JP5861494B2 - Laser processing apparatus and laser processing method - Google Patents

Laser processing apparatus and laser processing method Download PDF

Info

Publication number
JP5861494B2
JP5861494B2 JP2012037764A JP2012037764A JP5861494B2 JP 5861494 B2 JP5861494 B2 JP 5861494B2 JP 2012037764 A JP2012037764 A JP 2012037764A JP 2012037764 A JP2012037764 A JP 2012037764A JP 5861494 B2 JP5861494 B2 JP 5861494B2
Authority
JP
Japan
Prior art keywords
processing
elliptical
laser
shape
elliptical beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012037764A
Other languages
Japanese (ja)
Other versions
JP2013173150A (en
Inventor
日向野 哲
哲 日向野
正訓 高橋
正訓 高橋
拓矢 久保
拓矢 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012037764A priority Critical patent/JP5861494B2/en
Priority to CN201310051610XA priority patent/CN103286442A/en
Publication of JP2013173150A publication Critical patent/JP2013173150A/en
Application granted granted Critical
Publication of JP5861494B2 publication Critical patent/JP5861494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、小さい表面粗さで傾斜面等の3次元加工が可能なレーザ加工装置およびレーザ加工方法に関する。   The present invention relates to a laser processing apparatus and a laser processing method capable of three-dimensional processing of an inclined surface or the like with a small surface roughness.

近年、今まで砥石を使って研削加工されていた部材等の形態形成(形状形成)にも、レーザビーム(レーザ光)を照射して加工を行うレーザ加工装置が用いられている。この3次元形状を加工する方法としては、レーザ光を層状に走査することによって行う方法が提案されている。また、特許文献1では、レーザ光の断面形状を楕円形状にし、回転制御を実施して加工に用いるレーザ加工装置が提案されている。   In recent years, a laser processing apparatus that performs processing by irradiating a laser beam (laser light) is also used for form formation (shape formation) of a member or the like that has been ground using a grindstone. As a method for processing this three-dimensional shape, a method is proposed in which laser light is scanned in layers. Patent Document 1 proposes a laser processing apparatus that uses an elliptical cross-sectional shape of laser light and performs rotation control for processing.

このレーザ加工装置では、円形のレーザビームから楕円形状のレーザビームを成形する楕円形状成形手段と、楕円形状成形手段により得られる楕円形状のレーザビームを分岐させる分岐手段と、分岐手段により得られる各楕円形状の角度が異なるように、楕円形状のレーザビームを回転させる回転手段と、回転手段により得られる楕円形状のレーザビームを合成させる合成手段と、合成されたレーザビームを所定形状に切り出すマスク機構を有している。   In this laser processing apparatus, an elliptical shaping means for shaping an elliptical laser beam from a circular laser beam, a branching means for branching an elliptical laser beam obtained by the elliptical shaping means, and each obtained by the branching means Rotating means for rotating the elliptical laser beam, a combining means for combining the elliptical laser beam obtained by the rotating means, and a mask mechanism for cutting out the combined laser beam into a predetermined shape so that the elliptical angles are different have.

特開2008−49361号公報JP 2008-49361 A

上記従来の技術には、以下の課題が残されている。
レーザ光を層状に走査することによって傾斜面を加工する方法について、走査するビームの形状や走査方法については様々な検討がなされている。しかしながら、層状に加工して傾斜面をより平滑に加工するためには、レーザビームのパルス痕等によって充分な面粗さを得る方法がなかった。また、傾斜面を加工するための方法ではないが、楕円ビームを用いた加工方法として、特許文献1に記載のレーザ加工装置のように、2つの楕円ビームを重ね合わせて回転させマスクパターンに投入する方法も提案されているが、この方法は均質なビームを得ることを目的としているため、加工面の面粗さを低減する効果が得られない。
The following problems remain in the conventional technology.
Regarding the method of processing the inclined surface by scanning the laser beam in layers, various studies have been made on the shape of the scanning beam and the scanning method. However, in order to process the inclined surface more smoothly by processing into a layer shape, there has been no method for obtaining sufficient surface roughness by using a laser beam pulse mark or the like. In addition, it is not a method for processing an inclined surface, but as a processing method using an elliptical beam, two elliptical beams are overlapped and rotated into a mask pattern as in the laser processing apparatus described in Patent Document 1. However, since this method aims to obtain a homogeneous beam, the effect of reducing the surface roughness of the processed surface cannot be obtained.

本発明は、前述の課題に鑑みてなされたもので、3次元加工において、小さい表面粗さで傾斜面加工が可能なレーザ加工装置およびレーザ加工方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a laser processing apparatus and a laser processing method capable of processing an inclined surface with a small surface roughness in three-dimensional processing.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のレーザ加工装置は、加工対象物にレーザビームを照射して加工する装置であって、レーザビームを発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査可能なレーザ照射機構と、前記加工対象物を保持して該加工対象物と前記レーザビームとの相対的な位置関係を調整可能な位置調整機構と、これらの機構を制御する制御部とを備え、前記レーザ照射機構が、前記レーザビームのビーム断面形状を楕円形状に整形して楕円ビームとする楕円ビーム整形光学部と、前記楕円ビームを回転させ前記楕円形状の短軸を所定の方向に向ける楕円ビーム回転光学部とを有し、前記制御部が、前記加工対象物の加工領域において設計上の加工後形状の表面における法線ベクトルを求め、該法線ベクトルの前記楕円ビームの照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向ける制御を行うことを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the laser processing apparatus of the present invention is an apparatus for irradiating a workpiece with a laser beam and processing the laser beam that oscillates the laser beam to irradiate the workpiece with a constant repetition frequency and can scan the laser beam. An irradiation mechanism; a position adjustment mechanism capable of holding the object to be processed and adjusting a relative positional relationship between the object to be processed and the laser beam; and a control unit for controlling these mechanisms; An elliptical beam shaping optical unit that forms an elliptical beam by shaping the cross-sectional shape of the laser beam into an elliptical shape, and an elliptical beam rotation that rotates the elliptical beam and orients the minor axis of the elliptical shape in a predetermined direction. An optical unit, and the control unit obtains a normal vector on the surface of the designed post-processed shape in the processing region of the processing target object, and the elliptic vector of the normal vector is obtained. And performing control to direct the minor axis of the elliptical shape in the direction of the orthogonal projection vector of the plane perpendicular to the irradiation direction of.

