WO2010128641A1 - 酸素発生用陽極 - Google Patents

酸素発生用陽極 Download PDF

Info

Publication number
WO2010128641A1
WO2010128641A1 PCT/JP2010/057562 JP2010057562W WO2010128641A1 WO 2010128641 A1 WO2010128641 A1 WO 2010128641A1 JP 2010057562 W JP2010057562 W JP 2010057562W WO 2010128641 A1 WO2010128641 A1 WO 2010128641A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electrode
anode
electrode active
active material
Prior art date
Application number
PCT/JP2010/057562
Other languages
English (en)
French (fr)
Inventor
裕樹 井本
信次 山内
宏勝 清水
Original Assignee
ダイソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイソー株式会社 filed Critical ダイソー株式会社
Priority to JP2011512344A priority Critical patent/JPWO2010128641A1/ja
Priority to US13/319,115 priority patent/US20120091007A1/en
Priority to EP10772160A priority patent/EP2428595A1/en
Priority to CN2010800114534A priority patent/CN102348837A/zh
Publication of WO2010128641A1 publication Critical patent/WO2010128641A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound

Definitions

  • the present invention relates to an oxygen generating anode used as an insoluble anode in an electrolysis process accompanied by oxygen generation, mainly electroplating of zinc, tin or copper, surface treatment of stainless steel, and electrolytic extraction of metals.
  • two anodes are used so as to face both sides of the steel plate in order to plate both sides of the steel plate, and the width of the two anodes arranged facing each other (perpendicular to the traveling direction of the steel strip)
  • the dimension in the right direction) is set in accordance with the maximum width of the steel strip because there are many kinds of widths of the steel strip passing between them. For this reason, when a steel strip having a width smaller than the maximum width passes (a portion through which the steel strip passes is referred to as a plate path), the electrodes are directly opposed at the side end portions on both sides of the anode.
  • Patent Document 1 In order to extend the life of this type of electrode as a cathode, an electrode in which an intermediate layer of two layers of a platinum layer and an oxide layer is provided between a conductive electrode substrate and an electrode active material layer is disclosed in Patent Document 1. Has been proposed. Although this electrode has an effect of extending the life as a cathode, the platinum layer and the oxide layer have inherently poor adhesion, and the life of the plate path portion of the anode and the outer portion of the plate path in the electroplating of the steel plate is the same. It has not yet reached.
  • Patent Document 2 proposes an electrode provided with an upper layer made of iridium oxide. Although an improvement in durability can be seen by providing an upper layer, the significant wear inherent in platinum when acting as an anode cannot be suppressed, and the durability when acting as a cathode intermittently is insufficient.
  • the cathode This is to make the thickness of the electrode active material layer thicker than the thickness of other portions in the portion where the crystallization phenomenon occurs (Patent Document 3). While increasing the thickness of the electrode active material layer is effective, increasing the thickness of the electrode active material layer is accompanied by a significant increase in cost. That is, the electrode active material layer is formed in a predetermined layer thickness by repeating so-called baking coating in which an electrode coating solution is applied, dried and baked. In order to increase the layer thickness, it is necessary to increase the number of times the baking coating is repeated, and not only the amount of expensive electrode active material used is increased, but also the number of work steps is remarkable.
  • Patent Document 4 has been proposed (Patent Document 4).
  • a valve metal such as titanium metal is exposed to a high temperature of 650 ° C. or higher in air for a long time, the titanium substrate is oxidized and the electrode becomes unusable.
  • Patent Document 5 proposes a method of forming an electrode active material layer on an electrode substrate in which fine titanium particles are sintered on a titanium plate in a vacuum or in an inert atmosphere as an electrode that can withstand negative polarization. Sintering requires strict temperature control and atmosphere control at high temperatures, and the cost of manufacturing a sintered base becomes very high.
  • the object of the present invention is to provide an oxygen generating anode that has sufficient durability not only in anodic polarization but also in electrolysis with negative polarization, thereby extending the use period of the anode, repairing and replacing the anode, etc. This is to reduce the manufacturing cost of the oxygen generating anode.
  • the present inventors diligently studied and examined a method for suppressing the consumption of the electrode active substance when used for electrolysis with negative polarization.
  • porous metal sheets such as expanded metal (expanded metal) and punched metal (punched metal) are bonded as a physical support for the electrode active substance on the conductive metal that is the electrode structure from the electrode structural surface. It has been found that the use of the electrode substrate is an effective means for extending the lifetime of the portion where negative polarization occurs.
  • the porous metal sheet on the conductive metal that is the electrode structure does not affect the life of the anode. That is, the porous metal sheet does not contribute to extending the life of the electrode active material and does not function as a physical holding body.
  • the porous metal sheet when used for electrolysis with negative polarization, the porous metal sheet contributes to the extension of the anode life. This fact means that when used for electrolysis with negative polarization, the porous metal sheet contributes to the extension of the life of the electrode active material and functions as a physical holding body or holding accelerator. .
  • the oxygen generating anode of the present invention has been completed on the basis of such knowledge, and in the oxygen generating anode formed by coating the surface of the electrode substrate with an electrode active material, the surface of the conductive metal that is an electrode structure is provided.
  • An electrode base is formed by bonding an active substance holding body made of a porous metal sheet or an active substance holding promoting body to an electrode active substance mainly composed of iridium oxide on the holding body bonding surface of the electrode base. Is an anode for oxygen generation that is resistant to cathodic phenomenon.
  • the resistance to the cathodic phenomenon is improved by a mechanism different from the conventional method, ie, physical retention of the electrode active material.
  • the mechanism is known to be intrinsic to electrolysis with negative polarization, but the details of active substance retention are unknown.
  • the catalyst coating liquid is unevenly distributed in the gap of the bonded portion or the intersecting portion of the expanded metal. Is thicker but partially, it is more resistant to cathodicization than a uniformly coated plate-like electrode substrate, which is believed to contribute to the extension of anode life in electrolysis with negative polarization. .
