WO2010119902A1 - 2-アルキル-3-アミノチオフェン誘導体の製造方法 - Google Patents

2-アルキル-3-アミノチオフェン誘導体の製造方法 Download PDF

Info

Publication number
WO2010119902A1
WO2010119902A1 PCT/JP2010/056702 JP2010056702W WO2010119902A1 WO 2010119902 A1 WO2010119902 A1 WO 2010119902A1 JP 2010056702 W JP2010056702 W JP 2010056702W WO 2010119902 A1 WO2010119902 A1 WO 2010119902A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
carbon atoms
group
alkyl group
represented
Prior art date
Application number
PCT/JP2010/056702
Other languages
English (en)
French (fr)
Inventor
靖明 深澤
要治 青木
晴子 三田
小松 弘典
Original Assignee
三井化学アグロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学アグロ株式会社 filed Critical 三井化学アグロ株式会社
Priority to CN201080016049.6A priority Critical patent/CN102395573B/zh
Priority to JP2011509320A priority patent/JP5281152B2/ja
Publication of WO2010119902A1 publication Critical patent/WO2010119902A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/36Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/14Preparation of nitro compounds by formation of nitro groups together with reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/07Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • C07C205/08Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/13Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
    • C07C205/14Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/13Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
    • C07C205/14Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms
    • C07C205/15Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/39Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups
    • C07C205/40Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups having nitro groups and esterified hydroxy groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/42Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms with nitro or nitroso radicals directly attached to ring carbon atoms

Definitions

  • the present invention relates to a method for producing 2-alkyl-3-aminothiophene and a production intermediate thereof.
  • a production method for producing 2-alkyl-3-aminothiophene a production method by reacting a 3-aminothiophene derivative with various carbonyl compounds to produce a 2-alkenyl-3-aminothiophene derivative and undergoing a reduction step is disclosed.
  • a production method for producing 2-alkyl-3-nitrothiophene a production method is disclosed in which 3-nitrothiophene and Grignard reagent are reacted and then oxidized (for example, TETRAHEDORN Vol. 44, No. 20 (1988). (Year) page 6435).
  • An object of the present invention is to provide a method for efficiently producing 2-alkyl-3-aminothiophene.
  • the present inventor has intensively studied, discovered a method for producing a novel 2-alkyl-3-nitrothiophene derivative, and reduced the efficiency of the 2-alkyl-3-nitrothiophene derivative.
  • the present invention has been completed as a method for producing a typical 2-alkyl-3-aminothiophene derivative. That is, the present invention is as follows.
  • R is an alkyl group having 1 to 18 carbon atoms and an alkyl group having 1 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a group or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • X is a hydroxy group, a halogen atom, or the following general formula (2)
  • A represents a carbon atom or a sulfur atom.
  • n represents 1.
  • Q represents an alkyl group having 1 to 10 carbon atoms.
  • # represents a bonding position).
  • R is the same as R in the general formula (1)] (A) to obtain a compound represented by: A step (B) of reducing the compound represented by the general formula (3), and the following general formula (4):
  • R is the same as R in the general formula (1)]
  • a method for producing a 2-alkyl-3-aminothiophene derivative represented by ⁇ 2> R is the following general formula (6)
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • the manufacturing method as described in said ⁇ 1> which is a substituent represented by.
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, wherein R is a 1,3-dimethylbutyl group.
  • the step (A) is represented by the following general formula (8)
  • R is the same as R in General Formula (1).
  • Xa represents a halogen atom or a substituent represented by the general formula (2).
  • ⁇ 1> to ⁇ 3 The manufacturing method of any one of>.
  • ⁇ 5> From the compound represented by the general formula (1) in the step (A), the following general formula (5)
  • R is the same as R in General Formula (1).
  • R is the same as R in General Formula (1), and X 7 represents a halogen atom or a substituent represented by General Formula (2).