また、本発明のレーザ加工方法は、加工対象物にレーザビームを照射して加工する方法であって、レーザビームを発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ照射工程と、前記加工対象物を保持して該加工対象物と前記レーザビームとの相対的な位置関係を調整する位置調整工程とを有し、前記レーザ照射工程が、前記レーザビームのビーム断面形状を楕円形状に整形して楕円ビームとする楕円ビーム整形工程と、前記楕円ビームを回転させ前記楕円形状の短軸を所定の方向に向ける楕円ビーム回転工程とを有し、前記加工対象物の加工領域において設計上の加工後形状の表面における法線ベクトルを求め、該法線ベクトルの前記楕円ビームの照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向けることを特徴とする。   Further, the laser processing method of the present invention is a method of processing by irradiating a processing target with a laser beam, and oscillating the laser beam to irradiate the processing target with a constant repetition frequency and perform laser irradiation. And a position adjustment step of adjusting the relative positional relationship between the processing object and the laser beam while holding the processing object, and the laser irradiation step includes a beam cross-sectional shape of the laser beam. An ellipse beam shaping step for shaping an ellipse into an ellipse beam, and an ellipse beam rotation step for rotating the ellipse beam to direct the minor axis of the ellipse in a predetermined direction. A normal vector on the surface of the post-processed shape in design in the region is obtained, and the elliptical shape in the direction of the orthogonal projection vector onto the surface perpendicular to the irradiation direction of the elliptical beam of the normal vector Wherein the directing the minor axis of the.

すなわち、これらのレーザ加工装置及び方法では、加工対象物の加工領域において設計上の加工後形状の表面における法線ベクトルを求め、該法線ベクトルの楕円ビームの照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向けるので、傾斜した加工面において表面粗さを小さくすることが可能になる。   That is, with these laser processing apparatuses and methods, a normal vector on the surface of the designed post-processed shape is obtained in the processing region of the processing object, and the normal vector is applied to a surface perpendicular to the irradiation direction of the elliptical beam. Since the elliptical minor axis is directed in the direction of the projection vector, the surface roughness can be reduced on the inclined machining surface.

さらに、本発明のレーザ加工装置は、前記制御部が、前記楕円ビームの走査を行う際に、前記加工領域を前記楕円ビームの照射方向に複数の加工レイヤーを積み重ねたものとして設定し、各加工レイヤーに対して前記楕円ビームを照射し、前記加工レイヤー毎に所定部分を除去して、三次元形状の加工面を形成する制御を行い、隣接する2つの前記加工レイヤーにおいて前記設計上の加工後形状を決定する前記走査の開始点又は終点の座標から前記法線ベクトルを演算することを特徴とする。   Furthermore, in the laser processing apparatus of the present invention, when the control unit performs the scanning of the elliptical beam, the processing region is set as a stack of a plurality of processing layers in the irradiation direction of the elliptical beam. Irradiate the elliptical beam to the layer, remove a predetermined portion for each processing layer, and control to form a three-dimensional processing surface, and after the design processing in the two adjacent processing layers The normal vector is calculated from the coordinates of the start point or end point of the scan for determining the shape.

また、本発明のレーザ加工方法は、前記楕円ビームの走査を行う際に、前記加工領域を前記楕円ビームの照射方向に複数の加工レイヤーを積み重ねたものとして設定し、各加工レイヤーに対して前記楕円ビームを照射し、前記加工レイヤー毎に所定部分を除去して、三次元形状の加工面を形成し、隣接する2つの前記加工レイヤーにおいて前記設計上の加工後形状を決定する前記走査の開始点又は終点の座標から前記法線ベクトルを演算することを特徴とする。   Further, in the laser processing method of the present invention, when the elliptical beam is scanned, the processing region is set as a plurality of processing layers stacked in the irradiation direction of the elliptical beam, Irradiating an elliptical beam, removing a predetermined portion for each processing layer, forming a three-dimensional processing surface, and starting the scanning to determine the designed post-processing shape in two adjacent processing layers The normal vector is calculated from the coordinates of the point or the end point.

すなわち、これらのレーザ加工装置及び方法では、隣接する2つの加工レイヤーにおいて設計上の加工後形状を決定する走査の開始点又は終点の座標から前記法線ベクトルを演算するので、簡易な演算で法線ベクトルを算出することができ、容易に楕円ビームの短軸方向を決定することができる。   That is, in these laser processing apparatuses and methods, the normal vector is calculated from the coordinates of the start point or end point of scanning that determines the post-design shape after the design in two adjacent processing layers, so that the method can be calculated by simple calculation. A line vector can be calculated, and the minor axis direction of the elliptical beam can be easily determined.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るレーザ加工装置およびレーザ加工方法によれば、加工対象物の加工領域において設計上の加工後形状の表面における法線ベクトルを求め、該法線ベクトルの楕円ビームの照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向けるので、傾斜した加工面において表面粗さを小さくすることが可能になる。
したがって、本発明のレーザ加工装置およびレーザ加工方法は、例えば、切削工具等の3次元的で面精度の高い形状加工に好適である。
The present invention has the following effects.
That is, according to the laser processing apparatus and the laser processing method of the present invention, the normal vector on the surface of the designed post-processed shape is obtained in the processing region of the processing target object, and the elliptical beam irradiation direction of the normal vector Since the minor axis of the elliptical shape is directed in the direction of the orthogonal projection vector onto the vertical surface, it is possible to reduce the surface roughness on the inclined processing surface.
Therefore, the laser processing apparatus and laser processing method of the present invention are suitable for, for example, three-dimensional shape processing with high surface accuracy, such as a cutting tool.