  • Examples of the porous metal sheet bonded to the surface of the conductive metal that is the electrode structure can include expanded metal, punching metal, interdigital or net-like metal, bondability to the conductive metal surface, availability, From the viewpoint of mechanical strength and the like, an expanded metal or a punching metal is particularly preferable.
  • the material of the conductive metal constituting the electrode substrate and the porous metal sheet bonded thereto is preferably a valve metal such as titanium, tantalum, niobium, tungsten or zirconium, and further titanium-tantalum, titanium-tantalum-niobium, titanium.
  • a valve metal such as titanium, tantalum, niobium, tungsten or zirconium
  • titanium-tantalum, titanium-tantalum-niobium, titanium -Titanium based alloys such as palladium or tantalum coated titanium are preferred and the surface of the metal substrate may be oxidized, nitrided, borated or carbonized.
  • the shape of the conductive metal as the electrode structure can be a desired shape such as a flat plate shape, a net shape, a rod shape, or a porous plate shape, but a flat plate shape or a porous plate shape is particularly preferable.
  • the thickness of the porous metal sheet is preferably 0.2 mm or more and 4.0 mm or less.
  • the thickness of the porous metal sheet is preferably 0.2 mm or more and 4.0 mm or less.
  • the aperture ratio is important together with the thickness.
  • the opening ratio that is, the ratio of the opening area to the total area is preferably 5 to 85%, particularly preferably 30 to 50%.
  • the aperture ratio is too small, the retention ability of the electrode active material and the effect of extending the anode life due to this decrease.
  • the aperture ratio is too large, the ability to hold the electrode active material and the effect of extending the anode life due to this decrease.
  • the specifications for each type of porous metal sheet are as follows.
  • LW distance between centers in the mesh long direction
  • thickness 0.5 to 4.0 mm are desirable, and LW: 8 is more preferable.
  • the openings in the punching metal may have a staggered arrangement of 45, 60, and 90 degrees, the ratio of the opening area to the total area is preferably 5 to 85%, and the hole diameter of the opening is 1.5 to 25 mm, particularly 2 ⁇ 10 mm is preferred.
  • the oxygen generating catalyst which is the main material is platinum.
  • Group metal oxides, particularly iridium oxide, are desirable, and for binders added to the main material, the amount of valve metal oxide, for example tantalum oxide, is reduced from the viewpoint of giving priority to suppression of wear over prevention of embrittlement, It has been found effective to increase the relative amount of iridium oxide as the main material.
  • the electrode active material to be coated on the electrode substrate a main material that is an oxygen generation catalyst is used as a main component, and a mixture obtained by adding a binder to this is used.
  • a binder an oxide of one or more metals selected from the group consisting of valve metals such as titanium, tantalum, niobium, tungsten, zirconium, and tin is preferable.
  • the electrode active material include iridium-tantalum mixed oxide, iridium-tantalum-titanium mixed oxide, iridium-tantalum-niobium mixed oxide, and the like.
  • the content of the binder is reduced and the content of the oxygen generating catalyst as the main material is increased from the viewpoint of giving priority to suppression of wear over prevention of embrittlement.
  • a mixture of metal oxides containing 50 to 95% by weight of iridium in terms of metal and 50 to 5% by weight of one or more kinds of valve metals in terms of metal is preferable.
  • a more preferable electrode active material is a mixture of metal oxides in which one type of valve metal is tantalum and iridium is contained at a weight percentage of at least twice that of tantalum in terms of metal.
  • a particularly preferred electrode active material is an iridium-tantalum mixed oxide containing 70% by weight or more of iridium in terms of metal and the remaining metal component being tantalum.
  • the content of iridium oxide in the electrode active material is reduced, there is a disadvantage that the oxygen generation capacity of the electrode active layer becomes insufficient and becomes porous. Moreover, the content of the binder is relatively increased, and the resistance to the cathodic phenomenon is lowered. On the other hand, when the iridium oxide content in the electrode active material is excessive, the content of the binder is relatively reduced, and from this point, the electrode active material is dropped, and the performance deterioration due to this becomes remarkable.
  • the electrode active substance coating method a conventionally used thermal decomposition method, powder sintering method, or the like can be applied, but the thermal decomposition method is preferable. That is, these metal salt solutions are applied, dried, and fired in air at a temperature of 410 ° C. to 550 ° C. Application, drying, and baking operations are performed several to several tens of times to form a necessary amount of the electrode active layer.
  • the oxygen generating anode of the present invention has a portion that is off the plate path of the anode due to the negative polarization phenomenon when zinc metal or the like is plated on the both sides of the steel plate with different coating widths for various plate widths.
  • the problem that the life is shorter than the part that always faces the steel plate at the center is that by bonding a porous metal sheet such as expanded metal or punching metal on the conductive metal that is the electrode structure as a support for the electrode active material
  • This can be effectively solved by constituting an electrode substrate and coating it with an electrode active substance mainly composed of a platinum group metal, particularly iridium.
  • the manufacturing cost can be kept low.
  • the anode for oxygen generation according to the present invention is particularly suitable for use in an insoluble anode for electroplating in which a cathodic phenomenon occurs or a portion in which an insoluble anode for electroplating occurs.
  • An electrode substrate is constructed by joining an active substance holding body made of a porous metal sheet to one or both sides of the working surface of a flat conductive metal that is an electrode structure.
  • the active substance holding body is for physically holding the electrode active substance on the surface of the electrode substrate, which is an electrode structure. More precisely, the electrode active substance is applied to the surface of the electrode base in electrolysis with negative polarization. By physically holding, it contributes to the extension of anode life.
  • the porous metal sheet is made of expanded metal, punching metal, interdigital or net-like metal, and is joined to the surface of the conductive metal by welding or the like. These materials are made of valve metal, and titanium is preferable in terms of price and performance.
