WO2010122917A1 - X線診断装置、及びx線絞り制御方法 - Google Patents
X線診断装置、及びx線絞り制御方法 Download PDFInfo
- Publication number
- WO2010122917A1 WO2010122917A1 PCT/JP2010/056552 JP2010056552W WO2010122917A1 WO 2010122917 A1 WO2010122917 A1 WO 2010122917A1 JP 2010056552 W JP2010056552 W JP 2010056552W WO 2010122917 A1 WO2010122917 A1 WO 2010122917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- block
- diaphragm
- unit
- blocks
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000001514 detection method Methods 0.000 claims abstract description 51
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000003780 insertion Methods 0.000 claims description 20
- 230000037431 insertion Effects 0.000 claims description 20
- 238000003745 diagnosis Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000001939 inductive effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 238000003384 imaging method Methods 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 5
- 230000002485 urinary effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/06—Diaphragms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4233—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
Definitions
- the present invention relates to an X-ray diagnostic apparatus that performs X-ray imaging using X-rays and displays an X-ray image, and an X-ray aperture control method.
- the X-ray diagnostic device irradiates a subject with X-rays, detects transmitted X-rays with an X-ray detector, obtains an X-ray signal transmitted through the subject, and processes the X-ray signal with an image processor.
- the X-ray image of the subject is displayed on the display unit by generating the X-ray image.
- an identification code corresponding to the position of the X-ray diaphragm at the time of X-ray photography has been assigned in advance, and the operator selects the identification number to reproduce the X-ray diaphragm at the position at the time of the previous X-ray photography. Has been done. (For example, Patent Document 1).
- Patent Document 1 it is difficult for the operator to intuitively grasp the relationship between the identification number and the position of the X-ray diaphragm, so it is difficult to accurately operate the X-ray diaphragm corresponding to the imaging region of the subject. Think.
- the subject when imaging the urinary organ of the subject, the subject may sit on the end of the table, move the X-ray detection unit to the end of the table, and perform X-ray imaging on the urinary organ.
- the X-ray detection unit when the X-ray detection unit is moved to the end of the table, it is necessary to irradiate the part corresponding to the urinary organ of the subject, that is, the end of the X-ray detection unit.
- unnecessary X-ray exposure may occur because X-rays may be irradiated even in areas where X-ray imaging is not required. End up.
- an object of the present invention is to improve the operability of the X-ray diaphragm and reduce the X-ray exposure to the subject.
- An X-ray irradiating unit for irradiating the subject with X-rays an X-ray diaphragm having a plurality of diaphragm blades for shielding the X-rays, an X-ray diaphragm moving unit for moving the plurality of diaphragm blades, and the X-rays
- An X provided with an X-ray detection unit that is disposed opposite to the irradiation unit and detects transmitted X-rays of the subject, and a display unit that displays an X-ray image based on the X-ray signal detected by the X-ray detection unit.
- a line diagnostic device A storage unit that stores a plurality of blocks obtained by dividing an X-ray irradiation region irradiated with X-rays, and a selection unit that selects at least one block among the plurality of blocks, the X-ray diaphragm moving unit is The plurality of aperture blades are moved in correspondence with the selected block.
- a step of storing a plurality of blocks obtained by dividing an X-ray irradiation region capable of X-ray irradiation, a step of selecting at least one block among the plurality of blocks, and an X-ray based on the selected block An X-ray aperture control method including a step of moving a plurality of aperture blades of an aperture.
- the area of the X-ray detection unit is divided into a plurality of blocks, and the block start coordinates and block end coordinates of each block are stored in the storage unit.
- the block start coordinates and block end coordinates are read out, the insertion amount of the diaphragm blades on each side is calculated from the information, and the diaphragm blades are moved.
- the operability of the X-ray diaphragm can be improved and the X-ray exposure to the subject can be reduced.
- FIG. 1 is an overview diagram showing the overall configuration of an X-ray diagnostic apparatus according to the present invention.
- the block diagram which shows the internal structure of the X-ray diagnostic apparatus of this invention.
- FIG. 3 is a diagram showing divided blocks and selected blocks in Embodiment 1 of the present invention.
- FIG. 3 is a diagram showing an open / closed state of the X-ray diaphragm according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing a display form of a display unit in Embodiment 1 of the present invention.
- 2 is a flowchart showing the operation of the first embodiment of the present invention.
- FIG. 6 is a diagram showing divided blocks and selected blocks in Embodiment 2 of the present invention. The figure which shows the open / close state of the X-ray aperture in Example 2 of this invention.
- FIG. 6 is a diagram showing Example 3 of the present invention.
- FIG. 6 is a diagram showing Example 4 of the present invention.
- FIG. 1 is an overview diagram showing the overall configuration of the X-ray diagnostic apparatus 1 of the present invention.
- the stand unit 10 is a housing that is installed on the floor and supports the entire photographing stand (the support arm unit 20, the support frame 30, the support column unit 50, and the like). Inside the stand unit 10, an elevating mechanism for moving the support arm unit 20 up and down relative to the stand unit 10 and a rotation mechanism for rotating the support arm unit 20 relative to the stand unit 10 are housed.
- the X axis in FIG. 1 corresponds to the short direction of the table 102, and the Y axis corresponds to the long direction of the table 102.
- the support arm unit 20 is provided with a slide mechanism that slides the support frame 30 with respect to the support arm unit 20 in the longitudinal direction of the support frame 30.
