WO2010119962A1 - 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体 - Google Patents

立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体 Download PDF

Info

Publication number
WO2010119962A1
WO2010119962A1 PCT/JP2010/056873 JP2010056873W WO2010119962A1 WO 2010119962 A1 WO2010119962 A1 WO 2010119962A1 JP 2010056873 W JP2010056873 W JP 2010056873W WO 2010119962 A1 WO2010119962 A1 WO 2010119962A1
Authority
WO
WIPO (PCT)
Prior art keywords
cubic boron
boron nitride
sintered body
nitride sintered
titanium
Prior art date
Application number
PCT/JP2010/056873
Other languages
English (en)
French (fr)
Inventor
雄一郎 福島
崇 梅村
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to US13/259,982 priority Critical patent/US20120035045A1/en
Priority to EP10764544.2A priority patent/EP2420483B1/en
Priority to JP2011509370A priority patent/JP5660034B2/ja
Publication of WO2010119962A1 publication Critical patent/WO2010119962A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/007Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/008Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds other than carbides, borides or nitrides

Definitions

  • the present invention relates to a cubic boron nitride sintered body and a coated cubic boron nitride sintered body. Specifically, the present invention relates to a cubic boron nitride-containing sintered body and a coated cubic boron nitride sintered body that are optimal as cutting tools and wear-resistant tools.
  • Cubic boron nitride has characteristics that it has hardness next to diamond, excellent thermal conductivity, and low affinity with iron.
  • Cubic boron nitride sintered bodies made of cubic boron nitride and a binder phase of metal or ceramic have been applied to cutting tools, wear-resistant tools, and the like.
  • cubic boron nitride sintered bodies cubic boron nitride, aluminum oxide, aluminum nitride and / or aluminum boride, titanium carbide, titanium nitride and / or titanium carbonitride, titanium boride,
  • a cubic boron nitride sintered body made of for example, see Patent Document 1.
  • the cubic boron nitride sintered body described in Patent Document 1 has not been able to adequately meet these requirements.
  • the present invention solves such a problem, and improves the fracture resistance and toughness without reducing the wear resistance, and increases the tool life of the cutting tool and the wear-resistant tool.
  • An object is to provide a coated cubic boron nitride sintered body.
  • the inventors have conducted research on a cubic boron nitride sintered body, and in order to increase the toughness of the cubic boron nitride sintered body, it is important to suppress propagation of the generated cracks,
  • the present invention is completed by obtaining the knowledge that the binder phase of the cubic boron nitride sintered body has many grain boundaries and that the binder phase particles are firmly bonded. It came.
  • the present invention relates to a titanium carbonitride (200) in an X-ray diffraction measurement using a Cu—K ⁇ ray, comprising a binder phase containing titanium nitride and titanium carbonitride, cubic boron nitride, and inevitable impurities.
  • the distance between the Bragg angle 2 ⁇ of the surface diffraction line and the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium nitride is 0.30 ° or more and 0.60 ° or less, and the (200) plane diffraction line of titanium carbonitride A cubic boron nitride sintered body having a half width of 0.30 ° or more and 0.50 ° or less.
  • the Bragg angle 2 ⁇ of each diffraction line means the Bragg angle 2 ⁇ that indicates the maximum value (peak intensity) of the X-ray diffraction intensity of each diffraction line, and the Bragg angle of the (200) plane diffraction line of titanium carbonitride.
  • the interval between the angle 2 ⁇ and the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium nitride means the absolute value between the Bragg angles 2 ⁇ at which the respective X-ray diffraction intensities show the maximum value (peak intensity).
  • the half width of each diffraction line means the peak width at the position where the maximum value (peak intensity) of the X-ray diffraction intensity is halved for each diffraction line.
  • the half width of the (200) plane diffraction line of titanium nitride is preferably 0.25 ° or more and 0.45 ° or less, and Cu—K ⁇ ray is used.
  • the peak intensity ratio (I TiN / I TiCN ) of the peak intensity I TiN of the (200) plane diffraction line of titanium nitride to the peak intensity I TiCN of the (200) plane diffraction line of titanium carbonitride is 0
  • the cubic boron nitride sintered body is 1 to 0.5
  • the cubic boron nitride sintered body is aluminum oxide: 3 to 30% by volume with respect to the entire cubic boron nitride sintered body
  • Total of titanium nitride and titanium carbonitride 10 to 60% by volume with respect to the entire cubic boron nitride sintered body
  • titanium boride 1 to 30% by volume with respect to the entire cubic boron nitride sintered body
  • nitrided One or two types of aluminum and aluminum boride: standing A total of 20 to 80% by volume of the binder phase consisting of 10% by volume or less with respect to the entire
  • it is preferably composed of 20 to 80% by volume of cubic boron nitride and unavoidable impurities, and is a coated cubic boron nitride sintered body in which a film is coated on the surface of these cubic boron nitride sintered bodies. And preferred.
  • the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance and toughness. Therefore, when the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are used as a cutting tool or a wear-resistant tool, an effect that the tool life can be extended is obtained.
  • the cubic boron nitride sintered body of the present invention comprises a binder phase, cubic boron nitride and unavoidable impurities.
  • the binder phase exceeds 80% by volume with respect to the entire cubic boron nitride sintered body, the fracture resistance is lowered, and the binder phase is reduced throughout the cubic boron nitride sintered body.
  • the amount is less than 20% by volume, the wear resistance is lowered. Therefore, 20 to 80% by volume of the binder phase relative to the entire cubic boron nitride sintered body and 20% to the entire cubic boron nitride sintered body.
  • a cubic boron nitride sintered body composed of up to 80% by volume of cubic boron nitride and inevitable impurities is preferable. More preferably, the binder phase is 30 to 70% by volume with respect to the entire cubic boron nitride sintered body, and 70 to 30% by volume of cubic boron nitride and unavoidable impurities with respect to the entire cubic boron nitride sintered body. Most preferred is a cubic boron nitride sintered body composed of a binder phase of 40 to 60% by volume, cubic boron nitride of 60 to 40% by volume and inevitable impurities.
  • the binder phase of the present invention contains titanium nitride and titanium carbonitride.
  • the binder phase of the present invention may be composed of titanium nitride and titanium carbonitride, but in addition to titanium nitride and titanium carbonitride, periodic table 4 (Ti, Zr, Hf, etc.), 5 (V, Nb, Ta) Etc.), 6 (Cr, Mo, W etc.) group elements, aluminum carbides, nitrides, borides, silicides and their mutual solid solutions, Fe, Co, Ni, Cr, Mo, W and alloys thereof It is also preferable to contain at least one of the above.
  • Specific examples of the binder phase other than titanium nitride and titanium carbonitride include titanium boride, aluminum oxide, aluminum nitride, and aluminum boride.
  • Titanium nitride and titanium carbonitride can be added simultaneously as raw material powder to obtain the binder phase of the present invention. Sintering a mixture of titanium compounds having different carbon and nitrogen contents facilitates the formation of a mutual solid solution and strengthens the bond between the binder phase particles.
  • the cubic boron nitride sintered body of the present invention is subjected to X-ray diffraction measurement using Cu—K ⁇ rays, the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium carbonitride and the (200) plane diffraction of titanium nitride are measured. The distance between the line and the Bragg angle 2 ⁇ is 0.30 ° or more and 0.60 ° or less.
  • this interval When this interval is less than 0.30 °, the bonds between the binder phase particles are hardly strengthened, and when this interval exceeds 0.60 °, the resistance to iron at high temperatures decreases,
  • the interval was set to 0.30 ° or more and 0.60 ° or less. This interval is preferably 0.30 ° or more and 0.50 ° or less, and more preferably 0.30 ° or more and 0.45 ° or less.
  • This interval can be adjusted by adjusting the position of the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium nitride and the position of the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium carbonitride.
  • the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium nitride can be adjusted by the ratio of the metal element and the nonmetal element contained in the titanium nitride powder of the raw material powder.
  • x 1 nonmetallic element to the metal element (Ti) contained in the titanium nitride powder of the raw material powder (N) is less than 1, (200) plane of the titanium nitride sintered body
  • the Bragg angle 2 ⁇ of the diffraction line is shifted to the high angle side.
  • the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium carbonitride can be adjusted by the ratio of the metal element to the nonmetallic element and the ratio of carbon to nitrogen contained in the titanium carbonitride powder of the raw material powder. Specifically, according to the atomic ratio x 2 of the non-metallic element to the metal element (Ti) contained in the titanium carbonitride powder of the raw material powder (CN) is smaller than 1, the titanium carbonitride of the sintered body (200 ) The Bragg angle 2 ⁇ of the surface diffraction line is shifted to the high angle side.
  • the Bragg angle 2 ⁇ of the (200) plane diffraction line of the sintered titanium carbonitride shifts to the lower angle side.
  • non-metallic element to the metal element (Ti) contained in the titanium carbonitride powder of the raw material powder atomic ratio x 2 of the (CN) and 1, the carbon to the sum of carbon and nitrogen contained in the titanium carbonitride powder of the raw material powder when the atomic ratio x 3 0.4, Bragg angle 2 [Theta] of (200) plane diffraction line titanium carbonitride of the sintered body will 2 ⁇ 42.16 ⁇ 42.26 °.
  • non-metallic element to the metal element (Ti) contained in the titanium carbonitride powder of the raw material powder atomic ratio x 2 of the (CN) and 1, the carbon to the sum of carbon and nitrogen contained in the titanium carbonitride powder of the raw material powder when the atomic ratio x 3 to 0.7, Bragg angle 2 [Theta] of (200) plane diffraction line titanium carbonitride of the sintered body will 2 ⁇ 41.91 ⁇ 42.01 °.
  • the titanium nitride powder is an atomic ratio x 1 nonmetallic element to the metal element contained in the titanium nitride powder (Ti) (N) is 1, carbonitride an atomic ratio x 2 of the non-metal element to a metal element contained in the titanium powder (Ti) (CN) is 1, the atomic ratio x 3 of carbon to the sum of carbon and nitrogen contained in the titanium carbonitride powder is 0.4 It is preferable to use a titanium carbonitride powder of ⁇ 0.7.
  • the peak intensity ratio of I TiN for I TiCN is 0.1 to 0.5, and most preferably from 0.1 to 0.3.
  • the half-value width of the (200) plane diffraction line of titanium carbonitride contained in the cubic boron nitride sintered body of the present invention is 0.30 ° or more, the average particle size of titanium carbonitride becomes finer and cubic nitriding. The mechanical strength of the boron sintered body is improved.
  • the half-value width of the (200) plane diffraction line of titanium carbonitride exceeds 0.50 °, the average particle size of titanium carbonitride becomes too fine, and crack propagation is mainly due to intergranular fracture, and toughness Decreases. Therefore, the half width of the (200) plane diffraction line of titanium carbonitride was set to 0.30 ° or more and 0.50 ° or less.
  • the half width is preferably 0.30 ° or more and 0.45 ° or less, and more preferably 0.30 ° or more and 0.40 ° or less.
  • This half width can be adjusted by the average particle diameter of the raw material titanium carbonitride and the ball mill mixing time. Specifically, by setting the average particle size of the titanium carbonitride powder to 0.8 to 1.5 ⁇ m and the ball mill mixing time to 1 to 120 hours, the half width of the (200) plane diffraction line of titanium carbonitride Can be made 0.30 ° or more and 0.50 ° or less.
  • the half width of the (200) plane diffraction line of titanium nitride contained in the cubic boron nitride sintered body of the present invention is 0.25 ° or more, the average grain size of titanium nitride becomes finer and cubic boron nitride sintered. The mechanical strength of the bonded body is further improved.
  • the half width of the (200) plane diffraction line of titanium nitride increases beyond 0.45 °, the average grain size of titanium nitride becomes finer, and crack propagation tends to be due to intergranular fracture, leading to a decrease in toughness. Show.
  • the half width of the (200) plane diffraction line of titanium nitride is preferably 0.25 ° or more and 0.45 ° or less.
  • the half width is preferably 0.25 ° to 0.40 °, more preferably 0.25 ° to 0.35 °.
  • This half width can be adjusted by the average particle diameter of the titanium nitride of the raw material powder and the ball mill mixing time. Specifically, by setting the average particle size of the titanium nitride powder to 0.8 to 1.5 ⁇ m and the ball mill mixing time to 1 to 120 hours, the half width of the (200) plane diffraction line of titanium nitride is reduced to 0. It can be set to 25 ° or more and 0.45 ° or less.
  • the Bragg angle 2 ⁇ , the half width, and the peak intensity of the (200) plane diffraction line of titanium carbonitride and the (200) plane diffraction line of titanium nitride can be measured using a commercially available X-ray diffractometer.
  • Phases other than cubic boron nitride (cBN) and cBN for example, TiN, Ti (C 0.5 N 0.5 ), Ti (C 0.8 N 0.2 ), Ti () included in the cubic boron nitride sintered body of the present invention.
  • C 0.2 N 0.8 ), TiB 2 , AlN, Al 2 O 3, etc. (volume%) can be determined from SEM observation, EDS analysis, and X-ray diffraction measurement.
  • the cubic boron nitride sintered body is subjected to X-ray diffraction measurement to identify each phase of the cubic boron nitride sintered body, and the peak intensity of each phase is measured. Further, the ratio of the peak intensity of each phase to the peak intensity of cBN in the cubic boron nitride sintered body is calculated.
  • a powder having the same component as each phase included in the cubic boron nitride sintered body is prepared.
  • the content (volume%) of cBN obtained by SEM observation of the cubic boron nitride sintered body is the same as the blending quantity (volume%) of cBN powder, and some blending ratios of powders other than cBN are changed. These powders are blended. At this time, the total amount (volume%) of powders other than cBN is made the same as the binder phase content (volume%) obtained by SEM observation of the cubic boron nitride sintered body. The powder blended at such a ratio is mixed well.
  • X-ray diffraction measurement is performed on the obtained mixed powder, the peak intensity of each phase is measured, and the peak intensity ratio of each phase to the peak intensity of cBN in the mixed powder is calculated.
  • a calibration curve showing the relationship between the peak intensity ratio of each phase to the peak intensity of cBN in the mixed powder and the blending amount (volume%) of each phase is obtained.
  • the content (volume%) of each phase other than cBN in the cubic boron nitride sintered body can be obtained from the peak intensity ratio of each phase other than cBN in the cubic boron nitride sintered body. it can.
  • the cubic boron nitride sintered body of the present invention is aluminum oxide: 3 to 30% by volume with respect to the entire cubic boron nitride sintered body, and the total of titanium nitride and titanium carbonitride: the entire cubic boron nitride sintered body 10 to 60% by volume with respect to the titanium borate: 1 to 30% by volume with respect to the entire cubic boron nitride sintered body, and one or two types of aluminum nitride and aluminum boride: cubic boron nitride firing A total of 20 to 80% by volume of the binder phase consisting of 10% by volume or less of the entire sintered body and 80% to 80% of the entire cubic boron nitride sintered body.
  • the balance of wear resistance and toughness of the cubic boron nitride sintered body is good, and the effect of further extending the life is obtained when used as a tool. This is preferable. This is due to the following reason.
  • the aluminum powder in the raw material powder in the manufacturing process combines with oxygen adsorbed on the raw material powder or oxygen in the air to form aluminum oxide, but the aluminum oxide is 3 volumes with respect to the entire cubic boron nitride sintered body. If it is less than%, the toughness decreases, and conversely, if the amount of aluminum oxide exceeds 30% by volume with respect to the entire cubic boron nitride sintered body, the wear resistance decreases.
  • the wear resistance decreases, and conversely, the total of titanium nitride and titanium carbonitride exceeds 60% by volume.
  • the other binder phase components are relatively decreased, so that toughness and heat resistance are lowered.
  • titanium boride is less than 1% by volume with respect to the entire cubic boron nitride sintered body, the toughness decreases, and conversely, titanium boride is more than 30% by volume with respect to the entire cubic boron nitride sintered body. As a result, the wear resistance decreases.
  • aluminum nitride and aluminum boride exceeds 10% by volume with respect to the entire cubic boron nitride sintered body, the mechanical strength and toughness are lowered. More preferably, with respect to the entire cubic boron nitride sintered body, aluminum oxide: 3 to 20% by volume, total of titanium nitride and titanium carbonitride: 20 to 55% by volume, titanium boride: 1 to 20% by volume, nitriding One or two of aluminum and aluminum boride: a binder phase consisting of 9% by volume or less, more preferably aluminum oxide: 3 to 15% by volume, and the total of titanium nitride and titanium carbonitride: 30 to 55% by volume Titanium boride: 1 to 10% by volume, one or two types of aluminum nitride and aluminum boride: 8% by volume or less.
  • Examples of impurities inevitably contained in the cubic boron nitride sintered body of the present invention include Cu mixed from the raw material powder of the cubic boron nitride sintered body.
  • the total amount of inevitable impurities is generally 0.5% by weight or less with respect to the entire cubic boron nitride sintered body, and usually 0.2% by weight with respect to the entire cubic boron nitride sintered body. Since it can be suppressed to the following, the characteristic value of the present invention is not affected.
  • the binder phase in addition to the cubic boron nitride, the binder phase, and the inevitable impurities, other than the inevitable impurities, as long as the characteristics of the cubic boron nitride sintered body of the present invention are not impaired.
  • the coating of the present invention comprises at least one of periodic table 4, 5, 6 element, Al, Si metal, oxide, carbide, nitride, boride, and mutual solid solution thereof.
  • Specific examples include TiN, TiC, TiCN, TiAlN, TiSiN, and CrAlN.
  • the coating is preferably either a single layer or a laminate of two or more layers, and is also preferably an alternating laminated film in which thin films having different layer thicknesses of 5 to 200 nm are alternately laminated.
  • the average film thickness is preferably from 0.5 to 15 ⁇ m. Among them, 1 to 10 ⁇ m is more preferable, and 1.5 to 5 ⁇ m is more preferable among them.
  • the cubic boron nitride sintered body of the present invention is a carbon having an average particle size of 0.5 to 1.0 ⁇ m, in which the atomic ratio of carbon to the total of carbon and nitrogen contained in titanium carbonitride is 0.3 to 0.7.
  • a titanium nitride powder, a titanium nitride powder having an average particle diameter of 0.5 to 1.2 ⁇ m, an aluminum powder, a cubic boron nitride powder, and paraffin are mixed, and the resulting mixture is molded, and the pressure is 1 ⁇ 10 ⁇ 3.
  • Vacuum heat treatment is performed at a temperature of 700 to 1000 ° C. in a vacuum of Torr or lower to remove organic substances such as paraffin, and then put into an ultrahigh pressure and high temperature generator, under conditions of pressure 4 to 6 GPa and temperature 1400 to 1600 ° C. Obtained by sintering.
  • cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance and toughness, they are preferably applied to cutting tools and wear resistant tools. More preferably, it is applied to a tool.
  • Example 1 Cubic boron nitride (cBN) powder having an average particle diameter of 2 ⁇ m, Ti (C 0.5 N 0.5 ) powder, Ti (C 0.8 N 0.2 ) powder, Ti (C 0.2 N 0.8 ) powder and TiN having an average particle diameter shown in Table 1
  • the powders both Ti compounds having a stoichiometric composition in which the ratio of metal elements to nonmetal elements is 1: 1) and Al powder having an average particle diameter of 2 ⁇ m were blended in the blending composition shown in Table 1.
  • the blended raw material powder was put into a ball mill cylinder together with a cemented carbide ball, hexane solvent and paraffin, and ball mill mixing was performed for 48 hours.
  • the mixed powder obtained by mixing and pulverizing with a ball mill was compacted and then deparaffinized under the conditions of 1 ⁇ 10 ⁇ 5 Torr and 850 ° C.
  • the compacted body after deparaffinization treatment is enclosed in a metal capsule, the metal capsule is placed in an ultra-high pressure and high temperature generator, and sintered under a pressure of 5.5 GPa, a temperature of 1500 ° C., and a holding time of 30 minutes. Cubic boron nitride sintered bodies were obtained.
  • the cross-sectional structure of the cubic boron nitride sintered body thus obtained was observed with an SEM and analyzed by EDS to determine the cBN content (% by volume) and the binder phase content (% by volume).
  • the cubic boron nitride sintered body was measured by X-ray diffraction, and each phase (cBN, Ti (C 0.5 N 0.5 ), Ti (C 0.8 N 0.2 ), Ti (C 0.2 ) of the cubic boron nitride sintered body was measured.
  • N 0.8 were identified TiN, a TiB 2, Al 2 O 3, AlN , etc.).
  • the powder blended at such a ratio was mixed well.
  • the obtained mixed powder was subjected to X-ray diffraction measurement, the peak intensity of each phase was measured, and the peak intensity ratio of each phase to the peak intensity of cBN was calculated.
  • a calibration curve showing the relationship between the peak intensity ratio of each phase with respect to the peak intensity of cBN and the composition (volume%) of each phase was obtained.
  • the content (volume%) of each phase other than cBN contained in the cubic boron nitride sintered body is determined from the peak intensity ratio of each phase other than cBN in the cubic boron nitride sintered body. It was. Further, the fracture toughness value K 1C of the cubic boron nitride sintered body was measured.
  • X-ray-diffraction apparatus RINT TTRIII output: 50 kV, 250 mA, incident side solar slit: 5 degrees, divergence longitudinal slit: 1/2 degree, divergence Vertical limit slit: 10 mm, scattering slit 2/3 °, light receiving side solar slit: 5 °, light receiving slit: 0.15 mm, BENT monochromator, light receiving monochrome slit: 0.8 mm, sampling width: 0.02 °, scan speed : 0.1 ° / min, 2 ⁇ measurement range: X-ray diffraction measurement of a 2 ⁇ / ⁇ concentrated optical system using Cu-K ⁇ rays was performed under the conditions of 40 to 46 °.
  • the obtained X-ray diffraction pattern was peak-separated, and the (200) plane of titanium carbonitride (Ti (C 0.2 N 0.8 ), Ti (C 0.5 N 0.5 ) or Ti (C 0.8 N 0.2 )) after peak separation With respect to the diffraction line and the (200) plane diffraction line of titanium nitride (TiN), the Bragg angle 2 ⁇ , the peak intensity, and the half width were measured.
  • the interval between the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium carbonitride and the Bragg angle 2 ⁇ of the (200) plane diffraction line of titanium nitride, titanium carbonitride (Ti (C 0.2 N 0.8 ), Ti (C 0.5 N 0.5) or Ti (C 0.8 N 0.2)) of the (200) plane of titanium nitride to the peak intensity I TiCN diffraction line (TiN) of the (200) plane peak intensity ratio of the peak intensity I TiN diffraction line (I TiN / I TiCN ) were calculated and are shown in Table 4.
  • the sintered body was cut into a predetermined shape with a wire electric discharge machine, brazed to a cemented carbide base material, ground and finished to obtain a cutting tool having an ISO standard CNGA120408 cutting insert shape. Obtained.
  • the following cutting tests (1) and (2) were performed using these cutting inserts. The results are shown in Table 5.
  • the sintered body of the present invention has a higher fracture toughness value K 1C than the conventional cubic boron nitride sintered body. As a result, the fracture resistance at the time of cutting is increased, and the conventional product is improved in continuous cutting and weak interrupted cutting. It is less likely to cause defects.
  • the ratio of the peak strength of titanium nitride to the peak strength of titanium carbonitride (I TiN / I TiCN ) is 0.1 to 0.5, particularly excellent cutting performance is exhibited and the tool life is long.
  • Example 2 The surface of Invention 3 of Example 1 was coated using a PVD apparatus. Invention 6 was coated with TiN having an average film thickness of 3 ⁇ m, and Invention 7 was coated with TiAlN having an average film thickness of 3 ⁇ m. The inventive products 6 and 7 were subjected to the same cutting tests (1) and (2) as in Example 1. The results are shown in Table 6.
  • Inventive products 6 and 7 coated with a coating film could have a longer tool life than the inventive product 3 coated with a coating film.
  • the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance, and toughness, and can extend the tool life particularly when used as a cutting tool or wear resistant tool. So the industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 本発明は、反応焼結により緻密な焼結体とすると共に、結合相の組成選定およびその粒子の調製から、耐摩耗性を低下させずに耐欠損性および靭性を高めることに成功した立方晶窒化硼素含有焼結体およびその製造方法の提供を目的とし、窒化チタンおよび炭窒化チタンを含有する結合相と立方晶窒化硼素と不可避的不純物とからなり、Cu-Kα線を用いたX線回折測定における、炭窒化チタンの(200)面回折線のブラッグ角2θと窒化チタンの(200)面回折線のブラッグ角2θとの間隔が0.30°以上0.60°以下であり、炭窒化チタンの(200)面回折線の半価幅が0.30°以上0.50°以下であることを特徴とする立方晶窒化硼素焼結体により解決される。 

Description

立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
本発明は、立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体に関するものである。具体的には、切削工具、耐摩耗工具として最適な立方晶窒化硼素含有焼結体および被覆立方晶窒化硼素焼結体に関するものである。
立方晶窒化硼素は、ダイヤモンドに次ぐ硬さと優れた熱伝導性を持ち、鉄との親和性が低いという特徴を持つ。立方晶窒化硼素と金属やセラミックスの結合相とでなる立方晶窒化硼素焼結体は切削工具や耐摩耗工具などに応用されてきた。立方晶窒化硼素焼結体の従来技術としては、立方晶窒化硼素と、酸化アルミニウムと、窒化アルミニウムおよび/またはホウ化アルミニウムと、炭化チタン、窒化チタンおよび/または炭窒化チタンと、ホウ化チタンとからなる立方晶窒化硼素焼結体がある(例えば、特許文献1参照。)。
特開平7-82031号公報
加工能率を上げるため従来よりも切削条件が厳しくなる傾向の中で、これまでより工具寿命を長くすることが求められてきた。しかしながら、特許文献1に記載の立方晶窒化硼素焼結体ではこうした要求に十分に答えられなくなってきた。本発明は、このような問題を解決するもので、耐摩耗性を低下させずに耐欠損性および靭性を高め、切削工具や耐摩耗工具の工具寿命を長くする立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を提供することを目的とする。
本発明者らは、立方晶窒化硼素焼結体に関する研究を行ってきたところ、立方晶窒化硼素焼結体の靭性を高めるためには、発生した亀裂の伝播を抑制することが重要であり、そのためには、立方晶窒化硼素焼結体の結合相が多くの粒界を持つこと、結合相の粒子が強固に結合していることが有効であるという知見を得て本発明を完成するに至った。
本発明は、窒化チタンおよび炭窒化チタンを含有する結合相と、立方晶窒化硼素と、不可避的不純物とからなり、Cu-Kα線を用いたX線回折測定における、炭窒化チタンの(200)面回折線のブラッグ角2θと、窒化チタンの(200)面回折線のブラッグ角2θとの間隔が0.30°以上0.60°以下であり、炭窒化チタンの(200)面回折線の半価幅が0.30°以上0.50°以下であることを特徴とする立方晶窒化硼素焼結体である。本発明において、各回折線のブラッグ角2θとは、各回折線のX線回折強度が最大値(ピーク強度)を示すブラッグ角2θを意味し、炭窒化チタンの(200)面回折線のブラッグ角2θと、窒化チタンの(200)面回折線のブラッグ角2θとの間隔とは、それぞれのX線回折強度が最大値(ピーク強度)を示すブラッグ角2θ間の絶対値を意味する。また、各回折線の半価幅とは、各回折線についてX線回折強度が最大値(ピーク強度)が半分になる位置のピーク幅を意味する。さらには、本発明の立方晶窒化硼素焼結体において、窒化チタンの(200)面回折線の半価幅が0.25°以上0.45°以下であると好ましく、Cu-Kα線を用いたX線回折測定における、炭窒化チタンの(200)面回折線のピーク強度ITiCNに対する窒化チタンの(200)面回折線のピーク強度ITiNのピーク強度比(ITiN/ITiCN)が0.1~0.5である立方晶窒化硼素焼結体であると好ましく、立方晶窒化硼素焼結体は、酸化アルミニウム:立方晶窒化硼素焼結体全体に対して3~30体積%と、窒化チタンと炭窒化チタンの合計:立方晶窒化硼素焼結体全体に対して10~60体積%と、硼化チタン:立方晶窒化硼素焼結体全体に対して1~30体積%と、窒化アルミニウムおよび硼化アルミニウムの1種または2種:立方晶窒化硼素焼結体全体に対して10体積%以下とからなる合計して立方晶窒化硼素焼結体全体に対して20~80体積%の結合相と、立方晶窒化硼素焼結体全体に対して20~80体積%の立方晶窒化硼素および不可避的不純物とから構成されると好ましく、これらの立方晶窒化硼素焼結体の表面に被膜を被覆した被覆立方晶窒化硼素焼結体であると好ましい。
本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靭性に優れる。そのため、本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を切削工具や耐摩耗工具として用いると工具寿命を延長することができるという効果が得られる。
本発明の立方晶窒化硼素焼結体のX線回折図形を示す図である。
本発明の立方晶窒化硼素焼結体は結合相と立方晶窒化硼素と不可避的不純物とからなる。本発明の立方晶窒化硼素は、結合相が立方晶窒化硼素焼結体全体に対して80体積%を超えて多くなると耐欠損性が低下し、結合相が立方晶窒化硼素焼結体全体に対して20体積%未満になると、耐摩耗性が低下するので、立方晶窒化硼素焼結体全体に対して20~80体積%の結合相と、立方晶窒化硼素焼結体全体に対して20~80体積%の立方晶窒化硼素と不可避的不純物とからなる立方晶窒化硼素焼結体が好ましい。さらに好ましくは、立方晶窒化硼素焼結体全体に対して30~70体積%の結合相と、立方晶窒化硼素焼結体全体に対して70~30体積%の立方晶窒化硼素と不可避的不純物とからなり、最も好ましくは、40~60体積%の結合相と、60~40体積%の立方晶窒化硼素と不可避的不純物とからなる立方晶窒化硼素焼結体である。
本発明の結合相は窒化チタンおよび炭窒化チタンを含有する。本発明の結合相は、窒化チタンと炭窒化チタンとから構成されてもよいが、窒化チタンと炭窒化チタン以外に、周期表4(Ti,Zr,Hf等),5(V,Nb,Ta等),6(Cr,Mo,W等)族元素、アルミニウムの炭化物、窒化物、硼化物、珪化物およびこれらの相互固溶体、Fe、Co、Ni、Cr、Mo、Wおよびこれらの合金の中の少なくとも1種を含有しても好ましい。窒化チタンと炭窒化チタン以外の結合相として、具体的には、硼化チタン、酸化アルミニウム、窒化アルミニウム、硼化アルミニウムなどを挙げることができる。
原料粉末として窒化チタンと炭窒化チタンとを同時に添加して本発明の結合相を得ることができる。炭素と窒素の含有量が異なるチタン化合物の混合物を焼結することにより、相互固溶体を生成しやすくし、結合相粒子間の結合を強固にすることができる。本発明の立方晶窒化硼素焼結体について、Cu-Kα線を用いたX線回折測定を行うと、炭窒化チタンの(200)面回折線のブラッグ角2θと窒化チタンの(200)面回折線のブラッグ角2θとの間隔が0.30°以上0.60°以下になる。この間隔が0.30°未満になると結合相粒子間の結合が強化されにくくなり、この間隔が0.60°を超えて大きくなると高温下での鉄との耐反応性が低下するため、この間隔を0.30°以上0.60°以下とした。この間隔は、好ましくは0.30°以上0.50°以下であり、更に好ましくは0.30°以上0.45°以下である。
この間隔は、窒化チタンの(200)面回折線のブラッグ角2θの位置と、炭窒化チタンの(200)面回折線のブラッグ角2θの位置を調整することにより、調整することができる。窒化チタンの(200)面回折線のブラッグ角2θは、原料粉末の窒化チタン粉末に含まれる金属元素と非金属元素の比で調整することができる。具体的には、原料粉末の窒化チタン粉末に含まれる金属元素(Ti)に対する非金属元素(N)の原子比xが1よりも小さくなるに従って、焼結体の窒化チタンの(200)面回折線のブラッグ角2θは高角度側にシフトする。例えば、焼結体の窒化チタン(200)面回折線のブラッグ角2θについて、x=1のとき2θ=42.49~42.59°、x=0.8のとき2θ=42.58~42.68°、x=0.6のとき2θ=42.66~42.76°になる。一方、炭窒化チタンの(200)面回折線のブラッグ角2θは、原料粉末の炭窒化チタン粉末に含まれる、金属元素と非金属元素の比と、炭素と窒素の比で調整することができる。具体的には、原料粉末の炭窒化チタン粉末に含まれる金属元素(Ti)に対する非金属元素(CN)の原子比xが1よりも小さくなるに従って、焼結体の炭窒化チタンの(200)面回折線のブラッグ角2θは高角度側にシフトする。例えば、原料粉末の炭窒化チタン粉末に含まれる炭素と窒素の合計に対する炭素の原子比xが0.5のとき、焼結体の炭窒化チタン(200)面回折線のブラッグ角2θについて、x=1のとき2θ=42.08~42.18°、x=0.8のとき2θ=42.13~42.23°、x=0.6のとき2θ=42.21~42.31°になる。また、原料粉末の炭窒化チタン粉末に含まれる炭素と窒素の合計に対する炭素の原子比が多くなると、焼結体の炭窒化チタンの(200)面回折線のブラッグ角2θは低角度側にシフトする。例えば、原料粉末の炭窒化チタン粉末に含まれる金属元素(Ti)に対する非金属元素(CN)の原子比xを1とし、原料粉末の炭窒化チタン粉末に含まれる炭素と窒素の合計に対する炭素の原子比xを0.4にすると、焼結体の炭窒化チタンの(200)面回折線のブラッグ角2θは、2θ=42.16~42.26°になる。また、原料粉末の炭窒化チタン粉末に含まれる金属元素(Ti)に対する非金属元素(CN)の原子比xを1とし、原料粉末の炭窒化チタン粉末に含まれる炭素と窒素の合計に対する炭素の原子比xを0.7にすると、焼結体の炭窒化チタンの(200)面回折線のブラッグ角2θは、2θ=41.91~42.01°になる。本発明の立方晶窒化硼素焼結体の原料粉末としては、窒化チタン粉末に含まれる金属元素(Ti)に対する非金属元素(N)の原子比xが1である窒化チタン粉末と、炭窒化チタン粉末に含まれる金属元素(Ti)に対する非金属元素(CN)の原子比xが1であり、炭窒化チタン粉末に含まれる炭素と窒素の合計に対する炭素の原子比xが0.4~0.7である炭窒化チタン粉末を用いると好ましい。xが1未満である窒化チタン粉末およびxが1未満である炭窒化チタン粉末よりも、x=1の窒化チタン粉末およびx=1の炭窒化チタン粉末を用いると好ましい理由は、xが1未満である窒化チタン粉末およびxが1未満である炭窒化チタン粉末は、非金属元素よりも過剰に金属元素が含まれるので、過剰な金属元素が立方晶窒化硼素、Al、チタン化合物などと反応生成物を生成しやすく、得られた焼結体は、粒界が不明確になり、クラックが進展しやすく、強度が低下する傾向を示すためである。
本発明の立方晶窒化硼素焼結体に含まれる窒化チタンの(200)面回折線のピーク強度をITiN、炭窒化チタンの(200)面回折線のピーク強度をITiCNと表したとき、ITiCNに対するITiNのピーク強度比(ITiN/ITiCN)が0.1未満であると、窒化チタンが少なくなるため、鉄との耐反応性が低下する。逆に(ITiN/ITiCN)が0.5を超えて多くなると、本発明の結合相に含まれる窒化チタンが多くなるため立方晶窒化硼素焼結体の機械的強度が低下する。そのため、ITiCNに対するITiNのピーク強度比(ITiN/ITiCN)は0.1~0.5であるとさらに好ましく、最も好ましくは0.1~0.3である。ピーク強度比(ITiN/ITiCN)は、原料粉末の窒化チタン粉末と炭窒化チタン粉末の配合比により調整することができる。具体的には、原料粉末に含まれる炭窒化チタン粉末に対する窒化チタン粉末の配合比を体積比で、窒化チタン粉末/炭窒化チタン粉末=0.1~0.5にすると、ピーク強度比(ITiN/ITiCN)を0.1~0.5にすることができる。
本発明の立方晶窒化硼素焼結体に含まれる炭窒化チタンの(200)面回折線の半価幅は0.30°以上を示すと、炭窒化チタンの平均粒径は細かくなり立方晶窒化硼素焼結体の機械的強度が向上する。しかしながら、炭窒化チタンの(200)面回折線の半価幅は0.50°を超えて大きくなると、炭窒化チタンの平均粒径が細かくなり過ぎて亀裂伝播は粒界破壊が主となり、靭性が低下する。そのため、炭窒化チタンの(200)面回折線の半価幅を0.30°以上0.50°以下とした。この半価幅は、好ましくは0.30°以上0.45°以下であり、更に好ましくは0.30°以上0.40°以下である。この半価幅は、原料粉末の炭窒化チタンの平均粒径とボールミル混合時間により調整することができる。具体的には、炭窒化チタン粉末の平均粒径を0.8~1.5μmとし、ボールミル混合時間を1~120時間とすることにより、炭窒化チタンの(200)面回折線の半価幅を0.30°以上0.50°以下にすることができる。
本発明の立方晶窒化硼素焼結体に含まれる窒化チタンの(200)面回折線の半価幅は0.25°以上を示すと、窒化チタンの平均粒径は細かくなり立方晶窒化硼素焼結体の機械的強度がさらに向上する。窒化チタンの(200)面回折線の半価幅は0.45°を超えて大きくなると、窒化チタンの平均粒径が細かくなって亀裂伝播は粒界破壊が主となり、靭性が低下する傾向を示す。そのため、窒化チタンの(200)面回折線の半価幅は0.25°以上0.45°以下であると好ましい。この半価幅は、好ましくは0.25°以上0.40°以下であり、更に好ましくは0.25°以上0.35°以下である。この半価幅は、原料粉末の窒化チタンの平均粒径とボールミル混合時間により調整することができる。具体的には、窒化チタン粉末の平均粒径を0.8~1.5μmとし、ボールミル混合時間を1~120時間とすることにより、窒化チタンの(200)面回折線の半価幅を0.25°以上0.45°以下にすることができる。
炭窒化チタンの(200)面回折線と窒化チタンの(200)面回折線のブラッグ角2θと半価幅とピーク強度は市販のX線回折装置を用いて測定することができる。例えば、株式会社リガク製 X線回折装置RINT TTRIIIを用いて、Cu-Kα線を用いた2θ/θ集中光学系のX線回折測定を、出力:50kV、250mA、入射側ソーラースリット:5°、発散縦スリット:1/2°、発散縦制限スリット:10mm、散乱スリット2/3°、受光側ソーラースリット:5°、受光スリット:0.15mm、BENTモノクロメータ、受光モノクロスリット:0.8mm、サンプリング幅:0.02°、スキャンスピード:0.1°/min、2θ測定範囲:40~46°という条件で行うと、炭窒化チタンの(200)面回折線と窒化チタンの(200)面回折線についてブラッグ角2θと半価幅とピーク強度を測定できる。炭窒化チタンの(200)面回折線と窒化チタンの(200)面回折線が重なっている場合は、X線回折装置付属の解析用ソフトウェアによるピーク分離を行って、炭窒化チタンの(200)面回折線と窒化チタンの(200)面回折線のブラッグ角2θと半価幅とピーク強度を個別に確認することができる。
本発明の立方晶窒化硼素焼結体に含まれる、立方晶窒化硼素(cBN)とcBN以外の各相(例えば、TiN、Ti(C0.50.5)、Ti(C0.80.2)、Ti(C0.20.8)、TiB2,AlN、Al23など)の含有量(体積%)は、SEM観察、EDS分析、X線回折測定から求めることができる。具体的には、まず、立方晶窒化硼素焼結体の断面組織についてSEM観察およびEDS分析を行い、SEM写真の画像解析により得られるcBNの面積からcBNの含有量(体積%)を求め、残部を結合相の含有量(体積%)とする。次に、立方晶窒化硼素焼結体をX線回折測定して、立方晶窒化硼素焼結体の各相を同定するとともに、各相のピーク強度を測定する。さらに、立方晶窒化硼素焼結体におけるcBNのピーク強度に対する各相のピーク強度比を算出する。次に、立方晶窒化硼素焼結体に含まれる各相と同じ成分の粉末を用意する。立方晶窒化硼素焼結体のSEM観察で得られたcBNの含有量(体積%)とcBN粉末の配合量(体積%)と同じにして、cBN以外の粉末についてはいくつか配合比を変えて、これらの粉末を配合する。このとき、cBN以外の粉末の配合量(体積%)の合計を、立方晶窒化硼素焼結体のSEM観察で得られた結合相の含有量(体積%)と同じにする。このような比率で配合した粉末をよく混合する。得られた混合粉末についてX線回折測定を行い、各相のピーク強度を測定し、混合粉末におけるcBNのピーク強度に対する各相のピーク強度比を算出する。次に、混合粉末におけるcBNのピーク強度に対する各相のピーク強度比と、各相の配合量(体積%)の関係を示す検量線を得る。この検量線を用いて、立方晶窒化硼素焼結体におけるcBN以外の各相のピーク強度比から、立方晶窒化硼素焼結体におけるcBN以外の各相の含有量(体積%)を求めることができる。
本発明の立方晶窒化硼素焼結体は、酸化アルミニウム:立方晶窒化硼素焼結体全体に対して3~30体積%と、窒化チタンと炭窒化チタンの合計:立方晶窒化硼素焼結体全体に対して10~60体積%と、硼化チタン:立方晶窒化硼素焼結体全体に対して1~30体積%と、窒化アルミニウムおよび硼化アルミニウムの1種または2種:立方晶窒化硼素焼結体全体に対して10体積%以下とからなる合計して立方晶窒化硼素焼結体全体に対して20~80体積%の結合相と、立方晶窒化硼素焼結体全体に対して80~20体積%の立方晶窒化硼素および不可避的不純物とから構成されると、立方晶窒化硼素焼結体の耐摩耗性と靭性のバランスが良く工具として用いたときに寿命をさらに長くする効果が得られるので好ましい。これは以下の理由による。製造過程で原料粉末中のアルミニウム粉末は、原料粉末に吸着した酸素や、空気中の酸素と結合して酸化アルミニウムを形成するが、酸化アルミニウムが立方晶窒化硼素焼結体全体に対して3体積%未満になると靭性が低下し、逆に酸化アルミニウムが立方晶窒化硼素焼結体全体に対して30体積%を超えて多くなると耐摩耗性が低下する。窒化チタンと炭窒化チタンの合計が立方晶窒化硼素焼結体全体に対して10体積%未満になると耐摩耗性が低下し、逆に窒化チタンと炭窒化チタンの合計が60体積%を超えて多くなると他の結合相成分が相対的に少なくなるため靭性および耐熱性は低下する。硼化チタンが立方晶窒化硼素焼結体全体に対して1体積%未満になると靭性が低下し、逆に硼化チタンが立方晶窒化硼素焼結体全体に対して30体積%を超えて多くなると耐摩耗性が低下する。窒化アルミニウムおよび硼化アルミニウムの1種または2種が立方晶窒化硼素焼結体全体に対して10体積%を超えて多くなると機械的強度および靭性が低下する。より好ましくは、立方晶窒化硼素焼結体全体に対し、酸化アルミニウム:3~20体積%、窒化チタンと炭窒化チタンの合計:20~55体積%、硼化チタン:1~20体積%、窒化アルミニウムおよび硼化アルミニウムの1種または2種:9体積%以下からなる結合相であり、更に好ましくは、酸化アルミニウム:3~15体積%、窒化チタンと炭窒化チタンの合計:30~55体積%、硼化チタン:1~10体積%、窒化アルミニウムおよび硼化アルミニウムの1種または2種:8体積%以下からなる結合相である。
本発明の立方晶窒化硼素焼結体に不可避的に含有される不純物としては、立方晶窒化硼素焼結体の原料粉末から混入されるCu等が挙げられる。不可避的不純物の合計量は、一般的には立方晶窒化硼素焼結体全体に対して0.5重量%以下であり、通常は立方晶窒化硼素焼結体全体に対して0.2重量%以下に抑えることができるので、本発明の特性値に影響を及ぼすことはない。なお、本発明においては、本発明の立方晶窒化硼素焼結体の特性を損わない範囲で、立方晶窒化硼素と結合相と不可避的不純物に他に、不可避的不純物とはいえない他の成分を少量含有してもよい。
本発明の被膜は、周期表4、5、6族元素、Al、Siの金属、酸化物、炭化物、窒化物、硼化物およびこれらの相互固溶体の中の少なくとも1種からなる。具体的には、TiN、TiC、TiCN、TiAlN、TiSiN、CrAlNなどを挙げることができる。被膜は単層または2層以上の積層のいずれでも好ましく、組成が異なる層厚5~200nmの薄膜を交互に積層した交互積層膜でも好ましい。被膜の平均膜厚は、0.5μm未満であると期待する工具寿命の延長効果が小さくなり、15μmを超えると耐欠損性が低下する傾向を示すことから、0.5~15μmであると好ましく、その中でも1~10μmがさらに好ましく、その中でも1.5~5μmがさらに好ましい。
本発明の立方晶窒化硼素焼結体は、炭窒化チタンに含まれる炭素と窒素の合計に対する炭素の原子比が0.3~0.7である平均粒径0.5~1.0μmの炭窒化チタン粉末と、平均粒径0.5~1.2μmの窒化チタン粉末と、アルミニウム粉末と、立方晶窒化硼素粉末と、パラフィンとを混合し、得られた混合物を成型し、圧力1X10-3Torr以下の真空中にて温度700~1000℃で真空熱処理を行って、パラフィンなどの有機物を除去した後、超高圧高温発生装置に入れて、圧力4~6GPa、温度1400~1600℃の条件で焼結することで得られる。
本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靭性に優れるため、切削工具、耐摩耗工具に応用されると好ましく、その中でも切削工具に応用されるとさらに好ましい。
[実施例1]
平均粒径2μmの立方晶窒化硼素(cBN)粉末、表1に示す平均粒径のTi(C0.50.5)粉末、Ti(C0.80.2)粉末、Ti(C0.20.8)粉末およびTiN粉末(いずれも金属元素と非金属元素の比率が原子比で1:1の化学量論組成であるTi化合物)、平均粒径2μmのAl粉末を用いて表1に示す配合組成に配合した。配合した原料粉末を超硬合金製ボールとヘキサン溶媒とパラフィンとともにボールミル用のシリンダーに入れてボールミル混合を48時間行った。ボールミルで混合粉砕して得られた混合粉末を圧粉成型した後、1X10-5Torr、850℃の条件で脱パラフィン処理をした。脱パラフィン処理をした圧粉成型体を金属カプセルに封入し、金属カプセルを超高圧高温発生装置に入れて、圧力5.5GPa、温度1500℃、保持時間30分の条件で焼結して、発明品および比較品の立方晶窒化硼素焼結体を得た。
Figure JPOXMLDOC01-appb-T000001
こうして得られた立方晶窒化硼素焼結体の断面組織をSEM観察し、EDS分析して、cBNの含有量(体積%)と結合相の含有量(体積%)を求めた。次に、立方晶窒化硼素焼結体をX線回折測定して立方晶窒化硼素焼結体の各相(cBN、Ti(C0.50.5)、Ti(C0.80.2)、Ti(C0.20.8)、TiN、TiB2、Al23、AlNなど)を同定した。立方晶窒化硼素焼結体に含まれている各相と同じ組成(cBN、Ti(C0.50.5)、Ti(C0.80.2)、Ti(C0.20.8)、TiN、TiB2、Al23、AlNなど)の粉末を用意した。立方晶窒化硼素焼結体のSEM観察で得られたcBNの含有量とcBN粉末の配合組成が同じになるように、cBN以外の粉末については配合組成を変えて、これらの粉末を配合した。このとき、cBN以外の粉末の体積%の合計は、立方晶窒化硼素焼結体のSEM観察で得られた結合相の含有量(体積%)と同じになるようにした。このような比率で配合した粉末をよく混合した。得られた混合粉末についてX線回折測定を行い、各相のピーク強度を測定し、cBNのピーク強度に対する各相のピーク強度比を算出した。次に、cBNのピーク強度に対する各相のピーク強度比と、各相の配合組成(体積%)の関係を示す検量線を得た。この検量線を用いて、立方晶窒化硼素焼結体のcBN以外の各相のピーク強度比から、立方晶窒化硼素焼結体に含まれるcBN以外の各相の含有量(体積%)を求めた。さらに立方晶窒化硼素焼結体の破壊靭性値K1Cを測定した。これらの結果は表2に示した。
Figure JPOXMLDOC01-appb-T000002
次に、得られた焼結体について、株式会社リガク製X線回折装置RINT TTRIIIを使用して、出力:50kV、250mA、入射側ソーラースリット:5°、発散縦スリット:1/2°、発散縦制限スリット:10mm、散乱スリット2/3°、受光側ソーラースリット:5°、受光スリット:0.15mm、BENTモノクロメータ、受光モノクロスリット:0.8mm、サンプリング幅:0.02°、スキャンスピード:0.1°/min、2θ測定範囲:40~46°という条件で、Cu-Kα線を用いた2θ/θ集中光学系のX線回折測定を行った。得られたX線回折図形をピーク分離して、ピーク分離後の炭窒化チタン(Ti(C0.20.8)、Ti(C0.50.5)またはTi(C0.80.2))の(200)面回折線と窒化チタン(TiN)の(200)面回折線について、それぞれのブラッグ角2θ、ピーク強度、半価幅を測定し、それらを表3に示した。
Figure JPOXMLDOC01-appb-T000003
また、炭窒化チタンの(200)面回折線のブラッグ角2θと窒化チタンの(200)面回折線のブラッグ角2θの間隔、炭窒化チタン(Ti(C0.20.8)、Ti(C0.50.5)またはTi(C0.80.2))の(200)面回折線のピーク強度ITiCNに対する窒化チタン(TiN)の(200)面回折線のピーク強度ITiNのピーク強度比(ITiN/ITiCN)を算出し、それらを表4に示した。
Figure JPOXMLDOC01-appb-T000004
発明品および比較品について、焼結体をワイヤ放電加工機で、所定の形状にカットして超硬合金基材にろう付けし、研削仕上げ加工をしてISO規格CNGA120408切削インサート形状の切削工具を得た。これらの切削インサートを用いて、下記の切削試験(1)及び(2)を行った。その結果を表5に示す。
切削試験(1)
外周連続乾式切削(旋削)、
被削材:SCM415H(HRC60.9~61.7)、
被削材形状:円柱φ63mm×L200mm、
切削速度:250m/min、
切込み:0.25mm、
送り:0.1mm/rev、
切削インサート形状:ISO規格CNGA120408、
評価:VBc=0.15mmに達するまでの切削時間あるいは欠損までの切削時間。
切削試験(2)
外周弱断続乾式切削(旋削)、
被削材:SCM435H(HRC60.9~61.7)、
被削材形状:90°V溝2本入り円柱φ48mm×L200mm、
切削速度:200m/min、
切込み:0.25mm、
送り:0.1mm/rev、
切削インサート形状:ISO規格CNGA120408、
評価:VBc=0.15mmに達するまでの切削時間あるいは欠損までの切削時間。
Figure JPOXMLDOC01-appb-T000005
本発明の焼結体は従来の立方晶窒化硼素焼結体に比べて破壊靭性値K1Cが高く、その結果、切削時の耐欠損性が上昇し、連続切削および弱断続切削において従来品に比べて欠損を生じにくい。炭窒化チタンのピーク強度に対する窒化チタンのピーク強度の比(ITiN/ITiCN)が0.1~0.5の場合には、特に優れた切削性能を示し、工具寿命が長い。
[実施例2]
実施例1の発明品3の表面にPVD装置を用いて被覆処理を行った。平均膜厚3μmのTiNを被覆したものを発明品6、平均膜厚3μmのTiAlNを被覆したものを発明品7とした。発明品6、7について実施例1と同じ切削試験(1)(2)を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
被膜を被覆した発明品6、7は、被膜を被覆していない発明品3よりも、さらに工具寿命を長くすることができた。
本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靱性に優れ、特に切削工具や耐摩耗工具として用いた場合に工具寿命を延長できるので、産業上の利用可能性が高い。
1 ピーク分離する前のX線回折図形
2 ピーク分離した後の炭窒化チタンの(200)面回折線
3 ピーク分離した後の窒化チタンの(200)面回折線
4 ピーク分離した後の立方晶窒化硼素の(111)面回折線

Claims (5)

  1. 窒化チタンおよび炭窒化チタンを含有する結合相と立方晶窒化硼素と不可避的不純物とからなり、Cu-Kα線を用いたX線回折測定における、炭窒化チタンの(200)面回折線のブラッグ角2θと窒化チタンの(200)面回折線のブラッグ角2θとの間隔が0.30°以上0.60°以下であり、炭窒化チタンの(200)面回折線の半価幅が0.30°以上0.50°以下であることを特徴とする立方晶窒化硼素焼結体。
  2. 窒化チタンの(200)面回折線の半価幅が0.25°以上0.45°以下である請求項1に記載の立方晶窒化硼素焼結体。
  3. Cu-Kα線を用いたX線回折測定における、窒化チタンの(200)面回折線のピーク強度ITiCNに対する窒化チタンの(200)面回折線のピーク強度ITiNのピーク強度比(ITiN/ITiCN)が0.1~0.5である請求項1または2に記載の立方晶窒化硼素焼結体。
  4. 立方晶窒化硼素焼結体が、
    酸化アルミニウム:立方晶窒化硼素焼結体全体に対して3~30体積%と、
    窒化チタンと炭窒化チタンの合計:立方晶窒化硼素焼結体全体に対して10~60体積%と、
    硼化チタン:立方晶窒化硼素焼結体全体に対して1~30体積%と、
    窒化アルミニウムおよび硼化アルミニウムの1種または2種:立方晶窒化硼素焼結体全体に対して10体積%以下とからなる
    合計して立方晶窒化硼素焼結体全体に対して20~80体積%の結合相と、
    立方晶窒化硼素焼結体全体に対して80~20体積%の立方晶窒化硼素および不可避的不純物とから構成される請求項1~3のいずれか1項に記載の立方晶窒化硼素焼結体。
  5. 請求項1~4のいずれか1項に記載の立方晶窒化硼素焼結体の表面に被膜を被覆した被覆立方晶窒化硼素焼結体。
PCT/JP2010/056873 2009-04-17 2010-04-16 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体 WO2010119962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/259,982 US20120035045A1 (en) 2009-04-17 2010-04-16 Cubic Boron Nitride Sintered Body and Coated Cubic Boron Nitride Sintered Body
EP10764544.2A EP2420483B1 (en) 2009-04-17 2010-04-16 Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
JP2011509370A JP5660034B2 (ja) 2009-04-17 2010-04-16 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100642 2009-04-17
JP2009-100642 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119962A1 true WO2010119962A1 (ja) 2010-10-21

Family

ID=42982619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056873 WO2010119962A1 (ja) 2009-04-17 2010-04-16 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体

Country Status (4)

Country Link
US (1) US20120035045A1 (ja)
EP (1) EP2420483B1 (ja)
JP (1) JP5660034B2 (ja)
WO (1) WO2010119962A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175419A1 (ja) * 2013-04-26 2014-10-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
CN104525935A (zh) * 2014-12-12 2015-04-22 郑州博特硬质材料有限公司 一种高韧性立方氮化硼烧结材料及其制备方法
WO2015147249A1 (ja) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 立方晶窒化硼素焼結体切削工具
WO2015163060A1 (ja) * 2014-04-25 2015-10-29 住友電工ハードメタル株式会社 複合焼結体および表面被覆窒化硼素焼結体工具
JP2019521941A (ja) * 2016-06-02 2019-08-08 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
WO2021182463A1 (ja) * 2020-03-13 2021-09-16 三菱マテリアル株式会社 硬質複合材料
WO2022210771A1 (ja) * 2021-03-31 2022-10-06 三菱マテリアル株式会社 掘削チップおよび掘削工具
WO2022210760A1 (ja) * 2021-03-31 2022-10-06 三菱マテリアル株式会社 掘削チップおよび掘削工具

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201108975D0 (en) * 2011-05-27 2011-07-13 Element Six Ltd Superhard structure, tool element and method of making same
CN103741002B (zh) * 2013-06-28 2016-07-06 长春阿尔玛斯科技有限公司 一种超硬复合材料的制备方法
JP2017014084A (ja) * 2015-07-03 2017-01-19 昭和電工株式会社 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具
KR102064172B1 (ko) * 2017-09-01 2020-01-09 한국야금 주식회사 내마모성과 인성이 우수한 경질피막
CN116410004B (zh) * 2022-03-08 2024-07-30 富耐克超硬材料股份有限公司 一种聚晶立方氮化硼复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197469A (ja) * 1985-02-26 1986-09-01 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基焼結材料の製造方法
JPH0782031A (ja) 1993-06-28 1995-03-28 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JPH0911006A (ja) * 1995-06-22 1997-01-14 Mitsubishi Materials Corp 高速切削ですぐれた耐摩耗性を発揮する立方晶窒化硼素基焼結材料製切削工具
JP2003236707A (ja) * 2001-12-11 2003-08-26 Mitsubishi Materials Corp 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP2006247779A (ja) * 2005-03-10 2006-09-21 Tungaloy Corp 被覆cBN基焼結体切削工具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08732B2 (ja) * 1987-01-16 1996-01-10 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基超高圧焼結体の製造法
JP3035797B2 (ja) * 1991-07-04 2000-04-24 三菱マテリアル株式会社 高強度を有する立方晶窒化ほう素基超高圧焼結材料製切削チップ
JPH08126903A (ja) * 1994-10-31 1996-05-21 Mitsubishi Materials Corp 耐摩耗性のすぐれた立方晶窒化硼素基超高圧焼結材料製切削工具
JPH08206902A (ja) * 1994-12-01 1996-08-13 Sumitomo Electric Ind Ltd 切削用焼結体チップおよびその製造方法
EP1741505B8 (en) * 2004-04-30 2013-07-10 Sumitomo Electric Hardmetal Corp. Tool of surface-coated cubic boron nitride sintered compact and process for producing the same
JP4927559B2 (ja) * 2004-10-28 2012-05-09 京セラ株式会社 立方晶窒化硼素質焼結体およびそれを用いた切削工具
US8007552B2 (en) * 2004-10-29 2011-08-30 Element Six (Production) (Pty) Ltd Cubic boron nitride compact
SE529290C2 (sv) * 2005-10-28 2007-06-19 Sandvik Intellectual Property Skär av kubisk bornitrid beständigt mot urflisning och eggbrott

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197469A (ja) * 1985-02-26 1986-09-01 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基焼結材料の製造方法
JPH0782031A (ja) 1993-06-28 1995-03-28 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JPH0911006A (ja) * 1995-06-22 1997-01-14 Mitsubishi Materials Corp 高速切削ですぐれた耐摩耗性を発揮する立方晶窒化硼素基焼結材料製切削工具
JP2003236707A (ja) * 2001-12-11 2003-08-26 Mitsubishi Materials Corp 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP2006247779A (ja) * 2005-03-10 2006-09-21 Tungaloy Corp 被覆cBN基焼結体切削工具

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214065A (ja) * 2013-04-26 2014-11-17 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2014175419A1 (ja) * 2013-04-26 2014-10-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP2015193072A (ja) * 2014-03-28 2015-11-05 三菱マテリアル株式会社 立方晶窒化硼素焼結体切削工具
WO2015147249A1 (ja) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 立方晶窒化硼素焼結体切削工具
US10202309B2 (en) 2014-03-28 2019-02-12 Mitsubishi Materials Corporation Cubic boron nitride sintered body cutting tool
US10272498B2 (en) 2014-04-25 2019-04-30 Sumitomo Electric Hardmetal Corp. Composite sintered material and surface-coated boron nitride sintered material tool
KR102334928B1 (ko) * 2014-04-25 2021-12-06 스미또모 덴꼬오 하드메탈 가부시끼가이샤 복합 소결체 및 표면 피복 질화 붕소 소결체 공구
JP2015209354A (ja) * 2014-04-25 2015-11-24 住友電工ハードメタル株式会社 複合焼結体および表面被覆窒化硼素焼結体工具
KR20160148517A (ko) * 2014-04-25 2016-12-26 스미또모 덴꼬오 하드메탈 가부시끼가이샤 복합 소결체 및 표면 피복 질화 붕소 소결체 공구
WO2015163060A1 (ja) * 2014-04-25 2015-10-29 住友電工ハードメタル株式会社 複合焼結体および表面被覆窒化硼素焼結体工具
CN104525935A (zh) * 2014-12-12 2015-04-22 郑州博特硬质材料有限公司 一种高韧性立方氮化硼烧结材料及其制备方法
CN104525935B (zh) * 2014-12-12 2016-09-28 郑州博特硬质材料有限公司 一种高韧性立方氮化硼烧结材料及其制备方法
JP2019521941A (ja) * 2016-06-02 2019-08-08 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
JP2020203834A (ja) * 2016-06-02 2020-12-24 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
KR20210008147A (ko) * 2016-06-02 2021-01-20 엘리먼트 씩스 (유케이) 리미티드 소결된 다결정성 입방정 질화 붕소 물질
KR102358312B1 (ko) 2016-06-02 2022-02-08 엘리먼트 씩스 (유케이) 리미티드 소결된 다결정성 입방정 질화 붕소 물질
JP2023002580A (ja) * 2016-06-02 2023-01-10 エレメント シックス (ユーケイ) リミテッド 焼結多結晶立方晶窒化ホウ素材料
WO2021182463A1 (ja) * 2020-03-13 2021-09-16 三菱マテリアル株式会社 硬質複合材料
WO2022210771A1 (ja) * 2021-03-31 2022-10-06 三菱マテリアル株式会社 掘削チップおよび掘削工具
WO2022210760A1 (ja) * 2021-03-31 2022-10-06 三菱マテリアル株式会社 掘削チップおよび掘削工具

Also Published As

Publication number Publication date
JPWO2010119962A1 (ja) 2012-10-22
EP2420483A4 (en) 2012-10-24
EP2420483B1 (en) 2016-09-28
EP2420483A1 (en) 2012-02-22
JP5660034B2 (ja) 2015-01-28
US20120035045A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5660034B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP5664795B2 (ja) 立方晶窒化硼素焼結体
JP5614460B2 (ja) cBN焼結体工具および被覆cBN焼結体工具
JP6082650B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6634647B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2011129422A1 (ja) 被覆cBN焼結体
WO2016104563A1 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6637664B2 (ja) 立方晶窒化硼素焼結体切削工具
WO2013172095A1 (ja) 立方晶窒化ほう素基焼結体製切削工具
JP6032409B2 (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
WO2012005275A1 (ja) 被覆cBN焼結体工具
JP5447844B2 (ja) 高靭性立方晶窒化ほう素基超高圧焼結材料と切削工具
WO2015060320A1 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP2019156692A (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
WO2010104094A1 (ja) サーメットおよび被覆サーメット
JP6283985B2 (ja) 焼結体
JP5804448B2 (ja) 立方晶窒化ほう素基超高圧焼結体およびこれを工具基体とする切削工具、表面被覆切削工具
JP2020011870A (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP7570601B2 (ja) 立方晶窒化硼素焼結体
JP6365228B2 (ja) 焼結体
JP7400692B2 (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP2024033530A (ja) 立方晶窒化硼素焼結体
JP2003081677A (ja) 分散強化cbn基焼結体およびその製造方法
CN117326873A (zh) 立方氮化硼烧结体和涂覆立方氮化硼烧结体
JP2024055371A (ja) 立方晶窒化硼素焼結体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509370

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010764544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010764544

Country of ref document: EP