本発明に係るレーザ加工装置およびレーザ加工方法において、レーザ加工装置を示す概略的な全体構成図である。In the laser processing apparatus and laser processing method concerning this invention, it is a rough whole block diagram which shows a laser processing apparatus. 本実施形態において、レーザビームの各光路における断面形状を示す図である。In this embodiment, it is a figure which shows the cross-sectional shape in each optical path of a laser beam. 本実施形態において、加工後形状と加工レイヤーとの交線と楕円ビームの短軸方向と走査方向との関係を示す説明図である。In this embodiment, it is explanatory drawing which shows the relationship between the intersection of a post-process shape and a process layer, the short-axis direction of an elliptical beam, and a scanning direction. 本実施形態において、楕円ビームのビーム断面形状に関して長軸と短軸とを示す説明図である。In this embodiment, it is explanatory drawing which shows a major axis and a minor axis regarding the beam cross-sectional shape of an elliptical beam. 本実施形態のレーザ加工方法において、隣接する加工レイヤーの3点に基づいて法線ベクトルの向きを算出する方法を示す説明図である。In the laser processing method of this embodiment, it is explanatory drawing which shows the method of calculating the direction of a normal vector based on three points of the adjacent process layer. 本実施形態において、楕円ビームによる加工状態(a)と円形ビームによる加工状態(b)とを示す説明図である。In this embodiment, it is explanatory drawing which shows the processing state (a) by an elliptical beam, and the processing state (b) by a circular beam. 本発明に係るレーザ加工装置およびレーザ加工方法の実施例において、加工対象物の加工前形状(a)及び設計上の加工後形状(b)を示す側面図である。In the Example of the laser processing apparatus and laser processing method concerning this invention, it is a side view which shows the shape (a) before a process of a process target object, and the shape (b) after a process on design. 本実施例において、レーザ加工方法を工程順に示すフローチャートである。In a present Example, it is a flowchart which shows the laser processing method in order of a process. 本実施例のレーザ加工方法において、加工範囲を示す説明図である。It is explanatory drawing which shows the processing range in the laser processing method of a present Example. 本実施例のレーザ加工方法において、工程順に示す説明図である。It is explanatory drawing shown in order of a process in the laser processing method of a present Example. 本実施例のレーザ加工方法において、例外処理に示す説明図である。It is explanatory drawing shown in the exception process in the laser processing method of a present Example. 本実施例において、加工途中の加工対象物を示す拡大写真画像である。In a present Example, it is an enlarged photograph image which shows the process target object in the middle of a process.

以下、本発明に係るレーザ加工装置およびレーザ加工方法の一実施形態を、図1から図6を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している部分がある。   Hereinafter, an embodiment of a laser processing apparatus and a laser processing method according to the present invention will be described with reference to FIGS. In each drawing used in the following description, there is a portion where the scale is appropriately changed as necessary in order to make each member recognizable or easily recognizable.

本実施形態のレーザ加工装置1は、図1に示すように、加工対象物Wにレーザビーム(レーザ光)を照射して加工する装置であって、レーザビームL1を発振して加工対象物Wに一定の繰り返し周波数で照射すると共に走査可能なレーザ照射機構2と、加工対象物Wを保持して該加工対象物WとレーザビームL1との相対的な位置関係を調整可能な位置調整機構3と、これらの機構を制御する制御部4とを備えている。   As shown in FIG. 1, the laser processing apparatus 1 of the present embodiment is an apparatus that processes a workpiece W by irradiating the workpiece W with a laser beam (laser light), and oscillates the laser beam L1 to process the workpiece W. A laser irradiation mechanism 2 capable of irradiating and scanning with a constant repetition frequency, and a position adjustment mechanism 3 capable of holding the workpiece W and adjusting the relative positional relationship between the workpiece W and the laser beam L1. And a control unit 4 for controlling these mechanisms.

上記レーザ照射機構2は、レーザビームL1となる図2の(a)に示すような断面円形状のレーザ光をパルス発振すると共に、図2の(a)に示すように断面円形状のスポット状に集光させる光学系も有するレーザ光源5を備えている。
また、レーザ照射機構2は、レーザビームL1のビーム断面形状を楕円形状に整形して楕円ビームL2とする楕円ビーム整形光学部6と、楕円ビームL2を回転させ前記楕円形状の短軸を所定の方向に向ける楕円ビーム回転光学部7とを有している。
また、レーザ照射機構2は、回転させた楕円ビームL2は反射して光路を変更するミラー8と、照射する楕円ビームL2を走査させるガルバノスキャナ9と、楕円ビームL2を集光するf−θレンズの集光レンズ10とを有している。
The laser irradiation mechanism 2 pulse-oscillates a laser beam having a circular cross section as shown in FIG. 2A, which becomes the laser beam L1, and also has a spot shape having a circular cross section as shown in FIG. 2A. A laser light source 5 having an optical system for condensing light is also provided.
The laser irradiation mechanism 2 also has an elliptical beam shaping optical unit 6 that shapes the beam cross-sectional shape of the laser beam L1 into an elliptical shape to make the elliptical beam L2, and rotates the elliptical beam L2 so that the short axis of the elliptical shape has a predetermined axis. And an elliptical beam rotating optical unit 7 directed in the direction.
The laser irradiation mechanism 2 includes a mirror 8 that reflects the rotated elliptical beam L2 to change the optical path, a galvano scanner 9 that scans the elliptical beam L2 to be irradiated, and an f-θ lens that condenses the elliptical beam L2. The condensing lens 10 is provided.

上記楕円ビーム整形光学部6は、2つのシリンドリカルレンズ6a等のレンズを備えた光学系であり、上記断面円形状のレーザビームL1を、図2の(b)に示すように断面楕円形状の楕円ビームL2に整形する機能を有している。なお、図4に示すように、整形後の楕円ビームL2の断面楕円形状は、短軸/長軸≦0.5とすることが好ましい。すなわち、楕円ビームL2の断面楕円形状の長軸径をaとし、短軸径をbとしたとき、b/a≦0.5とする。   The elliptical beam shaping optical unit 6 is an optical system including two cylindrical lenses 6a and the like, and the laser beam L1 having a circular cross section is converted into an elliptical cross section as shown in FIG. It has a function of shaping into a beam L2. As shown in FIG. 4, the elliptical cross section of the shaped elliptical beam L2 preferably has a minor axis / major axis ≦ 0.5. That is, when the major axis diameter of the elliptical cross section of the elliptical beam L2 is a and the minor axis diameter is b, b / a ≦ 0.5.