  • X 7 represents a halogen atom or a substituent represented by General Formula (2).
  • R is the same as R in General Formula (1).
  • the production method according to any one of ⁇ 1> to ⁇ 5>, further including a step of obtaining a compound represented by the formula: ⁇ 7> The following general formula (9)
  • R is the same as R in General Formula (1).
  • R is the same as R in General Formula (1).
  • R is the same as R in General Formula (1).
  • the production method according to any one of ⁇ 1> to ⁇ 5>, further including a step of obtaining a compound represented by the formula: ⁇ 10> The following general formula (9)
  • R is the same as R in General Formula (1).
  • the manufacturing method as described in said ⁇ 10> which further includes the process of obtaining the compound represented by the said General formula (9) by making the compound represented by and nitromethane react.
  • ⁇ 12> The following general formula (9)
  • R represents an alkyl group having 1 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a group or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • the hydroxynitroalkane derivative represented by this. ⁇ 13> R in the general formula (9) is represented by the following general formula (6).
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • R is an alkyl group having 1 to 18 carbon atoms and an alkyl group having 1 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • X 7 represents a halogen atom or the following general formula (2)
  • A represents a carbon atom or a sulfur atom
  • n represents 1 when A is a carbon atom
  • n represents 1 or 2 when A is a sulfur atom
  • Q represents 1 to 2 carbon atoms. It may be substituted with an alkyl group having 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a hydrocarbyloxy group having 1 to 10 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents an aryl group, and # represents a bonding position.
  • the nitroalkane derivative represented by this. ⁇ 16> R in the general formula (7) is represented by the following general formula (6).
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • the nitroalkane derivative according to ⁇ 15> which is a substituent represented by the formula: ⁇ 17>
  • R represents an alkyl group having 1 to 18 carbon atoms and an alkyl group having 1 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • the nitroolefin derivative represented by this. ⁇ 19> R in the general formula (11) is represented by the following general formula (6).
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • the nitroolefin derivative as described in said ⁇ 18> which is a substituent represented by these.
  • R in the general formula (11) is a 1,3-dimethylbutyl group.
  • R represents an alkyl group having 1 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a group or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • the 3-hydroxy-4-nitrotetrahydrothiophene derivative represented by this. ⁇ 22> R in the general formula (8) is represented by the following general formula (6).
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • R is an alkyl group having 1 to 18 carbon atoms and an alkyl group having 1 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a group or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • X is a hydroxy group, a halogen atom, or the following general formula (2)
  • A represents a carbon atom or a sulfur atom
  • n represents 1 when A is a carbon atom
  • n represents 1 or 2 when A is a sulfur atom
  • Q represents 1 to 2 carbon atoms. It may be substituted with an alkyl group having 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a hydrocarbyloxy group having 1 to 10 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents an aryl group, and # represents a bonding position.
  • R in the general formula (1) is the following general formula (6) [In General Formula (6), R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • the following general formula (5) The following general formula (5)
  • R is an alkyl group having 1 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a group or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • the 3-nitro-2,5-dihydrothiophene derivative represented by this. ⁇ 28> R in the general formula (5) is the following general formula (6)
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • R represents an alkyl group having 1 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a group or a cycloalkyl group having 3 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • the 2-alkyl-3-nitrothiophene derivative represented by this. ⁇ 31> R in the general formula (3) is the following general formula (6)
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • the intermediate for producing a pharmaceutical and agrochemical is represented by the following general formula (12):
  • Y and Z each independently represent a halogen atom or a hydrogen atom.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 18 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 3 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with a cycloalkyl group, or an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms which may be substituted with 6 to 12 carbon atoms Represents a bicycloalkyl group.
  • R in the general formula (12) is represented by the following general formula (6).
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. # Represents a bonding position.
  • R in the general formula (12) is a 1,3-dimethylbutyl group
  • Y is a fluorine atom
  • Z is a hydrogen atom.