- the slide mechanism includes a motor, a main sprocket that rotates by movement of the motor, two driven sprockets, and a chain that meshes with each sprocket. Both end portions of the chain are fixed to fixing portions of the support frame 30.
- the chain can be sent out by the rotation of the main sprocket, and as a result, the support frame 30 can be slid in the longitudinal direction with respect to the support arm portion 20.
- a table 102 on which the subject 100 is placed is provided above the support frame 30.
- the table 102 may be configured to be slidable in the longitudinal direction with respect to the support frame 30.
- an X-ray generation unit moving mechanism that slides the support column 50 in the longitudinal direction (A direction) and the short direction (B direction) of the table 102 with respect to the support frame 30 is provided.
- the X-ray generation unit moving mechanism includes a motor provided on one end side in the longitudinal direction of the support frame 30, a main sprocket rotating by the movement of the motor, and a driven sprocket provided on the other end side of the support frame 30. And a chain connecting both sprockets.
- the base 51 of the support 50 is fixed to the chain, and the base 51, that is, the support 50 can be slid in the longitudinal direction (A direction) by rotating the chain with a sprocket.
- the short direction (B direction) can be slid by a mechanism similar to the X-ray generation unit moving mechanism in the long direction (A direction).
- the X-ray irradiation unit 104 is a device that is connected to the tip side of the support column 50 and irradiates the subject 100 with X-rays.
- the X-ray generation unit moving mechanism can move the X-ray irradiation unit 104 connected to the column unit 50 in the longitudinal direction (A direction) and the short direction (B direction).
- an X-ray diaphragm 106 that has a plurality of diaphragm blades and sets an X-ray irradiation region for the subject 100 is provided.
- the X-ray irradiation direction is set to the length of the table 102. Can shake in the direction.
- the support column 50 extends in the vertical direction from the base portion 51 and extends in both the longitudinal direction and the width direction of the support frame 30 toward the connecting portion 53. Therefore, the operator's standing position can be secured on both sides of the support frame 30 across the X-ray irradiation unit 104, and the subject 100 can be accessed from the head side and both sides of the subject 100. .
- a compression device 90 is provided on the side of the support 50 that faces the support frame 30.
- the compression device 90 is a device for performing imaging while compressing the region of interest of the subject 100.
- the X-ray detection unit 112 is installed inside the support frame 30.
- the X-ray detection unit 112 is configured by arranging a plurality of detection elements in a two-dimensional array, and the X-ray corresponding to the incident amount of X-rays irradiated from the X-ray irradiation unit 104 and transmitted through the subject 100 A device that detects a signal.
- An X-ray detection unit moving mechanism (not shown) for sliding the X-ray detection unit 112 is installed inside the support frame 30, and the X-ray detection unit 112 is placed in the longitudinal direction of the table 102 (D direction: Y axis direction).
- a slide mechanism for sliding and a slide mechanism for sliding the X-ray detection unit 112 in the short direction (E direction: X axis direction) of the table 102 are provided.
- the display unit 118 is supported by the stand unit 10 by an articulated arm 119.
- the display unit 118 can display an X-ray image, a fluoroscopic image, or the like of the subject 100.
- FIG. 2 is a block diagram showing an internal configuration of the X-ray diagnostic apparatus 1 of the present invention.
- the X-ray diagnostic apparatus 1 used in the present invention includes a table 102 on which the subject 100 is placed, an X-ray irradiation unit 104 that irradiates the subject 100 with X-rays, and a plurality of diaphragm blades.
- An X-ray diaphragm 106 for setting an irradiation region, a high voltage generator 110 for supplying power to the X-ray irradiation unit 104, and an X-ray that has been transmitted through the subject 100 are arranged at positions facing the X-ray irradiation unit 104.
- the X-ray irradiation region that can be irradiated with X-rays is divided into a plurality of blocks, and the storage unit 130 that stores the X-ray irradiation region corresponding to each block and the X-ray irradiation corresponding to the block selected by the operation unit 122 And an X-ray diaphragm moving unit 132 that moves the X-ray diaphragm 106 based on the region.
- the X-ray irradiation unit 104 has an X-ray tube that receives power supply from the high voltage generation unit 110 and generates X-rays.
- the X-ray irradiation unit 104 may include an X-ray filter that selectively transmits X-rays having specific energy.
- the X-ray diaphragm 106 has a plurality of diaphragm blades that shield X-rays generated from the X-ray irradiation unit 104.
- the X-ray diaphragm moving unit 132 moves each of the plurality of diaphragm blades of the X-ray diaphragm 106 based on the X-ray irradiation area corresponding to the selected block.
- the X-ray detection unit 112 is configured by, for example, a plurality of detection elements that detect X-rays arranged in a two-dimensional array.
- the X-ray detection unit 112 emits X-rays that are irradiated from the X-ray irradiation unit 104 and transmitted through the subject 100.
- This device detects X-ray signals according to the amount of incident light.
- the X-rays detected by the X-ray detection unit 112 are stored as charges in a storage capacitor (not shown) for each pixel. Then, an X-ray signal based on the charge accumulated for each pixel is output to the image processing unit 114.
- the image processing unit 114 performs image processing on the X-ray signal output from the X-ray detection unit 112 and outputs an image-processed X-ray image.
- Image processing includes gamma conversion, gradation conversion processing, enlargement / reduction of an X-ray image, and the like.
