WO2010126171A1 - 高炉操業方法及びそのための低発熱量ガスの燃焼方法並びに高炉設備 - Google Patents

高炉操業方法及びそのための低発熱量ガスの燃焼方法並びに高炉設備 Download PDF

Info

Publication number
WO2010126171A1
WO2010126171A1 PCT/JP2010/057984 JP2010057984W WO2010126171A1 WO 2010126171 A1 WO2010126171 A1 WO 2010126171A1 JP 2010057984 W JP2010057984 W JP 2010057984W WO 2010126171 A1 WO2010126171 A1 WO 2010126171A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion
blast furnace
combustion chamber
blowing
Prior art date
Application number
PCT/JP2010/057984
Other languages
English (en)
French (fr)
Inventor
浅沼稔
野内泰平
藤林晃夫
村尾明紀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009299101A external-priority patent/JP4760977B2/ja
Priority claimed from JP2009299098A external-priority patent/JP4760976B2/ja
Priority claimed from JP2010102720A external-priority patent/JP4760985B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP10769861.5A priority Critical patent/EP2426223B1/en
Priority to KR1020117024746A priority patent/KR101314443B1/ko
Priority to BRPI1011905-1A priority patent/BRPI1011905B1/pt
Priority to CN201080029673.XA priority patent/CN102459652B/zh
Publication of WO2010126171A1 publication Critical patent/WO2010126171A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources

Definitions

  • the present invention relates to a blast furnace operation method, blast furnace equipment, and a low calorific gas combustion method for performing stable low reducing material ratio operation.
  • RAR Reduction Agent Ratio
  • the measure (a) is not desirable because it leads to a decrease in production.
  • the above (b) depends on the margin of the blowing capacity, but the amount of increase is limited in the steelworks operating near the capacity limit. Further, when the fuel injection amount is increased, the amount of Bosch gas increases and the production amount decreases, so that it is necessary to perform oxygen enrichment at the same time. However, the amount of oxygen that can be used is also limited in terms of supply capacity.
  • the above-mentioned (c) goes back to the original purpose of carbon dioxide reduction by aiming at the operation that lowered the efficiency. As described above, when low RAR operation is performed in a normal blast furnace, it is difficult to avoid various conditions of the furnace condition, particularly poor temperature rise in the upper part of the furnace, by changing the operation conditions within the normal operation range.
  • blast furnace operation reducing gas such as CO generated by the combustion of coke at the blast furnace tuyere is used for the reduction of iron ore, but increasing the utilization efficiency leads to a reduction in RAR.
  • blast furnace gas is a low calorific value gas, but when the RAR is reduced as described above, the calorific value of the generated blast furnace gas is further reduced.
  • sensible heat of red hot coke discharged from a coke oven is recovered by a coke dry fire extinguishing equipment (CDQ).
  • CDQ cools coke with an inert gas, but gas generated from coke at the time of recovery is also mixed and recovered as a low calorific value gas of about 300 kcal / Nm 3 .
  • Gas burners used industrially are roughly divided into diffusion combustion type (external mixing) type and premixed combustion type (internal mixing type) depending on the mixing type of fuel gas and supporting gas (oxygen-containing gas).
  • each burner has a structure in which a flame is formed in front of the burner tip.
  • the diffusion combustion method is a method in which fuel gas and supporting gas are mixed and burned at the burner tip, and a high-temperature flame can be obtained and widely used.
  • the premixed combustion type has the advantage that a relatively short flame can be formed.
  • these conventional burners have a problem that since a flame is formed in front of the burner tip, it is necessary to secure a wide space for combustion in front of the burner, which inevitably increases the size of the combustion equipment.
  • fuel gas used in conventional burners includes coke oven gas, blast furnace gas, MIX gas mixed with blast furnace gas and converter gas, etc. produced as a by-product in the steel manufacturing process.
  • a low calorific value gas such as blast furnace gas
  • the stability of the flame may not be sufficient due to the change of the air ratio or the increase or decrease of the gas calorific value, and the flame may be extinguished.
  • a pilot burner is separately installed for maintaining the flame and combustion, and a method of preheating the fuel gas and the combustion supporting gas in advance is employed.
  • Patent Document 1 has a problem that when a low reductant ratio operation is performed in a normal blast furnace in which tuyere is blown with an oxygen enrichment of 10% by volume or less, the temperature rise of the charge at the upper part of the shaft is delayed.
  • a gas of 10 volume% or less of the furnace top gas amount is blown into the furnace as the shaft gas from the upper part of the shaft.
  • Patent Document 1 discloses that after being discharged from the top of the furnace, a part of the blast furnace gas that has passed through the gas cleaning device is extracted and heated in the combustion furnace, and then used as the shaft gas.
  • Patent Document 3 discloses a method in which a tubular flame burner is used to burn a low calorific value gas and a fuel gas and an oxygen-containing gas (combustion gas) are introduced into the combustion chamber while swirling and burned. Yes.
  • the method of Patent Document 3 is carried out using an oxygen-containing gas having an oxygen concentration of 60 vol% or more as a combustion support gas and the ratio of the supplied oxygen amount to the theoretical oxygen amount is 1.0 to 1.4. is there.
  • the blast furnace gas is heated (preheated) in the combustion furnace and then blown into the furnace, but the blown gas is sufficiently preheated and has a pressure higher than the furnace pressure at the blowing position.
  • the blast furnace gas generated in the normal blast furnace process has a low calorific value, so that a desired temperature in the combustion furnace. In some cases, it is difficult to raise the temperature up to, for example, measures such as using auxiliary fuel with a high calorific value may be required.
  • blast furnace gas since blast furnace gas has a low calorific value, variations in combustion temperature are likely to occur in a normal combustion furnace, and for this reason, oxygen remains in the combustion gas and is oxidized during reduction when blown into the furnace. there is a problem that is reoxidized objects (Fe 3 O 4, FeO) . In addition, it is difficult to stably inject preheated gas into a blast furnace having a predetermined furnace pressure.
  • Patent Document 3 has the following problems. (1) An oxygen-containing gas having an oxygen concentration of 60 vol% or more is required as a combustion support gas. In order to obtain such a high concentration of oxygen, an oxygen separation process such as separate cryogenic separation or membrane separation is required. Is required. (2) When the low calorific value gas is burned with high concentration of oxygen, there is a concern about the generation of thermal NO x that is locally high in temperature and causes environmental problems. Moreover, when S content is contained in the fuel gas, the generation of SO X is promoted. (3) When high-concentration oxygen is introduced by piping or the like, it is necessary to carry out degreasing treatment and to construct piping and valves using stainless steel pipes or the like. For this reason, expensive materials are required, and the equipment cost is increased.
  • the first object of the present invention is to prevent the furnace condition during low RAR operation, in particular, the temperature rise failure of the charge in the upper part of the furnace, and the low heating value gas such as blast furnace gas as the blown gas.
  • Blast furnace operating method and blast furnace which can be stably burned into a preheated gas, and can be stably blown into a blast furnace having a predetermined furnace pressure To provide facilities.
  • the second object of the present invention is to solve the problems of the prior art when burning a low calorific value gas with a combustion burner, and to stabilize the low calorific value gas without using a high oxygen concentration supporting gas in the combustion burner. It is to provide a combustion method that can be burned.
  • the present inventors have studied mainly on the preheating gas generation / blowing means, and as a result, the conventional tubular flame burner used in heating furnaces and combustion equipments.
  • a gas combustion / blowing device using a system is provided in the shaft portion and a low calorific value gas such as blast furnace gas is used by blowing the combustion gas of this gas combustion / blowing device into the furnace as a preheating gas.
  • this can be stably burned into a preheated gas, and the preheated gas can be stably blown into a blast furnace having a predetermined furnace pressure.
  • the present invention has been made based on such findings, and the gist thereof is as follows.
  • a method for operating a blast furnace comprising a blowing section (A) and blowing the combustion gas of the gas combustion / blowing apparatus (a) into a blast furnace as a preheating gas.
  • the gas blowing section (A) is configured by a gas combustion / blowing device (a) formed on the inner wall surface of a tubular combustion chamber having an open tip and communicating the tip of the combustion chamber with the inside of the blast furnace.
  • the blast furnace operating method according to (1) characterized in that it is composed of a plurality of nozzle tubes arranged in parallel in the axial direction.
  • the blast furnace operating method according to (1) wherein the tip of the combustion chamber of the gas combustion / blowing device (a) is communicated with the inside of the blast furnace through a gas conduit.
  • the gas conduit is a header pipe, and a plurality of gas injection ports formed in the furnace body are connected to the header pipe via a communication pipe, and the combustion chamber of the gas combustion / injection device (a)
  • the blast furnace operating method according to (7) characterized in that the tip of the blast furnace is connected.
  • the gas nozzle for supplying hydrogen into the combustion chamber through another opening formed in the inner wall surface of the combustion chamber is composed of a plurality of nozzle tubes arranged in parallel in the axial direction of the apparatus (13 ) Or the blast furnace operating method according to (14).
  • Blowing the combustion gas into the blast furnace uses blast furnace gas as a fuel gas, and hydrogen is added to the blast furnace gas before being blown into the combustion chamber and / or the blast furnace gas blown into the combustion chamber for combustion.
  • a gas combustion / blowing device (a) in which another opening for blowing gas is formed on the inner wall surface of the combustion chamber so that a gas swirl flow is generated in the combustion chamber is used.
  • a gas combustion / blowing device in which another opening is formed on the inner wall surface of the combustion chamber to blow gas in a direction substantially tangential to the inner wall surface so that a gas swirl flow is generated in the combustion chamber.
  • the gas nozzle for supplying hydrogen into the combustion chamber through another opening formed in the inner wall surface of the combustion chamber is composed of a plurality of nozzle tubes arranged in parallel in the axial direction of the apparatus (18). ) Blast furnace operation method.
  • a gas blowing portion (A) is provided in the shaft portion, and the fuel gas and the combustion supporting gas are blown into the inner wall surface of the tubular combustion chamber whose tip is open so that a gas swirl flow is generated in the combustion chamber, or the fuel gas
  • a gas injection part (A) is formed by a gas combustion / injection device (a) in which an opening for injecting a premixed gas of combustion supporting gas is formed, and the tip of the combustion chamber is communicated with the interior of the blast furnace, Blast furnace equipment characterized in that the combustion gas of the gas combustion / blowing device (a) is blown into the blast furnace.
  • the gas injection part (A) is configured by a gas combustion / injection device (a) in which an opening for injecting the premixed gas of the combustion support gas is formed and the tip of the combustion chamber is communicated with the inside of the blast furnace.
  • a flow path for extracting a part of the blast furnace gas from the flow path of the blast furnace gas discharged from the top of the blast furnace and supplying it to the gas combustion / blowing device (a) is provided (26).
  • a booster for boosting the fuel gas and the combustion support gas supplied to the gas combustion / blowing device (a) or for boosting the premixed gas of the fuel gas and the support combustion gas is provided.
  • a gas nozzle for supplying fuel gas and combustion-supporting gas to the combustion chamber through an opening formed in the inner wall surface of the combustion chamber, or premixing of fuel gas and combustion-supporting gas, respectively In the gas combustion / blowing device (a), a gas nozzle for supplying fuel gas and combustion-supporting gas to the combustion chamber through an opening formed in the inner wall surface of the combustion chamber, or premixing of fuel gas and combustion-supporting gas, respectively.
  • the gas nozzle for supplying gas is composed of a plurality of nozzle tubes arranged in parallel in the axial direction of the apparatus.
  • the gas combustion / blowing device (a) is characterized in that it has means for supplying a dilution gas for adjusting the gas temperature or / and gas composition by diluting the combustion gas into the combustion chamber (26).
  • the listed blast furnace equipment (32) The blast furnace equipment according to (26), wherein the tip of the combustion chamber of the gas combustion / blowing device (a) is communicated with the inside of the blast furnace through a gas conduit.
  • the gas conduit is a header pipe, and a plurality of gas inlets formed in the furnace body are connected to the header pipe via a connecting pipe, and the combustion chamber of the gas combustion / blowing device (a)
  • the blast furnace equipment according to (32) characterized in that the tip of the blast furnace is connected.
  • the present inventors have made stable combustion of a low calorific value gas of 1000 kcal / Nm 3 or less (particularly 800 kcal / Nm 3 or less). In addition to using a tubular flame burner, it has been found effective to add hydrogen to the fuel gas.
  • a premixed gas of fuel gas and supporting gas is injected into the inner wall surface of the tubular combustion chamber whose tip is open so that a gas swirl flow is generated in the combustion chamber or a fuel gas and a supporting gas are mixed.
  • a combustion burner having an opening for blowing when a gas having a calorific value of 1000 kcal / Nm 3 or less is used as a fuel gas, the fuel gas before being blown into the combustion chamber and / or the fuel gas blown into the combustion chamber
  • a combustion method of a low calorific value gas by a combustion burner characterized in that hydrogen is added (however, it is added as a hydrogen-containing gas).
  • a fuel gas and a combustion support gas are arranged in a direction substantially tangential to the inner wall surface of the gas blowing portion (A) so that a gas swirl flow is generated in the inner wall surface of the tubular combustion chamber whose tip is opened.
  • the gas nozzle for supplying hydrogen into the combustion chamber through another opening formed on the inner wall surface of the combustion chamber is composed of a plurality of nozzle tubes arranged in parallel in the burner axial direction (34).
  • a premixed gas of fuel gas and combustion support gas for injecting fuel gas and combustion support gas into the inner wall surface of a tubular combustion chamber with an open end so that a gas swirl flow is generated in the combustion chamber.
  • a combustion burner having an opening for blowing when blast furnace gas is used as a fuel gas, hydrogen is added to the blast furnace gas before being blown into the combustion chamber and / or to the blast furnace gas blown into the combustion chamber.
  • a fuel gas and a combustion-supporting gas are respectively blown into the inner wall surface of the tubular combustion chamber having an open end so that a gas swirl flow is generated in the combustion chamber in a direction substantially tangential to the inner wall surface
  • the gas injection part (A) is configured by a gas combustion / injection device (a) in which an opening for injecting the premixed gas of the combustion support gas is formed and the tip of the combustion chamber is communicated with the inside of the blast furnace.
  • the gas nozzle for supplying hydrogen into the combustion chamber through another opening formed in the inner wall surface of the combustion chamber is composed of a plurality of nozzle tubes arranged in parallel in the burner axial direction (44).
  • the present invention in ordinary blast furnace operation, it is possible to prevent the temperature rise of the charge in the upper part of the furnace at the time of low RAR operation, and it is also effective to condense water due to a decrease in the furnace top temperature or to have a zinc compound wall. Therefore, the low RAR operation can be stably performed. Moreover, by configuring the gas blowing section with a tubular flame burner type gas combustion / blowing device, even if a low heating value gas such as blast furnace gas is used as the blowing gas, this can be stably burned.
  • the preheated gas can be used, and the preheated gas can be stably blown into a blast furnace having a predetermined furnace pressure.
  • the low calorific value gas such as blast furnace gas or gas recovered from the CDQ can be stably burned, and the low calorific value is reduced. Gas can be effectively used as fuel.
  • FIG. 1 a partially cutaway plan view showing an embodiment of a gas combustion / blowing device a constituting the gas blowing section A Sectional view along line III-III in FIG.
  • FIG. 4 is a bottom view partially showing the gas combustion / blowing device a of FIG. Sectional drawing which follows the VI-VI line of FIG. Sectional drawing which follows the VII-VII line of FIG.
  • FIG. 12a is an explanatory view schematically showing an example of the installation mode of the gas blowing section A in the present invention in a state where the furnace body is horizontally sectioned
  • FIG. 12b is another example of the installation mode of the gas blowing section A in the present invention.
  • FIG. 12c is an explanatory view schematically showing the furnace body in a horizontal section
  • FIG. 12c is an explanatory view schematically showing another example of the installation mode of the gas blowing part A in the present invention in a state in which the furnace body is horizontally cut.
  • the partially notched top view which shows one Embodiment of the combustion burner used by this invention Sectional drawing which follows the II-II line of FIG. Sectional drawing which shows other embodiment of the combustion burner used by this invention, and follows the cross-sectional line similar to FIG. Partial cutaway plan view showing another embodiment of the combustion burner used in the present invention
  • Explanatory drawing which shows typically one Embodiment of the blast furnace operating method of this invention
  • explanatory drawing which shows typically the radial direction cross section of a combustion chamber inside
  • explanatory drawing which shows typically the radial direction cross section of a combustion chamber inside
  • the partially notched top view which shows one Embodiment of the combustion burner used by this invention Sectional drawing which follows the II-II line of FIG.
  • the other embodiment of the combustion burner used by the present invention is shown, and the sectional view which meets the section line similar to FIG. Partial cutaway plan view showing another embodiment of the combustion burner used in the present invention
  • the bottom view which shows the combustion burner of FIG. 26 partially Sectional drawing which follows the VI-VI line of FIG.
  • the present invention is directed to the operation of a blast furnace in which air or oxygen-enriched air is blown, that is, the operation of a normal blast furnace.
  • the operation is usually performed at an oxygen enrichment rate of 20% by volume or less, preferably 10% by volume or less.
  • an oxygen enrichment rate of 20% by volume or less, preferably 10% by volume or less.
  • FIG. 1 is an explanatory view schematically showing an embodiment of the present invention.
  • 20 is a blast furnace
  • 21 is a tuyere, from which hot air and auxiliary reducing material (for example, pulverized coal, LNG, etc.) are blown into the furnace.
  • Blast furnace gas (furnace top gas) discharged from the top of the blast furnace 20 is dust-removed by a dust catcher 22 that is a gas cleaning device, and moisture is removed by a mist separator 23, and then a furnace top gas power generation device 24. After the pressure of the furnace top gas is recovered as electricity, it is led out of the system.
  • auxiliary reducing material for example, pulverized coal, LNG, etc.
  • gas is blown into the blast furnace from the gas blowing portion A provided in the shaft portion (preferably the middle to upper portion of the shaft).
  • the main purpose of blowing gas into the furnace is to compensate for the decrease in the air flow rate due to low RAR operation and to secure the gas flow rate in the upper part of the furnace, but to lower the furnace top gas temperature unnecessarily. Blowing a temperature gas is contrary to the gist of the invention, so a preheated gas is used as the blown gas.
  • the gas blowing portion A is caused to generate a swirling gas flow on the inner wall surface of the tubular combustion chamber whose tip is opened.
  • a gas combustion / blowing device a in which an opening for injecting fuel gas and combustion-supporting gas into each of them or a premixed gas of fuel gas and combustion-supporting gas is formed, and the tip of the combustion chamber is communicated with the inside of the blast furnace The combustion gas of this gas combustion / blowing device a is blown into the blast furnace as a preheating gas.
  • the basic structure of such a gas combustion / blowing device a is known as, for example, a tubular flame burner as disclosed in Japanese Patent Application Laid-Open No. 11-281015.
  • this tubular flame burner has been developed and used for heating furnaces and combustion equipment, and has not been studied at all for application to gas blowing means for blast furnaces.
  • blast furnace operation in recent years is performed under high pressure conditions, and the preheating gas needs to be blown up to a pressure higher than the furnace pressure at the blowing position, but the tubular flame burner is assumed to be used at normal pressure, The use under the above pressure conditions has not been studied at all.
  • a tubular flame burner type gas combustion / blowing device a is used as a means for preheating by burning a low heating value gas such as blast furnace gas and blowing it into the furnace from the shaft portion of the blast furnace. Has been found to have an excellent function.
  • a part of the blast furnace gas that has passed through the gas cleaning device (dust catcher 22 and mist separator 23) and the top gas generator 24 is extracted and boosted by the booster 25a. Then, it introduce
  • the gas combustion and blowing apparatus a which comprises the gas blowing part A as fuel gas.
  • the gas combustion / blowing device a is supplied with oxygen or an oxygen-containing gas (air, oxygen-enriched air, etc.) as a combustion-supporting gas. Introduced into the combustion / blowing device a.
  • the fuel gas and combustion support gas may be separately boosted in advance by the boosters 25a and 25b.
  • the mixed gas may be boosted with a single booster 25.
  • FIG. 2 and 3 show an embodiment of a gas combustion / blowing apparatus a constituting the gas blowing section A
  • FIG. 2 is a partially cutaway plan view
  • FIG. 3 is taken along the line III-III in FIG. It is sectional drawing.
  • 1 is a tubular (cylindrical) combustion chamber having an open end
  • 3a is a gas nozzle for fuel gas
  • 3b is a gas nozzle for combustion support gas.
  • the combustion chamber 1 communicates with the inside of the blast furnace by connecting the tip of the combustion chamber 1 to a gas inlet 16 provided in the furnace body.
  • a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber.
  • Openings 2a and 2b (nozzle ports) for blowing are formed, and the gas nozzles 3a and 3b are connected to the openings 2a and 2b, respectively.
  • the openings 2a and 2b (nozzle ports) are formed so as to blow gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow. .
  • the openings 2a and 2b of the present embodiment are formed so as to blow fuel gas and combustion-supporting gas substantially in the tangential direction of the inner wall surface 100, respectively.
  • the openings 2a and 2b are formed in a slit shape along the tube axis direction, and are provided at positions facing the inner wall surface 100 (inner peripheral surface) by 180 °. A plurality of these openings 2a and 2b may be provided.
  • gas nozzles 3a and 3b are connected to the openings 2a and 2b.
  • the front end of the combustion chamber 1 is directly connected to the gas inlet 16 to communicate with the inside of the blast furnace, but the front end of the combustion chamber 10 is connected to an appropriate gas conduit (for example, FIGS. 12b and 12c). You may make it communicate with the inside of a blast furnace via a header pipe). In this case, the combustion gas discharged from the tip of the combustion chamber 1 is blown into the blast furnace through the gas conduit.
  • FIG. 10 schematically shows a radial cross section of the inside of the combustion chamber at the position where the openings 2a and 2b are formed.
  • the tip side in the swirling (rotating) direction of the gas flow discharged from the openings 2 a and 2 b and swirling Is the point p the tangent of the inner wall surface 100 at this point p is x
  • the tangent x and the gas flow When the angle formed by the center line y is the gas blowing angle ⁇ , it is preferable to set the gas blowing angle ⁇ so as to be within a preferable swirl number Sw range (Sw: 3 to 10).
  • the gas combustion / blowing device a blows fuel gas and combustion-supporting gas into the inner wall surface 100 of the combustion chamber 1 substantially in the tangential direction of the inner wall surface.
  • a structure in which the openings 2a and 2b are formed is preferable. This is because with such a structure, a preferable swirl number Sw can be realized regardless of changes or changes in the gas amount or gas speed.
  • the gas blowing angle ⁇ shown in FIG. 10 is 30 ° or less, more preferably 10 ° or less.
  • the gas blowing angle ⁇ is increased, there is a possibility that a gas swirl flow along the inner wall surface 100 cannot be properly formed depending on the gas amount and the gas velocity.
  • the gas blowing angle ⁇ is approximately 0 ° to 5 °.
  • a blast furnace gas which is a combustion gas
  • a combustion support gas is supplied to the gas nozzle 3b.
  • These fuel gas and combustion support gas are supplied from the openings 2a and 2b (nozzle ports). It is blown into the combustion chamber 1.
  • the fuel gas and the combustion supporting gas are combusted while forming a swirling flow along the inner wall surface 100 of the combustion chamber 1 to form a flame.
  • the gas combustion / blowing device a may use a premixed gas of a fuel gas and a combustion support gas.
  • a gas swirling flow ( One or more openings 2 (nozzle ports) for injecting a premixed gas of fuel gas and supporting gas are formed so that a gas swirl flow along the circumferential direction of the inner wall surface 100 is generated.
  • a gas nozzle 3 for supplying a mixed gas is connected.
  • the opening 2 is gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow, like the openings 2a and 2b in FIGS.
  • it is preferably formed so as to blow gas (premixed gas) substantially in the tangential direction of the inner wall surface 100.
  • the gas may be blown from the opening 2 so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1, but a preferable method for setting the gas blowing direction,
  • the gas blowing angle ⁇ preferred for the burner structure is the same as that of the openings 2a and 2b described above with reference to FIG.
  • the supply amount of the combustion support gas is an amount necessary to maintain a stable combustion state.
  • air is used as the combustion-supporting gas, it is usually supplied so that the air ratio is 1 or more.
  • the air ratio is the ratio of the theoretical amount of air required for fuel combustion to the actual amount of air supplied (actual air amount / theoretical air amount). 2 and H 2 O.
  • the air ratio is less than 1, incomplete combustion occurs and stable combustion cannot be continued.
  • the air ratio is excessive, lean combustion occurs, and even in this case, a stable combustion state cannot be maintained.
  • the combustion-supporting gas in an air ratio range of 1.0 to 1.5.
  • the ejection speed of the fuel gas and the combustion-supporting gas from the nozzle (opening) it is preferable that both of them have the same speed.
  • the fuel gas and the combustion support gas (or the premixed gas of both) that are blown into the combustion chamber 1 from the gas nozzles 3a and 3b and the openings 2a and 2b to form a swirling flow are Layered according to the gas density difference, gas layers with different densities are formed on both sides of the flame. That is, high-temperature combustion exhaust gas exists on the axis side where the turning speed is low, and unburned gas exists on the inner wall surface 100 side where the turning speed is high. Further, in the vicinity of the inner wall surface 100, the turning speed exceeds the flame propagation speed, so that the flame cannot remain in the vicinity of the inner wall surface.
  • a tubular flame is stably generated in the combustion chamber 1.
  • the inner wall surface of the combustion chamber 1 is not heated to a high temperature by direct heat transfer.
  • the gas in the combustion chamber 1 flows to the tip side while swirling. During this time, the gas on the inner wall surface 100 side sequentially burns and moves to the axial center side, and the combustion gas is discharged from the open tip and is blown into the gas. It is blown into the blast furnace through the mouth 16.
  • FIGS. 4 to 7 show another embodiment of the gas combustion / blowing device a used in the present invention.
  • FIG. 4 is a partially cutaway plan view of the gas combustion / blowing device a
  • FIG. FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 4
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • the gas nozzle 3a for fuel gas and the gas nozzle 3b for combustion-supporting gas are each composed of a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axial direction.
  • the gas nozzles 3a and 3b are configured by the plurality of nozzle tubes 300a and 300b in this manner, as described later, while an appropriate swirl flow is formed in the combustion chamber 1 by the gas nozzles 3a and 3b. This is to make Sw a predetermined preferred range.
  • the inner wall surface 100 on the inner side (rear end side) of the combustion chamber 1 has a gas swirl flow (gas swirl along the circumferential direction of the inner wall surface 100) in the combustion chamber 1.
  • Openings 2a and 2b (nozzle ports) for injecting fuel gas and combustion-supporting gas are formed so as to generate a flow, and these openings 2a and 2b are also constituted by a plurality of openings 200a and 200b, respectively.
  • the nozzle pipe 300a is connected to each opening 200a, and the nozzle pipe 300b is connected to each opening 200b.
  • the openings 200a and 200b are formed so as to blow gas in a direction (eccentric direction) in which the axial center of the combustion chamber 10 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • the openings 200 a and 200 b of the present embodiment are formed so as to blow fuel gas and combustion-supporting gas substantially in the tangential direction of the inner wall surface 100.
  • the gas nozzle 14 is provided. Since the gas nozzle 14 supplies gas for diluting the combustion gas, the gas nozzle 14 may be provided at a position where the gas combustion in the combustion chamber 1 is not hindered.
  • the gas nozzle 14 is specially provided at an installation (connection) position in the longitudinal direction of the combustion chamber. Although there is no particular limitation, in this embodiment, it is provided at a position closer to the front end of the combustion chamber than the center position in the longitudinal direction of the combustion chamber.
  • the gas nozzle 14 may be composed of a single nozzle tube, but in the present embodiment, it is composed of a plurality of nozzle tubes 140 arranged in parallel in the burner axis direction.
  • a gas swirl flow gas swirl flow along the circumferential direction of the inner wall surface 100
  • An opening 15 (nozzle port) for blowing dilution gas in the tangential direction is formed, and the gas nozzle 14 is connected to the opening 15.
  • the opening 15 is composed of a plurality of openings 150, and the nozzle pipe 140 is connected to each opening 150, but the opening 15 is a single slit-shaped opening along the tube axis direction.
  • a single gas nozzle 14 may be connected to this.
  • the dilution gas opening 15 does not necessarily have to have a structure in which gas is blown so that a gas swirl flow is generated in the combustion chamber 10.
  • the other structures and functions of the gas combustion / blowing device a of the embodiment shown in FIGS. 4 to 7 are the same as those of the gas combustion / blowing device a of the embodiment shown in FIGS. Omitted.
  • the gas may be blown from the openings 200a and 200b so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1, but a preferable setting of the gas blowing direction is preferred.
  • the gas blowing angle ⁇ preferred for the method and the burner structure is the same as that of the openings 2a and 2b described above with reference to FIG.
  • the tip of the combustion chamber 1 is connected directly to the gas blast furnace 16 by directly connecting the tip of the combustion chamber 1, but the tip of the combustion chamber 1 is connected to an appropriate gas conduit (for example, FIG. 12b, FIG. 12c). It is also possible to communicate with the inside of the blast furnace through a header pipe as shown in FIG. In this case, the combustion gas discharged from the tip of the combustion chamber 1 is blown into the blast furnace through the gas conduit.
  • high-temperature combustion gas is generated in the combustion chamber 1, and for example, the theoretical combustion temperature of blast furnace gas is about 1300 ° C. at an air ratio of 1.0.
  • the theoretical combustion temperature of blast furnace gas is about 1300 ° C. at an air ratio of 1.0.
  • coke in the furnace is consumed by CO 2 in the blown combustion gas, or iron ore (magnetite) reduced in the furnace is reoxidized.
  • a dilution gas for adjusting the temperature and / or composition of the combustion gas is supplied from the gas nozzle 14 into the combustion chamber 1.
  • the type of dilution gas to be used may be appropriately selected according to the purpose (gas temperature adjustment and / or gas composition adjustment) to be added to the combustion gas. From the aspect of adjusting the composition of the combustion gas, CO, H Those containing a reducing gas such as 2 are preferred.
  • one or more of blast furnace gas, converter gas, coke oven gas, and the like can be used, and it is particularly preferable to extract a part of the blast furnace gas and use it as a dilution gas.
  • the temperature of the preheating gas blown into the blast furnace is preferably 500 ° C. or higher, preferably 800 ° C. or higher and 1000 ° C.
  • the temperature and supply amount of the dilution gas should be selected so as to achieve such a preheating gas temperature.
  • the gas combustion / blowing device a having a gas nozzle for blowing the premixed gas of the fuel gas and the combustion supporting gas can also be configured by a plurality of nozzle tubes arranged in parallel in the burner axial direction. Also in this gas combustion / blowing device a, the gas nozzle 14 and the opening 15 for the dilution gas as described above can be provided.
  • the swirl number Sw of the gas flow in the combustion chamber 1 is preferably in the range of 3-10.
  • the swirl number is a dimensionless number that represents the strength of swirl in the flow of fluid with swirl. The larger the swirl number, the stronger the swirl flow. If the swirl number is too small, the mixing of the fuel gas and the combustion supporting gas becomes insufficient, and the ignition of the fuel gas becomes unstable. On the other hand, if the swirl number is too large, the combustion flame may blow off. From the above viewpoint, the swirl number Sw is preferably in the range of 3 to 10.
  • the swirl number Sw can be calculated in accordance with a known basic formula for calculating the swirl number Sw, using a formula corresponding to the type of the gas combustion / blowing device a to be used and the mode of use thereof.
  • the swirl number Sw can be obtained by the following equation.
  • the swirl number Sw can be obtained by the following equation.
  • a plurality of gas nozzles 3a for fuel gas and gas nozzles 3b for combustion gas are arranged in parallel in the burner axial direction as in the embodiment of FIGS.
  • the nozzle pipes 300a and 300b are preferably used. This is due to the following reasons.
  • combustion chamber diameter 50 mm
  • blast furnace gas amount 30 Nm 3 / h (gas density: 1.34 kg / Nm 3 )
  • air amount 21.4 Nm 3 / h (gas density: 1.29 kg / Nm 3 )
  • air 245 kPa
  • the gas nozzles 12a and 12b are each composed of a single (one) nozzle tube
  • the inner diameter of the nozzle tube with a swirl number Sw of 3 Inner diameter in terms of a circle.
  • the diameter of the circle when the cross-sectional area inside the nozzle tube is converted into the area of the circle.
  • the gas nozzle 3a is 21 mm (fuel gas velocity at the opening 11a: 7 m / s), and the gas nozzle 3b is 21 mm (combustion gas velocity at the opening 2b: 5 m / s).
  • the inner diameter of the nozzle tube is about 4/10 of the combustion chamber inner diameter in the section taken along the line II-II in FIG. With the combustion support gas, the flow toward the center of the combustion chamber (axial center) increases, and it becomes difficult to form a good swirl flow.
  • FIG. 11 schematically shows a radial cross section of the inside of the combustion chamber at the position where the openings 2a and 2b are formed.
  • the radius of the combustion chamber 1 is R, and the inside of the gas nozzles 3a and 3b in the combustion chamber radial direction.
  • the center position of the gas flow blown from the openings 2a and 2b is a position (R ⁇ t / 2) from the center of the combustion chamber 1. It is in.
  • the gas nozzles 3a and 3b are composed of a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axis direction, the inner diameter per nozzle tube is reduced, and thus the above-described problems are unlikely to occur.
  • a good swirl flow can be generated while keeping the swirl number Sw within a preferable range. Therefore, the gas nozzle 3a for fuel gas and the gas nozzle 3b for combustion-supporting gas are preferably configured by a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axial direction.
  • the gas combustion / blowing device a having a gas nozzle for blowing the premixed gas of the fuel gas and the supporting gas is constituted by a plurality of nozzle tubes arranged in parallel in the burner axial direction. .
  • the gas combustion / blowing device a shown in FIGS. 4 to 7 coke is consumed by CO 2 in the combustion gas blown into the blast furnace, or iron ore (magnetite) reduced in the furnace.
  • a dilution gas is supplied into the combustion chamber 1 from the gas nozzle 14.
  • the diluent gas preferably includes a reducing gas such as CO and H 2 , and for example, one or more of blast furnace gas, converter gas, coke oven gas, etc. can be used. However, it is preferable to extract a part of the blast furnace gas and use it as a dilution gas.
  • the temperature of the preheating gas blown into the furnace is 500 ° C. or higher, preferably 800 ° C. or higher and 1000 ° C. or lower. It is preferred that the amount be selected.
  • the effects obtained by using the tubular flame burner type gas combustion / blowing device a as described above will be described in comparison with the case of using another type of conventional gas burner.
  • industrially used gas burners are roughly classified into a diffusion combustion type (external mixing) burner and a premixed combustion type (internal mixing) burner according to the mixing method of fuel gas and supporting gas.
  • each of these gas burners has a structure in which a flame is formed in front of the burner tip. Therefore, when such a gas burner is used as a gas combustion / blowing device a, the flame directly hits the charge (iron ore, coke) descending from the upper part of the blast furnace, causing a coke solution loss reaction, and coke is unnecessary. This causes problems such as being consumed.
  • the top gas of the oxygen blast furnace process that performs pure oxygen blowing has a low amount of nitrogen and is mainly composed of CO, and therefore has a high calorific value (for example, about 1200 kcal / Nm 3 ). For this reason, even the conventional general gas burner as described above can be used as a fuel gas without any particular problem.
  • the blast furnace gas generated in the ordinary blast furnace process targeted by the present invention has a low calorific value (for example, about 800 kcal / Nm 3 ), and stable combustion even when applied to the conventional general gas burner as described above. Is difficult.
  • the amount of heat generated by the blast furnace gas further decreases.
  • the calorific value of the blast furnace gas is (1) 889 kcal / Nm 3 in operation equivalent to RAR494 kg / t, (2) 812 kcal / Nm 3 in operation equivalent to RAR460 kg / t, ( 3) 758 kcal / Nm 3 for operation equivalent to RAR 437 kg / t, (4) 724 kcal / Nm 3 for operation equivalent to RAR 426 kg / t, and in this calculation, the temperature of the blast furnace top gas is 110 ° C. or less.
  • the blast furnace gas heating value further decreases. For example, in the operation of the above (2), if a 800 ° C. preheated gas's crowded 100 Nm 3 / t blown, the blast furnace gas calorific value 786kcal / Nm 3, and the addition, in the operation of the above (3), preheating of 800 ° C. When gas is blown at 150 Nm 3 / t, the blast furnace gas heating value is 715 kcal / Nm 3 .
  • the preheated gas to be blown into the furnace needs to have a pressure higher than the pressure in the furnace at the position to be blown. Therefore, gas combustion occurs substantially under pressure in the combustion chamber 1 of the gas combustion / blowing device a.
  • gas combustion / blowing device a when the combustion chamber 1 is in a pressurized state as described above, it is possible to stably burn even a low calorific value gas such as a blast furnace gas.
  • a low calorific value gas such as a blast furnace gas.
  • the gas combustion / blowing device a a stable flame is formed in the combustion chamber 1 and the mixing property of the fuel gas and the combustion supporting gas (oxygen) is good, so that the gas can be burned efficiently and homogeneously.
  • the apparent heat generation amount increases because the gas density increases with respect to the heat generation amount in the standard state.
  • the fuel gas is a low calorific value gas such as a blast furnace gas, or even when the concentration of the fuel gas component is very low, the fuel gas can be stably burned.
  • (C) Similarly, when the combustion chamber 1 is in a pressurized state, the gas density is increased, and the amount of heat held by the fuel gas can be effectively transmitted to the combustion gas. In particular, since unburned gas and combustion support gas exist near the inner wall surface 100 of the combustion chamber 1, the inner wall surface 100 of the combustion chamber 1 is not heated to a high temperature by direct heat transfer, The effect is further enhanced by the small heat loss from the tube wall.
  • the preheating gas blown from the gas blowing section A does not contain oxygen (oxygen gas as O 2 , the same applies hereinafter) or has a low oxygen concentration.
  • the gas combustion / blowing device a has a high oxygen utilization efficiency by forming a stable flame in the combustion chamber 1, and further increases the oxygen utilization efficiency when the combustion chamber 1 is in a pressurized state. Therefore, stable combustion is possible with an oxygen amount smaller than the theoretical oxygen amount. Therefore, a preheating gas not containing oxygen or having a very low oxygen concentration can be blown into the furnace.
  • a sensor 26a for measuring the composition, temperature, pressure and the like of the blast furnace gas is installed in the flow path 9 for guiding the blast furnace gas to the booster 6, and the pressure and temperature in the furnace are measured in the vicinity of the gas blowing part A.
  • the sensor 26b is installed, and based on the measured values of these sensors 26a and 26b, the gas pressure boosted by the boosters 25a and 25b, the amount of combustion-supporting gas introduced into the gas combustion / blowing device a, and the like are controlled. Blowing of the preheating gas from the gas blowing section A may be performed constantly or only when the furnace top gas temperature is lowered.
  • the furnace top gas temperature is measured by a sensor, and when the furnace top gas temperature is equal to or lower than a predetermined temperature (for example, 110 ° C. or lower), the preheating gas is blown from the gas blowing portion A. .
  • a predetermined temperature for example, 110 ° C. or lower
  • the preheating gas is blown from the gas blowing portion A.
  • a high temperature is preferred, generally 500 ° C. or higher, preferably 800 ° C. or higher.
  • the temperature of the preheating gas is preferably 1000 ° C.
  • the preheating gas contains CO 2 or H 2 O and the preheating gas temperature exceeds 1000 ° C.
  • the following reaction solution loss reaction
  • the preheating gas does not contain an oxidizing gas such as CO 2 or H 2 O
  • the coke is not consumed by the above reaction, but the apparatus (component) is made of an expensive heat-resistant material. This increases the equipment cost.
  • the composition of the fuel gas to be used is changed to adjust the amount of gas heat, the air ratio is adjusted within a predetermined range, and the combustion gas as shown in FIGS.
  • the temperature and supply amount of the dilution gas may be adjusted.
  • the amount of preheated gas blown there is no particular limitation on the amount of preheated gas blown, and generally, the amount of blown gas may be such that the furnace top gas temperature can be maintained at 100 ° C. or higher.
  • the furnace top gas temperature can be maintained at 100 ° C. or higher by blowing preheated gas at 800 ° C. at 100 Nm 3 / t in an operation equivalent to RAR 470 kg / t.
  • the installation position of the gas blowing part A in the furnace height direction is preferably from the middle to the upper part of the shaft. In particular, the position where the furnace port radius is R 0 and the depth from the stock line is R 0 is p.
  • the Preheating gas is preferably blown from the gas blowing portion A. If the preheating gas blowing position is too shallow (too high), the load of the raw material packed bed is small, so that the raw material is fluidized and stirred, which may reduce the stability of the raw material drop. On the other hand, if the blowing position of the preheating gas is too deep (too low), it may be applied to the softened fusion zone in the furnace, which is not preferable.
  • each gas blowing part A is composed of one gas blowing port 16 and one gas combustion / blowing apparatus a connected thereto, at least n gas blowing parts A are arranged at equal intervals in the furnace circumferential direction. (Where n is an even number equal to or greater than 4), and in accordance with the total amount of preheating gas blown, the gas blowing portion A for blowing the preheating gas from the n gas blowing portions A is arranged in the furnace circumferential direction, etc. It is preferable to select an interval.
  • the number of gas blowing portions A installed at equal intervals is 4, 8, 16, 32, 64, or the like. In actual equipment, it may be difficult to provide the gas blowing parts A at exactly equal intervals in the furnace circumferential direction because of the relationship with the furnace body cooling structure, etc. Is done.
  • Each gas blowing section A may be constituted by one gas blowing port 16 and one gas combustion / blowing device a connected thereto as described above (the embodiment shown in FIGS. Applicable), a plurality of gas injection ports 16 and one or two or more gas combustion / injection devices a connected to the gas injection ports 16 via a header pipe may be used.
  • FIGS. 12A to 12C are schematic views showing various installation forms of the gas blowing section A in a state in which the furnace body is horizontally sectioned.