  • the method for producing a 2-alkyl-3-aminothiophene derivative represented by the following general formula (4) of the present invention comprises oxidizing a compound represented by the following general formula (1) to obtain a compound represented by the following general formula (3):
  • the process (A) which obtains the compound represented, and the process (B) which reduces the compound represented by the said General formula (3) are included.
  • R is an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms that may be substituted with 1 to 18 carbon atoms.
  • X represents a hydroxy group, a halogen atom, or a substituent represented by the general formula (2).
  • A represents a carbon atom or a sulfur atom
  • n represents 1 when A is a carbon atom
  • n represents 1 or 2 when A is a sulfur atom.
  • Q is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a hydrocarbyloxy group having 1 to 10 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
  • the R is preferably a substituent represented by the following general formula (6), and the R is more preferably a 1,3-dimethylbutyl group.
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
  • # represents a bonding position.
  • step (A) includes a step of obtaining a compound represented by the following general formula (1a) from a compound represented by the following general formula (8), and a compound represented by the above general formula (Ia). And a step of obtaining a compound represented by the general formula (3).
  • R is the same as R in the general formula (1).
  • Xa represents a halogen atom or a substituent represented by the general formula (2).
  • step (A) includes a step (A-1) of obtaining a compound represented by the following general formula (5) from the compound represented by the general formula (1), and the general formula (5). It is also preferable that the method further comprises a step (A-2) of obtaining a compound represented by the general formula (3) from the compound obtained.
  • R is the same as R in general formula (1).
  • the production method of the present invention comprises reacting a compound represented by the following general formula (7) with ⁇ -mercaptoacetaldehyde or 1,4-dithian-2,5-diol, Preferably, the method further includes a step of obtaining the represented compound. Further, it is more preferable to include a step of obtaining the compound represented by the general formula (7) from the compound represented by the following general formula (9).
  • the compound represented by the general formula (9) is represented by the following general formula: More preferably, the method further includes a step obtained by reacting the compound represented by (10) with nitromethane.
  • R is the same as R in General Formula (1), and X 7 represents a halogen atom or a substituent represented by General Formula (2).
  • the production method of the present invention comprises reacting a compound represented by the following general formula (11) with ⁇ -mercaptoacetaldehyde or 1,4-dithian-2,5-diol, and the following general formula (8): It is preferable to further include a step of obtaining the represented compound. More preferably, the method further comprises a step of obtaining the compound represented by the general formula (11) by dehydrating a compound represented by the following general formula (9), which is represented by the general formula (9). It is more preferable to further include a step of obtaining the compound by reacting a compound represented by the following general formula (10) with nitromethane.
  • R is the same as R in general formula (1).
  • An alkyl group having 1 to 10 carbon atoms which may be substituted with an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms represented by R; Substituted with an alkyl group or an optionally substituted cycloalkyl group having 3 to 10 carbon
  • an alkyl group having 1 to 10 carbon atoms represented by Q an alkyl group having 1 to 10 carbon atoms represented by Q, a cycloalkyl group having 3 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, and a hydrocarbyloxy having 1 to 10 carbon atoms
  • the aryl group which may be substituted with an alkyl group having 1 to 6 carbon atoms include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, isobutyl group, sec-butyl Group, tert-butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1,2-dimethylpropyl group, 1-methylpentyl Group, 2-methylpentyl group, 3-methylpentyl
  • aldehydes represented by general formula (10), hydroxynitroalkanes represented by general formula (9), nitroolefins represented by general formula (11), and general formula (7) Nitroalkanes, 3-hydroxy-4-nitrotetrahydrothiophenes represented by general formula (8), 3-nitro-2,5-dihydrothiophenes represented by general formula (5), general formula (1) 3-nitrotetrahydrothiophenes represented by general formula (3), 2-alkyl-3-nitrothiophene derivatives represented by general formula (3), and 2-alkyl-3-aminothiophenes represented by general formula (4): In the case where diastereoisomers are present, any one of them, or a mixture of any two or more of them may be used, and the structure is not limited.