- the image storage unit 116 stores the X-ray image output from the image processing unit 114 together with the selected block information.
- the display unit 118 displays an X-ray image together with the selected block information.
- Example 1 will be specifically described.
- the storage unit 130 divides an X-ray irradiation area that can be irradiated with X-rays into a plurality of blocks, and stores X-ray irradiation areas corresponding to the blocks in advance.
- the 1024 ⁇ 1024 area corresponding to each pixel of the X-ray detection unit 112 is divided into nine blocks. Blocks “1” to “9” are square blocks having the same size.
- the storage unit 130 stores block start coordinates and block end coordinates corresponding to blocks “1” to “9” as X-ray irradiation areas in advance.
- the block start coordinates and block end coordinates in the blocks “1” to “9” correspond to the insertion positions of the diaphragm blades of the X-ray diaphragm 106.
- the block start coordinates of the block “5” are the coordinates (342, 342) at the upper left of the X-ray irradiation area of the block “5”.
- the block end coordinates of the block “5” are coordinates (683, 683) which are located at the lower right of the X-ray irradiation region located on the diagonal line of the block start coordinates.
- Block start coordinates and block end coordinates corresponding to the block selected by the operation unit 122 are transmitted from the storage unit 130 to the control unit 120.
- the control unit 120 controls the X-ray diaphragm moving unit 132 to move the diaphragm blades of the X-ray diaphragm 106 so that the selected block is irradiated with X-rays. Specifically, the control unit 120 transmits the block start coordinates and the block end coordinates corresponding to the selected block to the X-ray stop moving unit 132, and the X-ray stop 106 is moved to the block start coordinates and the block end coordinates. The X-ray diaphragm moving unit 132 is controlled to move the diaphragm blades.
- the diaphragm blades of the X-ray diaphragm 106 are composed of a right diaphragm blade 300, an upper diaphragm blade 302, a left diaphragm blade 304, and a lower diaphragm blade 306, as will be described later.
- X-ray diaphragm moving unit 132 is based on block start coordinates and block end coordinates (X-ray irradiation area) corresponding to the block selected by operation unit 122, right diaphragm blade 300, upper diaphragm blade 302 of X-ray diaphragm 106, The left diaphragm blade 304 and the lower diaphragm blade 306 are moved.
- the X coordinate (X1) of the block start coordinate is the left aperture of the X-ray aperture 106.
- the insertion position of the blade 304 and the Y coordinate (Y1) are the insertion position of the upper diaphragm blade 302.
- the X coordinate (X2) of the block end coordinates is the insertion position of the right diaphragm blade 300
- the Y coordinate (Y2) is the insertion position of the lower diaphragm blade 306.
- the block start coordinates are (342,342) and the block end coordinates are (683,683).
- the X coordinate (342) of the block start coordinate is the insertion position of the left diaphragm blade 304 of the X-ray diaphragm 106
- the Y coordinate (342) is the insertion position of the upper diaphragm blade 302.
- the X coordinate (683) of the block end coordinates is the insertion position of the right diaphragm blade 300
- the Y coordinate (683) is the insertion position of the lower diaphragm blade 306.
- the X-ray diaphragm moving unit 132 includes a moving screw that moves the upper, lower, left, and right diaphragm blades 300 to 306, and a position detection unit that detects the positions of the upper, lower, left and right diaphragm blades 300 to 306.
- the X-ray diaphragm moving unit 132 detects the positions of the upper, lower, left, and right diaphragm blades 300 to 306 by the position detection unit, and moves the X-ray diaphragm 106 to the insertion position determined by the block selected by the operation unit 122.
- the diaphragm blades 300 to 306 are moved with moving screws so as to be arranged.
- FIG. 3 shows a plurality of divided blocks 200 stored in the storage unit 130 and the block 202 selected by the operation unit 122.
- the X axis in FIG. 3 corresponds to the short direction of the table 102
- the Y axis corresponds to the long direction of the table 102.
- FIG. 3 (a) is a diagram showing a plurality of divided blocks 200.
- FIG. 3B is a diagram showing a state in which one block 202 is selected from the plurality of divided blocks 200.
- the block 200 divided into a plurality is read from the storage unit 130 and displayed on the display unit 118.
- the operator uses the operation unit 122 to arbitrarily select a block from the plurality of blocks 200 displayed on the display unit 118.
- the block “2” is selected.
- the display unit 118 emphasizes the periphery of the block 202 of the selected block “2” or colors the block 202 itself so that the operator can recognize that the block “2” has been selected. .
- FIG. 4 is a view showing an open / close state of the right diaphragm blade 300, the upper diaphragm blade 302, the left diaphragm blade 304, and the lower diaphragm blade 306 of the X-ray diaphragm 106 in the direction from the X-ray irradiation unit 104 to the table 102.
- FIG. 4 (a) corresponds to FIG. 3 (a), and shows the open / close state of the upper, lower, left and right aperture blades 300 to 306 of the X-ray aperture 106 when no block is selected. Since no block is selected, the upper, lower, left and right aperture blades 300 to 306 of the X-ray aperture 106 are all open. That is, the upper, lower, left, and right diaphragm blades 300 to 306 in FIG. 4 (a) are in a state that does not shield X-rays.
- FIG. 4 (b) corresponds to FIG. 3 (b), and when one block is selected, the right diaphragm blade 300, the upper diaphragm blade 302, the left diaphragm blade 304, the lower diaphragm of the X-ray diaphragm 106.