  • the electrode active substance is coated on the active substance holding member bonding surface.
  • the electrode active substance is a mixture of an oxygen generation catalyst as a main material and a binder, and specifically, a mixed oxide mainly composed of iridium as an oxygen generation catalyst. Specifically, the iridium content is 50% by weight or more, preferably 70% by weight or more in terms of metal.
  • the metal component of the binder is a valve metal, preferably tantalum.
  • the method for coating the electrode active material is the same as in the past.
  • the produced oxygen generating anode is used in an insoluble anode in an electroplating line of a steel strip, particularly an insoluble anode in which a cathodic phenomenon occurs at the side edge, or a side edge in which the cathodic phenomenon of the insoluble anode occurs. Its durability is remarkably superior to conventional insoluble anodes that do not have an active substance holder.
  • Example 1 An electrode structure composed of a 30 mm ⁇ 30 mm ⁇ 10 mm flat plate made of titanium and an expanded metal made of titanium (30 mm ⁇ 30 mm square plate, LW is 8.0 mm, SW (mesh short) The distance between the centers in the eye direction) was 3.6 mm, the thickness was 1.2 mm), and the titanium base material was joined by spot welding. A titanium round bar having a diameter of 8 mm was welded perpendicularly to the center of the back surface of the titanium base material to obtain a power supply lead for energization.
  • An electrode active substance coating solution having the following liquid composition was prepared and applied to the expanded metal joint surface of the produced electrode substrate. After coating, the coating was dried at 100 ° C. for 10 minutes and then baked in an electric furnace maintained at 450 ° C. for 20 minutes. This electrode active material coating operation (coating, drying, and firing) was repeated 10 times to produce an oxygen generating anode having iridium oxide as the electrode active material on the electrode substrate surface.
  • the electrode active material coating layer formation surface (30 mm ⁇ 30 mm) in this oxygen generating anode was left and the other part sealed was used as an anode for polarity reversal life test.
  • forward and reverse energization is repeated by repeating forward energization (positive polarization) for 10 minutes at a current density of 100 A / dm 2 and reverse energization (negative polarization) for 10 minutes at 30 A / dm 2.
  • the electrode life was defined as when the cell voltage increased by 5 V compared to the starting voltage.
  • This polarity reversal electrode life acceleration test evaluates the durability of the electrode against cathodic phenomenon. The test results are shown in Table 1.
  • Example 2 An oxygen generating anode was prepared in the same manner as in Example 1 except that the composition of the electrode active material coating solution was as follows.
  • the amount of iridium metal was 30 g / m 2 .
  • a polarity reversal electrode life acceleration test similar to that in Example 1 was performed. The test results are shown in Table 1.
  • Example 3 Titanium punching metal (30 mm x 30 mm square plate, opening at 60 degrees staggered, hole diameter, 30 mm x 30 mm x 10 mm titanium flat plate, which is an electrode structure, as a porous metal sheet for the active substance holder Of 3.0 mm, the hole center pitch of 5.5 mm, and the thickness of 1.5 mm) were joined by spot welding to obtain a titanium base material.
  • a titanium round bar having a diameter of 8 mm was welded perpendicularly to the center of the back surface of the titanium base material to obtain a power supply lead for energization. Subsequent treatment of the titanium base material and formation of the electrode active material coating layer were performed in the same manner as in Example 1.
  • the amount of iridium metal was 30 g / m 2 .
  • a polarity reversal electrode life acceleration test similar to that in Example 1 was performed. The test results are shown in Table 1.
  • Example 4 A 30 mm ⁇ 30 mm ⁇ 10 mm titanium flat plate, which is an electrode structure, and a titanium expanded metal (30 mm ⁇ 30 mm square plate, LW is 10.0 mm, SW is 5. 5 mm) as a porous metal sheet for an active substance holder.
  • a titanium electrode substrate was prepared in the same manner as in Example 1 except that 0 mm and a thickness of 0.5 mm were joined by spot welding.
  • An electrode active material coating layer having the same composition and coating amount as in Example 1 was formed on the surface of the produced electrode substrate, and then a polarity reversal electrode life acceleration test similar to that in Example 1 was performed. The test results are shown in Table 1.
  • Example 5 A 30 mm ⁇ 30 mm ⁇ 10 mm titanium flat plate, which is an electrode structure, and a titanium expanded metal (30 mm ⁇ 30 mm square plate, LW is 10.0 mm, SW is 5. 5 mm) as a porous metal sheet for an active substance holder.
  • a titanium electrode substrate was prepared in the same manner as in Example 1 except that 0 mm and a thickness of 1.5 mm were joined by spot welding.
  • An electrode active material coating layer having the same composition and coating amount as in Example 1 was formed on the surface of the produced electrode substrate, and then a polarity reversal electrode life acceleration test similar to that in Example 1 was performed. The test results are shown in Table 1.
  • Comparative Example 1 A titanium electrode substrate was prepared in the same manner as in Example 1 except that a titanium flat plate of 30 mm ⁇ 30 mm ⁇ 10 mm was used as the titanium substrate material. An electrode active material coating layer having the same composition and coating amount as in Example 1 was formed on this surface, and then the polarity inversion electrode life acceleration test similar to that in Example 1 was performed. The test results are shown in Table 1.
  • the oxygen generating anodes of Examples 1 to 5 using an electrode base body in which a titanium expanded metal and a punching metal are joined to a titanium plate as an electrode structure are used for oxygen generation using simple plate-like titanium as an electrode base body.
  • the electrode life was extremely excellent in the polarity reversal electrode life acceleration test.
  • Reference Examples 1-6 Oxygen generating anodes similar to those prepared in Examples 1 to 5 and Comparative Example 1 were prepared, and an electrode life acceleration test was performed on these. These are designated as Reference Examples 1 to 6, respectively.
  • a zirconium plate was used for the counter electrode.
  • the current density was 200 A / dm 2 continuous positive energization (positive polarization), and when the cell voltage increased by 5 V compared to the starting voltage, the electrode life was defined. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 酸素発生を伴う電解工程に使用する不溶性陽極において、陽分極だけでなく陰分極を伴う電解においても十分な耐久性を発揮させることにより、電極の使用期間を延長し、電極の補修、交換等の作業を軽減する。これを実現するために、電極構造体である導電性金属上にエキスパンド金属、パンチング金属、すだれ状または網状金属などの多孔金属シートからなる活性物質保持体を接合して電極基体を構成する。その電極基体における保持体接合面に酸化イリジウムを主体とする電極活性物質を被覆する。陰極化現象に対して優れた耐性を示す酸素発生用陽極が得られる。