  • the gas blowing part A is constituted by one gas blowing port 16 and one gas combustion / blowing apparatus a connected thereto, and this gas blowing part A is arranged in the furnace circumferential direction.
  • the preheating gas blowing conditions can be adjusted for each gas blowing port 16.
  • the gas combustion / blowing device a is shown only for a part (two) of the gas blowing portions A.
  • the gas blowing part A is constituted by a plurality of gas blowing ports 16 and a gas combustion / blowing device a connected to the gas blowing ports 16 via a header pipe. It is what. In such an embodiment, the combustion gas discharged from the combustion chamber 1 of the gas combustion / blowing device a is blown into the blast furnace from the plurality of gas blowing ports 16 via the header pipe.
  • a plurality of gas injection ports 16 are provided at intervals in the furnace circumferential direction, and the gas injection ports 16 are divided into a plurality of gas injection port groups 17a to 17d.
  • a header pipe 18 is arranged in each of the groups 17a to 17d.
  • a plurality of gas injection ports 16 constituting each gas injection port group 17a to 17d are connected to these header pipes through a connecting pipe 19, and the tip of the combustion chamber 1 of the gas combustion / injection device a is connected. It is.
  • the preheating gas blowing conditions can be adjusted for each of the gas blowing port groups 17a to 17d.
  • one gas combustion / blowing device a is connected to one header pipe 18, but two or more gas combustion / blowing devices a may be connected.
  • a plurality of gas inlets 16 are provided at intervals in the furnace circumferential direction, and an annular header pipe 18 is provided along the entire circumference of the furnace.
  • the header pipe 18 is connected to all the gas blowing ports 16 via a connecting pipe 19 and is connected to the tip of the combustion chamber 1 of the gas combustion / blowing apparatus a.
  • one gas combustion / blowing device a is connected to the header pipe 18, but two or more gas combustion / blowing devices a may be connected.
  • the present invention is a preferred embodiment in which a blast furnace gas that has a low calorific value and can be introduced from a nearby location is used as the fuel gas of the gas combustion / blowing device a, and in particular, the blast furnace gas discharged from the top of the furnace It is a particularly preferred embodiment that a part of the is extracted from an appropriate flow path position and used as a fuel gas.
  • gas other than blast furnace gas may be used as the fuel gas, or blast furnace gas and other gas (for example, coke oven generated gas) may be mixed and used.
  • blast furnace gas As blast furnace gas, blast furnace gas extracted from the downstream side of the gas cleaning device (dust catcher 22, mist separator 23), blast furnace gas extracted from between the top of the furnace and the gas cleaning device, and blast furnace gas stored in the gas holder. Etc. may be used.
  • a test device (device corresponding to the gas combustion / blowing device a) shown in FIG.
  • a combustion test was conducted with an increased supply pressure of the combustion-supporting gas (air).
  • the combustion chamber of this test apparatus has an inner diameter of 50 mm and an overall length of 300 mm, and an opening (nozzle slit) for injecting fuel gas formed on the inner wall surface has a length of 48 mm, a width of 5 mm, and an inflow of combustion supporting gas.
  • the opening (nozzle slit) for use has a length of 31 mm and a width of 5 mm.
  • the low calorific value gas used as the fuel gas has a gas composition of CO: 22 vol%, CO 2 : 21 vol%, H 2 : 5 vol%, N 2 : 52 vol%, and a calorific value of 792 kcal / Nm 3 .
  • Air 19.5 Nm 3 / h was supplied to the fuel gas 30 Nm 3 / h so that the theoretical oxygen amount was 1.
  • FIG. 9 shows the relationship between the effective heat utilization rate calculated from the measured value of the combustion chamber pressure and the combustion gas temperature (measured by a thermocouple installed near the tip of the combustion chamber).
  • FIG. 9 shows that when the pressure in the combustion chamber is increased, the effective heat utilization rate is improved and the fuel gas is effectively converted into heat.
  • the fuel gas (blast furnace gas) was used under the conditions shown in Table 1, using the gas combustion / blowing device a (test device) in which the number of nozzle tubes constituting the gas nozzle for fuel gas and the gas nozzle for supporting gas was different. And a combustion test using combustion supporting gas (air) was conducted.
  • the gas combustion / blowing device a in which each gas nozzle is composed of one (single) nozzle tube, is a device (burner) having a gas nozzle having a structure as in the embodiment of FIGS.
  • the gas combustion / blowing device a in which each gas nozzle is composed of a plurality of nozzle tubes is a device (burner) having a gas nozzle having a structure as in the embodiment of FIGS.
  • each gas combustion / blowing device a has an inner diameter of 50 mm and an overall length of 700 mm, and the number of nozzle tubes constituting the gas nozzle for fuel gas and the gas nozzle for combustion support gas is as follows: Test example 1: 5 Test Example 2: 4, Test Example 3: 2, Test Example 4: 1, Test Example 5: 4, Test Example 6: 2.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 10 mm, and the inner diameter of the nozzle tube constituting the gas nozzle for supporting combustion gas blowing is 10 mm. is there.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 6 mm, and the inner diameter of the nozzle tube constituting the gas nozzle for supporting combustion gas blowing is 6 mm.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 10 mm
  • the inner diameter of the nozzle tube constituting the gas nozzle for supporting combustion gas blowing is 10 mm.
  • the blast furnace gas used as the fuel gas has a gas composition of CO: 23.5 vol%, CO 2 : 23.0 vol%, H 2 : 1.5 vol%, N 2 : 52 vol%, and a calorific value of 754 kcal / Nm 3 It is.
  • Air: 19.4 Nm 3 / h was supplied as a combustion support gas so that the theoretical oxygen amount was 1 with respect to this fuel gas: 30 Nm 3 / h.
  • the internal pressure of the applied test furnace is 245 kPa.
  • the gas combustion / blowing device a provided with a gas nozzle for dilution gas (inner diameter 20 mm) at a position 500 mm away from the center of the fuel gas / combustion gas blowing position in the burner axis direction is discharged from the combustion chamber.
  • the diluted gas (blast furnace gas) was supplied at 24.5 Nm 3 / h so that the combustion exhaust gas temperature was 800 ° C.
  • the combustion gas composition contained 8.4 vol% of CO (reducing gas).
  • Test Examples 1 to 6 observation in the combustion chamber (observation from a viewing window as shown in FIG. 8) and gas composition analysis of the combustion exhaust gas were performed, and the combustion state was evaluated according to the following criteria. The results are shown in Table 1 together with the configuration of the gas nozzle, the gas flow rate, the swirl number Sw, the combustion gas composition (in Test Example 6, the gas composition after adding the dilution gas), and the like.
  • X Pulsation was observed in the combustion state, and a considerable amount of unburned CO was measured.
  • Stable combustion continued and almost no unburned CO was measured (however, the CO concentration in Test Example 6 was due to the mixing of diluent gas)
  • Example 1 In a blast furnace having a furnace internal volume of 5000 m 3 , the present invention was implemented in an embodiment as shown in FIG. 1 using a gas combustion / blowing device a as shown in FIGS.
  • the blast furnace gas extracted from the downstream side of the furnace top gas power generation device 24 is boosted to a pressure 0.2 atm higher than the furnace pressure by the booster 25a, and is introduced as a fuel gas into the gas combustion / blowing device a constituting the gas blowing section A. .
  • the pressure of oxygen was increased by the booster 25b and introduced into the gas combustion / blowing device a as a combustion support gas.
  • Blast furnace gas supply amount to the gas combustion and purging means a is set to 100 Nm 3 / t, which is burned with oxygen 5.6 nm 3 / t, to produce a 800 ° C. combustion gas, was blown into the furnace so as preheating gas .
  • the oxygen ratio in the gas combustion / blowing device a is 0.335 (relative to the theoretical oxygen amount).
  • Example 2 The present invention was carried out in the embodiment shown in FIG. 1 using a gas combustion / blowing device a as shown in FIGS. 4 to 7 in a blast furnace having a furnace internal volume of 5000 m 3 .
  • the blast furnace gas extracted from the downstream side of the furnace top gas power generation device 5 is boosted to a pressure 0.2 atm higher than the furnace internal pressure by the booster 25a, and introduced into the gas combustion / blowing device a constituting the gas blowing section A as a fuel gas.
  • the pressure of oxygen was increased by the booster 25b and introduced into the gas combustion / blowing device a as a combustion support gas.
  • BFG combustion chamber a
  • a combustion gas of 800 ° C. was generated, and this was blown into the furnace as a preheating gas.
  • the composition of the preheating gas is equivalent to that in Example 1.
  • FIG. 13 and 14 show an embodiment of a combustion burner (tubular flame burner) used in the present invention.
  • FIG. 13 is a partially cutaway plan view
  • FIG. 14 is taken along the line II-II in FIG. It is sectional drawing.
  • 1 is a tubular (cylindrical) combustion chamber having an open end
  • 3a is a gas nozzle for fuel gas
  • 3b is a gas nozzle for combustion support gas.
  • Openings 2a and 2b for injecting combustion-supporting gas are formed, and the gas nozzles 3a and 3b are connected to the openings 2a and 2b, respectively.
  • the openings 2a and 2b (nozzle ports) are formed so as to blow gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • the openings 2a and 2b of the present embodiment are formed so as to blow fuel gas and combustion-supporting gas substantially in the tangential direction of the inner wall surface 100, respectively.
  • the openings 2a and 2b are formed in a slit shape along the tube axis direction, and are provided at positions facing the inner wall surface 100 (inner peripheral surface) by 180 °. A plurality of these openings 2a and 2b may be provided. In this case, gas nozzles 3a and 3b are connected to the openings 2a and 2b.
  • a gas introduction part of the gas nozzle 3 a is provided with a mixing chamber 4 for mixing fuel gas and hydrogen, and a fuel gas supply pipe 5 and a hydrogen supply pipe 6 are connected to the mixing chamber 4.
  • a combustion support gas supply pipe 7 is connected to the gas introduction part of the gas nozzle 3b.
  • 8 to 10 are flow rate adjusting valves provided in the fuel gas supply pipe 5, the hydrogen supply pipe 6 and the combustion supporting gas supply pipe 7, respectively, 11 is a flow meter provided in the hydrogen supply pipe 6, and 12 is a combustion chamber 1.
  • a combustion state detection device 13 for detecting the combustion state in the inside, 13 is a spark plug.
  • the combustion state detection device 12 may be, for example, a method in which a thermocouple is inserted in a flame to measure temperature, an optical method in which ultraviolet light in the flame is detected using Ultravision or the like. Further, x is a furnace body provided with a combustion burner.
  • FIG. 21 schematically shows a radial section of the inside of the combustion chamber at the position where the openings 2a and 2b are formed.
  • the tip side in the swirling (rotating) direction of the gas flow discharged from the openings 2 a and 2 b and swirling Is the point p the tangent of the inner wall surface 100 at this point p is x
  • the tangent x and the gas flow When the angle formed by the center line y is the gas blowing angle ⁇ , it is preferable to set the gas blowing angle ⁇ so as to be within a preferable swirl number Sw range (Sw: 3 to 10).
  • the combustion burner has openings 2a and 2b for injecting fuel gas and supporting gas in the tangential direction of the inner wall surface on the inner wall surface 100 of the combustion chamber 1, respectively.
  • a structure is preferred. This is because with such a structure, a preferable swirl number Sw can be realized regardless of changes or changes in the gas amount or gas speed.
  • the gas blowing angle ⁇ shown in FIG. 21 is 30 ° or less, more preferably 10 ° or less.
  • the gas blowing angle ⁇ is approximately 0 ° to 5 °.
  • the present invention has a low heat generation with a calorific value of 1000 kcal / Nm 3 or less (particularly 800 kcal / Nm 3 or less) such as blast furnace gas, CDQ gas, exhaust gas containing a small amount of combustible components, etc.
  • a quantity gas is used as a fuel gas
  • hydrogen is added to the fuel gas in order to stably burn it.
  • This hydrogen may be added as pure hydrogen gas or hydrogen-containing gas (hereinafter referred to as “hydrogen (added to fuel gas)” in this specification, “hydrogen-containing gas” is referred to as “hydrogen-containing gas”. Meaning to include).
  • the hydrogen concentration of the hydrogen-containing gas needs to be higher than the hydrogen concentration of the fuel gas. Accordingly, when blast furnace gas (usually H 2 concentration: 2 to 3 vol%) is used as the fuel gas, it is necessary to use a hydrogen-containing gas having a higher hydrogen concentration than the blast furnace gas. Other than this point, there is no particular restriction on the hydrogen concentration of the hydrogen-containing gas, but it is generally preferable to use a hydrogen-containing gas having a hydrogen concentration of 20 vol% or more.
  • a coke oven gas obtained when producing coke has a particularly high hydrogen concentration (usually about 55 vol%) and is suitable as a hydrogen-containing gas.
  • the fuel gas and hydrogen are supplied to the mixing chamber 4 of the gas nozzle 3 a through the fuel gas supply pipe 5 and the hydrogen supply pipe 6. Hydrogen is mixed with this, and this hydrogen-mixed fuel gas (fuel gas mixed with hydrogen; the same applies hereinafter) enters the nozzle body.
  • combustion support gas is supplied to the gas nozzle 3b through the support gas supply pipe 7.
  • the hydrogen mixed fuel gas and the combustion support gas supplied to the gas nozzles 3a and 3b are blown into the combustion chamber 1 from the openings 2a and 2b (nozzle ports).
  • the hydrogen-mixed fuel gas and the combustion support gas burn while forming a swirling flow along the inner wall surface 100 of the combustion chamber 1 to form a flame.
  • the above combustion is started by the ignition by the spark plug 13, and when combustion continues, the ignition by the spark plug 13 is complete
  • the combustion burner may use a gas (premixed gas) obtained by premixing fuel gas and combustion-supporting gas.
  • gas swirling is performed on the inner wall surface 100 of the combustion chamber 1 in the combustion chamber 1.
  • One or more openings 2 (nozzle ports) for injecting a premixed gas of fuel gas and supporting gas are formed so as to generate a flow (a gas swirl flow along the circumferential direction of the inner wall surface 100).
  • a gas nozzle 3 for supplying a premixed gas is connected to the above.
  • the opening 2 is gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • it is preferably formed so as to blow gas (premixed gas) substantially in the tangential direction of the inner wall surface 100.
  • the hydrogen is added to the fuel gas or the premixed gas before being premixed with the combustion support gas, and the premixed gas thus added with hydrogen is blown into the combustion chamber 1 from the opening 2 through the gas nozzle 3. It is.
  • the gas may be blown from the opening 2 so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1, but a preferable method for setting the gas blow direction,
  • the gas blowing angle ⁇ preferred for the burner structure is the same as that of the openings 2a and 2b described above with reference to FIG.
  • the hydrogen mixed fuel gas and the combustion support gas are blown into the combustion chamber 1 from the gas nozzles 3a and 3b and the openings 2a and 2b to form a swirling flow.
  • Gas layers with different densities are formed on both sides of the flame. That is, high-temperature combustion exhaust gas exists on the axis side where the turning speed is low, and unburned gas exists on the inner wall surface 100 side where the turning speed is high. Further, in the vicinity of the inner wall surface 100, the turning speed exceeds the flame propagation speed, so that the flame cannot remain in the vicinity of the inner wall surface. For this reason, a tubular flame is stably generated in the combustion chamber 1.
  • the inner wall surface of the combustion chamber 1 is not heated to a high temperature by direct heat transfer. Then, the gas in the combustion chamber 1 flows to the tip side while swirling, but during that time, the gas on the inner wall surface 100 side sequentially burns and moves to the axial center side, and the combustion gas is discharged from the opened tip.
  • the burning rate of hydrogen is extremely faster than other flammable gases such as CO. Therefore, it is possible to stably burn a low calorific value gas by adding hydrogen.
  • MCP maximum combustion potential
  • the MCP calculated by the above formula is 282 for hydrogen and 100 for CO, and hydrogen is 2.8 times faster than CO. Therefore, by adding hydrogen, it becomes possible to stably burn the low calorific value gas.
  • the adiabatic flame temperature of the low calorific value gas is equal to or higher than the ignition point of the gas species contained in the fuel gas (CO ignition point: 609 ° C., H 2 (Ignition point: 500 ° C.) or the concentration of the combustible gas contained in the fuel gas is not less than the lower explosion limit concentration (CO explosion lower limit concentration: 12.5 vol%, H 2 : 4 vol%) Good.
  • the adiabatic flame temperature after adding hydrogen becomes 750 ° C. or higher, stable combustion becomes possible.
  • the calorific value is 305 kcal / Nm 3 and the adiabatic flame temperature is 645 ° C., which is stable in this state.
  • the combustion does not continue, and a pilot burner for supplementary combustion is required separately.
  • the adiabatic flame temperature is a temperature calculated theoretically as being used for increasing the temperature of the combustion gas without losing heat generated by combustion to the outside.
  • the present invention can also be applied to the case where a low calorific value gas originally containing hydrogen is used as a fuel gas. The amount added is adjusted. In the combustion method of the present invention, if the combustion chamber 1 is in a pressurized state, the gas density increases and the apparent heat generation amount increases. Is possible.
  • an oxygen-containing gas such as air or oxygen gas can be used as the combustion support gas, but the present invention is particularly useful when air is used as the combustion support gas.
  • the supply amount of the combustion support gas is an amount necessary to maintain a stable combustion state.
  • air ratio is 1 or more.
  • the air ratio is the ratio of the theoretical amount of air required for fuel combustion to the actual amount of air supplied (actual air amount / theoretical air amount). 2 and H 2 O.
  • the air ratio is less than 1, incomplete combustion occurs and stable combustion cannot be continued.
  • the air ratio is excessive, lean combustion occurs, and even in this case, a stable combustion state cannot be maintained.
  • the combustion-supporting gas in an air ratio range of 1.0 to 1.5.
  • the ejection speed of the fuel gas and the combustion-supporting gas from the nozzle (opening) it is preferable that both of them have the same speed.
  • FIG. 15 is a cross-sectional view (a cross-sectional view along the same cross-sectional line as FIG. 14) showing an embodiment of the combustion burner used in this case.
  • openings 2 a and 2 b similar to those in FIG. 14 are formed on the inner wall surface 100 on the inner side (rear end side) of the combustion chamber 1, and between the openings 2 a and 2 b in the circumferential direction of the inner wall surface 100.
  • a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1 at the center position (that is, at a position of 90 ° with respect to the openings 2a and 2b in the circumferential direction).
  • Openings 2c 1 and 2c 2 (nozzle ports) for blowing (hydrogen gas or hydrogen-containing gas; the same applies hereinafter) are formed, and hydrogen gas nozzles 3c 1 and 3c 2 are connected to the openings 2c 1 and 2c 2 , respectively. ing.
  • the openings 2c 1 and 2c 2 (nozzle ports) also have a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow. It is formed so that gas (hydrogen) is blown into.
  • the openings 2c 1 and 2c 2 of the present embodiment are formed so as to blow hydrogen substantially in the tangential direction of the inner wall surface 100. Similar to the openings 2a and 2b, the openings 2c 1 and 2c 2 are formed in a slit shape along the tube axis direction. Note that only one of these openings 2c 1 and 2c 2 may be provided, or three or more of them may be provided.
  • the gas nozzle 3c is connected to each opening 2c.
  • Gas (hydrogen) may be blown from the openings 2c 1 and 2c 2 so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1.
  • a preferable setting method of the inlet direction and a gas injection angle ⁇ preferable for the burner structure are the same as those of the openings 2a and 2b described above with reference to FIG. In such a combustion burner, hydrogen is added to the fuel gas in the combustion chamber 1 by blowing hydrogen into the combustion chamber 1 from the openings 2c 1 and 2c 2 through the gas nozzle 3c.
  • a gas (premixed gas) obtained by premixing fuel gas and combustion supporting gas may be used.
  • a gas (premixed gas) obtained by premixing fuel gas and combustion supporting gas may be used.
  • the openings 2a and 2b one or more openings 2 (nozzle ports) for injecting a premixed gas of fuel gas and supporting gas are formed, and a gas nozzle 3 for supplying a premixed gas is formed in the opening 2 Is connected.
  • the fuel gas to which hydrogen is added and the combustion support gas form a swirling flow in the combustion chamber 1 of the combustion burner, so that the fuel gas having a low calorific value can be stably combusted.
  • the fuel gas is a gas mainly composed of CO, CO 2 , and N 2 such as blast furnace gas
  • hydrogen has a lower gas density than these gas components, so that the embodiment shown in FIG.
  • hydrogen moves to the axial center side due to the density difference and burns preferentially to promote combustion of other gases. For this reason, the combustibility of the fuel gas with a low calorific value can be further enhanced.
  • FIGS. 16 to 19 show another embodiment of the combustion burner (tubular flame burner) used in the present invention.
  • FIG. 16 is a partially cutaway plan view of the combustion burner
  • FIG. 17 is a partial view of the combustion burner.
  • FIG. 18 is a sectional view taken along line VI-VI in FIG. 16
  • FIG. 19 is a sectional view taken along line VII-VII in FIG.
  • the gas nozzle 3a for fuel gas and the gas nozzle 3b for combustion-supporting gas are each composed of a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axial direction.
  • the gas nozzles 3a and 3b are configured by the plurality of nozzle tubes 300a and 300b in this manner, as described later, while an appropriate swirl flow is formed in the combustion chamber 1 by the gas nozzles 3a and 3b. This is to make Sw a predetermined preferred range.
  • the inner wall surface 100 on the inner side (rear end side) of the combustion chamber 1 has a gas swirl flow (gas swirl along the circumferential direction of the inner wall surface 100) in the combustion chamber 1.
  • Openings 2a and 2b (nozzle ports) for injecting fuel gas and combustion-supporting gas are formed so as to generate a flow, and these openings 2a and 2b are also constituted by a plurality of openings 200a and 200b, respectively.
  • the nozzle pipe 300a is connected to each opening 200a, and the nozzle pipe 300b is connected to each opening 200b.
  • the openings 200a and 200b are formed so as to blow gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • the openings 200 a and 200 b of the present embodiment are formed so as to blow fuel gas and combustion-supporting gas substantially in the tangential direction of the inner wall surface 100. Further, in order to supply a dilution gas into the combustion chamber 1 for diluting the combustion gas and adjusting its temperature and / or composition at a position closer to the tip of the combustion chamber than the gas nozzles 3a, 3b (openings 2a, 2b).
  • the gas nozzle 14 is provided.
  • the gas nozzle 14 may be provided at a position where the gas combustion in the combustion chamber 1 is not hindered.
  • the gas nozzle 14 is specially provided at an installation (connection) position in the longitudinal direction of the combustion chamber. Although there is no particular limitation, in this embodiment, it is provided at a position closer to the front end of the combustion chamber than the center position in the longitudinal direction of the combustion chamber.
  • the gas nozzle 14 may be composed of a single nozzle tube, but in the present embodiment, the gas nozzle 14 is composed of a plurality of nozzle tubes 140 arranged in parallel in the burner axis direction.
  • a gas swirl flow (gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1.
  • An opening 15 (nozzle port) for blowing dilution gas in the tangential direction is formed, and the gas nozzle 14 is connected to the opening 15.
  • the opening 15 is composed of a plurality of openings 150, and the nozzle pipe 140 is connected to each opening 150, but the opening 15 is a single slit-shaped opening along the tube axis direction.
  • a single gas nozzle 14 may be connected to this.
  • the dilution gas opening 15 does not necessarily have a structure in which gas is blown so that a swirling gas flow is generated in the combustion chamber 1. Since the other structures and functions of the combustion burner of the embodiment of FIGS. 16 to 19 are the same as those of the combustion burner of the embodiment shown in FIGS. 13 and 14, detailed description thereof will be omitted.
  • the gas may be blown from the openings 200a and 200b so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1, but a preferable setting of the gas blowing direction is preferred.
  • the gas blowing angle ⁇ preferred for the method and the burner structure is the same as that of the openings 2a and 2b described above with reference to FIG.
  • the combustion burner used in the present invention high-temperature combustion gas is generated in the combustion chamber 1, and for example, the theoretical combustion temperature of blast furnace gas is about 1300 ° C. at an air ratio of 1.0.
  • the combustion gas of the combustion burner is blown into the blast furnace as a preheating gas, coke in the furnace is consumed by CO 2 in the blown combustion gas, or in the furnace It is preferable to dilute the combustion gas and manage its temperature and composition so that the iron ore (magnetite) reduced in step 1 is not reoxidized.
  • a dilution gas for adjusting the temperature and / or composition of the combustion gas is supplied from the gas nozzle 14 into the combustion chamber 1.
  • the type of dilution gas to be used may be appropriately selected according to the purpose (gas temperature adjustment and / or gas composition adjustment) to be added to the combustion gas. From the aspect of adjusting the composition of the combustion gas, CO, H Those containing a reducing gas such as 2 are preferred. For example, one or more of blast furnace gas, converter gas, coke oven gas, and the like can be used, and it is particularly preferable to extract a part of the blast furnace gas and use it as a dilution gas.
  • the temperature of the preheating gas is preferably 500 ° C. or higher, and preferably 800 ° C. or higher as described later.
  • the gas temperature and supply rate be selected.
  • the combustion nozzle having the gas nozzle for injecting the premixed gas of the fuel gas and the combustion support gas and the combustion burner having the gas nozzle 3c for injecting hydrogen as in the embodiment of FIG. 15 are also connected to the burner shaft. It can be composed of a plurality of nozzle tubes arranged in parallel in the direction. Also in these combustion burners, the gas nozzle 14 and the opening 15 for the dilution gas as described above can be provided.
  • the swirl number Sw of the gas flow in the combustion chamber 1 is preferably in the range of 3-10.
  • the swirl number is a dimensionless number representing the strength of swirl in the fluid flow accompanied by swirl. The larger the swirl number, the stronger the swirl flow. If the swirl number is too small, the mixing of the fuel gas and the combustion supporting gas becomes insufficient, and the ignition of the fuel gas becomes unstable. On the other hand, if the swirl number is too large, the combustion flame may blow off.
  • the swirl number Sw is preferably in the range of 3 to 10.
  • the swirl number Sw can be calculated according to a well-known basic formula for calculating the swirl number Sw according to the type of the combustion burner to be used and the type of use thereof. When a combustion burner having an opening 2a for fuel gas injection and an opening 2b for support gas injection is used, the swirl number Sw can be obtained by the following equation.
  • the fuel gas is a hydrogen mixed fuel gas.
  • the swirl number Sw can be obtained by the following equation.
  • the premixed gas is “fuel gas + hydrogen + combustion gas”.
  • the swirl number Sw Can be obtained by the following equation.
  • a plurality of gas nozzles 3a for fuel gas and gas nozzles 3b for combustion gas are arranged in parallel in the burner axial direction as in the embodiment of FIGS.
  • the nozzle pipes 300a and 300b are preferably used. This is due to the following reasons.
  • combustion chamber diameter 50 mm
  • combustion gas amount (blast furnace gas): 30 Nm 3 / h (gas density: 1.34 kg / Nm 3 ), air amount: 21.4 Nm 3 / h (gas density: 1.29 kg / Nm) 3 ), air ratio: 1.1
  • furnace pressure: 245 kPa furnace pressure when the combustion burner is installed in the blast furnace as a gas combustion / blowing device a as in the blast furnace operating method described later
  • the gas nozzle 3a If each 3b is composed of a single (one) nozzle tube, the inner diameter of the nozzle tube with a swirl number Sw of 3 (inner diameter converted to a circle.
  • the diameter of the circle at the time of the gas nozzle 3a is hereinafter referred to as “the inner diameter of the nozzle tube”, and the same meaning is used.
  • the gas nozzle 3a is 21 mm (fuel gas velocity at the opening 2a: 7 m / s) and the gas nozzle 3b 21 m (oxidizing gas velocity at the opening 2b: 5m / s) become.
  • the inner diameter of the nozzle tube is about 4/10 of the combustion chamber diameter in the section taken along the line II-II in FIG.
  • FIG. 22 schematically shows a radial section of the inside of the combustion chamber at the position where the openings 2a and 2b are formed.
  • the radius of the combustion chamber 1 is R and the inside of the gas nozzles 3a and 3b in the combustion chamber radial direction.
  • R ⁇ t / 2) /R ⁇ 0.8 is preferable. However, in the above example, this preferable condition is not satisfied.
  • the gas nozzles 3a and 3b are composed of a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axis direction, the inner diameter per nozzle tube is reduced, and thus the above-described problems are unlikely to occur.
  • a good swirl flow can be generated while keeping the swirl number Sw within a preferable range. Therefore, the gas nozzle 3a for fuel gas and the gas nozzle 3b for combustion-supporting gas are preferably configured by a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axial direction.
  • the gas nozzle is preferably composed of a plurality of nozzle tubes arranged in parallel in the burner axial direction.
  • the low calorific value gas used as the fuel gas in the present invention has a calorific value of 1000 kcal / Nm 3 or less.
  • a gas having a calorific value exceeding 1000 kcal / Nm 3 can be combusted by a conventional method without particularly applying the present invention. Therefore, in the present invention, it is a substantial requirement that the calorific value of the fuel gas to which hydrogen is added is 1000 kcal / Nm 3 or less.
  • a gas having a calorific value of 800 kcal / Nm 3 or less is particularly difficult to obtain stable combustibility, the utility of the present invention is particularly high when it is used as a fuel gas.
  • the fuel gas used in the present invention has a calorific value of 300 kcal / N Nm 3 or more is preferable.
  • This blast furnace operation method of the present invention is intended for blast furnace operation in which air or oxygen-enriched air is blown down, that is, normal blast furnace operation.
  • oxygen-enriched air is blown through a tuyere
  • the operation is usually performed at an oxygen enrichment rate of 20% by volume or less, preferably 10% by volume or less.
  • oxygen enrichment rate increases, the amount of gas passing through the furnace decreases, and the amount of blown gas required to raise the temperature of the upper portion of the shaft increases significantly. From this point as well, Operation at an oxygen enrichment rate is preferred.
  • FIG. 20 is an explanatory view schematically showing an embodiment of the blast furnace operating method of the present invention.
  • 20 is a blast furnace
  • 21 is a tuyere, from which hot air and auxiliary reducing material (for example, pulverized coal, LNG, etc.) are blown into the furnace.
  • Blast furnace gas (furnace top gas) discharged from the top of the blast furnace 20 is dust-removed by a dust catcher 22 that is a gas cleaning device, and moisture is removed by a mist separator 23, and then a furnace top gas power generation device 24. After the pressure of the furnace top gas is recovered as electricity, it is led out of the system.
  • gas is blown into the blast furnace from the gas blowing portion A provided in the shaft portion (preferably the middle to upper portion of the shaft).
  • the main purpose of blowing gas into the furnace is to compensate for the decrease in the air flow rate due to low RAR operation and to secure the gas flow rate in the upper part of the furnace, but to lower the furnace top gas temperature unnecessarily. Blowing a temperature gas is contrary to the gist of the invention, so a preheated gas is used as the blown gas.
  • the gas blowing portion A is used as a combustion burner as described above (for example, the combustion burner of FIGS. 13 and 14, FIG. 15).
  • Combustion burner one of the combustion burners of FIGS. 16 to 19 is configured by a gas combustion / blowing device a in which the tip of the combustion chamber communicates with the inside of the blast furnace, and the combustion gas of this gas combustion / blowing device a is preheated gas It is blown into the blast furnace. That is, in FIG. 13 and FIG. 16, x is the furnace body of the blast furnace 20, and the combustion burner is attached to the furnace body x so that the tip of the combustion chamber 1 communicates with the inside of the blast furnace, thereby constituting the gas combustion / blowing device a To do.
  • the basic structure of such a gas combustion / blowing device a is known as a tubular flame burner.
  • this tubular flame burner has been developed and used for heating furnaces and combustion equipment, and has not been studied at all for application to gas blowing means for blast furnaces.
  • blast furnace operation in recent years is performed under high pressure conditions, and the preheating gas needs to be blown up to a pressure higher than the furnace pressure at the blowing position, but the tubular flame burner is assumed to be used at normal pressure, The use under the above pressure conditions has not been studied at all.
  • a tubular flame burner type gas combustion / blowing device a is used as a means for preheating by burning a low heating value gas such as blast furnace gas and blowing it into the furnace from the shaft portion of the blast furnace.
  • a low heating value gas such as blast furnace gas
  • a part of the blast furnace gas that has passed through the gas cleaning device (dust catcher 22 and mist separator 23) and the top gas generator 24 is extracted and boosted by the booster 25a. Then, it introduce
  • hydrogen is introduced directly into the fuel gas pipe, or hydrogen is mixed into the fuel gas using a mixer (not shown) to obtain a hydrogen mixed fuel gas.
  • blast furnace gas flow path 27 discharged from the top of the blast furnace 20
  • a part of the blast furnace gas is supplied to the gas combustion / blowing apparatus a from the downstream flow path portion of the furnace top gas power generation device 24.
  • the flow path 28 is branched.
  • the gas combustion / blowing device a is supplied with a support gas which is an oxygen-containing gas (air, oxygen-enriched air, high oxygen concentration gas, etc.), and the support gas is also pressurized by the booster 25b. Then, it introduce
  • the fuel gas and combustion support gas may be separately boosted in advance by the boosters 25a and 25b.
  • the mixed gas may be boosted with a single booster 25.
  • hydrogen is introduced into the fuel gas before being premixed with the combustion supporting gas (or hydrogen is mixed with a mixer), or hydrogen is introduced into the premixed gas (or hydrogen is mixed with the mixer).
  • hydrogen is boosted by a booster, then introduced into the gas combustion / blowing device a separately from the fuel gas, and blown into the combustion chamber.
  • the dilution gas is supplied from the gas nozzle 14 into the combustion chamber 1.
  • the diluent gas preferably includes a reducing gas such as CO and H 2 , and for example, one or more of blast furnace gas, converter gas, coke oven gas, etc. can be used.
  • the temperature of the preheating gas is 500 ° C. or higher, and preferably 800 ° C. or higher, the temperature and supply amount of the dilution gas are selected so as to achieve such a preheating gas temperature.
  • the low-calorific value gas which is a fuel gas (especially when using a blast furnace gas generated by operation with a low reducing material ratio) using a tubular flame burner type gas combustion / blowing device a in the present invention.
  • a tubular flame burner type gas combustion / blowing device a in the present invention.
  • the effect obtained by doing this will be described in comparison with the case of using another type of conventional gas burner.
  • most gas burners used industrially have a structure in which a flame is formed in front of the burner tip. Therefore, when such a gas burner is used as a gas combustion / blowing device a, the flame directly hits the charge (iron ore, coke) descending from the upper part of the blast furnace, causing a coke solution loss reaction, and coke is unnecessary. This causes problems such as being consumed.
  • the top gas of the oxygen blast furnace process that performs pure oxygen blowing has a low amount of nitrogen and is mainly composed of CO, and therefore has a high calorific value (for example, about 1200 kcal / Nm 3 ). For this reason, even the conventional general gas burner as described above can be used as a fuel gas without any particular problem.
  • the blast furnace gas generated in the ordinary blast furnace process targeted by the present invention has a low calorific value (for example, about 800 kcal / Nm 3 ), and stable combustion even when applied to the conventional general gas burner as described above. Is difficult.
  • the amount of heat generated by the blast furnace gas further decreases.
  • the heat generation amount of the blast furnace gas is (1) 722 kcal / Nm 3 in the operation equivalent to RAR494 kg / t (PCR: 130 kg / t, blowing temperature: 1150 ° C.), (2) 620kcal for operation equivalent to RAR 450kg / t (PCR: 130kg / t, blast temperature: 1200 ° C, use of highly reactive coke, heat loss reduced by 43%, shaft efficiency increased by 2% compared to the operation in (1) above) / Nm 3 , (3) Operation equivalent to RAR 412 kg / t (PCR: 130 kg / t, blast temperature: 1200 ° C., use of highly reactive coke, heat loss reduced by 57%, shaft efficiency compared to the operation of (1) above 4% up), it is 517 kcal / Nm 3 .
  • the temperature of the blast furnace top gas is 110 ° C. or lower. Therefore, for example, when a part of the blast furnace gas discharged from the top of the furnace is extracted and preheated gas burned with oxygen is injected into the furnace from the shaft part, and the blast furnace top gas temperature is maintained at 110 ° C. or higher, The gas heating value further decreases. For example, in the operation of the above (2), if a 800 ° C. preheated gas's crowded 100 Nm 3 / t blown, the blast furnace gas calorific value 590kcal / Nm 3, and the addition, in the operation of the above (3), preheating of 800 ° C.
  • the blast furnace gas heating value is 477 kcal / Nm 3 .
  • a normal blast furnace is operated under a pressure of 4 to 5 kg / cm 2 , and there is a constant pressure fluctuation because the charge falls from the top of the blast furnace.
  • blow-by due to the generation of deposits on the blast furnace wall occurs.
  • the stability of the flame is hindered by these factors, and there is a possibility that blowout or the like may occur.
  • hydrogen is used for a low calorific value gas such as a blast furnace gas which is used as a fuel gas and a tubular flame burner type gas combustion / blowing device a in the present invention.
  • a low calorific value gas such as a blast furnace gas which is used as a fuel gas and a tubular flame burner type gas combustion / blowing device a in the present invention.
  • the following effects can be obtained by stable combustion.
  • a stable flame is formed without being affected by the furnace pressure in the blast furnace, its fluctuation, or blow-by, and the combustion gas at a desired temperature is stabilized in the furnace. Can be blown in.
  • the apparent heat generation amount increases because the gas density increases with respect to the heat generation amount in the standard state.
  • the fuel gas is a low calorific value gas such as blast furnace gas or the concentration of the fuel gas component is very low, coupled with the addition of hydrogen to the fuel gas, It becomes possible to burn stably.
  • (C) Similarly, when the combustion chamber 1 is in a pressurized state, the gas density is increased, and the amount of heat held by the fuel gas can be effectively transmitted to the combustion gas. In particular, since unburned gas and combustion support gas exist near the inner wall surface 100 of the combustion chamber 1, the inner wall surface 100 of the combustion chamber 1 is not heated to a high temperature by direct heat transfer, The effect is further enhanced by the small heat loss from the tube wall.
  • the preheating gas blown from the gas blowing section A does not contain oxygen (oxygen gas as O 2 , the same applies hereinafter) or has a low oxygen concentration.
  • the gas combustion / blowing device a has a high oxygen utilization efficiency by forming a stable flame in the combustion chamber 1, and further increases the oxygen utilization efficiency when the combustion chamber 1 is in a pressurized state. Therefore, stable combustion is possible with an oxygen amount smaller than the theoretical oxygen amount. Therefore, a preheating gas not containing oxygen or having a very low oxygen concentration can be blown into the furnace.
  • the flow path 28 for guiding the blast furnace gas to the booster 25, the composition of the blast furnace gas is installed a sensor 26 A that measures such as temperature and pressure, also the pressure inside the furnace in the vicinity of the gas blowing part A, the temperature A sensor 26 B to be measured is installed, and based on the measured values of these sensors 26 A and 26 B , the gas pressure boosted by the boosters 25 a and 26 b, the amount of combustion supporting gas to be introduced into the gas combustion / blowing device a, and the hydrogen amount Etc. are controlled. Blowing of the preheating gas from the gas blowing section A may be performed constantly or only when the furnace top gas temperature is lowered.
  • the furnace top gas temperature is measured by a sensor, and when the furnace top gas temperature is equal to or lower than a predetermined temperature (for example, 110 ° C. or lower), the preheating gas is blown from the gas blowing portion A. .
  • a predetermined temperature for example, 110 ° C. or lower
  • the preheating gas is blown from the gas blowing portion A.
  • a high temperature is preferred, generally 500 ° C. or higher, preferably 800 ° C. or higher.
  • the amount of preheated gas blown there is no particular limitation on the amount of preheated gas blown, and generally, the amount of blown gas may be such that the furnace top gas temperature can be maintained at 100 ° C. or higher.
  • the installation position of the gas blowing part A in the furnace height direction is preferably from the middle to the upper part of the shaft.
  • the position where the furnace port radius is R 0 and the depth from the stock line is R 0 is p. 1
  • the Preheating gas is preferably blown from the gas blowing portion A.
  • the preheating gas blowing position is too shallow (too high), the load of the raw material packed bed is small, so that the raw material is fluidized and stirred, which may reduce the stability of the raw material drop.
  • the blowing position of the preheating gas is too deep (too low), it may be applied to the softened fusion zone in the furnace, which is not preferable.
  • the number of gas blowing sections A and the installation mode in the furnace circumferential direction there are no particular limitations on the number of gas blowing sections A and the installation mode in the furnace circumferential direction, but it is preferable to provide them at a plurality of locations at regular intervals in the furnace circumferential direction.
  • at least n places (where n is an even number of 4 or more) at equal intervals in the furnace circumferential direction, and depending on the total amount of preheated gas is discharged from the n gas blowing portions A.
  • the number of gas blowing portions A installed at equal intervals is 4, 8, 16, 32, 64, or the like. In actual equipment, it may be difficult to provide the gas blowing parts A at exactly equal intervals in the furnace circumferential direction because of the relationship with the furnace body cooling structure, etc. Is done.
  • the present invention is a preferred embodiment in which a blast furnace gas that has a low calorific value and can be introduced from a nearby location is used as the fuel gas of the gas combustion / blowing device a, and in particular, the blast furnace gas discharged from the top of the furnace It is a particularly preferable embodiment from the viewpoint of effective use of energy (gas sensible heat can be used as it is) and from the viewpoint of equipment. I can say that. However, gas other than blast furnace gas may be used as the fuel gas, or blast furnace gas and other gas may be mixed and used.
  • blast furnace gas As blast furnace gas, blast furnace gas extracted from the downstream side of the gas cleaning device (dust catcher 22, mist separator 23), blast furnace gas extracted from between the top of the furnace and the gas cleaning device, and blast furnace gas stored in the gas holder. Etc. may be used.
  • Example 1 A combustion test using a fuel gas added with hydrogen (low calorific value gas) and a combustion-supporting gas (air) was performed under the conditions shown in Table 3 using the combustion burner test apparatus having the structure shown in FIG.
  • the combustion chamber of this test apparatus has an inner diameter of 50 mm and an overall length of 300 mm, and an opening (nozzle slit) for injecting fuel gas formed on the inner wall surface has a length of 48 mm, a width of 5 mm, and an inflow of combustion supporting gas.
  • the opening (nozzle slit) for use has a length of 31 mm and a width of 5 mm.
  • a low calorific gas (CO: 10.1 vol%, CO 2 : 10.4 vol%, N 2 : 79.5 vol%) of about 300 kcal / Nm 3 is prepared as the fuel gas. Hydrogen was added to the gas at concentrations of 3.7 vol%, 4.0 vol%, 6.0 vol%, and 2.0% in the fuel gas, and a combustion test was performed.