- FIG. 6 is a view showing an open / close state of a blade 306.
- FIG. 4B shows the state of the upper, lower, left and right aperture blades 300 to 306 of the X-ray aperture 106 when the block “2” is selected. That is, the upper, lower, left and right diaphragm blades 300 to 306 are in a state in which only the block “2” is irradiated with X-rays.
- the control unit 120 transmits the block start coordinates and the block end coordinates corresponding to the selected block “2” to the X-ray diaphragm moving unit 132, and the X-ray diaphragm 106 is moved up, down, left, and right at the position of the block start coordinates and the block end coordinates.
- the diaphragm blades 300 to 306 are controlled to move.
- the X-ray diaphragm moving unit 132 replaces the block start coordinates and the block end coordinates with the size of the X-ray detection unit 112, and calculates the amount of movement of the upper, lower, left, and right diaphragm blades 300 to 306 of the X-ray diaphragm 106.
- the X-ray diaphragm moving unit 132 moves the upper, lower, left and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 based on the calculated movement amount.
- the X-ray diaphragm moving unit 132 moves the right diaphragm blade 300 to the left by 10 cm, moves the left diaphragm blade 304 to the right by 10 cm, The diaphragm blade 306 is moved 20 cm upward.
- the direction and length of the arrows in FIG. 4 (b) indicate the moving direction and moving amount of the diaphragm blades 300 to 306 whose upper, lower, left and right sides are the same.
- FIG. 5 is a diagram showing a display form of the display unit 118.
- the display unit 118 displays an X-ray image 400 photographed with the X-ray diaphragm 106 as shown in FIGS. 3B and 4B.
- the X-ray image 400 may include a portion shielded by the lower diaphragm blade 306.
- the display unit 118 displays the plurality of divided blocks 200 and the selected block 202 on the same screen as the X-ray image 400.
- the display unit 118 may display X-ray images corresponding to the blocks “1” to “9” when no block is selected by the operation unit 122 as shown in FIGS. 3 (a) and 4 (a). it can.
- the image processing unit 114 sets a rectangle connected by the block start coordinates and the block end coordinates of the block 202 selected as the X-ray irradiation region. Then, the image processing unit 114 enlarges the X-ray image 400 corresponding to the set rectangle, so that the display unit 118 can enlarge and display the X-ray image 400 corresponding to the selected block 202. .
- control unit 120 performs X-ray irradiation based on the average value of the X-ray signals detected for a predetermined lighting field of the X-ray image 400 in which the upper, lower, left and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 are not inserted.
- Appropriate X-ray conditions for example, X-ray irradiation amount
- the control unit 120 calculates a designated area in which the upper, lower, left and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 are not inserted.
- the designated area is a rectangular area connected by the block start position and block end position of the selected block 202.
- the designated area may be an arbitrary area located inside the block start position and block end position of the selected block 202.
- the control unit 120 calculates the average value of the X-ray signals in the designated region, and controls the amount of X-rays irradiated from the X-ray irradiation unit 104 based on the calculated average value.
- the operator uses the operation unit 122 to select whether or not to move the X-ray diaphragm 106 in blocks. For example, when the imaging region of the subject 100 is a urinary organ and the subject 100 sits on the end of the table 102, the X-ray detection unit 112 is moved to the end of the table 102 in the longitudinal direction (D direction). In such a case, the operator selects the operation unit 122 to move the X-ray aperture 106 in blocks. That is, the operator uses the operation unit 122 to select whether to use the first embodiment or manually move the X-ray diaphragm 106 directly.
- the control unit 120 transmits the block start coordinates and the block end coordinates corresponding to the selected block 202 to the X-ray diaphragm moving unit 132, and moves the X-ray diaphragm 106 up and down to the positions of the block start coordinates and the block end coordinates.
- the left and right aperture blades 300 to 306 are controlled to move.
- the X-ray diaphragm moving unit 132 moves the upper and lower diaphragm blades 300 to 306 of the X-ray diaphragm 106 based on the positions of the block start coordinates and the block end coordinates.
- the operator uses the operation unit 122 to select whether or not to enlarge the X-ray image 400 photographed with the diaphragm blades 300 to 306 on the top, bottom, left and right of the X-ray diaphragm 106.
- the image processing unit 114 When enlarging the X-ray image 400, the image processing unit 114 enlarges the X-ray image 400 corresponding to the selected block 202 in accordance with the display area of the display unit 122, and the display unit 122 is enlarged An X-ray image 400 is displayed.
- the display unit 122 displays the X-ray image 400 without enlarging it.
- a square X-ray detector 112 having a size of 30 ⁇ 30 cm is used to divide a 1024 ⁇ 1024 region corresponding to each pixel of the X-ray detector 112 into nine square blocks.
- the present invention is not limited to this embodiment.
- the 1024 ⁇ 1024 area corresponding to each pixel of the X-ray detection unit 112 may be divided into four, sixteen square blocks.
- the present embodiment can also be applied to the rectangular X-ray detection unit 112. At this time, the region corresponding to each pixel of the X-ray detection unit 112 is divided into rectangular blocks, and the rectangular blocks are appropriately selected. May be.
- the storage unit 130 can also store a plurality of templates of variously divided blocks (4, 16, ... squares, rectangles, polygons, etc.).
- a plurality of types of templates can be arbitrarily selected by the operation unit 122.
