WO2010122667A1 - Laser processing method, laser processing system and processing controller - Google Patents

Laser processing method, laser processing system and processing controller Download PDF

Info

Publication number
WO2010122667A1
WO2010122667A1 PCT/JP2009/058197 JP2009058197W WO2010122667A1 WO 2010122667 A1 WO2010122667 A1 WO 2010122667A1 JP 2009058197 W JP2009058197 W JP 2009058197W WO 2010122667 A1 WO2010122667 A1 WO 2010122667A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
processing
holes
marking
machining
Prior art date
Application number
PCT/JP2009/058197
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 印藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/058197 priority Critical patent/WO2010122667A1/en
Priority to JP2011510136A priority patent/JP5236071B2/en
Priority to CN200980157832.1A priority patent/CN102341212B/en
Priority to KR1020117016698A priority patent/KR101270287B1/en
Priority to TW098121335A priority patent/TWI371331B/en
Publication of WO2010122667A1 publication Critical patent/WO2010122667A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam

Definitions

  • the present invention relates to a laser processing method, a laser processing apparatus, and a processing control apparatus for simultaneously laser processing a plurality of workpieces with a plurality of laser beams.
  • a laser processing apparatus for simultaneously laser processing a plurality of workpieces (workpieces) includes a plurality of processing heads and a plurality of processing tables.
  • the processing table is disposed below each processing head (see, for example, Patent Document 1).
  • Such a laser processing apparatus may engrave (form) a product processing hole (product processing hole) and information (processing hole for information recording) such as a product number on a workpiece. This stamp is formed so as to represent a character, a symbol, or the like by arranging a plurality of processed holes other than the product.
  • the 2-head laser processing apparatus irradiates the laser beam so that the same product processing hole is formed in each processing table when forming the product processing hole.
  • a two-head laser processing apparatus irradiates one processing table with laser light and imprints on one processing table. After forming, the other processing table was irradiated with laser light to form a mark on the other processing table.
  • the laser beam to the other processing table is blocked by a shutter or the like so that the other processing table is not irradiated with the laser beam.
  • This invention is made in view of the above, Comprising: Obtaining the laser processing method, laser processing apparatus, and processing control apparatus which can stamp information in a short time when marking different information on the workpiece
  • the present invention provides a laser machining method for simultaneously machining a plurality of workpieces with a plurality of laser beams.
  • the first information recording initially set in the first workpiece among the workpieces, which is set in the information recording area for each workpiece in which the machining holes for information recording are arranged by arranging them at a predetermined position on the first workpiece
  • a hole number difference calculating step for calculating a hole number difference between a processing hole for use and a second information recording processing hole initially set in a second work among the works, and the first information recording
  • An additional machining hole having the same number as the difference in the number of holes is set in the minority side machining hole, which is the machining hole having the smaller number of machining holes out of the machining holes for processing and the second information recording machining hole.
  • Machining hole addition step and minority side machining The first and second information recording processing holes and the second information recording processing holes after the setting of the additional processing holes are simultaneously irradiated with laser light. And a processing hole forming step for forming a processing hole for recording information.
  • laser processing is performed by setting additional processing holes as many as the difference in the number of holes in the processing hole having the smaller number of processing holes among the processing information recording holes.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the laser processing mechanism according to the first embodiment.
  • FIG. 3 is a diagram for explaining an arrangement position of the marking area.
  • FIG. 4 is a diagram showing the configuration of the marking area.
  • FIG. 5 is a flowchart showing a processing procedure of laser processing.
  • FIG. 6 is a diagram illustrating an example of a marking setting area set in the marking area.
  • FIG. 7 is a diagram for explaining additional candidate coordinates.
  • FIG. 8 is a diagram for explaining additional setting marking holes.
  • FIG. 9 is a diagram for explaining the processing order in the minority region.
  • FIG. 10 is a diagram illustrating an example of a marking hole formed in the minority region.
  • FIG. 10 is a diagram illustrating an example of a marking hole formed in the minority region.
  • FIG. 11 is a diagram for explaining additional candidate coordinates when a plurality of additional candidate coordinates are set between the marking setting areas.
  • FIG. 12 is a diagram illustrating a configuration of a laser processing apparatus according to the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration of a laser processing mechanism according to the second embodiment.
  • FIG. 14 is a diagram for explaining a dummy area when a dummy area is provided in a scan area used in a product area.
  • Embodiment 1 FIG. 1
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus according to the first embodiment.
  • the laser processing apparatus 1A has two heads that irradiate a workpiece (workpiece WL, WR described later) with laser light to form a machining hole in the left side (L axis side) workpiece WL and the right side (R axis side) workpiece WR. This is a laser processing apparatus.
  • the laser processing apparatus 1A includes a processing hole for a product (a product processing hole H described later) and a processing hole for information recording (a marking hole hL, hR described later) on the workpieces WL and WR. It is formed by laser processing.
  • the marking hole (first information recording processing hole) hL and the marking hole (second information recording processing hole) hR are, for example, information about the product such as product numbers formed on the workpieces WL and WR (hereinafter referred to as the product numbers). (Referred to as product information). Specifically, the marking holes hL and hR are formed so as to represent characters, symbols, figures, and the like by arranging one to a plurality of processed holes (processed holes that are not products). Product information is information unique to each product, and is different for each product. Therefore, the processing holes constituting the marking holes hL and hR have different arrangements for each product to be stamped.
  • the laser processing apparatus 1A forms one to a plurality of products in each work WL, WR by forming a plurality of product processing holes H in each work WL, WR.
  • one product is formed for each workpiece WL, WR, a marking hole hL is stamped on the product formed on the workpiece WL, and a stamping hole hR is stamped on the product formed on the workpiece WR.
  • the product information (engraved character) is a one-digit product number.
  • the laser processing apparatus 1A uses the processing program 3 to form the marking holes hL and hR on the products of the workpieces WL and WR according to the products to be formed on the workpieces WL and WR.
  • 1 A of laser processing apparatuses form the marking holes hL and hR in the predetermined area
  • the laser processing apparatus 1A includes a processing control apparatus 10A and a laser processing mechanism (laser processing unit) 20A.
  • the machining control device 10A is connected to the laser machining mechanism 20A.
  • the machining control device 10A controls the laser machining mechanism 20A so that the marking hole hL and the marking hole hR are formed simultaneously.
  • the laser processing mechanism 20A performs laser processing on the workpieces WL and WR based on a processing instruction from the processing control apparatus 10A.
  • the processing control apparatus 10A includes an input unit 11, a processing hole number counting unit 12, a hole number difference calculation unit 13, a differential processing position selection unit (processing hole addition unit) 14, a processing order calculation unit 15, a processing instruction unit 16, and marking information.
  • a storage unit 17 and a control unit 19 are provided.
  • the input unit 11 inputs the machining program 3 for machining the workpieces WL and WR and various instruction information from the user.
  • the input unit 11 sends the inputted machining program 3 to the machining hole number counting unit 12 and the like, and sends the inputted instruction information to the control unit 19.
  • the stamp information storage unit 17 is a memory or the like that stores stamp information regarding the stamp holes hL and hR.
  • the marking information includes information on the arrangement of the marking holes hL and hR constituting the marking characters in the marking areas (information recording areas) SL and SR, and the holes of the marking holes hL and hR constituting the marking characters in the marking areas SL and SR. It includes information relating to the interposition (for example, intermediate coordinates between the marking hole hL and the marking hole hL) (hereinafter referred to as inter-hole coordinates) and information relating to the processing order of the marking holes hL and hR constituting the marking character.
  • the marking holes hL and hR constituting the marking character are arranged with a predetermined interval. Accordingly, the coordinates between the holes are determined based on the interval at which the marking holes hL and hR are arranged.
  • the inter-hole coordinates are spare stamp hole candidate coordinates (additional candidate coordinates described later) prepared in advance for forming the marking hole hL and the marking hole hR at the same time (simultaneous processing start and simultaneous processing end). Cx).
  • the coordinates between the holes are additionally set in a region (hereinafter referred to as a minority side region) having a smaller number of the marking holes hL and hR constituting the marking character in the marking regions SL and SR among the marking regions SL and SR. This is a candidate coordinate of a marking hole (an additional setting marking hole bx described later).
  • the marking hole in the minority region is the minority processing hole.
  • the marking holes hL and hR are formed at positions specified by the machining program 3. For example, when the product information formed on the workpiece WL is the product number “1”, the product number “1” and the position of the marking area SL that forms the product number are set in the machining program 3.
  • the marking information storage unit 17 stores in advance the arrangement of the marking holes hL necessary for marking the stamped character “1”, the inter-hole coordinates regarding the marking holes hL, and the like.
  • the machining hole number counting unit 12 extracts product information to be formed on the workpieces WL and WR from the machining program 3 and also arranges the arrangement of the marking holes hL and hR corresponding to the product information (engraved characters) as a marking information storage unit. 17 is extracted.
  • the processing hole number counting unit 12 counts the number of the marking holes hL and hR (the number of processing holes).
  • the processed hole number counting unit 12 sends the counted processed hole numbers of the marking holes hL and hR to the hole number difference calculating unit 13.
  • the hole number difference calculating unit 13 uses the number of processed holes hL and hR counted by the processed hole number counting unit 12 to use the difference in the number of processed holes between the stamped hole hL and the stamped hole hR (difference in the number of stamped holes). Is calculated.
  • the hole number difference calculating unit 13 uses the information indicating which of the marking region SL and the marking region SR is the minority side region and the calculated difference in the number of stamped holes to the difference machining position selecting unit 14 as hole number difference information. send.
  • the difference machining position selection unit 14 extracts from the stamp information storage unit 17 the coordinates between the holes of the stamp character set in the minority region.
  • the differential machining position selection unit 14 selects the same number of additional candidate coordinates Cx as the difference in the number of stamped holes from the additional candidate coordinates Cx set as the inter-hole coordinates. For example, when the number of marking holes is 4 holes, the differential machining position selection unit 14 selects four additional candidate coordinates Cx from the additional candidate coordinates Cx set in the inter-hole information.
  • the additional candidate coordinates Cx selected by the differential machining position selection unit 14 become an additional setting marking hole bx and are added to the minority region.
  • the additional candidate coordinates Cx in the hole-to-hole information selected by the differential machining position selection unit 14 may be any additional candidate coordinates Cx, for example, 4 in order from the set upper side (in order of lower setting numbers). Two additional candidate coordinates Cx are selected.
  • the machining order calculation unit 15 uses the additional setting marking hole bx formed in the additional marking position and the initial setting marking hole ax that is initially set in the minority side region, and the small number with the additional setting marking hole bx added.
  • the processing order of the processing holes in the side region is calculated. For example, the processing order calculation unit 15 calculates the processing order in the minority region so that the processing time in the minority region is the shortest. Further, the machining order calculation unit 15 may calculate the machining order in the minority region so that the moving distance of the machining position from the machining hole to the machining hole is the shortest. Further, the machining order calculation unit 15 may distribute the machining position and the machining order so that the movement distance of the machining position becomes greater than a predetermined distance in order to prevent the temperature of the workpieces WL and WR from increasing at each machining position.
  • the processing instruction unit 16 outputs a processing instruction specifying the positions of the product processing hole H and the marking holes hL and hR to the laser processing mechanism 20A using the processing program 3, the marking information, and the processing order of the minority region.
  • the control unit 19 controls the input unit 11, the processed hole number counting unit 12, the hole number difference calculating unit 13, the differential processing position selecting unit 14, the processing order calculating unit 15, the processing instruction unit 16, and the marking information storage unit 17.
  • the product information set in the machining program is not limited to specific characters and may be actual coordinates of the marking holes hL and hR for forming the product information.
  • FIG. 2 is a diagram illustrating the configuration of the laser processing mechanism according to the first embodiment.
  • the laser processing mechanism 20A is configured to perform laser processing with an R-axis and L-axis actuator (for example, galvano), and includes a spectroscope 28, two sets of laser heads 29L and 29R, and workpieces WL and WR. And processing tables 25L and 25R.
  • R-axis and L-axis actuator for example, galvano
  • the laser heads 29L and 29R have galvano scan mirrors 22a and 22b, galvano scanners 23a and 23b, and an f ⁇ lens 24, respectively.
  • the laser beam 2 output from the laser oscillator is split by the spectroscope 28, and the split laser beam 2 is simultaneously supplied to the laser heads 29L and 29R. Then, the laser beam 2 irradiated from the laser heads 29L and 29R simultaneously drills the workpieces WL and WR.
  • the galvano scan mirror 22a is a first galvano scan mirror that receives the laser beam 2 output from a laser oscillator (not shown).
  • the galvano scan mirror 22a is connected to the drive shaft of the galvano scanner 23a, and the drive shaft of the galvano scanner 23a faces the Z-axis direction.
  • the mirror surface of the galvano scan mirror 22a is displaced with the rotation of the drive shaft of the galvano scanner 23a, and deflects and scans the optical axis of the incident laser beam 2 in a first direction (for example, the X-axis direction). Send to the mirror 22b.
  • the galvano scan mirror 22b is a second galvano scan mirror that receives the laser light 2 from the galvano scan mirror 22a.
  • the galvano scan mirror 22b is connected to the drive shaft of the galvano scanner 23b, and the drive shaft of the galvano scanner 23b faces the Y-axis direction.
  • the mirror surface of the galvano scan mirror 22b is displaced in accordance with the rotation of the drive shaft of the galvano scanner 23b, and the second direction (for example, the Y-axis direction) is substantially perpendicular to the optical axis of the incident laser beam 2 in the first direction.
  • the second direction for example, the Y-axis direction
  • the f ⁇ lens 24 collects and irradiates the laser beam 2 that is two-dimensionally scanned in the XY plane onto the workpieces WL and WR.
  • the workpieces WL and WR such as printed circuit board materials and ceramic green sheets have a planar shape, and the processing table 25 places the workpieces WL and WR in the XY plane.
  • the processing table 25 is moved in the XY plane, and the laser light 2 is two-dimensionally scanned by the galvano scanners 23a and 23b.
  • product processing holes H and marking holes hL and hR are formed in the workpieces WL and WR in the scan area that is within the range in which the laser beam 2 can be two-dimensionally scanned by the galvano scanners 23a and 23b.
  • the two-head laser processing mechanism 20A has been described, but the laser processing mechanism 20A may have four or more heads.
  • FIG. 3 is a diagram for explaining the arrangement position of the marking area
  • FIG. 4 is a diagram illustrating the configuration of the marking area.
  • the laser beam 2 is split by the spectrometer 28, and the split laser beam 2 is irradiated to the workpieces WL and WR, respectively.
  • the coordinates (in-work coordinates) on the workpiece WL of the laser light 2 irradiated to the workpieces WL and WR are the same coordinates as the in-work coordinates on the workpiece WR.
  • the same product processing hole H is formed on the same coordinates on the workpieces WL and WR, and the same product is formed on the workpieces WL and WR.
  • a marking area SL for forming a marking hole hL is provided at a predetermined position on the workpiece WL (for example, near the end of the workpiece WL), and a predetermined position on the workpiece WR (for example, near the end of the workpiece WR).
  • a marking region SR for forming the marking hole hR is provided.
  • the marking area SL and the marking area SR are set as the same in-work area, and different marking characters are simultaneously formed in the marking areas SL and SR.
  • the product processing hole H is formed at the same in-work coordinates by the laser beam 2 irradiated at the same timing, whereas the marking holes hL and hR are different depending on the laser beam 2 irradiated at the same timing. Formed in the workpiece coordinates.
  • the marking area SL is a rectangular area, and a plurality of square areas (marking hole candidates BL) are arranged in a matrix in the vertical direction (row direction) and the horizontal direction (column direction). ing.
  • FIG. 4 columns, rows, column numbers, row numbers, and the like are shown in the marking area SL.
  • this is shown for convenience of explanation, and these characters and characters are shown in the actual marking area SL. No area is arranged, and only the marking hole candidate BL is arranged.
  • the marking hole candidate BL is a processing hole candidate for forming the marking hole hL, and a predetermined marking hole candidate BL is set as an actual marking hole hL from the candidates.
  • the square area set in the actual marking hole hL among the marking hole candidates BL is indicated by the marking setting area AL.
  • a part of the marking hole candidates BL is set in the marking setting area AL, whereby one character such as the numeral “1” is represented in one marking area SL. .
  • One to a plurality of marking areas SL are arranged on the product on the workpiece WL, and one to a plurality of characters are formed by the one to the plurality of marking areas SL.
  • one marking area SL is arranged in the product of the workpiece WL
  • one marking area SR is arranged in the product of the workpiece WR.
  • the marking hole candidate BL and the marking setting area AL are not limited to a square area, but may be any area such as a rectangular area or a circular area.
  • the marking areas SL and SR are not limited to rectangular areas, but may be any area such as a circular area.
  • FIG. 5 is a flowchart showing a processing procedure of laser processing.
  • the machining program 3 is input from the input unit 11 to the machining control apparatus 10A (step S10).
  • the input unit 11 sends the input machining program 3 to the machining hole count unit 12 and the machining instruction unit 16.
  • the machining hole number counting unit 12 extracts product information formed on the workpieces WL and WR from the machining program 3 and arranges the marking holes hL and hR corresponding to the marking characters of the product information (the marking areas SL and SR).
  • the processing hole is extracted from the stamp information storage unit 17.
  • the processing hole number counting unit 12 counts the number of processing holes in the marking holes hL and hR constituting each marking character (step S20).
  • the processed hole number counting unit 12 sends the processed number of processed holes hL and hR in the marked regions SL and SR to the hole number difference calculating unit 13.
  • the hole number difference calculation unit 13 uses the number of machining holes in the marking areas SL and SR counted by the machining hole number counting unit 12 to calculate the difference in the number of machining holes in the marking areas SL and SR as the number of marking holes. (Step S30).
  • the hole number difference calculation unit 13 uses a difference machining position selection unit as information on which of the marking region SL and the marking region SR is the minority side region and the calculated marking hole number difference as hole number difference information. 14
  • FIG. 6 is a diagram illustrating an example of a marking setting area set in the marking area.
  • FIG. 6 shows a case where a stamped character “1” is formed in the stamped region SL and a stamped character “2” is formed in the stamped region SR.
  • FIG. 6 shows a case where nine marking setting areas AL are set in the marking area SL, and thirteen marking setting areas AR are set in the marking area SR. Therefore, in this case, the minority area is the marking area SL, and the number of marking holes is 4 holes.
  • the differential machining position selecting unit 14 extracts from the stamped information storage unit 17 the coordinates between the holes of the stamped characters set in the minority side area.
  • the differential machining position selection unit 14 selects four additional candidate coordinates Cx, which are the same as the difference in the number of stamped holes, from the additional candidate coordinates Cx set as the inter-hole coordinates.
  • the differential machining position selection unit 14 sets an additional setting marking hole bx in the selected additional candidate coordinate Cx, and adds the additional setting marking hole bx to the minority side region.
  • FIG. 7 is a diagram for explaining additional candidate coordinates
  • FIG. 8 is a diagram for explaining additional setting stamp holes.
  • additional candidate coordinates C1 to C7 are set between the marking setting area AL and the marking setting area AL as additional candidate coordinates Cx which are coordinates between holes.