  • a blast furnace gas at an operation equivalent to RAR 412 kg / t was used as the fuel gas, and hydrogen was added thereto to conduct a combustion test.
  • a blast furnace gas at an operation equivalent to RAR 450 kg / t was used as the fuel gas, and hydrogen was added thereto to conduct a combustion test. In any case, air was supplied so that the theoretical oxygen amount was 1.1 with respect to 30 Nm 3 / h of a fuel gas mixed with hydrogen.
  • a combustion test using a fuel gas not mixed with hydrogen was also conducted.
  • each gas nozzle is composed of one (single) nozzle tube is a burner having a gas nozzle having a structure as in the embodiment of FIGS. 13 and 14, and each gas nozzle has a plurality of gas nozzles.
  • the combustion burner constituted by the nozzle tube is a burner having a gas nozzle having a structure as in the embodiment of FIGS.
  • the combustion chamber of each combustion burner has an inner diameter of 50 mm and an overall length of 700 mm.
  • the number of nozzle tubes constituting the gas nozzle for fuel gas and the gas nozzle for combustion gas is Test Example 1: 5 and Test Example 2 : 4, Test Example 3: 2, Test Example 4: 1: Test Example 5: 4, Test Example 6: 2
  • the inner diameter of the nozzle tube constituting the gas nozzle for injecting fuel gas is 10 mm, and the inner diameter of the nozzle tube constituting the gas nozzle for injecting combustion supporting gas is also 10 mm.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 6 mm, and the inner diameter of the nozzle tube constituting the gas nozzle for blowing combustion gas is also 6 mm.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 10 mm
  • the inner diameter of the nozzle tube constituting the gas nozzle for supporting combustion gas blowing is 10 mm.
  • a blast furnace gas (a blast furnace gas mixed with hydrogen) used as a fuel gas has a gas composition of CO: 22 vol%, CO 2 : 21 vol%, H 2 : 5 vol%, N 2 : 52 vol%, and a calorific value of 792 kcal / Nm 3.
  • the internal pressure of the applied test furnace is 245 kPa.
  • Test Example 6 combustion exhaust gas discharged from the combustion chamber using a combustion burner provided with a gas nozzle for dilution gas (inner diameter 20 mm) at a position 500 mm away from the center of the fuel gas / combustion gas injection position in the burner axial direction
  • a dilution gas (blast furnace gas) was supplied at 33.8 Nm 3 / h so that the temperature became 800 ° C.
  • the combustion gas composition contained 10.3 vol% of CO (reducing gas).
  • Test Examples 1 to 6 observation in the combustion chamber (observation from a viewing window as shown in FIG. 8) and gas composition analysis of the combustion exhaust gas were performed, and the combustion state was evaluated according to the following criteria. The results are shown in Table 3 together with the configuration of the gas nozzle, the gas flow rate, the swirl number Sw, the combustion gas composition (in Test Example 6, the gas composition after adding the dilution gas), and the like.
  • X Pulsation was observed in the combustion state, and a considerable amount of unburned CO was measured.
  • Stable combustion continued and almost no unburned CO was measured (however, the CO concentration in Test Example 6 was due to the mixing of diluent gas)
  • Example 3 In a blast furnace having a furnace internal volume of 5000 m 3 , the present invention was implemented in an embodiment as shown in FIG. 20 using a gas combustion / blowing device a as shown in FIGS. 13 and 14.
  • the operating conditions were pulverized coal injection amount: 130 kg / t, coke ratio: 320 kg / t, wind temperature: 1150 ° C. (humidity: 10 g / Nm 3 ), and highly reactive coke was used.
  • Blast furnace gas extracted from the downstream side of the top gas turbine generator 24 (CO: 17.7vol%, CO 2: 23.1vol%, H 2: 2.4vol%, H 2 O: 3.6vol%, N 2: 53.2 vol%) was boosted to a pressure 0.2 atm higher than the furnace pressure by the booster 25a, and introduced into the gas combustion / blowing apparatus a constituting the gas blowing section A as fuel gas. At that time, hydrogen was added to the blast furnace gas so that the hydrogen concentration was 4.0 vol% to obtain a hydrogen mixed fuel gas. In addition, the air was boosted by the booster 25b and introduced into the gas combustion / blowing device a as a combustion support gas.
  • a hydrogen fuel gas mixture 100 Nm 3 / t to produce a 800 ° C. combustion gas is burned with air 37.8Nm 3 / t, was blown into the furnace so as preheating gas.
  • the oxygen ratio in the gas combustion / blowing device a is 0.736 (relative to the theoretical oxygen amount), and the composition of the preheating gas is CO: 3.5 vol%, CO 2 : 27.3 vol%, H 2 : 0 .8vol%, H 2 O: 5.0vol %, N 2: a 63.3vol%.
  • the furnace top gas temperature became 149 ° C., and condensation of moisture into the piping during blast furnace operation was completely avoided, and stable operation became possible.
  • preheating gas is not injected, it is calculated as 97 ° C. from the calculation of material heat balance.
  • Example 4 In a blast furnace having a furnace internal volume of 5000 m 3 , the present invention was implemented in an embodiment as shown in FIG. 20 using a gas combustion / blowing device a as shown in FIGS.
  • the blast furnace operating conditions were the same as in Example 3.
  • Blast furnace gas extracted from the downstream side of the top gas turbine generator 24 (CO: 17.7vol%, CO 2: 23.1vol%, H 2: 2.4vol%, H 2 O: 3.6vol%, N 2: 53.2 vol%) was boosted to a pressure 0.2 atm higher than the furnace pressure by the booster 25a, and introduced into the gas combustion / blowing apparatus a constituting the gas blowing section A as fuel gas.
  • FIG. 23 and 24 show an embodiment of a combustion burner (tubular flame burner) used in the present invention.
  • FIG. 23 is a partially cutaway plan view, and FIG. 24 is taken along the line II-II in FIG. It is sectional drawing.
  • 1 is a tubular (cylindrical) combustion chamber having an open end
  • 3a is a gas nozzle for fuel gas
  • 3b is a gas nozzle for combustion support gas.
  • the fuel gas and the combustion supporting gas are supplied so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber.
  • Openings 2a and 2b (nozzle ports) for blowing are formed, and the gas nozzles 3a and 3b are connected to the openings 2a and 2b, respectively.
  • the openings 2a and 2b (nozzle ports) are formed so as to blow gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • the openings 2a and 2b of the present embodiment are formed so as to blow fuel gas and combustion-supporting gas substantially in the tangential direction of the inner wall surface 100, respectively.
  • the openings 2a and 2b are formed in a slit shape along the tube axis direction, and are provided at positions facing the inner wall surface 100 (inner peripheral surface) by 180 °. A plurality of these openings 2a and 2b may be provided. In this case, gas nozzles 3a and 3b are connected to the openings 2a and 2b.
  • a gas introducing portion of the gas nozzle 3 a is provided with a mixing chamber 4 for mixing blast furnace gas and hydrogen, and a blast furnace gas supply pipe 5 and a hydrogen supply pipe 6 are connected to the mixing chamber 4.
  • a combustion support gas supply pipe 7 is connected to the gas introduction part of the gas nozzle 3b.
  • 8 to 10 are flow control valves provided in the blast furnace gas supply pipe 5, the hydrogen supply pipe 6 and the combustion supporting gas supply pipe 7, respectively, 11 is a flow meter provided in the hydrogen supply pipe 6, and 12 is a combustion chamber 1.
  • a combustion state detection device 13 for detecting the combustion state in the inside, 13 is a spark plug.
  • the combustion state detection device 12 may be, for example, a method in which a thermocouple is inserted in a flame to measure temperature, an optical method in which ultraviolet light in the flame is detected using Ultravision or the like. Further, x is a furnace body provided with a combustion burner.
  • FIG. 31 schematically shows a radial cross section of the inside of the combustion chamber at the position where the openings 2a and 2b are formed.
  • the tip side in the swirling (rotating) direction of the gas flow discharged from the openings 2 a and 2 b and swirling Is the point p the tangent of the inner wall surface 100 at this point p is x
  • the tangent x and the gas flow When the angle formed by the center line y is the gas blowing angle ⁇ , it is preferable to set the gas blowing angle ⁇ so as to be within a preferable swirl number Sw range (Sw: 3 to 10).
  • the combustion burner has openings 2a and 2b for injecting fuel gas and supporting gas in the tangential direction of the inner wall surface on the inner wall surface 100 of the combustion chamber 1, respectively.
  • a structure is preferred. This is because with such a structure, a preferable swirl number Sw can be realized regardless of changes or changes in the gas amount or gas speed.
  • the gas blowing angle ⁇ shown in FIG. 32 is 30 ° or less, more preferably 10 ° or less.
  • the gas blowing angle ⁇ is approximately 0 ° to 5 °.
  • the present invention adds hydrogen to the blast furnace gas in order to stably burn it.
  • This hydrogen may be added as pure hydrogen gas or hydrogen-containing gas (hereinafter referred to as “hydrogen (added to blast furnace gas)” in this specification, “hydrogen-containing gas” Meaning to include).
  • the hydrogen concentration of the hydrogen-containing gas needs to exceed the hydrogen concentration of the blast furnace gas (usually H 2 concentration: 2 to 3 vol%).
  • H 2 concentration: 2 to 3 vol%) there is no particular restriction on the hydrogen concentration of the hydrogen-containing gas, but it is generally preferable to use a hydrogen-containing gas having a hydrogen concentration of 20 vol% or more.
  • a coke oven gas obtained when producing coke has a particularly high hydrogen concentration (usually about 55 vol%) and is suitable as a hydrogen-containing gas.
  • blast furnace gas and hydrogen are supplied to the mixing chamber 4 of the gas nozzle 3a through the blast furnace gas supply pipe 5 and the hydrogen supply pipe 6. Hydrogen is mixed with this, and this hydrogen-mixed blast furnace gas (a blast furnace gas mixed with hydrogen; the same applies hereinafter) enters the nozzle body.
  • combustion support gas is supplied to the gas nozzle 3b through the support gas supply pipe 7. The hydrogen-mixed blast furnace gas and the combustion support gas supplied to the gas nozzles 3a and 3b in this way are blown into the combustion chamber 1 from the openings 2a and 2b (nozzle ports).
  • the hydrogen-mixed blast furnace gas and combustion-supporting gas are combusted while forming a swirling flow along the inner wall surface 100 of the combustion chamber 1 to form a flame.
  • the above combustion is started by the ignition by the spark plug 13, and when combustion continues, the ignition by the spark plug 13 is complete
  • the combustion burner may use a gas (premixed gas) in which blast furnace gas and combustion support gas are mixed in advance.
  • gas swirling in the combustion chamber 1 is performed on the inner wall surface 100 of the combustion chamber 1.
  • One or more openings 2 (nozzle ports) for injecting a premixed gas of fuel gas and supporting gas are formed so as to generate a flow (a gas swirl flow along the circumferential direction of the inner wall surface 100).
  • a gas nozzle 3 for supplying a premixed gas is connected to the above.
  • the opening 2 is gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • it is preferably formed so as to blow gas (premixed gas) substantially in the tangential direction of the inner wall surface 100.
  • the hydrogen is added to the blast furnace gas or the premixed gas before being premixed with the combustion support gas, and the premixed gas thus added with hydrogen is blown into the combustion chamber 1 from the opening 2 through the gas nozzle 3. It is.
  • the gas may be blown from the opening 2 so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1, but a preferable method for setting the gas blowing direction,
  • the gas blowing angle ⁇ preferred for the burner structure is the same as that of the openings 2a and 2b described above with reference to FIG.
  • the hydrogen-mixed blast furnace gas and the combustion-supporting gas (or the premixed gas of both) that are blown into the combustion chamber 1 from the gas nozzles 3a and 3b and the openings 2a and 2b to form a swirl flow are gas Gas layers with different densities are formed on both sides of the flame. That is, high-temperature combustion exhaust gas exists on the axis side where the turning speed is low, and unburned gas exists on the inner wall surface 100 side where the turning speed is high. Further, in the vicinity of the inner wall surface 100, the turning speed exceeds the flame propagation speed, so that the flame cannot remain in the vicinity of the inner wall surface. For this reason, a tubular flame is stably generated in the combustion chamber 1.
  • the inner wall surface of the combustion chamber 1 is not heated to a high temperature by direct heat transfer. Then, the gas in the combustion chamber 1 flows to the tip side while swirling, but during that time, the gas on the inner wall surface 100 side sequentially burns and moves to the axial center side, and the combustion gas is discharged from the opened tip.
  • MCP maximum combustion potential
  • the MCP calculated by the above formula is 282 for hydrogen and 100 for CO, and hydrogen is 2.8 times faster than CO. Therefore, the blast furnace gas can be stably burned by adding hydrogen.
  • the adiabatic flame temperature of the blast furnace gas is equal to or higher than the ignition point of the gas species contained in the blast furnace gas (CO ignition point: 609 ° C., H 2 ignition point: 500 or at a temperature of ° C.), the concentration of the combustible gas contained in the blast furnace gas explosion limit lower concentration than (CO explosion limit lower concentration: 12.5vol%, H 2: may be a 4 vol%).
  • the adiabatic flame temperature becomes 784 ° C., and stable combustion can be continued.
  • the adiabatic flame temperature is a temperature calculated theoretically as being used for increasing the temperature of the combustion gas without losing heat generated by combustion to the outside.
  • the adiabatic flame temperature is 750 ° C. or higher.
  • the amount of hydrogen added is large, the stability of combustion increases accordingly. However, if the amount of hydrogen added is too large, the economy is impaired.
  • an oxygen-containing gas such as air or oxygen gas can be used as the combustion support gas, but the present invention is particularly useful when air is used as the combustion support gas.
  • the supply amount of the combustion support gas is an amount necessary to maintain a stable combustion state.
  • the air ratio is the ratio of the theoretical amount of air required for fuel combustion to the actual amount of air supplied (actual air amount / theoretical air amount). 2 and H 2 O.
  • the air ratio is less than 1, incomplete combustion occurs and stable combustion cannot be continued.
  • the air ratio is excessive, lean combustion occurs, and even in this case, a stable combustion state cannot be maintained. Therefore, it is usually preferable to supply the combustion-supporting gas in an air ratio range of 1.0 to 1.5.
  • the ejection speed of the fuel gas and the combustion-supporting gas from the nozzle (opening) but it is preferable that both of them have the same speed.
  • FIG. 25 is a cross-sectional view (a cross-sectional view along the same cross-sectional line as FIG. 24) showing an embodiment of the combustion burner used in this case.
  • openings 2 a and 2 b similar to those in FIG. 24 are formed on the inner wall surface 100 on the inner side (rear end side) of the combustion chamber 1, and between the openings 2 a and 2 b in the circumferential direction of the inner wall surface 100.
  • a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1 at the center position (ie, at a position of 90 ° with respect to the openings 2a and 2b in the circumferential direction).
  • Openings 2c 1 and 2c 2 (nozzle ports) for blowing (hydrogen gas or hydrogen-containing gas; the same applies hereinafter) are formed, and hydrogen gas nozzles 3c 1 and 3c 2 are connected to the openings 2c 1 and 2c 2 , respectively. ing.
  • the openings 2c 1 and 2c 2 (nozzle ports) also have a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow. It is formed so that gas (hydrogen) is blown into.
  • the openings 2c 1 and 2c 2 of the present embodiment are formed so as to blow hydrogen substantially in the tangential direction of the inner wall surface 100. Similar to the openings 2a and 2b, the openings 2c 1 and 2c 2 are formed in a slit shape along the tube axis direction. Note that only one of these openings 2c 1 and 2c 2 may be provided, or three or more of them may be provided.
  • the gas nozzle 3c is connected to each opening 2c.
  • Gas (hydrogen) may be blown from the openings 2c 1 and 2c 2 so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1.
  • a preferable setting method of the injection direction and a gas injection angle ⁇ preferable for the burner structure are the same as those of the openings 2a and 2b described above with reference to FIG.
  • the blast furnace gas to which hydrogen is added and the combustion support gas form a swirling flow in the combustion chamber 1 of the combustion burner, so that the blast furnace gas can be stably burned.
  • the gas is mainly composed of CO, CO 2 , and N 2 , and since hydrogen has a gas density lower than those gas components, hydrogen is blown into a swirl flow as in the embodiment of FIG. Then, due to the difference in density, hydrogen moves to the axial center side and burns preferentially, thereby promoting the combustion of other gases. For this reason, the combustibility of blast furnace gas can be improved more.
  • FIG. 26 to 29 show another embodiment of the combustion burner (tubular flame burner) used in the present invention.
  • FIG. 26 is a partially cutaway plan view of the combustion burner
  • FIG. 27 is a partial view of the combustion burner.
  • FIG. 28 is a sectional view taken along line VI-VI in FIG. 26, and
  • FIG. 29 is a sectional view taken along line VII-VII in FIG.
  • the gas nozzle 3a for fuel gas and the gas nozzle 3b for combustion-supporting gas are each composed of a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axial direction.
  • the gas nozzles 3a and 3b are configured by the plurality of nozzle tubes 300a and 300b in this manner, as described later, while an appropriate swirl flow is formed in the combustion chamber 1 by the gas nozzles 3a and 3b. This is to make Sw a predetermined preferred range.
  • the inner wall surface 100 on the inner side (rear end side) of the combustion chamber 1 has a gas swirl flow (gas swirl along the circumferential direction of the inner wall surface 100) in the combustion chamber 1.
  • Openings 2a and 2b (nozzle ports) for injecting fuel gas and combustion-supporting gas are formed so as to generate a flow, and these openings 2a and 2b are also constituted by a plurality of openings 200a and 200b, respectively.
  • the nozzle pipe 300a is connected to each opening 200a, and the nozzle pipe 300b is connected to each opening 200b.
  • the openings 200a and 200b are formed so as to blow gas in a direction (eccentric direction) in which the axial center of the combustion chamber 1 is removed so that the gas blown into the combustion chamber 1 becomes a swirling flow.
  • the openings 200 a and 200 b of the present embodiment are formed so as to blow fuel gas and combustion-supporting gas substantially in the tangential direction of the inner wall surface 100. Further, in order to supply a dilution gas into the combustion chamber 1 for diluting the combustion gas and adjusting its temperature and / or composition at a position closer to the tip of the combustion chamber than the gas nozzles 3a, 3b (openings 2a, 2b).
  • the gas nozzle 14 is provided.
  • the gas nozzle 14 may be provided at a position where the gas combustion in the combustion chamber 1 is not hindered.
  • the gas nozzle 14 is specially provided at an installation (connection) position in the longitudinal direction of the combustion chamber. Although there is no particular limitation, in this embodiment, it is provided at a position closer to the front end of the combustion chamber than the center position in the longitudinal direction of the combustion chamber.
  • the gas nozzle 14 may be composed of a single nozzle tube, but in the present embodiment, the gas nozzle 14 is composed of a plurality of nozzle tubes 140 arranged in parallel in the burner axis direction.
  • a gas swirl flow (gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1.
  • An opening 15 (nozzle port) for blowing dilution gas in the tangential direction is formed, and the gas nozzle 14 is connected to the opening 15.
  • the opening 15 is composed of a plurality of openings 150, and the nozzle pipe 140 is connected to each opening 150, but the opening 15 is a single slit-shaped opening along the tube axis direction.
  • a single gas nozzle 14 may be connected to this.
  • the dilution gas opening 15 does not necessarily have a structure in which gas is blown so that a swirling gas flow is generated in the combustion chamber 1. Since the other structures and functions of the combustion burner of the embodiment of FIGS. 26 to 29 are the same as those of the combustion burner of the embodiment shown in FIGS. 23 and 24, detailed description thereof will be omitted.
  • the gas may be blown from the openings 200a and 200b so that a gas swirl flow (a gas swirl flow along the circumferential direction of the inner wall surface 100) is generated in the combustion chamber 1, but a preferable setting of the gas blowing direction is preferred.
  • the gas blowing angle ⁇ preferred for the method and the burner structure is the same as that of the openings 2a and 2b described above with reference to FIG.
  • the combustion burner used in the present invention high-temperature combustion gas is generated in the combustion chamber 1, and for example, the theoretical combustion temperature of blast furnace gas is about 1300 ° C. at an air ratio of 1.0.
  • the combustion gas of the combustion burner is blown into the blast furnace as a preheating gas, coke in the furnace is consumed by CO 2 in the blown combustion gas, or in the furnace It is preferable to dilute the combustion gas and manage its temperature and composition so that the iron ore (magnetite) reduced in step 1 is not reoxidized.
  • a dilution gas for adjusting the temperature and / or composition of the combustion gas is supplied from the gas nozzle 14 into the combustion chamber 1.
  • the type of dilution gas to be used may be appropriately selected according to the purpose (gas temperature adjustment and / or gas composition adjustment) to be added to the combustion gas. From the aspect of adjusting the composition of the combustion gas, CO, H Those containing a reducing gas such as 2 are preferred. For example, one or more of blast furnace gas, converter gas, coke oven gas, and the like can be used, and it is particularly preferable to extract a part of the blast furnace gas and use it as a dilution gas.
  • the temperature of the preheating gas is preferably 500 ° C. or higher, and preferably 800 ° C. or higher as described later.
  • the gas temperature and supply rate be selected.
  • a combustion burner having a gas nozzle for injecting a premixed gas of fuel gas and combustion support gas and a combustion burner having a gas nozzle 3c for hydrogen injection as in the embodiment of FIG. 3 are also connected to the burner shaft. It can be composed of a plurality of nozzle tubes arranged in parallel in the direction. Also in these combustion burners, the gas nozzle 14 and the opening 15 for the dilution gas as described above can be provided.
  • the swirl number Sw of the gas flow in the combustion chamber 1 is preferably in the range of 3-10.
  • the swirl number is a dimensionless number representing the strength of swirl in the fluid flow accompanied by swirl. The larger the swirl number, the stronger the swirl flow. If the swirl number is too small, the mixing of the fuel gas and the combustion supporting gas becomes insufficient, and the ignition of the fuel gas becomes unstable. On the other hand, if the swirl number is too large, the combustion flame may blow off. From the above viewpoint, swirl number Sw Is preferably in the range of 3-10.
  • the swirl number Sw can be calculated in accordance with a known basic formula for calculating the swirl number Sw, using a formula corresponding to the type of combustion burner to be used and its usage, for example, as in the embodiment of FIGS.
  • the swirl number Sw can be obtained by the following equation.
  • the fuel gas is a hydrogen mixed blast furnace gas.
  • the swirl number Sw can be obtained by the following equation.
  • the premixed gas is “fuel gas (blast furnace gas) + hydrogen + combustion gas”.
  • the swirl number Sw Can be obtained by the following equation.
  • a plurality of gas nozzles 3a for fuel gas and gas nozzles 3b for combustion gas are arranged in parallel in the burner axial direction as in the embodiment of FIGS.
  • the nozzle pipes 300a and 300b are preferably used. This is due to the following reasons.
  • combustion chamber diameter 50 mm
  • blast furnace gas amount 30 Nm 3 / h (gas density: 1.34 kg / Nm 3 ), air amount: 21.4 Nm 3 / h (gas density: 1.29 kg / Nm 3 ), air
  • the gas nozzles 3a, 3b are each a single unit. If it is composed of one (one) nozzle tube, the inner diameter of the nozzle tube having a swirl number Sw of 3 (the inner diameter in terms of a circle.
  • the diameter of the circle hereinafter referred to as “the inner diameter of the nozzle tube”, has the same meaning.
  • the gas nozzle 3a is 21 mm (fuel gas velocity at the opening 2a: 7 m / s), and the gas nozzle 3b is 21 mm (opening). 2 Combustion-supporting gas velocity at: 5m / s) to become.
  • the inner diameter of the nozzle tube is about 4/10 of the combustion chamber diameter in the section taken along the line II-II in FIG.
  • FIG. 32 schematically shows a radial cross section of the inside of the combustion chamber at the position where the openings 2a and 2b are formed.
  • the radius of the combustion chamber 1 is R and the inside of the gas nozzles 3a and 3b in the combustion chamber radial direction.
  • R ⁇ t / 2) /R ⁇ 0.8 is preferable. However, in the above example, this preferable condition is not satisfied.
  • the gas nozzles 3a and 3b are composed of a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axis direction, the inner diameter per nozzle tube is reduced, and thus the above-described problems are unlikely to occur.
  • a good swirl flow can be generated while keeping the swirl number Sw within a preferable range. Therefore, the gas nozzle 3a for fuel gas and the gas nozzle 3b for combustion-supporting gas are preferably configured by a plurality of nozzle tubes 300a and 300b arranged in parallel in the burner axial direction.
  • the gas nozzle is preferably composed of a plurality of nozzle tubes arranged in parallel in the burner axial direction.
  • This blast furnace operation method of the present invention is intended for blast furnace operation in which air or oxygen-enriched air is blown down, that is, normal blast furnace operation.
  • oxygen-enriched air is blown through a tuyere
  • the operation is usually performed at an oxygen enrichment rate of 20% by volume or less, preferably 10% by volume or less.
  • oxygen enrichment rate increases, the amount of gas passing through the furnace decreases, and the amount of blown gas required to raise the temperature of the upper portion of the shaft increases significantly. From this point as well, Operation at an oxygen enrichment rate is preferred.
  • FIG. 30 is an explanatory view schematically showing an embodiment of the blast furnace operating method of the present invention.
  • 20 is a blast furnace
  • 21 is a tuyere, from which hot air and auxiliary reducing material (for example, pulverized coal, LNG, etc.) are blown into the furnace.
  • Blast furnace gas (furnace top gas) discharged from the top of the blast furnace 20 is dust-removed by a dust catcher 22 that is a gas cleaning device, and moisture is removed by a mist separator 23, and then a furnace top gas power generation device 24. After the pressure of the furnace top gas is recovered as electricity, it is led out of the system.
  • auxiliary reducing material for example, pulverized coal, LNG, etc.
  • gas is blown into the blast furnace from the gas blowing portion A provided in the shaft portion (preferably the middle to upper portion of the shaft).
  • the main purpose of blowing gas into the furnace is to compensate for the decrease in the air flow rate due to low RAR operation and to secure the gas flow rate in the upper part of the furnace, but to lower the furnace top gas temperature unnecessarily. Blowing a temperature gas is contrary to the gist of the invention, so a preheated gas is used as the blown gas.
  • the gas blowing section A is used as a combustion burner as described above (for example, the combustion burner of FIGS. 23 and 24, FIG. 25).
  • Combustion burner one of the combustion burners of FIGS. 26 to 29
  • a gas combustion / blowing device a in which the tip of the combustion chamber communicates with the inside of the blast furnace, and the combustion gas of this gas combustion / blowing device a is preheated gas It is blown into the blast furnace. That is, in FIG. 23 and FIG. 26, x is the furnace body of the blast furnace 20, and the combustion burner is attached to the furnace body x so that the tip of the combustion chamber 1 communicates with the inside of the blast furnace, thereby constituting the gas combustion / blowing device a. To do.
  • the basic structure of such a gas combustion / blowing device a is known as a tubular flame burner.
  • this tubular flame burner has been developed and used for heating furnaces and combustion equipment, and has not been studied at all for application to gas blowing means for blast furnaces.
  • blast furnace operation in recent years is performed under high pressure conditions, and the preheating gas needs to be blown up to a pressure higher than the furnace pressure at the blowing position, but the tubular flame burner is assumed to be used at normal pressure, The use under the above pressure conditions has not been studied at all.
  • the tubular flame burner type gas combustion / blowing device a has a very excellent function as means for burning and preheating the blast furnace gas and blowing it into the furnace from the shaft portion of the blast furnace. This is what we found. Moreover, when using blast furnace gas as fuel gas, it discovered that stable combustion was attained by adding hydrogen to blast furnace gas as mentioned above.
  • a part of the blast furnace gas that has passed through the gas cleaning device (dust catcher 22 and mist separator 23) and the top gas generator 24 is extracted and boosted by the booster 25a. Then, it introduce
  • hydrogen is introduced directly into the blast furnace gas pipe, or hydrogen is mixed into the blast furnace gas using a mixer (not shown) to obtain a hydrogen mixed blast furnace gas.
  • blast furnace gas flow path 27 discharged from the top of the blast furnace 20
  • a part of the blast furnace gas is supplied to the gas combustion / blowing apparatus a from the downstream flow path portion of the furnace top gas power generation device 24.
  • the flow path 28 is branched.
  • the gas combustion / blowing device a is supplied with a support gas which is an oxygen-containing gas (air, oxygen-enriched air, high oxygen concentration gas, etc.), and the support gas is also pressurized by the booster 25b. Then, it introduce
  • the blast furnace gas and combustion support gas may be separately boosted in advance by the boosters 25a and 25b.
  • the mixed gas may be boosted with a single booster 25.
  • hydrogen is introduced into the blast furnace gas before being premixed with the combustion support gas (or hydrogen is mixed with a mixer), or hydrogen is introduced into the premixed gas (or hydrogen is mixed with the mixer).
  • hydrogen is boosted by a booster, introduced into the gas combustion / blowing device a separately from the blast furnace gas, and blown into the combustion chamber.
  • the dilution gas is supplied from the gas nozzle 14 into the combustion chamber 1.
  • the diluent gas preferably includes a reducing gas such as CO and H 2 , and for example, one or more of blast furnace gas, converter gas, coke oven gas, etc. can be used.
  • the temperature of the preheating gas is 500 ° C. or higher, and preferably 800 ° C. or higher, the temperature and supply amount of the dilution gas are selected so as to achieve such a preheating gas temperature.
  • the top gas of the oxygen blast furnace process that performs pure oxygen blowing has a low amount of nitrogen and is mainly composed of CO, and therefore has a high calorific value (for example, about 1200 kcal / Nm 3 ). For this reason, even the conventional general gas burner as described above can be used as a fuel gas without any particular problem.
  • the blast furnace gas generated in the ordinary blast furnace process targeted by the present invention has a low calorific value (for example, about 800 kcal / Nm 3 ), and stable combustion even when applied to the conventional general gas burner as described above. Is difficult.
  • the amount of heat generated by the blast furnace gas further decreases.
  • the heat generation amount of the blast furnace gas is (1) 722 kcal / Nm 3 in the operation equivalent to RAR494 kg / t (PCR: 130 kg / t, blowing temperature: 1150 ° C.), (2) 620kcal for operation equivalent to RAR 450kg / t (PCR: 130kg / t, blast temperature: 1200 ° C, use of highly reactive coke, heat loss reduced by 43%, shaft efficiency increased by 2% compared to the operation in (1) above) / Nm 3 , (3) Operation equivalent to RAR 412 kg / t (PCR: 130 kg / t, blast temperature: 1200 ° C., use of highly reactive coke, heat loss reduced by 57%, shaft efficiency compared to the operation of (1) above 4% up), it is 517 kcal / Nm 3 .
  • the temperature of the blast furnace top gas is 110 ° C. or lower. Therefore, for example, when a part of the blast furnace gas discharged from the top of the furnace is extracted and preheated gas burned with oxygen is injected into the furnace from the shaft part, and the blast furnace top gas temperature is maintained at 110 ° C. or higher, The gas heating value further decreases. For example, in the operation of the above (2), if a 800 ° C. preheated gas's crowded 100 Nm 3 / t blown, the blast furnace gas calorific value 590kcal / Nm 3, and the addition, in the operation of the above (3), preheating of 800 ° C.
  • the blast furnace gas heating value is 477 kcal / Nm 3 .
  • a normal blast furnace is operated under a pressure of 4 to 5 kg / cm 2 , and there is a constant pressure fluctuation because the charge falls from the top of the blast furnace.
  • blow-by due to the generation of deposits on the blast furnace wall occurs.
  • the stability of the flame is hindered by these factors, and there is a possibility that blowout or the like may occur.
  • the present invention uses the tubular flame burner type gas combustion / blowing device a and adds hydrogen to the blast furnace gas used as the fuel gas for stable combustion.
  • the following effects can be obtained.
  • a stable flame is formed without being affected by the furnace pressure in the blast furnace, its fluctuation, or blow-by, and the combustion gas at a desired temperature is stabilized in the furnace. Can be blown in.
  • the preheated gas to be blown into the furnace needs to have a pressure higher than the pressure in the furnace at the position to be blown. Therefore, gas combustion occurs substantially under pressure in the combustion chamber 1 of the gas combustion / blowing device a.
  • the combustion chamber 1 is in a pressurized state as described above, it is a condition that is particularly advantageous for stably burning the blast furnace gas.
  • the gas combustion / blowing device a a stable flame is formed in the combustion chamber 1 and the mixing property of the blast furnace gas and the combustion support gas is good, so that the gas can be burned efficiently and homogeneously.
  • the combustion chamber 1 when the combustion chamber 1 is in a pressurized state as described above, the apparent heat generation amount increases because the gas density increases with respect to the heat generation amount in the standard state. For this reason, even if the fuel gas is a low calorific value gas such as a blast furnace gas, it can be stably burned in combination with the addition of hydrogen to the blast furnace gas.
  • the fuel gas is a low calorific value gas such as a blast furnace gas, it can be stably burned in combination with the addition of hydrogen to the blast furnace gas.
  • (C) Similarly, when the combustion chamber 1 is in a pressurized state, the gas density is increased, and the amount of heat held by the blast furnace gas can be effectively transmitted to the combustion gas. In particular, since unburned gas and combustion support gas exist near the inner wall surface 100 of the combustion chamber 1, the inner wall surface 100 of the combustion chamber 1 is not heated to a high temperature by direct heat transfer, The effect is further enhanced by the small heat loss from the tube wall.
  • the preheating gas blown from the gas blowing section A does not contain oxygen (oxygen gas as O 2 , the same applies hereinafter) or has a low oxygen concentration.
  • the gas combustion / blowing device a has a high oxygen utilization efficiency by forming a stable flame in the combustion chamber 1, and further increases the oxygen utilization efficiency when the combustion chamber 1 is in a pressurized state. Therefore, stable combustion is possible with an oxygen amount smaller than the theoretical oxygen amount. Therefore, a preheating gas not containing oxygen or having a very low oxygen concentration can be blown into the furnace.
  • the flow path 28 for guiding the blast furnace gas to the booster 25, the composition of the blast furnace gas is installed a sensor 26 A that measures such as temperature and pressure, also the pressure inside the furnace in the vicinity of the gas blowing part A, the temperature A sensor 26 B to be measured is installed, and based on the measured values of these sensors 26 A and 26 B , the gas pressure boosted by the boosters 25 a and 26 b, the amount of combustion supporting gas to be introduced into the gas combustion / blowing device a, and the hydrogen amount Etc. are controlled. Blowing of the preheating gas from the gas blowing section A may be performed constantly or only when the furnace top gas temperature is lowered.
  • the furnace top gas temperature is measured by a sensor, and when the furnace top gas temperature is equal to or lower than a predetermined temperature (for example, 110 ° C. or lower), the preheating gas is blown from the gas blowing portion A. .
  • a predetermined temperature for example, 110 ° C. or lower
  • the preheating gas is blown from the gas blowing portion A.
  • a high temperature is preferred, generally 500 ° C. or higher, preferably 800 ° C. or higher.
  • the amount of preheated gas blown there is no particular limitation on the amount of preheated gas blown, and generally, the amount of blown gas may be such that the furnace top gas temperature can be maintained at 100 ° C. or higher.
  • the installation position of the gas blowing part A in the furnace height direction is preferably from the middle to the upper part of the shaft.
  • the position where the furnace port radius is R 0 and the depth from the stock line is R 0 is p. 1
  • the Preheating gas is preferably blown from the gas blowing portion A.
  • the preheating gas blowing position is too shallow (too high), the load of the raw material packed bed is small, so that the raw material is fluidized and stirred, which may reduce the stability of the raw material drop.
  • the blowing position of the preheating gas is too deep (too low), it may be applied to the softened fusion zone in the furnace, which is not preferable.
  • the number of gas blowing sections A and the installation mode in the furnace circumferential direction there are no particular limitations on the number of gas blowing sections A and the installation mode in the furnace circumferential direction, but it is preferable to provide them at a plurality of locations at regular intervals in the furnace circumferential direction.
  • at least n places (where n is an even number of 4 or more) at equal intervals in the furnace circumferential direction, and depending on the total amount of preheated gas is discharged from the n gas blowing portions A.
  • the number of gas blowing portions A installed at equal intervals is 4, 8, 16, 32, 64, or the like. In actual equipment, it may be difficult to provide the gas blowing parts A at exactly equal intervals in the furnace circumferential direction because of the relationship with the furnace body cooling structure, etc. Is done.
  • the present invention uses a blast furnace gas that has a low calorific value and can be introduced from a nearby location as a fuel gas for the gas combustion / blowing device a, and among them, a part of the blast furnace gas discharged from the top of the furnace It can be said that it is a particularly preferable embodiment from the viewpoint of effective use of energy (gas sensible heat can be used as it is) and from the viewpoint of equipment.
  • blast furnace gas blast furnace gas extracted from the downstream side of the gas cleaning device (dust catcher 22, mist separator 23), blast furnace gas extracted from between the top of the furnace and the gas cleaning device, and blast furnace gas stored in the gas holder. Etc. may be used.
  • Example 1 A combustion test using a blast furnace gas to which hydrogen was added and a combustion-supporting gas (air) was performed under the conditions shown in Table 2 using the combustion burner test apparatus having the structure shown in FIG.
  • the combustion chamber of this test apparatus has an inner diameter of 50 mm and an overall length of 300 mm, and the blast furnace gas blowing opening (nozzle slit) formed on the inner wall surface has a length of 48 mm, a width of 5 mm, and a combustion support gas blowing.
  • the opening (nozzle slit) for use has a length of 31 mm and a width of 5 mm.
  • Comparative Example 1 a blast furnace gas at an operation equivalent to RAR 443 kg / t was used as a fuel gas, and in Comparative Example 2, a blast furnace gas at an operation equivalent to RAR 446 kg / t was used as a fuel gas.
  • Invention Examples 1, 3, and 4 a blast furnace gas at an operation equivalent to RAR 443 kg / t was used as a fuel gas, and hydrogen was added thereto to conduct a combustion test.
  • Invention Example 2 a blast furnace gas at an operation equivalent to RAR 446 kg / t was used as the fuel gas, and hydrogen was added thereto to conduct a combustion test.
  • air was supplied to blast furnace gas (in the invention example, blast furnace gas mixed with hydrogen): 30 Nm 3 / h.
  • Example 2 Fuel gas (hydrogen-mixed blast furnace gas) and combustion gas (air) under the conditions shown in Table 3 using a combustion burner test apparatus in which the number of nozzle tubes constituting the gas nozzle for fuel gas and the gas nozzle for combustion gas is different. ) was used to conduct a combustion test.
  • the combustion burner in which each gas nozzle is composed of one (single) nozzle tube is a burner having a gas nozzle having a structure as in the embodiment of FIGS. 23 and 24, and each gas nozzle has a plurality of gas nozzles.
  • the combustion burner constituted by the nozzle tube is a burner having a gas nozzle having a structure as in the embodiment of FIGS.
  • the combustion chamber of each combustion burner has an inner diameter of 50 mm and an overall length of 700 mm.
  • the number of nozzle tubes constituting the gas nozzle for fuel gas and the gas nozzle for combustion gas is Test Example 1: 5 and Test Example 2 : 4, Test Example 3: 2, Test Example 4: 1: Test Example 5: 4, Test Example 6: 2
  • the inner diameter of the nozzle tube constituting the gas nozzle for injecting fuel gas is 10 mm, and the inner diameter of the nozzle tube constituting the gas nozzle for injecting combustion supporting gas is also 10 mm.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 6 mm, and the inner diameter of the nozzle tube constituting the gas nozzle for blowing combustion gas is also 6 mm.
  • the inner diameter of the nozzle tube constituting the gas nozzle for fuel gas blowing is 10 mm
  • the inner diameter of the nozzle tube constituting the gas nozzle for supporting combustion gas blowing is 10 mm.
  • the blast furnace gas (hydrogen mixed blast furnace gas) used as the fuel gas has a gas composition of CO: 22 vol%, CO 2 : 21 vol%, H 2 : 5 vol%, N 2 : 52 vol%, and a calorific value of 792 kcal / Nm 3 It is.
  • the internal pressure of the applied test furnace is 245 kPa.
  • Test Example 6 combustion exhaust gas discharged from the combustion chamber using a combustion burner provided with a gas nozzle for dilution gas (inner diameter 20 mm) at a position 500 mm away from the center of the fuel gas / combustion gas injection position in the burner axial direction A dilution gas (blast furnace gas) was supplied at 33.8 Nm 3 / h so that the temperature became 800 ° C. By adding this dilution gas, the combustion gas composition contained 10.3 vol% of CO (reducing gas).
  • observation in the combustion chamber observation from a viewing window as shown in FIG. 31
  • gas composition analysis of the combustion exhaust gas were performed, and the combustion state was evaluated according to the following criteria.
  • Example 3 In a blast furnace having a furnace internal volume of 5000 m 3 , the present invention was implemented in an embodiment as shown in FIG. 30 using a gas combustion / blowing device a as shown in FIGS.
  • the operating conditions were pulverized coal blowing rate: 130 kg / t, coke ratio: 320 kg / t, blowing temperature: 1150 ° C. (humidity: 10 g / Nm 3 ), and highly reactive coke was used.
  • Blast furnace gas extracted from the downstream side of the top gas turbine generator 24 (CO: 17.7vol%, CO 2: 23.1vol%, H 2: 2.4vol%, H 2 O: 3.6vol%, N 2: 53.2 vol%) was boosted to a pressure 0.2 atm higher than the furnace pressure by the booster 25a, and introduced into the gas combustion / blowing apparatus a constituting the gas blowing section A as fuel gas. At that time, hydrogen was added to the blast furnace gas so that the hydrogen concentration was 4.0 vol% to obtain a hydrogen mixed blast furnace gas. In addition, the air was boosted by the booster 25b and introduced into the gas combustion / blowing device a as a combustion support gas.
  • the hydrogen mixing blast furnace gas 100 Nm 3 / t to produce a 800 ° C. combustion gas is burned with air 37.8Nm 3 / t, was blown into the furnace so as preheating gas.
  • the oxygen ratio in the gas combustion / blowing device a is 0.736 (relative to the theoretical oxygen amount), and the composition of the preheating gas is CO: 3.5 vol%, CO 2 : 27.3 vol%, H 2 : 0 .8vol%, H 2 O: 5.0vol %, N 2: a 63.3vol%.
  • the furnace top gas temperature became 149 ° C., and condensation of moisture into the piping during blast furnace operation was completely avoided, and stable operation became possible.
  • preheating gas is not injected, it is calculated as 97 ° C. from the calculation of material heat balance.
  • Example 4 In blast furnace volume 5000 m 3, using gas combustion and purging means a as shown in FIGS. 26 to 29, embodying the present invention in the embodiment as shown in FIG.
  • the blast furnace operating conditions were the same as in Example 3.
  • Blast furnace gas extracted from the downstream side of the top gas turbine generator 24 (CO: 17.7vol%, CO 2: 23.1vol%, H 2: 2.4vol%, H 2 O: 3.6vol%, N 2: 53.2 vol%) was boosted to a pressure 0.2 atm higher than the furnace pressure by the booster 25a, and introduced into the gas combustion / blowing apparatus a constituting the gas blowing section A as fuel gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacture Of Iron (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 空気または酸素富化空気が羽口から高炉内に吹き込まれ、予熱ガスがシャフト部に設けられたガス吹込部(A)から高炉内に吹き込まれる。ガス吹込部(A)は、ガス燃焼・吹込装置(a)を有している。ガス燃焼・吹込装置(a)には、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口が管状の燃焼室の内壁面に形成されている。前記燃焼室の先端は高炉内部と連通している。該ガス燃焼・吹込装置(a)の燃焼ガスが予熱ガスとして高炉内に吹き込まれる。