  • aldehydes represented by general formula (10), hydroxynitroalkanes represented by general formula (9), nitroolefins represented by general formula (11), and general formula (7) Nitroalkanes, 3-hydroxy-4-nitrotetrahydrothiophenes represented by general formula (8), 3-nitro-2,5-dihydrothiophenes represented by general formula (5), general formula (1) 3-nitrotetrahydrothiophenes represented by general formula (3), 2-alkyl-3-nitrothiophene derivatives represented by general formula (3), and 3-aminoalkylthiophenes represented by general formula (4) are enantiomers.
  • any one of the compounds or a mixture of both in any ratio may be used, and the structure is not limited.
  • the nitroolefin represented by the general formula (11) may be either a cis isomer or a trans isomer, or a mixture of both in any ratio, and the structure is not limited.
  • the aldehyde represented by the general formula (10) used as a starting compound in the present invention is commercially available in many cases and can be easily obtained. Also, various production methods are known for those that are difficult to obtain, and can be produced by the method disclosed in JORNAL OF AMERICAN CHEMICAL SOCIETY Vol. 75, No. 20 (1953), page 4995, for example.
  • the hydroxynitroalkane represented by the general formula (9) reacts the aldehyde represented by the general formula (10) with nitromethane in the presence of a base. Is obtained.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, liquid ammonia, aqueous ammonia solution, triethylamine, triethylamine, Examples include butylamine, pyridine, collidine, 2,6-lutidine, and 4-dimethylaminopyridine. These bases may be used alone or in combination of two or more at any ratio.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents may be used alone, but two
  • the amount of the solvent used in the reaction is not particularly limited, but it is preferably 50 times or less with respect to the weight of the aldehyde represented by the general formula (10) from the economical viewpoint. Moreover, although there is no restriction
  • the nitroolefin represented by the general formula (11) can be obtained by dehydrating the hydroxynitroalkane represented by the general formula (9). .
  • an acid may be used to assist the reaction.
  • the acid used may be either an inorganic acid or an organic acid, and may be either a Bronsted acid or a Lewis acid.
  • sulfuric acid fuming sulfuric acid, chlorosulfuric acid, nitric acid, fuming nitric acid, hydrochloric acid, phosphoric acid, hydrogen bromide, acetic acid, trifluoroacetic acid, oxalic acid, tartaric acid, fumaric acid, maleic acid, benzoic acid, methanesulfone Examples thereof include acid, benzenesulfonic acid, tosylic acid, trifluoromethanesulfonic acid, aluminum chloride, titanium tetrachloride, and boron trifluoride diethyl ether complex. These acids may be used alone or in combination of two or more at any ratio.
  • a base may be used to assist the reaction.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • Examples include pyridine, collidine, 2,6-lutidine, 4-dimethylaminopyridine, and the like. These bases may be used alone or in combination of two or more at an arbitrary ratio.
  • a known dehydrating agent may be used to assist the reaction.
  • Dehydrating agents used include carboxylic acid halides such as acetyl chloride and benzoyl chloride, carboxylic acid anhydrides such as acetic anhydride and trifluoroacetic anhydride, sulfonic acid halides such as toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, and chloride.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like.
  • the amount of the solvent used for the reaction is not particularly limited, but is preferably 50 times or less with respect to the weight of the hydroxynitroalkane represented by the general formula (9) from the economical viewpoint.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the nitroalkane represented by the general formula (7) is converted from the hydroxynitroalkane represented by the general formula (9) by a known esterifying agent or halogen. It is obtained by reacting with an agent.
  • a base may be used to assist the reaction.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • bases may be used alone or in combination of two or more at an arbitrary ratio.