上記楕円ビーム回転光学部7は、図2の(c)に示すように楕円ビームL2をその断面楕円形状の短軸を所定方向に向けて回転させるダブプリズム7aを備えた光学系である。なお、上記ダブプリズム7aは、ホルダ7b内に収納されている。
また、この楕円ビーム回転光学部7は、回転させた楕円ビームL2は反射して光路を変更するミラー8と、照射する楕円ビームL2を走査させるガルバノスキャナ9と、楕円ビームL2を集光するf−θレンズの集光レンズ10とを備えている。
As shown in FIG. 2C, the elliptical beam rotating optical unit 7 is an optical system including a dove prism 7a that rotates the elliptical beam L2 with its short axis having an elliptical cross section in a predetermined direction. The dove prism 7a is housed in the holder 7b.
The elliptical beam rotating optical unit 7 reflects the rotated elliptical beam L2 to change the optical path, the galvano scanner 9 that scans the irradiated elliptical beam L2, and the elliptical beam L2. And a condensing lens 10 of -θ lens.

上記位置調整機構3は、水平面に平行なX方向に移動可能なX軸ステージ部10xと、該X軸ステージ部10x上に設けられX方向に対して垂直でかつ水平面に平行なY方向に移動方向なY軸ステージ部10yと、該Y軸ステージ部10y上に設けられ加工対象物Wを保持可能であると共に水平面に対して垂直方向に移動可能なZ軸ステージ部10zとで構成されている。
上記ガルバノスキャナ9及び集光レンズ10は、Z軸ステージ部10zの直上に配置されている。
The position adjusting mechanism 3 is movable in the X direction parallel to the horizontal plane, and moves in the Y direction perpendicular to the X direction and parallel to the horizontal plane provided on the X axis stage 10x. Direction Y-axis stage unit 10y, and a Z-axis stage unit 10z provided on the Y-axis stage unit 10y and capable of holding the workpiece W and movable in a direction perpendicular to the horizontal plane. .
The galvano scanner 9 and the condenser lens 10 are disposed immediately above the Z-axis stage unit 10z.

このレーザ照射機構2により出射されるレーザビームL1及び楕円ビームL2は、シングルモードでありビーム断面の光強度分布がガウシアン分布となっていると共に、図4に示すように、集光点においてビーム断面の光強度分布が楕円形状となっている。
上記レーザ光源5は、190〜550nmのいずれかの波長のレーザ光を照射できるものが使用可能であり、例えば本実施形態では、波長355nmのレーザ光を発振して出射できるものを用いている。
The laser beam L1 and the elliptical beam L2 emitted by the laser irradiation mechanism 2 are single mode, the light intensity distribution of the beam section is a Gaussian distribution, and as shown in FIG. The light intensity distribution is elliptical.
As the laser light source 5, a laser light source that can irradiate laser light having a wavelength of 190 to 550 nm can be used. For example, in this embodiment, a laser light source that can oscillate and emit laser light having a wavelength of 355 nm is used.

上記制御部4は、図3に示すように、加工対象物Wの加工領域において設計上の加工後形状の表面における法線ベクトルHを求め、該法線ベクトルHの楕円ビームL2の照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向ける制御を行う機能を有している。
また、制御部4は、図5に示すように、楕円ビームL2の走査を行う際に、加工プログラムにおいて、加工領域を楕円ビームL2の照射方向に複数の加工レイヤーLYを積み重ねたものとして設定し、各加工レイヤーLYに対して楕円ビームL2を照射し、加工レイヤーLY毎に所定部分を除去して、三次元形状の加工面を形成するように各機構を制御する。
As shown in FIG. 3, the control unit 4 obtains a normal vector H on the surface of the designed post-processed shape in the processing region of the processing target W, and in the irradiation direction of the elliptical beam L2 of the normal vector H. It has a function of controlling the elliptical short axis in the direction of an orthogonal projection vector onto a vertical plane.
Further, as shown in FIG. 5, when the elliptical beam L2 is scanned, the control unit 4 sets the machining region as a stack of a plurality of machining layers LY in the irradiation direction of the elliptical beam L2 in the machining program. Each mechanism layer LY is irradiated with an elliptical beam L2, a predetermined portion is removed for each processing layer LY, and each mechanism is controlled to form a processing surface having a three-dimensional shape.

また、制御部4は、隣接する2つの加工レイヤーLYにおいて設計上の加工後形状を決定する走査の開始点又は終点の座標から法線ベクトルHを演算する。
例えば、図5の(a)(b)に示すように、隣接する2つの加工レイヤーLYにおいて設計上の加工後形状を決定する走査の終点位置P1,P2,P3の座標に基づいてこれら3点で構成される面に対する法線ベクトルHを算出する。さらに、制御部4は、求めた法線ベクトルHの楕円ビームL2の照射方向であるZ方向に垂直な面、すなわちX−Y面への正射影ベクトルの方向に前記楕円形状の短軸を向けるように楕円ビーム回転光学部7を制御し、楕円ビームL2を回転させる。
In addition, the control unit 4 calculates a normal vector H from the coordinates of the start point or end point of scanning that determines the designed post-processing shape in two adjacent processing layers LY.
For example, as shown in FIGS. 5A and 5B, these three points are based on the coordinates of the end positions P1, P2, and P3 of the scan that determine the designed post-processing shape in the two adjacent processing layers LY. A normal vector H with respect to the plane constituted by is calculated. Further, the control unit 4 directs the short axis of the elliptical shape in a direction perpendicular to the Z direction that is the irradiation direction of the elliptical beam L2 of the obtained normal vector H, that is, the direction of the orthogonal projection vector onto the XY plane. In this manner, the elliptical beam rotation optical unit 7 is controlled to rotate the elliptical beam L2.