Description

高炉操業方法及びそのための低発熱量ガスの燃焼方法並びに高炉設備
 本発明は、安定した低還元材比操業を実施するための高炉操業方法および高炉設備、低発熱量ガスの燃焼方法に関する。
 近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出される二酸化炭素の抑制は重要な課題である。これを受け、最近の高炉操業では低還元材比(低RAR)操業が強力に推進されている。RAR(Reduction Agent Ratio)は、銑鉄1トン当たりの、吹き込み燃料と炉頂から装入されるコークスの合計量である。
 しかしながら、RARが低下すると原理的に送風量が低下し、この結果、シャフト上部においては装入物の昇温が遅れ、順調な還元が達成されなくなる。加えて、亜鉛化合物などの壁付きが助長され、風圧変動や荷下がり異常などの炉況不調を招く。また、炉頂温度が100℃未満に低下するような場合には、排ガス中の水分が配管内に凝縮する問題が生じる。
 通常の高炉操業において、上述したような各種炉況不調、特に炉上部での装入物の昇温不良を防止するには、以下のような対策が採られるのが通例である。
(a)酸素富化率を下げ、ガス量を増加させる(熱流比を下げ、ガス温度を上昇させる)。
(b)微粉炭などの燃料吹き込み量を増加させる(熱流比を下げ、ガス温度を上昇させる)。
(c)還元効率(シャフト効率)を下げ、還元材比を高くする。
 しかしながら、上記(a)の対策は生産量低下に繋がるため望ましくない。上記(b)は吹き込み能力の余裕代に依存するが、能力限界近くで操業している製鉄所では、その増加量に制約がある。また、燃料吹き込み量を増加させた場合には、ボッシュガス量が増えて生産量を低下させるため、酸素富化を同時に実施する必要がある。しかし、使用できる酸素量にも供給能力上の制限がある。上記(c)はわざわざ効率を下げた操業を指向することで、二酸化炭素削減に関する本来の目的に逆行する。
 このように、普通高炉において低RAR操業を行なう場合、通常の操業範囲内での操業条件の変更により各種炉況不調、特に炉上部の昇温不良を回避することは困難である。
 一方、高炉操業では、高炉羽口部でのコークスの燃焼により発生したCO等の還元ガスを鉄鉱石の還元に利用するが、その利用効率を高めることがRARの低減に繋がる。
 元来、高炉ガスは低発熱量ガスであるが、上記のようにRARが低減すると、発生する高炉ガスの発熱量は一層低下することになる。また、鉄鋼製造プロセスでは、排熱回収の一環として、コークス炉から排出される赤熱コークスの顕熱をコークス乾式消火設備(CDQ)で回収している。CDQは不活性ガスでコークスを冷却するが、回収時のコークスからの発生ガスも混入し、300kcal/Nm程度の低発熱量ガスとして回収される。
 工業的に用いられるガスバーナは、燃料ガスと支燃ガス(酸素含有ガス)の混合形式によって、拡散燃焼方式(外部混合)のものと、予混合燃焼方式(内部混合)のものとに大別されるが、いずれのバーナも、バーナ先端よりも前方で火炎が形成される構造になっている。拡散燃焼方式(外部混合)のものは、バーナ先端で燃料ガスと支燃ガスを混合して燃焼させるものであり、高温の火炎を得ることができ、広く利用されている。また、予混合燃焼方式のものは、比較的短い火炎を形成させることができる等の利点を有している。しかし、これら従来のバーナは、バーナ先端よりも前方で火炎が形成されるため、バーナ前方に広い燃焼用の空間を確保する必要があり、必然的に燃焼設備が大型になるという問題がある。
 従来のバーナに使用されている燃料ガスとしては、LNGやプロパンガスのほかに、鉄鋼製造プロセスで副生されるコークス炉ガス、高炉ガス、高炉ガスと転炉ガスを混合したMIXガス等があるが、これらのうち、高炉ガスのような低発熱量ガスを単独で使用した場合、空気比の変更やガス発熱量の増減により火炎の安定が充分でなく、消炎することもある。そのため、火炎の維持や燃焼の維持のためにパイロットバーナを別途設置したり、燃料ガスや支燃ガスを事前に予熱する方法が採られている。また、低発熱量ガスを用いた場合、燃焼条件によっては、NOなどの有害物質の生成量が増加したり、炭化水素などの未燃焼分が排出したり、煤煙が生成するなどの問題を生じやすく、環境汚染源の一つになることが懸念される。
 特許文献1は、酸素富化率が10体積%以下の羽口熱風吹込みを行なう普通高炉において低還元材比操業を行った場合に、シャフト上部での装入物の昇温が遅れるという課題を解決するために、炉頂温度が110℃以下となった場合に、炉頂ガス量の10体積%以下の量のガスをシャフトガスとしてシャフト上部から炉内に吹き込んでいる。また、特許文献1は、炉頂部から排出された後、ガスクリーニング装置を通過した高炉ガスの一部を抜き出し、燃焼炉で加熱した後、上記シャフトガスとして使用することを開示している。
 特許文献3には、低発熱量ガスを燃焼させるために、管状火炎バーナを用い、燃焼室内に燃料ガスと酸素含有ガス(支燃ガス)を旋回させながら導入して燃焼させる方法が示されている。この特許文献3の方法は、支燃ガスとして酸素濃度が60vol%以上の酸素含有ガスを用い、理論酸素量に対する供給酸素量の比が1.0~1.4となる範囲で実施するものである。
特開2008−214735号公報 特開昭62−27509号公報 特開2007−271188号公報
大野ら,「鉄と鋼」日本鉄鋼協会 75(1989年),p.1278
 特許文献1の方法では、高炉ガスを燃焼炉で加熱(予熱)してから炉内に吹き込むものであるが、その吹き込みガスは十分に予熱され、しかも吹き込む位置の炉内圧よりも高い圧力を有する必要がある。
 しかし、純酸素送風を行う所謂酸素高炉プロセス(例えば、特許文献2、非特許文献1参照)とは異なり、普通高炉プロセスで発生する高炉ガスは低発熱量であるため、燃焼炉で所望の温度まで昇温させるのが難しい場合があり、例えば、高発熱量の補助燃料を使用するなどの対策が必要になる場合がある。また、高炉ガスは低発熱量であるため、通常の燃焼炉では燃焼温度のバラツキが生じやすく、またこのため、燃焼ガス中に酸素が残り、炉内に吹き込まれた際に還元中の鉄酸化物(Fe、FeO)を再酸化させてしまう問題がある。また、所定の炉内圧を有する高炉内に安定して予熱ガスを吹き込むことも難しい。
 上記特許文献3の方法には、以下のような問題がある。
(1)支燃ガスとして、60vol%以上の酸素濃度を有する酸素含有ガスが必要であるが、このような高濃度の酸素を得るためには、別途深冷分離や膜分離等の酸素分離プロセスが必要となる。
(2)低発熱量ガスを高濃度の酸素で燃焼させた場合、局所的に高温となり、環境上問題となるサーマルNOの生成が懸念される。また、燃料ガス中にS分が含有される場合には、SOの生成が助長される。
(3)高濃度の酸素を配管等で導入する場合、脱脂処理等の実施、ステンレス製パイプ等による配管およびバルブ類の施工が必要となる。このため高価な材料が必要となり、設備コストが高くなる。
 本発明の第1の目的は、低RAR操業時の炉況不調、特に炉上部での装入物の昇温不良を防止することができるとともに、吹き込みガスとして高炉ガスのような低発熱量ガスを用いる場合であっても、これを安定して燃焼させて予熱ガスとすることができ、且つその予熱ガスを所定の炉内圧を有する高炉内に安定して吹き込むことができる高炉操業方法および高炉設備を提供することにある。
 本発明の第2の目的は、低発熱量ガスを燃焼バーナで燃焼させる場合の従来技術の課題を解決し、燃焼バーナにおいて高酸素濃度の支燃ガスを用いることなく、低発熱量ガスを安定して燃焼させることができる燃焼方法を提供することにある。
 本発明者らは、上記従来技術の課題を解決するために、特に予熱ガスの生成・吹込手段を中心に検討を行った結果、従来、加熱炉や燃焼機器に使用されている管状火炎バーナの方式を利用したガス燃焼・吹込装置をシャフト部に設け、このガス燃焼・吹込装置の燃焼ガスを予熱ガスとして炉内に吹き込むことにより、高炉ガスのような低発熱量ガスを用いる場合であっても、これを安定して燃焼させて予熱ガスとすることができ、且つその予熱ガスを所定の炉内圧を有する高炉内に安定して吹き込むことができることを見出した。
 本発明はこのような知見に基づきなされたもので、その要旨は以下のとおりである。
(1)空気または酸素富化空気を羽口から高炉内に吹き込む高炉操業方法において、
 予熱ガスをシャフト部に設けられたガス吹込部(A)から高炉内に吹き込むに当たり、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を、先端が開放された管状の燃焼室の内壁面に形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、ガス吹込部(A)を構成し、該ガス燃焼・吹込装置(a)の燃焼ガスを予熱ガスとして高炉内に吹き込むことを特徴とする高炉操業方法。
(2)燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を、先端が開放された管状の燃焼室の内壁面に形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)を構成したことを特徴とする(1)に記載の高炉操業方法。
(3)ガス燃焼・吹込装置(a)に供給される燃料ガスが高炉ガスであることを特徴とする(1)に記載の高炉操業方法。
(4)燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されていることを特徴とする(1)に記載の高炉操業方法。
(5)ガス燃焼・吹込装置(a)において、燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする(1)に記載の高炉操業方法。
(6)ガス燃焼・吹込装置(a)の燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする請求項1に記載の高炉操業方法。
(7)ガス燃焼・吹込装置(a)の燃焼室の先端を、ガス導管を介して高炉内部と連通させることを特徴とする(1)に記載の高炉操業方法。
(8)ガス導管がヘッダー管であり、該ヘッダー管には、炉体に形成された複数のガス吹込口が連絡管を介して接続されるとともに、ガス燃焼・吹込装置(a)の燃焼室の先端が接続されることを特徴とする(7)に記載の高炉操業方法。
(9)前記燃焼ガスの高炉内への吹き込みが、燃料ガスとして発熱量が1000kcal/Nm以下のガスを用いるとともに、燃焼室に吹き込まれる前の燃料ガスまたは/および燃焼室に吹き込まれた燃料ガスに水素を加えて燃焼させ、その燃焼ガスを予熱ガスとして高炉内に吹き込むことを特徴とする(1)または(2)に記載の高炉操業方法。
(10)前記燃料ガスがCOを含有する燃料ガスであり、前記水素が、断熱火炎温度が750℃以上となるように加えられることを特徴とする(9)に記載の高炉操業方法。
(11)前記燃料ガスと支燃ガス若しくは燃料ガスと支燃ガスとの予混合ガスが、ガス燃焼・吹込装置(a)の軸線方向に並列に設置された複数のノズル管から吹き込まれることを特徴とする(9)に記載の高炉操業方法。
(12)前記燃料ガスが高炉ガスであることを特徴とする(9)に記載の高炉操業方法。
(13)燃焼室の内壁面に燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口を形成したガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(9)に記載の高炉操業方法。
(14)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口を形成したガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(9)に記載の高炉操業方法。
(15)燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されることを特徴とする(13)または(14)に記載の高炉操業方法。
(16)ガス燃焼・吹込装置(a)において、燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする(9)に記載の高炉操業方法。
(17)ガス燃焼・吹込装置(a)の燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする(9)に記載の高炉操業方法。
(18)前記燃焼ガスの高炉内への吹き込みが、燃料ガスとして高炉ガスを用いるとともに、燃焼室に吹き込まれる前の高炉ガスまたは/および燃焼室に吹き込まれた高炉ガスに水素を加えて燃焼させ、その燃焼ガスを予熱ガスとして高炉内に吹き込むことからなる、(1)または(2)に記載の高炉操業方法。
(19)前記燃料ガスが高炉ガスであり、前記水素が、断熱火炎温度が750℃以上となるように加えられることを特徴とする(18)に記載の高炉操業方法。
(20)燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されることを特徴とする(18)に記載の高炉操業方法。
(21)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口を形成したガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(18)に記載の高炉操業方法。
(22)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口を形成したガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(18)に記載の高炉操業方法。
(23)燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されることを特徴とする(18)に記載の高炉操業方法。
(24)ガス燃焼・吹込装置(a)において、燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする(18)に記載の高炉操業方法。
(25)ガス燃焼・吹込装置(a)の燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする(18)に記載の高炉操業方法。
(26)空気または酸素富化空気を羽口から高炉内に吹き込む高炉において、
 ガス吹込部(A)をシャフト部に設け、先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、ガス吹込部(A)を構成し、該ガス燃焼・吹込装置(a)の燃焼ガスが高炉内に吹き込まれるようにしたことを特徴とする高炉設備。
(27)先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)を構成したことを特徴とする(26)に記載の高炉設備。
(28)高炉の炉頂部から排出された高炉ガスの流路から高炉ガスの一部を抜き出し、ガス燃焼・吹込装置(a)に供給するための流路を備えることを特徴とする(26)に記載の高炉設備。
(29)ガス燃焼・吹込装置(a)に供給される燃料ガスと支燃ガスを各々昇圧するための若しくは燃料ガスと支燃ガスの予混合ガスを昇圧するための昇圧機を備えることを特徴とする(26)に記載の高炉設備。
(30)ガス燃焼・吹込装置(a)において、燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されることを特徴とする(26)に記載の高炉設備。
(31)ガス燃焼・吹込装置(a)は、燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給する手段を有することを特徴とする(26)に記載の高炉設備。
(32)ガス燃焼・吹込装置(a)の燃焼室の先端を、ガス導管を介して高炉内部と連通させることを特徴とする(26)に記載の高炉設備。
(33)ガス導管がヘッダー管であり、該ヘッダー管には、炉体に形成された複数のガス吹込口が連絡管を介して接続されるとともに、ガス燃焼・吹込装置(a)の燃焼室の先端が接続されることを特徴とする(32)に記載の高炉設備。
 次に、本発明者らは、上記第2の課題を解決するために検討を行った結果、1000kcal/Nm以下(特に、800kcal/Nm以下)の低発熱量ガスを安定燃焼させるには、管状火炎バーナを用いるとともに、燃料ガスに水素を加えることが有効であることを見出した。
 また、上記第二の課題を解決するために、特に予熱ガスの生成・吹込手段を中心に検討を行った結果、従来、加熱炉や燃焼機器に使用されている管状火炎バーナの方式を利用したガス燃焼・吹込装置をシャフト部に設け、このガス燃焼・吹込装置の燃料ガスとして用いる低発熱量ガスに水素を加え、その燃焼ガスを予熱ガスとして炉内に吹き込むことにより、高炉ガス等のような低発熱量ガスを安定して燃焼させて予熱ガスとすることができ、且つその予熱ガスを所定の炉内圧を有する高炉内に安定して吹き込むことができることを見出した。
(34)先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成した燃焼バーナにおいて、発熱量が1000kcal/Nm以下のガスを燃料ガスとして用いる際に、燃焼室に吹き込まれる前の燃料ガスまたは/および燃焼室に吹き込まれた燃料ガスに水素を加える(但し、水素含有ガスとして加える場合を含む)ことを特徴とする燃焼バーナによる低発熱量ガスの燃焼方法。
(35)前記ガス吹込部(A)を、先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で構成した、(34)に記載の低発熱量ガスの燃焼方法。
(36)COを含有する燃料ガスに、断熱火炎温度が750℃以上となるように水素を加えることを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(37)燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(38)燃料ガスが高炉ガスであることを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(39)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口を形成した燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(40)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口を形成した燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(41)燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(42)燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(43)燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする(34)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(44)先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成した燃焼バーナにおいて、高炉ガスを燃料ガスとして用いる際に、燃焼室に吹き込まれる前の高炉ガスまたは/および燃焼室に吹き込まれた高炉ガスに水素を加えることを特徴とする燃焼バーナによる低発熱量ガスの燃焼方法。
(45)先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)を構成したことを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(46)高炉ガスに、断熱火炎温度が750℃以上となるように水素を加えることを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(47)燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(48)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口を形成した燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(49)燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口を形成した燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(50)燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(51)燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
(52)燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする(44)に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
 本発明によれば、普通高炉の操業において、低RAR操業時の炉上部での装入物の昇温不良を防止できるとともに、炉頂温度低下による水分凝縮や亜鉛化合物の壁付き等も効果的に抑えることができるので、低RAR操業を安定的に実施することができる。しかも、ガス吹込部を管状火炎バーナタイプのガス燃焼・吹込装置で構成することにより、吹き込みガスとして高炉ガスのような低発熱量ガスを用いる場合であっても、これを安定して燃焼させて予熱ガスとすることができ、且つその予熱ガスを所定の炉内圧を有する高炉内に安定して吹き込むことができる。
 また、本発明に係る燃焼バーナによる低発熱量ガスの燃焼方法によれば、高炉ガスやCDQから回収されたガス等のような低発熱量ガスを安定的に燃焼させることができ、低発熱量ガスを燃料として有効利用することができる。
本発明の一実施形態を模式的に示す説明図 図1の実施形態において、ガス吹込部Aを構成するガス燃焼・吹込装置aの一実施形態を示す部分切欠平面図 図2のIII−III線に沿う断面図 図1の実施形態において、ガス吹込部Aを構成するガス燃焼・吹込装置aの他の実施形態を示す部分切欠平面図 図4のガス燃焼・吹込装置aを部分的に示す底面図 図4のVI−VI線に沿う断面図 図4のVII−VII線に沿う断面図 実施例の燃焼試験で用いた試験装置を示す説明図 実施例で行った燃焼試験における燃焼室内圧力と有効熱利用率との関係を示すグラフ 本発明で使用されるガス燃焼・吹込装置aにおいて、燃焼室内部の径方向断面を模式的に示す説明図 本発明で使用されるガス燃焼・吹込装置aにおいて、燃焼室内部の径方向断面を模式的に示す説明図 図12aは本発明におけるガス吹込部Aの設置形態の一例を、炉体を水平断面した状態で模式的に示す説明図、図12bは本発明におけるガス吹込部Aの設置形態の他の例を、炉体を水平断面した状態で模式的に示す説明図、図12c本発明におけるガス吹込部Aの設置形態の他の例を、炉体を水平断面した状態で模式的に示す説明図 本発明で使用される燃焼バーナの一実施形態を示す部分切欠平面図 図13のII−II線に沿う断面図 本発明で使用される燃焼バーナの他の実施形態を示すもので、図13と同様の断面線に沿う断面図 本発明で使用される燃焼バーナの他の実施形態を示す部分切欠平面図 図16の燃焼バーナを部分的に示す底面図 図16のVI−VI線に沿う断面図 図16のVII−VII線に沿う断面図 本発明の高炉操業方法の一実施形態を模式的に示す説明図 本発明で使用される燃焼バーナにおいて、燃焼室内部の径方向断面を模式的に示す説明図 本発明で使用される燃焼バーナにおいて、燃焼室内部の径方向断面を模式的に示す説明図 本発明で使用される燃焼バーナの一実施形態を示す部分切欠平面図 図23のII−II線に沿う断面図 本発明で使用される燃焼バーナの他の実施形態を示すもので、図24と同様の断面線に沿う断面図 本発明で使用される燃焼バーナの他の実施形態を示す部分切欠平面図 図26の燃焼バーナを部分的に示す底面図 図26のVI−VI線に沿う断面図 図26のVII−VII線に沿う断面図 本発明の高炉操業方法の一実施形態を模式的に示す説明図 本発明で使用される燃焼バーナにおいて、燃焼室内部の径方向断面を模式的に示す説明図 本発明で使用される燃焼バーナにおいて、燃焼室内部の径方向断面を模式的に示す説明図
[実施の形態1]
 本発明は、空気または酸素富化空気を羽口送風する高炉操業、すなわち普通高炉の操業を対象とする。酸素富化空気を羽口送風する場合には、通常、酸素富化率20体積%以下、好ましくは10体積%以下での操業が行われる。なお、酸素富化率が増加するにしたがい炉内を通過するガス量が減り、シャフト上部を昇温するために必要な吹き込みガス量が大幅に増加するため、この点からも、上記のような酸素富化率での操業が好ましい。
 図1は、本発明の一実施形態を模式的に示す説明図である。図において、20は高炉、21はその羽口であり、この羽口21から熱風と補助還元材(例えば、微粉炭、LNGなど)が炉内に吹き込まれる。
 高炉20の炉頂部から排出された高炉ガス(炉頂ガス)は、ガス清浄装置であるダストキャッチャー22でダストを除去され、同じくミストセパレータ23で水分を除去された後、炉頂ガス発電装置24に導かれ、炉頂ガスの圧力が電気として回収された後、系外に導かれる。
 本発明では、シャフト部(好ましくはシャフト中部~上部)に設けられたガス吹込部Aから高炉内にガスを吹込む。このようにしてガスを炉内に吹き込む主たる目的は、低RAR操業による送風量の低下を補い、炉上部でのガス流量を確保するためであるが、無用に炉頂ガス温度を低下させるような温度のガスを吹き込むことは発明の主旨に反するので、吹き込みガスとしては予熱ガスを用いる。
 このようにガス吹込部Aから予熱ガスを高炉内に吹き込むに当たり、本発明では、ガス吹込部Aを、先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置aで構成し、このガス燃焼・吹込装置aの燃焼ガスを予熱ガスとして高炉内に吹き込むものである。
 このようなガス燃焼・吹込装置aの基本構造は、例えば、特開11−281015号公報に示されるような管状火炎バーナとして知られたものである。しかし、この管状火炎バーナは、加熱炉や燃焼機器用として開発され、使用されてきたものであり、高炉のガス吹込手段に適用することについては、全く検討されていなかった。また、近年の高炉操業は高圧条件で行われ、予熱ガスは吹き込み位置の炉内圧よりも高い圧力に昇圧して吹き込む必要があるが、管状火炎バーナは常圧状態での使用を前提としており、上記のような圧力条件下で使用することについても、全く検討されていなかった。これに対して本発明では、高炉ガスなどの低発熱量ガスを燃焼させて予熱し、これを高炉のシャフト部から炉内に吹き込む手段として、管状火炎バーナタイプのガス燃焼・吹込装置aが非常に優れた機能を有することを見出したものである。
 図1の実施形態では、炉頂部から排出された後、ガス清浄装置(ダストキャッチャー22およびミストセパレータ23)、炉頂ガス発電装置24を経た高炉ガスの一部を抜き出し、昇圧機25aで昇圧した後、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入する。高炉20の炉頂部から排出される高炉ガスの流路27のうち、炉頂ガス発電装置24の下流側の流路部分から、高炉ガスの一部をガス燃焼・吹込装置aに供給するための流路28が分岐している。
 また、ガス燃焼・吹込装置aには、酸素や酸素含有ガス(空気、酸素富化空気など)である支燃ガスが供給されるが、この支燃ガスも昇圧機25bで昇圧した後、ガス燃焼・吹込装置aに導入する。なお、ガス燃焼・吹込装置aで燃料ガスと支燃ガスの予混合ガスを用いる場合には、事前に昇圧機25a,25bで燃料ガスと支燃ガスを別々に昇圧してもよいし、予混合ガスを単一の昇圧機25で昇圧してもよい。
 図2および図3は、ガス吹込部Aを構成するガス燃焼・吹込装置aの一実施形態を示すもので、図2は部分切欠平面図、図3は図2中のIII−III線に沿う断面図である。
 図において、1は先端が開放された管状(円筒状)の燃焼室、3aは燃料ガス用のガスノズル、3bは支燃ガス用のガスノズルである。
 前記燃焼室1は、その先端が炉体に設けられたガス吹き込み口16に接続されることで高炉内部と連通している。この燃焼室1の内方(後端側)の内壁面100には、燃焼室内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込むための開口2a,2b(ノズル口)が形成され、これら開口2a,2bに、それぞれ前記ガスノズル3a,3bが接続されている。前記開口2a,2b(ノズル口)は、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成される。本実施形態の開口2a,2bは、内壁面100のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むように形成されている。
 前記開口2a,2bは、管軸方向に沿ったスリット状に形成され、内壁面100(内周面)で180°対向する位置に設けられている。これら開口2aと開口2bはそれぞれ複数設けてもよく、その場合には、各開口2a,2bに対してガスノズル3a,3bが接続される。
 なお、この実施形態では、燃焼室1の先端をガス吹込口16に直接接続することで高炉内部と連通させているが、燃焼室10の先端を適当なガス導管(例えば、図12b、図12cに示すようなヘッダー管)を介して高炉内部と連通させてもよい。この場合には、燃焼室1の先端から排出された燃焼ガスはガス導管を経て高炉内に吹き込まれる。
 ここで、開口2a,2b(ノズル口)からは、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込めばよいが、特に、ガス旋回流が後述するような好ましいスワール数Sw(旋回を伴う流体の流れにおいて旋回の強さを表す無次元数)の範囲となるように、開口2a,2bからのガスの吹き込み方向を設定するのが好ましい。図10は、開口2a,2bが形成された位置での燃焼室内部の径方向断面を模式的に示している。このような燃焼室1の径方向断面において、内壁面100の周方向における開口2a,2bの端部のうち、開口2a,2bから吐出して旋回するガス流の旋回(回転)方向における先端側の端部を点pとし、この点pにおける内壁面100の接線をx、開口2a,2bから吐出するガス流の中心線(=ガスノズル3a,3bの軸芯)をy、接線xとガス流中心線yとが成す角度をガス吹込み角度θとした場合、このガス吹込み角度θを、好ましいスワール数Swの範囲(Sw:3~10)となるように設定することが好ましい。すなわち、ガスノズル3aの内径から算出される開口2aでの燃料ガス速度をVf、ガスノズル3bの内径から算出される開口2bでの支燃ガス速度をVaとした場合、接線x方向での燃料ガス速度成分Vf1と支燃ガス速度成分Va1は以下のようになる。
 Vf1=Vf×cosθ
 Va1=Va×cosθ
 そして、このVf1、Va1を開口2a,2bでのガス速度として算出されるスワール数Swが所定の好ましい範囲になるように、ガス吹込み角度θを決めることが好ましい。スワール数Swの求め方は、後述のとおりである。
 一方、ガス燃焼・吹込装置aの構造面から言うと、ガス燃焼・吹込装置aは、燃焼室1の内壁面100に、該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための開口2a,2bを形成した構造のものが好ましい。これは、そのような構造にしておけば、ガス量やガス速度の変更や変化に拘わりなく、好ましいスワール数Swを実現できるからである。具体的には、図10に示すガス吹込み角度θを30°以下、より好ましくは10°以下とすることが望ましい。このガス吹込み角度θが大きくなると、ガス量やガス速度によっては、内壁面100に沿ったガス旋回流を適切に形成できなくなる恐れがある。本実施形態、後述する図4~図7の実施形態では、いずれもガス吹込み角度θ≒0°~5°程度である。
 このようなガス燃焼・吹込装置aでは、ガスノズル3aに燃焼ガスである高炉ガスが、ガスノズル3bに支燃ガスがそれぞれ供給され、これら燃料ガスと支燃ガスは開口2a,2b(ノズル口)から燃焼室1内に吹き込まれる。この燃料ガスと支燃ガスは、燃焼室1の内壁面100に沿って旋回流を形成しながら燃焼し、火炎が形成される。
 なお、このガス燃焼・吹込装置aは、燃料ガスと支燃ガスの予混合ガスを用いてもよく、この場合には、燃焼室1の内壁面100に、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスの予混合ガスを吹き込むための1つ以上の開口2(ノズル口)が形成され、この開口2に予混合ガス供給用のガスノズル3が接続される。前記開口2は、図2および図3の開口2a,2bと同様、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成されるが、特に、内壁面100のほぼ接線方向にガス(予混合ガス)を吹き込むように形成されることが好ましい。なお、この開口2からも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガスを吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図10に基づいて説明した開口2a,2bと同様である。
 支燃ガスとして空気などの酸素含有ガス、酸素ガスを用いることができるが、本発明は支燃ガスとして空気を用いる場合に特に有用である。支燃ガスの供給量は、安定した燃焼状態を維持するのに必要な量である。支燃ガスとして空気を用いる場合、通常、空気比1以上となるように供給される。空気比とは、燃料の燃焼に必要な理論的な空気量と実際に供給する空気量の比(実際の空気量/理論空気量)であり、空気比1で燃料ガスは完全燃焼し、COおよびHOとなる。空気比が1未満の条件では不完全燃焼となり、安定した燃焼が継続できなくなる。また、空気比が過剰の場合には希薄燃焼となり、この場合も安定な燃焼状態が維持できない。したがって、通常は空気比1.0~1.5の範囲で支燃ガスを供給することが好ましい。
 燃料ガスと支燃ガスのノズル(開口)からの噴出速度に特に制限はないが、両者は同程度の速度であることが好ましい。
 以上のようなガス燃焼・吹込装置aにおいて、ガスノズル3a,3bおよび開口2a,2bから燃焼室1内に吹き込まれて旋回流を形成する燃料ガスと支燃ガス(または両者の予混同ガス)はガスの密度差によって層別され、火炎の両側に密度の異なるガス層ができる。すなわち、旋回速度の小さい軸心側には高温の燃焼排ガスが存在し、旋回速度の大きい内壁面100側には未燃焼のガスが存在するようになる。また、内壁面100近傍では、旋回速度が火炎伝播速度を上回っているため、火炎は内壁面近傍に留まることはできない。このため、燃焼室1内には管状の火炎が安定的に生成する。また、燃焼室1の内壁面付近には未燃焼のガスが存在しているので、燃焼室1の内壁面が直接的な伝熱により高温に加熱されることはない。そして、燃焼室1内のガスは旋回しながら先端側へ流れるが、その間、内壁面100側のガスが順次燃焼して軸心側へ移動し、燃焼ガスが開放した先端から排出され、ガス吹き込み口16を通じて高炉内に吹き込まれる。
 図4~図7は、本発明で使用されるガス燃焼・吹込装置aの他の実施形態を示すもので、図4はガス燃焼・吹込装置aの部分切欠平面図、図5はガス燃焼・吹込装置aを部分的に示す底面図、図6は図4中のVI−VI線に沿う断面図、図7は図4中のVII−VII線に沿う断面図である。
 図4~図7の実施形態では、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bが、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成されている。このようにガスノズル3a,3bを複数のノズル管300a,300bで構成するのは、後述するように、ガスノズル3a,3bによって燃焼室1内で適切な旋回流が形成されるようにしつつ、スワール数Swを所定の好ましい範囲にするためである。
 図2および図3の実施形態と同様、前記燃焼室1の内方(後端側)の内壁面100には、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込むための開口2a,2b(ノズル口)が形成されるが、これら開口2a,2bも各々複数の開口200a,200bで構成されている。そして、各開口200aにそれぞれ前記ノズル管300aが接続され、各開口200bにそれぞれ前記ノズル管300bが接続されている。前記開口200a,200bは、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室10の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成される。本実施形態の開口200a,200bは、内壁面100のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むように形成されている。
 また、前記ガスノズル3a,3b(開口2a,2b)よりも燃焼室先端寄りの位置には、燃焼ガスを希釈してその温度および/または組成を調整する希釈ガスを燃焼室1内に供給するためのガスノズル14が設けられている。このガスノズル14は、燃焼ガスを希釈するガスを供給するものであるため、燃焼室1内でのガス燃焼を妨げない位置に設ければよく、燃焼室長手方向での設置(接続)位置に特別な制限はないが、本実施形態では、燃焼室長手方向の中央位置よりも燃焼室先端寄りの位置に設けられている。
 ガスノズル14は単一のノズル管で構成してもよいが、本実施形態では、バーナ軸方向で並列した複数のノズル管140で構成されている。ガスノズル14が設置される位置の燃焼室1の内壁面100には、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように、同内壁面のほぼ接線方向に希釈ガスを吹き込むための開口15(ノズル口)が形成され、この開口15に前記ガスノズル14が接続されている。本実施形態では、開口15は複数の開口150で構成され、各開口150にそれぞれ前記ノズル管140が接続されているが、開口15を管軸方向に沿ったスリット状の単一の開口とし、これに単一のガスノズル14を接続してもよい。なお、この希釈ガス用の開口15は、必ずしも燃焼室10内でガス旋回流が生じるようにガスを吹き込むような構造としなくてもよい。
 図4~図7に示す実施形態のガス燃焼・吹込装置aの他の構造、機能は、図2および図3に示す実施形態のガス燃焼・吹込装置aと同じであるので、詳細な説明は省略する。
 また、前記開口200a,200bからも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガスを吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図10に基づいて説明した開口2a,2bと同様である。
 なお、この実施形態でも、燃焼室1の先端をガス吹込口16に直接接続することで高炉内部と連通させているが、燃焼室1の先端を適当なガス導管(例えば、図12b、図12cに示すようなヘッダー管)を介して高炉内部と連通させてもよい。この場合には、燃焼室1の先端から排出された燃焼ガスはガス導管を経て高炉内に吹き込まれる。
 本発明で使用するガス燃焼・吹込装置aでは、燃焼室1内で高温の燃焼ガスが発生し、例えば、高炉ガスの理論燃焼温度は空気比1.0で約1300℃となる。このような燃焼ガスを予熱ガスとして高炉内に吹き込む場合、吹き込まれた燃焼ガス中のCOによって炉内のコークスが消費され、或いは炉内で還元された鉄鉱石(マグネタイト)が再酸化されることがないよう、燃焼ガスを希釈してその温度や組成を管理することが好ましい。本実施形態では、そのような目的で、燃焼ガスの温度および/または組成を調整するための希釈ガスをガスノズル14から燃焼室1内に供給する。
 使用する希釈ガスの種類は、燃焼ガスに添加する目的(ガス温度調整および/またはガス組成調整)に応じて適宜選択すればよいが、燃焼ガスの組成を調整するという面からは、CO、Hなどの還元ガスを含むものが好ましい。例えば、高炉ガス、転炉ガス、コークス炉ガス等の1種以上を用いることができ、特に、高炉ガスの一部を抜き出して希釈ガスとして用いることが好ましい。
 また、高炉内に吹き込む予熱ガスの温度は500℃以上、好ましくは800℃以上、1000℃以下が望ましいので、このような予熱ガス温度になるように希釈ガスの温度と供給量が選択されることが好ましい。
 なお、燃料ガスと支燃ガスの予混合ガスを吹き込むためのガスノズルを有するガス燃焼・吹込装置aについても、そのガスノズルをバーナ軸方向で並列した複数のノズル管で構成することができる。また、このガス燃焼・吹込装置aにおいても、上記のような希釈ガス用のガスノズル14と開口15を設けることができる。
 本発明法では、燃焼室1内でのガス流のスワール数Swを3~10の範囲とするのが好ましい。スワール数は、旋回を伴う流体の流れにおいて旋回の強さを表す無次元数であり、スワール数が大きいほど旋回の強い流れとなる。スワール数が小さ過ぎると燃料ガスと支燃ガスの混合が不十分となり、燃料ガスの着火が安定しなくなり、一方、大き過ぎると燃焼火炎が吹き消える場合がある。以上の観点から、スワール数Swは3~10の範囲が好ましい。
 スワール数Swは、これを算出するための公知の基本式に従い、使用するガス燃焼・吹込装置aの形式やその使用形態に応じた式で算出することができ、例えば、図2および図3の実施形態のような、燃料ガス吹き込み用の開口2aと支燃ガス吹き込み用の開口2bを有するガス燃焼・吹込装置aを用いる場合には、スワール数Swは下式により求めることができる。
Figure JPOXMLDOC01-appb-M000001
 また、燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を有するガス燃焼・吹込装置aを用いる場合には、スワール数Swは下式により求めることができる。
Figure JPOXMLDOC01-appb-M000002
 スワール数Swを上記のような好ましい範囲にする当たり、図4~図7の実施形態のように、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bを、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成することが好ましい。これは以下のような理由による。例えば、燃焼室内径:50mm、高炉ガス量:30Nm/h(ガス密度:1.34kg/Nm)、空気量:21.4Nm/h(ガス密度:1.29kg/Nm)、空気比:1.1、高炉の炉内圧:245kPaという条件の場合、ガスノズル12a,12bがそれぞれ単一(1本)のノズル管で構成されるとすると、スワール数Swが3となるノズル管の内径(円換算の内径。すなわち、ノズル管内部の断面積を円の面積に換算した時の当該円の直径。以下、「ノズル管の内径」という場合には、同様の意味とする。)は、ガスノズル3aが21mm(開口11aでの燃料ガス速度:7m/s)、ガスノズル3bが21mm(開口2bでの支燃ガス速度:5m/s)となる。しかし、このようにガスノズル3a,3bを単一のノズル管で構成した場合には、図2のII−II線断面において、ノズル管の内径が燃焼室内径の約4/10となり、燃料ガスおよび支燃ガスとも、燃焼室中心方向(軸心)への流れが増加し、良好な旋回流が形成されにくくなる。このため軸心側に存在する高温燃焼排ガスが冷却される恐れがあり、本発明の効果が低下する可能性がある。図11は、開口2a,2bが形成された位置での燃焼室内部の径方向断面を模式的に示しており、燃焼室1の半径をR、燃焼室径方向でのガスノズル3a,3bの内部幅または実内径をtとしたとき、開口2a,2bから吹き込まれるガス流の中心位置(=ガスノズル3a,3bの軸芯)は、燃焼室1の中心から距離(R−t/2)の位置にある。ここで、Rに対してtが大きくなると、燃焼室中心方向(軸心)への流れが増加して良好な旋回流が形成されにくくなり、管状火炎が管壁から離れた位置に形成されて燃焼が不安定となりやすい。このような観点から(R−t/2)/R≧0.8が好ましいが、上記の例ではこの好ましい条件から外れてしまう。
 これに対して、ガスノズル3a,3bをバーナ軸方向で並列した複数のノズル管300a,300bで構成した場合には、ノズル管1本当たりの内径が小さくなるので、上記のような問題が生じにくく、スワール数Swを好ましい範囲にしつつ、良好な旋回流を生じさせることができる。そのため、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bは、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成することが好ましい。同様の理由で、燃料ガスと支燃ガスの予混合ガスを吹き込むためのガスノズルを有するガス燃焼・吹込装置aについても、そのガスノズルをバーナ軸方向で並列した複数のノズル管で構成することが好ましい。
 また、図4~図7に示すガス燃焼・吹込装置aの場合には、高炉内に吹き込まれた燃焼ガス中のCOによってコークスが消費され、或いは炉内で還元された鉄鉱石(マグネタイト)が再酸化されることがないよう、燃焼ガスを希釈してその温度や組成を管理するために、ガスノズル14から希釈ガスが燃焼室1内に供給される。さきに述べたように、希釈ガスとしては、CO、Hなどの還元ガスを含むものが好ましく、例えば、高炉ガス、転炉ガス、コークス炉ガス等の1種以上を用いることができ、なかでも高炉ガスの一部を抜き出して希釈ガスとして用いることが好ましい。また、後述するように、炉内に吹き込まれる予熱ガスの温度は500℃以上、望ましくは800℃以上、1000℃以下が好ましいので、そのような予熱ガス温度になるように希釈ガスの温度と供給量が選択されることが好ましい。
 本発明において、以上述べたような管状火炎バーナタイプのガス燃焼・吹込装置aを用いることにより得られる効果を、従来の他のタイプのガスバーナを用いた場合と比較して説明する。
 従来、工業的に用いられているガスバーナは、燃料ガスと支燃ガスの混合方式によって、拡散燃焼方式(外部混合)のバーナと、予混合燃焼方式(内部混合)のバーナとに大別されるが、これらのガスバーナは、いずれもバーナ先端よりも前方に火炎が形成される構造になっている。したがって、このようなガスバーナをガス燃焼・吹込装置aとして用いた場合、火炎が高炉上部から降下する装入物(鉄鉱石、コークス)に直接あたり、コークスのソリューションロス反応を生じさせ、コークスが無用に消費されるなどの問題を生じる。
 また、純酸素送風を行う酸素高炉プロセスの炉頂ガスは、窒素が少なくCOが主体のガスであるため、発熱量が高い(例えば、約1200kcal/Nm)。このため上記のような従来の一般的なガスバーナでも、特に問題なく燃料ガスとして使用することができる。これに対して本発明が対象とする普通高炉プロセスで発生する高炉ガスは発熱量が低く(例えば、約800kcal/Nm)、上記のような従来の一般的なガスバーナに適用しても安定燃焼は難しい。また、低RAR操業を指向した場合には、高炉ガスの発熱量はさらに低下する。例えば、高炉内物質熱収支モデルで計算すると、高炉ガスの発熱量は、(1)RAR494kg/t相当の操業では889kcal/Nm、(2)RAR460kg/t相当の操業では812kcal/Nm、(3)RAR437kg/t相当の操業では758kcal/Nm、(4)RAR426kg/t相当の操業では724kcal/Nmとなり、同計算では、高炉炉頂ガスの温度は110℃以下となる。そこで、例えば、炉頂部から排出された高炉ガスの一部を抜き出し、酸素で燃焼させた予熱ガスをシャフト部から炉内に吹込み、高炉炉頂ガス温度を110℃以上に保持した場合、高炉ガス発熱量はさらに低下する。例えば、上記(2)の操業において、800℃の予熱ガスを100Nm/t吹込んだ場合、高炉ガス発熱量は786kcal/Nmとなり、また、上記(3)の操業において、800℃の予熱ガスを150Nm/t吹込んだ場合、高炉ガス発熱量は715kcal/Nmとなる。このような低RAR操業による高炉ガス発熱量の低下は、上記のような従来の一般的なガスバーナによる安定した燃焼をさらに困難とする。
 また、通常の高炉は4~5kg/cmの加圧下で操業されるとともに、高炉上部から装入物が降下するため常時圧力変動がある。また、高炉炉壁への付着物の生成に起因する吹抜け等も発生する。上記のような従来の一般的なガスバーナでは、これらの要因によっても火炎の安定性が阻害され、吹き消え等も起こるおそれがある。
 以上のような従来の一般的なガスバーナの問題に対して、本発明において管状火炎バーナタイプのガス燃焼・吹込装置aを用いることにより、次のような効果が得られる。
(a)燃焼室1内でガスが燃焼し、燃焼室1の外側には火炎が存在しないので、高炉上部から降下する装入物(鉄鉱石、コークス)に直接火炎があたらず、装入物に与える影響が少ない。また、同じく燃焼室1の外側に火炎が存在しないので、高炉の炉内圧やその変動、吹抜けなどに影響されることなく、安定した火炎が形成され、所望の温度の燃焼ガスを炉内に安定的に吹き込むことができる。
(b)炉内に吹き込む予熱ガスは、吹き込む位置の炉内圧よりも高い圧力を有する必要があり、したがって、実質的にガス燃焼・吹込装置aの燃焼室1内では加圧下でガス燃焼が生じることが必要であるが、このように燃焼室1が加圧状態になることにより、特に高炉ガスのような低発熱量ガスでも安定して燃焼させることが可能となる。ガス燃焼・吹込装置aでは、燃焼室1内に安定的な火炎が形成され、燃料ガスと支燃ガス(酸素)との混合性もよいため、ガスを効率的且つ均質に燃焼させることが可能であるが、特に、上述したように燃焼室1が加圧状態になることにより、標準状態での発熱量に対して、ガス密度が増加することから見掛けの発熱量が増加する。このため、燃料ガスが高炉ガスのような低発熱量ガスであっても、或いは燃料ガス成分の濃度が非常に低い場合であっても、安定して燃焼させることが可能となる。
(c)同じく燃焼室1が加圧状態になることにより、ガス密度が高くなり、燃料ガスの保有する熱量を有効に燃焼ガスに伝えることができる。特に、燃焼室1の内壁面100付近には未燃焼のガスおよび支燃ガスが存在しているので、燃焼室1の内壁面100が直接的な伝熱により高温に加熱されることがなく、管壁からの熱損失が少ないことにより、その効果がより高まる。
(d)ガス吹込部Aから吹き込む予熱ガスは、酸素(Oとしての酸素ガス。以下同様)を含まない或いは酸素濃度が低いことが好ましい。予熱ガスに酸素があると炉内で還元中の鉄酸化物(Fe、FeO)を再酸化させるためである。この点、ガス燃焼・吹込装置aは、燃焼室1内で安定な火炎が形成されることにより酸素利用効率が高く、特に燃焼室1が加圧状態になることにより、酸素利用効率をより高めることが可能となり、理論酸素量より少ない酸素量で安定した燃焼が可能となる。したがって、酸素を含まない若しくは酸素濃度が非常に低い予熱ガスを炉内に吹き込むことができる。
(e)燃焼室1内で安定な火炎が形成されることによって、炉内に吹き込まれる予熱ガス(燃焼ガス)の温度のバラツキが小さく、炉下部からの高炉ガスと炉上部から降下する装入物の温度をばらつきなく上昇させることができる。
 通常、高炉ガスを昇圧機6に導く流路9には、高炉ガスの組成、温度および圧力などを測定するセンサー26aが設置され、また、ガス吹込部A近傍には炉内圧力、温度を測定するセンサー26bが設置され、これらのセンサー26a,26bの測定値に基づき、昇圧機25a,25bで昇圧するガス圧力、ガス燃焼・吹込装置aに投入する支燃ガス量などが制御される。
 ガス吹込部Aからの予熱ガスの吹き込みは、常時行ってもよいし、炉頂ガス温度が低下した場合にのみ行ってもよい。後者の場合には、例えば、炉頂ガス温度をセンサーで測定し、炉頂ガス温度が所定温度以下(例えば、110℃以下)となった場合に、ガス吹込部Aから予熱ガスの吹き込みを行う。
 ガス吹込部Aから吹き込む予熱ガスの温度に特別な制限はないが、吹込む位置の炉内ガス温度より低いと、炉内を逆に冷やしてしまうため、吹込む位置の炉内ガス温度よりも高い温度が好ましく、一般的には500℃以上、好ましくは800℃以上が望ましい。一方、高炉内でのソリューションロス反応を抑え、或いは装置の耐熱性を高めるための設備(材料)コストを抑えるという観点からは、予熱ガスの温度は1000℃以下が好ましい。予熱ガス中にCOやHOが含まれる場合において、予熱ガス温度が1000℃を超えると、COやHOと炉内のコークスが以下のような反応(ソリューションロス反応)を生じやすくなり、コークスが消費されてしまう。
 C(コークス)+CO→2CO
 C(コークス)+HO→CO+H
 また、予熱ガス中にCOやHOのような酸化性のガスが含まれない場合には、上記反応によるコークスの消費はないが、装置(構成部材)を高価な耐熱材料で構成する必要があり、設備コストが増大する。
 予熱ガス温度を調整するには、例えば、使用する燃料ガスの組成を変えてガス熱量を調整する、所定の範囲内で空気比を調整するなどのほか、図4~図7のように燃焼ガスに希釈ガスを添加する場合には、希釈ガスの温度と供給量を調整してもよい。
 予熱ガスの吹き込み量にも特別な制限はなく、一般には炉頂ガス温度を100℃以上に維持できるようなガス吹き込み量とすればよい。例えば、RAR470kg/t相当の操業で、800℃の予熱ガスを100Nm/t吹き込めば、炉頂ガス温度を100℃以上に維持することができる。
 炉高方向でのガス吹込部Aの設置位置(予熱ガスの吹き込み位置)はシャフト中部~上部が好ましく、特に、炉口半径をRとし、ストックラインからの深さがRの位置をp、シャフト部下端からの高さがシャフト部全高の1/3の位置をpとしたとき、炉高方向において位置pと位置pとの間にガス吹込部Aを設置し、このガス吹込部Aから予熱ガスを吹き込むことが好ましい。予熱ガスの吹き込み位置が浅すぎる(上方位置すぎる)と、原料充填層の荷重が小さいため、原料の流動化や撹拌が生じて、原料降下の安定性が低下するおそれがある。一方、予熱ガスの吹き込み位置が深すぎる(下方位置すぎる)と炉内の軟化融着帯にかかってしまうおそれがあるので好ましくない。
 炉周方向におけるガス吹込部Aの設置数や設置形態は特に限定しないが、炉周方向において等間隔で複数箇所に設けることが好ましい。特に、各ガス吹込部Aが1つのガス吹込口16とこれに接続される1つのガス燃焼・吹込装置aで構成される場合、少なくとも、ガス吹込部Aを炉周方向において等間隔でn箇所(但し、nは4以上の偶数)に設け、予熱ガスの吹き込み総量に応じて、前記n箇所のガス吹込部Aのなかから、予熱ガスの吹き込みを行うガス吹込部Aを炉周方向において等間隔に選択することが好ましい。この場合のガス吹込部Aの等間隔での設置数は4,8,16,32,64などである。なお、実際の設備では、ガス吹込部Aを炉周方向で厳密に等間隔に設けることは、炉体冷却構造等との関係から困難な場合もあるので、設置する位置の若干のずれは許容される。
 各ガス吹込部Aは、上記のように1つのガス吹込口16とこれに接続される1つのガス燃焼・吹込装置aで構成してもよいが(図2~図7の実施形態はこれに該当する)、複数のガス吹込口16と、これにヘッダー管を介して接続される1つまたは2つ以上のガス燃焼・吹込装置aで構成してもよい。
 図12(a)~(c)は、ガス吹込部Aの種々の設置形態を、炉体を水平断面した状態の模式図で示したものである。このうち図12(a)の実施形態は、ガス吹込部Aを1つのガス吹込口16とこれに接続される1つのガス燃焼・吹込装置aで構成し、このガス吹込部Aを炉周方向において間隔をおいて複数設けたものである。このような実施形態では、ガス吹込口16毎に予熱ガスの吹き込み条件(予熱ガス温度、吹込量など)を調整することができる。なお、図12(a)では、一部(2つ)のガス吹込部Aについてのみガス燃焼・吹込装置aを図示してある。
 一方、図12(b)と図12(c)の実施形態は、ガス吹込部Aを、複数のガス吹込口16と、これにヘッダー管を介して接続されるガス燃焼・吹込装置aで構成したものである。このような実施形態では、ガス燃焼・吹込装置aの燃焼室1から排出された燃焼ガスは、ヘッダー管を経て複数のガス吹込口16から高炉内に吹き込まれる。
 図12(b)の実施形態は、ガス吹込口16を炉周方向において間隔をおいて複数設けるとともに、これらガス吹込口16を複数のガス吹込口群17a~17dに分け、これら各ガス吹込口群17a~17dにそれぞれヘッダー管18を配してある。そして、これらのヘッダー管に、各ガス吹込口群17a~17dを構成する複数のガス吹込口16を連絡管19を介して接続するとともに、ガス燃焼・吹込装置aの燃焼室1の先端を接続してある。このような実施形態では、ガス吹込口群17a~17d毎に予熱ガスの吹き込み条件(予熱ガス温度、吹込量など)を調整することができる。
 なお、この実施形態では、1つのヘッダー管18に対して1つのガス燃焼・吹込装置aを接続しているが、2つ以上のガス燃焼・吹込装置aを接続してもよい。
 また、図12(c)の実施形態は、ガス吹込口16を炉周方向において間隔をおいて複数設けるとともに、炉全周に沿った環状のヘッダー管18を配してある。そして、このヘッダー管18に、全部のガス吹込口16を連絡管19を介して接続するとともに、ガス燃焼・吹込装置aの燃焼室1の先端を接続してある。
 なお、この実施形態では、ヘッダー管18に1つのガス燃焼・吹込装置aを接続しているが、2つ以上のガス燃焼・吹込装置aを接続してもよい。
 本発明は、低発熱量であって且つ至近場所から導入可能な高炉ガスをガス燃焼・吹込装置aの燃料ガスとして用いることが好ましい実施形態であり、なかでも、炉頂部から排出された高炉ガスの一部を適当な流路位置から抜き出し、燃料ガスとして用いることが特に好ましい実施形態である。但し、燃料ガスとして高炉ガス以外のガスを用いてもよく、また、高炉ガスとそれ以外のガス(例えば、コークス炉発生ガス)を混合して用いてもよい。また、高炉ガスとしては、ガス清浄装置(ダストキャッチャー22,ミストセパレータ23)の下流側から抜き出した高炉ガス、炉頂部とガス清浄装置間から抜き出した高炉ガス、ガスホルダーに貯蔵されている高炉ガスなどを用いてもよい。
 本発明で使用するガス燃焼・吹込装置aの機能を検証するため、図8に示す構造の試験装置(ガス燃焼・吹込装置aに相当する装置)を用い、燃料ガス(低発熱量ガス)および支燃ガス(空気)の供給圧力を高めた燃焼試験を行った。この試験装置の燃焼室は、内径:50mm、全長:300mmであり、その内壁面に形成された燃料ガス吹き込み用の開口(ノズルスリット)は長さ:48mm、幅:5mm、同じく支燃ガス吹き込み用の開口(ノズルスリット)は長さ:31mm、幅:5mmである。
 燃料ガスとして用いた低発熱量ガスは、ガス組成がCO:22vol%、CO:21vol%、H:5vol%、N:52vol%であり、発熱量が792kcal/Nmである。この燃料ガス30Nm/hに対して、理論酸素量が1となるように空気19.5Nm/hを供給した。
 図9は、燃焼室内圧力と燃焼ガス温度の計測値(燃焼室の先端寄りの位置に設置された熱電対で計測)から算出された有効熱利用率との関係を示すものである。なお、有効熱利用率は下式により算出される。
 有効熱利用率={(E×F)/(C×G)}×100
 E:燃焼ガスの保有しているエンタルピー(kcal/Nm
 F:燃焼ガス流量(Nm/h)
 C:燃料ガス発熱量(kcal/Nm
 G:燃料ガス流量(Nm/h)
 図9によれば、燃焼室内圧力が高くなると、有効熱利用率は向上し、燃料ガスが有効に熱に変換されたことが示されている。
 次に、燃料ガス用のガスノズルと支燃ガス用のガスノズルを構成するノズル管の本数が異なるガス燃焼・吹込装置a(試験装置)を用い、表1に示す条件で、燃料ガス(高炉ガス)および支燃ガス(空気)を用いた燃焼試験を行った。ここで、各ガスノズルが1本(単一)のノズル管で構成されるガス燃焼・吹込装置aとは、図2および図3の実施形態のような構造のガスノズルを有する装置(バーナ)であり、各ガスノズルが複数本のノズル管で構成されるガス燃焼・吹込装置aとは、図4~図7の実施形態のような構造のガスノズルを有する装置(バーナ)である。
 各ガス燃焼・吹込装置aの燃焼室は、内径:50mm、全長:700mmであり、燃料ガス用のガスノズルと支燃ガス用のガスノズルをそれぞれ構成するノズル管の本数は、試験例1:5本、試験例2:4本、試験例3:2本、試験例4:1本、試験例5:4本、試験例6:2本である。
 試験例1~4で使用したガス燃焼・吹込装置aは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が10mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が10mmである。試験例5で使用したガス燃焼・吹込装置aは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が6mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が6mmである。試験例6で使用したガス燃焼・吹込装置aは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が10mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が10mmである。
 燃料ガスとして用いた高炉ガスは、ガス組成がCO:23.5vol%、CO:23.0vol%、H:1.5vol%、N:52vol%であり、発熱量が754kcal/Nmである。この燃料ガス:30Nm/hに対して、理論酸素量が1となるように、支燃ガスとして空気:19.4Nm/hを供給した。適用した試験炉の炉内圧は245kPaである。
 試験例6では、燃料ガス・支燃ガスの吹き込み位置中心からバーナ軸方向で500mm離れた位置に希釈ガス用のガスノズル(内径20mm)を設けたガス燃焼・吹込装置aを用い、燃焼室から排出される燃焼排ガス温度が800℃になるように、希釈ガス(高炉ガス)を24.5Nm/h供給した。この希釈ガスの添加により、燃焼ガス組成はCO(還元ガス)を8.4vol%含むものとなった。
 試験例1~6において、燃焼室内の観察(図8に示すような覗窓からの観察)と燃焼排ガスのガス組成分析を行い、燃焼状況を下記基準で評価した。その結果を、ガスノズルの構成、ガス流量、スワール数Sw、燃焼ガス組成(試験例6では、希釈ガスを添加した後のガス組成)などとともに表1に示す。
 ×:燃焼状況に脈動がみられ、相当量の未燃のCOが測定された。
 ○:安定した燃焼が継続し、未燃のCOも殆ど測定されなかった(但し、試験例6のCO濃度は希釈ガス混合によるもの)
Figure JPOXMLDOC01-appb-T000003
[実施例1]
 炉内容積5000mの高炉において、図2および図3に示すようなガス燃焼・吹込装置aを用い、図1に示すような実施形態で本発明を実施した。炉頂ガス発電装置24の下流側から抜き出した高炉ガスを昇圧機25aで炉内圧より0.2atm高い圧力に昇圧し、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入した。また、同様に酸素を昇圧機25bで昇圧し、ガス燃焼・吹込装置aに支燃ガスとして導入した。ガス燃焼・吹込装置aに対する高炉ガス供給量は100Nm/tとし、これを酸素5.6Nm/tで燃焼させ、800℃の燃焼ガスを生成させ、これを予熱ガスとして炉内に吹き込んだ。ガス燃焼・吹込装置aでの酸素比は0.335である(理論酸素量に対して)。予熱ガスの組成は、CO:17.6vol%、CO:30.3vol%、H:4.6vol%、HO:2.7vol%、N:44.8vol%である。このような予熱ガスの吹き込みにより、炉頂ガス温度は134℃となり、高炉操業での配管内への水分の凝縮も完全に回避され、安定した操業が可能となった。
[実施例2]
 炉内容積5000mの高炉において、図4~図7に示すようなガス燃焼・吹込装置aを用い、図1に示すような実施形態で本発明を実施した。炉頂ガス発電装置5の下流側から抜き出した高炉ガスを昇圧機25aで炉内圧より0.2atm高い圧力に昇圧し、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入した。また、同様に酸素を昇圧機25bで昇圧し、ガス燃焼・吹込装置aに支燃ガスとして導入した。 ガス燃焼・吹込装置aでは、高炉ガス30.3Nm/tを空気5.6Nm/t(酸素比1.0)で燃焼させるとともに、燃焼室内に希釈ガス(BFG)を69.7Nm/t供給することで、800℃の燃焼ガスを生成させ、これを予熱ガスとして炉内に吹き込んだ。予熱ガスの組成は、実施例1と同等である。このような予熱ガスの吹き込みにより、炉頂ガス温度は147℃となり、高炉操業での配管内への水分の凝縮も完全に回避され、安定した操業が可能となった。
[実施の形態2]
 図13および図14は、本発明で使用される燃焼バーナ(管状火炎バーナ)の一実施形態を示すもので、図13は部分切欠平面図、図14は図13中のII−II線に沿う断面図である。
 図において、1は先端が開放された管状(円筒状)の燃焼室、3aは燃料ガス用のガスノズル、3bは支燃ガス用のガスノズルである。
 前記燃焼室1の内方(後端側)の内壁面100には、燃焼室内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガス(および水素)と支燃ガスを各々吹き込むための開口2a,2b(ノズル口)が形成され、これら開口2a,2bに、それぞれ前記ガスノズル3a,3bが接続されている。前記開口2a,2b(ノズル口)は、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成される。本実施形態の開口2a,2bは、内壁面100のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むように形成されている。
 前記開口2a,2bは、管軸方向に沿ったスリット状に形成され、内壁面100(内周面)で180°対向する位置に設けられている。これら開口2aと開口2bはそれぞれ複数設けてもよく、その場合には、各開口2a,2bに対してガスノズル3a,3bが接続される。
 ガスノズル3aのガス導入部には、燃料ガスと水素を混合するための混合室4が設けられ、この混合室4に燃料ガス供給管5と水素供給管6が接続されている。一方、ガスノズル3bのガス導入部には支燃ガス供給管7が接続されている。
 その他図面において、8~10は燃料ガス供給管5、水素供給管6および支燃ガス供給管7にそれぞれ設けられる流量調整弁、11は水素供給管6に設けられる流量計、12は燃焼室1内の燃焼状況を検知するための燃焼状況検知装置、13は点火プラグである。前記燃焼状況検知装置12は、例えば、火炎中に熱電対等を装入して温度計測するような方式、ウルトラビジョン等を用いて火炎中の紫外線を検出する光学方式などでもよい。また、xは燃焼バーナが設けられる炉体である。
 ここで、開口2a,2b(ノズル口)からは、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込めばよいが、特に、ガス旋回流が後述するような好ましいスワール数Sw(旋回を伴う流体の流れにおいて旋回の強さを表す無次元数)の範囲となるように、開口2a,2bからのガスの吹き込み方向を設定するのが好ましい。図21は、開口2a,2bが形成された位置での燃焼室内部の径方向断面を模式的に示している。このような燃焼室1の径方向断面において、内壁面100の周方向における開口2a,2bの端部のうち、開口2a,2bから吐出して旋回するガス流の旋回(回転)方向における先端側の端部を点pとし、この点pにおける内壁面100の接線をx、開口2a,2bから吐出するガス流の中心線(=ガスノズル3a,3bの軸芯)をy、接線xとガス流中心線yとが成す角度をガス吹込み角度θとした場合、このガス吹込み角度θを、好ましいスワール数Swの範囲(Sw:3~10)となるように設定することが好ましい。すなわち、ガスノズル3aの内径から算出される開口2aでの燃料ガス速度をVf、ガスノズル3bの内径から算出される開口2bでの支燃ガス速度をVaとした場合、接線x方向での燃料ガス速度成分Vf1と支燃ガス速度成分Va1は以下のようになる。
 Vf1=Vf×cosθ
 Va1=Va×cosθ
 そして、このVf1、Va1を開口2a,2bでのガス速度として算出されるスワール数Swが所定の好ましい範囲になるように、ガス吹込み角度θを決めることが好ましい。スワール数Swの求め方は、後述のとおりである。
 一方、燃焼バーナの構造面から言うと、燃焼バーナは、燃焼室1の内壁面100に、該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための開口2a,2bを形成した構造のものが好ましい。これは、そのような構造にしておけば、ガス量やガス速度の変更や変化に拘わりなく、好ましいスワール数Swを実現できるからである。具体的には、図21に示すガス吹込み角度θを30°以下、より好ましくは10°以下とすることが望ましい。このガス吹込み角度θが大きくなると、ガス量やガス速度によっては、内壁面100に沿ったガス旋回流を適切に形成できなくなる恐れがある。本実施形態、後述する図15の実施形態、図16~図19の実施形態では、いずれもガス吹込み角度θ≒0°~5°程度である。
 本発明は、以上のような管状火炎バーナにおいて、例えば、高炉ガス、CDQガス、可燃成分を少量含む排ガス等のような発熱量が1000kcal/Nm以下(特に800kcal/Nm以下)の低発熱量ガスを燃料ガスとして用いる際に、これを安定的に燃焼させるために燃料ガスに水素を加えるものである。この水素は、純水素ガスとして加えてもよいし、水素含有ガスとして加えてもよい(以下、本明細書において「(燃料ガスに加えられる)水素」という場合には、「水素含有ガス」を含む意味とする)。この水素含有ガスの水素濃度は、燃料ガスが元々水素を含んでいる場合には、当然のことながら、燃料ガスの水素濃度を上回るものである必要がある。したがって、燃料ガスとして高炉ガス(通常、H濃度:2~3vol%)を用いる場合には、高炉ガスより水素濃度が高い水素含有ガスを用いる必要がある。この点以外に水素含有ガスの水素濃度に特別な制限はないが、一般には水素濃度が20vol%以上の水素含有ガスを用いることが好ましい。鉄鋼製造プロセスで発生するガスのなかでは、例えば、コークスを製造する際に得られるコークス炉ガスが特に水素濃度が高く(通常、55vol%程度)、水素含有ガスとして好適である。
 燃料ガスに水素を加えるために、図13および図14に示す燃焼バーナでは、ガスノズル3aの混合室4に燃料ガス供給管5と水素供給管6を通じて燃料ガスと水素が供給され、ここで燃料ガスに水素が混合され、この水素混合燃料ガス(水素が混合された燃料ガス。以下同様)がノズル本体に入る。一方、ガスノズル3bには支燃ガス供給管7を通じて支燃ガスが供給される。このようにしてガスノズル3a,3bに供給された水素混合燃料ガスと支燃ガスは、開口2a,2b(ノズル口)から燃焼室1内に吹き込まれる。この水素混合燃料ガスと支燃ガスは、燃焼室1の内壁面100に沿って旋回流を形成しながら燃焼し、火炎が形成される。なお、以上のような燃焼は、点火プラグ13による着火により開始され、燃焼が継続する場合には、その時点で点火プラグ13による点火は終了する。
 燃料ガスの発熱量が変動し、例えば、より低発熱量となることで、燃焼状況検知装置12により検知される燃焼状況が安定しない場合には、水素供給管6に設けられた流量計11と流量調整弁9により、水素の供給量を増加させる。
 なお、この燃焼バーナは、燃料ガスと支燃ガスを予め混合したガス(予混合ガス)を用いてもよく、この場合には、燃焼室1の内壁面100に、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスの予混合ガスを吹き込むための1つ以上の開口2(ノズル口)が形成され、この開口2に予混合ガス供給用のガスノズル3が接続される。前記開口2は、図13および図14の開口2a,2bと同様、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成されるが、特に、内壁面100のほぼ接線方向にガス(予混合ガス)を吹き込むように形成されることが好ましい。そして、水素は、支燃ガスと予混合される前の燃料ガスまたは予混合ガスに加えられ、このようにして水素が添加された予混合ガスがガスノズル3を通じて開口2から燃焼室1内に吹き込まれる。なお、この開口2からも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガスを吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図21に基づいて説明した開口2a,2bと同様である。
 以上のような燃焼バーナにおいて、ガスノズル3a,3bおよび開口2a,2bから燃焼室1内に吹き込まれて旋回流を形成する水素混合燃料ガスと支燃ガス(または両者の予混合ガス)はガスの密度差によって層別され、火炎の両側に密度の異なるガス層ができる。すなわち、旋回速度の小さい軸心側には高温の燃焼排ガスが存在し、旋回速度の大きい内壁面100側には未燃焼のガスが存在するようになる。また、内壁面100近傍では、旋回速度が火炎伝播速度を上回っているため、火炎は内壁面近傍に留まることはできない。このため、燃焼室1内には管状の火炎が安定的に生成する。また、燃焼室1の内壁面付近には末燃焼のガスが存在しているので、燃焼室1の内壁面が直接的な伝熱により高温に加熱されることはない。そして、燃焼室1内のガスは旋回しながら先端側へ流れるが、その間、内壁面100側のガスが順次燃焼して軸心側へ移動し、燃焼ガスが開放した先端から排出される。
 水素の燃焼速度はCO等の他の可燃性ガスに較べて極めて速く、このため水素を加えることで低発熱量ガスを安定して燃焼させることが可能となる。ここで、ガスの燃焼速度(MCP:maximum combustion potential)は、その組成によって決まり、次式によって算出される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-T000005
 上記式により計算されるMCPは、水素が282、COが100であり、水素はCOの2.8倍燃焼速度が速い。したがって、水素を添加することにより、低発熱量ガスを安定的に燃焼させることが可能となる。低発熱量ガスの燃焼を継続するためには、理論的には、低発熱量ガスの断熱火炎温度が、その燃料ガスに含まれるガス種の発火点以上(CO発火点:609℃、H発火点:500℃)の温度であるか、燃料ガス中に含まれる可燃性ガスの濃度が爆発限界下限濃度以上(CO爆発限界下限濃度:12.5vol%、H:4vol%)であればよい。しかしながら、本発明者が検討したところ、高炉ガスなどのようなCOを含む低発熱量ガスでは、水素を添加した後の断熱火炎温度が750℃以上となると、安定的な燃焼が可能となることが判った。例えば、COが10.1vol%(残部はN等の不活性ガスおよび/またはCO)のガスでは、発熱量が305kcal/Nm、断熱火炎温度が645℃であり、この状態では安定的に燃焼が継続せず、別途助燃のためのパイロットバーナが必要となる。このガスに水素を3.0vol%添加することで、断熱火炎温度は750℃となり、安定した燃焼が継続可能となる。断熱火炎温度は、燃焼で発生した熱が外部に失われることなく、燃焼ガスの温度上昇に使われるものとして理論的に計算した温度である。
 したがって、高炉ガスなどのようなCOを含む低発熱量ガスでは、断熱火炎温度が750℃以上となるように水素を加えるのが好ましい。一方、水素の添加量が多ければ、それだけ燃焼の安定性は高まるが、水素添加量が多すぎると経済性が損なわれる。
 さきに述べたように、本発明は、元々水素を含有している低発熱量ガスを燃料ガスとして用いる場合にも適用可能であり、当然のことながら、元々含まれる水素濃度に応じて水素の添加量が調整される。
 また、本発明の燃焼方法において、燃焼室1を加圧状態とすれば、ガス密度が増加し、見掛けの発熱量が増加するので、より低発熱量の燃料ガスであっても安定的な燃焼が可能となる。
 本発明では、支燃ガスとして空気などの酸素含有ガス、酸素ガスを用いることができるが、本発明は支燃ガスとして空気を用いる場合に特に有用である。支燃ガスの供給量は、安定した燃焼状態を維持するのに必要な量である。支燃ガスとして空気を用いる場合、通常、空気比1以上となるように供給される。空気比とは、燃料の燃焼に必要な理論的な空気量と実際に供給する空気量の比(実際の空気量/理論空気量)であり、空気比1で燃料ガスは完全燃焼し、COおよびHOとなる。空気比が1未満の条件では不完全燃焼となり、安定した燃焼が継続できなくなる。また、空気比が過剰の場合には希薄燃焼となり、この場合も安定な燃焼状態が維持できない。したがって、通常は空気比1.0~1.5の範囲で支燃ガスを供給することが好ましい。
 燃料ガスと支燃ガスのノズル(開口)からの噴出速度に特に制限はないが、両者は同程度の速度であることが好ましい。
 図13および図14の実施形態では、燃焼室1に吹き込まれる前の燃料ガスに水素を加えるものであるが、燃焼室1に吹き込まれた燃料ガスに水素を加える(すなわち、燃焼室1内で燃料ガスに水素を加える)ようにしてもよい。図15は、この場合に使用される燃焼バーナの一実施形態を示す断面図(図14と同様の断面線に沿う断面図)である。この燃焼バーナは、燃焼室1の内方(後端側)の内壁面100に、図14と同様の開口2a,2bが形成されるとともに、内壁面100の周方向で開口2a−開口2b間の中央位置(すなわち、周方向で開口2a,2bに対して90°の位置)に、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように水素(水素ガスまたは水素含有ガス。以下同様)を吹き込むための開口2c,2c(ノズル口)が形成され、この開口2c,2cに水素用のガスノズル3c,3cがそれぞれ接続されている。開口2a,2bと同様、前記開口2c,2c(ノズル口)も、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガス(水素)を吹き込むように形成される。本実施形態の開口2c,2cは、内壁面100のほぼ接線方向に水素を吹き込むように形成されている。
 前記開口2a,2bと同じく、前記開口2c,2cは、管軸方向に沿ったスリット状に形成されている。なお、この開口2c,2cはいずれか一方のみを設けても、また、3つ以上設けてもよく、その場合には、各開口2cに対してガスノズル3cが接続される。
 なお、この開口2c,2cからも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガス(水素)を吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図21に基づいて説明した開口2a,2bと同様である。
 このような燃焼バーナでは、水素をガスノズル3cを通じて開口2c,2cから燃焼室1内に吹き込むことにより、燃焼室1内で燃料ガスに水素が添加される。
 図15の実施形態の燃焼バーナの他の構造、機能は、図13および図14に示す実施形態の燃焼バーナと同じであるので、詳細な説明は省略する。なお、図13および図14に示す実施形態の燃焼バーナと同様、燃料ガスと支燃ガスを予め混合したガス(予混合ガス)を用いてもよく、この場合には、さきに述べたように、上記開口2a,2bに代えて、燃料ガスと支燃ガスの予混合ガスを吹き込むための1つ以上の開口2(ノズル口)が形成され、この開口2に予混合ガス供給用のガスノズル3が接続される。
 本発明では燃焼バーナの燃焼室1内において、水素が添加された燃料ガスと支燃ガスが旋回流を形成することにより、低発熱量の燃料ガスを安定的に燃焼させることができるものであるが、燃料ガスが高炉ガスなどのようにCO、CO、Nを主体としたガスである場合、水素はこれらのガス成分と比較してガス密度が低いため、図15の実施形態のように水素を旋回流となるように吹き込むと、その密度差によって水素が軸心側に移行して優先的に燃焼し、その他のガスの燃焼を促進することになる。このため、低発熱量の燃料ガスの燃焼性をより高めることができる。
 図16~図19は、本発明で使用される燃焼バーナ(管状火炎バーナ)の他の実施形態を示すもので、図16は燃焼バーナの部分切欠平面図、図17は燃焼バーナを部分的に示す底面図、図18は図16中のVI−VI線に沿う断面図、図19は図16中のVII−VII線に沿う断面図である。
 図16~図19の実施形態では、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bが、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成されている。このようにガスノズル3a,3bを複数のノズル管300a,300bで構成するのは、後述するように、ガスノズル3a,3bによって燃焼室1内で適切な旋回流が形成されるようにしつつ、スワール数Swを所定の好ましい範囲にするためである。
 図13および図14の実施形態と同様、前記燃焼室1の内方(後端側)の内壁面100には、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込むための開口2a,2b(ノズル口)が形成されるが、これら開口2a,2bも各々複数の開口200a,200bで構成されている。そして、各開口200aにそれぞれ前記ノズル管300aが接続され、各開口200bにそれぞれ前記ノズル管300bが接続されている。前記開口200a,200bは、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成される。本実施形態の開口200a,200bは、内壁面100のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むように形成されている。
 また、前記ガスノズル3a,3b(開口2a,2b)よりも燃焼室先端寄りの位置には、燃焼ガスを希釈してその温度および/または組成を調整する希釈ガスを燃焼室1内に供給するためのガスノズル14が設けられている。このガスノズル14は、燃焼ガスを希釈するガスを供給するものであるため、燃焼室1内でのガス燃焼を妨げない位置に設ければよく、燃焼室長手方向での設置(接続)位置に特別な制限はないが、本実施形態では、燃焼室長手方向の中央位置よりも燃焼室先端寄りの位置に設けられている。
 ガスノズル14は単一のノズル管で構成してもよいが、本実施形態では、バーナ軸方向で並列した複数のノズル管140で構成されている。ガスノズル14が設置される位置の燃焼室1の内壁面100には、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように、同内壁面のほぼ接線方向に希釈ガスを吹き込むための開口15(ノズル口)が形成され、この開口15に前記ガスノズル14が接続されている。本実施形態では、開口15は複数の開口150で構成され、各開口150にそれぞれ前記ノズル管140が接続されているが、開口15を管軸方向に沿ったスリット状の単一の開口とし、これに単一のガスノズル14を接続してもよい。なお、この希釈ガス用の開口15は、必ずしも燃焼室1内でガス旋回流が生じるようにガスを吹き込むような構造としなくてもよい。
 図16~図19の実施形態の燃焼バーナの他の構造、機能は、図13および図14に示す実施形態の燃焼バーナと同じであるので、詳細な説明は省略する。
 また、前記開口200a,200bからも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガスを吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図21に基づいて説明した開口2a,2bと同様である。
 本発明で使用する燃焼バーナでは、燃焼室1内で高温の燃焼ガスが発生し、例えば、高炉ガスの理論燃焼温度は空気比1.0で約1300℃となる。本発明を後述するような高炉操業方法に適用し、燃焼バーナの燃焼ガスを予熱ガスとして高炉内に吹き込む場合、吹き込まれた燃焼ガス中のCOによって炉内のコークスが消費され、或いは炉内で還元された鉄鉱石(マグネタイト)が再酸化されることがないよう、燃焼ガスを希釈してその温度や組成を管理することが好ましい。本実施形態では、そのような目的で、燃焼ガスの温度および/または組成を調整するための希釈ガスをガスノズル14から燃焼室1内に供給する。
 使用する希釈ガスの種類は、燃焼ガスに添加する目的(ガス温度調整および/またはガス組成調整)に応じて適宜選択すればよいが、燃焼ガスの組成を調整するという面からは、CO、Hなどの還元ガスを含むものが好ましい。例えば、高炉ガス、転炉ガス、コークス炉ガス等の1種以上を用いることができ、特に、高炉ガスの一部を抜き出して希釈ガスとして用いることが好ましい。
 また、燃焼バーナの燃焼ガスを予熱ガスとして高炉内に吹き込む場合、後述するように予熱ガスの温度は500℃以上、好ましくは800℃以上が望ましいので、このような予熱ガス温度になるように希釈ガスの温度と供給量が選択されることが好ましい。
 なお、燃料ガスと支燃ガスの予混合ガスを吹き込むためのガスノズルを有する燃焼バーナや、図15の実施形態のような水素吹き込み用のガスノズル3cを有する燃焼バーナについても、それらのガスノズルをバーナ軸方向で並列した複数のノズル管で構成することができる。また、これらの燃焼バーナにおいても、上記のような希釈ガス用のガスノズル14と開口15を設けることができる。
 本発明の燃焼方法では、燃焼室1内でのガス流のスワール数Swを3~10の範囲とするのが好ましい。スワール数は、旋回を伴う流体の流れにおいて旋回の強さを表す無次元数であり、スワール数が大きいほど旋回の強い流れとなる。スワール数が小さ過ぎると燃料ガスと支燃ガスの混合が不十分となり、燃料ガスの着火が安定しなくなり、一方、大き過ぎると燃焼火炎が吹き消える場合がある。以上の観点から、スワール数Swは3~10の範囲が好ましい。
 スワール数Swは、これを算出するための公知の基本式に従い、使用する燃焼バーナの形式やその使用形態に応じた式で算出することができ、例えば、図13および図14の実施形態のような、燃料ガス吹き込み用の開口2aと支燃ガス吹き込み用の開口2bを有する燃焼バーナを用いる場合には、スワール数Swは下式により求めることができる。なお、下式において燃料ガスとは、水素混合燃料ガスである。
Figure JPOXMLDOC01-appb-M000006
 また、燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を有する燃焼バーナを用いる場合には、スワール数Swは下式により求めることができる。なお、下式において予混合ガスとは「燃料ガス+水素+支燃ガス」である。
Figure JPOXMLDOC01-appb-M000007
 さらに、図15の実施形態のような、燃料ガス吹き込み用の開口2aと支燃ガス吹き込み用の開口2bに加えて、水素吹き込み用の開口2cを有する燃焼バーナを用いる場合には、スワール数Swは下式により求めることができる。
Figure JPOXMLDOC01-appb-M000008
 スワール数Swを上記のような好ましい範囲にする当たり、図16~図19の実施形態のように、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bを、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成することが好ましい。これは以下のような理由による。例えば、燃焼室内径:50mm、燃焼ガス量(高炉ガス):30Nm/h(ガス密度:1.34kg/Nm)、空気量:21.4Nm/h(ガス密度:1.29kg/Nm)、空気比:1.1、炉内圧:245kPa(後述する高炉操業方法のように燃焼バーナをガス燃焼・吹込装置aとして高炉に設置した場合の炉内圧)という条件の場合、ガスノズル3a,3bがそれぞれ単一(1本)のノズル管で構成されるとすると、スワール数Swが3となるノズル管の内径(円換算の内径。すなわち、ノズル管内部の断面積を円の面積に換算した時の当該円の直径。以下、「ノズル管の内径」という場合には、同様の意味とする。)は、ガスノズル3aが21mm(開口2aでの燃料ガス速度:7m/s)、ガスノズル3bが21mm(開口2bでの支燃ガス速度:5m/s)となる。しかし、このようにガスノズル3a,3bを単一のノズル管で構成した場合には、図13のII−II線断面において、ノズル管の内径が燃焼室内径の約4/10となり、燃料ガスおよび支燃ガスとも、燃焼室中心方向(軸心)への流れが増加し、良好な旋回流が形成されにくくなる。このため軸心側に存在する高温燃焼排ガスが冷却される恐れがあり、本発明の効果が低下する可能性がある。図22は、開口2a,2bが形成された位置での燃焼室内部の径方向断面を模式的に示しており、燃焼室1の半径をR、燃焼室径方向でのガスノズル3a,3bの内部幅または実内径をtとしたとき、開口2a,2bから吹き込まれるガス流の中心位置(=ガスノズル3a,3bの軸芯)は、燃焼室1の中心から距離(R−t/2)の位置にある。ここで、Rに対してtが大きくなると、燃焼室中心方向(軸心)への流れが増加して良好な旋回流が形成されにくくなり、管状火炎が管壁から離れた位置に形成されて燃焼が不安定となりやすい。このような観点から(R−t/2)/R≧0.8が好ましいが、上記の例ではこの好ましい条件から外れてしまう。
 これに対して、ガスノズル3a,3bをバーナ軸方向で並列した複数のノズル管300a,300bで構成した場合には、ノズル管1本当たりの内径が小さくなるので、上記のような問題が生じにくく、スワール数Swを好ましい範囲にしつつ、良好な旋回流を生じさせることができる。そのため、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bは、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成することが好ましい。同様の理由で、燃料ガスと支燃ガスの予混合ガスを吹き込むためのガスノズルを有する燃焼バーナや、図15の実施形態のような水素ガス吹き込み用のガスノズル3cを有する燃焼バーナについても、それらのガスノズルをバーナ軸方向で並列した複数のノズル管で構成することが好ましい。
 本発明において燃料ガスとして使用する低発熱量ガスは、発熱量が1000kcal/Nm以下のものである。一般に発熱量が1000kcal/Nmを超えるようなガスは、特に本発明を適用しなくても、従来法により燃焼させることができる。したがって本発明では、水素を加えた燃料ガスの発熱量も1000kcal/Nm以下であることが、実質的な要件である。また、発熱量が800kcal/Nm以下のガスは、安定した燃焼性が特に得られにくいので、これを燃料ガスとして使用する場合に、特に本発明の有用性が高い。一方、燃料ガスの発熱量が300kcal/Nm未満では、本発明を適用しても安定して燃焼させることが難しくなる場合があるので、本発明で使用する燃料ガスは、発熱量が300kcal/Nm以上のものが好ましい。
 次に、以上のような燃焼バーナによる低発熱量ガスの燃焼方法を適用した高炉操業方法について説明する。
 この本発明の高炉操業方法は、空気または酸素富化空気を羽口送風する高炉操業、すなわち普通高炉の操業を対象とする。酸素富化空気を羽口送風する場合には、通常、酸素富化率20体積%以下、好ましくは10体積%以下での操業が行われる。なお、酸素富化率が増加するにしたがい炉内を通過するガス量が減り、シャフト上部を昇温するために必要な吹き込みガス量が大幅に増加するため、この点からも、上記のような酸素富化率での操業が好ましい。
 図20は、本発明の高炉操業方法の一実施形態を模式的に示す説明図である。図において、20は高炉、21はその羽口であり、この羽口21から熱風と補助還元材(例えば、微粉炭、LNGなど)が炉内に吹き込まれる。
 高炉20の炉頂部から排出された高炉ガス(炉頂ガス)は、ガス清浄装置であるダストキャッチャー22でダストを除去され、同じくミストセパレータ23で水分を除去された後、炉頂ガス発電装置24に導かれ、炉頂ガスの圧力が電気として回収された後、系外に導かれる。
 本発明では、シャフト部(好ましくはシャフト中部~上部)に設けられたガス吹込部Aから高炉内にガスを吹込む。このようにしてガスを炉内に吹き込む主たる目的は、低RAR操業による送風量の低下を補い、炉上部でのガス流量を確保するためであるが、無用に炉頂ガス温度を低下させるような温度のガスを吹き込むことは発明の主旨に反するので、吹き込みガスとしては予熱ガスを用いる。
 このようにガス吹込部Aから予熱ガスを高炉内に吹き込むに当たり、本発明では、ガス吹込部Aを、さきに述べたような燃焼バーナ(例えば、図13および図14の燃焼バーナ、図15の燃焼バーナ、図16~図19の燃焼バーナのいずれか)の燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置aで構成し、このガス燃焼・吹込装置aの燃焼ガスを予熱ガスとして高炉内に吹き込むものである。すなわち、図13や図16において、xが高炉20の炉体であり、燃焼室1の先端を高炉内部と連通させるようにして燃焼バーナを炉体xに取り付け、ガス燃焼・吹込装置aを構成する。
 このようなガス燃焼・吹込装置aの基本構造は、管状火炎バーナとして知られたものである。しかし、この管状火炎バーナは、加熱炉や燃焼機器用として開発され、使用されてきたものであり、高炉のガス吹込手段に適用することについては、全く検討されていなかった。また、近年の高炉操業は高圧条件で行われ、予熱ガスは吹き込み位置の炉内圧よりも高い圧力に昇圧して吹き込む必要があるが、管状火炎バーナは常圧状態での使用を前提としており、上記のような圧力条件下で使用することについても、全く検討されていなかった。これに対して本発明では、高炉ガスなどの低発熱量ガスを燃焼させて予熱し、これを高炉のシャフト部から炉内に吹き込む手段として、管状火炎バーナタイプのガス燃焼・吹込装置aが非常に優れた機能を有することを見出したものである。また、高炉ガスなどの低発熱量ガスを燃料ガスとして用いる場合、さきに述べたように燃料ガスに水素を加えることにより、安定的な燃焼が可能となることを見出したものである。
 図20の実施形態では、炉頂部から排出された後、ガス清浄装置(ダストキャッチャー22およびミストセパレータ23)、炉頂ガス発電装置24を経た高炉ガスの一部を抜き出し、昇圧機25aで昇圧した後、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入する。水素を燃料ガスに混合するには、燃料ガスの配管内に水素を直に導入するか、或いは図示しない混合機を用いて燃料ガスに水素を混合し、水素混合燃料ガスとする。高炉20の炉頂部から排出される高炉ガスの流路27のうち、炉頂ガス発電装置24の下流側の流路部分から、高炉ガスの一部をガス燃焼・吹込装置aに供給するための流路28が分岐している。
 また、ガス燃焼・吹込装置aには、酸素含有ガス(空気、酸素富化空気、高酸素濃度ガスなど)である支燃ガスが供給されるが、この支燃ガスも昇圧機25bで昇圧した後、ガス燃焼・吹込装置aに導入する。なお、ガス燃焼・吹込装置aで燃料ガスと支燃ガスの予混合ガスを用いる場合には、事前に昇圧機25a,25bで燃料ガスと支燃ガスを別々に昇圧してもよいし、予混合ガスを単一の昇圧機25で昇圧してもよい。この場合、支燃ガスと予混合される前の燃料ガスに水素を導入(または混合機で水素を混合)するか、或いは予混合ガスに水素を導入(または混合機で水素を混合)する。
 また、図14に示す燃焼バーナの場合には、水素は昇圧機で昇圧された後、燃料ガスとは別にガス燃焼・吹込装置aに導入され、その燃焼室に吹き込まれる。
 また、図16~図19に示す燃焼バーナの場合には、高炉内に吹き込まれた燃焼ガス中のCOによってコークスが消費され、或いは炉内で還元された鉄鉱石(マグネタイト)が再酸化されることがないよう、燃焼ガスを希釈してその温度や組成を管理するために、ガスノズル14から希釈ガスが燃焼室1内に供給される。さきに述べたように、希釈ガスとしては、CO、Hなどの還元ガスを含むものが好ましく、例えば、高炉ガス、転炉ガス、コークス炉ガス等の1種以上を用いることができ、なかでも高炉ガスの一部を抜き出して希釈ガスとして用いることが好ましい。また、予熱ガスの温度は500℃以上、好ましくは800℃以上が望ましいので、このような予熱ガス温度になるように希釈ガスの温度と供給量が選択される。
 次に、本発明において管状火炎バーナタイプのガス燃焼・吹込装置aを用い、且つ燃料ガスである低発熱量ガス(特に、低還元材比操業で発生する高炉ガスを用いる場合)に水素を添加することにより得られる効果を、従来の他のタイプのガスバーナを用いた場合と比較して説明する。
 従来、工業的に用いられているガスバーナの多くは、バーナ先端よりも前方に火炎が形成される構造になっている。したがって、このようなガスバーナをガス燃焼・吹込装置aとして用いた場合、火炎が高炉上部から降下する装入物(鉄鉱石、コークス)に直接あたり、コークスのソリューションロス反応を生じさせ、コークスが無用に消費されるなどの問題を生じる。
 また、純酸素送風を行う酸素高炉プロセスの炉頂ガスは、窒素が少なくCOが主体のガスであるため、発熱量が高い(例えば、約1200kcal/Nm)。このため上記のような従来の一般的なガスバーナでも、特に問題なく燃料ガスとして使用することができる。これに対して本発明が対象とする普通高炉プロセスで発生する高炉ガスは発熱量が低く(例えば、約800kcal/Nm)、上記のような従来の一般的なガスバーナに適用しても安定燃焼は難しい。また、低RAR操業を指向した場合には、高炉ガスの発熱量はさらに低下する。例えば、高炉内物質熱収支モデルで計算すると、高炉ガスの発熱量は、(1)RAR494kg/t相当の操業(PCR:130kg/t、送風温度:1150℃)では722kcal/Nm、(2)RAR450kg/t相当の操業(PCR:130kg/t、送風温度:1200℃、高反応性コークス使用、熱損失を43%低減、シャフト効率を上記(1)の操業に対して2%アップ)では620kcal/Nm、(3)RAR412kg/t相当の操業(PCR:130kg/t、送風温度:1200℃、高反応性コークス使用、熱損失を57%低減、シャフト効率を上記(1)の操業に対して4%アップ)では517kcal/Nmとなる。同計算では、上記(2)および(3)の操業において、高炉炉頂ガスの温度は110℃以下となる。そこで、例えば、炉頂部から排出された高炉ガスの一部を抜き出し、酸素で燃焼させた予熱ガスをシャフト部から炉内に吹込み、高炉炉頂ガス温度を110℃以上に保持した場合、高炉ガス発熱量はさらに低下する。例えば、上記(2)の操業において、800℃の予熱ガスを100Nm/t吹込んだ場合、高炉ガス発熱量は590kcal/Nmとなり、また、上記(3)の操業において、800℃の予熱ガスを150Nm/t吹込んだ場合、高炉ガス発熱量は477kcal/Nmとなる。このような低RAR操業による高炉ガス発熱量の低下は、上記のような従来の一般的なガスバーナによる安定した燃焼をさらに困難とする。
 また、通常の高炉は4~5kg/cmの加圧下で操業されるとともに、高炉上部から装入物が降下するため常時圧力変動がある。また、高炉炉壁への付着物の生成に起因する吹抜け等も発生する。上記のような従来の一般的なガスバーナでは、これらの要因によっても火炎の安定性が阻害され、吹き消え等も起こるおそれがある。
 以上のような従来の一般的なガスバーナの問題に対して、本発明において管状火炎バーナタイプのガス燃焼・吹込装置aを用い、且つ燃料ガスとして用いられる高炉ガスなどの低発熱量ガスに水素を加えて安定燃焼させることにより、次のような効果が得られる。
(a)燃焼室1内でガスが燃焼し、燃焼室1の外側には火炎が存在しないので、高炉上部から降下する装入物(鉄鉱石、コークス)に直接火炎があたらず、装入物に与える影響が少ない。また、同じく燃焼室1の外側に火炎が存在しないので、高炉の炉内圧やその変動、吹抜けなどに影響されることなく、安定した火炎が形成され、所望の温度の燃焼ガスを炉内に安定的に吹き込むことができる。
(b)炉内に吹き込む予熱ガスは、吹き込む位置の炉内圧よりも高い圧力を有する必要があり、したがって、実質的にガス燃焼・吹込装置aの燃焼室1内では加圧下でガス燃焼が生じることが必要であるが、このように燃焼室1が加圧状態になることにより、特に高炉ガスのような低発熱量ガスを安定して燃焼させるのに有利な条件となる。ガス燃焼・吹込装置aでは、燃焼室1内に安定的な火炎が形成され、燃料ガスと支燃ガスとの混合性もよいため、ガスを効率的且つ均質に燃焼させることが可能であるが、特に、上述したように燃焼室1が加圧状態になることにより、標準状態での発熱量に対して、ガス密度が増加することから見掛けの発熱量が増加する。このため、燃料ガスが高炉ガスのような低発熱量ガスであっても、或いは燃料ガス成分の濃度が非常に低い場合であっても、燃料ガス中への水素の添加と相俟って、安定して燃焼させることが可能となる。
(c)同じく燃焼室1が加圧状態になることにより、ガス密度が高くなり、燃料ガスの保有する熱量を有効に燃焼ガスに伝えることができる。特に、燃焼室1の内壁面100付近には未燃焼のガスおよび支燃ガスが存在しているので、燃焼室1の内壁面100が直接的な伝熱により高温に加熱されることがなく、管壁からの熱損失が少ないことにより、その効果がより高まる。
(d)ガス吹込部Aから吹き込む予熱ガスは、酸素(Oとしての酸素ガス。以下同様)を含まない或いは酸素濃度が低いことが好ましい。予熱ガスに酸素があると炉内で還元中の鉄酸化物(Fe、FeO)を再酸化させるためである。この点、ガス燃焼・吹込装置aは、燃焼室1内で安定な火炎が形成されることにより酸素利用効率が高く、特に燃焼室1が加圧状態になることにより、酸素利用効率をより高めることが可能となり、理論酸素量より少ない酸素量で安定した燃焼が可能となる。したがって、酸素を含まない若しくは酸素濃度が非常に低い予熱ガスを炉内に吹き込むことができる。
(e)燃焼室1内で安定な火炎が形成されることによって、炉内に吹き込まれる予熱ガス(燃焼ガス)の温度のバラツキが小さく、炉下部からの高炉ガスと炉上部から降下する装入物の温度をばらつきなく上昇させることができる。
 通常、高炉ガスを昇圧機25に導く流路28には、高炉ガスの組成、温度および圧力などを測定するセンサー26が設置され、また、ガス吹込部A近傍には炉内圧力、温度を測定するセンサー26が設置され、これらのセンサー26,26の測定値に基づき、昇圧機25a,26bで昇圧するガス圧力、ガス燃焼・吹込装置aに投入する支燃ガス量、水素量などが制御される。
 ガス吹込部Aからの予熱ガスの吹き込みは、常時行ってもよいし、炉頂ガス温度が低下した場合にのみ行ってもよい。後者の場合には、例えば、炉頂ガス温度をセンサーで測定し、炉頂ガス温度が所定温度以下(例えば、110℃以下)となった場合に、ガス吹込部Aから予熱ガスの吹き込みを行う。
 ガス吹込部Aから吹き込む予熱ガスの温度に特別な制限はないが、吹込む位置の炉内ガス温度より低いと、炉内を逆に冷やしてしまうため、吹込む位置の炉内ガス温度よりも高い温度が好ましく、一般的には500℃以上、好ましくは800℃以上が望ましい。
 予熱ガスの吹き込み量にも特別な制限はなく、一般には炉頂ガス温度を100℃以上に維持できるようなガス吹き込み量とすればよい。
 炉高方向でのガス吹込部Aの設置位置(予熱ガスの吹き込み位置)はシャフト中部~上部が好ましく、特に、炉口半径をRとし、ストックラインからの深さがRの位置をp、シャフト部下端からの高さがシャフト部全高の1/3の位置をpとしたとき、炉高方向において位置pと位置pとの間にガス吹込部Aを設置し、このガス吹込部Aから予熱ガスを吹き込むことが好ましい。予熱ガスの吹き込み位置が浅すぎる(上方位置すぎる)と、原料充填層の荷重が小さいため、原料の流動化や撹拌が生じて、原料降下の安定性が低下するおそれがある。一方、予熱ガスの吹き込み位置が深すぎる(下方位置すぎる)と炉内の軟化融着帯にかかってしまうおそれがあるので好ましくない。
 炉周方向におけるガス吹込部Aの設置数や設置形態は特に限定しないが、炉周方向において等間隔で複数箇所に設けることが好ましい。特に、少なくとも、炉周方向において等間隔でn箇所(但し、nは4以上の偶数)に設け、予熱ガスの吹き込み総量に応じて、前記n箇所のガス吹込部Aのなかから、予熱ガスの吹き込みを行うガス吹込部Aを炉周方向において等間隔に選択することが好ましい。この場合のガス吹込部Aの等間隔での設置数は4,8,16,32,64などである。なお、実際の設備では、ガス吹込部Aを炉周方向で厳密に等間隔に設けることは、炉体冷却構造等との関係から困難な場合もあるので、設置する位置の若干のずれは許容される。
 本発明は、低発熱量であって且つ至近場所から導入可能な高炉ガスをガス燃焼・吹込装置aの燃料ガスとして用いることが好ましい実施形態であり、なかでも、炉頂部から排出された高炉ガスの一部を適当な流路位置から抜き出し、燃料ガスとして用いることが、エネルギーの有効利用(ガス顕熱をそのまま利用できる)の面からも、また、設備面からも特に好ましい実施形態であると言える。但し、燃料ガスとして高炉ガス以外のガスを用いてもよく、また、高炉ガスとそれ以外のガスを混合して用いてもよい。また、高炉ガスとしては、ガス清浄装置(ダストキャッチャー22,ミストセパレータ23)の下流側から抜き出した高炉ガス、炉頂部とガス清浄装置間から抜き出した高炉ガス、ガスホルダーに貯蔵されている高炉ガスなどを用いてもよい。
[実施例]
[実施例1]
 図8に示す構造の燃焼バーナの試験装置を用い、表3に示す条件で、水素を加えた燃料ガス(低発熱量ガス)および支燃ガス(空気)を用いた燃焼試験を行った。この試験装置の燃焼室は、内径:50mm、全長:300mmであり、その内壁面に形成された燃料ガス吹き込み用の開口(ノズルスリット)は長さ:48mm、幅:5mm、同じく支燃ガス吹き込み用の開口(ノズルスリット)は長さ:31mm、幅:5mmである。
 発明例1~4では、燃料ガスとして約300kcal/Nmの低発熱量ガス(CO:10.1vol%、CO:10.4vol%、N:79.5vol%)を調整し、この燃料ガスに水素を燃料ガス中の濃度でそれぞれ3.7vol%、4.0vol%、6.0vol%、2.0%となるように加え、燃焼試験を行った。また、発明例5,6では、燃料ガスとしてRAR412kg/t相当の操業での高炉ガスを用い、これに水素を加えて燃焼試験を行った。また、実施例7,8では、燃料ガスとしてRAR450kg/t相当の操業での高炉ガスを用い、これに水素を加えて燃焼試験を行った。いずれも、水素を混合した燃料ガス:30Nm/hに対して、理論酸素量が1.1となるように空気を供給した。また、比較例として、水素を混合しない燃料ガスを用いた燃焼試験も行った。
 この燃焼試験では、燃焼安定性を以下のような基準で評価した。
 ○:火炎の脈動もなく圧力変動にも追従し安定燃焼(優)
 △:火炎が脈動するが、失火は認められない(良)
 ×:火炎が脈動し、圧力変動により失火(不可)
 その結果を、試験条件とともに表2に示す。これによれば、発明例はいずれも安定的な燃焼が実現されており、特に、断熱火炎温度が750℃以上となるように水素を添加した場合には、非常に安定した燃焼が実現されている。
Figure JPOXMLDOC01-appb-T000009
[実施例2]
 燃料ガス用のガスノズルと支燃ガス用のガスノズルを構成するノズル管の本数が異なる燃焼バーナの試験装置を用い、表4に示す条件で、燃料ガス(水素混合燃料ガス)および支燃ガス(空気)を用いた燃焼試験を行った。ここで、各ガスノズルが1本(単一)のノズル管で構成される燃焼バーナとは、図13および図14の実施形態のような構造のガスノズルを有するバーナであり、各ガスノズルが複数本のノズル管で構成される燃焼バーナとは、図16~図19の実施形態のような構造のガスノズルを有するバーナである。
 各燃焼バーナの燃焼室は、内径:50mm、全長:700mmであり、燃料ガス用のガスノズルと支燃ガス用のガスノズルをそれぞれ構成するノズル管の本数は、試験例1:5本、試験例2:4本、試験例3:2本、試験例4:1本、試験例5:4本、試験例6:2本である。
 試験例1~4で使用した燃焼バーナは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が10mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が10mmである。試験例5で使用した燃焼バーナは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が6mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が6mmである。試験例6で使用した燃焼バーナは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が10mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が10mmである。
 燃料ガスとして用いた高炉ガス(水素を混合した高炉ガス)は、ガス組成がCO:22vol%、CO:21vol%、H:5vol%、N:52vol%であり、発熱量が792kcal/Nmである。この燃料ガス:30Nm/hに対して、理論酸素量が1となるように、支燃ガスとして空気:19.5Nm/hを供給した。適用した試験炉の炉内圧は245kPaである。
 試験例6では、燃料ガス・支燃ガスの吹き込み位置中心からバーナ軸方向で500mm離れた位置に希釈ガス用のガスノズル(内径20mm)を設けた燃焼バーナを用い、燃焼室から排出される燃焼排ガス温度が800℃になるように、希釈ガス(高炉ガス)を33.8Nm/h供給した。この希釈ガスの添加により、燃焼ガス組成はCO(還元ガス)を10.3vol%含むものとなった。
 試験例1~6において、燃焼室内の観察(図8に示すような覗窓からの観察)と燃焼排ガスのガス組成分析を行い、燃焼状況を下記基準で評価した。その結果を、ガスノズルの構成、ガス流量、スワール数Sw、燃焼ガス組成(試験例6では、希釈ガスを添加した後のガス組成)などとともに表3に示す。
 ×:燃焼状況に脈動がみられ、相当量の未燃のCOが測定された。
 ○:安定した燃焼が継続し、未燃のCOも殆ど測定されなかった(但し、試験例6のCO濃度は希釈ガス混合によるもの)
Figure JPOXMLDOC01-appb-T000010
[実施例3]
 炉内容積5000mの高炉において、図13および図14に示すようなガス燃焼・吹込装置aを用い、図20に示すような実施形態で本発明を実施した。操業条件は、微粉炭吹込み量:130kg/t、コークス比:320kg/t、風温度:1150℃(湿分:10g/Nm)とし、高反応性コークスを使用した。炉頂ガス発電装置24の下流側から抜き出した高炉ガス(CO:17.7vol%、CO:23.1vol%、H:2.4vol%、HO:3.6vol%、N:53.2vol%)を昇圧機25aで炉内圧より0.2atm高い圧力に昇圧し、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入した。その際、高炉ガスに対して、水素濃度が4.0vol%になるように水素を添加し、水素混合燃料ガスとした。また、空気を昇圧機25bで昇圧し、ガス燃焼・吹込装置aに支燃ガスとして導入した。
 ガス燃焼・吹込装置aでは、水素混合燃料ガス100Nm/tを空気37.8Nm/tで燃焼させて800℃の燃焼ガスを生成させ、これを予熱ガスとして炉内に吹き込んだ。ガス燃焼・吹込装置aでの酸素比は0.736であり(理論酸素量に対して)、予熱ガスの組成は、CO:3.5vol%、CO:27.3vol%、H:0.8vol%、HO:5.0vol%、N:63.3vol%である。このような予熱ガスの吹き込みにより、炉頂ガス温度は149℃となり、高炉操業での配管内への水分の凝縮も完全に回避され、安定した操業が可能となった。予熱ガスを吹込まない場合は、物質熱収支の計算から97℃と算出される。
[実施例4]
 炉内容積5000mの高炉において、図16~図19に示すようなガス燃焼・吹込装置aを用い、図20に示すような実施形態で本発明を実施した。高炉操業条件は、実施例3と同様とした。炉頂ガス発電装置24の下流側から抜き出した高炉ガス(CO:17.7vol%、CO:23.1vol%、H:2.4vol%、HO:3.6vol%、N:53.2vol%)を昇圧機25aで炉内圧より0.2atm高い圧力に昇圧し、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入した。その際、高炉ガスに対して、水素濃度が4.0vol%になるように水素を添加し、水素混合高炉ガスとした。また、空気を昇圧機25bで昇圧し、ガス燃焼・吹込装置aに支燃ガスとして導入した。
 ガス燃焼・吹込装置aでは、水素混合高炉ガス73.6Nm/tを空気37.8Nm/t(酸素比1.0)で燃焼させるとともに、燃焼室内に希釈ガス(BFG)を26.4Nm/t供給することで、800℃の燃焼ガスを生成させ、これを予熱ガスとして炉内に吹き込んだ。予熱ガスの組成は、実施例3と同等である。このような予熱ガスの吹き込みにより、炉頂ガス温度は147℃となり、高炉操業での配管内への水分の凝縮も完全に回避され、安定した操業が可能となった。予熱ガスを吹込まない場合は、物質熱収支の計算から97℃と算出される。
[実施の形態3]
 図23および図24は、本発明で使用される燃焼バーナ(管状火炎バーナ)の一実施形態を示すもので、図23は部分切欠平面図、図24は図1中のII−II線に沿う断面図である。
 図において、1は先端が開放された管状(円筒状)の燃焼室、3aは燃料ガス用のガスノズル、3bは支燃ガス用のガスノズルである。
 前記燃焼室1の内方(後端側)の内壁面100には、燃焼室内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込むための開口2a,2b(ノズル口)が形成され、これら開口2a,2bに、それぞれ前記ガスノズル3a,3bが接続されている。前記開口2a,2b(ノズル口)は、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成される。本実施形態の開口2a,2bは、内壁面100のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むように形成されている。
 前記開口2a,2bは、管軸方向に沿ったスリット状に形成され、内壁面100(内周面)で180°対向する位置に設けられている。これら開口2aと開口2bはそれぞれ複数設けてもよく、その場合には、各開口2a,2bに対してガスノズル3a,3bが接続される。
 ガスノズル3aのガス導入部には、高炉ガスと水素を混合するための混合室4が設けられ、この混合室4に高炉ガス供給管5と水素供給管6が接続されている。一方、ガスノズル3bのガス導入部には支燃ガス供給管7が接続されている。
 その他図面において、8~10は高炉ガス供給管5、水素供給管6および支燃ガス供給管7にそれぞれ設けられる流量調整弁、11は水素供給管6に設けられる流量計、12は燃焼室1内の燃焼状況を検知するための燃焼状況検知装置、13は点火プラグである。前記燃焼状況検知装置12は、例えば、火炎中に熱電対等を装入して温度計測するような方式、ウルトラビジョン等を用いて火炎中の紫外線を検出する光学方式などでもよい。また、xは燃焼バーナが設けられる炉体である。
 ここで、開口2a,2b(ノズル口)からは、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込めばよいが、特に、ガス旋回流が後述するような好ましいスワール数Sw(旋回を伴う流体の流れにおいて旋回の強さを表す無次元数)の範囲となるように、開口2a,2bからのガスの吹き込み方向を設定するのが好ましい。図31は、開口2a,2bが形成された位置での燃焼室内部の径方向断面を模式的に示している。このような燃焼室1の径方向断面において、内壁面100の周方向における開口2a,2bの端部のうち、開口2a,2bから吐出して旋回するガス流の旋回(回転)方向における先端側の端部を点pとし、この点pにおける内壁面100の接線をx、開口2a,2bから吐出するガス流の中心線(=ガスノズル3a,3bの軸芯)をy、接線xとガス流中心線yとが成す角度をガス吹込み角度θとした場合、このガス吹込み角度θを、好ましいスワール数Swの範囲(Sw:3~10)となるように設定することが好ましい。すなわち、ガスノズル3aの内径から算出される開口2aでの燃料ガス速度をVf、ガスノズル3bの内径から算出される開口2bでの支燃ガス速度をVaとした場合、接線x方向での燃料ガス速度成分Vf1と支燃ガス速度成分Va1は以下のようになる。
 Vf1=Vf×cosθ
 Va1=Va×cosθ
 そして、このVf1、Va1を開口2a,2bでのガス速度として算出されるスワール数Swが所定の好ましい範囲になるように、ガス吹込み角度θを決めることが好ましい。スワール数Swの求め方は、後述のとおりである。
 一方、燃焼バーナの構造面から言うと、燃焼バーナは、燃焼室1の内壁面100に、該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための開口2a,2bを形成した構造のものが好ましい。これは、そのような構造にしておけば、ガス量やガス速度の変更や変化に拘わりなく、好ましいスワール数Swを実現できるからである。具体的には、図32に示すガス吹込み角度θを30°以下、より好ましくは10°以下とすることが望ましい。このガス吹込み角度θが大きくなると、ガス量やガス速度によっては、内壁面100に沿ったガス旋回流を適切に形成できなくなる恐れがある。本実施形態、後述する図25の実施形態、図26~図29の実施形態では、いずれもガス吹込み角度θ≒0°~5°程度である。
 本発明は、以上のような管状火炎バーナにおいて、高炉ガスを燃料ガスとして用いる際に、これを安定的に燃焼させるために高炉ガスに水素を加えるものである。この水素は、純水素ガスとして加えてもよいし、水素含有ガスとして加えてもよい(以下、本明細書において「(高炉ガスに加えられる)水素」という場合には、「水素含有ガス」を含む意味とする)。この水素含有ガスの水素濃度は、当然のことながら、高炉ガスの水素濃度(通常、H濃度:2~3vol%)を上回るものである必要がある。この点以外に水素含有ガスの水素濃度に特別な制限はないが、一般には水素濃度が20vol%以上の水素含有ガスを用いることが好ましい。鉄鋼製造プロセスで発生するガスのなかでは、例えば、コークスを製造する際に得られるコークス炉ガスが特に水素濃度が高く(通常、55vol%程度)、水素含有ガスとして好適である。
 高炉ガスに水素を加えるために、図23および図24に示す燃焼バーナでは、ガスノズル3aの混合室4に高炉ガス供給管5と水素供給管6を通じて高炉ガスと水素が供給され、ここで高炉ガスに水素が混合され、この水素混合高炉ガス(水素が混合された高炉ガス。以下同様)がノズル本体に入る。一方、ガスノズル3bには支燃ガス供給管7を通じて支燃ガスが供給される。このようにしてガスノズル3a,3bに供給された水素混合高炉ガスと支燃ガスは、開口2a,2b(ノズル口)から燃焼室1内に吹き込まれる。この水素混合高炉ガスと支燃ガスは、燃焼室1の内壁面100に沿って旋回流を形成しながら燃焼し、火炎が形成される。なお、以上のような燃焼は、点火プラグ13による着火により開始され、燃焼が継続する場合には、その時点で点火プラグ13による点火は終了する。
 高炉ガスの発熱量が変動し、例えば、より低発熱量となることで、燃焼状況検知装置12により検知される燃焼状況が安定しない場合には、水素供給管6に設けられた流量計11と流量調整弁9により、水素の供給量を増加させる。
 なお、この燃焼バーナは、高炉ガスと支燃ガスを予め混合したガス(予混合ガス)を用いてもよく、この場合には、燃焼室1の内壁面100に、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスの予混合ガスを吹き込むための1つ以上の開口2(ノズル口)が形成され、この開口2に予混合ガス供給用のガスノズル3が接続される。前記開口2は、図23および図24の開口2a,2bと同様、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成されるが、特に、内壁面100のほぼ接線方向にガス(予混合ガス)を吹き込むように形成されることが好ましい。そして、水素は、支燃ガスと予混合される前の高炉ガスまたは予混合ガスに加えられ、このようにして水素が添加された予混合ガスがガスノズル3を通じて開口2から燃焼室1内に吹き込まれる。なお、この開口2からも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガスを吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図31に基づいて説明した開口2a,2bと同様である。
 以上のような燃焼バーナにおいて、ガスノズル3a,3bおよび開口2a,2bから燃焼室1内に吹き込まれて旋回流を形成する水素混合高炉ガスと支燃ガス(または両者の予混合ガス)はガスの密度差によって層別され、火炎の両側に密度の異なるガス層ができる。すなわち、旋回速度の小さい軸心側には高温の燃焼排ガスが存在し、旋回速度の大きい内壁面100側には未燃焼のガスが存在するようになる。また、内壁面100近傍では、旋回速度が火炎伝播速度を上回っているため、火炎は内壁面近傍に留まることはできない。このため、燃焼室1内には管状の火炎が安定的に生成する。また、燃焼室1の内壁面付近には未燃焼のガスが存在しているので、燃焼室1の内壁面が直接的な伝熱により高温に加熱されることはない。そして、燃焼室1内のガスは旋回しながら先端側へ流れるが、その間、内壁面100側のガスが順次燃焼して軸心側へ移動し、燃焼ガスが開放した先端から排出される。
 水素の燃焼速度はCO等の他の可燃性ガスに較べて極めて速く、このため水素を加えることで高炉ガスを安定して燃焼させることが可能となる。ここで、ガスの燃焼速度(MCP:maximum combustion potential)は、その組成によって決まり、次式によって算出される。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-T000012
 上記式により計算されるMCPは、水素が282、COが100であり、水素はCOの2.8倍燃焼速度が速い。したがって、水素を添加することにより、高炉ガスを安定的に燃焼させることが可能となる。高炉ガスの燃焼を継続するためには、理論的には、高炉ガスの断熱火炎温度が、その高炉ガスに含まれるガス種の発火点以上(CO発火点:609℃、H発火点:500℃)の温度であるか、高炉ガス中に含まれる可燃性ガスの濃度が爆発限界下限濃度以上(CO爆発限界下限濃度:12.5vol%、H:4vol%)であればよい。しかしながら、本発明者が検討したところ、高炉ガスのようなCOを含む低発熱量ガスでは、水素を添加した後の断熱火炎温度が750℃以上となると、安定的な燃焼が可能となることが判った。例えば、COが18.2vol%、COが26.9vol%、Hが2.1vol%、(残部はN)の高炉ガスでは、発熱量が612kcal/Nm、断熱火炎温度が746℃(空気比0.7)であり、この状態では安定的に燃焼が継続せず、別途助燃のためのパイロットバーナが必要となる。このガスに水素を添加し、H:4.2vol%とすることで、断熱火炎温度は784℃となり、安定した燃焼が継続可能となる
。断熱火炎温度は、燃焼で発生した熱が外部に失われることなく、燃焼ガスの温度上昇に使われるものとして理論的に計算した温度である。
 したがって、高炉ガスには、断熱火炎温度が750℃以上となるように水素を加えるのが好ましい。一方、水素の添加量が多ければ、それだけ燃焼の安定性は高まるが、水素添加量が多すぎると経済性が損なわれる。
 また、本発明の燃焼方法において、燃焼室1を加圧状態とすれば、ガス密度が増加し、見掛けの発熱量が増加するので、高炉ガスであってもより安定的な燃焼が可能となる。
 本発明では、支燃ガスとして空気などの酸素含有ガス、酸素ガスを用いることができるが、本発明は支燃ガスとして空気を用いる場合に特に有用である。支燃ガスの供給量は、安定した燃焼状態を維持するのに必要な量である。支燃ガスとして空気を用いる場合、通常、空気比1以上となるように供給される。空気比とは、燃料の燃焼に必要な理論的な空気量と実際に供給する空気量の比(実際の空気量/理論空気量)であり、空気比1で燃料ガスは完全燃焼し、COおよびHOとなる。空気比が1未満の条件では不完全燃焼となり、安定した燃焼が継続できなくなる。また、空気比が過剰の場合には希薄燃焼となり、この場合も安定な燃焼状態が維持できない。したがって、通常は空気比1.0~1.5の範囲で支燃ガスを供給することが好ましい。
 燃料ガスと支燃ガスのノズル(開口)からの噴出速度に特に制限はないが、両者は同程度の速度であることが好ましい。
 図23および図24の実施形態では、燃焼室1に吹き込まれる前の高炉ガスに水素を加えるものであるが、燃焼室1に吹き込まれた高炉ガスに水素を加える(すなわち、燃焼室1内で高炉ガスに水素を加える)ようにしてもよい。図25は、この場合に使用される燃焼バーナの一実施形態を示す断面図(図24と同様の断面線に沿う断面図)である。この燃焼バーナは、燃焼室1の内方(後端側)の内壁面100に、図24と同様の開口2a,2bが形成されるとともに、内壁面100の周方向で開口2a−開口2b間の中央位置(すなわち、周方向で開口2a,2bに対して90°の位置)に、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように水素(水素ガスまたは水素含有ガス。以下同様)を吹き込むための開口2c,2c(ノズル口)が形成され、この開口2c,2cに水素用のガスノズル3c,3cがそれぞれ接続されている。開口2a,2bと同様、前記開口2c,2c(ノズル口)も、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガス(水素)を吹き込むように形成される。本実施形態の開口2c,2cは、内壁面100のほぼ接線方向に水素を吹き込むように形成されている。
 前記開口2a,2bと同じく、前記開口2c,2cは、管軸方向に沿ったスリット状に形成されている。なお、この開口2c,2cはいずれか一方のみを設けても、また、3つ以上設けてもよく、その場合には、各開口2cに対してガスノズル3cが接続される。
 なお、この開口2c,2cからも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガス(水素)を吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図10に基づいて説明した開口2a,2bと同様である。
 このような燃焼バーナでは、水素をガスノズル3cを通じて開口2c,2cから燃焼室1内に吹き込むことにより、燃焼室1内で高炉ガスに水素が添加される。
 図25の実施形態の燃焼バーナの他の構造、機能は、図23および図24に示す実施形態の燃焼バーナと同じであるので、詳細な説明は省略する。なお、図23および図24に示す実施形態の燃焼バーナと同様、高炉ガスと支燃ガスを予め混合したガス(予混合ガス)を用いてもよく、この場合には、さきに述べたように、上記開口2a,2bに代えて、燃料ガスと支燃ガスの予混合ガスを吹き込むための1つ以上の開口2(ノズル口)が形成され、この開口2に予混合ガス供給用のガスノズル3が接続される。
 本発明では燃焼バーナの燃焼室1内において、水素が添加された高炉ガスと支燃ガスが旋回流を形成することにより、高炉ガスを安定的に燃焼させることができるものであるが、特に高炉ガスはCO、CO、Nを主体としたガスであり、水素はこれらのガス成分と比較してガス密度が低いため、図25の実施形態のように水素を旋回流となるように吹き込むと、その密度差によって水素が軸心側に移行して優先的に燃焼し、その他のガスの燃焼を促進することになる。このため、高炉ガスの燃焼性をより高めることができる。
 図26~図29は、本発明で使用される燃焼バーナ(管状火炎バーナ)の他の実施形態を示すもので、図26は燃焼バーナの部分切欠平面図、図27は燃焼バーナを部分的に示す底面図、図28は図26中のVI−VI線に沿う断面図、図29は図26中のVII−VII線に沿う断面図である。
 図26~図29の実施形態では、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bが、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成されている。このようにガスノズル3a,3bを複数のノズル管300a,300bで構成するのは、後述するように、ガスノズル3a,3bによって燃焼室1内で適切な旋回流が形成されるようにしつつ、スワール数Swを所定の好ましい範囲にするためである。
 図23および図24の実施形態と同様、前記燃焼室1の内方(後端側)の内壁面100には、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように燃料ガスと支燃ガスを各々吹き込むための開口2a,2b(ノズル口)が形成されるが、これら開口2a,2bも各々複数の開口200a,200bで構成されている。そして、各開口200aにそれぞれ前記ノズル管300aが接続され、各開口200bにそれぞれ前記ノズル管300bが接続されている。前記開口200a,200bは、燃焼室1内に吹き込んだガスが旋回流となるよう、燃焼室1の軸芯を外した方向(偏芯方向)にガスを吹き込むように形成される。本実施形態の開口200a,200bは、内壁面100のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むように形成されている。
 また、前記ガスノズル3a,3b(開口2a,2b)よりも燃焼室先端寄りの位置には、燃焼ガスを希釈してその温度および/または組成を調整する希釈ガスを燃焼室1内に供給するためのガスノズル14が設けられている。このガスノズル14は、燃焼ガスを希釈するガスを供給するものであるため、燃焼室1内でのガス燃焼を妨げない位置に設ければよく、燃焼室長手方向での設置(接続)位置に特別な制限はないが、本実施形態では、燃焼室長手方向の中央位置よりも燃焼室先端寄りの位置に設けられている。
 ガスノズル14は単一のノズル管で構成してもよいが、本実施形態では、バーナ軸方向で並列した複数のノズル管140で構成されている。ガスノズル14が設置される位置の燃焼室1の内壁面100には、燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるように、同内壁面のほぼ接線方向に希釈ガスを吹き込むための開口15(ノズル口)が形成され、この開口15に前記ガスノズル14が接続されている。本実施形態では、開口15は複数の開口150で構成され、各開口150にそれぞれ前記ノズル管140が接続されているが、開口15を管軸方向に沿ったスリット状の単一の開口とし、これに単一のガスノズル14を接続してもよい。なお、この希釈ガス用の開口15は、必ずしも燃焼室1内でガス旋回流が生じるようにガスを吹き込むような構造としなくてもよい。
 図26~図29の実施形態の燃焼バーナの他の構造、機能は、図23および図24に示す実施形態の燃焼バーナと同じであるので、詳細な説明は省略する。
 また、前記開口200a,200bからも燃焼室1内でガス旋回流(内壁面100の周方向に沿ったガス旋回流)が生じるようにガスを吹き込めばよいが、ガスの吹込み方向の好ましい設定方法や、バーナ構造として好ましいガス吹込み角度θは、さきに図32に基づいて説明した開口2a,2bと同様である。
 本発明で使用する燃焼バーナでは、燃焼室1内で高温の燃焼ガスが発生し、例えば、高炉ガスの理論燃焼温度は空気比1.0で約1300℃となる。本発明を後述するような高炉操業方法に適用し、燃焼バーナの燃焼ガスを予熱ガスとして高炉内に吹き込む場合、吹き込まれた燃焼ガス中のCOによって炉内のコークスが消費され、或いは炉内で還元された鉄鉱石(マグネタイト)が再酸化されることがないよう、燃焼ガスを希釈してその温度や組成を管理することが好ましい。本実施形態では、そのような目的で、燃焼ガスの温度および/または組成を調整するための希釈ガスをガスノズル14から燃焼室1内に供給する。
 使用する希釈ガスの種類は、燃焼ガスに添加する目的(ガス温度調整および/またはガス組成調整)に応じて適宜選択すればよいが、燃焼ガスの組成を調整するという面からは、CO、Hなどの還元ガスを含むものが好ましい。例えば、高炉ガス、転炉ガス、コークス炉ガス等の1種以上を用いることができ、特に、高炉ガスの一部を抜き出して希釈ガスとして用いることが好ましい。
 また、燃焼バーナの燃焼ガスを予熱ガスとして高炉内に吹き込む場合、後述するように予熱ガスの温度は500℃以上、好ましくは800℃以上が望ましいので、このような予熱ガス温度になるように希釈ガスの温度と供給量が選択されることが好ましい。
 なお、燃料ガスと支燃ガスの予混合ガスを吹き込むためのガスノズルを有する燃焼バーナや、図3の実施形態のような水素吹き込み用のガスノズル3cを有する燃焼バーナについても、それらのガスノズルをバーナ軸方向で並列した複数のノズル管で構成することができる。また、これらの燃焼バーナにおいても、上記のような希釈ガス用のガスノズル14と開口15を設けることができる。
 本発明の高炉ガスの燃焼方法では、燃焼室1内でのガス流のスワール数Swを3~10の範囲とするのが好ましい。スワール数は、旋回を伴う流体の流れにおいて旋回の強さを表す無次元数であり、スワール数が大きいほど旋回の強い流れとなる。スワール数が小さ過ぎると燃料ガスと支燃ガスの混合が不十分となり、燃料ガスの着火が安定しなくなり、一方、大き過ぎると燃焼火炎が吹き消える場合がある。以上の観点から、スワール数Sw
は3~10の範囲が好ましい。
 スワール数Swは、これを算出するための公知の基本式に従い、使用する燃焼バーナの形式やその使用形態に応じた式で算出することができ、例えば、図23および図24の実施形態のような、燃料ガス吹き込み用の開口2aと支燃ガス吹き込み用の開口2bを有する燃焼バーナを用いる場合には、スワール数Swは下式により求めることができる。なお、下式において燃料ガスとは、水素混合高炉ガスである。
Figure JPOXMLDOC01-appb-M000013
 また、燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を有する燃焼バーナを用いる場合には、スワール数Swは下式により求めることができる。なお、下式において予混合ガスとは「燃料ガス(高炉ガス)+水素+支燃ガス」である。
Figure JPOXMLDOC01-appb-M000014
 さらに、図25の実施形態のような、燃料ガス吹き込み用の開口2aと支燃ガス吹き込み用の開口2bに加えて、水素吹き込み用の開口2cを有する燃焼バーナを用いる場合には、スワール数Swは下式により求めることができる。
Figure JPOXMLDOC01-appb-M000015
 スワール数Swを上記のような好ましい範囲にする当たり、図26~図29の実施形態のように、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bを、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成することが好ましい。これは以下のような理由による。例えば、燃焼室内径:50mm、高炉ガス量:30Nm/h(ガス密度:1.34kg/Nm)、空気量:21.4Nm/h(ガス密度:1.29kg/Nm)、空気比:1.1、炉内圧:245kPa(後述する高炉操業方法のように燃焼バーナをガス燃焼・吹込装置aとして高炉に設置した場合の炉内圧)という条件の場合、ガスノズル3a,3bがそれぞれ単一(1本)のノズル管で構成されるとすると、スワール数Swが3となるノズル管の内径(円換算の内径。すなわち、ノズル管内部の断面積を円の面積に換算した時の当該円の直径。以下、「ノズル管の内径」という場合には、同様の意味とする。)は、ガスノズル3aが21mm(開口2aでの燃料ガス速度:7m/s)、ガスノズル3bが21mm(開口2bでの支燃ガス速度:5m/s)となる。しかし、このようにガスノズル3a,3bを単一のノズル管で構成した場合には、図23のII−II線断面において、ノズル管の内径が燃焼室内径の約4/10となり、燃料ガスおよび支燃ガスとも、燃焼室中心方向(軸心)への流れが増加し、良好な旋回流が形成されにくくなる。このため軸心側に存在する高温燃焼排ガスが冷却される恐れがあり、本発明の効果が低下する可能性がある。図32は、開口2a,2bが形成された位置での燃焼室内部の径方向断面を模式的に示しており、燃焼室1の半径をR、燃焼室径方向でのガスノズル3a,3bの内部幅または実内径をtとしたとき、開口2a,2bから吹き込まれるガス流の中心位置(=ガスノズル3a,3bの軸芯)は、燃焼室1の中心から距離(R−t/2)の位置にある。ここで、Rに対してtが大きくなると、燃焼室中心方向(軸心)への流れが増加して良好な旋回流が形成されにくくなり、管状火炎が管壁から離れた位置に形成されて燃焼が不安定となりやすい。このような観点から(R−t/2)/R≧0.8が好ましいが、上記の例ではこの好ましい条件から外れてしまう。
 これに対して、ガスノズル3a,3bをバーナ軸方向で並列した複数のノズル管300a,300bで構成した場合には、ノズル管1本当たりの内径が小さくなるので、上記のような問題が生じにくく、スワール数Swを好ましい範囲にしつつ、良好な旋回流を生じさせることができる。そのため、燃料ガス用のガスノズル3aと支燃ガス用のガスノズル3bは、それぞれバーナ軸方向で並列した複数のノズル管300a,300bで構成することが好ましい。同様の理由で、燃料ガスと支燃ガスの予混合ガスを吹き込むためのガスノズルを有する燃焼バーナや、図3の実施形態のような水素ガス吹き込み用のガスノズル3cを有する燃焼バーナについても、それらのガスノズルをバーナ軸方向で並列した複数のノズル管で構成することが好ましい。
 次に、以上のような燃焼バーナによる高炉ガスの燃焼方法を適用した高炉操業方法について説明する。
 この本発明の高炉操業方法は、空気または酸素富化空気を羽口送風する高炉操業、すなわち普通高炉の操業を対象とする。酸素富化空気を羽口送風する場合には、通常、酸素富化率20体積%以下、好ましくは10体積%以下での操業が行われる。なお、酸素富化率が増加するにしたがい炉内を通過するガス量が減り、シャフト上部を昇温するために必要な吹き込みガス量が大幅に増加するため、この点からも、上記のような酸素富化率での操業が好ましい。
 図30は、本発明の高炉操業方法の一実施形態を模式的に示す説明図である。図において、20は高炉、21はその羽口であり、この羽口21から熱風と補助還元材(例えば、微粉炭、LNGなど)が炉内に吹き込まれる。
 高炉20の炉頂部から排出された高炉ガス(炉頂ガス)は、ガス清浄装置であるダストキャッチャー22でダストを除去され、同じくミストセパレータ23で水分を除去された後、炉頂ガス発電装置24に導かれ、炉頂ガスの圧力が電気として回収された後、系外に導かれる。
 本発明では、シャフト部(好ましくはシャフト中部~上部)に設けられたガス吹込部Aから高炉内にガスを吹込む。このようにしてガスを炉内に吹き込む主たる目的は、低RAR操業による送風量の低下を補い、炉上部でのガス流量を確保するためであるが、無用に炉頂ガス温度を低下させるような温度のガスを吹き込むことは発明の主旨に反するので、吹き込みガスとしては予熱ガスを用いる。
 このようにガス吹込部Aから予熱ガスを高炉内に吹き込むに当たり、本発明では、ガス吹込部Aを、さきに述べたような燃焼バーナ(例えば、図23および図24の燃焼バーナ、図25の燃焼バーナ、図26~図29の燃焼バーナのいずれか)の燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置aで構成し、このガス燃焼・吹込装置aの燃焼ガスを予熱ガスとして高炉内に吹き込むものである。すなわち、図23や図26において、xが高炉20の炉体であり、燃焼室1の先端を高炉内部と連通させるようにして燃焼バーナを炉体xに取り付け、ガス燃焼・吹込装置aを構成する。
 このようなガス燃焼・吹込装置aの基本構造は、管状火炎バーナとして知られたものである。しかし、この管状火炎バーナは、加熱炉や燃焼機器用として開発され、使用されてきたものであり、高炉のガス吹込手段に適用することについては、全く検討されていなかった。また、近年の高炉操業は高圧条件で行われ、予熱ガスは吹き込み位置の炉内圧よりも高い圧力に昇圧して吹き込む必要があるが、管状火炎バーナは常圧状態での使用を前提としており、上記のような圧力条件下で使用することについても、全く検討されていなかった。これに対して本発明では、高炉ガスを燃焼させて予熱し、これを高炉のシャフト部から炉内に吹き込む手段として、管状火炎バーナタイプのガス燃焼・吹込装置aが非常に優れた機能を有することを見出したものである。また、高炉ガスを燃料ガスとして用いる場合、さきに述べたように高炉ガスに水素を加えることにより、安定的な燃焼が可能となることを見出したものである。
 図30の実施形態では、炉頂部から排出された後、ガス清浄装置(ダストキャッチャー22およびミストセパレータ23)、炉頂ガス発電装置24を経た高炉ガスの一部を抜き出し、昇圧機25aで昇圧した後、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入する。水素を高炉ガスに混合するには、高炉ガスの配管内に水素を直に導入するか、或いは図示しない混合機を用いて高炉ガスに水素を混合し、水素混合高炉ガスとする。高炉20の炉頂部から排出される高炉ガスの流路27のうち、炉頂ガス発電装置24の下流側の流路部分から、高炉ガスの一部をガス燃焼・吹込装置aに供給するための流路28が分岐している。
 また、ガス燃焼・吹込装置aには、酸素含有ガス(空気、酸素富化空気、高酸素濃度ガスなど)である支燃ガスが供給されるが、この支燃ガスも昇圧機25bで昇圧した後、ガス燃焼・吹込装置aに導入する。なお、ガス燃焼・吹込装置aで高炉ガスと支燃ガスの予混合ガスを用いる場合には、事前に昇圧機25a,25bで高炉ガスと支燃ガスを別々に昇圧してもよいし、予混合ガスを単一の昇圧機25で昇圧してもよい。この場合、支燃ガスと予混合される前の高炉ガスに水素を導入(または混合機で水素を混合)するか、或いは予混合ガスに水素を導入(または混合機で水素を混合)する。
 また、図25に示す燃焼バーナの場合には、水素は昇圧機で昇圧された後、高炉ガスとは別にガス燃焼・吹込装置aに導入され、その燃焼室に吹き込まれる。
 また、図26~図29に示す燃焼バーナの場合には、高炉内に吹き込まれた燃焼ガス中のCOによってコークスが消費され、或いは炉内で還元された鉄鉱石(マグネタイト)が再酸化されることがないよう、燃焼ガスを希釈してその温度や組成を管理するために、ガスノズル14から希釈ガスが燃焼室1内に供給される。さきに述べたように、希釈ガスとしては、CO、Hなどの還元ガスを含むものが好ましく、例えば、高炉ガス、転炉ガス、コークス炉ガス等の1種以上を用いることができ、なかでも高炉ガスの一部を抜き出して希釈ガスとして用いることが好ましい。また、予熱ガスの温度は500℃以上、好ましくは800℃以上が望ましいので、このような予熱ガス温度になるように希釈ガスの温度と供給量が選択される。
 次に、本発明において管状火炎バーナタイプのガス燃焼・吹込装置aを用い、且つ燃料ガスである高炉ガス(特に、低還元材比操業で発生する高炉ガスを用いる場合)に水素を添加することにより得られる効果を、従来の他のタイプのガスバーナを用いた場合と比較して説明する。
 従来、工業的に用いられているガスバーナの多くは、バーナ先端よりも前方に火炎が形成される構造になっている。したがって、このようなガスバーナをガス燃焼・吹込装置aとして用いた場合、火炎が高炉上部から降下する装入物(鉄鉱石、コークス)に直接あたり、コークスのソリューションロス反応を生じさせ、コークスが無用に消費されるなどの問題を生じる。
 また、純酸素送風を行う酸素高炉プロセスの炉頂ガスは、窒素が少なくCOが主体のガスであるため、発熱量が高い(例えば、約1200kcal/Nm)。このため上記のような従来の一般的なガスバーナでも、特に問題なく燃料ガスとして使用することができる。これに対して本発明が対象とする普通高炉プロセスで発生する高炉ガスは発熱量が低く(例えば、約800kcal/Nm)、上記のような従来の一般的なガスバーナに適用しても安定燃焼は難しい。また、低RAR操業を指向した場合には、高炉ガスの発熱量はさらに低下する。例えば、高炉内物質熱収支モデルで計算すると、高炉ガスの発熱量は、(1)RAR494kg/t相当の操業(PCR:130kg/t、送風温度:1150℃)では722kcal/Nm、(2)RAR450kg/t相当の操業(PCR:130kg/t、送風温度:1200℃、高反応性コークス使用、熱損失を43%低減、シャフト効率を上記(1)の操業に対して2%アップ)では620kcal/Nm、(3)RAR412kg/t相当の操業(PCR:130kg/t、送風温度:1200℃、高反応性コークス使用、熱損失を57%低減、シャフト効率を上記(1)の操業に対して4%アップ)では517kcal/Nmとなる。同計算では、上記(2)および(3)の操業において、高炉炉頂ガスの温度は110℃以下となる。そこで、例えば、炉頂部から排出された高炉ガスの一部を抜き出し、酸素で燃焼させた予熱ガスをシャフト部から炉内に吹込み、高炉炉頂ガス温度を110℃以上に保持した場合、高炉ガス発熱量はさらに低下する。例えば、上記(2)の操業において、800℃の予熱ガスを100Nm/t吹込んだ場合、高炉ガス発熱量は590kcal/Nmとなり、また、上記(3)の操業において、800℃の予熱ガスを150Nm/t吹込んだ場合、高炉ガス発熱量は477kcal/Nmとなる。このような低RAR操業による高炉ガス発熱量の低下は、上記のような従来の一般的なガスバーナによる安定した燃焼をさらに困難とする。
 また、通常の高炉は4~5kg/cmの加圧下で操業されるとともに、高炉上部から装入物が降下するため常時圧力変動がある。また、高炉炉壁への付着物の生成に起因する吹抜け等も発生する。上記のような従来の一般的なガスバーナでは、これらの要因によっても火炎の安定性が阻害され、吹き消え等も起こるおそれがある。
 以上のような従来の一般的なガスバーナの問題に対して、本発明において管状火炎バーナタイプのガス燃焼・吹込装置aを用い、且つ燃料ガスとして用いられる高炉ガスに水素を加えて安定燃焼させることにより、次のような効果が得られる。
(a)燃焼室1内でガスが燃焼し、燃焼室1の外側には火炎が存在しないので、高炉上部から降下する装入物(鉄鉱石、コークス)に直接火炎があたらず、装入物に与える影響が少ない。また、同じく燃焼室1の外側に火炎が存在しないので、高炉の炉内圧やその変動、吹抜けなどに影響されることなく、安定した火炎が形成され、所望の温度の燃焼ガスを炉内に安定的に吹き込むことができる。
(b)炉内に吹き込む予熱ガスは、吹き込む位置の炉内圧よりも高い圧力を有する必要があり、したがって、実質的にガス燃焼・吹込装置aの燃焼室1内では加圧下でガス燃焼が生じることが必要であるが、このように燃焼室1が加圧状態になることにより、特に高炉ガスを安定して燃焼させるのに有利な条件となる。ガス燃焼・吹込装置aでは、燃焼室1内に安定的な火炎が形成され、高炉ガスと支燃ガスとの混合性もよいため、ガスを効率的且つ均質に燃焼させることが可能であるが、特に、上述したように燃焼室1が加圧状態になることにより、標準状態での発熱量に対して、ガス密度が増加することから見掛けの発熱量が増加する。このため、燃料ガスが高炉ガスのような低発熱量ガスであっても、高炉ガス中への水素の添加と相俟って、安定して燃焼させることが可能となる。
(c)同じく燃焼室1が加圧状態になることにより、ガス密度が高くなり、高炉ガスの保有する熱量を有効に燃焼ガスに伝えることができる。特に、燃焼室1の内壁面100付近には未燃焼のガスおよび支燃ガスが存在しているので、燃焼室1の内壁面100が直接的な伝熱により高温に加熱されることがなく、管壁からの熱損失が少ないことにより、その効果がより高まる。
(d)ガス吹込部Aから吹き込む予熱ガスは、酸素(Oとしての酸素ガス。以下同様)を含まない或いは酸素濃度が低いことが好ましい。予熱ガスに酸素があると炉内で還元中の鉄酸化物(Fe、FeO)を再酸化させるためである。この点、ガス燃焼・吹込装置aは、燃焼室1内で安定な火炎が形成されることにより酸素利用効率が高く、特に燃焼室1が加圧状態になることにより、酸素利用効率をより高めることが可能となり、理論酸素量より少ない酸素量で安定した燃焼が可能となる。したがって、酸素を含まない若しくは酸素濃度が非常に低い予熱ガスを炉内に吹き込むことができる。
(e)燃焼室1内で安定な火炎が形成されることによって、炉内に吹き込まれる予熱ガス(燃焼ガス)の温度のバラツキが小さく、炉下部からの高炉ガスと炉上部から降下する装入物の温度をばらつきなく上昇させることができる。
 通常、高炉ガスを昇圧機25に導く流路28には、高炉ガスの組成、温度および圧力などを測定するセンサー26が設置され、また、ガス吹込部A近傍には炉内圧力、温度を測定するセンサー26が設置され、これらのセンサー26,26の測定値に基づき、昇圧機25a,26bで昇圧するガス圧力、ガス燃焼・吹込装置aに投入する支燃ガス量、水素量などが制御される。
 ガス吹込部Aからの予熱ガスの吹き込みは、常時行ってもよいし、炉頂ガス温度が低下した場合にのみ行ってもよい。後者の場合には、例えば、炉頂ガス温度をセンサーで測定し、炉頂ガス温度が所定温度以下(例えば、110℃以下)となった場合に、ガス吹込部Aから予熱ガスの吹き込みを行う。
 ガス吹込部Aから吹き込む予熱ガスの温度に特別な制限はないが、吹込む位置の炉内ガス温度より低いと、炉内を逆に冷やしてしまうため、吹込む位置の炉内ガス温度よりも高い温度が好ましく、一般的には500℃以上、好ましくは800℃以上が望ましい。
 予熱ガスの吹き込み量にも特別な制限はなく、一般には炉頂ガス温度を100℃以上に維持できるようなガス吹き込み量とすればよい。
 炉高方向でのガス吹込部Aの設置位置(予熱ガスの吹き込み位置)はシャフト中部~上部が好ましく、特に、炉口半径をRとし、ストックラインからの深さがRの位置をp、シャフト部下端からの高さがシャフト部全高の1/3の位置をpとしたとき、炉高方向において位置pと位置pとの間にガス吹込部Aを設置し、このガス吹込部Aから予熱ガスを吹き込むことが好ましい。予熱ガスの吹き込み位置が浅すぎる(上方位置すぎる)と、原料充填層の荷重が小さいため、原料の流動化や撹拌が生じて、原料降下の安定性が低下するおそれがある。一方、予熱ガスの吹き込み位置が深すぎる(下方位置すぎる)と炉内の軟化融着帯にかかってしまうおそれがあるので好ましくない。
 炉周方向におけるガス吹込部Aの設置数や設置形態は特に限定しないが、炉周方向において等間隔で複数箇所に設けることが好ましい。特に、少なくとも、炉周方向において等間隔でn箇所(但し、nは4以上の偶数)に設け、予熱ガスの吹き込み総量に応じて、前記n箇所のガス吹込部Aのなかから、予熱ガスの吹き込みを行うガス吹込部Aを炉周方向において等間隔に選択することが好ましい。この場合のガス吹込部Aの等間隔での設置数は4,8,16,32,64などである。なお、実際の設備では、ガス吹込部Aを炉周方向で厳密に等間隔に設けることは、炉体冷却構造等との関係から困難な場合もあるので、設置する位置の若干のずれは許容される。
 本発明は、低発熱量であって且つ至近場所から導入可能な高炉ガスをガス燃焼・吹込装置aの燃料ガスとして用いるものであるが、なかでも、炉頂部から排出された高炉ガスの一部を適当な流路位置から抜き出し、燃料ガスとして用いることが、エネルギーの有効利用(ガス顕熱をそのまま利用できる)の面からも、また、設備面からも特に好ましい実施形態であると言える。また、高炉ガスとしては、ガス清浄装置(ダストキャッチャー22,ミストセパレータ23)の下流側から抜き出した高炉ガス、炉頂部とガス清浄装置間から抜き出した高炉ガス、ガスホルダーに貯蔵されている高炉ガスなどを用いてもよい。
[実施例]
[実施例1]
 図8に示す構造の燃焼バーナの試験装置を用い、表2に示す条件で、水素を加えた高炉ガスおよび支燃ガス(空気)を用いた燃焼試験を行った。この試験装置の燃焼室は、内径:50mm、全長:300mmであり、その内壁面に形成された高炉ガス吹き込み用の開口(ノズルスリット)は長さ:48mm、幅:5mm、同じく支燃ガス吹き込み用の開口(ノズルスリット)は長さ:31mm、幅:5mmである。
 比較例1では燃料ガスとしてRAR443kg/t相当の操業での高炉ガスを、比較例2では燃料ガスとしてRAR446kg/t相当の操業での高炉ガスを、それぞれ用い、燃焼試験を行った。一方、発明例1,3,4では、燃料ガスとしてRAR443kg/t相当の操業での高炉ガスを用い、これに水素を加えて燃焼試験を行った。また、発明例2では、燃料ガスとしてRAR446kg/t相当の操業での高炉ガスを用い、これに水素を加えて燃焼試験を行った。いずれも、高炉ガス(発明例では水素を混合した高炉ガス):30Nm/hに対して空気を供給した。
 この燃焼試験では、燃焼安定性を以下のような基準で評価した。
 ○:火炎の脈動もなく圧力変動にも追従し安定燃焼(優)
 △:火炎が脈動するが、失火は認められない(良)
 ×:火炎が脈動し、圧力変動により失火(不可)
 その結果を、試験条件とともに表2に示す。これによれば、発明例はいずれも安定的な燃焼が実現されており、特に、断熱火炎温度が750℃以上となるように水素を添加した場合には、非常に安定した燃焼が実現されている。
Figure JPOXMLDOC01-appb-T000016
[実施例2]
 燃料ガス用のガスノズルと支燃ガス用のガスノズルを構成するノズル管の本数が異なる燃焼バーナの試験装置を用い、表3に示す条件で、燃料ガス(水素混合高炉ガス)および支燃ガス(空気)を用いた燃焼試験を行った。ここで、各ガスノズルが1本(単一)のノズル管で構成される燃焼バーナとは、図23および図24の実施形態のような構造のガスノズルを有するバーナであり、各ガスノズルが複数本のノズル管で構成される燃焼バーナとは、図26~図29の実施形態のような構造のガスノズルを有するバーナである。
 各燃焼バーナの燃焼室は、内径:50mm、全長:700mmであり、燃料ガス用のガスノズルと支燃ガス用のガスノズルをそれぞれ構成するノズル管の本数は、試験例1:5本、試験例2:4本、試験例3:2本、試験例4:1本、試験例5:4本、試験例6:2本である。
 試験例1~4で使用した燃焼バーナは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が10mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が10mmである。試験例5で使用した燃焼バーナは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が6mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が6mmである。試験例6で使用した燃焼バーナは、燃料ガス吹き込み用のガスノズルを構成するノズル管の内径が10mm、同じく支燃ガス吹き込み用のガスノズルを構成するノズル管の内径が10mmである。
 燃料ガスとして用いた高炉ガス(水素混合高炉ガス)は、ガス組成がCO:22vol%、CO:21vol%、H:5vol%、N:52vol%であり、発熱量が792kcal/Nmである。この燃料ガス:30Nm/hに対して、理論酸素量が1となるように、支燃ガスとして空気:19.5Nm/hを供給した。適用した試験炉の炉内圧は245kPaである。
 試験例6では、燃料ガス・支燃ガスの吹き込み位置中心からバーナ軸方向で500mm離れた位置に希釈ガス用のガスノズル(内径20mm)を設けた燃焼バーナを用い、燃焼室から排出される燃焼排ガス温度が800℃になるように、希釈ガス(高炉ガス)を33.8Nm/h供給した。この希釈ガスの添加により、燃焼ガス組成はCO(還元ガス)を10.3vol%含むものとなった。
 試験例1~6において、燃焼室内の観察(図31に示すような覗窓からの観察)と燃焼排ガスのガス組成分析を行い、燃焼状況を下記基準で評価した。その結果を、ガスノズルの構成、ガス流量、スワール数Sw、燃焼ガス組成(試験例6では、希釈ガスを添加した後のガス組成)などとともに表3に示す。
 ×:燃焼状況に脈動がみられ、相当量の未燃のCOが測定された。
 ○:安定した燃焼が継続し、未燃のCOも殆ど測定されなかった(但し、試験例6のCO濃度は希釈ガス混合によるもの)
Figure JPOXMLDOC01-appb-T000017
[実施例3]
 炉内容積5000mの高炉において、図23および図24に示すようなガス燃焼・吹込装置aを用い、図30に示すような実施形態で本発明を実施した。操業条件は、微粉炭吹込み量:130kg/t、コークス比:320kg/t、送風温度:1150℃(湿分:10g/Nm)とし、高反応性コークスを使用した。炉頂ガス発電装置24の下流側から抜き出した高炉ガス(CO:17.7vol%、CO:23.1vol%、H:2.4vol%、HO:3.6vol%、N:53.2vol%)を昇圧機25aで炉内圧より0.2atm高い圧力に昇圧し、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入した。その際、高炉ガスに対して、水素濃度が4.0vol%になるように水素を添加し、水素混合高炉ガスとした。また、空気を昇圧機25bで昇圧し、ガス燃焼・吹込装置aに支燃ガスとして導入した。
 ガス燃焼・吹込装置aでは、水素混合高炉ガス100Nm/tを空気37.8Nm/tで燃焼させて800℃の燃焼ガスを生成させ、これを予熱ガスとして炉内に吹き込んだ。ガス燃焼・吹込装置aでの酸素比は0.736であり(理論酸素量に対して)、予熱ガスの組成は、CO:3.5vol%、CO:27.3vol%、H:0.8vol%、HO:5.0vol%、N:63.3vol%である。このような予熱ガスの吹き込みにより、炉頂ガス温度は149℃となり、高炉操業での配管内への水分の凝縮も完全に回避され、安定した操業が可能となった。予熱ガスを吹込まない場合は、物質熱収支の計算から97℃と算出される。
[実施例4]
 炉内容積5000mの高炉において、図26~図29に示すようなガス燃焼・吹込装置aを用い、図8に示すような実施形態で本発明を実施した。高炉操業条件は、実施例3と同様とした。炉頂ガス発電装置24の下流側から抜き出した高炉ガス(CO:17.7vol%、CO:23.1vol%、H:2.4vol%、HO:3.6vol%、N:53.2vol%)を昇圧機25aで炉内圧より0.2atm高い圧力に昇圧し、ガス吹込部Aを構成するガス燃焼・吹込装置aに燃料ガスとして導入した。その際、高炉ガスに対して、水素濃度が4.0vol%になるように水素を添加し、水素混合高炉ガスとした。また、空気を昇圧機25bで昇圧し、ガス燃焼・吹込装置aに支燃ガスとして導入した。
 ガス燃焼・吹込装置aでは、水素混合高炉ガス73.6Nm/tを空気37.8Nm/t(酸素比1.0)で燃焼させるとともに、燃焼室内に希釈ガス(BFG)を26.4Nm/t供給することで、800℃の燃焼ガスを生成させ、これを予熱ガスとして炉内に吹き込んだ。予熱ガスの組成は、実施例3と同等である。このような予熱ガスの吹き込みにより、炉頂ガス温度は147℃となり、高炉操業での配管内への水分の凝縮も完全に回避され、安定した操業が可能となった。予熱ガスを吹込まない場合は、物質熱収支の計算から97℃と算出される。
 1 燃焼室、
2a,2b,2c,2c 開口
 3a,3b,3c,3c ガスノズル
 4 混合室
 5 燃料ガス供給管
 6 水素供給管
 7 支燃ガス供給管
 8,9,10 流量調整弁、   11 流量計
 12 燃焼状況検知装置
 13 点火プラグ
 14 ガスノズル
 15 開口
 16 ガス吹込口
 17a~17d ガス吹込口群
 18 ヘッダー管
 19 連絡管
 20 高炉、  21 羽口
  22 ダストキャッチャー、  23 ミストセパレータ
  24 炉頂ガス発電装置
  25a,25b 昇圧機
  26,26 センサー
  27,28 流路
  100 内壁面
 103 吹き込み口
 104 連結管
 140 ノズル管
 150 開口

Claims (52)

  1.  空気または酸素富化空気を羽口から高炉内に吹き込む高炉操業方法において、
     予熱ガスをシャフト部に設けられたガス吹込部(A)から高炉内に吹き込むに当たり、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を、先端が開放された管状の燃焼室の内壁面に形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、ガス吹込部(A)を構成し、該ガス燃焼・吹込装置(a)で生成された燃焼ガスを予熱ガスとして高炉内に吹き込むことを特徴とする高炉操業方法。
  2.  燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を、先端が開放された管状の燃焼室の内壁面に形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)を構成したことを特徴とする請求項1に記載の高炉操業方法。
  3.  ガス燃焼・吹込装置(a)に供給される燃料ガスが高炉ガスであることを特徴とする請求項1に記載の高炉操業方法。
  4.  燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、前記ガス燃焼・吹込装置(a)の軸線方向に並列した複数のノズル管で構成されていることを特徴とする請求項1に記載の高炉操業方法。
  5.  前記ガス燃焼・吹込装置(a)の燃焼室内のガス流が、3~10のスワール数Swを有することを特徴とする請求項1に記載の高炉操業方法。
  6.  ガス燃焼・吹込装置(a)の燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする請求項1に記載の高炉操業方法。
  7.  ガス燃焼・吹込装置(a)の燃焼室の先端を、ガス導管を介して高炉内部と連通させることを特徴とする請求項1に記載の高炉操業方法。
  8.  ガス導管がヘッダー管であり、該ヘッダー管には、炉体に形成された複数のガス吹込口が連絡管を介して接続されるとともに、ガス燃焼・吹込装置(a)の燃焼室の先端が接続されることを特徴とする請求項7に記載の高炉操業方法。
  9.  前記燃焼ガスの高炉内への吹き込みが、燃料ガスとして発熱量が1000kcal/Nm以下のガスを用いるとともに、燃焼室に吹き込まれる前の燃料ガスまたは/および燃焼室に吹き込まれた燃料ガスに水素を加えて燃焼させ、その燃焼ガスを予熱ガスとして高炉内に吹き込むことを特徴とする請求項1または2に記載の高炉操業方法。
  10.  前記燃料ガスがCOを含有する燃料ガスであり、前記水素が、前記燃料ガスの断熱火炎温度が750℃以上となるように加えられることを特徴とする請求項9に記載の高炉操業方法。
  11.  前記燃料ガスと支燃ガス若しくは燃料ガスと支燃ガスとの予混合ガスが、ガス燃焼・吹込装置(a)の軸線方向に並列に設置された複数のノズル管から吹き込まれることを特徴とする請求項9に記載の高炉操業方法。
  12.  前記燃料ガスが高炉ガスであることを特徴とする請求項9に記載の高炉操業方法。
  13.  燃焼室の内壁面に燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口が設けられたガス燃焼・吹込装置(a)を用い、前記他の開口から燃焼室内に水素を吹き込むことを特徴とする請求項9に記載の高炉操業方法。
  14.  燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口が設けられたガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項9に記載の高炉操業方法。
  15.  燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されていることを特徴とする請求項13または14に記載の高炉操業方法。
  16.  ガス燃焼・吹込装置(a)において、燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする請求項9に記載の高炉操業方法。
  17.  ガス燃焼・吹込装置(a)の燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする請求項9に記載の高炉操業方法。
  18.  前記燃焼ガスの高炉内への吹き込みが、燃料ガスとして高炉ガスを用いるとともに、燃焼室に吹き込まれる前の高炉ガスまたは/および燃焼室に吹き込まれた高炉ガスに水素を加えて燃焼させ、その燃焼ガスを予熱ガスとして高炉内に吹き込むことからなる、請求項1または2に記載の高炉操業方法。
  19.  前記燃料ガスが高炉ガスであり、前記燃料ガスの断熱火炎温度が750℃以上となるように前記水素が加えられることを特徴とする請求項18に記載の高炉操業方法。
  20.  燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されていることを特徴とする請求項18に記載の高炉操業方法。
  21.  燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口を形成したガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項18に記載の高炉操業方法。
  22.  燃焼室の内壁面に、さらに、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口を形成したガス燃焼・吹込装置(a)を用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項18に記載の高炉操業方法。
  23.  燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されていることを特徴とする請求項18に記載の高炉操業方法。
  24.  ガス燃焼・吹込装置(a)において、燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする請求項18に記載の高炉操業方法。
  25.  ガス燃焼・吹込装置(a)の燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする請求項18に記載の高炉操業方法。
  26.  空気または酸素富化空気を羽口送風する高炉において、
     ガス吹込部(A)をシャフト部に設け、先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、ガス吹込部(A)を構成し、該ガス燃焼・吹込装置(a)の燃焼ガスが高炉内に吹き込まれることを特徴とする高炉設備。
  27.  前記ガス吹込部(A)が、先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)が構成されていることを特徴とする請求項26に記載の高炉設備。
  28.  高炉の炉頂部から排出された高炉ガスの流路から高炉ガスの一部を抜き出し、ガス燃焼・吹込装置(a)に供給するための流路を備えることを特徴とする請求項26に記載の高炉設備。
  29.  ガス燃焼・吹込装置(a)に供給される燃料ガスと支燃ガスを各々昇圧するための若しくは燃料ガスと支燃ガスの予混合ガスを昇圧するための昇圧機を備えることを特徴とする請求項26に記載の高炉設備。
  30.  ガス燃焼・吹込装置(a)において、燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、装置の軸線方向で並列した複数のノズル管で構成されていることを特徴とする請求項26に記載の高炉設備。
  31.  ガス燃焼・吹込装置(a)は、燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給する手段を有することを特徴とする請求項26に記載の高炉設備。
  32.  ガス燃焼・吹込装置(a)の燃焼室の先端を、ガス導管を介して高炉内部と連通させることを特徴とする請求項26に記載の高炉設備。
  33.  ガス導管がヘッダー管であり、該ヘッダー管には、炉体に形成された複数のガス吹込口が連絡管を介して接続されるとともに、ガス燃焼・吹込装置(a)の燃焼室の先端が接続されることを特徴とする請求項32に記載の高炉設備。
  34.  先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成した燃焼バーナにおいて、発熱量が1000kcal/Nm以下のガスを燃料ガスとして用いる際に、燃焼室に吹き込まれる前の燃料ガスまたは/および燃焼室に吹き込まれた燃料ガスに水素を加えることを特徴とする燃焼バーナによる低発熱量ガスの燃焼方法。
  35.  先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)を構成したことを特徴とする請求項34に記載の低発熱量ガスの燃焼方法。
  36.  COを含有する燃料ガスに、前記燃料ガスの断熱火炎温度が750℃以上となるように水素を加えることを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  37.  燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  38.  燃料ガスが高炉ガスであることを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  39.  燃焼室の内壁面に燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口が形成された燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  40.  燃焼室の内壁面に燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口が形成された燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  41.  燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  42.  燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  43.  燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする請求項34に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  44.  先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成した燃焼バーナにおいて、高炉ガスを燃料ガスとして用いる際に、燃焼室に吹き込まれる前の高炉ガスまたは/および燃焼室に吹き込まれた高炉ガスに水素を加えることを特徴とする燃焼バーナによる低発熱量ガスの燃焼方法。
  45.  先端が開放された管状の燃焼室の内壁面に、燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向に燃料ガスと支燃ガスを各々吹き込むための若しくは燃料ガスと支燃ガスの予混合ガスを吹き込むための開口を形成し、前記燃焼室の先端を高炉内部と連通させたガス燃焼・吹込装置(a)で、前記ガス吹込部(A)を構成した、請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  46.  高炉ガスに、前記高炉ガスの断熱火炎温度が750℃以上となるように水素を加えることを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  47.  燃焼室の内壁面に形成された開口を通じて燃焼室内に燃料ガスと支燃ガスを各々供給するためのガスノズル若しくは燃料ガスと支燃ガスの予混合ガスを供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  48.  燃焼室の内壁面に燃焼室内でガス旋回流が生じるようにガスを吹き込むための他の開口が形成された燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  49.  燃焼室の内壁面に燃焼室内でガス旋回流が生じるように該内壁面のほぼ接線方向にガスを吹き込むための他の開口が形成された燃焼バーナを用い、前記開口から燃焼室内に水素を吹き込むことを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  50.  燃焼室の内壁面に形成された他の開口を通じて燃焼室内に水素を供給するためのガスノズルが、バーナ軸方向で並列した複数のノズル管で構成されていることを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  51.  燃焼室内のガス流のスワール数Swを3~10とすることを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
  52.  燃焼室内に、燃焼ガスを希釈してガス温度または/およびガス組成を調整する希釈ガスを供給することを特徴とする請求項44に記載の燃焼バーナによる低発熱量ガスの燃焼方法。
PCT/JP2010/057984 2009-04-30 2010-04-30 高炉操業方法及びそのための低発熱量ガスの燃焼方法並びに高炉設備 WO2010126171A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10769861.5A EP2426223B1 (en) 2009-04-30 2010-04-30 Blast furnace operation method and blast furnace equipment
KR1020117024746A KR101314443B1 (ko) 2009-04-30 2010-04-30 고로 조업 방법 및 그를 위한 저발열량 가스의 연소 방법과 고로 설비
BRPI1011905-1A BRPI1011905B1 (pt) 2009-04-30 2010-04-30 Método de operação de alto-forno, usina de alto- forno e método de combustão de gás de valor calorífico baixo com uso de um queimador de combustão
CN201080029673.XA CN102459652B (zh) 2009-04-30 2010-04-30 高炉操作方法和用于其的低发热量气体的燃烧方法以及高炉设备

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2009-110433 2009-04-30
JP2009110433 2009-04-30
JP2009-243132 2009-10-22
JP2009-243150 2009-10-22
JP2009243150 2009-10-22
JP2009243132 2009-10-22
JP2009-299103 2009-12-29
JP2009299103 2009-12-29
JP2009-299101 2009-12-29
JP2009299101A JP4760977B2 (ja) 2009-10-22 2009-12-29 高炉操業方法
JP2009299098A JP4760976B2 (ja) 2009-10-22 2009-12-29 高炉操業方法
JP2009-299098 2009-12-29
JP2010102720A JP4760985B2 (ja) 2009-04-30 2010-04-27 高炉操業方法
JP2010-102720 2010-04-27

Publications (1)

Publication Number Publication Date
WO2010126171A1 true WO2010126171A1 (ja) 2010-11-04

Family

ID=45541548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057984 WO2010126171A1 (ja) 2009-04-30 2010-04-30 高炉操業方法及びそのための低発熱量ガスの燃焼方法並びに高炉設備

Country Status (5)

Country Link
EP (1) EP2426223B1 (ja)
KR (1) KR101314443B1 (ja)
CN (1) CN102459652B (ja)
BR (1) BRPI1011905B1 (ja)
WO (1) WO2010126171A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183792A (ja) * 2015-03-25 2016-10-20 大阪瓦斯株式会社 管状火炎バーナ、及び加熱炉
CN108036363A (zh) * 2018-01-16 2018-05-15 深圳市火王燃器具有限公司 一种新型的旋转式燃烧器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806858B1 (ko) * 2016-10-06 2017-12-08 주식회사 포스코건설 배가스 재생 장치 및 방법
HUE063773T2 (hu) * 2018-03-27 2024-01-28 Midrex Technologies Inc Oxigéninjektáló rendszer direkt redukciós eljáráshoz
CN114787391B (zh) * 2019-11-29 2023-09-12 日本制铁株式会社 高炉的操作方法
CN111318519B (zh) * 2020-03-28 2023-10-13 中国联合工程有限公司 一种筒体内表面除气脱脂装置及除气脱脂方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033305A (ja) * 1983-08-04 1985-02-20 Nippon Steel Corp 高炉操業法
JPS6227509A (ja) 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> 高炉操業方法
JPS62120413A (ja) * 1985-11-20 1987-06-01 Nippon Kokan Kk <Nkk> 高炉操業方法
JPH11281015A (ja) 1998-01-27 1999-10-15 Nkk Corp 管状火炎バーナ
JP2004076639A (ja) * 2002-08-15 2004-03-11 Jfe Steel Kk ガスタービン装置
JP2007078239A (ja) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
JP2007271188A (ja) 2006-03-31 2007-10-18 Jfe Steel Kk バーナーの燃焼方法
JP2008214735A (ja) 2007-03-08 2008-09-18 Jfe Steel Kk 高炉の操業方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1216779A (en) * 1968-07-31 1970-12-23 Steel Co Of Wales Ltd High pressure reduction of iron ore
NL157056B (nl) * 1970-06-20 1978-06-15 Nippon Kokan Kk Werkwijze voor het reduceren van ijzererts in een hoogoven.
JPH0619091B2 (ja) * 1986-12-27 1994-03-16 日本鋼管株式会社 酸素高炉
JPS63171815A (ja) * 1987-01-09 1988-07-15 Nkk Corp 酸素高炉
US5234490A (en) * 1991-11-29 1993-08-10 Armco Inc. Operating a blast furnace using dried top gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033305A (ja) * 1983-08-04 1985-02-20 Nippon Steel Corp 高炉操業法
JPS6227509A (ja) 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> 高炉操業方法
JPS62120413A (ja) * 1985-11-20 1987-06-01 Nippon Kokan Kk <Nkk> 高炉操業方法
JPH11281015A (ja) 1998-01-27 1999-10-15 Nkk Corp 管状火炎バーナ
JP2004076639A (ja) * 2002-08-15 2004-03-11 Jfe Steel Kk ガスタービン装置
JP2007078239A (ja) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
JP2007271188A (ja) 2006-03-31 2007-10-18 Jfe Steel Kk バーナーの燃焼方法
JP2008214735A (ja) 2007-03-08 2008-09-18 Jfe Steel Kk 高炉の操業方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OHNO ET AL.: "Tetsu-to-Hagane", vol. 75, 1989, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 1278
See also references of EP2426223A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183792A (ja) * 2015-03-25 2016-10-20 大阪瓦斯株式会社 管状火炎バーナ、及び加熱炉
CN108036363A (zh) * 2018-01-16 2018-05-15 深圳市火王燃器具有限公司 一种新型的旋转式燃烧器
CN108036363B (zh) * 2018-01-16 2023-10-24 深圳火王智能厨电股份有限公司 一种新型的旋转式燃烧器

Also Published As

Publication number Publication date
BRPI1011905A2 (pt) 2016-04-12
CN102459652A (zh) 2012-05-16
EP2426223A4 (en) 2015-03-18
KR101314443B1 (ko) 2013-10-07
EP2426223B1 (en) 2016-11-23
KR20120008035A (ko) 2012-01-25
EP2426223A1 (en) 2012-03-07
BRPI1011905B1 (pt) 2018-02-06
CN102459652B (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5617531B2 (ja) 燃焼バーナによる低発熱量ガスの燃焼方法および高炉操業方法
JP5392230B2 (ja) 燃焼バーナによる高炉ガスの燃焼方法
WO2010126171A1 (ja) 高炉操業方法及びそのための低発熱量ガスの燃焼方法並びに高炉設備
WO2014007152A1 (ja) 高炉操業方法
JP4760985B2 (ja) 高炉操業方法
KR101879895B1 (ko) 용광로 스토브를 가열하기 위한 장치 및 방법
JP4760977B2 (ja) 高炉操業方法
JPWO2020202362A1 (ja) 石油残渣焚きボイラ及びその燃焼方法
CA2976885C (en) Method for operating blast furnace
TWI843066B (zh) 氣體還原材的吹入方法和高爐用風口
JP7396319B2 (ja) 気体還元材の吹込み方法
JP2004091921A (ja) 高炉への固体燃料吹き込み方法及び吹き込みランス
JP2005264189A (ja) 高炉への固体燃料吹き込み方法
WO2022270027A1 (ja) 気体還元材の吹込み方法および高炉用羽口
US9938593B2 (en) Blast furnace operation method
JP2023031404A (ja) 高炉羽口用バーナ
Baubekov A study of the mechanism through which nitrogen oxides are generated in boiler furnaces during staged combustion of gas
TWI557373B (zh) 粉煤噴射方法
JP2005213590A (ja) 高炉への固体燃料吹き込み方法及び吹き込みランス
TW202403234A (zh) 用於氫增強之粉煤點燃之焚燒器、系統及方法
JP2005213592A (ja) 高炉への固体燃料吹き込み方法
CN102563622A (zh) 稀释燃烧的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029673.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117024746

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2238/MUMNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010769861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010769861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011905

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011905

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111028