- the X-ray diaphragm 106 can be operated corresponding to the imaging region of the subject 100, the X-ray exposure to the subject 100 can be reduced.
- Example 2 will be described with reference to FIGS.
- the difference from the first embodiment is that a plurality of blocks are selected.
- the operator selects a plurality of blocks corresponding to the X-ray irradiation region desired to be irradiated by the operation unit 122.
- Block start coordinates and block end coordinates corresponding to a plurality of blocks selected by the operation unit 122 are transmitted from the storage unit 130 to the control unit 120.
- the control unit 120 controls the X-ray diaphragm moving unit 132 to move the diaphragm blades of the X-ray diaphragm 106 so that the selected plurality of blocks are irradiated with X-rays. Specifically, the control unit 120 transmits the block start coordinates and the block end coordinates corresponding to the selected block to the X-ray stop moving unit 132, and the X-ray stop 106 is moved to the block start coordinates and the block end coordinates. The X-ray diaphragm moving unit 132 is controlled to move the diaphragm blades.
- FIG. 7 (a) is a diagram showing a state where two blocks “1” and “2” are selected from among the plurality of divided blocks 200.
- FIG. FIG. 8 (a) corresponds to FIG. 7 (a).
- the right diaphragm blade 300, the upper diaphragm blade 302 of the X-ray diaphragm 106, the left FIG. 6 is a diagram showing an open / close state of the aperture blade 304 and the lower aperture blade 306.
- the X-ray diaphragm moving unit 132 is a right diaphragm of the X-ray diaphragm 106 based on the block start coordinates and block end coordinates (X-ray irradiation area) corresponding to the two blocks “1” and “2” selected by the operation unit 122.
- the blade 300, the upper diaphragm blade 302, the left diaphragm blade 304, and the lower diaphragm blade 306 are moved.
- the block start coordinates of the blocks “1” and “2” are (0,0) and the block end coordinates are (683,341).
- the X coordinate (0) of the block start coordinate is the insertion position of the left diaphragm blade 304 of the X-ray diaphragm 106
- the Y coordinate (0) is the insertion position of the upper diaphragm blade 302.
- the X coordinate (683) of the block end coordinates is the insertion position of the right diaphragm blade 300
- the Y coordinate (341) is the insertion position of the lower diaphragm blade 306.
- the control unit 120 transmits the block start coordinates and the block end coordinates corresponding to the selected blocks “1” and “2” to the X-ray aperture moving unit 132, and sets the X-ray aperture 106 at the position of the block start coordinates and the block end coordinates.
- the diaphragm blades 300 to 306 on the top, bottom, left and right are controlled to move.
- FIG. 7B is a diagram showing a state where three blocks “2”, “4”, and “5” are selected from among a plurality of divided blocks 200.
- FIG. 8B corresponds to FIG. 7B, and the right diaphragm blade 300 and the upper diaphragm blade of the X-ray diaphragm 106 when three blocks “2”, “4”, and “5” are selected. It is a figure which shows the open / closed state of 302, the left aperture blade 304, and the lower aperture blade 306.
- the X-ray diaphragm moving unit 132 is based on the block start coordinates and block end coordinates (X-ray irradiation area) corresponding to the three blocks “2”, “4”, and “5” selected by the operation unit 122.
- the right diaphragm blade 300, the upper diaphragm blade 302, the left diaphragm blade 304, and the lower diaphragm blade 306 are moved.
- the control unit 120 calculates the block start coordinates and the block end coordinates based on the rectangular area where the blocks “2”, “4”, and “5” are covered based on Table 1 above. Specifically, out of the block start coordinates and block end coordinates of the three blocks, the minimum coordinate (0,0) in which the block start coordinate is the X coordinate / Y coordinate is extracted, and the block end coordinate is the X coordinate / Y coordinate. To extract and set the maximum coordinates (683,683). Therefore, the X coordinate (0) of the block start coordinates is the insertion position of the left diaphragm blade 304 of the X-ray diaphragm 106, and the Y coordinate (0) is the insertion position of the upper diaphragm blade 302. Similarly, the X coordinate (683) of the block end coordinates is the insertion position of the right diaphragm blade 300, and the Y coordinate (683) is the insertion position of the lower diaphragm blade 306.
- the control unit 120 transmits the block start coordinates and the block end coordinates corresponding to the selected blocks “2”, “4”, and “5” to the X-ray aperture moving unit 132, and sets the X position to the block start coordinates and the block end coordinates. Control is performed so that the upper, lower, left, and right aperture blades 300 to 306 of the line aperture 106 are moved.
- the X-ray diaphragm moving unit 132 converts the block start coordinates and the block end coordinates into the size of the X-ray detection unit 112, and calculates the amount of movement of the upper, lower, left, and right diaphragm blades 300 to 306 of the X-ray diaphragm 106. Then, the X-ray diaphragm moving unit 132 moves the upper, lower, left and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 based on the calculated movement amount.
- the present embodiment it is possible to control the upper, lower, left and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 only by selecting a plurality of arbitrary blocks, so that the operability of the X-ray diaphragm 106 is improved. be able to.
- the X-ray diaphragm 106 can be operated corresponding to the imaging region of the subject 100, the X-ray exposure to the subject 100 can be reduced.
- Example 3 will be described with reference to FIGS.
- the difference from the first and second embodiments is that, based on the position of the X-ray detection unit 112, the control unit 120 reads the divided block 200 from the storage unit 130 and selects an appropriate block 220.