このように制御部4は、上記各機構を制御して、図3及び図5に示すように、所定方向に回転させた楕円ビームL2を加工レイヤーLY毎に走査させて加工を行う。この際、図3に示すように、同一加工レイヤーLYにおける楕円ビームL2の走査間隔dは、隣接する楕円ビームL2が長軸方向に面積の1/3以上が重なるように設定すると共に、隣接する加工レイヤーLY間で直前の加工レイヤーLYの走査線S1(走査方向)の間を通るように走査位置を変えて走査することが好ましい。例えば隣接する加工レイヤーLY間で走査間隔の1/2分の走査位置を変えて走査する。   As described above, the control unit 4 controls each of the above mechanisms to perform processing by scanning the elliptical beam L2 rotated in a predetermined direction for each processing layer LY as shown in FIGS. At this time, as shown in FIG. 3, the scanning interval d of the elliptical beams L2 in the same processing layer LY is set so that the adjacent elliptical beams L2 overlap each other by 1/3 or more of the area in the major axis direction. It is preferable to scan by changing the scanning position so as to pass between scanning lines S1 (scanning direction) of the immediately preceding processing layer LY between the processing layers LY. For example, scanning is performed by changing the scanning position of ½ of the scanning interval between adjacent processing layers LY.

なお、図3において、1層目の加工レイヤーLYにおける走査線S1を破線の矢印で図示し、2層目の加工レイヤーLYにおける走査線S2を二点鎖線の矢印で図示している。また、図3において、符号Cは、加工形状と加工レイヤーLYとの交線を示している。なお、加工レイヤーLYの厚みを無限小とみれば、加工レイヤーLYと上記設計上の加工後形状との交わりは線とみなせる。   In FIG. 3, the scanning line S1 in the first processing layer LY is illustrated by a broken line arrow, and the scanning line S2 in the second processing layer LY is illustrated by a two-dot chain line arrow. Moreover, in FIG. 3, the code | symbol C has shown the intersection line of the process shape and the process layer LY. If the thickness of the processing layer LY is infinitely small, the intersection of the processing layer LY and the designed post-processing shape can be regarded as a line.

このように楕円ビームL2の断面楕円形状の短軸方向を、傾斜面等である加工面向きに合わせて上記のように走査することで、図6の(a)に示すように、隣接する楕円ビームL2による加工痕で形成された凸部W1が、図6の(b)に示すように、断面円形状のレーザビームL0を走査した場合に比べて小さくなり、加工面における面粗さが低減される。   By scanning the short axis direction of the elliptical cross section of the elliptical beam L2 as described above in accordance with the direction of the machining surface, which is an inclined surface or the like, as shown in FIG. As shown in FIG. 6 (b), the convex portion W1 formed by the processing mark by the beam L2 becomes smaller than when the laser beam L0 having a circular cross section is scanned, and the surface roughness on the processing surface is reduced. Is done.

このように本実施形態のレーザ加工装置1およびレーザ加工方法では、加工対象物Wの加工領域において設計上の加工後形状の表面における法線ベクトルHを求め、該法線ベクトルHの楕円ビームL2の照射方向(Z方向)に垂直な面(X−Y面)への正射影ベクトルの方向に前記楕円形状の短軸を向けるので、傾斜した加工面において表面粗さを小さくすることが可能になる。
また、隣接する2つの加工レイヤーLYにおいて設計上の加工後形状を決定する走査の開始点又は終点の座標から法線ベクトルHを演算するので、簡易な演算で法線ベクトルHを算出することができ、容易に楕円ビームL2の短軸方向を決定することができる。
Thus, in the laser processing apparatus 1 and the laser processing method of the present embodiment, the normal vector H on the surface of the designed post-processed shape is obtained in the processing region of the processing target W, and the elliptical beam L2 of the normal vector H is obtained. Since the minor axis of the elliptical shape is directed in the direction of the orthogonal projection vector to the plane (XY plane) perpendicular to the irradiation direction (Z direction) of the surface, it is possible to reduce the surface roughness on the inclined machining surface Become.
In addition, since the normal vector H is calculated from the coordinates of the start point or end point of scanning that determines the designed post-processing shape in the two adjacent processing layers LY, the normal vector H can be calculated by a simple calculation. It is possible to easily determine the minor axis direction of the elliptical beam L2.

次に、本発明のレーザ加工装置およびレーザ加工方法により、実際に加工対象物を形状形成した実施例について、図7から図9を参照して説明する。   Next, an embodiment in which a workpiece is actually formed by the laser processing apparatus and laser processing method of the present invention will be described with reference to FIGS.

本発明の実施例では、図7の(a)に示す加工前の厚い平板状の加工対象物Wを、図7の(b)に示す設計上の加工後形状として、上部を4つの傾斜面から成る四角錐形状(ピラミッド形状)に形状加工した。なお、上記4つの傾斜面全部を加工する指定面にし、4つの傾斜面に分けて加工を実施した。
この実施例では、波長355nm,繰り返し周波数166kHzのレーザビームL1及び楕円ビームL2を用いた。また、加工対象物Wには、セラミックス焼結体(SiC,cBN等)を用いた。
In the embodiment of the present invention, the thick flat plate-like workpiece W before processing shown in FIG. 7A is formed into a post-designed shape shown in FIG. Shaped into a quadrangular pyramid shape (pyramid shape). In addition, the said 4 inclined surfaces were made into the designated surface which processes, and it divided into four inclined surfaces and implemented.
In this embodiment, a laser beam L1 and an elliptical beam L2 having a wavelength of 355 nm and a repetition frequency of 166 kHz were used. Further, a ceramic sintered body (SiC, cBN, etc.) was used as the workpiece W.

さらに、ビーム整形後の楕円形状は短軸/長軸=0.3とした。同一平面での楕円ビームL2の走査間隔は楕円形状の1/3が重なるように走査すると共に、各加工レイヤーLY間で直前の加工レイヤーLYの走査線S1の間を通るように走査間隔dの1/2分の走査位置をずらせて走査した。   Furthermore, the elliptical shape after beam shaping was set to minor axis / major axis = 0.3. The scanning interval of the elliptical beam L2 on the same plane is scanned so that 1/3 of the elliptical shapes overlap, and the scanning interval d is set so as to pass between the scanning lines S1 of the immediately preceding processing layer LY between the processing layers LY. The scanning was performed by shifting the scanning position by 1/2 minute.

