WO2013094025A1 - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
WO2013094025A1
WO2013094025A1 PCT/JP2011/079539 JP2011079539W WO2013094025A1 WO 2013094025 A1 WO2013094025 A1 WO 2013094025A1 JP 2011079539 W JP2011079539 W JP 2011079539W WO 2013094025 A1 WO2013094025 A1 WO 2013094025A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
laser
shape
excavation
irradiation
Prior art date
Application number
PCT/JP2011/079539
Other languages
French (fr)
Japanese (ja)
Inventor
裕 本木
俊博 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012525788A priority Critical patent/JP5100917B1/en
Priority to KR1020137017497A priority patent/KR20130086388A/en
Priority to PCT/JP2011/079539 priority patent/WO2013094025A1/en
Publication of WO2013094025A1 publication Critical patent/WO2013094025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning

Definitions

  • the present invention relates to a laser processing method for drilling a workpiece by laser light irradiation.
  • Drilling with a laser processing machine is applied to the formation of blind holes by drilling until reaching a desired depth without penetrating the workpiece.
  • a blind hole may be formed by excavation from the resin layer to the copper foil layer.
  • Copper is regarded as one of highly reflective materials that reflect laser light with high efficiency.
  • the laser light reaches the copper foil layer through excavation of the resin layer, the laser light is reflected by the copper foil layer, so that the progress of the laser processing beyond that is stopped.
  • the progress of the laser processing is stopped when the copper foil layer is exposed. In this case, a sufficient number of shots of laser light can be irradiated to perform uniform processing up to the copper foil layer.
  • Patent Document 1 proposes a technique of superimposing irradiation regions of laser light whose energy density distribution is controlled in order to suppress the occurrence of unevenness due to overlapping of laser light.
  • the laser beam When using a laser beam whose energy density is attenuated from the center of the beam cross section toward the periphery, in order to equalize the energy received on the workpiece, it is half of the width of the beam cross section.
  • the laser beam is irradiated every time the relative movement is performed at the pitch. In this case, the relative movement of the laser light is performed for the entire excavation area so that the irradiation areas overlap in two consecutive shots.
  • the laser processing machine requires a special optical system for producing laser light having a desired energy distribution.
  • a laser beam having a rectangular beam cross section that is inclined so that each side is inclined with respect to the scanning direction of the laser beam is used.
  • a part of the irradiation area corresponding to the rectangular corner portion continuously remains on the outer edge of the excavation area.
  • additional work for shaping the outer edge of the excavation area is required. If the beam cross-section is further reduced in order to allow it to be regarded as a straight line even if the rectangular corner portion remains, the number of shots required for processing is further increased.
  • the present invention has been made in view of the above, and obtains a laser processing method capable of processing an excavation region wider than the beam cross section of the laser beam by reducing unevenness and making the depth uniform and efficiently. For the purpose.
  • the present invention sequentially irradiates the excavation area of a workpiece with laser light having a small beam cross section with respect to the excavation area, thereby processing the excavation area.
  • a laser processing method wherein a laser beam forming a first irradiation region corresponding to the beam cross-section of the first shape is formed on the workpiece with a beam cross-section of a first shape.
  • the first processing step of sequentially irradiating the entire surface of the first and second beam sections smaller than the first shape, and a beam section corresponding to the second shape on the workpiece.
  • the processing steps are performed. Generation of unevenness is suppressed by setting a region other than the overlapping region in which a part of the first irradiation region is overlapped as the second irradiation region.
  • the distribution of the energy density of the laser light is arbitrary without adjustment, and the adjustment of the overlapping amount of the irradiation area of the laser light and the special optical system according to the energy distribution are not required.
  • An excavation area having a straight side as an outer edge can be obtained without additional work for shaping the outer edge of the excavation area.
  • the excavation area wider than the beam cross section of the laser beam can be processed efficiently by reducing the unevenness and making the depth uniform and efficiently.
  • FIG. 1 is a diagram showing a schematic configuration of a laser processing machine to which a laser processing method according to an embodiment of the present invention is applied.
  • FIG. 2 is a diagram for explaining the irradiation region in the first processing step and the irradiation region in the second processing step.
  • FIG. 3 is a schematic diagram for explaining the relationship between the first irradiation region and the second irradiation region and the state in which the workpiece is excavated.
  • FIG. 4 is a diagram for explaining an example of the relationship between the position of the first irradiation region and the position of the second irradiation region.
  • FIG. 5 is a diagram illustrating an example of the relationship between the position of the first irradiation region and the position of the second irradiation region.
  • FIG. 1 is a diagram showing a schematic configuration of a laser processing machine to which a laser processing method according to an embodiment of the present invention is applied.
  • the laser processing machine 100 is an apparatus that performs laser processing on the workpiece 3 by irradiating the workpiece 3 with laser light L (pulse laser light).
  • the workpiece 3 is, for example, a printed wiring board including a surface resin layer and an inner copper foil layer.
  • the laser processing machine 100 processes, for example, a surface resin layer. In the laser processing method of the present embodiment, any material may be processed as the workpiece 3.
  • the laser oscillator 1 emits a beam-shaped laser beam L.
  • the beam shaping unit 10 shapes the beam cross section of the laser light L.
  • the galvano scanner 11 rotates the galvanometer mirror 13.
  • the galvanometer mirror 13 reflects the laser light L from the beam shaping unit 10.
  • the galvanometer mirror 13 changes the traveling direction of the laser light L by rotating.
  • the galvano scanner 12 rotates the galvanometer mirror 14.
  • the galvanometer mirror 14 reflects the laser light L from the galvanometer mirror 13.
  • the galvanometer mirror 14 changes the traveling direction of the laser light L by rotating.
  • the galvanometer mirrors 13 and 14 move the irradiation region of the laser beam L in the XY directions on the workpiece 3.
  • the f ⁇ lens 15 is a condensing lens having telecentricity.
  • the f ⁇ lens 15 aligns the direction of the chief ray of the laser light L in the Z direction perpendicular to the XY plane.
  • the XY table 16 is placed on the workpiece 3 and moves in the XY plane by driving an X-axis motor and a Y-axis motor (both not shown). Thereby, the XY table 16 moves the workpiece 3 in the X direction and the Y direction.
  • the processing control device 2 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the processing control device 2 controls the entire laser processing machine 100.
  • the machining control device 2 performs NC (Numerical Control) control of the laser oscillator 1, the galvano scanners 11 and 12, and the XY table 16 in accordance with the machining program.
  • NC Numerical Control
  • the laser beam machine 100 forms a blind hole in the workpiece 3 by performing excavation until it reaches a desired depth without penetrating the workpiece 3.
  • the laser processing machine 100 processes the excavation area by sequentially irradiating the laser beam L while moving the irradiation area in the excavation area of the workpiece 3.
  • the excavation area is an area to be excavated by the laser beam L as a whole.
  • the laser processing machine 100 processes the excavation area of the workpiece 3 through the first processing step and the second processing step.
  • the laser processing machine 100 sequentially irradiates the entire excavation region with laser light having a first-shaped beam cross section.
  • the first shape is, for example, a square.
  • the first shape is smaller than the excavation area.
  • the laser processing machine 100 applies, for example, a mask having a first shape opening as the beam shaping unit 10.
  • the laser processing machine 100 sequentially irradiates the excavation area with laser light having a second-shaped beam cross section.
  • the second shape is smaller than the excavation area and smaller than the second shape.
  • the second shape is, for example, a square.