  • additional candidate coordinates C1 to C7 by setting any of the additional candidate coordinates C1 to C7 to the additional setting marking hole bx, the number of marking holes hL in the marking area SL, the number of marking holes hR in the marking area SR, and To the same number.
  • additional setting marking holes b1 to b4 are set as additional setting marking holes bx in the additional candidate coordinates C1 to C4.
  • one initial setting marking hole ax is set in each marking setting area AL.
  • the initial setting marking holes a1 to a9 are set as the initial setting marking holes ax in the marking setting area AL in the marking area SL.
  • 13 marking holes hL (the same number of marking holes hL as the marking holes hR) including the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4 are set in the marking area SL. It will be.
  • the differential machining position selection unit 14 sets the additional setting marking hole bx as many as the marking hole number difference in the marking character with the smaller number of marking holes (step S40).
  • the processing order calculation unit 15 calculates the processing order of all the marking holes hL in the minority side region based on the positions of all the marking holes hL including the initial setting marking holes ax and the additional setting marking holes bx (step) S50). For example, the processing order calculation unit 15 calculates the processing order in the minority region so that the moving distance of the processing position from the marking hole to the marking hole is the shortest. For example, when calculating the processing order in the marking area SL shown in FIG. 8, based on the positions of the 13 marking holes hL including the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4. Then, the processing order of the marking holes hL in the marking area SL is calculated.
  • FIG. 9 is a diagram for explaining the processing order in the minority region.
  • FIG. 9 shows the processing order when the processing order is set in the marking area SL shown in FIG.
  • the processing order calculation unit 15 includes an initial marking hole a1 to a9 and an additional setting marking hole b1 to b4. To extract.
  • FIG. 9 shows a case where the initial setting marking hole a1 is extracted from the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4 as the end marking holes constituting the marking character “1”. ing.
  • the processing order calculation unit 15 sequentially extracts the marking holes adjacent to the marking holes extracted from the initial setting marking holes a2 to a9 and the additional setting marking holes b1 to b4, and the extracted order is defined as the processing order. To do.
  • the processing order calculation unit 15 extracts marking holes in the order shown in (1) to (13), for example. (1) Extract an initial marking hole a1 located at the end of the marking character. (2) An additional setting marking hole b1 adjacent to the initial setting marking hole a1 is extracted. (3) An initial setting marking hole a2 adjacent to the additional setting marking hole b1 is extracted. (4) Extract the initial marking hole a3 adjacent to the initial marking hole a2. (5) An additional setting marking hole b2 adjacent to the initial setting marking hole a3 is extracted.
  • An initial setting marking hole a4 adjacent to the additional setting marking hole b2 is extracted.
  • An additional setting marking hole b3 adjacent to the initial setting marking hole a4 is extracted.
  • An initial setting marking hole a5 adjacent to the additional setting marking hole b3 is extracted.
  • An additional setting marking hole b4 adjacent to the initial setting marking hole a5 is extracted.
  • An initial setting marking hole a6 adjacent to the additional setting marking hole b4 is extracted.
  • the processing order calculation unit 15 sets the order of the marking holes extracted in (1) to (13) as the processing order of the marking holes in the marking area SL.
  • the processing instruction unit 16 outputs a processing instruction specifying the positions of the product processing hole H and the marking holes hL and hR to the laser processing mechanism 20A using the processing program 3, the marking information, and the processing order of the minority region.
  • the machining instruction unit 16 sends a machining instruction for the product machining hole H to the workpieces WL and WR based on the machining program 3.
  • the processing instruction unit 16 sends a processing instruction for the marking hole hL to the marking region SL based on the marking information and the processing order calculated by the processing order calculation unit 15.
  • the processing instruction unit 16 sends a processing instruction for the marking hole hR to the marking region SR based on the marking information.
  • FIG. 10 is a diagram illustrating an example of a marking hole formed in the minority region.
  • FIG. 10 shows a case where the marking holes hL are formed at the positions of the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4 described in FIG.
  • the stamp character is formed by setting the additional stamp hole bx in the coordinates between the holes between the initial stamp hole ax and the initial stamp hole ax constituting the stamp character. It is possible to form a stamped character without greatly affecting the appearance.
  • one additional candidate coordinate Cx is set as an inter-hole coordinate between the marking setting area AL and the marking setting area AL.
  • a plurality of additional candidate coordinates Cx may be set as inter-hole coordinates between the setting area AL.
  • FIG. 11 is a diagram for explaining additional candidate coordinates when a plurality of additional candidate coordinates are set between the marking setting areas.
  • FIG. 11 shows a case where two additional candidate coordinates Cx are set between the marking setting areas AL in the marking area SL.
  • additional candidate coordinates C11 and C12 are set between the marking setting area ALs where the additional candidate coordinates C1 are set in the marking area SL shown in FIG. 7, and the additional candidate coordinates C2 are set.
  • Additional candidate coordinates C13 and C14 are set between the setting areas AL.
  • FIG. 11 shows a case where two additional candidate coordinates Cx are set between the marking setting areas AL in the marking area SL. However, 3 is set between one marking setting area AL in the marking areas SL and SR. Two or more additional candidate coordinates Cx may be set. Further, the additional candidate coordinates Cx set between one marking setting area AL need not be the same number between the marking setting areas AL, and are set between the marking setting areas AL according to the dimension between the marking setting areas AL. The number of additional candidate coordinates Cx may be determined.
  • a plurality of types of additional candidate coordinates Cx may be set between the marking setting areas AL in the marking areas SL and SR. For example, both the additional candidate coordinates Cx shown in FIG. 11 and the additional candidate coordinates Cx shown in FIG. 7 may be set.
  • the differential machining position selection unit 14 determines which type of additional candidate coordinates Cx based on the size of the number of marking holes, machining conditions, and the like. Determine whether to use.
  • the processing conditions are, for example, the number of laser pulses in one marking hole hL, hR, the laser energy per pulse, the total laser energy irradiated to one marking hole hL, hR, the material of the workpiece WL, WR, the marking hole
  • These are the hole intervals of hL and hR, the sizes of the marking holes hL and hR, and the like.
  • the difference machining position selection unit 14 determines that the additional candidate coordinates Cx set between one marking setting area AL are predetermined. It is determined that the marking information smaller than the number (hereinafter referred to as a small number of marking information) is used. Further, for example, when the laser energy per pulse is larger than a predetermined value, the differential machining position selection unit 14 determines to use marking information set in a small number. In addition, for example, when the total laser energy irradiated to one marking hole hL, hR is larger than a predetermined value, the differential machining position selection unit 14 determines to use a small number of marking information.
  • the differential machining position selection unit 14 determines to use a small number of marking information. Further, for example, when the hole interval between the marking holes hL and hR is narrower than a predetermined value, the differential machining position selection unit 14 determines to use a small number of marking information. Further, for example, when the size (diameter or depth) of the marking holes hL and hR is larger than a predetermined value, the differential machining position selection unit 14 determines that the marking information set in a small number is used. Further, for example, when the difference in the number of marking holes is larger than a predetermined number, the differential machining position selection unit 14 determines to use marking information set in a small number.
  • the overlap between the additional setting marking holes bx and the overlapping between the additional setting marking holes bx and the initial setting marking holes ax are reduced, so that high-quality workpieces WL and WR can be performed. It becomes possible. In addition, it is possible to easily calculate a processing order for processing high-quality workpieces WL and WR.
  • the marking information having more than a predetermined number of additional candidate coordinates Cx set between one marking setting area AL is used, a large number of additional setting marking holes bx can be formed.
  • one marking region SL is arranged in the product of the workpiece WL and one marking region SR is arranged in the product of the workpiece WR.
  • a plurality of workpieces WL and WR are included in the workpiece WL and WR.
  • the marking areas SL and SR may be arranged.
  • the above-described additional setting marking hole bx is provided for the first marking area SL and the first marking area SR (the first marking area SL, SR), and the first set within the same time. Are processed in the marking areas SL and SR.
  • the above-described additional setting marking holes bx are provided for the second and subsequent sets of marking areas SL and SR, and the second and subsequent sets of marking areas SL and SR are formed within the same time. Processing in SR.
  • the additional setting marking hole bx formed in the marking area SL may partially or entirely overlap with other additional setting marking holes bx. Further, the additional setting marking hole bx formed in the marking area SL may partially or entirely overlap with the initial setting marking hole ax. When the additional setting marking hole bx is overlapped with the entire initial setting marking hole ax, the additional setting marking hole bx is set on the initial setting marking hole ax.
  • Whether or not the additional setting marking hole bx and the initial setting marking hole ax are overlapped may be determined based on an instruction externally input by the user, or based on the processing conditions of the workpieces WL and WR.
  • the selection unit 14 may make the determination.
  • overlapping the additional setting marking hole bx and the initial setting marking hole ax a large number of additional setting marking holes bx can be set in the marking areas SL and SR.
  • the engraved characters formed by the engraved holes hL and hR are not limited to characters, symbols, figures, etc., but may be any information such as a two-dimensional barcode or a mark.
  • the product information is not limited to the product number, and may be any information such as a lot number and manufacturing date / time.
  • the differential machining position selection unit 14 may automatically set the additional candidate coordinates Cx. In this case, the differential machining position selection unit 14 sets additional candidate coordinates Cx based on the number of marking holes or machining conditions.
  • the step of counting the number of the marking holes hL and hR for the left and right marking characters, and the marking holes hL and hR A step of calculating the number of stamped holes in the smaller number of characters to set an additional setting stamped hole bx, a step of calculating a processing order for processing the stamped character in the shortest, an additional setting stamped hole bx and an initial Machining the set marking hole ax.
  • the additional setting marking hole bx is set in the minority region, and the number of the marking holes hL and hR of the marking characters formed in the marking areas SL and SR is made equal. Even when different stamp characters are formed in the stamp regions SL and SR, the stamp characters can be formed in the stamp regions SL and SR without using an optical shutter or the like. Therefore, different stamp characters can be formed in the stamp regions SL and SR with a simple configuration.
  • the stamp characters are formed in the stamp regions SL and SR without using an optical shutter or the like, the stamp characters can be formed in a short time.
  • the additional setting marking hole bx is provided in the minority side region, it is possible to form the marking character in a shorter time than when the additional setting marking hole bx is provided outside the minority side region.
  • the laser beam 2 having the difference in the number of marking holes is irradiated to the other area (another position different from the minority area) without irradiating the minority area.
  • FIG. 12 is a diagram showing the configuration of the laser processing apparatus according to the second embodiment.
  • constituent elements in FIG. 12 constituent elements that achieve the same functions as those of the laser processing apparatus 1 ⁇ / b> A according to the first embodiment shown in FIG.
  • the laser processing apparatus 1B has a processing control apparatus 10B and a laser processing mechanism 20B.
  • the machining control device 10B is connected to the laser machining mechanism 20B.
  • the machining control device 10B controls the laser machining mechanism 20B so that the marking hole hL and the marking hole hR are formed simultaneously.
  • the machining control device 10B irradiates a later-described damper 31 with laser light 2 having a difference in the number of marking holes, or blocks it with a shutter 32 described later.
  • the laser processing mechanism 20B performs laser processing on the workpieces WL and WR based on a processing instruction from the processing control device 10B.
  • the processing control apparatus 10B includes an input unit 11, a processing hole number counting unit 12, a hole number difference calculating unit 13, a processing instruction unit 16, a marking information storage unit 17, an irradiation control instruction unit 18, and a control unit 19.
  • the irradiation control instruction unit 18 sends a control instruction to the laser processing mechanism 20B based on the number difference of the marking holes calculated by the hole number difference calculation unit 13.
  • the irradiation control instruction unit 18 sends a control instruction for irradiating the laser beam 2 for forming the same number of marking holes as the difference in the number of marking holes toward the damper 31 or a control instruction for shutting it off by the shutter 32 to the laser processing mechanism 20B.
  • the laser beam 2 for forming the same number of marking holes as the difference in the number of marking holes is the same number of pulse lasers as the laser beam 2 irradiated to form the additional setting marking hole bx described in the first embodiment.
  • the laser processing mechanism 20B is configured not to irradiate the minority region with the laser beam 2 with the difference in the number of marking holes. Control.
  • FIG. 13 is a diagram illustrating a configuration of a laser processing mechanism according to the second embodiment.
  • constituent elements that achieve the same functions as those of the laser processing mechanism 20 ⁇ / b> A of the first embodiment shown in FIG. 2 are given the same numbers, and redundant descriptions are omitted.
  • the laser processing mechanism 20B includes a spectrometer 28, two sets of laser heads 30L and 30R, and processing tables 25L and 25R on which the workpieces WL and WR are placed.
  • the laser heads 30L and 30R have a damper 31 and a shutter 32, respectively, as compared with the laser heads 29L and 29R of the first embodiment.
  • the damper 31 has a function of absorbing the laser beam 2, and the laser beam 2 with a difference in the number of imprinted holes in the minority side region is irradiated on the damper 31, whereby the laser beam with a difference in the number of imprinted holes in the minority side region. 2 is not irradiated to a small number of regions.
  • the damper 31 is disposed in the vicinity of the f ⁇ lens 24, and the laser light 2 having the difference in the number of marking holes in the minority side region is guided to the damper 31 from the galvano scan mirror 22b.
  • the shutter 32 has a function of blocking the laser beam 2, and the laser beam 2 having a difference in the number of marking holes in the minority side region is blocked by the shutter 32, whereby the laser beam having a difference in the number of marking holes in the minority side region. 2 is not irradiated to a small number of regions.
  • the shutter 32 is disposed so as to be freely opened and closed before the galvano scan mirror 22a. By closing the shutter 32, the laser light 2 to the galvano scan mirror 22a can be blocked.
  • the damper 31 and the shutter 32 may be arranged at a position different from the position shown in FIG.
  • the irradiation control instruction unit 18 determines which one of the damper 31 and the shutter 32 to use based on the number of marking holes calculated by the hole number difference calculation unit 13. For example, the irradiation control instruction unit 18 uses the damper 31 when the number of marking holes is less than a predetermined number, and uses the shutter 32 when the number of marking holes is a predetermined number or more.
  • the irradiation control instruction unit 18 controls the laser processing mechanism 20 ⁇ / b> B so as to irradiate the damper 31 with the laser beam 2 having a difference in the number of marking holes in the minority side region.
  • the irradiation control instruction unit 18 controls the laser processing mechanism 20 ⁇ / b> B so that the laser light 2 with the difference in the number of marking holes in the minority side region is blocked by the shutter 32.
  • the irradiation control instruction unit 18 may determine which of the damper 31 and the shutter 32 to use based on the processing conditions. For example, when the number of laser pulses to one marking hole hL, hR is smaller than a predetermined number, the irradiation control instruction unit 18 determines to use the damper 31. Moreover, the irradiation control instruction
  • indication part 18 judges that the damper 31 is used, for example, when the laser beam irradiation tolerance of the workpiece
  • the laser heads 30L and 30R each have both the damper 31 and the shutter 32.
  • the laser heads 30L and 30R have either the damper 31 or the shutter 32, respectively.
  • the structure which has may be sufficient.
  • the laser heads 30 ⁇ / b> L and 30 ⁇ / b> R have the damper 31
  • the laser beam 2 with the difference in the number of marking holes is irradiated to the damper 31.
  • the laser heads 30 ⁇ / b> L and 30 ⁇ / b> R have the shutter 32
  • the laser light 2 with the difference in the number of marking holes is blocked by the shutter 32.
  • the irradiation control instruction unit 18 does not need to determine which of the damper 31 and the shutter 32 is used.
  • a dummy region (region on the workpiece WL, WR different from the minority side region) for irradiating the laser beam 2 with the difference in the number of marking holes in the minority side region may be provided.
  • This dummy area may be provided in the product area on the workpieces WL and WR, or may be provided outside the product area on the workpieces WL and WR.
  • the marking holes hL and hR can be formed in a short time. It becomes.
  • the dummy area is provided outside the product area on the workpieces WL and WR, the dummy area can be arranged at various positions on the workpiece, so that the dummy area can be easily arranged.
  • a dummy area may be provided in the same scan area as the product area (in the scan areas of the galvano scanners 23a and 23b). In this case, it is possible to form the marking holes hL and hR in a short time even if the dummy area is arranged outside the product area on the workpieces WL and WR.
  • FIG. 14 is a diagram for explaining a dummy area when a dummy area is provided in the scan area used in the product area.
  • FIG. 14 shows a dummy region d used when laser processing the product region PL on the workpiece WL.
  • each scan area G is irradiated with laser light.
  • the scan area G when laser processing the marking area SL is the area outside the product area PL and the product area ( In some cases, the product is placed across the product area.
  • the dummy area d can be provided in the scan areas of the galvano scanners 23a and 23b by arranging the dummy area d in the vicinity of the marking area SL of the outside product area.
  • the machining control device 10B may have both functions of the machining control devices 10A and 10B.
  • the machining control device 10B includes an input unit 11, a machining hole count unit 12, a hole number difference calculation unit 13, a differential machining position selection unit 14, a machining order calculation unit 15, a machining instruction unit 16, and a marking information storage unit 17.
  • the irradiation control instruction unit 18 and the control unit 19 are included.
  • the differential machining position selection unit 14 determines whether to use the additional setting marking hole bx or the damper 31 or the shutter 32 based on the size of the marking hole number difference, the processing conditions, and the like.
  • the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the laser energy per pulse is smaller than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the total laser energy irradiated to one marking hole hL, hR is smaller than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx.
  • the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the hole interval between the marking holes hL and hR is narrower than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the size of the marking holes hL and hR is smaller than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the difference in the number of marking holes is smaller than a predetermined number, the differential machining position selection unit 14 determines to use the additional setting marking hole bx.
  • the processing order calculation unit 15 may calculate the processing order of the marking holes hL and hR within the minority region based on the size of the number of marking holes, processing conditions, and the like.
  • the machining order calculation unit 15 calculates the machining order so that the burden on the workpieces WL and WR (working defects of the workpieces WL and WR) is reduced based on the size difference between the number of engraved holes and the machining conditions.
  • the laser beam 2 having the difference in the number of marking holes is not irradiated to the minority side region using the damper 31, the shutter 32, the dummy region d, etc., the marking regions SL, SR Even when different stamped characters are formed, the stamped characters can be easily formed in a short time.
  • the laser processing method, laser processing apparatus, and processing control apparatus are suitable for simultaneous processing of a plurality of workpieces performed by a plurality of laser beams.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed is a laser processing method for performing laser processing on a plurality of works simultaneously with a plurality of laser beams, wherein the difference in the number of punched holes, which is the difference between the number of processing holes for recording first information initially set in a first work and those for recording second information initially set in a second work, is calculated, and as many additional processing holes as the difference in the number of punched holes are set to processing holes smaller in number. After additional processing holes are set to the processing holes smaller in number, the processing holes for recording first information and the processing holes for recording second information are irradiated simultaneously with laser beams, thus forming processed holes for recording first and second information.