- the control unit 120 when the X-ray detection unit 112 moves to the upper end of the table 102, the control unit 120 reads the divided block 200 from the storage unit 130. Then, since the blocks “1”, “2”, and “3” face the upper end portion of the table 102, the control unit 120 aligns the blocks “1”, “2”, and “3” corresponding to the upper end portion of the table 102. Select.
- FIG. 9B when the X-ray detection unit 112 moves to the lower end of the table 102, the control unit 120 reads the divided block 200 from the storage unit 130. Then, since the blocks “7”, “8”, and “9” face the lower end of the table 102, the control unit 120 has a row of blocks “7”, “8”, and “9” corresponding to the lower end of the table 102. Select.
- the block 200 is read at the upper and lower end portions of the table 102 and the appropriate block 220 is selected. However, the same can be applied to the left and right end portions of the table 102.
- an outer frame indicating the table 102 can be displayed together with the divided block 200 and the selected block 220. Therefore, the operator can grasp at which position the X-ray detection unit 112 is arranged with respect to the table 102.
- the control unit 120 selects a row of blocks 202 corresponding to the end of the table 102 from among the plurality of blocks 200 displayed on the display unit 118.
- the display unit 118 displays the highlighted area around the selected block 202 or highlights the block 202 itself.
- the control unit 120 automatically moves the X-ray detection unit 112 to the end of the table 102.
- the control unit 120 can read the divided block 200 from the storage unit 130 and select an appropriate block 220. That is, according to the present embodiment, based on the shooting mode selected by the operator, the divided block 200 can be read from the storage unit 130 and an appropriate block 220 can be selected.
- the upper, lower, left and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 can be controlled based on the position of the X-ray detector 112 and the imaging mode. Can be improved.
- Example 4 will be described with reference to FIGS.
- the difference from the first to third embodiments is that the storage unit 130 stores blocks divided into rectangles.
- the block finely divided in the longitudinal direction rather than the short side of the table 102 is stored in the storage unit. Read from 130.
- the block 210 finely divided in the short direction rather than the longitudinal direction of the table 102 is Read from the storage unit 130. That is, the block 210 finely divided in the direction orthogonal to the end of the table 102 is read from the storage unit 130.
- the storage unit 130 can control the upper, lower, left, and right diaphragm blades 300 to 306 of the X-ray diaphragm 106 in accordance with the position of the X-ray detection unit 112 based on the blocks divided into rectangles. Therefore, the operability of the X-ray diaphragm 106 can be improved.
- Embodiments 1 to 4 of the present invention have been described, the present invention can be appropriately implemented by combining Embodiments 1 to 4.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Mathematical Physics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
近年では、予めX線撮影した際のX線絞りの位置に対応する識別符号が付与され、操作者が該識別番号を選択することにより、前回X線撮影した際の位置にX線絞りを再現させることが行なわれている。(例えば、特許文献1)。
被検体にX線を照射するX線照射部と、前記X線を遮蔽する複数の絞り羽根を有したX線絞りと、前記複数の絞り羽根を移動させるX線絞り移動部と、前記X線照射部と対向配置され、前記被検体の透過X線を検出するX線検出部と、前記X線検出部により検出されたX線信号に基づくX線画像を表示する表示部とを備えたX線診断装置であって、
X線が照射されるX線照射領域を分割した複数のブロックを記憶する記憶部と、前記複数のブロックの内、少なくとも1つのブロックを選択する選択部とを備え、前記X線絞り移動部は、該選択されたブロックに対応して、前記複数の絞り羽根を移動させる。