次に、図8から図11に示すフローチャート及び説明図を用いて、楕円ビームL2の回転制御について説明する。
まず、制御部4が、図9に示すように、4つの傾斜面のうち1つの指定面のZ方向の範囲、すなわち加工深さを求め(ステップS1)、Z方向範囲内の2層分(n層目と(n+1)層目の2つの加工レイヤーLY分)のプログラム(例えば、Z方向の中間点前後の2層分のプログラム)を求める(ステップS2)。
Next, rotation control of the elliptical beam L2 will be described with reference to flowcharts and explanatory diagrams shown in FIGS.
First, as shown in FIG. 9, the control unit 4 obtains the Z-direction range, that is, the machining depth of one designated surface among the four inclined surfaces (step S <b> 1), and two layers within the Z-direction range ( A program (for example, a program for two layers before and after the intermediate point in the Z direction) of the n-th layer and (n + 1) -th layer of two processed layers LY) is obtained (step S2).

そして、n層目の加工レイヤーLYの加工プログラムにおいて、走査本数mを1本目として「m=1」に設定する(ステップS3)。次に、m本目の開始点または終了点規定値と一致するか否かを判断し(ステップS4)、規定値と一致しないときは、走査本数mを「m=1+1」に設定し(ステップS5)、再度上記ステップS4の判断を行う。すなわち、その走査線が、法線ベクトルHを求めるための傾斜面を形成する線であるか判定を行う。
なお、規定値は、n層目の加工レイヤーLYの加工プログラムにおいてn層目に対応するz座標での傾斜面の位置を表す座標となる。法線ベクトルHを求めるための傾斜面の位置を設定する数値となる。
Then, in the machining program for the nth machining layer LY, “m = 1” is set with the number m of scanning being the first (step S3). Next, the start or end point of the m-th, it is determined whether to match the specified value (step S4), and when does not match the specified value, sets the number of scanning lines m to "m = 1 + 1" (step S5) The determination in step S4 is performed again. That is, it is determined whether the scanning line is a line that forms an inclined surface for obtaining the normal vector H.
The specified value is a coordinate representing the position of the inclined surface at the z coordinate corresponding to the nth layer in the machining program for the nth machining layer LY. This is a numerical value for setting the position of the inclined surface for obtaining the normal vector H.

図10の(a)に示すように、上記規定値に一致するときは、1点目の位置P1として、その座標(x1、y1、z1)を記憶する(ステップS6)。さらに、走査本数mを「m=m+1」に設定し、再びm本目の開始点又は終了点規定値と一致するか判断する(ステップS8)。図10の(b)に示すように、規定値と一致する場合、2点目の位置P2として座標(x2、y2、z2)を記憶する(ステップS9)。そして、走査本数mを「m=m」に設定する。既定値に一致しないときは、「m=m+1」に設定し、再度上記ステップS4の判断を行う。すなわち、該当する2本の連続する走査線(m及び、m+1)が、法線ベクトルHを求めるための傾斜面を形成する線であるか判定を行う。そして、図11に示すように、1つの走査線しか該当しない場合に、例外処理(ステップS9’)を行い、上記ステップS9と同じ処理とする。 As shown in FIG. 10A, when the specified value is coincident, the coordinates (x1, y1, z1) are stored as the position P1 of the first point (step S6). Further, to set the scan number m to "m = m + 1", it is determined whether the start point or end point of the m-th matches the specified value again (step S8). As shown in (b) of FIG. 10, when it matches the specified value, the coordinates (x2, y2, z2) are stored as the second position P2 (step S9). Then, the scanning number m is set to “m = m”. If it does not match the default value, “m = m + 1” is set, and the determination in step S4 is performed again. That is, it is determined whether the corresponding two continuous scanning lines (m and m + 1) are lines that form an inclined surface for obtaining the normal vector H. Then, as shown in FIG. 11, when only one scanning line is applicable, an exception process (step S9 ′ ) is performed, which is the same process as step S9.

次に、(n+1)層目の加工レイヤーLYの加工プログラムにおいて、図10の(c)に示すように、(n+1)層目のm本目の終点を3点目の位置P3として座標(x3、y3、z3)を記録する(ステップS11)。このようにして得た位置P1,P2,P3の3点より傾斜面の法線ベクトルHを求め、該法線ベクトルHのX−Y面の成分のみを算出する(ステップS12)。このように算出した法線ベクトルHのX−Y面の成分の向きに基づいて楕円ビームL2の回転角度を求め、該回転角度で楕円ビーム回転光学部7により楕円ビームL2を回転させ、レーザ加工を開始する。   Next, in the machining program for the machining layer LY of the (n + 1) th layer, as shown in FIG. 10C, the coordinate (x3, y3, z3) are recorded (step S11). The normal vector H of the inclined plane is obtained from the three points P1, P2 and P3 thus obtained, and only the XY plane component of the normal vector H is calculated (step S12). The rotational angle of the elliptical beam L2 is obtained based on the direction of the XY plane component of the normal vector H calculated in this way, and the elliptical beam L2 is rotated by the elliptical beam rotating optical unit 7 at the rotational angle to perform laser processing. To start.

このように上記レーザ加工を実施したところ、従来の方法では、Rmaxが約1.5μmであったのに対し、本実施例では、Rmaxが0.5μm以下となった。
なお、本実施例において、2つの傾斜面をレーザ加工した状態を示す拡大写真画像を図12に示す。この写真画像からわかるように、非常に表面粗さが小さく面精度の高い傾斜面が得られている。
Thus, when the said laser processing was implemented, Rmax was set to about 0.5 micrometer or less with the present Example, while Rmax was about 1.5 micrometers in the conventional method.
In this embodiment, an enlarged photograph image showing a state where two inclined surfaces are laser processed is shown in FIG. As can be seen from this photographic image, an inclined surface with very small surface roughness and high surface accuracy is obtained.

なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

1…レーザ加工装置、2…レーザ照射機構、3…位置調整機構、4…制御部、6…楕円ビーム整形光学部、7…楕円ビーム回転光学部、H…法線ベクトル、L1…レーザビーム、L2…楕円ビーム、LY…加工レイヤー、W…加工対象物   DESCRIPTION OF SYMBOLS 1 ... Laser processing apparatus, 2 ... Laser irradiation mechanism, 3 ... Position adjustment mechanism, 4 ... Control part, 6 ... Elliptical beam shaping optical part, 7 ... Elliptical beam rotation optical part, H ... Normal vector, L1 ... Laser beam, L2 ... elliptical beam, LY ... processing layer, W ... processing object

Claims (4)

加工対象物にレーザビームを照射して加工する装置であって、
レーザビームを発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査可能なレーザ照射機構と、
前記加工対象物を保持して該加工対象物と前記レーザビームとの相対的な位置関係を調整可能な位置調整機構と、
これらの機構を制御する制御部とを備え、
前記レーザ照射機構が、前記レーザビームのビーム断面形状を楕円形状に整形して楕円ビームとする楕円ビーム整形光学部と、
前記楕円ビームを回転させ前記楕円形状の短軸を所定の方向に向ける楕円ビーム回転光学部とを有し、
前記制御部が、前記加工対象物の加工領域において設計上の加工後形状の表面における法線ベクトルを求め、該法線ベクトルの前記楕円ビームの照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向ける制御を行うことを特徴とするレーザ加工装置。
An apparatus for irradiating a processing object with a laser beam,
A laser irradiation mechanism capable of oscillating a laser beam to irradiate the workpiece with a constant repetition frequency and capable of scanning;
A position adjustment mechanism capable of holding the workpiece and adjusting a relative positional relationship between the workpiece and the laser beam;
A control unit for controlling these mechanisms,
An elliptical beam shaping optical unit in which the laser irradiation mechanism forms an elliptical beam by shaping a beam cross-sectional shape of the laser beam into an elliptical shape;
An elliptical beam rotating optical unit that rotates the elliptical beam and directs the elliptical minor axis in a predetermined direction;
The control unit obtains a normal vector on the surface of the designed post-processed shape in the processing region of the processing object, and the direction of the orthogonal projection vector onto the surface perpendicular to the irradiation direction of the elliptical beam of the normal vector A laser processing apparatus for controlling the elliptical minor axis to the surface.
請求項1に記載のレーザ加工装置において、
前記制御部が、前記楕円ビームの走査を行う際に、前記加工領域を前記楕円ビームの照射方向に複数の加工レイヤーを積み重ねたものとして設定し、各加工レイヤーに対して前記楕円ビームを照射し、前記加工レイヤー毎に所定部分を除去して、三次元形状の加工面を形成する制御を行い、隣接する2つの前記加工レイヤーにおいて前記設計上の加工後形状を決定する前記走査の開始点又は終点の座標から前記法線ベクトルを演算することを特徴とするレーザ加工装置。
In the laser processing apparatus of Claim 1,
When the control unit scans the elliptical beam, the processing region is set as a plurality of processing layers stacked in the irradiation direction of the elliptical beam, and the elliptical beam is irradiated to each processing layer. , Removing a predetermined part for each processing layer, performing control to form a processing surface of a three-dimensional shape, and determining the design post-processing shape in the two adjacent processing layers A laser processing apparatus that calculates the normal vector from coordinates of an end point.
加工対象物にレーザビームを照射して加工する方法であって、
レーザビームを発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ照射工程と、
前記加工対象物を保持して該加工対象物と前記レーザビームとの相対的な位置関係を調整する位置調整工程とを有し、
前記レーザ照射工程が、前記レーザビームのビーム断面形状を楕円形状に整形して楕円ビームとする楕円ビーム整形工程と、
前記楕円ビームを回転させ前記楕円形状の短軸を所定の方向に向ける楕円ビーム回転工程とを有し、
前記加工対象物の加工領域において設計上の加工後形状の表面における法線ベクトルを求め、該法線ベクトルの前記楕円ビームの照射方向に垂直な面への正射影ベクトルの方向に前記楕円形状の短軸を向けることを特徴とするレーザ加工方法。
A method of processing by irradiating a workpiece with a laser beam,
A laser irradiation step of oscillating a laser beam to irradiate the workpiece with a constant repetition frequency and scanning;
A position adjustment step of holding the workpiece and adjusting a relative positional relationship between the workpiece and the laser beam,
The laser irradiation step is an elliptical beam shaping step in which a beam cross-sectional shape of the laser beam is shaped into an elliptical shape to form an elliptical beam;
An elliptical beam rotating step of rotating the elliptical beam and directing the minor axis of the elliptical shape in a predetermined direction;
A normal vector on the surface of the designed post-processed shape is obtained in the processing region of the processing object, and the elliptical shape is oriented in the direction of an orthogonal projection vector onto a surface perpendicular to the irradiation direction of the elliptical beam of the normal vector. A laser processing method characterized by directing a short axis.
請求項3に記載のレーザ加工方法において、
請求項1に記載のレーザ加工装置を用い、
前記制御部が、前記楕円ビームの走査を行う際に、前記加工領域を前記楕円ビームの照射方向に複数の加工レイヤーを積み重ねたものとして設定し、各加工レイヤーに対して前記楕円ビームを照射し、前記加工レイヤー毎に所定部分を除去して、三次元形状の加工面を形成し、隣接する2つの前記加工レイヤーにおいて前記設計上の加工後形状を決定する前記走査の開始点又は終点の座標から前記法線ベクトルを演算することを特徴とするレーザ加工方法。
In the laser processing method of Claim 3,
Using the laser processing apparatus according to claim 1,
When the control unit scans the elliptical beam, the processing region is set as a plurality of processing layers stacked in the irradiation direction of the elliptical beam, and the elliptical beam is irradiated to each processing layer. The scanning start point or end point coordinates for removing a predetermined portion for each processing layer, forming a three-dimensional processing surface, and determining the designed post-processing shape in two adjacent processing layers The normal processing vector is calculated from the laser processing method.
JP2012037764A 2012-02-23 2012-02-23 Laser processing apparatus and laser processing method Expired - Fee Related JP5861494B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012037764A JP5861494B2 (en) 2012-02-23 2012-02-23 Laser processing apparatus and laser processing method
CN201310051610XA CN103286442A (en) 2012-02-23 2013-02-17 Laser processing device and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037764A JP5861494B2 (en) 2012-02-23 2012-02-23 Laser processing apparatus and laser processing method