Description

レーザ加工方法、レーザ加工装置および加工制御装置LASER PROCESSING METHOD, LASER PROCESSING DEVICE, AND PROCESSING CONTROL DEVICE
 本発明は、複数本のレーザ光で複数のワークを同時にレーザ加工するレーザ加工方法、レーザ加工装置および加工制御装置に関する。 The present invention relates to a laser processing method, a laser processing apparatus, and a processing control apparatus for simultaneously laser processing a plurality of workpieces with a plurality of laser beams.
 複数のワーク(被加工物)を同時にレーザ加工するレーザ加工装置は、複数の加工ヘッドと複数の加工テーブルを備えている。例えば、レーザ加工装置が2ヘッド(加工ヘッドが2つ)のレーザ加工装置である場合、加工テーブルがそれぞれ各加工ヘッドの下側に配置される(例えば、特許文献1参照)。このようなレーザ加工装置は、製品用の加工穴(製品加工穴)と、製品番号などの情報(情報記録用の加工穴)と、をワーク上に刻印(形成)する場合がある。この刻印は、製品以外の複数の加工穴を並べることによって文字や記号などを表すよう形成されている。 A laser processing apparatus for simultaneously laser processing a plurality of workpieces (workpieces) includes a plurality of processing heads and a plurality of processing tables. For example, when the laser processing apparatus is a laser processing apparatus having two heads (two processing heads), the processing table is disposed below each processing head (see, for example, Patent Document 1). Such a laser processing apparatus may engrave (form) a product processing hole (product processing hole) and information (processing hole for information recording) such as a product number on a workpiece. This stamp is formed so as to represent a character, a symbol, or the like by arranging a plurality of processed holes other than the product.
 2ヘッドのレーザ加工装置は、製品加工穴を形成する際には各加工テーブルに同じ製品加工穴が形成されるようレーザ光を照射する。また、2ヘッドのレーザ加工装置は、製品番号などの各製品に特有の加工穴(刻印)を形成する際には、一方の加工テーブルにレーザ光を照射して一方の加工テーブル上での刻印を形成した後、他方の加工テーブルにレーザ光を照射して他方の加工テーブル上での刻印を形成していた。換言すると、各加工テーブルで別々の文字などを刻印する場合、右側のワークを刻印した後、左側のワークを刻印していた。そして、一方の加工テーブルで刻印を形成する際には他方の加工テーブルにレーザ光が照射されないよう、シャッタなどで他方の加工テーブルへのレーザ光を遮断していた。 The 2-head laser processing apparatus irradiates the laser beam so that the same product processing hole is formed in each processing table when forming the product processing hole. In addition, when forming a processing hole (engraved) unique to each product, such as a product number, a two-head laser processing apparatus irradiates one processing table with laser light and imprints on one processing table. After forming, the other processing table was irradiated with laser light to form a mark on the other processing table. In other words, when a separate character or the like is engraved on each processing table, the left workpiece is engraved after the right workpiece is engraved. When forming the marking on one processing table, the laser beam to the other processing table is blocked by a shutter or the like so that the other processing table is not irradiated with the laser beam.
特開2008-055458号公報JP 2008-055458 A
 しかしながら、上記従来の2ヘッドのレーザ加工装置にシャッタを配置し、各加工テーブルでの刻印を順番に行う場合、刻印時間のタクト時間が長くなるという問題があった。例えば、各ワークに枚数管理用の情報を刻印する場合、右側の加工テーブル、左側の加工テーブルの順番でワークに刻印される。このため、左右の加工テーブルに異なる文字を刻印する場合、左右の加工テーブルに同一文字を刻印する場合と比べて、2倍の刻印時間を要していた。 However, in the case where a shutter is arranged in the conventional two-head laser processing apparatus and marking is performed sequentially on each processing table, there is a problem that the tact time of the marking time becomes long. For example, when the number management information is imprinted on each workpiece, the workpiece is imprinted in the order of the right machining table and the left machining table. For this reason, when a different character is imprinted on the left and right machining tables, the engraving time is twice as long as when the same character is imprinted on the left and right machining tables.
 本発明は、上記に鑑みてなされたものであって、各テーブル上のワークに異なる情報を刻印する際に短い時間で情報を刻印できるレーザ加工方法、レーザ加工装置および加工制御装置を得ることを目的とする。 This invention is made in view of the above, Comprising: Obtaining the laser processing method, laser processing apparatus, and processing control apparatus which can stamp information in a short time when marking different information on the workpiece | work on each table. Objective.
 上述した課題を解決し、目的を達成するために、本発明は複数本のレーザ光によって複数のワークを同時にレーザ加工するレーザ加工方法において、製品用の加工穴とは異なる加工穴を前記各ワーク上の所定の位置に並べることによって情報記録用の加工穴が配置される前記ワーク毎の情報記録領域内に設定される、前記ワークのうち第1のワークに初期設定された第1の情報記録用の加工穴と、前記ワークのうち第2のワークに初期設定された第2の情報記録用の加工穴と、の穴数差を算出する穴数差算出ステップと、前記第1の情報記録用の加工穴および前記第2の情報記録用の加工穴のうち加工穴の穴数が少ない方の加工穴である少数側加工穴に、前記穴数差と同数の追加の加工穴を設定する加工穴追加ステップと、前記少数側加工穴に前記追加の加工穴を設定した後の、前記第1の情報記録用の加工穴と、前記第2の情報記録用の加工穴と、にレーザ光を同時照射して前記第1および第2の情報記録用の加工穴を形成する加工穴形成ステップと、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a laser machining method for simultaneously machining a plurality of workpieces with a plurality of laser beams. The first information recording initially set in the first workpiece among the workpieces, which is set in the information recording area for each workpiece in which the machining holes for information recording are arranged by arranging them at a predetermined position on the first workpiece A hole number difference calculating step for calculating a hole number difference between a processing hole for use and a second information recording processing hole initially set in a second work among the works, and the first information recording An additional machining hole having the same number as the difference in the number of holes is set in the minority side machining hole, which is the machining hole having the smaller number of machining holes out of the machining holes for processing and the second information recording machining hole. Machining hole addition step and minority side machining The first and second information recording processing holes and the second information recording processing holes after the setting of the additional processing holes are simultaneously irradiated with laser light. And a processing hole forming step for forming a processing hole for recording information.
 本発明に係るレーザ加工方法は、情報記録用の加工穴のうち加工穴の穴数が少ない方の加工穴に、穴数差と同数の追加の加工穴を設定してレーザ加工するので、各ワーク上に異なる情報を刻印する際に短い時間で情報を刻印できるという効果を奏する。 In the laser processing method according to the present invention, laser processing is performed by setting additional processing holes as many as the difference in the number of holes in the processing hole having the smaller number of processing holes among the processing information recording holes. There is an effect that information can be imprinted in a short time when different information is imprinted on the workpiece.
図1は、実施の形態1に係るレーザ加工装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to the first embodiment. 図2は、実施の形態1に係るレーザ加工機構の構成を示す図である。FIG. 2 is a diagram illustrating the configuration of the laser processing mechanism according to the first embodiment. 図3は、刻印領域の配置位置を説明するための図である。FIG. 3 is a diagram for explaining an arrangement position of the marking area. 図4は、刻印領域の構成を示す図である。FIG. 4 is a diagram showing the configuration of the marking area. 図5は、レーザ加工の加工処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a processing procedure of laser processing. 図6は、刻印領域内に設定される刻印設定領域の一例を示す図である。FIG. 6 is a diagram illustrating an example of a marking setting area set in the marking area. 図7は、追加候補座標を説明するための図である。FIG. 7 is a diagram for explaining additional candidate coordinates. 図8は、追加設定刻印穴を説明するための図である。FIG. 8 is a diagram for explaining additional setting marking holes. 図9は、少数側領域内での加工順序を説明するための図である。FIG. 9 is a diagram for explaining the processing order in the minority region. 図10は、少数側領域に形成される刻印穴の一例を示す図である。FIG. 10 is a diagram illustrating an example of a marking hole formed in the minority region. 図11は、刻印設定領域間に複数の追加候補座標を設定した場合の追加候補座標を説明するための図である。FIG. 11 is a diagram for explaining additional candidate coordinates when a plurality of additional candidate coordinates are set between the marking setting areas. 図12は、実施の形態2に係るレーザ加工装置の構成を示す図である。FIG. 12 is a diagram illustrating a configuration of a laser processing apparatus according to the second embodiment. 図13は、実施の形態2に係るレーザ加工機構の構成を示す図である。FIG. 13 is a diagram illustrating a configuration of a laser processing mechanism according to the second embodiment. 図14は、製品領域で用いるスキャンエリア内にダミー領域を設けた場合のダミー領域を説明するための図である。FIG. 14 is a diagram for explaining a dummy area when a dummy area is provided in a scan area used in a product area.
 以下に、本発明の実施の形態に係るレーザ加工方法、レーザ加工装置および加工制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
Hereinafter, a laser processing method, a laser processing apparatus, and a processing control apparatus according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
Embodiment 1 FIG.
 図1は、実施の形態1に係るレーザ加工装置の構成を示す図である。レーザ加工装置1Aは、ワーク(後述のワークWL,WR)にレーザ光を照射して左側(L軸側)のワークWLと右側(R軸側)のワークWRに加工穴を形成する2ヘッドのレーザ加工装置である。 FIG. 1 is a diagram showing a configuration of a laser processing apparatus according to the first embodiment. The laser processing apparatus 1A has two heads that irradiate a workpiece (workpiece WL, WR described later) with laser light to form a machining hole in the left side (L axis side) workpiece WL and the right side (R axis side) workpiece WR. This is a laser processing apparatus.
 本実施の形態のレーザ加工装置1Aは、ワークWL,WR上に製品用の加工穴(後述の製品加工穴H)と、情報記録用の加工穴(後述の刻印穴hL,hR)と、をレーザ加工によって形成する。 The laser processing apparatus 1A according to the present embodiment includes a processing hole for a product (a product processing hole H described later) and a processing hole for information recording (a marking hole hL, hR described later) on the workpieces WL and WR. It is formed by laser processing.
 刻印穴(第1の情報記録用の加工穴)hLと刻印穴(第2の情報記録用の加工穴)hRは、例えば各ワークWL,WR上に形成する製品番号などの製品に関する情報(以下、製品情報という)を示すよう形成(刻印)される。具体的には、刻印穴hL,hRは、1~複数の加工穴(製品とならない加工穴)を並べることによって文字、記号、図形などを表すよう形成される。製品情報は、各製品に独自の情報であり、製品毎に異なる。したがって、刻印穴hL,hRを構成する加工穴は、刻印する製品毎に異なる配置を有している。 The marking hole (first information recording processing hole) hL and the marking hole (second information recording processing hole) hR are, for example, information about the product such as product numbers formed on the workpieces WL and WR (hereinafter referred to as the product numbers). (Referred to as product information). Specifically, the marking holes hL and hR are formed so as to represent characters, symbols, figures, and the like by arranging one to a plurality of processed holes (processed holes that are not products). Product information is information unique to each product, and is different for each product. Therefore, the processing holes constituting the marking holes hL and hR have different arrangements for each product to be stamped.
 レーザ加工装置1Aは、各ワークWL,WRに複数の製品加工穴Hを形成することによって、各ワークWL,WRに1~複数の製品を形成する。以下では、各ワークWL,WRに、1つずつの製品を形成するとともに、ワークWLに形成される製品に刻印穴hLを刻印し、ワークWRに形成される製品に刻印穴hRを刻印する場合について説明する。また、以下では製品情報(刻印文字)が1桁の製品番号である場合について説明する。 The laser processing apparatus 1A forms one to a plurality of products in each work WL, WR by forming a plurality of product processing holes H in each work WL, WR. In the following, one product is formed for each workpiece WL, WR, a marking hole hL is stamped on the product formed on the workpiece WL, and a stamping hole hR is stamped on the product formed on the workpiece WR. Will be described. In the following description, the product information (engraved character) is a one-digit product number.
 レーザ加工装置1Aは、加工プログラム3を用いて、各ワークWL,WR上に形成する製品に応じた刻印穴hL,hRをワークWL,WRの製品上に形成する。レーザ加工装置1Aは、刻印穴hL,hRを、製品上の所定領域(後述の刻印領域SL,SR)内に形成する。レーザ加工装置1Aは、加工制御装置10Aとレーザ加工機構(レーザ加工部)20Aと、を有している。 The laser processing apparatus 1A uses the processing program 3 to form the marking holes hL and hR on the products of the workpieces WL and WR according to the products to be formed on the workpieces WL and WR. 1 A of laser processing apparatuses form the marking holes hL and hR in the predetermined area | region (The marking area | region SL and SR mentioned later) on a product. The laser processing apparatus 1A includes a processing control apparatus 10A and a laser processing mechanism (laser processing unit) 20A.
 加工制御装置10Aは、レーザ加工機構20Aに接続されている。本実施の形態の加工制御装置10Aは、刻印穴hLと刻印穴hRとを同時形成するよう、レーザ加工機構20Aを制御する。レーザ加工機構20Aは、加工制御装置10Aからの加工指示に基づいて、各ワークWL,WRのレーザ加工を行う。 The machining control device 10A is connected to the laser machining mechanism 20A. The machining control device 10A according to the present embodiment controls the laser machining mechanism 20A so that the marking hole hL and the marking hole hR are formed simultaneously. The laser processing mechanism 20A performs laser processing on the workpieces WL and WR based on a processing instruction from the processing control apparatus 10A.
 つぎに、加工制御装置10Aの構成について説明する。加工制御装置10Aは、入力部11、加工穴数カウント部12、穴数差算出部13、差分加工位置選択部(加工穴追加部)14、加工順序算出部15、加工指示部16、刻印情報記憶部17、制御部19を有している。 Next, the configuration of the processing control apparatus 10A will be described. The processing control apparatus 10A includes an input unit 11, a processing hole number counting unit 12, a hole number difference calculation unit 13, a differential processing position selection unit (processing hole addition unit) 14, a processing order calculation unit 15, a processing instruction unit 16, and marking information. A storage unit 17 and a control unit 19 are provided.
 入力部11は、ワークWL,WRを加工する加工プログラム3や使用者からの種々の指示情報を入力する。入力部11は、入力した加工プログラム3を加工穴数カウント部12などに送り、入力した指示情報を制御部19に送る。 The input unit 11 inputs the machining program 3 for machining the workpieces WL and WR and various instruction information from the user. The input unit 11 sends the inputted machining program 3 to the machining hole number counting unit 12 and the like, and sends the inputted instruction information to the control unit 19.
 刻印情報記憶部17は、刻印穴hL,hRに関する刻印情報を記憶するメモリなどである。刻印情報は、刻印領域(情報記録領域)SL,SR内で刻印文字を構成する刻印穴hL,hRの配置に関する情報、刻印領域SL,SR内で刻印文字を構成する刻印穴hL,hRの穴間位置(例えば刻印穴hLと刻印穴hLの中間座標)に関する情報(以下、穴間座標という)、刻印文字を構成する刻印穴hL,hRの加工順序に関する情報を含んで構成されている。刻印文字を構成する刻印穴hL,hRは、所定の間隔をもって配置されている。したがって、穴間座標は、刻印穴hL,hRが配置される間隔に基づいて決定される。 The stamp information storage unit 17 is a memory or the like that stores stamp information regarding the stamp holes hL and hR. The marking information includes information on the arrangement of the marking holes hL and hR constituting the marking characters in the marking areas (information recording areas) SL and SR, and the holes of the marking holes hL and hR constituting the marking characters in the marking areas SL and SR. It includes information relating to the interposition (for example, intermediate coordinates between the marking hole hL and the marking hole hL) (hereinafter referred to as inter-hole coordinates) and information relating to the processing order of the marking holes hL and hR constituting the marking character. The marking holes hL and hR constituting the marking character are arranged with a predetermined interval. Accordingly, the coordinates between the holes are determined based on the interval at which the marking holes hL and hR are arranged.
 穴間座標は、刻印穴hLと刻印穴hRとを同時間の間に形成(同時に加工開始し同時に加工終了)するために、予め準備しておく予備の刻印穴候補座標(後述の追加候補座標Cx)である。穴間座標は、刻印領域SL,SRのうち、刻印領域SL,SR内で刻印文字を構成する刻印穴hL,hRの数が少ない方の領域(以下、少数側領域という)に追加設定されることとなる刻印穴(後述の追加設定刻印穴bx)の候補座標である。刻印穴hL,hRのうち少数側領域の刻印穴が少数側加工穴となる。 The inter-hole coordinates are spare stamp hole candidate coordinates (additional candidate coordinates described later) prepared in advance for forming the marking hole hL and the marking hole hR at the same time (simultaneous processing start and simultaneous processing end). Cx). The coordinates between the holes are additionally set in a region (hereinafter referred to as a minority side region) having a smaller number of the marking holes hL and hR constituting the marking character in the marking regions SL and SR among the marking regions SL and SR. This is a candidate coordinate of a marking hole (an additional setting marking hole bx described later). Of the marking holes hL and hR, the marking hole in the minority region is the minority processing hole.
 刻印穴hL,hRは、加工プログラム3で指定される位置に形成される。例えば、ワークWLに形成する製品情報が製品番号の「1」である場合、製品番号の「1」と製品番号を形成する刻印領域SLの位置が加工プログラム3内に設定される。刻印情報記憶部17では、予め「1」の刻印文字を刻印する際に必要な刻印穴hLの配置と、これらの刻印穴hLに関する穴間座標などを記憶しておく。 The marking holes hL and hR are formed at positions specified by the machining program 3. For example, when the product information formed on the workpiece WL is the product number “1”, the product number “1” and the position of the marking area SL that forms the product number are set in the machining program 3. The marking information storage unit 17 stores in advance the arrangement of the marking holes hL necessary for marking the stamped character “1”, the inter-hole coordinates regarding the marking holes hL, and the like.
 加工穴数カウント部12は、加工プログラム3内からワークWL,WR上に形成する製品情報を抽出するとともに、この製品情報(刻印文字)に対応する刻印穴hL,hRの配置を刻印情報記憶部17から抽出する。加工穴数カウント部12は、各刻印穴hL,hRの数(加工穴数)をカウントする。加工穴数カウント部12は、カウントした刻印穴hL,hRの加工穴数を穴数差算出部13に送る。 The machining hole number counting unit 12 extracts product information to be formed on the workpieces WL and WR from the machining program 3 and also arranges the arrangement of the marking holes hL and hR corresponding to the product information (engraved characters) as a marking information storage unit. 17 is extracted. The processing hole number counting unit 12 counts the number of the marking holes hL and hR (the number of processing holes). The processed hole number counting unit 12 sends the counted processed hole numbers of the marking holes hL and hR to the hole number difference calculating unit 13.
 穴数差算出部13は、加工穴数カウント部12がカウントした刻印穴hL,hRの加工穴数を用いて、刻印穴hLと刻印穴hRとの加工穴数の差(刻印穴数差)を算出する。穴数差算出部13は、刻印領域SLと刻印領域SRのうち少数側領域が何れであるかの情報と、算出した刻印穴数差と、を穴数差情報として差分加工位置選択部14に送る。 The hole number difference calculating unit 13 uses the number of processed holes hL and hR counted by the processed hole number counting unit 12 to use the difference in the number of processed holes between the stamped hole hL and the stamped hole hR (difference in the number of stamped holes). Is calculated. The hole number difference calculating unit 13 uses the information indicating which of the marking region SL and the marking region SR is the minority side region and the calculated difference in the number of stamped holes to the difference machining position selecting unit 14 as hole number difference information. send.
 差分加工位置選択部14は、少数側領域に設定されている刻印文字の穴間座標を刻印情報記憶部17から抽出する。差分加工位置選択部14は、穴間座標に設定されている追加候補座標Cxの中から刻印穴数差と同数の追加候補座標Cxを選択する。例えば、刻印穴数差が4穴である場合、差分加工位置選択部14は、穴間情報に設定されている追加候補座標Cxの中から4つの追加候補座標Cxを選択する。差分加工位置選択部14が選択した追加候補座標Cxは、追加設定刻印穴bxとなり、少数側領域に加えられる。差分加工位置選択部14が選択する穴間情報内の追加候補座標Cxは、何れの追加候補座標Cxであってもよく、例えば設定されている上位側(設定番号の低い順)から順番に4つの追加候補座標Cxが選択される。 The difference machining position selection unit 14 extracts from the stamp information storage unit 17 the coordinates between the holes of the stamp character set in the minority region. The differential machining position selection unit 14 selects the same number of additional candidate coordinates Cx as the difference in the number of stamped holes from the additional candidate coordinates Cx set as the inter-hole coordinates. For example, when the number of marking holes is 4 holes, the differential machining position selection unit 14 selects four additional candidate coordinates Cx from the additional candidate coordinates Cx set in the inter-hole information. The additional candidate coordinates Cx selected by the differential machining position selection unit 14 become an additional setting marking hole bx and are added to the minority region. The additional candidate coordinates Cx in the hole-to-hole information selected by the differential machining position selection unit 14 may be any additional candidate coordinates Cx, for example, 4 in order from the set upper side (in order of lower setting numbers). Two additional candidate coordinates Cx are selected.
 加工順序算出部15は、追加刻印位置に形成する追加設定刻印穴bxと、少数側領域に初期設定されていた初期設定刻印穴axと、を用いて、追加設定刻印穴bxが追加された少数側領域内での加工穴の加工順序を算出する。加工順序算出部15は、例えば少数側領域内での加工時間が最短となるよう少数側領域内での加工順序を算出する。また、加工順序算出部15は、加工穴から加工穴への加工位置の移動距離が最短となるよう少数側領域内での加工順序を算出してもよい。さらに、加工順序算出部15は、各加工位置でワークWL,WRの温度上昇を防止するために、加工位置の移動距離が所定距離以上大きくなるよう加工位置と加工順序を分散してもよい。 The machining order calculation unit 15 uses the additional setting marking hole bx formed in the additional marking position and the initial setting marking hole ax that is initially set in the minority side region, and the small number with the additional setting marking hole bx added. The processing order of the processing holes in the side region is calculated. For example, the processing order calculation unit 15 calculates the processing order in the minority region so that the processing time in the minority region is the shortest. Further, the machining order calculation unit 15 may calculate the machining order in the minority region so that the moving distance of the machining position from the machining hole to the machining hole is the shortest. Further, the machining order calculation unit 15 may distribute the machining position and the machining order so that the movement distance of the machining position becomes greater than a predetermined distance in order to prevent the temperature of the workpieces WL and WR from increasing at each machining position.
 加工指示部16は、加工プログラム3、刻印情報、少数側領域の加工順序を用いて、製品加工穴Hと刻印穴hL,hRの位置を指定した加工指示をレーザ加工機構20Aに出力する。 The processing instruction unit 16 outputs a processing instruction specifying the positions of the product processing hole H and the marking holes hL and hR to the laser processing mechanism 20A using the processing program 3, the marking information, and the processing order of the minority region.
 制御部19は、入力部11、加工穴数カウント部12、穴数差算出部13、差分加工位置選択部14、加工順序算出部15、加工指示部16、刻印情報記憶部17を制御する。なお、加工プログラム内に設定される製品情報は、具体的な文字などに限らず、製品情報を形成するための刻印穴hL,hRの実際の座標であってもよい。 The control unit 19 controls the input unit 11, the processed hole number counting unit 12, the hole number difference calculating unit 13, the differential processing position selecting unit 14, the processing order calculating unit 15, the processing instruction unit 16, and the marking information storage unit 17. The product information set in the machining program is not limited to specific characters and may be actual coordinates of the marking holes hL and hR for forming the product information.
 つぎに、レーザ加工機構20Aの構成について説明する。図2は、実施の形態1に係るレーザ加工機構の構成を示す図である。図2では、レーザ光2を多軸化したレーザ加工機構の構成例を示している。レーザ加工機構20Aは、R軸、L軸のアクチェータ(たとえば、ガルバノ)でレーザ加工を行うよう構成されており、分光器28と、2組のレーザヘッド29L,29Rと、ワークWL,WRを載置する加工テーブル25L,25Rとを備えている。 Next, the configuration of the laser processing mechanism 20A will be described. FIG. 2 is a diagram illustrating the configuration of the laser processing mechanism according to the first embodiment. In FIG. 2, the structural example of the laser processing mechanism which multi-axialized the laser beam 2 is shown. The laser processing mechanism 20A is configured to perform laser processing with an R-axis and L-axis actuator (for example, galvano), and includes a spectroscope 28, two sets of laser heads 29L and 29R, and workpieces WL and WR. And processing tables 25L and 25R.
 レーザヘッド29L,29Rは、それぞれ、ガルバノスキャンミラー22a,22bと、ガルバノスキャナ23a,23bと、fθレンズ24と、を有している。レーザ発振器が出力するレーザ光2は、分光器28によって分光され、分光されたレーザ光2がレーザヘッド29L,29Rに同時に供給される。そして、レーザヘッド29L,29Rから照射されるレーザ光2が、それぞれのワークWL,WRに穴あけ加工を同時に施す。 The laser heads 29L and 29R have galvano scan mirrors 22a and 22b, galvano scanners 23a and 23b, and an fθ lens 24, respectively. The laser beam 2 output from the laser oscillator is split by the spectroscope 28, and the split laser beam 2 is simultaneously supplied to the laser heads 29L and 29R. Then, the laser beam 2 irradiated from the laser heads 29L and 29R simultaneously drills the workpieces WL and WR.
 ガルバノスキャンミラー22aは、図示省略したレーザ発振器が出力するレーザ光2を受ける第1のガルバノスキャンミラーである。ガルバノスキャンミラー22aは、ガルバノスキャナ23aの駆動軸に接続されており、ガルバノスキャナ23aの駆動軸は、Z軸方向を向いている。ガルバノスキャンミラー22aのミラー面は、ガルバノスキャナ23aの駆動軸の回転に伴って変位し、入射するレーザ光2の光軸を第1の方向(例えばX軸方向)に偏向走査して、ガルバノスキャンミラー22bに送出する。 The galvano scan mirror 22a is a first galvano scan mirror that receives the laser beam 2 output from a laser oscillator (not shown). The galvano scan mirror 22a is connected to the drive shaft of the galvano scanner 23a, and the drive shaft of the galvano scanner 23a faces the Z-axis direction. The mirror surface of the galvano scan mirror 22a is displaced with the rotation of the drive shaft of the galvano scanner 23a, and deflects and scans the optical axis of the incident laser beam 2 in a first direction (for example, the X-axis direction). Send to the mirror 22b.
 ガルバノスキャンミラー22bは、ガルバノスキャンミラー22aからのレーザ光2を受ける第2のガルバノスキャンミラーである。ガルバノスキャンミラー22bは、ガルバノスキャナ23bの駆動軸に接続されており、ガルバノスキャナ23bの駆動軸は、Y軸方向を向いている。ガルバノスキャンミラー22bのミラー面は、ガルバノスキャナ23bの駆動軸の回転に伴って変位し、入射するレーザ光2の光軸を第1の方向にほぼ直交する第2の方向(例えばY軸方向)に偏向走査してfθレンズ24に送出する。 The galvano scan mirror 22b is a second galvano scan mirror that receives the laser light 2 from the galvano scan mirror 22a. The galvano scan mirror 22b is connected to the drive shaft of the galvano scanner 23b, and the drive shaft of the galvano scanner 23b faces the Y-axis direction. The mirror surface of the galvano scan mirror 22b is displaced in accordance with the rotation of the drive shaft of the galvano scanner 23b, and the second direction (for example, the Y-axis direction) is substantially perpendicular to the optical axis of the incident laser beam 2 in the first direction. Are deflected and scanned and sent to the fθ lens 24.
 fθレンズ24は、XY面内で2次元走査されたレーザ光2をワークWL,WR上に集光照射する。プリント基板材料やセラミックグリーンシートなどのワークWL,WRは平面形状を有しており、加工テーブル25は、ワークWL,WRをXY平面内に載置する。 The fθ lens 24 collects and irradiates the laser beam 2 that is two-dimensionally scanned in the XY plane onto the workpieces WL and WR. The workpieces WL and WR such as printed circuit board materials and ceramic green sheets have a planar shape, and the processing table 25 places the workpieces WL and WR in the XY plane.
 レーザ加工機構20Aでは、加工テーブル25をXY平面内で移動させるとともに、ガルバノスキャナ23a,23bによってレーザ光2を2次元走査する。これにより、ガルバノスキャナ23a,23bによってレーザ光2を2次元走査できる範囲内であるスキャンエリア内のワークWL,WRに製品加工穴Hや刻印穴hL,hRが形成される。なお、図2では、2ヘッドのレーザ加工機構20Aについて説明したが、レーザ加工機構20Aは、4ヘッド以上であってもよい。 In the laser processing mechanism 20A, the processing table 25 is moved in the XY plane, and the laser light 2 is two-dimensionally scanned by the galvano scanners 23a and 23b. As a result, product processing holes H and marking holes hL and hR are formed in the workpieces WL and WR in the scan area that is within the range in which the laser beam 2 can be two-dimensionally scanned by the galvano scanners 23a and 23b. In FIG. 2, the two-head laser processing mechanism 20A has been described, but the laser processing mechanism 20A may have four or more heads.
 つぎに、刻印穴hL,hRの形成される刻印領域SL,SRについて説明する。図3は、刻印領域の配置位置を説明するための図であり、図4は、刻印領域の構成を示す図である。 Next, the marking areas SL and SR in which the marking holes hL and hR are formed will be described. FIG. 3 is a diagram for explaining the arrangement position of the marking area, and FIG. 4 is a diagram illustrating the configuration of the marking area.
 図3に示すように、レーザ光2は、分光器28によって分光され、分光されたレーザ光2がそれぞれワークWL,WRに照射される。ワークWL,WRに照射されるレーザ光2のワークWL上での座標(ワーク内座標)と、ワークWR上でのワーク内座標と、は同じ座標である。これにより、ワークWL,WR上には、同一座標に同一の製品加工穴Hが形成され、ワークWL,WR上に同一の製品が形成される。 As shown in FIG. 3, the laser beam 2 is split by the spectrometer 28, and the split laser beam 2 is irradiated to the workpieces WL and WR, respectively. The coordinates (in-work coordinates) on the workpiece WL of the laser light 2 irradiated to the workpieces WL and WR are the same coordinates as the in-work coordinates on the workpiece WR. Thereby, the same product processing hole H is formed on the same coordinates on the workpieces WL and WR, and the same product is formed on the workpieces WL and WR.
 ワークWL上の所定位置(例えばワークWLの端部近傍)には、刻印穴hLを形成するための刻印領域SLが設けられ、ワークWR上の所定位置(例えばワークWRの端部近傍)には、刻印穴hRを形成するための刻印領域SRが設けられている。本実施の形態では、この刻印領域SLと刻印領域SR上とを同一のワーク内領域とし、刻印領域SL,SRに、異なる刻印文字を同時形成する。換言すると、製品加工穴Hは、同一タイミングで照射されたレーザ光2によって同一のワーク内座標に形成されるのに対し、刻印穴hL,hRは、同一タイミングで照射されたレーザ光2によって異なるワーク内座標に形成される。 A marking area SL for forming a marking hole hL is provided at a predetermined position on the workpiece WL (for example, near the end of the workpiece WL), and a predetermined position on the workpiece WR (for example, near the end of the workpiece WR). A marking region SR for forming the marking hole hR is provided. In the present embodiment, the marking area SL and the marking area SR are set as the same in-work area, and different marking characters are simultaneously formed in the marking areas SL and SR. In other words, the product processing hole H is formed at the same in-work coordinates by the laser beam 2 irradiated at the same timing, whereas the marking holes hL and hR are different depending on the laser beam 2 irradiated at the same timing. Formed in the workpiece coordinates.
 刻印領域SLと刻印領域SRとは同様の領域であるので、ここでは刻印領域SLの構成について説明する。図4に示すように刻印領域SLは、矩形状の領域であり、縦方向(行方向)と横方向(列方向)とに、複数の正方形領域(刻印穴候補BL)がマトリックス状に並べられている。なお、図4では刻印領域SL内に列、行、列番号、行番号などを記載しているが、これは説明の便宜上記載したものであり、実際の刻印領域SL内にはこれらの文字や領域は配置されず刻印穴候補BLのみが配置される。 Since the marking area SL and the marking area SR are similar areas, the configuration of the marking area SL will be described here. As shown in FIG. 4, the marking area SL is a rectangular area, and a plurality of square areas (marking hole candidates BL) are arranged in a matrix in the vertical direction (row direction) and the horizontal direction (column direction). ing. In FIG. 4, columns, rows, column numbers, row numbers, and the like are shown in the marking area SL. However, this is shown for convenience of explanation, and these characters and characters are shown in the actual marking area SL. No area is arranged, and only the marking hole candidate BL is arranged.
 図4では、刻印領域SL内に(横5列)×(縦13行)=65個の刻印穴候補BLが並べられている場合を示している。刻印穴候補BLは、刻印穴hLを形成する加工穴の候補であり、この候補の中から所定の刻印穴候補BLが実際の刻印穴hLに設定される。図4では、刻印穴候補BLのうち実際の刻印穴hLに設定される正方形領域を刻印設定領域ALで示している。刻印穴候補BLのうち、一部の刻印穴候補BLが刻印設定領域ALに設定されることにより、1つの刻印領域SLで数字の「1」などの1つの文字などが表されることとなる。ワークWL上の製品には、1~複数の刻印領域SLが配置され、1~複数の刻印領域SLによって1~複数の文字などが形成される。本実施の形態では、ワークWLの製品に1つの刻印領域SLが配置され、ワークWRの製品に1つの刻印領域SRが配置される場合について説明する。 FIG. 4 shows a case where 65 marking hole candidates BL are arranged in the marking area SL (5 horizontal rows) × (13 vertical rows) = 65. The marking hole candidate BL is a processing hole candidate for forming the marking hole hL, and a predetermined marking hole candidate BL is set as an actual marking hole hL from the candidates. In FIG. 4, the square area set in the actual marking hole hL among the marking hole candidates BL is indicated by the marking setting area AL. Among the marking hole candidates BL, a part of the marking hole candidates BL is set in the marking setting area AL, whereby one character such as the numeral “1” is represented in one marking area SL. . One to a plurality of marking areas SL are arranged on the product on the workpiece WL, and one to a plurality of characters are formed by the one to the plurality of marking areas SL. In the present embodiment, a case will be described in which one marking area SL is arranged in the product of the workpiece WL, and one marking area SR is arranged in the product of the workpiece WR.
 なお、刻印穴候補BLや刻印設定領域ALは、正方形領域に限らず、長方形領域や円形領域など、どのような形状の領域であってもよい。また、刻印領域SL,SRは、矩形領域に限らず、円形領域などの、どのような形状の領域であってもよい。 Note that the marking hole candidate BL and the marking setting area AL are not limited to a square area, but may be any area such as a rectangular area or a circular area. In addition, the marking areas SL and SR are not limited to rectangular areas, but may be any area such as a circular area.
 つぎに、レーザ加工の加工処理手順について説明する。図5は、レーザ加工の加工処理手順を示すフローチャートである。加工制御装置10Aへは、入力部11から加工プログラム3が入力される(ステップS10)。入力部11は、入力した加工プログラム3を加工穴数カウント部12と加工指示部16に送る。 Next, the processing procedure of laser processing will be described. FIG. 5 is a flowchart showing a processing procedure of laser processing. The machining program 3 is input from the input unit 11 to the machining control apparatus 10A (step S10). The input unit 11 sends the input machining program 3 to the machining hole count unit 12 and the machining instruction unit 16.
 加工穴数カウント部12は、加工プログラム3内からワークWL,WR上に形成する製品情報を抽出するとともに、この製品情報の刻印文字に対応する刻印穴hL,hRの配置(刻印領域SL,SR内の加工穴)を刻印情報記憶部17から抽出する。加工穴数カウント部12は、各刻印文字を構成する刻印穴hL,hRの加工穴数をカウントする(ステップS20)。加工穴数カウント部12は、カウントした刻印領域SL,SR内の刻印穴hL,hRの加工穴数を穴数差算出部13に送る。 The machining hole number counting unit 12 extracts product information formed on the workpieces WL and WR from the machining program 3 and arranges the marking holes hL and hR corresponding to the marking characters of the product information (the marking areas SL and SR). The processing hole is extracted from the stamp information storage unit 17. The processing hole number counting unit 12 counts the number of processing holes in the marking holes hL and hR constituting each marking character (step S20). The processed hole number counting unit 12 sends the processed number of processed holes hL and hR in the marked regions SL and SR to the hole number difference calculating unit 13.
 穴数差算出部13は、加工穴数カウント部12がカウントした刻印領域SL,SR内の加工穴数を用いて、刻印領域SL,SR内の加工穴数の差を刻印穴数差として算出する(ステップS30)。穴数差算出部13は、刻印領域SLと刻印領域SRのうち少数側領域が何れの領域であるかの情報と、算出した刻印穴数差と、を穴数差情報として差分加工位置選択部14に送る。 The hole number difference calculation unit 13 uses the number of machining holes in the marking areas SL and SR counted by the machining hole number counting unit 12 to calculate the difference in the number of machining holes in the marking areas SL and SR as the number of marking holes. (Step S30). The hole number difference calculation unit 13 uses a difference machining position selection unit as information on which of the marking region SL and the marking region SR is the minority side region and the calculated marking hole number difference as hole number difference information. 14
 ここで、刻印領域SL,SR内に設定される刻印文字、少数側領域、刻印穴数差の具体例について説明する。図6は、刻印領域内に設定される刻印設定領域の一例を示す図である。図6では、刻印領域SLに「1」の刻印文字を形成し,刻印領域SRに「2」の刻印文字を形成する場合を示している。 Here, a specific example of the marking character, the minority region, and the number of marking holes set in the marking areas SL and SR will be described. FIG. 6 is a diagram illustrating an example of a marking setting area set in the marking area. FIG. 6 shows a case where a stamped character “1” is formed in the stamped region SL and a stamped character “2” is formed in the stamped region SR.
 刻印領域SLには、各刻印設定領域ALに1つずつの刻印穴hLが形成されることにより、刻印領域SLに「1」の刻印文字が形成される。また、刻印領域SRには、各刻印設定領域ARに1つずつの刻印穴hRが形成されることにより、刻印領域SRに「2」の刻印文字が形成される。図6では、刻印領域SL内に9個の刻印設定領域ALが設定され、刻印領域SR内に13個の刻印設定領域ARが設定されている場合を示している。したがって、この場合、少数領域は刻印領域SLであり、刻印穴数差は4穴である。 In the marking area SL, one marking hole hL is formed in each marking setting area AL, so that a marking character of “1” is formed in the marking area SL. In the marking area SR, one marking hole hR is formed in each marking setting area AR, so that a marking character “2” is formed in the marking area SR. FIG. 6 shows a case where nine marking setting areas AL are set in the marking area SL, and thirteen marking setting areas AR are set in the marking area SR. Therefore, in this case, the minority area is the marking area SL, and the number of marking holes is 4 holes.
 刻印穴数差を算出した後、差分加工位置選択部14は、少数側領域に設定されている刻印文字の穴間座標を刻印情報記憶部17から抽出する。差分加工位置選択部14は、穴間座標として設定されている追加候補座標Cxの中から刻印穴数差と同数の4つの追加候補座標Cxを選択する。差分加工位置選択部14は、選択した追加候補座標Cxに追加設定刻印穴bxを設定し、この追加設定刻印穴bxを少数側領域に加える。 After calculating the difference in the number of stamped holes, the differential machining position selecting unit 14 extracts from the stamped information storage unit 17 the coordinates between the holes of the stamped characters set in the minority side area. The differential machining position selection unit 14 selects four additional candidate coordinates Cx, which are the same as the difference in the number of stamped holes, from the additional candidate coordinates Cx set as the inter-hole coordinates. The differential machining position selection unit 14 sets an additional setting marking hole bx in the selected additional candidate coordinate Cx, and adds the additional setting marking hole bx to the minority side region.
 図7は、追加候補座標を説明するための図であり、図8は、追加設定刻印穴を説明するための図である。図7に示すように、刻印領域SL内では、刻印設定領域ALと刻印設定領域ALとの間には、穴間座標である追加候補座標Cxとして追加候補座標C1~C7が設定される。本実施の形態では、追加候補座標C1~C7の何れかを追加設定刻印穴bxに設定することによって、刻印領域SL内の刻印穴hLの数と、刻印領域SR内の刻印穴hRの数とを同数にする。 FIG. 7 is a diagram for explaining additional candidate coordinates, and FIG. 8 is a diagram for explaining additional setting stamp holes. As shown in FIG. 7, in the marking area SL, additional candidate coordinates C1 to C7 are set between the marking setting area AL and the marking setting area AL as additional candidate coordinates Cx which are coordinates between holes. In the present embodiment, by setting any of the additional candidate coordinates C1 to C7 to the additional setting marking hole bx, the number of marking holes hL in the marking area SL, the number of marking holes hR in the marking area SR, and To the same number.
 例えば、差分加工位置選択部14が追加候補座標C1~C4を選択した場合、図8に示すように、追加候補座標C1~C4に追加設定刻印穴bxとして追加設定刻印穴b1~b4が設定される。また、各刻印設定領域ALには、1つずつの初期設定刻印穴axが設定される。具体的には、刻印領域SL内の刻印設定領域ALに初期設定刻印穴axとして初期設定刻印穴a1~a9が設定される。これにより、刻印領域SL内には、初期設定刻印穴a1~a9と追加設定刻印穴b1~b4と、からなる13穴の刻印穴hL(刻印穴hRと同数の刻印穴hL)が設定されることとなる。このように、差分加工位置選択部14は、刻印穴数の小さいほうの刻印文字に刻印穴数差と同数の追加設定刻印穴bxを設定する(ステップS40)。 For example, when the differential machining position selection unit 14 selects additional candidate coordinates C1 to C4, as shown in FIG. 8, additional setting marking holes b1 to b4 are set as additional setting marking holes bx in the additional candidate coordinates C1 to C4. The Also, one initial setting marking hole ax is set in each marking setting area AL. Specifically, the initial setting marking holes a1 to a9 are set as the initial setting marking holes ax in the marking setting area AL in the marking area SL. Thereby, 13 marking holes hL (the same number of marking holes hL as the marking holes hR) including the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4 are set in the marking area SL. It will be. In this way, the differential machining position selection unit 14 sets the additional setting marking hole bx as many as the marking hole number difference in the marking character with the smaller number of marking holes (step S40).
 加工順序算出部15は、初期設定刻印穴axと追加設定刻印穴bxと、からなる全刻印穴hLの位置に基づいて、少数側領域内での全刻印穴hLの加工順序を算出する(ステップS50)。加工順序算出部15は、例えば刻印穴から刻印穴への加工位置の移動距離が最短となるよう少数側領域内での加工順序を算出する。例えば、図8に示した刻印領域SL内での加工順序を算出する場合、初期設定刻印穴a1~a9と追加設定刻印穴b1~b4と、からなる13穴の刻印穴hLの位置に基づいて、刻印領域SL内での刻印穴hLの加工順序を算出する。 The processing order calculation unit 15 calculates the processing order of all the marking holes hL in the minority side region based on the positions of all the marking holes hL including the initial setting marking holes ax and the additional setting marking holes bx (step) S50). For example, the processing order calculation unit 15 calculates the processing order in the minority region so that the moving distance of the processing position from the marking hole to the marking hole is the shortest. For example, when calculating the processing order in the marking area SL shown in FIG. 8, based on the positions of the 13 marking holes hL including the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4. Then, the processing order of the marking holes hL in the marking area SL is calculated.
 図9は、少数側領域内での加工順序を説明するための図である。図9では、図8に示した刻印領域SL内に加工順序を設定する場合の加工順序を示している。加工順序算出部15は、初期設定刻印穴a1~a9、追加設定刻印穴b1~b4の中から、刻印文字を構成する端部の刻印穴や他の刻印穴との隣接数が少ない刻印穴などを抽出する。図9では、初期設定刻印穴a1~a9、追加設定刻印穴b1~b4の中から、刻印文字の「1」を構成する端部の刻印穴として初期設定刻印穴a1が抽出された場合を示している。この後、加工順序算出部15は、初期設定刻印穴a2~a9および追加設定刻印穴b1~b4の中から抽出した刻印穴に隣接する刻印穴を順番に抽出し、抽出した順番を加工順序とする。加工順序算出部15は、例えば(1)~(13)に示す順番で刻印穴を抽出する。
(1)刻印文字の端部に位置する初期設定刻印穴a1を抽出。
(2)初期設定刻印穴a1に隣接する追加設定刻印穴b1を抽出。
(3)追加設定刻印穴b1に隣接する初期設定刻印穴a2を抽出。
(4)初期設定刻印穴a2に隣接する初期設定刻印穴a3を抽出。
(5)初期設定刻印穴a3に隣接する追加設定刻印穴b2を抽出。
(6)追加設定刻印穴b2に隣接する初期設定刻印穴a4を抽出。
(7)初期設定刻印穴a4に隣接する追加設定刻印穴b3を抽出。
(8)追加設定刻印穴b3に隣接する初期設定刻印穴a5を抽出。
(9)初期設定刻印穴a5に隣接する追加設定刻印穴b4を抽出。
(10)追加設定刻印穴b4に隣接する初期設定刻印穴a6を抽出。
(11)初期設定刻印穴a6に隣接する初期設定刻印穴a7を抽出。
(12)初期設定刻印穴a7に隣接する初期設定刻印穴a8を抽出。
(13)初期設定刻印穴a8に隣接する初期設定刻印穴a9を抽出。
 加工順序算出部15は、(1)~(13)で抽出された刻印穴の順番を刻印領域SL内での刻印穴の加工順序に設定する。
FIG. 9 is a diagram for explaining the processing order in the minority region. FIG. 9 shows the processing order when the processing order is set in the marking area SL shown in FIG. The processing order calculation unit 15 includes an initial marking hole a1 to a9 and an additional setting marking hole b1 to b4. To extract. FIG. 9 shows a case where the initial setting marking hole a1 is extracted from the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4 as the end marking holes constituting the marking character “1”. ing. Thereafter, the processing order calculation unit 15 sequentially extracts the marking holes adjacent to the marking holes extracted from the initial setting marking holes a2 to a9 and the additional setting marking holes b1 to b4, and the extracted order is defined as the processing order. To do. The processing order calculation unit 15 extracts marking holes in the order shown in (1) to (13), for example.
(1) Extract an initial marking hole a1 located at the end of the marking character.
(2) An additional setting marking hole b1 adjacent to the initial setting marking hole a1 is extracted.
(3) An initial setting marking hole a2 adjacent to the additional setting marking hole b1 is extracted.
(4) Extract the initial marking hole a3 adjacent to the initial marking hole a2.
(5) An additional setting marking hole b2 adjacent to the initial setting marking hole a3 is extracted.
(6) An initial setting marking hole a4 adjacent to the additional setting marking hole b2 is extracted.
(7) An additional setting marking hole b3 adjacent to the initial setting marking hole a4 is extracted.
(8) An initial setting marking hole a5 adjacent to the additional setting marking hole b3 is extracted.
(9) An additional setting marking hole b4 adjacent to the initial setting marking hole a5 is extracted.
(10) An initial setting marking hole a6 adjacent to the additional setting marking hole b4 is extracted.
(11) Extract the initial marking hole a7 adjacent to the initial marking hole a6.
(12) Extract the initial marking hole a8 adjacent to the initial marking hole a7.
(13) Extract an initial marking hole a9 adjacent to the initial marking hole a8.
The processing order calculation unit 15 sets the order of the marking holes extracted in (1) to (13) as the processing order of the marking holes in the marking area SL.
 加工指示部16は、加工プログラム3、刻印情報、少数側領域の加工順序を用いて、製品加工穴Hと刻印穴hL,hRの位置を指定した加工指示をレーザ加工機構20Aに出力する。具体的には、加工指示部16は、加工プログラム3に基づいてワークWL,WRに製品加工穴Hの加工指示を送る。また、加工指示部16は、刻印情報、加工順序算出部15が算出した加工順序に基づいて刻印領域SLに刻印穴hLの加工指示を送る。また、加工指示部16は、刻印情報に基づいて刻印領域SRに刻印穴hRの加工指示を送る。 The processing instruction unit 16 outputs a processing instruction specifying the positions of the product processing hole H and the marking holes hL and hR to the laser processing mechanism 20A using the processing program 3, the marking information, and the processing order of the minority region. Specifically, the machining instruction unit 16 sends a machining instruction for the product machining hole H to the workpieces WL and WR based on the machining program 3. Further, the processing instruction unit 16 sends a processing instruction for the marking hole hL to the marking region SL based on the marking information and the processing order calculated by the processing order calculation unit 15. Further, the processing instruction unit 16 sends a processing instruction for the marking hole hR to the marking region SR based on the marking information.
 図10は、少数側領域に形成される刻印穴の一例を示す図である。図10では、図8で説明した初期設定刻印穴a1~a9および追加設定刻印穴b1~b4の位置に刻印穴hLを形成した場合を示している。本実施の形態では、刻印文字を構成する初期設定刻印穴axと初期設定刻印穴axとの間の穴間座標に追加設定刻印穴bxを設定して刻印文字を形成しているので、刻印文字の見た目に大きな影響を与えることなく刻印文字を形成できる。 FIG. 10 is a diagram illustrating an example of a marking hole formed in the minority region. FIG. 10 shows a case where the marking holes hL are formed at the positions of the initial setting marking holes a1 to a9 and the additional setting marking holes b1 to b4 described in FIG. In the present embodiment, the stamp character is formed by setting the additional stamp hole bx in the coordinates between the holes between the initial stamp hole ax and the initial stamp hole ax constituting the stamp character. It is possible to form a stamped character without greatly affecting the appearance.
 なお、本実施の形態では、刻印設定領域ALと刻印設定領域ALとの間には、穴間座標として1つずつの追加候補座標Cxを設定する場合について説明したが、刻印設定領域ALと刻印設定領域ALとの間には、穴間座標として複数の追加候補座標Cxを設定してもよい。 In the present embodiment, a case has been described in which one additional candidate coordinate Cx is set as an inter-hole coordinate between the marking setting area AL and the marking setting area AL. A plurality of additional candidate coordinates Cx may be set as inter-hole coordinates between the setting area AL.
 図11は、刻印設定領域間に複数の追加候補座標を設定した場合の追加候補座標を説明するための図である。図11では、刻印領域SL内の刻印設定領域AL間に2つずつの追加候補座標Cxを設定した場合を示している。図11の刻印領域SLでは、図7に示した刻印領域SL内で追加候補座標C1を設定した刻印設定領域間AL間に追加候補座標C11,C12が設定され、追加候補座標C2を設定した刻印設定領域AL間には、追加候補座標C13,C14が設定されている。同様に、図7に示した刻印領域SL内で追加候補座標C3~C7を設定した刻印設定領域AL間には、それぞれ追加候補座標C15,C16、追加候補座標C17,C18、追加候補座標C19,C20、追加候補座標C21,C22、追加候補座標C23,C24が設定されている。 FIG. 11 is a diagram for explaining additional candidate coordinates when a plurality of additional candidate coordinates are set between the marking setting areas. FIG. 11 shows a case where two additional candidate coordinates Cx are set between the marking setting areas AL in the marking area SL. In the marking area SL of FIG. 11, additional candidate coordinates C11 and C12 are set between the marking setting area ALs where the additional candidate coordinates C1 are set in the marking area SL shown in FIG. 7, and the additional candidate coordinates C2 are set. Additional candidate coordinates C13 and C14 are set between the setting areas AL. Similarly, additional candidate coordinates C15 and C16, additional candidate coordinates C17 and C18, additional candidate coordinates C19, and additional candidate coordinates C19, between the marking setting areas AL in which additional candidate coordinates C3 to C7 are set in the marking area SL shown in FIG. C20, additional candidate coordinates C21 and C22, and additional candidate coordinates C23 and C24 are set.
 これにより、刻印穴数差が大きな場合であっても、多数の追加設定刻印穴bxを設定できるので、刻印領域SL内の刻印穴hLの数と、刻印領域SR内の刻印穴hRの数とを同数にすることが可能となる。なお、図11では、刻印領域SL内の刻印設定領域AL間に2つずつの追加候補座標Cxを設定した場合を示したが、刻印領域SL,SR内の1つの刻印設定領域AL間に3つ以上の追加候補座標Cxを設定してもよい。また、1つの刻印設定領域AL間に設定する追加候補座標Cxは、刻印設定領域AL間で全て同数にする必要はなく、刻印設定領域AL間の寸法に応じて刻印設定領域AL間に設定する追加候補座標Cxの数を決定してもよい。 Thereby, even if the difference in the number of marking holes is large, a number of additional setting marking holes bx can be set. Therefore, the number of marking holes hL in the marking area SL, the number of marking holes hR in the marking area SR, and Can be made the same number. FIG. 11 shows a case where two additional candidate coordinates Cx are set between the marking setting areas AL in the marking area SL. However, 3 is set between one marking setting area AL in the marking areas SL and SR. Two or more additional candidate coordinates Cx may be set. Further, the additional candidate coordinates Cx set between one marking setting area AL need not be the same number between the marking setting areas AL, and are set between the marking setting areas AL according to the dimension between the marking setting areas AL. The number of additional candidate coordinates Cx may be determined.
 また、刻印領域SL,SR内の各刻印設定領域AL間に複数種類の追加候補座標Cxを設定しておいてもよい。例えば、図11に示した追加候補座標Cxと図7に示した追加候補座標Cxとの両方を設定しておいてもよい。各刻印設定領域AL間に複数種類の追加候補座標Cxを設定しておく場合、差分加工位置選択部14は、刻印穴数差の大きさや加工条件などに基づいて、どの種類の追加候補座標Cxを用いるかを判断する。加工条件は、例えば1つの刻印穴hL,hRへのレーザパルス数、1パルスあたりのレーザエネルギー、1つの刻印穴hL,hRに照射される合計のレーザエネルギー、ワークWL,WRの材質、刻印穴hL,hRの穴間隔、刻印穴hL,hRのサイズなどである。 Further, a plurality of types of additional candidate coordinates Cx may be set between the marking setting areas AL in the marking areas SL and SR. For example, both the additional candidate coordinates Cx shown in FIG. 11 and the additional candidate coordinates Cx shown in FIG. 7 may be set. When a plurality of types of additional candidate coordinates Cx are set between the marking setting areas AL, the differential machining position selection unit 14 determines which type of additional candidate coordinates Cx based on the size of the number of marking holes, machining conditions, and the like. Determine whether to use. The processing conditions are, for example, the number of laser pulses in one marking hole hL, hR, the laser energy per pulse, the total laser energy irradiated to one marking hole hL, hR, the material of the workpiece WL, WR, the marking hole These are the hole intervals of hL and hR, the sizes of the marking holes hL and hR, and the like.
 差分加工位置選択部14は、例えば、1つの刻印穴hL,hRへのレーザパルス数が所定数よりも多い場合には、1つの刻印設定領域AL間に設定されている追加候補座標Cxが所定数よりも少ない刻印情報(以下、少数設定された刻印情報という)を用いると判断する。また、差分加工位置選択部14は、例えば、1パルスあたりのレーザエネルギーが所定値よりも大きい場合には、少数設定された刻印情報を用いると判断する。また、差分加工位置選択部14は、例えば、1つの刻印穴hL,hRに照射される合計のレーザエネルギーが所定値よりも大きい場合には、少数設定された刻印情報を用いると判断する。また、差分加工位置選択部14は、例えば、ワークWL,WRのレーザ光照射耐性が所定値よりも低い場合には、少数設定された刻印情報を用いると判断する。また、差分加工位置選択部14は、例えば、刻印穴hL,hRの穴間隔が所定値よりも狭い場合には、少数設定された刻印情報を用いると判断する。また、差分加工位置選択部14は、例えば、刻印穴hL,hRのサイズ(直径や深さ)が所定値よりも大きい場合には、少数設定された刻印情報を用いると判断する。また、差分加工位置選択部14は、例えば、刻印穴数差が所定数よりも大きい場合には、少数設定された刻印情報を用いると判断する。 For example, when the number of laser pulses to one marking hole hL, hR is larger than a predetermined number, the difference machining position selection unit 14 determines that the additional candidate coordinates Cx set between one marking setting area AL are predetermined. It is determined that the marking information smaller than the number (hereinafter referred to as a small number of marking information) is used. Further, for example, when the laser energy per pulse is larger than a predetermined value, the differential machining position selection unit 14 determines to use marking information set in a small number. In addition, for example, when the total laser energy irradiated to one marking hole hL, hR is larger than a predetermined value, the differential machining position selection unit 14 determines to use a small number of marking information. Further, for example, when the laser beam irradiation resistance of the workpieces WL and WR is lower than a predetermined value, the differential machining position selection unit 14 determines to use a small number of marking information. Further, for example, when the hole interval between the marking holes hL and hR is narrower than a predetermined value, the differential machining position selection unit 14 determines to use a small number of marking information. Further, for example, when the size (diameter or depth) of the marking holes hL and hR is larger than a predetermined value, the differential machining position selection unit 14 determines that the marking information set in a small number is used. Further, for example, when the difference in the number of marking holes is larger than a predetermined number, the differential machining position selection unit 14 determines to use marking information set in a small number.
 少数設定された刻印情報を用いる場合は、追加設定刻印穴bx同士の重なりや追加設定刻印穴bxと初期設定刻印穴axとの重なりが少なくなるので、高品質なワークWL,WRを行うことが可能となる。また、高品質なワークWL,WRの加工を行うための加工順序も容易に算出することが可能となる。また、1つの刻印設定領域間AL間に設定されている追加候補座標Cxが所定数よりも多い刻印情報を用いる場合、多数の追加設定刻印穴bxを形成することが可能となる。 When a small number of marking information is used, the overlap between the additional setting marking holes bx and the overlapping between the additional setting marking holes bx and the initial setting marking holes ax are reduced, so that high-quality workpieces WL and WR can be performed. It becomes possible. In addition, it is possible to easily calculate a processing order for processing high-quality workpieces WL and WR. In addition, when the marking information having more than a predetermined number of additional candidate coordinates Cx set between one marking setting area AL is used, a large number of additional setting marking holes bx can be formed.
 また、本実施の形態では、ワークWLの製品に1つの刻印領域SLが配置され、ワークWRの製品に1つの刻印領域SRが配置される場合について説明したが、ワークWL,WRへは複数の刻印領域SL,SRを配置してもよい。この場合、1つ目の刻印領域SLと1つ目の刻印領域SR(1組目の刻印領域SL,SR)に対して、上述した追加設定刻印穴bxを設けて同一時間内に1組目の刻印領域SL,SR内の加工を行う。そして、1組目の刻印領域SL,SRと同様に2組目以降の刻印領域SL,SRに対して上述した追加設定刻印穴bxを設けて同一時間内に2組目以降の刻印領域SL,SR内の加工を行う。 Further, in the present embodiment, a case has been described in which one marking region SL is arranged in the product of the workpiece WL and one marking region SR is arranged in the product of the workpiece WR. However, a plurality of workpieces WL and WR are included in the workpiece WL and WR. The marking areas SL and SR may be arranged. In this case, the above-described additional setting marking hole bx is provided for the first marking area SL and the first marking area SR (the first marking area SL, SR), and the first set within the same time. Are processed in the marking areas SL and SR. Similarly to the first set of marking areas SL and SR, the above-described additional setting marking holes bx are provided for the second and subsequent sets of marking areas SL and SR, and the second and subsequent sets of marking areas SL and SR are formed within the same time. Processing in SR.
 また、刻印領域SL内に形成する追加設定刻印穴bxは、他の追加設定刻印穴bxと一部または全部が重なってもよい。また、刻印領域SL内に形成する追加設定刻印穴bxは、初期設定刻印穴axと一部または全部が重なってもよい。追加設定刻印穴bxを初期設定刻印穴axの全部に重ねる場合、初期設定刻印穴ax上に追加設定刻印穴bxが設定される。 Further, the additional setting marking hole bx formed in the marking area SL may partially or entirely overlap with other additional setting marking holes bx. Further, the additional setting marking hole bx formed in the marking area SL may partially or entirely overlap with the initial setting marking hole ax. When the additional setting marking hole bx is overlapped with the entire initial setting marking hole ax, the additional setting marking hole bx is set on the initial setting marking hole ax.
 追加設定刻印穴bxと初期設定刻印穴axとを重ねるか否かは、使用者から外部入力される指示に基づいて決定してもよいし、ワークWL,WRの加工条件に基づいて差分加工位置選択部14が判断してもよい。追加設定刻印穴bxと初期設定刻印穴axとを重ねることによって、刻印領域SL,SR内に多数の追加設定刻印穴bxを設定することが可能となる。また、追加設定刻印穴bxと初期設定刻印穴axとを重ねないことによって、加工条件が厳しい場合であっても加工不良を起こすことなく高品質な刻印穴hL,hRを形成することが可能となる。 Whether or not the additional setting marking hole bx and the initial setting marking hole ax are overlapped may be determined based on an instruction externally input by the user, or based on the processing conditions of the workpieces WL and WR. The selection unit 14 may make the determination. By overlapping the additional setting marking hole bx and the initial setting marking hole ax, a large number of additional setting marking holes bx can be set in the marking areas SL and SR. Further, by not overlapping the additional setting marking hole bx and the initial setting marking hole ax, it is possible to form the high-quality marking holes hL and hR without causing processing defects even when the processing conditions are severe. Become.
 なお、刻印穴hL,hRによって形成する刻印文字は、文字、記号、図形などに限らず、2次元バーコード、マークなど、どのような情報であってもよい。また、製品情報は、製品番号に限らず、ロット番号、製造日時など、どのような情報であってもよい。 It should be noted that the engraved characters formed by the engraved holes hL and hR are not limited to characters, symbols, figures, etc., but may be any information such as a two-dimensional barcode or a mark. Further, the product information is not limited to the product number, and may be any information such as a lot number and manufacturing date / time.
 また、本実施の形態では、追加候補座標Cxを予め登録しておく場合について説明したが、差分加工位置選択部14が、追加候補座標Cxを自動設定してもよい。この場合、差分加工位置選択部14は、刻印穴数差や加工条件に基づいて、追加候補座標Cxを設定する。 In the present embodiment, the case where the additional candidate coordinates Cx are registered in advance has been described. However, the differential machining position selection unit 14 may automatically set the additional candidate coordinates Cx. In this case, the differential machining position selection unit 14 sets additional candidate coordinates Cx based on the number of marking holes or machining conditions.
 このように、本実施の形態のレーザ加工方法は、2テーブル以上を具備したレーザ加工装置1Aにおいて、左右の刻印文字の刻印穴hL,hRの数をカウントするステップと、刻印穴hL,hRの数の小さい方の文字における刻印穴数差を算出して追加設定刻印穴bxを設定するステップと、刻印文字を最短で加工するための加工順序を算出するステップと、追加設定刻印穴bxおよび初期設定刻印穴axを加工するステップと、を含んでいる。 Thus, in the laser processing method of the present embodiment, in the laser processing apparatus 1A having two or more tables, the step of counting the number of the marking holes hL and hR for the left and right marking characters, and the marking holes hL and hR A step of calculating the number of stamped holes in the smaller number of characters to set an additional setting stamped hole bx, a step of calculating a processing order for processing the stamped character in the shortest, an additional setting stamped hole bx and an initial Machining the set marking hole ax.
 このように実施の形態1によれば、少数側領域に追加設定刻印穴bxを設定して、刻印領域SL,SRで形成する刻印文字の刻印穴hL,hRの数を同数にしているので、刻印領域SL,SRに異なる刻印文字を形成する場合であっても、光シャッタなどを用いることなく刻印領域SL,SRに刻印文字を形成できる。したがって、簡易な構成で刻印領域SL,SRに異なる刻印文字を形成できる。 As described above, according to the first embodiment, the additional setting marking hole bx is set in the minority region, and the number of the marking holes hL and hR of the marking characters formed in the marking areas SL and SR is made equal. Even when different stamp characters are formed in the stamp regions SL and SR, the stamp characters can be formed in the stamp regions SL and SR without using an optical shutter or the like. Therefore, different stamp characters can be formed in the stamp regions SL and SR with a simple configuration.
 また、光シャッタなどを用いることなく刻印領域SL,SRに刻印文字を形成するので、短時間で刻印文字を形成できる。また、追加設定刻印穴bxを少数側領域に設けているので、追加設定刻印穴bxを少数側領域外に設ける場合よりも、短時間で刻印文字を形成できる。
実施の形態2.
Further, since the stamp characters are formed in the stamp regions SL and SR without using an optical shutter or the like, the stamp characters can be formed in a short time. In addition, since the additional setting marking hole bx is provided in the minority side region, it is possible to form the marking character in a shorter time than when the additional setting marking hole bx is provided outside the minority side region.
Embodiment 2. FIG.
 つぎに、図12~図14を用いてこの発明の実施の形態2について説明する。実施の形態2では、刻印穴数差分のレーザ光2を少数側領域に照射することなく、他の領域(少数側領域とは異なる別の位置)に照射する。 Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the laser beam 2 having the difference in the number of marking holes is irradiated to the other area (another position different from the minority area) without irradiating the minority area.
 図12は、実施の形態2に係るレーザ加工装置の構成を示す図である。図12の各構成要素のうち図1に示す実施の形態1のレーザ加工装置1Aと同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。 FIG. 12 is a diagram showing the configuration of the laser processing apparatus according to the second embodiment. Of the constituent elements in FIG. 12, constituent elements that achieve the same functions as those of the laser processing apparatus 1 </ b> A according to the first embodiment shown in FIG.
 レーザ加工装置1Bは、加工制御装置10Bとレーザ加工機構20Bと、を有している。加工制御装置10Bは、レーザ加工機構20Bに接続されている。本実施の形態の加工制御装置10Bは、刻印穴hLと刻印穴hRとを同時形成するよう、レーザ加工機構20Bを制御する。具体的には、加工制御装置10Bは、刻印穴数差分のレーザ光2を後述のダンパ31に照射するか又は後述のシャッタ32で遮断する。レーザ加工機構20Bは、加工制御装置10Bからの加工指示に基づいて、ワークWL,WRのレーザ加工を行う。 The laser processing apparatus 1B has a processing control apparatus 10B and a laser processing mechanism 20B. The machining control device 10B is connected to the laser machining mechanism 20B. The machining control device 10B according to the present embodiment controls the laser machining mechanism 20B so that the marking hole hL and the marking hole hR are formed simultaneously. Specifically, the machining control device 10B irradiates a later-described damper 31 with laser light 2 having a difference in the number of marking holes, or blocks it with a shutter 32 described later. The laser processing mechanism 20B performs laser processing on the workpieces WL and WR based on a processing instruction from the processing control device 10B.
 つぎに、加工制御装置10Bの構成について説明する。加工制御装置10Bは、入力部11、加工穴数カウント部12、穴数差算出部13、加工指示部16、刻印情報記憶部17、照射制御指示部18、制御部19を有している。 Next, the configuration of the machining control device 10B will be described. The processing control apparatus 10B includes an input unit 11, a processing hole number counting unit 12, a hole number difference calculating unit 13, a processing instruction unit 16, a marking information storage unit 17, an irradiation control instruction unit 18, and a control unit 19.
 照射制御指示部18は、穴数差算出部13が算出した刻印穴数差に基づいて、レーザ加工機構20Bへの制御指示を送る。照射制御指示部18は、刻印穴数差と同数の刻印穴を形成するためのレーザ光2を、ダンパ31に向かって照射させる制御指示またはシャッタ32で遮断する制御指示をレーザ加工機構20Bに送る。刻印穴数差と同数の刻印穴を形成するためのレーザ光2は、実施の形態1で説明した、追加設定刻印穴bxを形成するために照射するレーザ光2と同数のパルスレーザである。これにより、本実施の形態では、刻印穴数差分のレーザ光2で追加設定刻印穴bxを形成する代わりに、刻印穴数差分のレーザ光2を少数側領域に照射させないようレーザ加工機構20Bを制御する。 The irradiation control instruction unit 18 sends a control instruction to the laser processing mechanism 20B based on the number difference of the marking holes calculated by the hole number difference calculation unit 13. The irradiation control instruction unit 18 sends a control instruction for irradiating the laser beam 2 for forming the same number of marking holes as the difference in the number of marking holes toward the damper 31 or a control instruction for shutting it off by the shutter 32 to the laser processing mechanism 20B. . The laser beam 2 for forming the same number of marking holes as the difference in the number of marking holes is the same number of pulse lasers as the laser beam 2 irradiated to form the additional setting marking hole bx described in the first embodiment. Thereby, in this embodiment, instead of forming the additional setting marking hole bx with the laser beam 2 with the difference in the number of marking holes, the laser processing mechanism 20B is configured not to irradiate the minority region with the laser beam 2 with the difference in the number of marking holes. Control.
 つぎに、レーザ加工機構20Bの構成について説明する。図13は、実施の形態2に係るレーザ加工機構の構成を示す図である。図13の各構成要素のうち図2に示す実施の形態1のレーザ加工機構20Aと同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。レーザ加工機構20Bは、分光器28と、2組のレーザヘッド30L,30Rと、ワークWL,WRを載置する加工テーブル25L,25Rとを備えている。 Next, the configuration of the laser processing mechanism 20B will be described. FIG. 13 is a diagram illustrating a configuration of a laser processing mechanism according to the second embodiment. Of the constituent elements in FIG. 13, constituent elements that achieve the same functions as those of the laser processing mechanism 20 </ b> A of the first embodiment shown in FIG. 2 are given the same numbers, and redundant descriptions are omitted. The laser processing mechanism 20B includes a spectrometer 28, two sets of laser heads 30L and 30R, and processing tables 25L and 25R on which the workpieces WL and WR are placed.
 レーザヘッド30L,30Rは、実施の形態1のレーザヘッド29L,29Rと比べて、それぞれダンパ31とシャッタ32を有している。ダンパ31は、レーザ光2を吸収する機能を有しており、少数側領域の刻印穴数差分のレーザ光2がダンパ31に照射されることによって、少数側領域の刻印穴数差分のレーザ光2は少数領域に照射されない。ダンパ31は、fθレンズ24の近傍に配置されており、少数側領域の刻印穴数差分のレーザ光2は、ガルバノスキャンミラー22bからダンパ31に導かれる。 The laser heads 30L and 30R have a damper 31 and a shutter 32, respectively, as compared with the laser heads 29L and 29R of the first embodiment. The damper 31 has a function of absorbing the laser beam 2, and the laser beam 2 with a difference in the number of imprinted holes in the minority side region is irradiated on the damper 31, whereby the laser beam with a difference in the number of imprinted holes in the minority side region. 2 is not irradiated to a small number of regions. The damper 31 is disposed in the vicinity of the fθ lens 24, and the laser light 2 having the difference in the number of marking holes in the minority side region is guided to the damper 31 from the galvano scan mirror 22b.
 シャッタ32は、レーザ光2を遮断する機能を有しており、少数側領域の刻印穴数差分のレーザ光2がシャッタ32で遮断されることによって、少数側領域の刻印穴数差分のレーザ光2は少数領域に照射されない。シャッタ32は、ガルバノスキャンミラー22aよりも前段で開閉自在に取り付けられて配置されており、シャッタ32を閉じることによってガルバノスキャンミラー22aへのレーザ光2を遮断することができる。なお、ダンパ31やシャッタ32は、図13に示した位置とは異なる位置に配置してもよい。 The shutter 32 has a function of blocking the laser beam 2, and the laser beam 2 having a difference in the number of marking holes in the minority side region is blocked by the shutter 32, whereby the laser beam having a difference in the number of marking holes in the minority side region. 2 is not irradiated to a small number of regions. The shutter 32 is disposed so as to be freely opened and closed before the galvano scan mirror 22a. By closing the shutter 32, the laser light 2 to the galvano scan mirror 22a can be blocked. The damper 31 and the shutter 32 may be arranged at a position different from the position shown in FIG.
 つぎに、照射制御指示部18の制御処理について説明する。照射制御指示部18は、穴数差算出部13が算出した刻印穴数差に基づいて、ダンパ31とシャッタ32の何れを用いるかを決定する。例えば、照射制御指示部18は、刻印穴数差が所定数未満の場合にダンパ31を用い、刻印穴数差が所定数以上の場合にシャッタ32を用いる。照射制御指示部18は、ダンパ31を用いる場合、少数側領域の刻印穴数差分のレーザ光2をダンパ31に照射するよう、レーザ加工機構20Bを制御する。また、照射制御指示部18は、シャッタ32を用いる場合、少数側領域の刻印穴数差分のレーザ光2をシャッタ32で遮断するよう、レーザ加工機構20Bを制御する。 Next, the control process of the irradiation control instruction unit 18 will be described. The irradiation control instruction unit 18 determines which one of the damper 31 and the shutter 32 to use based on the number of marking holes calculated by the hole number difference calculation unit 13. For example, the irradiation control instruction unit 18 uses the damper 31 when the number of marking holes is less than a predetermined number, and uses the shutter 32 when the number of marking holes is a predetermined number or more. When using the damper 31, the irradiation control instruction unit 18 controls the laser processing mechanism 20 </ b> B so as to irradiate the damper 31 with the laser beam 2 having a difference in the number of marking holes in the minority side region. Further, when the shutter 32 is used, the irradiation control instruction unit 18 controls the laser processing mechanism 20 </ b> B so that the laser light 2 with the difference in the number of marking holes in the minority side region is blocked by the shutter 32.
 なお、照射制御指示部18は、加工条件に基づいて、ダンパ31とシャッタ32の何れを用いるかを決定してもよい。照射制御指示部18は、例えば、1つの刻印穴hL,hRへのレーザパルス数が所定数よりも少ない場合には、ダンパ31を用いると判断する。また、照射制御指示部18は、例えば、1パルスあたりのレーザエネルギーが所定値よりも大きい場合には、ダンパ31を用いると判断する。また、照射制御指示部18は、例えば、1つの刻印穴hL,hRに照射される合計のレーザエネルギーが所定値よりも大きい場合には、ダンパ31を用いると判断する。また、照射制御指示部18は、例えば、ワークWL,WRのレーザ光照射耐性が所定値よりも低い場合には、ダンパ31を用いると判断する。また、照射制御指示部18は、例えば、刻印穴hL,hRの穴間隔が所定値よりも狭い場合には、ダンパ31を用いると判断する。また、照射制御指示部18は、例えば、刻印穴hL,hRのサイズが所定値よりも大きい場合には、ダンパ31を用いると判断する。また、照射制御指示部18は、例えば、刻印穴数差が所定数よりも大きい場合には、ダンパ31を用いると判断する。 Note that the irradiation control instruction unit 18 may determine which of the damper 31 and the shutter 32 to use based on the processing conditions. For example, when the number of laser pulses to one marking hole hL, hR is smaller than a predetermined number, the irradiation control instruction unit 18 determines to use the damper 31. Moreover, the irradiation control instruction | indication part 18 judges that the damper 31 is used, for example, when the laser energy per pulse is larger than a predetermined value. Moreover, the irradiation control instruction | indication part 18 judges that the damper 31 is used, for example, when the total laser energy irradiated to one marking hole hL and hR is larger than predetermined value. Moreover, the irradiation control instruction | indication part 18 judges that the damper 31 is used, for example, when the laser beam irradiation tolerance of the workpiece | work WL and WR is lower than a predetermined value. Moreover, the irradiation control instruction | indication part 18 judges that the damper 31 is used, for example, when the hole space | interval of the marking holes hL and hR is narrower than a predetermined value. Moreover, the irradiation control instruction | indication part 18 judges that the damper 31 is used, for example, when the size of the marking holes hL and hR is larger than a predetermined value. Moreover, the irradiation control instruction | indication part 18 judges that the damper 31 is used, for example, when the number difference of a marking hole is larger than predetermined number.
 なお、本実施の形態では、レーザヘッド30L,30Rがそれぞれダンパ31とシャッタ32の両方を有している場合について説明したが、レーザヘッド30L,30Rが、ダンパ31とシャッタ32の何れか一方を有する構成であってもよい。レーザヘッド30L,30Rがダンパ31を有している場合、刻印穴数差分のレーザ光2がダンパ31に照射される。また、レーザヘッド30L,30Rがシャッタ32を有している場合、刻印穴数差分のレーザ光2がシャッタ32で遮断される。なお、レーザヘッド30L,30Rが、ダンパ31とシャッタ32の何れか一方のみを有している場合、照射制御指示部18は、ダンパ31とシャッタ32の何れを用いるかを決定する必要はない。 In the present embodiment, the laser heads 30L and 30R each have both the damper 31 and the shutter 32. However, the laser heads 30L and 30R have either the damper 31 or the shutter 32, respectively. The structure which has may be sufficient. When the laser heads 30 </ b> L and 30 </ b> R have the damper 31, the laser beam 2 with the difference in the number of marking holes is irradiated to the damper 31. Further, when the laser heads 30 </ b> L and 30 </ b> R have the shutter 32, the laser light 2 with the difference in the number of marking holes is blocked by the shutter 32. When the laser heads 30L and 30R have only one of the damper 31 and the shutter 32, the irradiation control instruction unit 18 does not need to determine which of the damper 31 and the shutter 32 is used.
 また、ダンパ31の変わりに少数側領域の刻印穴数差分のレーザ光2を照射するためのダミー領域(少数側領域とは異なるワークWL,WR上の領域)を設けてもよい。このダミー領域は、ワークWL,WR上の製品領域内に設けてもよいし、ワークWL,WR上の製品領域外に設けてもよい。ダミー領域を、ワークWL,WR上の製品領域内に設ける場合、初期設定刻印穴axと追加設定刻印穴bxとの距離が短くなるので、短時間で刻印穴hL,hRを形成することが可能となる。また、ダミー領域を、ワークWL,WR上の製品領域外に設ける場合、ワーク上の種々の位置にダミー領域を配置することができるので、容易にダミー領域を配置することが可能となる。 Further, instead of the damper 31, a dummy region (region on the workpiece WL, WR different from the minority side region) for irradiating the laser beam 2 with the difference in the number of marking holes in the minority side region may be provided. This dummy area may be provided in the product area on the workpieces WL and WR, or may be provided outside the product area on the workpieces WL and WR. When the dummy area is provided in the product area on the workpieces WL and WR, since the distance between the initial setting marking hole ax and the additional setting marking hole bx is shortened, the marking holes hL and hR can be formed in a short time. It becomes. Further, when the dummy area is provided outside the product area on the workpieces WL and WR, the dummy area can be arranged at various positions on the workpiece, so that the dummy area can be easily arranged.
 また、ダミー領域を製品領域と同じスキャンエリア内(ガルバノスキャナ23a,23bのスキャンエリア内)に設けてもよい。この場合、ダミー領域がワークWL,WR上の製品領域外に配置されても短時間で刻印穴hL,hRを形成することが可能となる。 Further, a dummy area may be provided in the same scan area as the product area (in the scan areas of the galvano scanners 23a and 23b). In this case, it is possible to form the marking holes hL and hR in a short time even if the dummy area is arranged outside the product area on the workpieces WL and WR.
 図14は、製品領域で用いるスキャンエリア内にダミー領域を設けた場合のダミー領域を説明するための図である。図14では、ワークWL上の製品領域PLをレーザ加工する際に用いるダミー領域dを示している。 FIG. 14 is a diagram for explaining a dummy area when a dummy area is provided in the scan area used in the product area. FIG. 14 shows a dummy region d used when laser processing the product region PL on the workpiece WL.
 製品領域PLをレーザ加工する際には、複数のスキャンエリアGが設けられ、スキャンエリアG毎にレーザ光が照射される。例えば、刻印領域SLが製品領域PLの端部(図14では右下部)に配置される場合、刻印領域SLをレーザ加工する際のスキャンエリアGは、製品領域PLと製品領域の外側の領域(製品外領域)とにまたがって配置される場合がある。このような場合には、製品外領域の刻印領域SLの近傍にダミー領域dを配置することによって、ダミー領域dをガルバノスキャナ23a,23bのスキャンエリア内に設けることが可能となる。 When laser processing the product region PL, a plurality of scan areas G are provided, and each scan area G is irradiated with laser light. For example, when the marking area SL is arranged at the end of the product area PL (lower right in FIG. 14), the scan area G when laser processing the marking area SL is the area outside the product area PL and the product area ( In some cases, the product is placed across the product area. In such a case, the dummy area d can be provided in the scan areas of the galvano scanners 23a and 23b by arranging the dummy area d in the vicinity of the marking area SL of the outside product area.
 また、加工制御装置10Bが加工制御装置10A,10Bの両方の機能を有していてもよい。この場合、加工制御装置10Bは、入力部11、加工穴数カウント部12、穴数差算出部13、差分加工位置選択部14、加工順序算出部15、加工指示部16、刻印情報記憶部17、照射制御指示部18、制御部19を含んで構成される。この加工制御装置10Bでは、差分加工位置選択部14が、刻印穴数差の大きさや加工条件などに基づいて、追加設定刻印穴bxを用いるか又はダンパ31やシャッタ32を用いるかを判断する。 Further, the machining control device 10B may have both functions of the machining control devices 10A and 10B. In this case, the machining control device 10B includes an input unit 11, a machining hole count unit 12, a hole number difference calculation unit 13, a differential machining position selection unit 14, a machining order calculation unit 15, a machining instruction unit 16, and a marking information storage unit 17. The irradiation control instruction unit 18 and the control unit 19 are included. In the machining control device 10B, the differential machining position selection unit 14 determines whether to use the additional setting marking hole bx or the damper 31 or the shutter 32 based on the size of the marking hole number difference, the processing conditions, and the like.
 差分加工位置選択部14は、例えば、1つの刻印穴hL,hRへのレーザパルス数が所定数よりも少ない場合には、追加設定刻印穴bxを用いると判断する。また、差分加工位置選択部14は、例えば、1パルスあたりのレーザエネルギーが所定値よりも小さい場合には、追加設定刻印穴bxを用いると判断する。また、差分加工位置選択部14は、例えば、1つの刻印穴hL,hRに照射される合計のレーザエネルギーが所定値よりも小さい場合には、追加設定刻印穴bxを用いると判断する。また、差分加工位置選択部14は、例えば、ワークWL,WRのレーザ光照射耐性が所定値よりも低い場合には、追加設定刻印穴bxを用いると判断する。また、差分加工位置選択部14は、例えば、刻印穴hL,hRの穴間隔が所定値よりも狭い場合には、追加設定刻印穴bxを用いると判断する。また、差分加工位置選択部14は、例えば、刻印穴hL,hRのサイズが所定値よりも小さい場合には、追加設定刻印穴bxを用いると判断する。また、差分加工位置選択部14は、例えば、刻印穴数差が所定数よりも小さい場合には、追加設定刻印穴bxを用いると判断する。 For example, when the number of laser pulses to one marking hole hL, hR is less than a predetermined number, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the laser energy per pulse is smaller than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the total laser energy irradiated to one marking hole hL, hR is smaller than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the laser beam irradiation resistance of the workpieces WL and WR is lower than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the hole interval between the marking holes hL and hR is narrower than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the size of the marking holes hL and hR is smaller than a predetermined value, the differential machining position selection unit 14 determines to use the additional setting marking hole bx. Further, for example, when the difference in the number of marking holes is smaller than a predetermined number, the differential machining position selection unit 14 determines to use the additional setting marking hole bx.
 なお、加工順序算出部15は、少数側領域内での刻印穴hL,hRの加工順序を、刻印穴数差の大きさや加工条件などに基づいて、算出してもよい。加工順序算出部15は、刻印穴数差の大きさや加工条件などに基づいて、ワークWL,WRへの負担(ワークWL,WRの加工不良)が少なくなるよう加工順序を算出する。 Note that the processing order calculation unit 15 may calculate the processing order of the marking holes hL and hR within the minority region based on the size of the number of marking holes, processing conditions, and the like. The machining order calculation unit 15 calculates the machining order so that the burden on the workpieces WL and WR (working defects of the workpieces WL and WR) is reduced based on the size difference between the number of engraved holes and the machining conditions.
 このように実施の形態2によれば、ダンパ31、シャッタ32、ダミー領域dなどを用いて刻印穴数差分のレーザ光2を少数側領域に照射させないようにしているので、刻印領域SL,SRに異なる刻印文字を形成する場合であっても、短時間で容易に刻印文字を形成できる。 As described above, according to the second embodiment, since the laser beam 2 having the difference in the number of marking holes is not irradiated to the minority side region using the damper 31, the shutter 32, the dummy region d, etc., the marking regions SL, SR Even when different stamped characters are formed, the stamped characters can be easily formed in a short time.
 以上のように、本発明に係るレーザ加工方法、レーザ加工装置および加工制御装置は、複数本のレーザ光で行う複数ワークの同時加工に適している。 As described above, the laser processing method, laser processing apparatus, and processing control apparatus according to the present invention are suitable for simultaneous processing of a plurality of workpieces performed by a plurality of laser beams.
 1A,1B レーザ加工装置
 2 レーザ光
 10A,10B 加工制御装置
 12 加工穴数カウント部
 13 穴数差算出部
 14 差分加工位置選択部
 15 加工順序算出部
 16 加工指示部
 17 刻印情報記憶部
 18 照射制御指示部
 20A,20B レーザ加工機構
 22a,22b ガルバノスキャンミラー
 23a,23b ガルバノスキャナ
 25L,25R 加工テーブル
 29L,29R,30L,30R レーザヘッド
 31 ダンパ
 32 シャッタ
 a1~a9 初期設定刻印穴
 b1~b4 追加設定刻印穴
 d ダミー領域
 hL,hR 刻印穴
 AL,AR 刻印設定領域
 BL,BR 刻印穴候補
 C1~C7,C11~C24 追加候補座標
 H 製品加工穴
 SL,SR 刻印領域
 WL,WR ワーク
1A, 1B Laser processing device 2 Laser light 10A, 10B Processing control device 12 Processing hole count unit 13 Hole number difference calculation unit 14 Differential processing position selection unit 15 Processing order calculation unit 16 Processing instruction unit 17 Stamping information storage unit 18 Irradiation control Instruction unit 20A, 20B Laser processing mechanism 22a, 22b Galvano scan mirror 23a, 23b Galvano scanner 25L, 25R Processing table 29L, 29R, 30L, 30R Laser head 31 Damper 32 Shutter a1-a9 Initial setting marking hole b1-b4 Additional setting marking Hole d Dummy area hL, hR Marking hole AL, AR Marking setting area BL, BR Marking hole candidate C1 to C7, C11 to C24 Additional candidate coordinates H Product machining hole SL, SR Stamping area WL, WR Workpiece

Claims (10)

  1.  複数本のレーザ光によって複数のワークを同時にレーザ加工するレーザ加工方法において、
     製品用の加工穴とは異なる加工穴を前記各ワーク上の所定の位置に並べることによって情報記録用の加工穴が配置される前記ワーク毎の情報記録領域内に設定される、前記ワークのうち第1のワークに初期設定された第1の情報記録用の加工穴と、前記ワークのうち第2のワークに初期設定された第2の情報記録用の加工穴と、の穴数差を算出する穴数差算出ステップと、
     前記第1の情報記録用の加工穴および前記第2の情報記録用の加工穴のうち加工穴の穴数が少ない方の加工穴である少数側加工穴に、前記穴数差と同数の追加の加工穴を設定する加工穴追加ステップと、
     前記少数側加工穴に前記追加の加工穴を設定した後の、前記第1の情報記録用の加工穴と、前記第2の情報記録用の加工穴と、にレーザ光を同時照射して前記第1および第2の情報記録用の加工穴を形成する加工穴形成ステップと、
     を含むことを特徴とするレーザ加工方法。
    In a laser processing method for simultaneously laser processing a plurality of workpieces with a plurality of laser beams,
    Of the workpieces, set in the information recording area for each workpiece in which the machining holes for information recording are arranged by arranging the machining holes different from the machining holes for products at predetermined positions on each workpiece The difference in the number of holes between the first information recording machining hole initially set in the first workpiece and the second information recording machining hole initially set in the second workpiece of the workpiece is calculated. A hole number difference calculating step,
    The same number as the difference in the number of holes is added to the minority-side processed hole, which is the processed hole having the smaller number of processed holes, of the first information recording processed hole and the second information recording processed hole. Machining hole addition step to set the machining hole,
    After the additional machining hole is set in the minority side machining hole, the first information recording machining hole and the second information recording machining hole are simultaneously irradiated with laser light to Processing hole forming step for forming processing holes for first and second information recording;
    A laser processing method comprising:
  2.  前記加工穴追加ステップは、前記少数側加工穴の加工穴間に前記追加の加工穴が配置されることを特徴とする請求項1に記載のレーザ加工方法。 2. The laser processing method according to claim 1, wherein in the processing hole adding step, the additional processing holes are arranged between the processing holes of the minority side processing holes.
  3.  前記加工穴追加ステップは、前記加工穴間に前記追加の加工穴が複数配置されることを特徴とする請求項2に記載のレーザ加工方法。 The laser processing method according to claim 2, wherein the processing hole adding step includes arranging a plurality of the additional processing holes between the processing holes.
  4.  前記加工穴追加ステップは、前記追加の加工穴が、他の追加の加工穴または少数側加工穴に少なくとも一部が重なるよう配置されることを特徴とする請求項1に記載のレーザ加工方法。 The laser machining method according to claim 1, wherein the machining hole adding step is arranged such that the additional machining hole is at least partially overlapped with another additional machining hole or a minority side machining hole.
  5.  前記加工穴追加ステップの後、前記少数側加工穴に前記穴数差と同数の追加の加工穴を設定した後の前記第1または第2の情報記録用の加工穴に、加工時間が最短となる加工順序を設定する加工順序設定ステップをさらに含み、
     加工穴形成ステップは、設定された加工順序に従って前記第1および第2の情報記録用の加工穴を形成することを特徴とする請求項1に記載のレーザ加工方法。
    After the processing hole addition step, the processing time for the first or second information recording processing hole after setting the same number of additional processing holes as the difference in the number of holes in the minority side processing hole is the shortest processing time. A processing order setting step for setting the processing order
    2. The laser processing method according to claim 1, wherein the processing hole forming step forms the first and second information recording processing holes in accordance with a set processing order.
  6.  複数本のレーザ光によって複数のワークを同時にレーザ加工するレーザ加工方法において、
     製品用の加工穴とは異なる加工穴を前記各ワーク上の所定の位置に並べることによって情報記録用の加工穴が配置される前記ワーク毎の情報記録領域内に設定される、前記ワークのうち第1のワークに初期設定された第1の情報記録用の加工穴と、前記ワークのうち第2のワークに初期設定された第2の情報記録用の加工穴と、の穴数差を算出する穴数差算出ステップと、
     前記第1の情報記録用の加工穴および前記第2の情報記録用の加工穴のうち加工穴の穴数が少ない方の加工穴である少数側加工穴に前記穴数差と同数の追加の加工穴を設定するか、または前記穴数差分のレーザ光を少数側加工穴の配置される領域とは異なる別の位置に照射するか、を前記穴数差または前記レーザ加工に関する加工条件に基づいて決定する照射条件決定ステップと、
     前記追加の加工穴を設定する場合には前記少数側加工穴に前記追加の加工穴を設定した後の、前記第1の情報記録用の加工穴と、前記第2の情報記録用の加工穴と、にレーザ光を同時照射するよう制御し、前記別の位置に前記穴数差分のレーザ光を照射する場合には、前記第1の情報記録用の加工穴と、前記第2の情報記録用の加工穴と、にレーザ光を同時照射するとともに前記別の位置に前記穴数差分のレーザ光を照射するよう制御する照射制御ステップと、
     を含むことを特徴とするレーザ加工方法。
    In a laser processing method for simultaneously laser processing a plurality of workpieces with a plurality of laser beams,
    Of the workpieces, set in the information recording area for each workpiece in which the machining holes for information recording are arranged by arranging the machining holes different from the machining holes for products at predetermined positions on each workpiece The difference in the number of holes between the first information recording machining hole initially set in the first workpiece and the second information recording machining hole initially set in the second workpiece of the workpiece is calculated. A hole number difference calculating step,
    Of the first information recording processing hole and the second information recording processing hole, the same number as the difference in the number of holes is added to the minority side processing hole which is the processing hole having the smaller number of processing holes. Based on the difference in the number of holes or the processing conditions related to the laser processing, whether to set a processing hole or irradiate a laser beam having a difference in the number of holes to a position different from the region where the minority side processing holes are arranged An irradiation condition determination step determined by
    When setting the additional processing hole, the first information recording processing hole and the second information recording processing hole after setting the additional processing hole in the minority side processing hole. When the laser beam having the difference in the number of holes is irradiated to the other position, the first information recording processing hole and the second information recording are controlled. An irradiation control step for simultaneously irradiating the processing hole with laser light and controlling to irradiate the different position with the laser light of the hole number difference;
    A laser processing method comprising:
  7.  前記別の位置は、前記レーザ光を吸収するダンパ、前記レーザ光を遮断するシャッタまたは前記少数側加工穴の配置される領域とは異なる前記ワーク上の領域であることを特徴とする請求項6に記載のレーザ加工方法。 7. The another position is a region on the workpiece different from a region where a damper that absorbs the laser light, a shutter that blocks the laser light, or the minority side machining hole is disposed. The laser processing method as described in.
  8.  前記照射条件決定ステップは、前記別の位置にレーザ光を照射すると決定した場合、前記別の位置として前記ダンパ、前記シャッタまたは前記少数側加工穴の配置される領域とは異なる前記ワーク上の領域の何れを選択するかを、前記穴数差または前記レーザ加工に関する加工条件に基づいて決定することを特徴とする請求項7に記載のレーザ加工方法。 In the irradiation condition determination step, when it is determined that the other position is irradiated with the laser beam, an area on the workpiece different from an area where the damper, the shutter, or the minority side machining hole is arranged as the other position. The laser processing method according to claim 7, wherein which one is selected is determined based on the difference in the number of holes or a processing condition relating to the laser processing.
  9.  複数本のレーザ光によって複数のワークを同時にレーザ加工するレーザ加工装置において、
     製品用の加工穴とは異なる加工穴を前記各ワーク上の所定の位置に並べることによって情報記録用の加工穴が配置される前記ワーク毎の情報記録領域内に設定される、前記ワークのうち第1のワークに初期設定された第1の情報記録用の加工穴と、前記ワークのうち第2のワークに初期設定された第2の情報記録用の加工穴と、の穴数差を算出する穴数差算出部と、
     前記第1の情報記録用の加工穴および前記第2の情報記録用の加工穴のうち加工穴の穴数が少ない方の加工穴である少数側加工穴に、前記穴数差と同数の追加の加工穴を設定する加工穴追加部と、
     前記少数側加工穴に前記追加の加工穴を設定した後の、前記第1の情報記録用の加工穴と、前記第2の情報記録用の加工穴と、にレーザ光を同時照射して前記第1および第2の情報記録用の加工穴を形成するレーザ加工部と、
     を有することを特徴とするレーザ加工装置。
    In a laser processing apparatus that simultaneously processes a plurality of workpieces with a plurality of laser beams,
    Of the workpieces, set in the information recording area for each workpiece in which the machining holes for information recording are arranged by arranging the machining holes different from the machining holes for products at predetermined positions on each workpiece The difference in the number of holes between the first information recording machining hole initially set in the first workpiece and the second information recording machining hole initially set in the second workpiece of the workpiece is calculated. A hole number difference calculating unit,
    The same number as the difference in the number of holes is added to the minority-side processed hole, which is the processed hole having the smaller number of processed holes, of the first information recording processed hole and the second information recording processed hole. Machining hole addition part to set the machining hole,
    After the additional machining hole is set in the minority side machining hole, the first information recording machining hole and the second information recording machining hole are simultaneously irradiated with laser light to A laser processing unit for forming first and second information recording processing holes;
    A laser processing apparatus comprising:
  10.  複数本のレーザ光によって複数のワークを同時にレーザ加工するよう制御する加工制御装置において、
     製品用の加工穴とは異なる加工穴を前記各ワーク上の所定の位置に並べることによって情報記録用の加工穴が配置される前記ワーク毎の情報記録領域内に設定される、前記ワークのうち第1のワークに初期設定された第1の情報記録用の加工穴と、前記ワークのうち第2のワークに初期設定された第2の情報記録用の加工穴と、の穴数差を算出する穴数差算出部と、
     前記第1の情報記録用の加工穴および前記第2の情報記録用の加工穴のうち加工穴の穴数が少ない方の加工穴である少数側加工穴に、前記穴数差と同数の追加の加工穴を設定する加工穴追加部と、
     前記少数側加工穴に前記追加の加工穴を設定した後の、前記第1の情報記録用の加工穴と、前記第2の情報記録用の加工穴と、にレーザ光を同時照射して前記第1および第2の情報記録用の加工穴を形成するよう加工指示を出力する加工指示部と、
     を有することを特徴とする加工制御装置。
    In a processing control device that controls to laser process a plurality of workpieces simultaneously with a plurality of laser beams,
    Of the workpieces, set in the information recording area for each workpiece in which the machining holes for information recording are arranged by arranging the machining holes different from the machining holes for products at predetermined positions on each workpiece The difference in the number of holes between the first information recording machining hole initially set in the first workpiece and the second information recording machining hole initially set in the second workpiece of the workpiece is calculated. A hole number difference calculating unit,
    The same number as the difference in the number of holes is added to the minority-side processed hole, which is the processed hole having the smaller number of processed holes, of the first information recording processed hole and the second information recording processed hole. Machining hole addition part to set the machining hole,
    After the additional machining hole is set in the minority side machining hole, the first information recording machining hole and the second information recording machining hole are simultaneously irradiated with laser light to A processing instruction unit for outputting a processing instruction so as to form processing holes for first and second information recording;
    A processing control apparatus comprising:
PCT/JP2009/058197 2009-04-24 2009-04-24 Laser processing method, laser processing system and processing controller WO2010122667A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/058197 WO2010122667A1 (en) 2009-04-24 2009-04-24 Laser processing method, laser processing system and processing controller
JP2011510136A JP5236071B2 (en) 2009-04-24 2009-04-24 LASER PROCESSING METHOD, LASER PROCESSING DEVICE, AND PROCESSING CONTROL DEVICE
CN200980157832.1A CN102341212B (en) 2009-04-24 2009-04-24 Laser processing method, laser processing system and processing controller
KR1020117016698A KR101270287B1 (en) 2009-04-24 2009-04-24 Laser processing method, laser processing system and processing controller
TW098121335A TWI371331B (en) 2009-04-24 2009-06-25 Method and device of laser processing and control device of processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058197 WO2010122667A1 (en) 2009-04-24 2009-04-24 Laser processing method, laser processing system and processing controller