Description

酸素発生用陽極
 本発明は、酸素発生を伴う電解工程、主として亜鉛、錫または銅の電気めっきやステンレス鋼の表面処理、金属の電解採取に不溶性陽極として使用される酸素発生用陽極に関する。
 従来、鋼板の亜鉛、錫等の電気めっきには鉛又は鉛系合金が使用されてきたが、溶出した鉛によるめっき液の汚染、膜質の低下等の問題を抱えてきた。これに代わる陽極として、電極基体上に電極活性物質として白金族金属またはその酸化物、例えば酸化イリジウムを含む電極活性層を形成した不溶性陽極が種々提案されている。しかし、この種の電極は陽極として使用することを目的としており、陽分極だけでなく陰分極を伴う電解では、陽分極のみの電解の場合と比べて電極寿命が著しく短くなるという欠点がある。
 通常、鋼板の電気めっきでは、鋼板の両面をめっきするために鋼板の両面に対向するように陽極を2枚用いており、対向配置された2枚の陽極の幅(鋼帯の進行方向に直角な方向の寸法)は、その間を通過する鋼帯の幅が多種類あるため、鋼帯の最大幅に合わせて設定されている。このため、最大幅より小さい幅の鋼帯が通過する(鋼帯が通過する部分を板道という)ときは、陽極の両側の側端部で電極同士が直接対向することになる。鋼板の表と裏のめっき量が異なっている場合、2枚の陽極の鋼板に対する電位に差ができる。より低電位側の電極の板道外側部分は陰極として働いていることがわかっている(陽極の陰極化現象)。陰極化現象が生じる陽極の側端部では、常に鋼帯に対向する中央部よりも電極活性物質の消耗が急速に進行し、この側端部での急速な電極活性物質の消耗が陽極全体の寿命を支配することになっている。
 この種の電極の陰極としての寿命を延長するために、導電性の電極基体と電極活性物質層の間に、白金層と酸化物層の二層の中間層を設けた電極が、特許文献1により提案されている。この電極は陰極としての寿命を延長する効果は認められるが、白金層と酸化物層は本質的に密着性が悪く、鋼板の電気めっきにおける陽極の板道部分と板道外側部分の寿命が同一になるまでには至っていない。
 別の対策として、導電性の電極基体上に白金金属を添加した酸化タンタル被覆層を設け、この上に中間層として酸化イリジウムと酸化タンタルからなる被覆層、さらに、この中間層の上に白金と酸化イリジウムとから成る上地層を設けた電極が、特許文献2により提案されている。上地層を設けることによって耐久性の向上が見られるが、陽極として作用した場合の白金本来の著しい消耗は抑えられず、断続的に陰極として働くような場合の耐久性は不十分である。
 このような事情から、陽極の陰極化現象に伴う電極活性物質の消耗を効果的に抑えることが不溶性陽極での重要な技術課題となっており、この技術課題を解決する手段の一つが、陰極化現象が生じる部分で電極活性物質層の層厚を他の部分の層厚よりも厚くすることである(特許文献3)。電極活性物質層の層厚増大は有効であるが、電極活性物質層の層厚増大はコストの大幅な増加を伴う。すなわち、電極活性物質層は電極被覆液を塗布、乾燥し焼成するいわゆる焼付けコートの繰り返しにより、所定の層厚に形成される。層厚を増大させるためには、焼付けコートの繰り返し回数を増やす必要があり、高価な電極活性物質の使用量の増加だけでなく作業工数の増加も顕著になる。
 陰分極時における電極活物質の非常に速い消耗が、結合材として添加しているバルブ金属酸化物、例えばタンタル酸化物の選択的溶解によるとの観点から、電極活性物質層を形成する時の加熱温度を650℃から850℃にすることにより、結合材であるタンタル酸化物あるいは他のバルブ金属酸化物の結晶性を向上させ、より強固なものとすることにより、陰分極時の溶解を防ぐ方法が提案されている(特許文献4)。しかしながら、空気中で650℃以上の高温にバルブ金属、例えばチタン金属を長時間さらすと、チタン基体が酸化され、電極が使用不能となる。
 更に別の対策として、陰分極に耐える電極として微細なチタン粒子を真空または不活性雰囲気でチタン板に焼結した電極基体に電極活性物質層を形成する方法が特許文献5により提案されているが、焼結には高温での厳密な温度制御、雰囲気制御が必要であり、焼結基体製造コストが非常に高くなる。
特開平5-230682号公報 特開平11-302892号公報 特開平10-287998号公報 特開2002-275697号公報 特開2006-188742号公報
 本発明の目的は、陽分極だけでなく陰分極を伴う電解においても十分な耐久性を有する酸素発生用陽極を提供することにより、陽極の使用期間を延長し、陽極の補修作業、交換作業等の負担を軽減し、合わせて、その酸素発生用陽極の製造コストを低く抑えることにある。
 ところで、不溶性陽極を陽分極のみに使用する場合、電極活性物質である酸化イリジウムが徐々に消耗し、電極の末期では、その消耗が激しくなるという症状がみられる。この場合の電極の寿命は、電極活性物質の消耗よりも、むしろ電極活性層の脆化の速度で決まる。これに対し、陽分極だけでなく陰分極を伴う電解に用いた場合は、陽分極のみに使用する場合と比べて電極活性物質の消耗が非常に速く、電極活性層が脆くなる前に寿命に達することがわかった。
 このような事実を基に、本発明者らは陰分極を伴う電解に用いた場合の電極活性物質の消耗を抑制する方法について鋭意研究し検討した。その結果、電極の構造面からは、電極構造体である導電性金属上に電極活性物質の物理的な保持体としてエキスパンド金属(エキスパンドメタル)、パンチング金属(パンチングメタル)などの多孔金属シートを接合した電極基体を使用することが、陰分極化の生じる部分の寿命延長に有効な手段であることが判明した。
 更に詳しく説明すれば、不溶性陽極を陽分極のみの電解に使用する場合は、電極構造体である導電性金属上の多孔金属シートは陽極寿命に影響を与えない。すなわち、その多孔金属シートは電極活性物質の寿命延長に寄与せず、物理的な保持体として機能しない。ところが、陰分極を伴う電解に用いた場合は、その多孔金属シートは陽極寿命の延長に寄与する。この事実は、陰分極を伴う電解に用いた場合に、その多孔金属シートは電極活性物質の寿命延長に寄与し、物理的な保持体、乃至は保持促進体として機能することを意味するのである。
 本発明の酸素発生用陽極は、かかる知見を基礎として完成されたものであり、電極基体の表面に電極活性物質を被覆してなる酸素発生用陽極において、電極構造体である導電性金属の表面に多孔金属シートからなる活性物質保持体、乃至は活性物質保持促進体を接合することにより電極基体が構成されており、該電極基体における保持体接合面に酸化イリジウムを主成分とする電極活性物質が被覆されている、陰極化現象に耐性を示す酸素発生用陽極である。
 陰極化現象が起こると電極活性物質の消耗速度が速くなるため電極活性物質層の厚みを厚くしたり、焼結温度を高くして活性物質に添加される結合材の強度を上げる従来方法があるが、本発明の酸素発生用電極では、電極活性物質の物理的保持という、従来と異なるメカニズムで陰極化現象に対する耐性が向上する。そのメカニズムは前述したとおり陰分極を伴う電解に固有のものであることは判明しているが、活性物質保持の詳細までは不明である。これについて本発明者らは、例えば板状の導電性金属にエキスパンド金属を接合した電極基体では、触媒塗布液が接合部分の隙間やエキスパンド金属の交差部分に偏在するために電極活性物質層の厚みが部分的にではあるが厚くなるために、均一に塗布される板状の電極基体よりも陰極化に強くなり、これが陰分極を伴う電解での陽極寿命延長に寄与していると考えている。