Publications (2)

Publication Number Publication Date
JP2013173150A JP2013173150A (en) 2013-09-05
JP5861494B2 true JP5861494B2 (en) 2016-02-16

Family

ID=49088252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037764A Expired - Fee Related JP5861494B2 (en) 2012-02-23 2012-02-23 Laser processing apparatus and laser processing method

Country Status (2)

Country Link
JP (1) JP5861494B2 (en)
CN (1) CN103286442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306386B2 (en) 2018-10-24 2022-04-19 Samsung Display Co., Ltd. Mask repairing apparatus and mask repairing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920662B2 (en) * 2012-06-05 2016-05-18 三菱マテリアル株式会社 Laser processing apparatus and laser processing method
JP5920661B2 (en) * 2012-06-05 2016-05-18 三菱マテリアル株式会社 Laser processing apparatus and laser processing method
JP6552948B2 (en) * 2015-11-27 2019-07-31 株式会社ディスコ Wafer processing method and processing apparatus
CN106903433A (en) * 2017-02-21 2017-06-30 机械科学研究总院先进制造技术研究中心 A kind of hot spot adjustable laser cladding head
CN110091078A (en) * 2019-05-31 2019-08-06 华中科技大学 A kind of three-dimensional column hole laser cutting method for glass
DE102022121238A1 (en) * 2022-08-23 2024-02-29 Trumpf Laser- Und Systemtechnik Gmbh Manufacturing device and method for the additive manufacturing of components from a powder material and method for determining a correction function for such a manufacturing device or method
CN116117304B (en) * 2023-02-03 2023-06-30 武汉引领光学技术有限公司 Rotation following optical device for shaping light beam and laser processing system
CN117161477A (en) * 2023-10-31 2023-12-05 临沂友诚制锯技术服务有限公司 Circular arc light path sawtooth processing technology

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215290A (en) * 1983-05-19 1984-12-05 Matsushita Electric Ind Co Ltd Three-dimensional stereoscopic laser working device
JPS6030595A (en) * 1983-07-29 1985-02-16 Sumitomo Metal Ind Ltd Laser scarfing method of externally circular body
JP3381885B2 (en) * 1994-09-13 2003-03-04 理化学研究所 Laser processing method and laser processing apparatus
DE602004020538D1 (en) * 2003-02-28 2009-05-28 Semiconductor Energy Lab Method and device for laser irradiation, and method for the production of semiconductors.
KR100462358B1 (en) * 2004-03-31 2004-12-17 주식회사 이오테크닉스 Laser Processing Apparatus with Polygon Mirror
JP5072197B2 (en) * 2004-06-18 2012-11-14 株式会社半導体エネルギー研究所 Laser irradiation apparatus and laser irradiation method
JP4440036B2 (en) * 2004-08-11 2010-03-24 株式会社ディスコ Laser processing method
US7883586B2 (en) * 2005-11-01 2011-02-08 Nippon Steel Corporation Method for production and apparatus for production of grain-oriented electrical steel sheet excellent in magnetic properties
JP2007275962A (en) * 2006-04-10 2007-10-25 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2008049361A (en) * 2006-08-23 2008-03-06 Sumitomo Heavy Ind Ltd Beam forming method, and laser beam machining apparatus using the method
JP2008080371A (en) * 2006-09-27 2008-04-10 Sumitomo Heavy Ind Ltd Laser beam machining method and apparatus therefor
JP2011121093A (en) * 2009-12-10 2011-06-23 Mitsubishi Materials Corp Laser beam machining apparatus and laser beam machining method of tool using the same
JP2012016735A (en) * 2010-07-09 2012-01-26 Mitsubishi Materials Corp Laser beam machining device and laser beam machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306386B2 (en) 2018-10-24 2022-04-19 Samsung Display Co., Ltd. Mask repairing apparatus and mask repairing method

Also Published As

Publication number Publication date
JP2013173150A (en) 2013-09-05
CN103286442A (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5861494B2 (en) Laser processing apparatus and laser processing method
KR100462358B1 (en) Laser Processing Apparatus with Polygon Mirror
JP5670647B2 (en) Processing object cutting method
JP6161188B2 (en) Laser processing apparatus and laser processing method
JP2009082958A (en) Laser beam machining apparatus and axicon lens
CN105163897A (en) Coordination of beam angle and workpiece movement for taper control
JP2012016735A (en) Laser beam machining device and laser beam machining method
KR20200002795A (en) Processing method of workpiece surface using laser
JP2009178725A (en) Laser beam machining apparatus and method
KR101026356B1 (en) Laser scanning device
US20190118305A1 (en) Laser 3d processing system
JP2015085336A (en) Laser processing method, and processing apparatus
JP2006049635A (en) Method and apparatus for laser irradiation and method for laser annealing
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
KR100556587B1 (en) Laser Processing Apparatus with Polygon Mirror
KR102189459B1 (en) Method for drilling hole and the drilling apparatus
JPWO2017126506A1 (en) Processing object cutting method
JP4039306B2 (en) 3D circuit pattern forming method, apparatus, and 3D circuit board manufactured using the same
JP2006320938A (en) Apparatus and method for laser beam machining
JP2017104875A (en) Laser processing device and laser processing method
JP3524855B2 (en) Laser irradiation apparatus and laser processing method
JP2011036869A (en) Laser machining method
JP2015077629A (en) Laser processing method and processing apparatus
JP2005014050A (en) Laser beam machining device
JP6497894B2 (en) Method and apparatus for forming fine periodic structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R150 Certificate of patent or registration of utility model

Ref document number: 5861494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees