one of ⁇ 4> to ⁇ 6>.
  • tetracarboxylic dianhydride represented by the following general formula (1).
  • A is a divalent linking group having at least one of substituted or unsubstituted structures represented by the following general formulas (2) to (4).
  • Z and Z ′ each independently represent an atomic group that forms a saturated or unsaturated carbocyclic or heterocyclic ring with two carbon atoms of the oxane ring.
  • A is preferably a structure represented by any one of the following general formulas (5) to (7).
  • the general formula (7) refers to both the general formula (7-1) and the general formula (7-2).
  • L 1 , L 1 ′, L 2 , and L 2 ′ each independently represent a single bond, an alkylene group, a cycloalkylene group, or a divalent aromatic ring group.
  • Z and Z ′ each independently represent an atomic group that forms a saturated or unsaturated carbocycle or heterocycle with two carbon atoms of the oxane ring.
  • R 1 and R 2 each independently represent a hydrogen atom or a cyclic or acyclic hydrocarbon group.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • n1 represents an integer greater than or equal to 1 each independently.
  • Examples of the alkylene group represented by L 1 , L 1 ′, L 2 , and L 2 ′ include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a hexamethylene group.
  • Examples of the cycloalkylene group represented by L 1 , L 1 ′, L 2 , or L 2 ′ include a 1,4-cyclohexylene group and a 1,3-cyclohexylene group.
  • Examples of the aromatic ring group represented by L 1 , L 1 ′, L 2 , or L 2 ′ include a phenylene group, a naphthylene group, and an anthranylene group, and a phenylene group is preferable.
  • the alkylene group, cycloalkylene group, and aromatic ring group may be unsubstituted or may have a substituent. Examples of the substituent include the substituents described later.
  • A is more preferably a structure represented by any one of the following (1) to (11).
  • the general formulas (2) to (4) may be unsubstituted or substituted with other substituents.
  • the substituents include halogen atoms (—F, —Br, —Cl, —I), alkyl groups, alkenyl groups, aryl groups, aralkyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyl groups.
  • alkyl group in these substituents include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, s-butyl group, t -Butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
  • aryl group examples include phenyl, biphenyl, naphthyl, tolyl, xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxy Phenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, Ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamoylphenyl group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phosphoric acid
  • Examples of the alkenyl group include a vinyl group, 1-propenyl group, 1-butenyl group, cinnamyl group, 2-chloro-1-ethenyl group and the like.
  • Examples of G 1 in the acyl group (G 1 CO—) include hydrogen and the above alkyl groups and aryl groups.
  • Examples of the aralkyl group include those in which the above aryl group is substituted on the above alkyl group.
  • halogen atoms alkyl groups having 1 to 8 carbon atoms, cycloalkyl groups, alkoxy groups, acyloxy groups, acylamino groups, and aryl groups having 6 to 10 carbon atoms from the viewpoint of availability of raw materials and ease of production.
  • the aryloxy group, the aralkyl group, the aralkyloxy group, the hydroxy group, and the cyano group are preferably substituted or unsubstituted, and more preferably unsubstituted.
  • the saturated or unsaturated carbocyclic ring formed by Z and Z ′ in the general formula (3) together with two carbon atoms of the oxane ring a 5- to 7-membered ring is preferable, and a 6-membered ring is more preferable.
  • An aromatic ring or a heteroaromatic ring is preferable.
  • aromatic rings include benzene, indene, indane, naphthalene, biphenyl, and tetralin.
  • heterocycles include furan, thiophene, pyrrole, pyran, thiopyran, pyridine, oxazole, thiazole, imidazole, pyrimidine, triazine, indole, and quinoline. , Purine, benzimidazole, benzothiazole, quinoxaline, carbazole and the like.
  • heteroaromatic ring examples include furan, thiophene, pyrrole, pyran, thiopyran, pyridine, oxazole, thiazole, imidazole, pyrimidine, triazine, indole, quinoline, purine, benzimidazole, benzothiazole, quinoxaline, carbazole and the like.
  • benzene, indene, indane, naphthalene, biphenyl and the like that are aromatic rings are preferable from the viewpoint of increasing compatibility between solvent solubility and low dielectric constant, and from the viewpoint of availability of raw materials and ease of production, In particular, benzene is preferred.
  • the heteroaromatic ring is preferably a 4- to 6-membered ring, more preferably a 6-membered ring.
  • Examples include an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a quinoline ring, and an isoquinoline ring. Particularly preferred is a quinoline ring.
  • the aromatic ring or heteroaromatic ring may be substituted with other substituents.
  • the substituents include halogen atoms (—F, —Br, —Cl, —I), alkyl groups, alkenyl groups, aryl groups, aralkyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyl groups.
  • alkyl group in these substituents include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, s-butyl group, t -Butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
  • aryl group examples include phenyl, biphenyl, naphthyl, tolyl, xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxy Phenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, Ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamoylphenyl group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phosphoric acid
  • Examples of the alkenyl group include a vinyl group, 1-propenyl group, 1-butenyl group, cinnamyl group, 2-chloro-1-ethenyl group and the like.
  • Examples of G1 in the acyl group (G1CO-) include hydrogen, and the above alkyl groups and aryl groups.
  • Examples of the aralkyl group include those in which the above aryl group is substituted on the above alkyl group.
  • halogen atoms alkyl groups having 1 to 8 carbon atoms, cycloalkyl groups, alkoxy groups, acyloxy groups, acylamino groups, and aryl groups having 6 to 10 carbon atoms from the viewpoint of availability of raw materials and ease of production.
  • An aralkyl group, an aralkyl group, an aralkyloxy group, a hydroxy group, a cyano group or an unsubstituted benzene is preferable, and a methyl group or an unsubstituted benzene is particularly preferable.
  • Examples of the alkylene group represented by L 1 and L 1 ′ in the general formula (5) include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a hexamethylene group.
  • Examples of the cycloalkylene group represented by L 1 and L 1 ′ include a 1,4-cyclohexylene group and a 1,3-cyclohexylene group.
  • Examples of the aromatic ring group represented by L 1 and L 1 ′ include a phenylene group, a naphthylene group, and an anthranylene group, and a phenylene group is preferable.
  • R 1 and R 2 each independently represent hydrogen, an optionally substituted cyclic or acyclic hydrocarbon group, or a heterohydrocarbon group, and R 1 and R 2 are They may combine to form a ring.
  • Examples of the unsubstituted hydrocarbon group include a linear or branched aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, and an aromatic ring group having 6 to 20 carbon atoms.
  • linear or branched aliphatic group examples include alkyl groups (for example, methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, neopentyl, hexyl, 2-ethylhexyl, octyl, dodecyl, etc.), Alkenylene groups (eg, propenyl, butenyl, etc.), and alicyclic groups include cycloalkyl groups (eg, cyclopentyl, cyclohexyl, menthyl, etc.), cycloalkenyl groups (eg, cyclohexenyl, etc.), alicyclic polycyclic groups ( For example, bornyl, norbornyl, decalinyl, adamantyl, diamantyl, etc.) can be mentioned.
  • aromatic ring of the aromatic ring group examples include benzene, naphthalene
  • heterohydrocarbon group examples include groups derived from heteroaromatic rings and heteroalicyclic compounds.
  • heteroaromatic ring examples include furan, thiophene, pyrrole, pyran, thiopyran, pyridine, oxazole, thiazole, imidazole, pyrimidine, triazine, indole, quinoline, purine, benzimidazole, benzothiazole, quinoxaline, carbazole and the like.
  • heteroalicyclic compound examples include oxetane, thietane, azetidine, oxolane, thiolane, pyrroline, pyrrolidine, pyrazoline, imidazoline, thiazoline, pyran, oxane, thiane, piperidine, morpholine, coumaran, chroman, pyrrolidone and the like.
  • Examples of the optionally substituted hydrocarbon group or heterohydrocarbon group include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group with respect to the unsubstituted hydrocarbon group exemplified above.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • a cyano group with respect to the unsubstituted hydrocarbon group exemplified above.
  • Group nitro group, sulfonyl group, amide group, alkoxy group having 1 to 20 carbon atoms (for example, methoxy, butoxy, dodecyloxy), acylamino group having 1 to 20 carbon atoms (for example, acetylamino, N-methylacetylamino, propionyl)
  • R 1 and R 2 a hydrogen atom, an alkyl group, a cycloalkyl, an alicyclic polycyclic group, a phenyl, naphthyl, and a biphenyl group are preferable, and from the viewpoint of availability of raw materials and ease of production, a hydrogen atom, A methyl group is particularly preferred.
  • Z and Z 'in the general formula (6) are the same as the atomic groups described for Z and Z' in the general formula (3), and the preferred ranges are also the same.
  • L 2, L 2 ' has the general formula (5) L 2, L 2' of the same as that, the preferred range is also the same.
  • n1 represents an integer of 1 or more and is not particularly limited, but is preferably 1 or more and 10 or less from the viewpoint of mechanical properties. Moreover, 1 or more and 3 or less are more preferable from a viewpoint of raw material availability.
  • the tetracarboxylic dianhydride of the present invention is synthesized from a diol represented by the following general formula (19) and a trimellitic anhydride derivative represented by the following general formula (20).
  • a chlorine atom is particularly preferred from the viewpoint of availability of raw materials and ease of production.
  • the amount of the trimellitic anhydride derivative represented by the general formula (20) with respect to the diol represented by the general formula (19) is such that the target compound can be obtained in a high yield and the general formula (19) used as a raw material. And the advantage that the amount of unreacted substances of each compound represented by the general formula (20) is low is obtained, the range of 2.0 to 10 times mol is preferable, and more preferably 2.0 to 3.0 times mol, More preferably, it is 2.1 to 2.5 times mol.
  • the solvent that can be used for the reaction is not particularly limited as long as it does not cause problems in the process operation, does not disturb the progress of the reaction, and does not adversely affect the reaction by decomposing in the amidation, esterification, or thioesterification step.
  • amide solvents for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone
  • sulfone solvents for example, sulfolane
  • sulfoxide solvents for example, dimethyl sulfoxide
  • urea systems Solvent eg tetramethylurea
  • ether type solvent eg dioxane, cyclopentyl methyl ether
  • ketone type solvent eg acetone, cyclohexanone
  • hydrocarbon type solvent eg toluene, xylene, n-decane
  • halogen type solvent eg Tetrachloroethane, chlorobenzene, chloride (Tylene, chloroform
  • pyridine solvents eg pyridine, ⁇ -picoline, 2,6-lutidine
  • ester solvents eg ethyl acetate, butyl acetate
  • an amide solvent, a sulfone solvent, a sulfoxide solvent, a urea solvent, an ether solvent, a halogen solvent, a pyridine solvent, and a nitrile solvent preferably an amide solvent, an ether solvent, Halogen solvents and nitrile solvents, more preferably amide solvents and nitrile solvents.
  • solvents may be used alone or in combination of two or more.
  • the reaction temperature is preferably in the range of ⁇ 30 ° C. to 200 ° C., more preferably ⁇ 20 ° C. to 100 ° C., still more preferably ⁇ 10 ° C. to 30 ° C.
  • the reaction time varies depending on the amount charged and the reaction temperature, but is preferably in the range of 0.5 to 12 hours, more preferably in the range of 0.5 to 6 hours.
  • the atmosphere in the reaction a sufficiently dried inert gas atmosphere is preferable. Since the presence of moisture reduces the reaction rate, it is preferably reduced as much as possible.
  • the inert gas rare gases such as nitrogen and argon can be suitably used.
  • Examples of the method for isolating the tetracarboxylic dianhydride that is the structural unit of the present invention from the reaction mixture include a separation and purification method such as crystallization or recrystallization after completion of the reaction.
  • a separation and purification method such as crystallization or recrystallization after completion of the reaction.
  • Examples of the organic solvent for crystallizing tetracarboxylic dianhydride include a mixed system of the organic solvent described above and another organic solvent.
  • Other organic solvents to be mixed include ether solvents such as diethyl ether, diisopropyl ether, methyl-t-butyl ether and methoxybenzene, nitrile solvents such as acetonitrile, and aliphatic hydrocarbon solvents such as hexane, heptane and cyclohexane.
  • Aromatic hydrocarbon solvents such as toluene and xylene, halogen solvents such as chloroform and methylene chloride, ester solvents such as ethyl acetate and n-butyl acetate, ketone solvents such as acetone and methyl ethyl ketone, Nitrile solvents, ester solvents, and aromatic hydrocarbon solvents are preferred from the viewpoints of easiness of crystallization or recrystallization, suitability for mass production on an industrial scale, safety, and availability.
  • organic solvent preferably used may be acetonitrile, ethyl acetate, butyl acetate, toluene, xylene (o-isomer, m-isomer, p-isomer, or a mixture of these in any ratio).
  • the above solvents may be used alone or in combination of two or more.
  • polymer containing tetracarboxylic dianhydride as a constituent unit ⁇ Description of polymer containing tetracarboxylic dianhydride as a constituent unit>
  • the polymer containing tetracarboxylic dianhydride constituting the present invention will be described.
  • the polymer containing any tetracarboxylic dianhydride represented by the general formula (1) as a structural unit include polyesterimide, polyetheresterimide, polyamideesterimide, polyesteramide acid, and polyesteramide acid. Examples thereof include polyester imide, polyether ester imide, and polyamide ester imide, and more preferably polyester imide and polyether ester imide.
  • the amine compound that can be used in the polymer of the present invention is not particularly limited, but a diamine compound is desirable from the viewpoint of mechanical properties.
  • the diamine compound is not particularly limited, and for example, an aliphatic chain diamine compound, an alicyclic diamine compound, an aromatic diamine compound, and a silicone diamine compound can be used.
  • aromatic diamine compounds are used from the viewpoint of controlling the reactivity, and exhibiting solubility in a low-boiling solvent while maintaining a dielectric constant of 3.0 or less when incorporated in the polymer. preferable.
  • the polymer may be a single copolymer or a block copolymer.
  • the backbone skeleton may be aromatic or aliphatic, and may contain silicone, fluorene, or the like in the main chain or side chain, but is preferably aromatic.
  • diamine compounds are exemplified.
  • the amine compounds exemplified above can be used alone or in combination as appropriate.
  • part or all of the hydrogen atoms on the aromatic ring of the amine compound are substituted with a substituent selected from a fluorine atom, a methyl group, a methoxy group, a trifluoromethyl group, and a trifluoromethoxy group.
  • Diamine may be used.
  • a part of the amine compound may be replaced with a triamine compound or a tetraamine compound.
  • triamine compounds include, for example, paralozuaniline.
  • the method for producing the polymer of the present invention is not particularly limited, and the above-mentioned tetracarboxylic dianhydride monomer or monomer mixture and the amine compound monomer or monomer mixture are used. By this, the polymer of the present invention can be prepared.
  • a method for producing a polyimide polymer according to the present invention a method of ring-closing and imidizing after passing through a polyamic acid, a method of passing through a polyisoimide, a part of which is imidized and further passing through a polyamic acid
  • Known polymerization methods such as a method of polymerizing using a compound and a method of polymerizing by reacting a mixture of an acid anhydride and an amine compound in an organic solvent can be used.
  • water is generated by cyclization of polyamic acid, and this water can be azeotroped with benzene, toluene, xylene, tetralin, etc. and removed from the reaction system to promote imidization.
  • a dehydrating agent such as an aliphatic acid anhydride such as acetic anhydride or an aromatic acid anhydride is used, the imidization reaction easily proceeds.
  • a polycondensation accelerator can be added to the reaction system to complete the reaction quickly.
  • polycondensation accelerators include basic polycondensation accelerators and acidic polycondensation accelerators. Both can be used together.
  • the basic polycondensation accelerator include N, N-dimethylaniline, N, N-diethylaniline, pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, and triethylamine.
  • Tributylamine, tripentylamine N-methylmorpholine, diazabicycloundecene, diazabicyclononene and the like.
  • acidic polycondensation accelerators examples include benzoic acid, o-hydroxybenzoic acid, m- Hydroxybenzoic acid, p-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, p-hydroxyphenylacetic acid, 4-hydroxyphenylpropionic acid, phosphoric acid, p-phenolsulfonic acid, p-toluenesulfonic acid, crotonic acid, etc. Can be mentioned.
  • the polycondensation accelerator is used in an amount of 1 to 50 mol%, preferably 5 to 35 mol%, based on the diamine or diamine component.
  • the reaction temperature can be lowered. Since it can be set, not only side reactions caused by heating, which is often caused by coloring, can be prevented, but the reaction time can be greatly shortened, which is economical.
  • the polymerization temperature of the polyamic acid is preferably 60 ° C. or lower, and more preferably 40 ° C. or lower because the reaction is efficient and the viscosity of the polyamic acid is likely to increase.
  • Solvents that can be used for the production of the polymer include, for example, ureas such as tetramethylurea, N, N-dimethylethylurea, sulfoxides or sulfones such as dimethylsulfoxide, diphenylsulfone, tetramethylsulfone, N, Such as N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), N, N′-diethylacetamide, N-methyl-2-pyrrolidone (NMP), ⁇ -butyllactone, hexamethylphosphoric triamide Amide or phosphorylamide aprotic solvent, alkyl halides such as chloroform and methylene chloride, aromatic hydrocarbons such
  • the molecular weight of the obtained polymer is desirably 10,000 or more from the viewpoint of maintaining the self-supporting property when the polymer composition is formed into a film. Further, from the viewpoint of the strength of the self-supporting film and the solvent solubility of the polymer, it is preferably from 20,000 to 1,000,000, and more preferably from 20,000 to 300,000 from the viewpoint of ease of preparation and coating operation.
  • composition containing the polymer which contains tetracarboxylic dianhydride as a structural unit ⁇ Description of the composition containing the polymer which contains tetracarboxylic dianhydride as a structural unit> Next, the composition containing the polymer containing the tetracarboxylic dianhydride constituting the present invention will be described.
  • compositions comprising a polymer containing at least one tetracarboxylic dianhydride of the tetracarboxylic dianhydrides represented by the general formula (1) as a constituent unit.
  • the composition used include a polymer solution, a mixture of the polymer solution and particles such as filler, a mixture of polymer solid and filler particles, and the polymer solution immersed in fibers. And the like. From the viewpoint of easy curing, a polymer solution is preferred.
  • the solvent used in the polymer solution is not particularly limited.
  • amide solvents for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone
  • sulfone solvents for example, Sulfolane
  • sulfoxide solvents eg dimethyl sulfoxide
  • urea solvents eg tetramethylurea
  • ether solvents eg dioxane, cyclopentylmethyl ether
  • ketone solvents eg acetone, cyclohexanone
  • hydrocarbon solvents eg toluene) , Xylene, n-decane
  • halogen solvents eg tetrachloroethane, chlorobenzene, methylene chloride, chloroform
  • pyridine solvents eg pyridine, ⁇ -picoline, 2,6-lutidine
  • ester solvents eg ethy
  • an amide solvent preferably an amide solvent, a sulfone solvent, a sulfoxide solvent, a urea solvent, an ether solvent, a halogen solvent, a pyridine solvent, and a nitrile solvent. More preferred are amide solvents, ether solvents, halogen solvents, and nitrile solvents, and more preferred are amide solvents and nitrile solvents. These solvents may be used alone or in combination of two or more. Japanese Patent Application No. 2009-114687 filed on May 11, 2009 is hereby incorporated by reference in its entirety.
  • the obtained compound was measured for various spectra of H-NMR and MS for property evaluation.
  • the measurement conditions for each characteristic were as follows.
  • Example 1 Exemplified compound (1) -1 was synthesized based on the following formula.
  • Example 2 Exemplified compound (2) -1 was synthesized based on the following formula.
  • Example 3 Exemplified compound (2) -2 was synthesized based on the following formula.
  • Example 4 Exemplified compound (3) -1 was synthesized based on the following formula.
  • Example 5 Exemplified compound (3) -2 was synthesized based on the following formula.
  • Example 6 Exemplified compound (3) -3 was synthesized based on the following formula.
  • Example 7 Exemplified compound (3) -4 was synthesized based on the following formula.
  • Example 8 Synthesis of polyimide 1 containing compound (1) -1 as a constituent, and preparation of a composition containing the same (Polyimide synthesis) 0.02 mol of 1,3-diamino-4-methylbenzene (DAT) and 110 mL of N-methyl-2-pyrrolidone are added and dissolved in a 200 mL three-necked flask substituted with an inert gas. While stirring this reaction solution at room temperature, 0.02 mol of compound (1) -1 was added as a solid, and stirred at room temperature for 2 hours. Thereafter, 0.05 mol of acetic anhydride and 0.005 mol of pyridine were added and stirred at room temperature for 1 hour, and then heated to 60 ° C. and stirred for 3 hours to obtain a solution of polyimide 1 having the following repeating structure.
  • DAT 1,3-diamino-4-methylbenzene
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • the obtained solution was dropped into 300 mL of methanol, and the resulting precipitate was filtered and dried to obtain a polyimide powder.
  • the polyimide solution obtained above was applied onto a quartz glass plate using a blade, dried, and subjected to thermosetting treatment at 200 ° C. for 1 hour, and then the polyimide film obtained on the quartz glass plate was The dielectric constant was measured.
  • the dielectric constant was measured by a balanced bridge method using a precision LCR meter E4980A manufactured by Agilent Technologies.
  • the polyimide powder was measured for glass transition point and solvent solubility was confirmed.
  • the glass transition point is measured by using DSC7200 manufactured by SSI NanoTechnology, placing 5 mg of the polyimide powder sample and 10 mg of alumina powder as the target sample in an aluminum cell for measurement, respectively, at a heating rate of 10 ° C./min. It was.
  • the solvent solubility was confirmed by dissolving 1 g of the polyimide powder in 20 mL of methyl ethyl ketone at room temperature and confirming whether or not the solution was soluble.
  • Example 9 Except that compound (2) -1 was used in place of compound (1) -1, the same operation as in Example 8 was performed to obtain a polyimide 2 powder and DMAc solution having the following repeating units.
  • Example 10 Except for using the compound (2) -2 in place of the compound (1) -1, the same operation as in Example 8 was performed to obtain a polyimide 3 powder and a DMAc solution having the following repeating units.
  • Example 11 Except that compound (3) -1 was used instead of compound (1) -1, the same operation as in Example 8 was carried out to obtain a polyimide 4 powder and DMAc solution having the following repeating units.
  • Example 12 Except that compound (3) -2 was used instead of compound (1) -1, the same operation as in Example 8 was performed to obtain polyimide powder 5 and DMAc solution having the following repeating units.
  • Example 13 Except for using the compound (3) -3 in place of the compound (1) -1, the same operation as in Example 8 was performed to obtain a polyimide 6 powder and a DMAc solution having the following repeating units.
  • Example 14 Except that compound (3) -4 was used instead of compound (1) -1, the same operation as in Example 8 was carried out to obtain a polyimide 7 powder and DMAc solution having the following repeating units.
  • Example 15 Except that 2,2′-dimethyl-4,4′-diaminobiphenyl (mTB) was used in place of DAT, the same operation as in Example 8 was carried out to obtain a powder of polyimide 8 having a repeating unit shown below and DMAc A solution was obtained.
  • mTB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • Example 16 Except that 4,4′-diaminodiphenylsulfone (4DAS) was used instead of DAT, the same operation as in Example 8 was performed to obtain a polyimide 9 powder and a DMAc solution having the following repeating units.
  • 4DAS 4,4′-diaminodiphenylsulfone
  • Example 17 Except that bis [4- (3-aminophenoxy) phenyl] sulfone (3BAPS) was used instead of DAT, the same operation as in Example 8 was performed, and a powder of polyimide 10 having the following repeating unit and a DMAc solution Got.
  • BAPS bis [4- (3-aminophenoxy) phenyl] sulfone
  • Example 18 Similar to Example 8 except that 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane (HFBAPP) was used instead of DAT. Thus, a polyimide 11 powder and a DMAc solution having the following repeating units were obtained.
  • HFBAPP 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane
  • Example 19 Except that 3,3′-diaminodiphenylsulfone (3DAS) was used in place of DAT, the same operation as in Example 9 was performed to obtain a polyimide 12 powder and a DMAc solution having the repeating units shown below.
  • DAS 3,3′-diaminodiphenylsulfone
  • Example 20 Similar to Example 10 except that 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane (HFBAPP) was used instead of DAT. Thus, a polyimide 13 powder having a repeating unit shown below and a DMAc solution were obtained.
  • HFBAPP 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane
  • Example 21 Except that bis [4- (4-aminophenoxy) phenyl] sulfone (4BAPS) was used instead of DAT, the same operation as in Example 12 was carried out, and a powder of polyimide 14 having a repeating unit shown below and a DMAc solution Got.
  • BAPS bis [4- (4-aminophenoxy) phenyl] sulfone
  • Example 22 Except that 2,2′-dimethyl-4,4′-diaminobiphenyl (mTB) was used in place of DAT, the same operation as in Example 13 was carried out to obtain a polyimide 15 powder having the repeating units shown below and DMAc. A solution was obtained.
  • mTB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • Comparative Examples A1 to A6 Comparative polyimides 1 to 6 were synthesized in the same manner as in Example 8 using the following comparative acid anhydrides and diamine compounds (shown in Table 1).
  • Table 1 shows the measurement results of the dielectric constant and the glass transition point in the same manner as in Example 8.
  • the polyimide introduced with the tetracarboxylic dianhydride of the present invention has better solvent solubility, lower Tg, and lower dielectric constant than conventionally known polyimides.
  • a tetracarboxylic dianhydride having a specific structure is provided, and a polymer using the tetracarboxylic dianhydride is further provided, which improves the solvent solubility of the polymer and has a low dielectric constant. And lowering of the glass transition point.
  • Fields in which the polyimide introduced with tetracarboxylic dianhydride provided by the present invention can be used include optical materials such as precision optical parts such as lenses and diffraction gratings, holograms, CDs, MDs, DVDs, optical disks, etc.
  • optical adhesives and display devices LCD substrates, polarizing plate support films, transparent resin sheets, retardation films, light diffusion films, prism sheets, LCD adhesives, LCD spacers, LCD electrodes Substrate, transparent protective film for color filter, color filter, alignment film, transparent protective film, etc.
  • display materials other than LCD screen for projector, substrate and film for plasma display, optical filter, coating material for organic EL, etc.
  • Optical communication field and optical element field include optical fiber, optical waveguide, optical fiber Insulators, optical switching elements, optical modulators, optical filters, wavelength dividers, optical amplifiers, optical attenuators, optical wavelength converters, electrical and electronic equipment, insulating tapes, various laminated boards, flexible printed circuit boards, multilayer printed circuits
  • As a sealing material for optical semiconductors such as LD, electro-optic diode, die bonding adhesive, lead-on-chip (LOC) adhesive tape, lead frame fixing tape, multilayer lead frame film, TAB film, semiconductor field, Buffer coat film, passivation film, interlayer insulating film, photosensitive polymer base
  • Various protective films such as remers, semiconductor coatings, under film agents, planarization films, sealants, in the aerospace field, special aerospace component coating materials such as solar
  • coating materials for solar cells, base film substrates, adhesives, and other coating materials can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明は下記一般式(1)で表されるテトラカルボン酸二無水物、及びそれを用いて得られる溶剤溶解性に優れ、Tg、低い誘電率のポリイミドを提供する。 一般式(1)において、Aは下記一般式(2)~(4)に示される、置換又は無置換の構造を少なくとも一つ有する2価の連結基である。Z,Z'は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。

Description

テトラカルボン酸二無水物、及び重合体
 本発明は、液晶材料、非線形光学材料、電子材料、接着剤用材料等の機能性材料として有用な、テトラカルボン酸二無水物、及び該テトラカルボン酸二無水物構成成分とした重合体に関する。
 ポリイミドは、耐熱性、耐薬品性、絶縁性、優れた機械的性質等の性質を有することから、液晶材料、非線形光学材料、電子材料、接着剤用材料等の機能性材料に、広く利用されている。
 しかしながら、ポリイミドは一般的に剛直な骨格を有するものが多く、有機溶剤にも不溶であり、またガラス転移点も300℃以上である為、ポリイミドそのものを成型加工することは容易ではない。
 従って通常、アミド系有機溶媒に高い溶解性を示すポリイミド前駆体を経由する方法が用いられる。具体的にはポリイミド前駆体の非プロトン性有機溶媒溶液を塗布・乾燥後、250℃ないし350℃という高温で加熱し、脱水閉環(イミド化)反応を行うことでポリイミド膜を形成する。
 しかしながら、このようにイミド化反応温度が非常に高いため、いくつかの分野では上記製膜工程を適用することができない場合がある。例えば液晶ディスプレーのカラー化に不可欠なカラーフィルターの耐熱温度は200℃程度であり、ポリイミド前駆体のイミド化を経由して液晶配向膜用ポリイミド膜を形成しようとしても、この温度では塗布膜のイミド化反応を完結することができない。
 近年の電子材料においては高集積化が著しく、ポリイミド素材の特性としては、プリント配線版の配線ピッチの微細化に伴う低誘電率化、及び半導体素子の高密度化への対応策として熱処理温度を低下させる為に、ガラス転移点の低下が望まれている。
 溶剤溶解性が高いポリイミドとして、ポリエステルイミドが知られている(例えば特開2005-298623号公報、特開2007-137960号公報、および「ハイパフォーマンスポリマー」(High Performance Polymer),2006年、第18巻、p.697-717)。その中でも、ガラス転移点が低いポリエステルイミドとしては、特開2005-298623号公報記載のポリエステルイミドなどがあげられる。
 しかしながら、ポリイミドを溶解させることが可能な溶媒は、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)等の高い沸点を有するアミド系溶媒に限定され、メチルエチルケトン(MEK)等の汎用溶剤への溶解は難しい。更に、これらのポリイミドのガラス転移点は200℃以上であること、誘電率も3.0以上であることなどの欠点を有し、前記の低誘電率化、ガラス転移点の低下の要求に対しては不十分である。
 特定の構造を有するテトラカルボン酸二無水物を重合体に組み込むことで、その重合体の溶剤溶解性の向上、低誘電率化、及びガラス転移点の低下を可能にすることを目的とする。
 本発明者らは、上記の事情に鑑み、鋭意研究した結果、特定のエステル結合を有するテトラカルボン酸二無水物を見出し、本発明に至ったものである。更に、該テトラカルボン酸二無水物を用いた重合体を見出し、本発明に至ったものである。即ち本発明の上記課題は、具体的には下記の手段により達成された。
<1> 下記一般式(1)で表されるテトラカルボン酸二無水物:
Figure JPOXMLDOC01-appb-C000004

 
(一般式(1)において、Aは下記一般式(2)~(4)に示される、置換又は無置換の構造のうち少なくとも一つを有する2価の連結基である。);
Figure JPOXMLDOC01-appb-C000005

 
(一般式(3)において、Z,Z’は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。)。
<2> 前記一般式(1)において、Aが下記一般式(5)~(7)のいずれか一つで表される<1>に記載のテトラカルボン酸二無水物:
Figure JPOXMLDOC01-appb-C000006

 
(式中、L、L’、L、L’は、互いに独立に単結合、シクロアルキレン基、又は2価の芳香環基を表す。Z,Z’は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。R,Rは、互いに独立に、水素原子、又は環状又は非環状の炭化水素基を表す。R,Rは、互いに結合して環を形成しても良い。n1はそれぞれ独立に1以上の整数を表す。)。
<3> 前記一般式(5)~(7)において、L、L’、L、L’が、互いに独立に、単結合、アルキレン基又はシクロアルキレン基である<2>に記載のテトラカルボン酸二無水物。
<4> 少なくとも1種類のジアミン化合物と、<1>~<3>のいずれか1つに記載のテトラカルボン酸二無水物とから合成される重合体。
<5> 前記ジアミン化合物が、芳香族ジアミン化合物である<3>または<4>に記載の重合体。
<6> 前記重合体がポリエステルイミド、又はポリエーテルエステルイミドである<4>または<5>に記載の重合体。
<7> <4>~<6>のいずれか1つに記載の重合体を含む組成物。
<テトラカルボン酸二無水物の説明>
 以下に、本発明を詳細に説明する。本発明の一つの態様は、下記一般式(1)で表されるテトラカルボン酸二無水物である。
Figure JPOXMLDOC01-appb-C000007

 
 以下、Aについて説明する。
 一般式(1)において、Aは下記一般式(2)~(4)に示される、置換又は無置換の構造のうち少なくとも一つを有する2価の連結基である。
Figure JPOXMLDOC01-appb-C000008

 
 一般式(3)において、Z,Z’は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。
 なかでも溶剤溶解性、低誘電率の両立をより大きくする観点から、Aは下記一般式(5)~(7)のいずれか一つで表される構造であることが好ましい。ここで一般式(7)とは、一般式(7-1)と一般式(7-2)の両者を指す。
Figure JPOXMLDOC01-appb-C000009

 
 式中、L、L’、L、L’は、互いに独立に、単結合、アルキレン基、シクロアルキレン基、又は2価の芳香環基を表す。Z,Z’は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。R,Rは、互いに独立に、水素原子、又は環状又は非環状の炭化水素基を表す。R,Rは、互いに結合して環を形成しても良い。n1はそれぞれ独立に1以上の整数を表す。
 L、L’、L、L’で表されるアルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられる。
 L、L’、L、L’で表されるシクロアルキレン基としては、1,4-シクロへキシレン基、1,3-シクロヘキシレン基等が挙げられる。
 L、L’、L、L’で表される芳香環基としては、フェニレン基、ナフチレン基、アントラニレン基等が挙げられるが、好ましくは、フェニレン基である。
 アルキレン基、シクロアルキレン基、及び芳香環基は、無置換でも置換基を有しても良い。置換基としては、後述の置換基が挙げられる。
 また、原料入手性の観点から、Aは下記(1)~(11)のいずれか一つで表される構造であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000010

 
 一般式(2)~(4)は無置換でも、他の置換基によって置換されていてもよい。
 その置換基としては、ハロゲン原子(-F、-Br、-Cl、-I)、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、N-アルキルアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、Ν-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールレイド基、N’,N’-ジアリールレイド基、N’-アルキル-N’-アリールレイド基、N-アルキルウレイド基、N-アリールレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールレイド基、N’,N’-ジアルキル-N-アルキルウレイト基、N’,N’-ジアルキル-N-アリールレイド基、N’-アリールΝ-アルキルウレイド基、N’-アリールN-アリールレイド基、N’,N’-ジアリールN-アルキルウレイド基、N’,N’-ジアリールN-アリールレイド基、N’-アルキル-N’-アリールN-アルキルウレイド基、N’-アルキル-N’-アリールN-アリールレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリールN-アルコキシカルボニルアミノ基、N-アリールN-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、アシロキシ基、アルコキシカルボニル基、アリールカルボニル基、アリールカルボニルオキシ基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ジアルキルホスフォノ基、ジアリールホスフォノ基、アルキルアリールホスフォノ基、モノアルキルホスフォノ基、モノアリールホスフォノ基、ジアルキルホスフォノオキシ基、ジアリールホスフォノオキシ基、アルキルアリールホスフォノオキシ基、モノアルキルホスフォノオキシ基、モノアリールホスフォノオキシ基、モルホリノ基、シアノ基、ニトロ基が挙げられる。
 これらの置換基における、アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が挙げられる。アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N-フェニルカルバモイルフェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、ホスフォナトフェニル基等を挙げることができる。また、アルケニル基の例としては、ビニル基、1-プロペニル基、1-ブテニル基、シンナミル基、2-クロロ-1-エテニル基等が挙げられる。アシル基(G1CO-)におけるG1としては、水素、ならびに上記のアルキル基、アリール基を挙げることができる。アラルキル基としては、上記のアルキル基に上記のアリール基が置換したものを挙げることができる。
 これらの中でも、原料の入手性や製造の容易性の観点で、ハロゲン原子、炭素数1~8のアルキル基、シクロアルキル基、アルコキシ基、アシルオキシ基、アシルアミノ基、炭素数6~10のアリール基、アリーロキシ基、アラルキル基、アラルキルオキシ基、ヒドロキシ基、シアノ基で置換された、或いは無置換であることが好ましく、無置換であることがより好ましい。
 一般式(3)におけるZ,Z’がオキサン環の炭素2原子と共に形成する飽和又は不飽和の炭素環としては、5~7員環が好ましく、6員環がより好ましい。好ましくは、芳香環又はヘテロ芳香環である。
 芳香環としては、ベンゼン、インデン、インダン、ナフタリン、ビフェニル、テトラリンなどが、ヘテロ環としてはフラン、チオフェン、ピロール、ピラン、チオピラン、ピリジン、オキサゾール、チアゾール、イミダゾール、ピリミジン、トリアジン、インド-ル、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、カルバゾールなどが挙げられる。ヘテロ芳香環としては、フラン、チオフェン、ピロール、ピラン、チオピラン、ピリジン、オキサゾール、チアゾール、イミダゾール、ピリミジン、トリアジン、インド-ル、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、カルバゾールなどが挙げられる。
 これらの中でも、溶剤溶解性、低誘電率の両立をより大きくする観点から、芳香環であるベンゼン、インデン、インダン、ナフタリン、ビフェニルなどが好ましく、原料の入手性や製造の容易性の観点で、特に、ベンゼンが好ましい。
 ヘテロ芳香環としては、4~6員環が好ましく、より好ましくは、6員環である。例えば、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環などがある。特に好ましくは、キノリン環である。
 芳香環またはヘテロ芳香環は他の置換基によって置換されていてもよい。その置換基としては、ハロゲン原子(-F、-Br、-Cl、-I)、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、N-アルキルアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、Ν-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールレイド基、N’,N’-ジアリールレイド基、N’-アルキル-N’-アリールレイド基、N-アルキルウレイド基、N-アリールレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールレイド基、N’,N’-ジアルキル-N-アルキルウレイト基、N’,N’-ジアルキル-N-アリールレイド基、N’-アリールΝ-アルキルウレイド基、N’-アリールN-アリールレイド基、N’,N’-ジアリールN-アルキルウレイド基、N’,N’-ジアリールN-アリールレイド基、N’-アルキル-N’-アリールN-アルキルウレイド基、N’-アルキル-N’-アリールN-アリールレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリールN-アルコキシカルボニルアミノ基、N-アリールN-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、アシロキシ基、アルコキシカルボニル基、アリールカルボニル基、アリールカルボニルオキシ基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ジアルキルホスフォノ基、ジアリールホスフォノ基、アルキルアリールホスフォノ基、モノアルキルホスフォノ基、モノアリールホスフォノ基、ジアルキルホスフォノオキシ基、ジアリールホスフォノオキシ基、アルキルアリールホスフォノオキシ基、モノアルキルホスフォノオキシ基、モノアリールホスフォノオキシ基、モルホリノ基、シアノ基、ニトロ基が挙げられる。
 これらの置換基における、アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が挙げられる。アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N-フェニルカルバモイルフェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、ホスフォナトフェニル基等を挙げることができる。また、アルケニル基の例としては、ビニル基、1-プロペニル基、1-ブテニル基、シンナミル基、2-クロロ-1-エテニル基等が挙げられる。アシル基(G1CO-)におけるG1としては、水素、ならびに上記のアルキル基、アリール基を挙げることができる。アラルキル基としては、上記のアルキル基に上記のアリール基が置換したものを挙げることができる。
 これらの中でも、原料の入手性や製造の容易性の観点で、ハロゲン原子、炭素数1~8のアルキル基、シクロアルキル基、アルコキシ基、アシルオキシ基、アシルアミノ基、炭素数6~10のアリール基、アリーロキシ基、アラルキル基、アラルキルオキシ基、ヒドロキシ基、シアノ基で置換された、或いは無置換のベンゼンが好ましく、メチル基で置換された、或いは無置換のベンゼンが特に好ましい。
 一般式(5)におけるL、L’で表されるアルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられる。また、L、L’で表されるシクロアルキレン基としては、1,4-シクロへキシレン基、1,3-シクロヘキシレン基等が挙げられる。L、L’で表される芳香環基としては、フェニレン基、ナフチレン基、アントラニレン基等が挙げられるが、好ましくは、フェニレン基である。
 一般式(6)において、R、Rはそれぞれ独立に水素、任意に置換されていてもよい環状又は非環状の炭化水素基、又はヘテロ炭化水素基を表し、R、Rは互いに結合して環を形成してもよい。
 無置換の炭化水素基としては炭素数1~20の直鎖または分岐の脂肪族基、炭素数3~20の脂環式基、炭素数6~20の芳香環基が挙げられる。前記直鎖または分岐の脂肪族基としては、アルキル基(例えばメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、ネオペンチル、ヘキシル、2-エチルヘキシル、オクチル、ドデシルなど)、アルケニレン基(例えばプロペニル、ブテニルなど)などが、脂環式基としては、シクロアルキル基(例えばシクロペンチル、シクロヘキシル、メンチルなど)、シクロアルケニル基(例えばシクロへキセニルなど)、脂環式多環基(例えばボルニル、ノルボニル、デカリニル、アダマンチル、ジアマンチルなど)などが挙げられる。前記芳香環基の芳香環としては、例えばベンゼン、ナフタレン、フルオレン、アントラセン、インデン、インダン、ビフェニルなどが挙げられる。
 ヘテロ炭化水素基としては、ヘテロ芳香環、ヘテロ脂環化合物から誘導される基が挙げられる。ヘテロ芳香環としては、フラン、チオフェン、ピロール、ピラン、チオピラン、ピリジン、オキサゾール、チアゾール、イミダゾール、ピリミジン、トリアジン、インド-ル、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、カルバゾールなどが挙げられる。ヘテロ脂環化合物としては、オキセタン、チエタン、アゼチジン、オキソラン、チオラン、ピロリン、ピロリジン、ピラゾリン、イミダゾリン、チアゾリン、ピラン、オキサン、チアン、ピペリジン、モルホリン、クマラン、クロマン、ピロリドンなどが挙げられる。
 任意に置換されてもよい炭化水素基、或いはヘテロ炭化水素基としては、前記で例示した無置換の炭化水素基に対してハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、スルホニル基、アミド基、炭素数1~20のアルコキシ基(例えばメトキシ、ブトキシ、ドデシルオキシ)、炭素数1~20のアシルアミノ基(例えば、アセチルアミノ、N-メチルアセチルアミノ、プロピオニルアミノなど)、炭素数6~20のアリール基(例えばフェニル、ナフチルなど)、ヒドロキシル基、シリル基等で任意の位置で置換された構造を持つ炭化水素基、或いはヘテロ炭化水素基が挙げられる。
 中でも、R、Rとしては水素原子、アルキル基、シクロアルキル、脂環式多環基、フェニル、ナフチル、ビフェニル基が好ましく、原料の入手性や製造の容易性の観点で、水素原子、メチル基が特に好ましい。
 一般式(6)におけるZ,Z’としては、前記一般式(3)におけるZ,Z’で説明した原子団と同様であり、好ましい範囲も同様である。
 一般式(7-1)又は(7-2)において、L、L’は、一般式(5)のL、L’と同様であり、好ましい範囲も同様である。n1は、1以上の整数を表し、特に限定されないが、機械特性の観点から、1以上10以下であることが好ましい。また、原料入手性の観点から、1以上3以下がより好ましい。
 以下に、本発明のテトラカルボン酸二無水物の具体例を示すが、これにより本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000012

 
Figure JPOXMLDOC01-appb-C000013

 
<テトラカルボン酸二無水物の製造方法の説明>
 次に、本発明を構成するテトラカルボン酸二無水物の製造方法について説明する。
 本発明のテトラカルボン酸二無水物は、下記一般式(19)に示すジオールと、下記一般式(20)に示す無水トリメリット酸誘導体から合成される。
Figure JPOXMLDOC01-appb-C000014

 
 一般式(19)において、Aは、一般式(1)のそれと同様であり、好ましい範囲も同様である。
 一般式(20)において、Xとしては、ハロゲン原子(F、Cl、Br、I)、メシル基(OS(=O)CH)、トシル基(p-OS(=O)CH)等が挙げられるが、テトラカルボン酸二無水物が高収率で得られることから、塩素原子、メシル基(OS(=O)CH)、トシル基(p-OS(=O)CH)が好ましく、原料入手性や製造の容易性の観点で、塩素原子が特に好ましい。
 一般式(19)に示すジオールに対する一般式(20)に示す無水トリメリット酸誘導体の使用量は、目的とする化合物が高い収率で得られること、および原料として使用される一般式(19)および一般式(20)で示される各化合物の未反応物量が低いという利点が得られることから、2.0から10倍モルの範囲が好ましく、より好ましくは2.0から3.0倍モル、さらに好ましくは2.1から2.5倍モルである。
 反応に使用しうる溶媒としては、工程操作上の問題等を引き起こさず、反応の進行を妨げず、かつアミド化、エステル化、チオエステル化工程において分解して反応に悪影響を与えない限り特に制限はないが、例えばアミド系溶媒(例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン)、スルホン系溶媒(例えばスルホラン)スルホキシド系溶媒(例えばジメチルスルホキシド)、ウレア系溶媒(例えばテトラメチルウレア)、エーテル系溶媒(例えばジオキサン、シクロペンチルメチルエーテル)、ケトン系溶媒(例えばアセトン、シクロヘキサノン)、炭化水素系溶媒(例えばトルエン、キシレン、n-デカン)、ハロゲン系溶媒(例えばテトラクロロエタン,クロロベンゼン、塩化メチレン、クロロホルム)、ピリジン系溶媒(例えばピリジン、γ-ピコリン、2,6-ルチジン)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル)、およびニトリル系溶媒(例えばアセトニトリル)を単独或いは併用して用いる。このうち好ましくはアミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレア系溶媒、エーテル系溶媒、ハロゲン系溶媒、ピリジン系溶媒、およびニトリル系溶媒であり、更に好ましくはアミド系溶媒、エーテル系溶媒、ハロゲン系溶媒、およびニトリル系溶媒であり、更に好ましくはアミド系溶媒およびニトリル系溶媒である。これらの溶媒は単独又は二種類以上を混合して用いても良い。
 反応温度は-30℃から200℃の範囲が好ましいが、より好ましくは-20℃から100℃、さらに好ましくは-10℃から30℃である。反応時間は仕込み量、反応温度により異なるが、0.5から12時間の範囲が好ましく、0.5から6時間の範囲がさらに好ましい。
 反応における雰囲気としては充分に乾燥された不活性ガス雰囲気が好ましい。水分の存在は反応速度を低下させてしまうため、できる限り低減する事が好ましい。不活性ガスの具体例として窒素やアルゴンなどの希ガス類を好適に用いることができる。
 反応混合物から本発明の構成単位であるテトラカルボン酸二無水物を単離する方法としては、例えば反応終了後、晶析あるいは再結晶等による分離精製方法を挙げることができる。有機溶剤を添加して均一系にした後、冷却することでテトラカルボン酸二無水物が析出する場合は通常の固液分離によりテトラカルボン酸二無水物を単離することができる。あるいは適当な溶媒系からテトラカルボン酸二無水物を晶析し、これを固液分離により単離することも可能である。
 テトラカルボン酸二無水物を晶析する有機溶剤としては、例えば上記で説明した有機溶剤と他の有機溶剤との混合系が挙げられる。混合する他の有機溶剤としては、ジエチルエーテル、ジイソプロピルエーテル、メチル-t-ブチルエーテル、メトキシベンゼン等のエーテル系溶剤、アセトニトリル等のニトリル系溶媒、ヘキサン、ヘプタン、シクロヘキサンなどの等の脂肪族炭化水素溶剤、トルエン、キシレン等の芳香族炭化水素系溶剤、クロロホルム、塩化メチレン等のハロゲン系溶媒、酢酸エチル、酢酸n-ブチル等のエステル系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤等が挙げられるが、晶析あるいは再結晶等の容易性、工業的規模での大量製造適性、安全性、入手の容易さ等の観点からニトリル系溶媒、エステル系溶剤、芳香族炭化水素溶剤が好ましい。
 好ましく使用される有機溶剤の具体例としては、アセトニトリル、酢酸エチル、酢酸ブチル、トルエン、キシレン(o-体、m-体、p-体あるいはこれらの任意の割合の混合物のいずれであっても良い)、エチルベンゼン、イソプロピルベンゼン(クメン)、がより好ましく、アセトニトリル、酢酸エチル、トルエン、キシレン(o-体、m-体、p-体あるいはこれらの任意の割合の混合物のいずれであっても良い)、エチルベンゼンがさらに好ましい。
 上記溶媒は一種類または二種類以上を混合して使用しても良い。
<テトラカルボン酸二無水物を構成単位として含む重合体の説明>
 次に、本発明を構成するテトラカルボン酸二無水物を含む重合体について説明する。
 前記一般式(1)で表されるいずれかのテトラカルボン酸二無水物を構成単位として含む重合体の種類としては、ポリエステルイミド、ポリエーテルエステルイミド、ポリアミドエステルイミド、ポリエステルアミド酸、ポリエステルアミド酸エステル等が挙げられ、好ましくポリエステルイミド、ポリエーテルエステルイミド、ポリアミドエステルイミド、更に好ましくは、ポリエステルイミド、ポリエーテルエステルイミドである。
 本発明の重合体に使用可能なアミン化合物は特に限定されないが、機械特性の観点から、ジアミン化合物が望ましい。
 ジアミン化合物としては、特に限定されず、例えば、脂肪鎖型ジアミン化合物、脂環型ジアミン化合物、芳香族ジアミン化合物、及びシリコーンジアミン化合物等を用いることが出来る。中でも、反応性の制御、重合体に組み込んだ際に、その重合体の誘電率が3.0以下を保ちつつ、低沸点溶剤への溶解性を発現させる等の観点から、芳香族ジアミン化合物が好ましい。
 前記重合体は単独でもブロック共重合体であっても良い。基幹骨格は芳香族、脂肪族のいずれでもよく、主鎖又は側鎖にシリコーン、フルオレン等を含んでもよいが、芳香族であることが望ましい。
 具体的には、以下のジアミン化合物が例示される。p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、1,4-ジアミノ-2-メチルベンゼン、1,3-ジアミノ-4-メチル-ベンゼン、1,3-ジアミノ-4-クロル-ベンゼン、1,3-ジアミノ-4-アセチルアミノ-ベンゼン、1,3-ビスアミノエチル-ベンゼン、ヘキサメチレンジアミン、3,3’-ジアミノビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジクロルビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-5,5’-ジアミノビフェニル、3,3’-ジフルオロ-5,5’-ジアミノビフェニル、2,2’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、2,2’-ジクロロ-5,5’-ジアミノビフェニル、3,3’-ジクロロ-5,5’-ジアミノビフェニル、2,2’-ジブロモ-4,4’-ジアミノビフェニル、3,3’-ジブロモ-4,4’-ジアミノビフェニル、2,2’-ジブロモ-5,5’-ジアミノビフェニル、3,3’-ジブロモ-5,5’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミンビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-5,5’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-5,5’-ジアミノビフェニル、2,2’-ビス(トリクロロメチル)-4,4’-ジアミンビフェニル、3,3’-ビス(トリクロロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリクロロメチル)-5,5’-ジアミノビフェニル、3,3’-ビス(トリクロロメチル)-5,5’-ジアミノビフェニル、2,2’-ビス(トリブロモメチル)-4,4’-ジアミンビフェニル、3,3’-ビス(トリブロモメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリブロモメチル)-5,5’-ジアミノビフェニル、3,3’-ビス(トリブロモメチル)-5,5’-ジアミノビフェニル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメチルビフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、ビス(4-アミノ-3-メチルフェニル)スルホン、ビス(4-アミノ-3-クロルフェニル)スルホン、ビス(4-アミノフェニル)スルホン、ビス(3-アミノフェニル)スルホン、ビス(5-フルオロ-4-アミノフェニル)スルホン、ビス(5-フルオロ-3-アミノフェニル)スルホン、ビス(5-クロロ-4-アミノフェニル)スルホン、ビス(5-クロロ-3-アミノフェニル)スルホン、ビス(5-ブロモ-4-アミノフェニル)スルホン、ビス(5-ブルモ-3-アミノフェニル)スルホン、ビス(5-トリフルオロメチル-4-アミノフェニル)スルホン、ビス(5-トリフルオロメチル-3-アミノフェニル)スルホン、ビス(5-トリクロロメチル-4-アミノフェニル)スルホン、ビス(5-トリクロロメチル-3-アミノフェニル)スルホン、ビス(5-トリブルモメチル-4-アミノフェニル)スルホン、ビス(5-トリブロモメチル-3-アミノフェニル)スルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノ-3,3’-ジメチルベンゾフェノン、4,4’-ジアミノ-3,3’-ジクロルベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,-ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-メチルフェニル)プロパン、2,2-ビス(4-アミノ-3-クロルフェニル)プロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-フルオロ-4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-フルオロ-3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-クロロ-4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-クロロ-3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-ブロモ-4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-ブロモ-3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-トリフルオロメチル-4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-トリフルオロメチル-3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-トリクロロメチル-4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-トリクロロメチル-3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-トリブロモメチル-4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(5-トリブロモメチル-3-アミノフェノキシ)フェニル〕スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(3-アミノフェノキシ)-3,3,3,’3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3,’3’-テトラメチル-1,1’-スピロビインダン、1,3-ビス(-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサン、ジアミノポリシロキサンなどを単独、または二種以上を併用することができる。
 上記例示したアミン化合物は、適宜単独で、又は混合して使用することができる。また、アミン化合物は、上記アミン化合物の芳香環上の水素原子の一部、若しくは全てをフッ素原子、メチル基、メトキシ基、トリフルオロメチル基、及びトリフルオロメトキシ基から選ばれた置換基で置換したジアミンであってもよい。また、分岐を導入する目的で、アミン化合物の一部をトリアミン化合物、テトラアミン化合物と代えてもよい。このようなトリアミン化合物の具体例としては、例えばパラロ-ズアニリン等が挙げられる。
<テトラカルボン酸二無水物を構成単位として含む重合体の製造方法の説明>
 本発明の重合体の製造方法としては、特に制限されないが、上記テトラカルボン酸二無水物の単量体または単量体混合物と、前記アミン化合物の単量体または単量体混合物とを用いることによって、本発明の重合体を調製することができる。
 例えば、本発明にかかるポリイミド系重合体を製造する方法としては、ポリアミド酸を経由した後に閉環してイミド化する方法、ポリイソイミドを経由する方法、一部をイミド化した後にさらにポリアミド酸を経由してブロックポリイミドとする方法等が利用できるが、本発明に含まれるポリイミド系重合体を製造する上では特に制限されない。ジアミン等のアミン化合物を溶解した有機溶媒中に、酸無水物を分散し、攪拌することで完全に溶解させ重合させる方法、酸無水物を有機溶媒中に溶解及び/または分散させた後、アミン化合物を用いて重合させる方法、酸無水物とアミン化合物の混合物を有機溶媒中で反応させて重合する方法など、公知の重合方法を用いることができる。
 イミド化においては、ポリアミド酸の環化により水が生成するが、この水は、ベンゼン、トルエン、キシレンやテトラリン等と共沸させて反応系外に除去することにより、イミド化を促進することが好ましく、更に、無水酢酸等の脂肪族酸無水物や芳香族酸無水物のような脱水剤を使用すれば、イミド化反応が進行し易くなる。
 又、必要に応じて反応系に重縮合促進剤を加え、反応を速やかに完結させることもでき、このような重縮合促進剤としては、塩基性重縮合促進剤及び酸性重縮合促進剤を例示することができ、両者を併用することもできる。前記塩基性重縮合促進剤としては、例えばN,N-ジメチルアニリン、N,N-ジエチルアニリン、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、γ-ピコリン、2,4-ルチジン、トリエチルアミン、トリブチルアミン、トリペンチルアミン、N-メチルモルホリン、ジアザビシクロウンデセン、ジアザビシクロノネン等を挙げることができ、酸性重縮合促進剤としては、例えば安息香酸、o-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、p-ヒドロキシフェニル酢酸、4-ヒドロキシフェニルプロピオン酸、リン酸、p-フェノールスルホン酸、p-トルエンスルホン酸、クロトン酸等を挙げることができる。
 上記の重縮合促進剤の使用量は、ジアミン或いはジアミン成分に対して1~50モル%、好ましくは5~35モル%であって、これらの重縮合促進剤を用いることにより、反応温度を低く設定することができるため、しばしば着色を引き起こす原因とされている加熱による副反応が防げるだけでなく、反応時間も大幅に短縮でき、経済的である。
 ポリアミド酸の重合温度として60℃以下が好ましく、さらに、40℃以下であることが反応を効率良く、しかもポリアミド酸の粘度が上昇しやすいことから好ましい。
 重合体の製造に用いることができる溶媒としては、例えばテトラメチル尿素、N,N-ジメチルエチルウレアのようなウレア類、ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォンのようなスルホキシドあるいはスルホン類、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、N,N’-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、γ-ブチルラクトン、ヘキサメチルリン酸トリアミドのようなアミド類、またはホスホリルアミド類の非プロトン性溶媒、クロロホルム、塩化メチレンなどのハロゲン化アルキル類、ベンゼン、トルエン等の芳香族炭化水素類、フェノール、クレゾールなどのフェノール類、ジメチルエーテル、ジエチルエーテル、p-クレゾールメチルエーテルなどのエーテル類等が挙げられる。通常はこれらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組み合わせて用いても良い。これらのうちDMF、DMAc、NMPなどのアミド類が好ましく使用される。
 得られた重合体の分子量は、重合体組成物を製膜した際の自己支持性保持の観点から、10000以上であることが望ましい。また、自己支持膜の強度、重合体の溶剤溶解性の観点から、20000以上、1000000以下が望ましく、調液、塗布操作の容易性の観点から、20000以上、300000以下がさらに望ましい。
<テトラカルボン酸二無水物を構成単位として含む重合体を含む組成物の説明>
 次に、本発明を構成するテトラカルボン酸二無水物を含む重合体を含む組成物について説明する。
 本発明のまた別の態様は、前記一般式(1)で表されるテトラカルボン酸二無水物の内の少なくとも一つのテトラカルボン酸二無水物を構成単位として含む重合体含む組成物である。該組成物に用いられるものとしては、重合体の溶液、及び前記重合体の溶液とフィラー等粒子との混合物、重合体固体とフィラー等粒子との混合物、前記重合体の溶液を繊維等に浸漬させたもの等が挙げられる。硬化処理が容易である観点から、重合体の溶液であることが好ましい。
 重合体の溶液に用いる溶媒としては、特に限定はされないが、例えばアミド系溶媒(例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン)、スルホン系溶媒(例えばスルホラン)スルホキシド系溶媒(例えばジメチルスルホキシド)、ウレア系溶媒(例えばテトラメチルウレア)、エーテル系溶媒(例えばジオキサン、シクロペンチルメチルエーテル)、ケトン系溶媒(例えばアセトン、シクロヘキサノン)、炭化水素系溶媒(例えばトルエン、キシレン、n-デカン)、ハロゲン系溶媒(例えばテトラクロロエタン,クロロベンゼン、塩化メチレン、クロロホルム)、ピリジン系溶媒(例えばピリジン、γ-ピコリン、2,6-ルチジン)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル)、およびニトリル系溶媒(例えばアセトニトリル)を単独或いは併用して用いる。このうち重合体の溶解性が良好であるという観点から、好ましくはアミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレア系溶媒、エーテル系溶媒、ハロゲン系溶媒、ピリジン系溶媒、およびニトリル系溶媒であり、更に好ましくはアミド系溶媒、エーテル系溶媒、ハロゲン系溶媒、およびニトリル系溶媒であり、更に好ましくはアミド系溶媒およびニトリル系溶媒である。これらの溶媒は単独又は二種類以上を混合して用いても良い。
 2009年5月11日出願の日本特許出願第2009-114687は、その開示全体がここに参照文献として組み込まれるものである。
 以下実施例によって本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。得られた化合物は特性評価のため、H-NMR,MSの各種スペクトルの測定を行った。各特性の測定条件は次の通りとした。
 <試験方法>
 (1)核磁気共鳴スペクトル分析(1H-NMR):BRUKER社製AV400Mを用いて共鳴周波数400MHzで測定した。測定溶媒は、重水素化溶媒である重水素化ジメチルスルホキシドDMSO-d6を用いた。
 (2)質量分析(MS):Applied Biosystems社製APIQSTAR Pulsar iを用いてESI法で測定した。
実施例1
 下記式に基づき、例示化合物(1)-1を合成した。
Figure JPOXMLDOC01-appb-C000015

 
 5000mL3つ口フラスコに窒素気流下、無水トリメリット酸クロリド46.42g(0.22mol)、テトラヒドロフラン100mLを順に入れ、氷冷中で10分間攪拌した。この溶液に、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)、ピリジン39.6g(0.50mol)をN-メチルピロリドン100mLに溶解させた溶液を滴下した。その後3時間攪拌した後、3000mLのアセトニトリルを滴下し、1時間攪拌した。得られた固体を濾別し、40℃で4時間真空乾燥することで例示化合物(1)-1の白色固体55.4gを得た(収率85%)。
1H-NMR(400MHz,CDCl):δ9.05(s,2H)、δ8.45(d,2H)、δ8.27(d,2H)、δ4.67(s,2H)、δ4.17(s,4H)、δ3.77~3.67(m,8H)、δ1.11(s,12H)
MS:M=652.60
実施例2
 下記式に基づき、例示化合物(2)-1を合成した。
Figure JPOXMLDOC01-appb-C000016

 
 合成例1において、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)に代え、7,7’-ジヒドロキシ-4,4,4’,4’-テトラメチル-2,2’-スピロビクロマン34.0g(0.10mol)を用いた以外は、同様の操作を行い、例示化合物(2)-1の白色固体53.1gを得た(収率77%)。
1H-NMR(400MHz,CDCl):δ9.22(s,2H)、δ8.49(d,2H)、δ8.44(d,2H)、δ7.17(d,2H)、δ6.63(d,2H)、δ6.58(s,2H)、δ2.42~2.17(m,4H)、δ1.39(s,12H)
MS:M=688.16
実施例3
 下記式に基づき、例示化合物(2)-2を合成した。
Figure JPOXMLDOC01-appb-C000017

 
 合成例1において、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)に代え、7,7’-ジヒドロキシ-4,4,4’,4’,6,6’-ヘキサメチル-2,2’-スピロビクロマン36.8g(0.10mol)を用いた以外は、同様の操作を行い、例示化合物(2)-2の白色固体49.5gを得た(収率69%)。
1H-NMR(400MHz,CDCl):δ9.22(s,2H)、δ8.49(d,2H)、δ8.44(d,2H)、δ7.05(d,2H)、δ6.46(d,2H)、δ2.42~2.17(m,10H)、δ1.39(s,12H)
MS:M=716.19
実施例4
 下記式に基づき、例示化合物(3)-1を合成した。
Figure JPOXMLDOC01-appb-C000018

 
 合成例1において、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)に代え、ビシクロ〔2.2.1〕ヘプタンジイルジメタノール18.8g(0.10mol)を用いた以外は、同様の操作を行い、例示化合物(3)-1の白色固体44.0gを得た(収率82%)。
1H-NMR(400MHz,CDCl):δ9.05(s,2H)、δ8.45(d,2H)、δ8.274(d,2H)、δ4.34(d,2H)、δ4.09(d,2H)、δ2.15~2.02(m,2H)、δ1.52~1.27(m,10H)、
MS:M=536.17
実施例5
 下記式に基づき、例示化合物(3)-2を合成した。
Figure JPOXMLDOC01-appb-C000019

 
 合成例1において、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)に代え、化合物Aを21.4g(0.10mol)用いた以外は、同様の操作を行い、例示化合物(3)-2の白色固体38.8gを得た(収率71%)。
1H-NMR(400MHz,CDCl):δ9.05(s,2H)、δ8.45(d,2H)、δ8.27(d,2H)、δ3.54~3.22(m,3H)、δ1.82~1.23(m,13H)
MS:M=546.19
実施例6
 下記式に基づき、例示化合物(3)-3を合成した。
Figure JPOXMLDOC01-appb-C000020

 
 合成例1において、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)に代え、化合物Bを29.4g(0.10mol)用いた以外は、同様の操作を行い、例示化合物(3)-3の白色固体46.1gを得た(収率74%)。
1H-NMR(400MHz,CDCl):δ9.05(s,2H)、δ8.45(d,2H)、δ8.27(d,2H)、δ3.56~3.21(m,4H)、δ1.85~1.22(m,20H)
MS:M=642.25
実施例7
 下記式に基づき、例示化合物(3)-4を合成した。
Figure JPOXMLDOC01-appb-C000021

 
 合成例1において、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン30.4g(0.10mol)に代え、化合物Cを36.1g(0.10mol)用いた以外は、同様の操作を行い、例示化合物(3)-4の白色固体46.1gを得た(収率65%)。
1H-NMR(400MHz,CDCl):δ9.05(s,2H)、δ8.45(d,2H)、δ8.27(d,2H)、δ3.58~3.17(m,4H)、δ1.86~1.19(m,26H)
MS:M=708.29
実施例8
1.化合物(1)-1を構成成分とするポリイミド1の合成、及びそれを含む組成物の調製 
(ポリイミドの合成)
 不活性ガスで置換した200mLの3つ口フラスコに、1,3-ジアミノ-4-メチルベンゼン(DAT)を0.02mol、N-メチル-2-ピロリドン110mLを加えて溶解する。この反応液を室温で撹拌しながら、化合物(1)-1を0.02molを固体のまま加え、室温で2時間撹拌した。この後に無水酢酸0.05mol、ピリジン0.005molを加えて室温で1時間撹拌、その後に60℃に加熱して3時間撹拌し、下記の繰り返し構造を有するポリイミド1の溶液を得た。
Figure JPOXMLDOC01-appb-C000022

 
 得られた溶液をメタノール300mL中に滴下し、生じた沈殿物を濾過、乾燥することで、ポリイミドの粉末を得た。
(ポリイミドを含む組成物の調製)
 この粉末10gを50mLのN,N-ジメチルアセトアミド(DMAc)に溶解させ、ポリイミド溶液を得た。
2.物性測定
 上記で得られたポリイミド溶液を石英ガラス板上にブレードを用いて塗布、乾燥、200℃で1時間熱硬化処理を行った後、この石英ガラス板上に得られたポリイミドのフィルムについて、誘電率の測定を行った。誘電率の測定にはアジレント・テクノロジ-製のプレシジョンLCRメーターE4980Aを用い、平衡ブリッジ法により行った。
 また、前記ポリイミド粉末について、ガラス転移点の測定、溶剤溶解性の確認を行った。ガラス転移点の測定は、エスエスアイ・ナノテクノロジー製のDSC7200を用い、前記ポリイミド粉体サンプル5mgと、対象サンプルとしてアルミナ粉末10mgをそれぞれ測定用のアルミニウムセルに入れ昇温速度10℃/minで行なった。溶剤溶解性の確認は、前記ポリイミド粉末1gを、メチルエチルケトン20mLに室温で溶解させ、溶解可否を黙視により確認した。
 これらの結果を表1に示す。
実施例9
 化合物(2)-1を化合物(1)-1の代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド2の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000023

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例10
 化合物(2)-2を化合物(1)-1の代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド3の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000024

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例11
 化合物(3)-1を化合物(1)-1の代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド4の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000025

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例12
 化合物(3)-2を化合物(1)-1の代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミドの粉末5及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000026

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例13
 化合物(3)-3を化合物(1)-1の代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド6の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000027

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例14
 化合物(3)-4を化合物(1)-1の代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド7の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000028

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例15
 2,2’-ジメチル-4,4’-ジアミノビフェニル(mTB)をDATの代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド8の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000029
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例16
 4,4’-ジアミノジフェニルスルホン(4DAS)をDATの代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド9の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000030

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例17
 ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン(3BAPS)をDATの代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド10の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000031

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例18
 2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン(HFBAPP)をDATの代わりに用いた以外は、実施例8と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド11の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000032

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例19
 3,3’-ジアミノジフェニルスルホン(3DAS)をDATの代わりに用いた以外は、実施例9と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド12の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000033

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例20
 2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン(HFBAPP)をDATの代わりに用いた以外は、実施例10と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド13の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000034

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例21
 ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン(4BAPS)をDATの代わりに用いた以外は、実施例12と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド14の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000035

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
実施例22
 2,2’-ジメチル-4,4’-ジアミノビフェニル(mTB)をDATの代わりに用いた以外は、実施例13と同様の操作を行い、下記に示す繰り返し単位を有するポリイミド15の粉末及びDMAc溶液を得た。
Figure JPOXMLDOC01-appb-C000036

 
 これらについて、実施例8と同様に誘電率の測定、ガラス転移点の測定、溶剤溶解性の確認を行った。結果を表1に示す。
比較例A1~A6
 実施例8と同様にして、下記の比較の酸無水物及びジアミン化合物(表1に示す)を用いて、比較のポリイミド1~6を合成した。
Figure JPOXMLDOC01-appb-C000037

 
Figure JPOXMLDOC01-appb-C000038

 
 得られた粉末はいずれも溶剤に殆ど溶解しなかった。
 実施例8と同様に誘電率の測定、及びガラス転移点の測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000039
 上記表1から明らかなように、本発明のテトラカルボン酸二無水物を導入したポリイミドは従来知られているポリイミドよりも優れた溶剤溶解性、低いTg、低い誘電率を有することがわかる。
 本発明によれば、特定の構造を有するテトラカルボン酸二無水物が提供され、更に該テトラカルボン酸二無水物を用いた重合体が提供され、重合体の溶剤溶解性の向上、低誘電率化、及びガラス転移点の低下を可能にすることができる。
 本発明により提供されるテトラカルボン酸二無水物を導入したポリイミドが利用可能な分野としては、光学材料分野として、レンズ、回折格子などの精密光部品、ホログラム、CD、MD、DVD、光ディスク等のディスク基板、光学用接着剤、表示装置用途として、LCD用基板、偏光板用支持フィルム、透明樹脂シート、位相差フィルム、光拡散フィルム、プリズムシート、LCD用接着剤、LCD用スペーサ、LCD用電極基板、カラーフィルター用透明保護膜、カラーフィルター、配向膜、透明保護膜等、LCD以外の表示材料として、プロジェクター用のスクリーン、プラズマディスプレイ用の基板やフィルム、光学フィルター、有機EL用コーティング材料等、光通信分野や光学素子分野として、光ファイバー、光導波路、光合波器、光スイッチング素子、光変調器、光フィルター、波長分割器、光増幅器、光減衰器、光波長変換器、電気電子機器分野として、絶縁テープ、各種積層板、フレキシブルプリント基板回路、多層プリント回路基板用接着フィルム、プリント回路基板用カバーフィルム、半導体集積回路素子の表面保護膜、塗布型カバーレイ、感光性カバーレイ、電線用被覆剤などや、サーマルヘッド用部品、フラッシュメモリー、CCD、PD、LD等の光半導体の封止材、電光ダイオード、ダイボンディング用接着剤、リードオンチップ(LOC)用接着テープ、リードフレーム用固定テープ、多層リードフレーム用フィルム、TAB用フィルム、半導体分野としては、バッファーコート膜、パッシベーション膜、層間絶縁膜、感光性ポリマーのベースポリマー、半導体コーティング剤、などの各種保護膜、アンダーフィルム剤、平坦化膜、封止剤、航空宇宙分野では、ソーラーセル、熱制御システムなどの特別な航空宇宙用コンポーネントコーティング材等、この他、本材の特性を生かして、太陽電池の被覆剤やベースフィルム基材、接着剤、その他のコーティング材料用などが挙げられる。
 その他、耐熱性接着材料、エポキシ樹脂改質剤、耐熱性塗料、複合材料用樹脂、金属(鉄鋼、銅、アルミニウムなど)、熱可塑性あるいは熱硬化性プラスチック、セラミックス等の表面に被覆される被覆剤、化学プラントや車のエンジンリザーバー、オートクレーブによる殺菌を必要とする医療関連器具、アルファー線遮断膜、プリプレグ、ワニス等に利用が可能である。
 本発明の具体的態様の前記記述は、記述と説明の目的で提供するものである。開示された、まさにその形態に本発明を限定することを企図するものでもなく、或いは網羅的なものを企図するものでもない。明らかに、当業者が多くの修飾や変形をすることができることは自明である。該態様は、本発明の概念やその実際の応用を最もよく説明するために選定されたものであって、それによって、当業者の他者が企図する特定の用途に適合させるべく種々の態様や種々の変形をなすことができるように、当業者の他者に本発明を理解せしめるためのものである。
       本明細書に記述された全ての刊行物や特許出願、並びに技術標準は、それら個々の刊行物や特許出願、並びに技術標準が引用文献として特別に、そして個々に組み込むことが指定されている場合には、該引用文献と同じ限定範囲においてここに組み込まれるものである。本発明の範囲は下記特許請求の範囲及びその等価物に拠って決定されることを企図するものである。

Claims (9)

  1.  下記一般式(1)で表されるテトラカルボン酸二無水物:
    Figure JPOXMLDOC01-appb-C000001

     
    (一般式(1)において、Aは下記一般式(2)~(4)に示される、置換又は無置換の構造のうち少なくとも一つを有する2価の連結基である。);
    Figure JPOXMLDOC01-appb-C000002

     
    (一般式(3)において、Z,Z’は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。)。
  2.  前記一般式(1)において、Aが下記一般式(5)~(7)のいずれか一つで表される請求項1に記載のテトラカルボン酸二無水物:
    Figure JPOXMLDOC01-appb-C000003

     
    (式中、L、L’、L、L’は、互いに独立に単結合、アルキレン基、シクロアルキレン基、又は2価の芳香環基を表す。Z,Z’は、互いに独立に、オキサン環の炭素2原子と共に飽和又は不飽和の炭素環又はヘテロ環を形成する原子団を表す。R,Rは、互いに独立に、水素原子、又は環状又は非環状の炭化水素基を表す。R,Rは、互いに結合して環を形成しても良い。n1はそれぞれ独立に1以上の整数を表す。)。
  3.  前記一般式(5)~(7)において、L、L’、L、L’が、互いに独立に、単結合、アルキレン基又はシクロアルキレン基である請求項2に記載のテトラカルボン酸二無水物。
  4.  少なくとも1種類のジアミン化合物と、請求項1から請求項3のいずれか1項に記載のテトラカルボン酸二無水物とから合成される重合体。
  5.  前記ジアミン化合物が、芳香族ジアミン化合物である請求項4に記載の重合体。
  6.  前記重合体がポリエステルイミド、又はポリエーテルエステルイミドである請求項4に記載の重合体。
  7.  前記重合体がポリエステルイミド、又はポリエーテルエステルイミドである請求項5に記載の重合体。
  8.  請求項4に記載の重合体を含む組成物。
  9.  請求項7に記載の重合体を含む組成物。
     
PCT/JP2010/057382 2009-05-11 2010-04-26 テトラカルボン酸二無水物、及び重合体 WO2010131566A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-114687 2009-05-11
JP2009114687A JP2010260996A (ja) 2009-05-11 2009-05-11 テトラカルボン酸二無水物、及び重合体

Publications (1)

Publication Number Publication Date
WO2010131566A1 true WO2010131566A1 (ja) 2010-11-18

Family

ID=43084943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057382 WO2010131566A1 (ja) 2009-05-11 2010-04-26 テトラカルボン酸二無水物、及び重合体

Country Status (3)

Country Link
JP (1) JP2010260996A (ja)
TW (1) TW201105680A (ja)
WO (1) WO2010131566A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070883A (ja) * 2016-10-28 2018-05-10 奇美實業股▲分▼有限公司 フレキシブル基板用組成物、その製造方法及びフレキシブル基板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148150A1 (ja) * 2015-03-17 2016-09-22 田岡化学工業株式会社 新規なテトラカルボン酸二無水物、並びに該酸二無水物から得られるポリイミド及びポリイミド共重合体
JP6496263B2 (ja) * 2015-03-17 2019-04-03 田岡化学工業株式会社 新規なテトラカルボン酸二無水物及び該酸二無水物から得られるポリイミド
JP7415218B2 (ja) * 2017-09-13 2024-01-17 田岡化学工業株式会社 テトラカルボン酸二無水物、ポリアミド酸、ポリイミド及びポリイミド溶液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4742894Y1 (ja) * 1966-12-22 1972-12-26
JP2005262529A (ja) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd ガスバリアフィルムおよび該フィルムを用いた有機エレクトロルミネッセンス素子
JP2007002023A (ja) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp フィルムおよび画像表示装置
JP2008163088A (ja) * 2006-12-27 2008-07-17 Mitsubishi Chemicals Corp エステル基含有脂環式テトラカルボン酸無水物及びその製造方法
WO2009101885A1 (ja) * 2008-02-14 2009-08-20 Kyowa Hakko Chemical Co., Ltd. ポリイミド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4742894Y1 (ja) * 1966-12-22 1972-12-26
JP2005262529A (ja) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd ガスバリアフィルムおよび該フィルムを用いた有機エレクトロルミネッセンス素子
JP2007002023A (ja) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp フィルムおよび画像表示装置
JP2008163088A (ja) * 2006-12-27 2008-07-17 Mitsubishi Chemicals Corp エステル基含有脂環式テトラカルボン酸無水物及びその製造方法
WO2009101885A1 (ja) * 2008-02-14 2009-08-20 Kyowa Hakko Chemical Co., Ltd. ポリイミド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070883A (ja) * 2016-10-28 2018-05-10 奇美實業股▲分▼有限公司 フレキシブル基板用組成物、その製造方法及びフレキシブル基板

Also Published As

Publication number Publication date
TW201105680A (en) 2011-02-16
JP2010260996A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
KR101392539B1 (ko) 폴리이미드 전구체 및 이 폴리이미드 전구체를 포함하는 감광성 수지 조성물
EP1634907B1 (en) Solvent-free polymide silicone resin composition and a cured resin film thereof
US7714096B2 (en) Resin composition, cured product and optical parts
JP2003155342A (ja) 脂環構造を有するポリイミド共重合体
KR20140085064A (ko) 낮은 열팽창 계수를 갖는 신규한 폴리아미드이미드
Dunson Synthesis and characterization of thermosetting polyimide oligomers for microelectronics packaging
US20070149758A1 (en) Aromatic polyamic acid and polyimide
KR20220047880A (ko) 화합물 및 그 제조 방법, 수지 조성물, 수지 시트, 다층 프린트 배선판, 그리고 반도체 장치
CN112204085B (zh) 基于聚酰亚胺的聚合物膜、使用其的显示装置用基底和光学装置
WO2010131566A1 (ja) テトラカルボン酸二無水物、及び重合体
JP2008308551A (ja) 新規ポリアミド酸、ポリイミド並びにその用途
EP1408067B1 (en) Colorless and transparent polyimidesilicone resin having thermosetting functional groups
JP5103725B2 (ja) 低膨張性ポリイミド、樹脂組成物及び物品
KR20220048486A (ko) 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치
KR20190032372A (ko) 폴리이미드 수지필름 및 폴리이미드 수지필름의 제조방법
JP2932052B2 (ja) 新規なポリイミド及びその製造方法
CN114014810B (zh) 一种酰亚胺化率促进剂、树脂组合物及其制备方法和应用
JP4204435B2 (ja) 熱硬化性基を含有する透明ポリイミドシリコーン樹脂
JP5315994B2 (ja) ポリアミック酸およびポリイミド
WO2016190170A1 (ja) 環状炭化水素骨格およびエステル基を有するテトラカルボン酸二無水物、ポリアミック酸、及びポリイミド
JP7054064B2 (ja) フレキシブルデバイス基板形成用組成物
JP2005314630A (ja) 芳香族ポリアミド酸及びポリイミド
JP2010047704A (ja) 樹脂組成物及び該樹脂組成物を用いて形成されたフィルム又は塗膜
KR102591368B1 (ko) 올리고머, 올리고머를 포함하는 조성물, 조성물로부터 제조되는 성형품, 성형품의 제조 방법, 및 성형품을 포함하는 표시 장치
KR102133942B1 (ko) 반응성 단량체를 함유하는 광전 기능 폴리이미드 중합체 조성물 및 이를 포함하는 광전 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774824

Country of ref document: EP

Kind code of ref document: A1