 電極構造体である導電性金属の表面に接合される多孔金属シートとしては、例えばエキスパンド金属、パンチング金属、すだれ状または網状金属を挙げることができ、導電性金属表面への接合性、入手性、機械的強度などの観点からエキスパンド金属またはパンチング金属が特に好ましい。
 電極基体を構成する導電性金属およびこれに接合される多孔金属シートの材質としては、バルブ金属、例えばチタン、タンタル、ニオブ、タングステン、ジルコニウムが好ましく、更にチタン-タンタル、チタン-タンタル-ニオブ、チタン-パラジウム等のチタン基合金、またはタンタル被覆チタンが好適であり、金属基体の表面を酸化、窒化、硼化又は炭化処理してもよい。電極構造体である導電性金属の形状は平板状、網状、棒状、多孔板状等、所望のものとすることができるが、平板状、多孔板状が特に好ましい。
 多孔金属シートの厚さは0.2mm以上、4.0mm以下が望ましい。多孔金属シートが薄すぎる場合は電極活性物質の保持性に問題が生じる。反対に多孔金属シートを厚くしても効果は少なく経済性が悪くなるだけである。
 多孔金属シートにおいては厚さと共に開口率が重要である。この開口率、すなわち開口部面積の全面積に対する割合は5~85%が好ましく、30~50%が特に好ましい。開口率が小さすぎる場合は電極活性物質の保持能力、これによる陽極寿命延長効果が低下する。開口率が大きすぎる場合も同様に電極活性物質の保持能力、これによる陽極寿命延長効果が低下する。加えて、電極構造体である導電性金属への接合作業性に問題が生じる。多孔金属シートの種類別の仕様は以下のとおりである。
 エキスパンド金属の寸法についてはLW(メッシュ長目方向の中心間距離)及び厚さが重要であり、LW:4~40mm、厚さ:0.5~4.0mmが望ましく、更に好ましくはLW:8~20mm厚さ:1.0~2.5mmがよい。パンチング金属における開口部は45、60、90度の千鳥配列であっても良く、開口部面積の全面積に対する割合は5~85%が好ましく、開口部の孔径は1.5~25mm、特に2~10mmが好ましい。
 導電性金属に多孔金属シートであるエキスパンド金属、パンチング金属、すだれ状または網状金属を接合する方法としては溶接、ビス留め等が用いられるが、大きな電流密度を印加する場合は、例えばスポット溶接、TIG溶接等の溶接法が好ましい。エキスパンド金属、パンチング金属、すだれ状または網状金属は、2枚以上を導電性金属の表面に接合しても良い。また違う種類の形状をしたものを2種類以上接合することも可能である。
 以上は電極活性物質の保持体である多孔金属シートについての説明である。次に電極活性物質の説明を行う。陰分極を伴う電解に用いた場合の電極活性物質の消耗を抑制する方法について本発明者らが鋭意研究し検討した結果、電極活性物質の面からは、主材である酸素発生触媒については白金族金属の酸化物、特に酸化イリジウムが望ましく、主材に添加される結合材については、脆化防止よりも消耗抑制を優先する観点から、バルブ金属酸化物、例えばタンタル酸化物の量を減らし、主材である酸化イリジウムの相対量を多くするのが有効なことが判明した。
 かかる知見に基づき、電極基体に被覆する電極活性物質としては、酸素発生触媒である主材を主成分とし、これに結合材を加えた混合物を使用し、より詳しくは、主材としては、酸素発生触媒としての能力に優れた酸化イリジウムを使用する。結合材としてはチタン、タンタル、ニオブ、タングステン、ジルコニウム等のバルブ金属および錫からなる群より選ばれた一種以上の金属の酸化物が好適である。電極活性物質の代表的な例としては、イリジウム-タンタル混合酸化物、イリジウム-タンタル-チタン混合酸化物、イリジウム-タンタル-ニオブ混合酸化物等を挙げることができる。
 電極活性物質の具体的組成については、脆化防止よりも消耗抑制を優先する観点から結合材の含有量を減らして、主材である酸素発生触媒の含有量を多くする。具体的には、金属換算でイリジウムを50~95重量%を含有し、且つ金属換算でバルブ金属の1種以上の金属を50~5重量%を含有する金属酸化物の混合物が好ましい。更に好ましい電極活性物質は、バルブ金属の1種がタンタルであり、金属換算でそのタンタルの2倍以上の重量%でイリジウムを含有する金属酸化物の混合物である。特に好ましい電極活性物質は、金属換算でイリジウムを70重量%以上含有し、残りの金属成分がタンタルであるイリジウム-タンタル混合酸化物である。
 電極活性物質中の酸化イリジウムの含有量が少なくなると、電極活性層の酸素発生能力が不十分となり多孔性となる欠点がある。また、相対的に結合材の含有量が多くなり、陰極化現象に対する耐性が低下する。反対に、電極活性物質中の酸化イリジウム含有量が過多となると、相対的に結合材の含有量が減少し、この点から電極活性物質の脱落、これによる性能低下が顕著となる。
 電極活性物質の被覆法としては、従来から用いられている熱分解法、粉末焼結法等を適用できるが、熱分解法が好ましい。すなわち、これらの金属塩溶液を塗布し、乾燥し空気中で410℃から550℃の温度で焼成する。塗布、乾燥、焼成操作を数回から数十回行い、必要量の電極活性層を形成する。
 本発明の酸素発生用陽極は、種々の板幅に対して鋼板の両面に被覆量を違えて亜鉛金属等をめっきする場合に、陽極の板道からはずれた部分が陰分極化現象のために中央の常に鋼板と向き合っている部分より寿命が短くなる問題点を、電極構造体である導電性金属上に電極活性物質の保持体としてエキスパンド金属、パンチング金属などの多孔金属シートを接合することにより電極基体を構成し、これに白金族金属、特にイリジウムを主成分とする電極活性物質を被覆することにより、効果的に解決することができる。また、電極活性物質の被覆量を特に多くする必要や、電極活性物質層を形成する時の焼成温度を高くする必要もないので、製造コストを低く抑えることができる。
 したがって、本発明の酸素発生用陽極は、陰極化現象が生じる電気めっき用不溶性陽極、或いは電気めっき用不溶性陽極の陰極化現象が生じる部分への使用に特に適する。
 以下に本発明の実施形態を説明する。
 電極構造体である平板状の導電性金属の作用面である片面または両面に多孔金属シートからなる活性物質保持体を接合して電極基体を構成する。活性物質保持体は、電極構造体である電極基体の表面に電極活性物質を物理的に保持するためのものであり、より正確には陰分極を伴う電解において電極基体の表面に電極活性物質を物理的に保持することにより、陽極寿命の延長に寄与する。この多孔金属シートは、具体的にはエキスパンド金属、パンチング金属、すだれ状または網状金属からなり、溶接等により導電性金属の表面に接合される。これらの材質はバルブ金属からなり、チタンが価格的にも性能的にも好ましい。