本発明に用いるX線診断装置1は、被検体100を乗せるテーブル102と、被検体100にX線を照射するX線照射部104と、複数の絞り羽根を有し、被検体100に対するX線照射領域を設定するX線絞り106と、X線照射部104に電力供給を行なう高電圧発生部110と、X線照射部104に対向する位置に配置され、被検体100を透過したX線を検出するX線検出部112と、X線検出部112から出力されたX線信号に対して画像処理を行なう画像処理部114と、画像処理部114から出力されたX線画像を記憶する画像記憶部116と、X線画像を表示する表示部118と、各構成要素を制御する制御部120と、制御部120に対して各種指令を行なう操作部122とを備えている。
ここで、実施例1を具体的に説明する。まず、記憶部130は、X線照射可能なX線照射領域を複数のブロックに分割し、各ブロックに対応するX線照射領域をそれぞれ予め記憶する。実施例1では、X線検出部112の各画素に対応する1024×1024の領域が9つのブロックに分割されている。ブロック“1”~ブロック“9”は、それぞれ同じ大きさの正方形のブロックである。
例えば、ブロック“5”のブロック開始座標は、ブロック“5”のX線照射領域の左上となる座標(342,342)となる。ブロック“5”のブロック終了座標は、ブロック開始座標の対角線上に位置するX線照射領域の右下となる座標(683,683)となる。
(S100)まず、操作者は、X線絞り106をブロックで移動するか否かを操作部122で選択する。例えば、被検体100の撮影部位が泌尿器であり、被検体100はテーブル102の端部に腰掛ける場合、テーブル102の長手方向(D方向)の端部にX線検出部112が移動されている。このような場合、操作者は、X線絞り106をブロックで移動することを操作部122で選択する。すなわち、操作者は、実施例1を利用するか、手動でX線絞り106を直接移動するどうかを操作部122で選択する。
以上、本実施例によれば、任意のブロックを選択するだけでX線絞り106の上下左右の絞り羽根300~306を制御することができるため、X線絞り106の操作性を向上させることができる。また、被検体100の撮影部位に対応させてX線絞り106を操作できるため、被検体100に対するX線被曝を低減させることができる。
制御部120は、選択されたブロック“1”“2”に対応するブロック開始座標及びブロック終了座標をX線絞り移動部132に伝達し、ブロック開始座標及びブロック終了座標の位置にX線絞り106の上下左右の絞り羽根300~306を移動させるように制御する。
Claims (14)
- 被検体にX線を照射するX線照射部と、前記X線を遮蔽する複数の絞り羽根を有したX線絞りと、前記複数の絞り羽根を移動させるX線絞り移動部と、前記X線照射部と対向配置され、前記被検体の透過X線を検出するX線検出部と、前記X線検出部により検出されたX線信号に基づくX線画像を表示する表示部とを備えたX線診断装置であって、
X線が照射されるX線照射領域を分割した複数のブロックを記憶する記憶部と、前記複数のブロックの内、少なくとも1つのブロックを選択する選択部とを備え、前記X線絞り移動部は、該選択されたブロックに対応して、前記複数の絞り羽根を移動させることを特徴とするX線診断装置。 - 前記記憶部は、分割されたブロックのブロック開始座標及びブロック終了座標を予め記憶していることを特徴とする請求項1記載のX線診断装置。
- 前記ブロック開始座標及び前記ブロック終了座標が前記複数の絞り羽根の挿入位置となることを特徴とする請求項2記載のX線診断装置。
- 該選択されたブロックに対応する前記ブロック開始座標及び前記ブロック終了座標を前記X線絞り移動部に伝達する制御部を備え、前記制御部は前記ブロック開始座標及び前記ブロック終了座標の位置に前記複数の絞り羽根を移動させるように前記X線絞り移動部を制御することを特徴とする請求項2記載のX線診断装置。
- 前記X線絞り移動部は、前記ブロック開始座標及び前記ブロック終了座標を前記X線検出部のサイズに置き換えて、前記複数の絞り羽根の移動量を計算することを特徴とする請求項2記載のX線診断装置。
- 該選択されたブロックの前記ブロック開始座標と前記ブロック終了座標で結ばれる矩形に対応するX線画像を拡大する画像処理部を備えることを特徴とする請求項2記載のX線診断装置。
- 前記表示部は、分割された前記複数ブロックと該選択されたブロックを表示することを特徴とする請求項1記載のX線診断装置。
- 前記表示部は、該選択されたブロックを強調して表示することを特徴とする請求項7記載のX線診断装置。
- 前記記憶部は、様々に分割されたブロックのテンプレートを複数記憶することを特徴とする請求項1記載のX線診断装置。
- 前記選択部によって複数のブロックが選択された時、前記制御部は、前記複数のブロックが覆われる矩形領域に基づいて前記ブロック開始座標及び前記ブロック終了座標を算出することを特徴とする請求項2記載のX線診断装置。
- 前記被検体を乗せるテーブルの端部に前記X線検出部が移動した場合、該分割されたブロックを前記記憶部から読み出し、前記選択部は前記テーブルの端部に対応する一列のブロックを選択することを特徴とする請求項1記載のX線診断装置。
- 撮影モードを選択する操作部を備え、該選択された撮影モードに基づいて、該分割されたブロックを前記記憶部から読み出し、前記選択部は前記ブロックを選択することを特徴とする請求項1記載のX線診断装置。
- 前記被検体を乗せるテーブルの端部に前記X線検出部が移動されている場合、前記テーブルの端部に直交する方向に細かく分割されたブロックが前記記憶部から読み出されることを特徴とする請求項1記載のX線診断装置。
- X線照射可能なX線照射領域を分割した複数のブロックを記憶するステップと、
前記複数のブロックの内、少なくとも1つのブロックを選択するステップと、
該選択されたブロックに基づいて、X線絞りの複数の絞り羽根を移動させることを特徴とするX線絞り制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080017689.9A CN102413764B (zh) | 2009-04-24 | 2010-04-13 | X射线诊断装置及x射线光阑控制方法 |
JP2011510287A JP5666430B2 (ja) | 2009-04-24 | 2010-04-13 | X線診断装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106198 | 2009-04-24 | ||
JP2009-106198 | 2009-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010122917A1 true WO2010122917A1 (ja) | 2010-10-28 |
Family
ID=43011035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056552 WO2010122917A1 (ja) | 2009-04-24 | 2010-04-13 | X線診断装置、及びx線絞り制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5666430B2 (ja) |
CN (1) | CN102413764B (ja) |
WO (1) | WO2010122917A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015167734A (ja) * | 2014-03-07 | 2015-09-28 | 株式会社日立メディコ | X線撮像装置およびx線撮像部の移動と絞りを調整する方法 |
CN104983437A (zh) * | 2015-07-09 | 2015-10-21 | 冯艳 | 一种放射线拍摄系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2993447B1 (fr) * | 2012-07-17 | 2014-07-11 | Gen Electric | Procede et systeme de traitement d'images pour l'affichage 3d d'un organe d'un patient |
JP2014054425A (ja) * | 2012-09-13 | 2014-03-27 | Toshiba Corp | X線診断装置 |
CN104490411A (zh) * | 2014-12-21 | 2015-04-08 | 李景英 | 影像诊断装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07143980A (ja) * | 1993-11-22 | 1995-06-06 | Hitachi Medical Corp | X線透視撮影台 |
JPH07250827A (ja) * | 1994-03-11 | 1995-10-03 | Hitachi Medical Corp | X線画像診断装置 |
JP2001218858A (ja) * | 1999-12-08 | 2001-08-14 | Siemens Medical Syst Inc | 放射線源からの放射線送出を制御するための方法およびシステム |
JP2005031323A (ja) * | 2003-07-11 | 2005-02-03 | Canon Inc | 放射線画像取得装置 |
JP2006334283A (ja) * | 2005-06-06 | 2006-12-14 | Fujifilm Holdings Corp | 照射野変化動作判定方法および装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3500179B2 (ja) * | 1994-01-25 | 2004-02-23 | 光洋精工株式会社 | 油圧パワーステアリング装置 |
US5694449A (en) * | 1996-05-20 | 1997-12-02 | General Electric Company | Method and system for detecting and correcting erroneous exposures generated during x-ray imaging |
JP4250386B2 (ja) * | 2002-08-14 | 2009-04-08 | 株式会社東芝 | 集中照射型放射線治療装置 |
DE102004004630B4 (de) * | 2004-01-29 | 2009-12-31 | Siemens Ag | Röntgeneinrichtung |
DE102005018811B4 (de) * | 2005-04-22 | 2008-02-21 | Siemens Ag | Blendenvorrichtung für eine zur Abtastung eines Objektes vorgesehene Röntgeneinrichtung und Verfahren für eine Blendenvorrichtung |
-
2010
- 2010-04-13 WO PCT/JP2010/056552 patent/WO2010122917A1/ja active Application Filing
- 2010-04-13 CN CN201080017689.9A patent/CN102413764B/zh not_active Expired - Fee Related
- 2010-04-13 JP JP2011510287A patent/JP5666430B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07143980A (ja) * | 1993-11-22 | 1995-06-06 | Hitachi Medical Corp | X線透視撮影台 |
JPH07250827A (ja) * | 1994-03-11 | 1995-10-03 | Hitachi Medical Corp | X線画像診断装置 |
JP2001218858A (ja) * | 1999-12-08 | 2001-08-14 | Siemens Medical Syst Inc | 放射線源からの放射線送出を制御するための方法およびシステム |
JP2005031323A (ja) * | 2003-07-11 | 2005-02-03 | Canon Inc | 放射線画像取得装置 |
JP2006334283A (ja) * | 2005-06-06 | 2006-12-14 | Fujifilm Holdings Corp | 照射野変化動作判定方法および装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015167734A (ja) * | 2014-03-07 | 2015-09-28 | 株式会社日立メディコ | X線撮像装置およびx線撮像部の移動と絞りを調整する方法 |
CN104983437A (zh) * | 2015-07-09 | 2015-10-21 | 冯艳 | 一种放射线拍摄系统 |
Also Published As
Publication number | Publication date |
---|---|
JP5666430B2 (ja) | 2015-02-12 |
CN102413764A (zh) | 2012-04-11 |
JPWO2010122917A1 (ja) | 2012-10-25 |
CN102413764B (zh) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8351568B2 (en) | Long length multiple detector imaging apparatus and method | |
JP5460666B2 (ja) | 放射線撮影システムおよび放射線撮影システムの長尺撮影方法 | |
US7555100B2 (en) | Long length imaging using digital radiography | |
JP5945513B2 (ja) | 放射線画像処理装置および方法、並びに放射線撮影装置 | |
JP2013226243A (ja) | 放射線画像撮影システム | |
KR100739583B1 (ko) | 방사선 화상 촬영 장치, 방사선 화상 촬영 시스템, 및방사선 화상 촬영 방법 | |
JP5675682B2 (ja) | 放射線画像検出装置及びその制御方法、並びに放射線撮影システム | |
JP2008104673A (ja) | 放射線断層画像取得装置および放射線断層画像取得方法 | |
JP5666430B2 (ja) | X線診断装置 | |
JP2008086389A (ja) | 放射線撮影装置および放射線撮影方法 | |
US20140219421A1 (en) | X-ray imaging apparatus and method for outputting x-ray images | |
JP2005270277A (ja) | 放射線画像撮影装置及び放射線画像生成方法 | |
JP2008220481A (ja) | 乳房画像撮影システム | |
JP2006141904A (ja) | X線撮影装置 | |
JP5792569B2 (ja) | 放射線撮影システムおよび放射線撮影システムの長尺撮影方法 | |
JP5595184B2 (ja) | 放射線画像撮影装置および放射線画像撮影方法 | |
JP6377102B2 (ja) | 放射線撮影システム、線量指標の管理方法及びプログラム | |
JP5618535B2 (ja) | 医用画像診断装置 | |
JP2005031323A (ja) | 放射線画像取得装置 | |
JP5538734B2 (ja) | 放射線撮影装置及びその処理方法 | |
JP2022058867A (ja) | 制御装置及び制御方法 | |
JP2009233158A (ja) | 放射線診断装置および放射線撮影方法 | |
JP4754812B2 (ja) | X線撮影装置 | |
JP5496830B2 (ja) | 放射線画像撮影システム、放射線画像撮影方法、及びプログラム | |
CN216221472U (zh) | 医学成像系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080017689.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10766974 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011510287 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10766974 Country of ref document: EP Kind code of ref document: A1 |