  • the laser processing machine 100 applies, for example, a mask having a second shape opening as the beam shaping unit 10.
  • the beam shaping unit 10 may be any optical element that can change the shape of the beam cross section of the laser light L to the first shape and the second shape.
  • FIG. 2 is a diagram for explaining the irradiation region in the first processing step and the irradiation region in the second processing step.
  • FIG. 3 is a schematic diagram for explaining the relationship between the first irradiation region and the second irradiation region and the state in which the workpiece is excavated.
  • the laser processing machine 100 may perform either the first processing step or the second processing step first.
  • the laser beam L forms the first irradiation region 21 on the workpiece 3.
  • the first irradiation region 21 corresponds to a beam cross section of the first shape. Due to the transfer limit when the image of the first shape, which is the opening of the mask, is transferred onto the workpiece 3, the first irradiation region 21 has a shape with rounded corners. The first irradiation area 21 is smaller than the excavation area 24.
  • the laser processing machine 100 sequentially irradiates the entire excavation region 24 with the laser light L so as to form an overlapping region 23 in which parts of the first irradiation region 21 overlap each other. For example, the laser processing machine 100 sequentially moves the position of the laser beam L so that two first irradiation regions 21 in the X direction and two Y irradiation directions are formed with respect to the excavation region 24 having a shape close to a square.
  • a part of the first irradiation areas 21 adjacent in the X direction and a part of the first irradiation areas 21 adjacent in the Y direction constitute the overlapping area 23, respectively.
  • the overlapping region 23 has a cross shape with the center of the excavation region 24 as an intersection in the XY plane.
  • the workpiece 3 is dug deeply in the overlapping region 23 in the first irradiation region 21.
  • the intersection portion where the four first irradiation regions 21 overlap is a superposition of a rounded corner portion of each first irradiation region 21, and thus other portions of the overlapping region 23.
  • excavation is unlikely to progress greatly.
  • excavation progresses greatly in the overlapping region 23 as compared with the portion other than the overlapping region 23 in the first irradiation region 21.
  • the laser beam L forms the second irradiation region 22 on the workpiece 3.
  • the second irradiation region 22 corresponds to a beam cross section having a second shape. Similar to the first irradiation region 21, the second irradiation region 22 has a rounded corner at a square due to the transfer limit when transferring the second shape image, which is the opening of the mask, onto the workpiece 3. It becomes a shape.
  • the second irradiation area 22 is smaller than the excavation area 24 and smaller than the first irradiation area 21.
  • the laser processing machine 100 sequentially irradiates the laser light L such that the second irradiation region 22 is included in the region other than the overlapping region 23 in the excavation region 24.
  • the area other than the overlapping area 23 is divided into two in the X direction and two in the Y direction by the cross-shaped overlapping area 23.
  • the laser beam machine 100 sequentially moves the position of the laser beam L so that the second irradiation region 22 matches each of the four regions.
  • An interval corresponding to the width of the overlapping region 23 is provided between the second irradiation regions 22 adjacent in the X direction and between the second irradiation regions 22 adjacent in the Y direction.
  • the workpiece 3 is dug in a portion other than the overlapping region 23.
  • the laser processing machine 100 excavates a depth corresponding to the difference between the depth of the overlapping region 23 and the depth of the portion other than the overlapping region 23 in the first processing step.
  • the laser beam machine 100 excavates the second irradiation area 22 until it reaches the depth of the overlapping area 23.
  • the laser beam machine 100 forms a blind hole in the workpiece 3 in which the entire excavation region 24 has a uniform depth by the first and second machining steps.
  • the laser processing machine 100 uses the laser beam L having the same energy in the first processing step and the second processing step, for example.
  • the laser processing machine 100 irradiates the entire excavation region 24 with the laser light L by a total of four shots, once for each of the four regions partially overlapping each other.
  • the laser processing machine 100 irradiates the laser light L by four shots, once for each of four regions that are spaced from each other in the excavation region 24.
  • the laser processing machine 100 may irradiate each region with the laser beam L by a plurality of shots.
  • the laser processing machine 100 sets the energy of the laser beam L in the second processing step to be smaller than the energy of the laser beam L in the first processing step.
  • the laser processing machine 100 may appropriately adjust the number of shots and energy of the laser light L according to the finished state required for the blind hole obtained by the first processing step and the second processing step.
  • the laser processing method includes a first processing step in which parts of the first irradiation region 21 are overlapped with each other, and a second processing step in which the second irradiation region 22 is made to coincide with other than the overlapping region 23.
  • the laser beam L may be shaped in the beam cross section in the first processing step and the second processing step, and no special adjustment of the energy distribution is necessary.
  • the laser processing method it is possible to obtain the excavation region 24 having a straight side as the outer edge without performing additional processing for shaping the outer edge of the excavation region 24.
  • the excavation region 24 wider than the beam cross section of the laser light L can be processed efficiently by reducing the unevenness and making the depth uniform.
  • the laser processing machine 100 includes one of the first irradiation regions 21 in the first processing step and one of the second irradiation regions 22 in the second processing step. Then, the center positions are matched.
  • the laser processing machine 100 can use a common coordinate as a target on which the laser beam L is incident in the first processing step and the second processing step. Thereby, the laser beam machine 100 can facilitate control.
  • the laser processing machine 100 includes one of the first irradiation regions 21 in the first processing step and one of the second irradiation regions 22 in the second processing step.
  • a part of the outer edge of the second irradiation region 22 is made to coincide with a portion of the first irradiation region 21 that constitutes the outer edge of the excavation region 24.
  • Two sides in a direction perpendicular to each other in a substantially square formed by the first irradiation region 21 and two sides in a direction perpendicular to each other in a substantially square formed by the second irradiation region 22 are at the outer edge of the excavation region 24. Match.
  • the laser processing machine 100 matches the boundary of the region where excavation is performed in the first processing step and the boundary of the region where excavation is performed in the second processing step at the outer edge of the excavation region 24. Thereby, the laser beam machine 100 can reduce the occurrence of irregularities in the vicinity of the outer edge of the excavation region 24. Further, the laser processing machine 100 can form a tapered surface or the like on the outer edge of the excavation region 24.
  • the laser processing machine 100 determines the position of the first irradiation region 21 and the position of the second irradiation region 22 according to the shape required for the blind hole obtained by the first processing step and the second processing step. You may adjust suitably.
  • a square is adopted as the first shape and the second shape for the substantially square excavation region 24, so that the second irradiation region 22 is provided in a region other than the overlapping region 23.
  • the first shape and the second shape are not limited to a square shape, and can be appropriately modified.
  • the first shape and the second shape may be rectangular, for example.
  • the second irradiation region 22 is formed in a region other than the overlapping region 23 by adopting a rectangle as the first shape and the second shape. Can be matched. By adopting a rectangle as the first shape and the second shape, it is possible to obtain the excavation region 24 having a straight side as an outer edge.
  • the laser processing method according to the present invention is useful for processing for excavating a region larger than the beam cross section, and is suitable for, for example, drilling a printed wiring board, counterbore processing with a large diameter, and the like.