 電極基体が作製されると、その活性物質保持体接合面に電極活性物質を被覆する。電極活性物質は、主材である酸素発生触媒と結合材との混合物であり、具体的には酸素発生触媒であるイリジウムを主成分とする混合酸化物である。イリジウムの含有量は、具体的には金属換算で50重量%以上、好ましくは70重量%以上である。結合材の金属成分はバルブ金属であり、タンタルが好ましい。電極活性物質の被覆方法は従来どおりである。
 製造された酸素発生用陽極は、鋼帯の電気めっきラインにおける不溶性陽極、特に側縁部に陰極化現象が生じる不溶性陽極、或いはその不溶性陽極の陰極化現象が生じる側縁部に使用される。その耐久性は、活性物質保持体を有しない従来の不溶性陽極と比べて格段に優れる。
 次に実施例、比較例により本発明を更に具体的に説明する。
実施例1
 30mm×30mm×10mmのチタン製平板からなる電極構造体に、活性物質保持体用の多孔金属シートとしてチタン製のエキスパンド金属(30mm×30mmの角板で、LWは8.0mm、SW(メッシュ短目方向の中心間距離)は3.6mm、厚さは1.2mm)をスポット溶接法で接合してチタン基体材とした。チタン基体材の裏面中央に垂直に直径8mmのチタン製丸棒を溶接して通電のための給電リードとした。これをアセトン中で超音波洗浄により脱脂した後、24番のアランダムを用い、0.6MPaで約10分間エキスパンド金属面にブラスト処理を施した。ブラスト処理後のチタン基体材を流水中で一昼夜洗い、乾燥したものを電極基体として用いた。
 下記に示す液組成の電極活性物質塗布液を調製し、作製した電極基体のエキスパンド金属接合面に塗布した。塗布後、100℃で10分間乾燥したのち、450℃に保持した電気炉中で20分間焼成した。この電極活性物質の被覆操作(塗布、乾燥、焼成)を10回繰り返して、酸化イリジウムを電極活性物質として電極基体表面に有する酸素発生用陽極を作製した。電極活性物質被覆層の金属重量組成比はIr/Ta=7/3であり、イリジウムの含有比は70重量%で、タンタルの含有比(30重量%)の2倍以上である。イリジウム金属量は30g/mであった。
  TaCl:  3.2g
  HIrCl・6HO: 10.0g
  35%HCl: 10ml
  n-CH(CHOH: 100ml
 この酸素発生用陽極における電極活性物質被覆層の形成面(30mm×30mm)だけを残し、他の部分をシールしたものを極性反転寿命試験用陽極として用いた。
 極性反転寿命試験に使用した電解浴はpH=1.2で100g/LのNa2 SO4 水溶液(硫酸でpHを調節)であり、温度は60℃、流速は2m/秒とした。また、対極には白金板を使用した。電解方法として、電流密度100A/dm2で10分間の正通電(陽分極)と30A/dm2で10分間の逆通電(陰分極)を一組とする正逆通電を繰り返し、正通電の際の槽電圧が開始時電圧と比較して5 V上昇したときを電極寿命とした。この極性反転電極寿命加速試験は、電極の陰極化現象に対する耐久性を評価するものである。試験結果を表1に示す。
実施例2
 電極活性物質塗布液の組成を下記とした以外は、実施例1と全く同様にして酸素発生用陽極を作製した。電極活性物質被覆層の金属重量組成比はIr/Ta/Nb=6.3/2.6/1.1、であり、イリジウムの含有比は63重量%であるが、タンタルの含有比(26重量%)の2倍以上である。イリジウム金属量は30g/mであった。実施例1と同様の極性反転電極寿命加速試験を行った。試験結果を表1に示す。
  TaCl:  9.9g
  HIrCl・6HO: 32.5g
  NbCl:  6.3g
  35%HCl: 15ml
  n-CH(CHOH: 240ml
実施例3
 電極構造体である30mm×30mm×10mmのチタン製平板に、活性物質保持体用の多孔金属シートとしてチタン製のパンチング金属(30mm×30mmの角板で、開口部は60度千鳥、孔の直径は3.0mm、孔のセンターピッチは5.5mm、厚さは1.5mm)をスポット溶接法で接合してチタン基体材とした。チタン基体材の裏面中央に垂直に直径8mmのチタン製丸棒を溶接して通電のための給電リードとした。チタン基体材に対する以後の処理および電極活性物質被覆層の形成は実施例1と同様に行った。電極活性物質被覆層の金属重量組成比はIr/Ta=7/3であり、イリジウムの含有比は70重量%で、タンタルの含有比(30重量%)の2倍以上である。イリジウム金属量は30g/mであった。実施例1と同様の極性反転電極寿命加速試験を行った。試験結果を表1に示す。
実施例4
 電極構造体である30mm×30mm×10mmのチタン製平板に、活性物質保持体用の多孔金属シートとしてチタン製のエキスパンド金属(30mm×30mmの角板で、LWは10.0mm、SWは5.0mm、厚さは0.5mm)をスポット溶接法で接合した以外は、実施例1と同様の処理を施したチタン電極基体を作製した。作製した電極基体の表面に実施例1と同じ組成、被覆量の電極活性物質被覆層を形成した後、実施例1と同様の極性反転電極寿命加速試験を行った。試験結果を表1に示す。
実施例5
 電極構造体である30mm×30mm×10mmのチタン製平板に、活性物質保持体用の多孔金属シートとしてチタン製のエキスパンド金属(30mm×30mmの角板で、LWは10.0mm、SWは5.0mm、厚さは1.5mm)をスポット溶接法で接合した以外は、実施例1と同様の処理を施したチタン電極基体を作製した。作製した電極基体の表面に実施例1と同じ組成、被覆量の電極活性物質被覆層を形成した後、実施例1と同様の極性反転電極寿命加速試験を行った。試験結果を表1に示す。
比較例1
 30mm×30mm×10mmのチタン製平板単体をチタン基体材とした以外は、実施例1と同様の処理を施したチタン電極基体を作製した。この表面に実施例1と同じ組成、被覆量の電極活性物質被覆層を形成した後、実施例1と同様の極性反転電極寿命加速試験を行った。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 電極構造体であるチタン板にチタン製のエキスパンド金属、パンチング金属を接合した電極基体を使用している実施例1から5の酸素発生用陽極は、単なる板状チタンを電極基体にした酸素発生用陽極に比べて、極性反転電極寿命加速試験において非常に優れた電極寿命を示した。
参考例1~6
 実施例1~5および比較例1で作製したものと同様の酸素発生用陽極を作製し、これらについて電極寿命加速試験を行った。各々を参考例1~6とする。
 電極寿命加速試験に使用した電解浴はpH=1.4で100g/LのNa2 SO4 水溶液(硫酸でpHを調節)であり、温度は70℃、流速は2m/秒とした。対極にはジルコニウム板を使用した。電解方法として、電流密度が200A/dm2連続正通電(陽分極)を行い、槽電圧が開始時電圧と比較して5V上昇したときを電極寿命とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 参考例1~6から分かるように、連続正通電で陽分極のみの加速試験を行った場合には実施例1~5の酸素発生用陽極も比較例1の酸素発生用陽極も、電極寿命に大きな差異は認められなかった。このことから明らかなように、実施例1~5の酸素発生用陽極における活性物質保持体は、イリジウムを主体とする電極活性物質と協同して、陰分極を伴う電解において電極の耐久性向上に効果を発揮する。
 

Claims (9)

  1.  電極基体の表面に電極活性物質を被覆してなる酸素発生用陽極において、電極構造体である導電性金属の表面に多孔金属シートからなる活性物質保持体を接合することにより電極基体が構成されており、該電極基体における保持体接合面に酸化イリジウムを主成分とする電極活性物質が被覆されている、陰極化現象に耐性を示す酸素発生用陽極。
  2.  多孔金属シートがエキスパンド金属、パンチング金属、すだれ状または網状金属である請求項1に記載の酸素発生用陽極。
  3.  電極活性物質が金属換算でイリジウムを50~95重量%を含有し、且つ金属換算でバルブ金属の1種以上を50~5重量%を含有する金属酸化物の混合物である請求項1または2に記載の酸素発生用陽極。
  4.  バルブ金属の1種がタンタルであり、金属換算でのイリジウム含有量(重量%)がタンタル含有量(重量%)の2倍以上である請求項3に記載の酸素発生用陽極。
  5.  電極活性物質中の酸化イリジウム含有量が金属換算で70重量%以上であり、残りの金属酸化物がタンタル酸化物である請求項4に記載の酸素発生用陽極。
  6.  陰極化現象が生じる電気めっき用不溶性陽極として使用される請求項1~5の何れかに記載の酸素発生用電極。
  7.  電気めっき用不溶性陽極の陰極化現象が生じる部分に使用される請求項1~5の何れかに記載の酸素発生用電極。
  8.  導電性金属及び多孔金属シートがバルブ金属よりなることを特徴とする請求項1~7の何れかに記載の酸素発生用陽極。
  9.  バルブ金属がチタン、タンタル、ニオブ、タングステン、ジルコニウムから選ばれた金属である請求項8に記載の酸素発生用陽極。
PCT/JP2010/057562 2009-05-07 2010-04-28 酸素発生用陽極 WO2010128641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011512344A JPWO2010128641A1 (ja) 2009-05-07 2010-04-28 酸素発生用陽極
US13/319,115 US20120091007A1 (en) 2009-05-07 2010-04-28 Anode for oxygen generation
EP10772160A EP2428595A1 (en) 2009-05-07 2010-04-28 Anode for oxygen generation
CN2010800114534A CN102348837A (zh) 2009-05-07 2010-04-28 氧产生用阳极