Publications (1)

Publication Number Publication Date
WO2010122667A1 true WO2010122667A1 (en) 2010-10-28

Family

ID=43010802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058197 WO2010122667A1 (en) 2009-04-24 2009-04-24 Laser processing method, laser processing system and processing controller

Country Status (5)

Country Link
JP (1) JP5236071B2 (en)
KR (1) KR101270287B1 (en)
CN (1) CN102341212B (en)
TW (1) TWI371331B (en)
WO (1) WO2010122667A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122687A1 (en) * 2011-11-16 2013-05-16 Applied Materials, Inc. Laser scribing systems, apparatus, and methods
CN107127463A (en) * 2017-05-27 2017-09-05 东莞市盛雄激光设备有限公司 A kind of HDI circuit borings machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201431634A (en) * 2013-02-01 2014-08-16 Pard Hardware Ind Co Ltd Tool labeling method
JP6647888B2 (en) * 2016-01-29 2020-02-14 ビアメカニクス株式会社 Laser processing method and laser processing apparatus
JP6499616B2 (en) * 2016-06-10 2019-04-10 ファナック株式会社 Program creation device with function to optimize machining order
JP6783165B2 (en) * 2017-02-28 2020-11-11 ビアメカニクス株式会社 Laser processing equipment and laser processing method
CN110919168A (en) * 2018-08-31 2020-03-27 大族激光科技产业集团股份有限公司 Laser processing system and laser processing method
KR102125030B1 (en) * 2018-12-07 2020-06-19 주식회사 이오테크닉스 Apparatus for laser marking and method of laser marking using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276089A (en) * 2003-03-18 2004-10-07 Sumitomo Heavy Ind Ltd Method and device for dividing data for a plurality of axes in laser beam machining machine
JP2007237242A (en) * 2006-03-09 2007-09-20 Hitachi Via Mechanics Ltd Laser beam machining apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000811A1 (en) * 2004-06-30 2006-01-05 Matsushita Electric Industrial Co., Ltd. Diffractive optical element changer for versatile use in laser manufacturing
JP4787091B2 (en) * 2006-06-27 2011-10-05 株式会社ディスコ Via hole processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276089A (en) * 2003-03-18 2004-10-07 Sumitomo Heavy Ind Ltd Method and device for dividing data for a plurality of axes in laser beam machining machine
JP2007237242A (en) * 2006-03-09 2007-09-20 Hitachi Via Mechanics Ltd Laser beam machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122687A1 (en) * 2011-11-16 2013-05-16 Applied Materials, Inc. Laser scribing systems, apparatus, and methods
CN107127463A (en) * 2017-05-27 2017-09-05 东莞市盛雄激光设备有限公司 A kind of HDI circuit borings machine

Also Published As

Publication number Publication date
JP5236071B2 (en) 2013-07-17
CN102341212B (en) 2014-07-09
CN102341212A (en) 2012-02-01
KR101270287B1 (en) 2013-05-31
TW201038348A (en) 2010-11-01
TWI371331B (en) 2012-09-01
JPWO2010122667A1 (en) 2012-10-22
KR20110106381A (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5236071B2 (en) LASER PROCESSING METHOD, LASER PROCESSING DEVICE, AND PROCESSING CONTROL DEVICE
CN104114506B (en) Methods and apparatus for machining strengthened glass and articles produced thereby
JP4765378B2 (en) Laser processing equipment
US20160243646A1 (en) Laser systems and methods for large area modification
US9463528B2 (en) Laser systems and methods for internally marking thin layers, and articles produced thereby
JP6698661B2 (en) Adaptive partial profile generation via independent lateral measurement using alignment features
JP2008012916A (en) Composite sheet, machining method of composite sheet and laser machining device
TW201635614A (en) 3-D patterning method using laser
KR20200020802A (en) Focus calibration of the output radiation source of additive manufacturing devices
CN112996652A (en) Automatic calibration of laser processing systems using integrated telecentric optical detectors with limited degrees of freedom
TW201634166A (en) Method of setting laser drilling processing conditions and laser processing machine
JP6759619B2 (en) Metal mask processing method for vapor deposition and metal mask processing equipment for vapor deposition
JP2004358550A (en) Laser beam machining method and laser beam machining apparatus
JP3378242B1 (en) Laser processing method and processing apparatus
JP5165107B2 (en) Laser processing method and laser processing apparatus
US7933675B2 (en) Machining apparatus for drilling printed circuit board
JP2008055480A (en) Laser marking method and laser marking system
JP2006239743A (en) Laser beam machining method
WO2013094025A1 (en) Laser processing method
JPS5853444A (en) Laser marking device
JP7283982B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
KR200414733Y1 (en) Laser marking apparatus
US20200301367A1 (en) Method for marking a sapphire watch crystal
JP5046289B2 (en) Laser marking device
US20050045605A1 (en) Method and arrangement for laser engraving a substrate surface

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157832.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510136

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117016698

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843665

Country of ref document: EP

Kind code of ref document: A1