Abstract

A laser processing method, including: a first machining step in which a laser light, that forms a beam cross-section having a first shape and forms upon an object to be machined a first irradiation area (21) corresponding to the beam cross-section having the first shape, is sequentially irradiated over the entirety of an excavation area (24); and a second machining step in which a laser light, that forms a beam cross-section having a second shape smaller than the first shape and forms upon the object to be machined a second irradiation area (22) corresponding to the beam cross-section having the second shape, is sequentially irradiated on the excavation area (24). In the first machining step, the laser light forming the first irradiation area (21) is sequentially irradiated so as to form an overlapping area (23) wherein sections in the first irradiation area (21) overlap each other. In the second machining step, the laser light forming the second irradiation area (22) is sequentially irradiated such that the second irradiation area (22) is included in an area in the excavation area (24) other than the overlapping area (23).

Description

レーザ加工方法Laser processing method
 本発明は、レーザ光の照射により、被加工物に穴あけ加工を施すレーザ加工方法に関する。 The present invention relates to a laser processing method for drilling a workpiece by laser light irradiation.
 レーザ加工機による穴あけ加工は、被加工物を貫かず所望の深さに到達するまで掘削を施すことで、止まり穴の形成に適用されている。例えば、表層の樹脂層と内層の銅箔層とを備えるプリント配線板において、樹脂層から銅箔層に到達するまでの掘削により、止まり穴を形成することがある。銅は、レーザ光を高い効率で反射させる高反射性材料の一つとされている。樹脂層の掘削を経て、レーザ光が銅箔層に到達すると、銅箔層でレーザ光が反射することで、その先へのレーザ加工の進行が停止される。銅箔層が掘削領域の全体に露出する場合、銅箔層が露出した時点でレーザ加工の進行は停止される。この場合、十分なショット数のレーザ光を照射させて、銅箔層までの均一な加工ができる。 Drilling with a laser processing machine is applied to the formation of blind holes by drilling until reaching a desired depth without penetrating the workpiece. For example, in a printed wiring board including a surface resin layer and an inner copper foil layer, a blind hole may be formed by excavation from the resin layer to the copper foil layer. Copper is regarded as one of highly reflective materials that reflect laser light with high efficiency. When the laser light reaches the copper foil layer through excavation of the resin layer, the laser light is reflected by the copper foil layer, so that the progress of the laser processing beyond that is stopped. When the copper foil layer is exposed to the entire excavation area, the progress of the laser processing is stopped when the copper foil layer is exposed. In this case, a sufficient number of shots of laser light can be irradiated to perform uniform processing up to the copper foil layer.
 近年、プリント配線板の加工において、銅箔層が形成された領域に対して広い底面を持つ止まり穴を形成する事例が増加している。この場合、樹脂層の掘削により銅箔層が露出してからも、銅箔層の周囲においてレーザ加工が進行し得ることで、均一な深さの止まり穴を形成することが困難となる。レーザ光のビーム断面より広い領域を掘削する場合、被加工物に対してレーザ光の照射領域を相対移動させながらレーザ加工を行う。この場合、複数のショットにおけるレーザ光の照射領域が重なる部分と、重ならない部分とによって、無用な凹凸が生じることがある。例えば、特許文献1には、レーザ光の重なりによる凹凸の発生を抑制させるために、エネルギー密度分布が制御されたレーザ光の照射領域を重ね合わせる技術が提案されている。 In recent years, in the processing of printed wiring boards, there are an increasing number of cases where a blind hole having a wide bottom surface is formed in an area where a copper foil layer is formed. In this case, even if the copper foil layer is exposed by excavation of the resin layer, laser processing can proceed around the copper foil layer, making it difficult to form a blind hole having a uniform depth. When excavating a region wider than the beam cross section of the laser beam, laser processing is performed while moving the laser beam irradiation region relative to the workpiece. In this case, useless unevenness may be caused by a portion where the laser light irradiation regions in a plurality of shots overlap and a portion where they do not overlap. For example, Patent Document 1 proposes a technique of superimposing irradiation regions of laser light whose energy density distribution is controlled in order to suppress the occurrence of unevenness due to overlapping of laser light.
特開平11-320156号公報Japanese Patent Laid-Open No. 11-320156
 ビーム断面の中心から周辺部に向けてエネルギー密度を減衰させたレーザ光を使用する場合に、被加工物上で受けるエネルギーを均等にするには、ビーム断面の幅に対して2分の1のピッチで相対移動するごとにレーザ光を照射することになる。この場合、連続する二回のショットにおける照射領域が重なるようなレーザ光の相対移動を、掘削領域の全体について行うこととなる。均一な加工を可能とするには、レーザ光のエネルギー分布と、レーザ光の照射領域を重ね合わせる量との厳密な調整を要する。レーザ加工機は、所望のエネルギー分布のレーザ光を作るための特殊な光学系を要する。 When using a laser beam whose energy density is attenuated from the center of the beam cross section toward the periphery, in order to equalize the energy received on the workpiece, it is half of the width of the beam cross section. The laser beam is irradiated every time the relative movement is performed at the pitch. In this case, the relative movement of the laser light is performed for the entire excavation area so that the irradiation areas overlap in two consecutive shots. In order to enable uniform processing, it is necessary to strictly adjust the energy distribution of the laser light and the amount of overlapping of the laser light irradiation regions. The laser processing machine requires a special optical system for producing laser light having a desired energy distribution.
 特許文献1の技術では、レーザ光の走査方向に対して各辺が斜めとなるように傾けられた矩形のビーム断面のレーザ光を使用する。掘削領域の外縁には、被加工物を平面視した場合において、矩形の角部分に相当する照射領域の一部分が連続して残存する。直線状の辺を外縁とする掘削領域を得るには、掘削領域の外縁を整形するための追加工を要することになる。矩形の角部分が残存しても直線とみなし得るようにするために、ビーム断面をさらに小さくした場合、加工に要するショット数をさらに増大させることとなる。 In the technique of Patent Document 1, a laser beam having a rectangular beam cross section that is inclined so that each side is inclined with respect to the scanning direction of the laser beam is used. When the workpiece is viewed in plan, a part of the irradiation area corresponding to the rectangular corner portion continuously remains on the outer edge of the excavation area. In order to obtain an excavation area having a straight side as an outer edge, additional work for shaping the outer edge of the excavation area is required. If the beam cross-section is further reduced in order to allow it to be regarded as a straight line even if the rectangular corner portion remains, the number of shots required for processing is further increased.
 本発明は、上記に鑑みてなされたものであって、レーザ光のビーム断面より広い掘削領域を、凹凸を低減させて深さを均一とし、かつ効率的に加工可能とするレーザ加工方法を得ることを目的とする。 The present invention has been made in view of the above, and obtains a laser processing method capable of processing an excavation region wider than the beam cross section of the laser beam by reducing unevenness and making the depth uniform and efficiently. For the purpose.
 上述した課題を解決し、目的を達成するために、本発明は、被加工物の掘削領域へ、前記掘削領域に対して小さいビーム断面をなすレーザ光を順次照射させ、前記掘削領域を加工するレーザ加工方法であって、第1の形状のビーム断面をなし、前記被加工物上にて、前記第1の形状のビーム断面に相当する第1の照射領域をなすレーザ光を、前記掘削領域の全体へ順次照射させる第1の加工工程と、前記第1の形状より小さい第2の形状のビーム断面をなし、前記被加工物上にて、前記第2の形状のビーム断面に相当する第2の照射領域をなすレーザ光を、前記掘削領域へ順次照射させる第2の加工工程と、を含み、前記第1の加工工程では、前記第1の照射領域の一部分同士が互いに重畳する重畳領域を形成するように、前記第1の照射領域をなすレーザ光を順次照射させ、前記第2の加工工程では、前記掘削領域のうち前記重畳領域以外の領域に前記第2の照射領域が含まれるように、前記第2の照射領域をなすレーザ光を順次照射させることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention sequentially irradiates the excavation area of a workpiece with laser light having a small beam cross section with respect to the excavation area, thereby processing the excavation area. A laser processing method, wherein a laser beam forming a first irradiation region corresponding to the beam cross-section of the first shape is formed on the workpiece with a beam cross-section of a first shape. The first processing step of sequentially irradiating the entire surface of the first and second beam sections smaller than the first shape, and a beam section corresponding to the second shape on the workpiece. A second processing step of sequentially irradiating the excavation region with laser light forming two irradiation regions, and in the first processing step, a part of the first irradiation regions overlap each other. Said first irradiation so as to form In the second processing step, the second irradiation region is formed so that the second irradiation region is included in a region other than the overlapping region in the excavation region. It is characterized by sequentially irradiating laser beams.
 本発明にかかるレーザ加工方法では、照射領域の一部を重畳させながら掘削領域の全体にレーザ光を順次照射させる第1の加工工程と、重畳領域以外の領域にレーザ光を順次照射させる第2の加工工程とを実施する。第1の照射領域の一部分同士を重畳させた重畳領域以外の領域を第2の照射領域とすることで、凹凸の発生を抑制させる。レーザ光のエネルギー密度の分布は調節を要さず任意であって、エネルギー分布に応じた、レーザ光の照射領域の重ね合わせ量の調整や、特殊な光学系が不要となる。掘削領域の外縁を整形するための追加工をしなくても、直線状の辺を外縁とする掘削領域を得ることができる。これにより、レーザ光のビーム断面より広い掘削領域を、凹凸を低減させて深さを均一とし、かつ効率的に加工することができるという効果を奏する。 In the laser processing method according to the present invention, a first processing step of sequentially irradiating the entire excavation region with the laser light while overlapping a part of the irradiation region, and a second of sequentially irradiating the laser beam to the region other than the overlap region. The processing steps are performed. Generation of unevenness is suppressed by setting a region other than the overlapping region in which a part of the first irradiation region is overlapped as the second irradiation region. The distribution of the energy density of the laser light is arbitrary without adjustment, and the adjustment of the overlapping amount of the irradiation area of the laser light and the special optical system according to the energy distribution are not required. An excavation area having a straight side as an outer edge can be obtained without additional work for shaping the outer edge of the excavation area. As a result, the excavation area wider than the beam cross section of the laser beam can be processed efficiently by reducing the unevenness and making the depth uniform and efficiently.
図1は、本発明の実施の形態にかかるレーザ加工方法を適用するレーザ加工機の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a laser processing machine to which a laser processing method according to an embodiment of the present invention is applied. 図2は、第1の加工工程における照射領域と、第2の加工工程における照射領域とについて説明する図である。FIG. 2 is a diagram for explaining the irradiation region in the first processing step and the irradiation region in the second processing step. 図3は、第1の照射領域および第2の照射領域と、被加工物が掘削される状態との関係を説明する模式図である。FIG. 3 is a schematic diagram for explaining the relationship between the first irradiation region and the second irradiation region and the state in which the workpiece is excavated. 図4は、第1の照射領域の位置と第2の照射領域の位置との関係の例を説明する図である。FIG. 4 is a diagram for explaining an example of the relationship between the position of the first irradiation region and the position of the second irradiation region. 図5は、第1の照射領域の位置と第2の照射領域の位置との関係の例を説明する図である。FIG. 5 is a diagram illustrating an example of the relationship between the position of the first irradiation region and the position of the second irradiation region.
 以下に、本発明にかかるレーザ加工方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the laser processing method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかるレーザ加工方法を適用するレーザ加工機の概略構成を示す図である。レーザ加工機100は、被加工物3へレーザ光L(パルスレーザ光)を照射することにより、被加工物3にレーザ加工を施す装置である。
Embodiment.
FIG. 1 is a diagram showing a schematic configuration of a laser processing machine to which a laser processing method according to an embodiment of the present invention is applied. The laser processing machine 100 is an apparatus that performs laser processing on the workpiece 3 by irradiating the workpiece 3 with laser light L (pulse laser light).
 被加工物3は、例えば、表層の樹脂層と内層の銅箔層とを備えるプリント配線板である。レーザ加工機100は、例えば、表層の樹脂層を加工する。本実施の形態のレーザ加工方法は、被加工物3として、いずれの材料を加工対象とするものであっても良い。 The workpiece 3 is, for example, a printed wiring board including a surface resin layer and an inner copper foil layer. The laser processing machine 100 processes, for example, a surface resin layer. In the laser processing method of the present embodiment, any material may be processed as the workpiece 3.
 レーザ発振器1は、ビーム状のレーザ光Lを射出する。ビーム整形部10は、レーザ光Lのビーム断面を整形する。ガルバノスキャナ11は、ガルバノミラー13を回動させる。ガルバノミラー13は、ビーム整形部10からのレーザ光Lを反射する。ガルバノミラー13は、回動することで、レーザ光Lの進行方向を変化させる。 The laser oscillator 1 emits a beam-shaped laser beam L. The beam shaping unit 10 shapes the beam cross section of the laser light L. The galvano scanner 11 rotates the galvanometer mirror 13. The galvanometer mirror 13 reflects the laser light L from the beam shaping unit 10. The galvanometer mirror 13 changes the traveling direction of the laser light L by rotating.
 ガルバノスキャナ12は、ガルバノミラー14を回動させる。ガルバノミラー14は、ガルバノミラー13からのレーザ光Lを反射する。ガルバノミラー14は、回動することで、レーザ光Lの進行方向を変化させる。ガルバノミラー13および14は、被加工物3上のXY方向について、レーザ光Lの照射領域を移動させる。 The galvano scanner 12 rotates the galvanometer mirror 14. The galvanometer mirror 14 reflects the laser light L from the galvanometer mirror 13. The galvanometer mirror 14 changes the traveling direction of the laser light L by rotating. The galvanometer mirrors 13 and 14 move the irradiation region of the laser beam L in the XY directions on the workpiece 3.
 fθレンズ15は、テレセントリック性を備える集光レンズである。fθレンズ15は、XY面に垂直なZ方向に、レーザ光Lの主光線の向きを揃える。XYテーブル16は、被加工物3が載置されるとともに、X軸モータおよびY軸モータ(いずれも図示省略)の駆動によってXY平面内を移動する。これにより、XYテーブル16は、被加工物3をX方向およびY方向へ移動させる。 The fθ lens 15 is a condensing lens having telecentricity. The fθ lens 15 aligns the direction of the chief ray of the laser light L in the Z direction perpendicular to the XY plane. The XY table 16 is placed on the workpiece 3 and moves in the XY plane by driving an X-axis motor and a Y-axis motor (both not shown). Thereby, the XY table 16 moves the workpiece 3 in the X direction and the Y direction.
 加工制御装置2は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。加工制御装置2は、レーザ加工機100全体を制御する。加工制御装置2は、加工プログラムに従い、レーザ発振器1、ガルバノスキャナ11および12、XYテーブル16のNC(Numerical Control)制御を実施する。 The processing control device 2 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The processing control device 2 controls the entire laser processing machine 100. The machining control device 2 performs NC (Numerical Control) control of the laser oscillator 1, the galvano scanners 11 and 12, and the XY table 16 in accordance with the machining program.
 レーザ加工機100は、被加工物3を貫かず所望の深さに到達するまで掘削を施すことで、被加工物3に止まり穴を形成する。レーザ加工機100は、被加工物3の掘削領域において照射領域を移動させながらレーザ光Lを順次照射させることで、掘削領域を加工する。掘削領域とは、レーザ光Lによる掘削を全体に施す対象である領域とする。 The laser beam machine 100 forms a blind hole in the workpiece 3 by performing excavation until it reaches a desired depth without penetrating the workpiece 3. The laser processing machine 100 processes the excavation area by sequentially irradiating the laser beam L while moving the irradiation area in the excavation area of the workpiece 3. The excavation area is an area to be excavated by the laser beam L as a whole.
 レーザ加工機100は、第1の加工工程および第2の加工工程を経て、被加工物3の掘削領域を加工する。第1の加工工程では、レーザ加工機100は、第1の形状のビーム断面をなすレーザ光を、掘削領域の全体へ順次照射させる。第1の形状は、例えば正方形とする。第1の形状は、掘削領域より小さい。レーザ加工機100は、第1の加工工程において、例えば、第1の形状の開口を備えるマスクを、ビーム整形部10として適用する。 The laser processing machine 100 processes the excavation area of the workpiece 3 through the first processing step and the second processing step. In the first processing step, the laser processing machine 100 sequentially irradiates the entire excavation region with laser light having a first-shaped beam cross section. The first shape is, for example, a square. The first shape is smaller than the excavation area. In the first processing step, the laser processing machine 100 applies, for example, a mask having a first shape opening as the beam shaping unit 10.
 第2の加工工程では、レーザ加工機100は、第2の形状のビーム断面をなすレーザ光を、掘削領域へ順次照射させる。第2の形状は、掘削領域より小さく、かつ第2の形状より小さい。第2の形状は、例えば正方形とする。レーザ加工機100は、第2の加工工程において、例えば、第2の形状の開口を備えるマスクを、ビーム整形部10として適用する。なお、ビーム整形部10は、マスクの他、レーザ光Lのビーム断面の形状を第1の形状と第2の形状とに変更可能ないずれの光学素子であっても良い。 In the second processing step, the laser processing machine 100 sequentially irradiates the excavation area with laser light having a second-shaped beam cross section. The second shape is smaller than the excavation area and smaller than the second shape. The second shape is, for example, a square. In the second processing step, the laser processing machine 100 applies, for example, a mask having a second shape opening as the beam shaping unit 10. In addition to the mask, the beam shaping unit 10 may be any optical element that can change the shape of the beam cross section of the laser light L to the first shape and the second shape.
 図2は、第1の加工工程における照射領域と、第2の加工工程における照射領域とについて説明する図である。図3は、第1の照射領域および第2の照射領域と、被加工物が掘削される状態との関係を説明する模式図である。レーザ加工機100は、第1の加工工程および第2の加工工程のいずれを先に実施しても良いものとする。 FIG. 2 is a diagram for explaining the irradiation region in the first processing step and the irradiation region in the second processing step. FIG. 3 is a schematic diagram for explaining the relationship between the first irradiation region and the second irradiation region and the state in which the workpiece is excavated. The laser processing machine 100 may perform either the first processing step or the second processing step first.
 第1の加工工程において、レーザ光Lは、被加工物3上にて第1の照射領域21をなす。第1の照射領域21は、第1の形状のビーム断面に相当する。マスクの開口である第1の形状の像を被加工物3上に転写する際の転写限界により、第1の照射領域21は、正方形の角に丸みを持つ形状となる。第1の照射領域21は、掘削領域24より小さい。 In the first processing step, the laser beam L forms the first irradiation region 21 on the workpiece 3. The first irradiation region 21 corresponds to a beam cross section of the first shape. Due to the transfer limit when the image of the first shape, which is the opening of the mask, is transferred onto the workpiece 3, the first irradiation region 21 has a shape with rounded corners. The first irradiation area 21 is smaller than the excavation area 24.
 第1の加工工程では、レーザ加工機100は、第1の照射領域21の一部分同士が互いに重畳する重畳領域23を形成するように、掘削領域24の全体にレーザ光Lを順次照射させる。レーザ加工機100は、例えば、正方形に近い形状の掘削領域24に対して、X方向に二つ、Y方向に二つの第1の照射領域21をなすように、レーザ光Lの位置を順次移動させる。 In the first processing step, the laser processing machine 100 sequentially irradiates the entire excavation region 24 with the laser light L so as to form an overlapping region 23 in which parts of the first irradiation region 21 overlap each other. For example, the laser processing machine 100 sequentially moves the position of the laser beam L so that two first irradiation regions 21 in the X direction and two Y irradiation directions are formed with respect to the excavation region 24 having a shape close to a square. Let
 この場合において、X方向において隣り合う第1の照射領域21の一部分同士、Y方向において隣り合う第1の照射領域21の一部分同士が、それぞれ重畳領域23を構成する。重畳領域23は、XY面内において、掘削領域24の中心を交点とする十字型をなしている。 In this case, a part of the first irradiation areas 21 adjacent in the X direction and a part of the first irradiation areas 21 adjacent in the Y direction constitute the overlapping area 23, respectively. The overlapping region 23 has a cross shape with the center of the excavation region 24 as an intersection in the XY plane.
 第1の加工工程では、被加工物3は、第1の照射領域21のうち重畳領域23が深く掘り込まれる。重畳領域23のうち、四つの第1の照射領域21が重畳する交点部分は、各第1の照射領域21のうち丸みを帯びた角部分の重畳であることから、重畳領域23のその他の部分に比べて掘削が大きく進行することにはなりにくい。これに対して、重畳領域23は、第1の照射領域21のうち重畳領域23以外の部分に比べて、掘削が大きく進行することとなる。 In the first processing step, the workpiece 3 is dug deeply in the overlapping region 23 in the first irradiation region 21. In the overlapping region 23, the intersection portion where the four first irradiation regions 21 overlap is a superposition of a rounded corner portion of each first irradiation region 21, and thus other portions of the overlapping region 23. Compared to this, excavation is unlikely to progress greatly. On the other hand, excavation progresses greatly in the overlapping region 23 as compared with the portion other than the overlapping region 23 in the first irradiation region 21.
 第2の加工工程において、レーザ光Lは、被加工物3上にて第2の照射領域22をなす。第2の照射領域22は、第2の形状のビーム断面に相当する。第1の照射領域21と同様、マスクの開口である第2の形状の像を被加工物3上に転写する際の転写限界により、第2の照射領域22は、正方形の角に丸みを持つ形状となる。第2の照射領域22は、掘削領域24より小さく、かつ第1の照射領域21より小さい。 In the second processing step, the laser beam L forms the second irradiation region 22 on the workpiece 3. The second irradiation region 22 corresponds to a beam cross section having a second shape. Similar to the first irradiation region 21, the second irradiation region 22 has a rounded corner at a square due to the transfer limit when transferring the second shape image, which is the opening of the mask, onto the workpiece 3. It becomes a shape. The second irradiation area 22 is smaller than the excavation area 24 and smaller than the first irradiation area 21.
 第2の加工工程では、レーザ加工機100は、掘削領域24のうち重畳領域23以外の領域に、第2の照射領域22が含まれるように、レーザ光Lを順次照射させる。掘削領域24のうち重畳領域23以外の領域は、十字型の重畳領域23によってX方向に二つ、Y方向に二つに分断される。レーザ加工機100は、かかる四つの領域の各々に第2の照射領域22が一致するように、レーザ光Lの位置を順次移動させる。X方向において隣り合う第2の照射領域22同士の間、Y方向において隣り合う第2の照射領域22同士の間には、それぞれ重畳領域23の幅に相当する間隔が設けられる。 In the second processing step, the laser processing machine 100 sequentially irradiates the laser light L such that the second irradiation region 22 is included in the region other than the overlapping region 23 in the excavation region 24. Of the excavation area 24, the area other than the overlapping area 23 is divided into two in the X direction and two in the Y direction by the cross-shaped overlapping area 23. The laser beam machine 100 sequentially moves the position of the laser beam L so that the second irradiation region 22 matches each of the four regions. An interval corresponding to the width of the overlapping region 23 is provided between the second irradiation regions 22 adjacent in the X direction and between the second irradiation regions 22 adjacent in the Y direction.
 第2の加工工程では、被加工物3は、重畳領域23以外の部分が掘り込まれる。第2の加工工程では、レーザ加工機100は、第1の加工工程における重畳領域23の深さと重畳領域23以外の部分の深さとの差分に相当する深さを掘削する。レーザ加工機100は、第2の照射領域22について、重畳領域23の部分の深さに到達するまで掘削を施す。レーザ加工機100は、第1および第2の加工工程により、掘削領域24の全体が均一な深さをなす止まり穴を被加工物3に形成する。 In the second machining step, the workpiece 3 is dug in a portion other than the overlapping region 23. In the second processing step, the laser processing machine 100 excavates a depth corresponding to the difference between the depth of the overlapping region 23 and the depth of the portion other than the overlapping region 23 in the first processing step. The laser beam machine 100 excavates the second irradiation area 22 until it reaches the depth of the overlapping area 23. The laser beam machine 100 forms a blind hole in the workpiece 3 in which the entire excavation region 24 has a uniform depth by the first and second machining steps.
 レーザ加工機100は、例えば、第1の加工工程と第2の加工工程とで、同等のエネルギーのレーザ光Lを使用する。レーザ加工機100は、第1の加工工程において、一部分が互いに重なり合う四つの領域に対して一回ずつ、合計四回のショットにより、掘削領域24の全体にレーザ光Lを照射させる。レーザ加工機100は、第2の加工工程において、掘削領域24のうち互いに間隔をなす四つの領域に対して一回ずつ、合計四回のショットにより、レーザ光Lを照射させる。 The laser processing machine 100 uses the laser beam L having the same energy in the first processing step and the second processing step, for example. In the first processing step, the laser processing machine 100 irradiates the entire excavation region 24 with the laser light L by a total of four shots, once for each of the four regions partially overlapping each other. In the second processing step, the laser processing machine 100 irradiates the laser light L by four shots, once for each of four regions that are spaced from each other in the excavation region 24.
 なお、レーザ加工機100は、第2の加工工程では、各領域に対して複数回ずつのショットによりレーザ光Lを照射しても良い。レーザ加工機100は、第2の加工工程におけるレーザ光Lのエネルギーを、第1の加工工程におけるレーザ光Lのエネルギーより小さく設定する。レーザ加工機100は、第1の加工工程および第2の加工工程により得られる止まり穴に要求される仕上がり状態等に応じて、レーザ光Lのショット数およびエネルギーを適宜調整しても良い。 In the second processing step, the laser processing machine 100 may irradiate each region with the laser beam L by a plurality of shots. The laser processing machine 100 sets the energy of the laser beam L in the second processing step to be smaller than the energy of the laser beam L in the first processing step. The laser processing machine 100 may appropriately adjust the number of shots and energy of the laser light L according to the finished state required for the blind hole obtained by the first processing step and the second processing step.
 本実施の形態にかかるレーザ加工方法は、第1の照射領域21の一部分同士を重畳させる第1の加工工程と、重畳領域23以外に第2の照射領域22を一致させる第2の加工工程とにより、掘削領域24における凹凸の発生を抑制させる。レーザ加工機100は、レーザ光Lについては、第1の加工工程と第2の加工工程とでビーム断面の形状を整形すれば良く、エネルギー分布の特別な調節は不要である。 The laser processing method according to the present embodiment includes a first processing step in which parts of the first irradiation region 21 are overlapped with each other, and a second processing step in which the second irradiation region 22 is made to coincide with other than the overlapping region 23. Thus, the occurrence of unevenness in the excavation region 24 is suppressed. For the laser beam L, the laser beam L may be shaped in the beam cross section in the first processing step and the second processing step, and no special adjustment of the energy distribution is necessary.
 本実施の形態にかかるレーザ加工方法によると、掘削領域24の外縁を整形するための追加工をしなくても、直線状の辺を外縁とする掘削領域24を得ることができる。これにより、レーザ光Lのビーム断面より広い掘削領域24を、凹凸を低減させて深さを均一とし、かつ効率的に加工することができるという効果を奏する。 According to the laser processing method according to the present embodiment, it is possible to obtain the excavation region 24 having a straight side as the outer edge without performing additional processing for shaping the outer edge of the excavation region 24. As a result, the excavation region 24 wider than the beam cross section of the laser light L can be processed efficiently by reducing the unevenness and making the depth uniform.
 図4および図5は、第1の照射領域の位置と第2の照射領域の位置との関係の例を説明する図である。例えば、図4に示す例では、レーザ加工機100は、第1の加工工程における第1の照射領域21のうちの一つと、第2の加工工程における第2の照射領域22のうちの一つとで、中心位置同士を一致させる。 4 and 5 are diagrams for explaining an example of the relationship between the position of the first irradiation region and the position of the second irradiation region. For example, in the example illustrated in FIG. 4, the laser processing machine 100 includes one of the first irradiation regions 21 in the first processing step and one of the second irradiation regions 22 in the second processing step. Then, the center positions are matched.
 この例では、レーザ加工機100は、第1の加工工程と第2の加工工程とで、レーザ光Lを入射させる目標として共通の座標を使用可能とする。これにより、レーザ加工機100は、制御の容易化を図り得る。 In this example, the laser processing machine 100 can use a common coordinate as a target on which the laser beam L is incident in the first processing step and the second processing step. Thereby, the laser beam machine 100 can facilitate control.
 図5に示す例では、レーザ加工機100は、第1の加工工程における第1の照射領域21のうちの一つと、第2の加工工程における第2の照射領域22のうちの一つとにおいて、第2の照射領域22の外縁の一部を、第1の照射領域21のうち掘削領域24の外縁を構成する部分に一致させる。第1の照射領域21がなす略正方形のうち互いに垂直な方向の二辺と、第2の照射領域22がなす略正方形のうち互いに垂直な方向の二辺とは、掘削領域24の外縁にて一致する。 In the example shown in FIG. 5, the laser processing machine 100 includes one of the first irradiation regions 21 in the first processing step and one of the second irradiation regions 22 in the second processing step. A part of the outer edge of the second irradiation region 22 is made to coincide with a portion of the first irradiation region 21 that constitutes the outer edge of the excavation region 24. Two sides in a direction perpendicular to each other in a substantially square formed by the first irradiation region 21 and two sides in a direction perpendicular to each other in a substantially square formed by the second irradiation region 22 are at the outer edge of the excavation region 24. Match.
 この例では、レーザ加工機100は、第1の加工工程において掘削を施す領域の境界と、第2の加工工程において掘削を施す領域の境界とを、掘削領域24の外縁にて一致させる。これにより、レーザ加工機100は、掘削領域24の外縁近傍について、凹凸の発生を低減させることができる。また、レーザ加工機100は、掘削領域24の外縁に、テーパ面等を形成可能とする。 In this example, the laser processing machine 100 matches the boundary of the region where excavation is performed in the first processing step and the boundary of the region where excavation is performed in the second processing step at the outer edge of the excavation region 24. Thereby, the laser beam machine 100 can reduce the occurrence of irregularities in the vicinity of the outer edge of the excavation region 24. Further, the laser processing machine 100 can form a tapered surface or the like on the outer edge of the excavation region 24.
 レーザ加工機100は、第1の加工工程および第2の加工工程により得られる止まり穴に要求される形状に応じて、第1の照射領域21の位置と第2の照射領域22の位置とを適宜調整しても良い。 The laser processing machine 100 determines the position of the first irradiation region 21 and the position of the second irradiation region 22 according to the shape required for the blind hole obtained by the first processing step and the second processing step. You may adjust suitably.
 本実施の形態のレーザ加工方法では、略正方形の掘削領域24に対して、第1の形状および第2の形状として正方形を採用することで、重畳領域23以外の領域に第2の照射領域22を一致可能とする。第1の形状および第2の形状として、掘削領域24の形状に相似する形状を適用することで、X方向およびY方向の双方について、重畳領域23が占める幅を必要最小限に設定し得る。 In the laser processing method of the present embodiment, a square is adopted as the first shape and the second shape for the substantially square excavation region 24, so that the second irradiation region 22 is provided in a region other than the overlapping region 23. Can be matched. By applying a shape similar to the shape of the excavation region 24 as the first shape and the second shape, the width occupied by the overlapping region 23 can be set to the minimum necessary in both the X direction and the Y direction.
 第1の形状および第2の形状は、正方形である場合に限られず、適宜変形可能であるものとする。第1の形状および第2の形状は、例えば長方形であっても良い。本実施の形態のレーザ加工方法では、矩形の掘削領域24に対しては、第1の形状および第2の形状として矩形を採用することで、重畳領域23以外の領域に第2の照射領域22を一致させることができる。第1の形状および第2の形状として矩形を採用することで、直線状の辺を外縁とする掘削領域24を得ることができる。 The first shape and the second shape are not limited to a square shape, and can be appropriately modified. The first shape and the second shape may be rectangular, for example. In the laser processing method of the present embodiment, for the rectangular excavation region 24, the second irradiation region 22 is formed in a region other than the overlapping region 23 by adopting a rectangle as the first shape and the second shape. Can be matched. By adopting a rectangle as the first shape and the second shape, it is possible to obtain the excavation region 24 having a straight side as an outer edge.
 本発明にかかるレーザ加工方法は、ビーム断面より大きい領域を掘削するための加工に有用であり、例えばプリント配線板の穴あけ加工、大口径の座ぐり加工等に適している。 The laser processing method according to the present invention is useful for processing for excavating a region larger than the beam cross section, and is suitable for, for example, drilling a printed wiring board, counterbore processing with a large diameter, and the like.
 1 レーザ発振器
 2 加工制御装置
 3 被加工物
 10 ビーム整形部
 11、12 ガルバノスキャナ
 13、14 ガルバノミラー
 15 fθレンズ
 16 XYテーブル
 21 第1の照射領域
 22 第2の照射領域
 23 重畳領域
 24 掘削領域
 100 レーザ加工機
 L レーザ光
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Processing control apparatus 3 Workpiece 10 Beam shaping part 11, 12 Galvano scanner 13, 14 Galvano mirror 15 f (theta) lens 16 XY table 21 1st irradiation area 22 2nd irradiation area 23 Overlapping area 24 Excavation area 100 Laser processing machine L Laser light

Claims (4)

  1.  被加工物の掘削領域へ、前記掘削領域に対して小さいビーム断面をなすレーザ光を順次照射させ、前記掘削領域を加工するレーザ加工方法であって、
     第1の形状のビーム断面をなし、前記被加工物上にて、前記第1の形状のビーム断面に相当する第1の照射領域をなすレーザ光を、前記掘削領域の全体へ順次照射させる第1の加工工程と、
     前記第1の形状より小さい第2の形状のビーム断面をなし、前記被加工物上にて、前記第2の形状のビーム断面に相当する第2の照射領域をなすレーザ光を、前記掘削領域へ順次照射させる第2の加工工程と、を含み、
     前記第1の加工工程では、前記第1の照射領域の一部分同士が互いに重畳する重畳領域を形成するように、前記第1の照射領域をなすレーザ光を順次照射させ、
     前記第2の加工工程では、前記掘削領域のうち前記重畳領域以外の領域に前記第2の照射領域が含まれるように、前記第2の照射領域をなすレーザ光を順次照射させることを特徴とするレーザ加工方法。
    A laser processing method of sequentially irradiating a laser beam having a small beam cross section with respect to the excavation region to the excavation region of a workpiece, and processing the excavation region,
    A first cross section of a beam having a first shape is formed, and a laser beam forming a first irradiation region corresponding to the beam cross section of the first shape is sequentially irradiated on the entire workpiece. 1 processing step;
    A laser beam forming a second irradiation region corresponding to the beam cross section of the second shape on the workpiece, the beam cross section having a second shape smaller than the first shape is formed on the workpiece. A second processing step of sequentially irradiating the
    In the first processing step, a laser beam that forms the first irradiation region is sequentially irradiated so as to form an overlapping region in which parts of the first irradiation region overlap each other,
    In the second processing step, the laser beam forming the second irradiation region is sequentially irradiated so that the second irradiation region is included in a region other than the overlapping region in the excavation region. Laser processing method.
  2.  前記第1の形状および前記第2の形状が、いずれも矩形であることを特徴とする請求項1に記載のレーザ加工方法。 2. The laser processing method according to claim 1, wherein both the first shape and the second shape are rectangular.
  3.  前記第2の照射領域の中心位置を、前記第1の照射領域の中心位置に一致させることを特徴とする請求項1または2に記載のレーザ加工方法。 3. The laser processing method according to claim 1, wherein a center position of the second irradiation region is made to coincide with a center position of the first irradiation region.
  4.  前記第2の照射領域の外縁の一部を、前記第1の照射領域のうち前記掘削領域の外縁を構成する部分に一致させることを特徴とする請求項1または2に記載のレーザ加工方法。 3. The laser processing method according to claim 1, wherein a part of the outer edge of the second irradiation region is made to coincide with a portion of the first irradiation region that constitutes the outer edge of the excavation region.
PCT/JP2011/079539 2011-12-20 2011-12-20 Laser processing method WO2013094025A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012525788A JP5100917B1 (en) 2011-12-20 2011-12-20 Laser processing method
KR1020137017497A KR20130086388A (en) 2011-12-20 2011-12-20 Laser processing method
PCT/JP2011/079539 WO2013094025A1 (en) 2011-12-20 2011-12-20 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079539 WO2013094025A1 (en) 2011-12-20 2011-12-20 Laser processing method

Publications (1)

Publication Number Publication Date
WO2013094025A1 true WO2013094025A1 (en) 2013-06-27

Family

ID=47528482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079539 WO2013094025A1 (en) 2011-12-20 2011-12-20 Laser processing method

Country Status (3)

Country Link
JP (1) JP5100917B1 (en)
KR (1) KR20130086388A (en)
WO (1) WO2013094025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684635B1 (en) * 2012-07-11 2016-06-08 SEMIKRON Elektronik GmbH & Co. KG Substrate and method for preparing the fracture of a substrate for at least a power semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581115B1 (en) * 2021-10-20 2023-09-21 주식회사 휴비스 Lase processing head for stripping of enamel wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263263A (en) * 1999-03-12 2000-09-26 Sumitomo Heavy Ind Ltd Laser beam piercing method and device therefor
JP2004314154A (en) * 2003-04-18 2004-11-11 Murata Mfg Co Ltd Laser scanning machining method
JP2007090438A (en) * 2007-01-11 2007-04-12 Sumitomo Heavy Ind Ltd Laser beam machining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263263A (en) * 1999-03-12 2000-09-26 Sumitomo Heavy Ind Ltd Laser beam piercing method and device therefor
JP2004314154A (en) * 2003-04-18 2004-11-11 Murata Mfg Co Ltd Laser scanning machining method
JP2007090438A (en) * 2007-01-11 2007-04-12 Sumitomo Heavy Ind Ltd Laser beam machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684635B1 (en) * 2012-07-11 2016-06-08 SEMIKRON Elektronik GmbH & Co. KG Substrate and method for preparing the fracture of a substrate for at least a power semiconductor device

Also Published As

Publication number Publication date
KR20130086388A (en) 2013-08-01
JP5100917B1 (en) 2012-12-19
JPWO2013094025A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP4916392B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP5795657B1 (en) Additive manufacturing apparatus and additive manufacturing method
KR101939801B1 (en) Method for machining a workpiece by a laser beam, laser tool, laser machine, machine controller
JP6984996B2 (en) Laser ablation method by patch optimization
KR101582161B1 (en) 3-D patterning method using Laser
JP5808267B2 (en) Laser processing apparatus and laser processing method
CN105163897A (en) Coordination of beam angle and workpiece movement for taper control
JP5861494B2 (en) Laser processing apparatus and laser processing method
JP2011110598A (en) Laser machining method and laser machining device
JP2010162559A (en) Laser processing method, processing device and workpiece
US6670575B1 (en) Method and apparatus for removing substance from the surface of a workpiece
JP5634765B2 (en) Pulse laser machining method and pulse laser machining data creation method
JP5100917B1 (en) Laser processing method
JP5279949B2 (en) LASER MACHINE, LASER PROCESSING METHOD, AND LASER PROCESSING CONTROL DEVICE
US20210387263A1 (en) Angled scanning of laser arrays in additive manufacturing
JP2008180983A (en) Laser microfabrication method
US20080237204A1 (en) Laser Beam Machining Method for Printed Circuit Board
WO2015136948A1 (en) Laser processing method
TW202228893A (en) Laser ablation method for engraving a workpiece with a texture
JP2009252892A (en) Laser machining method, method for manufacturing printed board, and laser machining apparatus
JP5165107B2 (en) Laser processing method and laser processing apparatus
JP4039306B2 (en) 3D circuit pattern forming method, apparatus, and 3D circuit board manufactured using the same
Baev et al. Method of crack-free laser writing of microchannels on glass substrates
JP2005246450A (en) Laser beam machining method, laser beam machining device, and intensity adjuster
JP2010207881A (en) Laser beam machining method and laser beam machining apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012525788

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137017497

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877617

Country of ref document: EP

Kind code of ref document: A1