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-112765 2009-05-07
JP2009112765 2009-05-07
JP2009-233326 2009-10-07
JP2009233326 2009-10-07

Publications (1)

Publication Number Publication Date
WO2010128641A1 true WO2010128641A1 (ja) 2010-11-11

Family

ID=43050142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057562 WO2010128641A1 (ja) 2009-05-07 2010-04-28 酸素発生用陽極

Country Status (5)

Country Link
US (1) US20120091007A1 (ja)
EP (1) EP2428595A1 (ja)
JP (1) JPWO2010128641A1 (ja)
CN (1) CN102348837A (ja)
WO (1) WO2010128641A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11668017B2 (en) 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200781A (ja) * 1983-02-01 1984-11-14 Ishifuku Kinzoku Kogyo Kk 電解用電極
JPH02285098A (ja) * 1989-04-27 1990-11-22 Japan Carlit Co Ltd:The クロムメッキ用電極の保護方法
JPH05230682A (ja) 1992-02-25 1993-09-07 Permelec Electrode Ltd 電解用電極
JPH10287998A (ja) 1997-04-17 1998-10-27 Daiso Co Ltd 不溶性陽極
JPH11302892A (ja) 1998-04-24 1999-11-02 Tdk Corp 電解用電極およびその製造方法
JP2002275697A (ja) 2001-03-15 2002-09-25 Daiso Co Ltd 酸素発生用陽極
JP2004238697A (ja) * 2003-02-07 2004-08-26 Daiso Co Ltd 酸素発生用電極
JP2006188742A (ja) 2005-01-07 2006-07-20 Daiso Co Ltd 不溶性陽極

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310099A (ja) * 1989-06-07 1991-01-17 Permelec Electrode Ltd 電気メッキ用不溶性電極とその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200781A (ja) * 1983-02-01 1984-11-14 Ishifuku Kinzoku Kogyo Kk 電解用電極
JPH02285098A (ja) * 1989-04-27 1990-11-22 Japan Carlit Co Ltd:The クロムメッキ用電極の保護方法
JPH05230682A (ja) 1992-02-25 1993-09-07 Permelec Electrode Ltd 電解用電極
JPH10287998A (ja) 1997-04-17 1998-10-27 Daiso Co Ltd 不溶性陽極
JPH11302892A (ja) 1998-04-24 1999-11-02 Tdk Corp 電解用電極およびその製造方法
JP2002275697A (ja) 2001-03-15 2002-09-25 Daiso Co Ltd 酸素発生用陽極
JP2004238697A (ja) * 2003-02-07 2004-08-26 Daiso Co Ltd 酸素発生用電極
JP2006188742A (ja) 2005-01-07 2006-07-20 Daiso Co Ltd 不溶性陽極

Also Published As

Publication number Publication date
US20120091007A1 (en) 2012-04-19
CN102348837A (zh) 2012-02-08
JPWO2010128641A1 (ja) 2012-11-01
EP2428595A1 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4585867B2 (ja) 不溶性陽極
JP4771130B2 (ja) 酸素発生用電極
JP4673628B2 (ja) 水素発生用陰極
KR20050111614A (ko) 백금 계 금속에 의한 전기촉매 코팅과 그로부터 제조된전극
Krstajic et al. Non-noble metal composite cathodes for hydrogen evolution. Part I: The Ni-MoOx coatings electrodeposited from Watt's type bath containing MoO3 powder particles
EP1753894B1 (de) Verfahren zur herstellung von peroxodisulfaten in wässriger lösung
JPS6025512B2 (ja) 溶融塩電解用電極
JP2011202206A (ja) 不溶性電極及びその製造方法
EP1313894B1 (en) Copper electrowinning
JPH0310099A (ja) 電気メッキ用不溶性電極とその製造方法
JP4284387B2 (ja) 電解用電極及びその製造方法
WO2010128641A1 (ja) 酸素発生用陽極
JP6222121B2 (ja) 不溶性電極の製造方法
JP3654204B2 (ja) 酸素発生用陽極
JP3430479B2 (ja) 酸素発生用陽極
JP3513657B2 (ja) 不溶性陽極
JP2002030479A (ja) 片面を白金メッキした耐火金属からなるプレートの製造法及びこうして製造したプレートの使用
JP3306504B2 (ja) 不溶性陽極
JP3661924B2 (ja) 酸素発生用陽極
JP6011996B2 (ja) 電解用電極及び電解用電極の製造方法
JP5966782B2 (ja) 不溶性陽極
JPH11269688A (ja) 電解用電極
CN108866610B (zh) 一种电解阳极
JP3161827U (ja) 不溶性陽極構造体
JP3780410B2 (ja) 金属メッキ用電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011453.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011512344

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010772160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13319115

Country of ref document: US