  • esterifying agent or halogenating agent used in the method for producing a nitroalkane represented by the general formula (7) of the present invention include carboxylic acid halides such as acetyl chloride and benzoyl chloride, acetic anhydride, trifluoroacetic anhydride, and the like.
  • Carboxylic anhydride sulfonyl halides such as toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, thionyl chloride, sulfuryl chloride, oxalic chloride, phosgene, diphosgene, triphosgene, phosphorus pentachloride, phosphorus trichloride, oxy Examples include phosphorus chloride and phosphorus tribromide. These esterifying agents or halogenating agents may be used alone or in combination of two or more at any ratio.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents may be used alone, but two
  • the amount of the solvent used in the reaction is not particularly limited, but is preferably 50 times or less with respect to the weight of the hydroxynitroalkane represented by the general formula (9) from the economical viewpoint.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the 3-hydroxy-4-nitrotetrahydrothiophenes represented by the general formula (8) are nitroolefins represented by the general formula (11) or It can be obtained by reacting a nitroalkane represented by the formula (7) with ⁇ -mercaptoacetaldehyde or 1,4-dithian-2,5-diol.
  • the equivalent of ⁇ -mercaptoacetaldehyde and 1,4-dithian-2,5-diol used for the nitroolefin represented by the general formula (11) or the nitroalkane represented by the general formula (7) Is not particularly limited, but it is preferably 3 equivalents or less (in terms of ⁇ -mercaptoaldehyde) from an economical viewpoint.
  • ⁇ -mercaptoacetaldehyde itself can be used as a monomer
  • 1,4-dithian-2,5-diol which is a commercially available dimer, is more preferably used.
  • a base may be used for assisting the reaction.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, liquid ammonia, aqueous ammonia solution, triethylamine, triethylamine, Examples include butylamine, pyridine, collidine, 2,6-lutidine, and 4-dimethylaminopyridine. These bases may be used alone or in combination of two or more at any ratio.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents
  • the amount of the solvent used for the reaction is not particularly limited, but is 50% based on the weight of the nitroolefin represented by the general formula (11) or the nitroalkane represented by the general formula (7) from the economical viewpoint. It is preferable that the amount is not more than double.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the 3-nitro-2,5-dihydrothiophene represented by the general formula (5) is converted into the 3-hydroxy represented by the general formula (8). It can be obtained by dehydrating -4-nitrotetrahydrothiophenes.
  • an acid may be used to assist the reaction.
  • the acid used may be either an inorganic acid or an organic acid, and may be either a Bronsted acid or a Lewis acid.
  • acids include sulfuric acid, fuming sulfuric acid, chlorosulfuric acid, nitric acid, fuming nitric acid, hydrochloric acid, phosphoric acid, hydrogen bromide, acetic acid, trifluoroacetic acid, oxalic acid, tartaric acid, fumaric acid, maleic acid, benzoic acid, methanesulfone.
  • Examples thereof include acid, benzenesulfonic acid, tosylic acid, trifluoromethanesulfonic acid, aluminum chloride, titanium tetrachloride, and boron trifluoride diethyl ether complex. These acids may be used alone or in combination of two or more at any ratio.
  • a base may be used to assist the reaction.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • Examples include pyridine, collidine, 2,6-lutidine, 4-dimethylaminopyridine, and the like. These bases may be used alone or in combination of two or more at any ratio.
  • a known dehydrating agent may be used for assisting the reaction.
  • Dehydrating agents used include carboxylic acid halides such as acetyl chloride and benzoyl chloride, carboxylic acid anhydrides such as acetic anhydride and trifluoroacetic anhydride, sulfonic acid halides such as toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, and chloride.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents
  • the amount of the solvent used in the reaction is not particularly limited, but it should be 50 times or less with respect to the weight of the 3-hydroxy-4-nitrotetrahydrothiophene represented by the general formula (8) from the economical viewpoint. Is preferred.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the 3-nitrotetrahydrothiophene represented by the general formula (1a) is converted into the 3-hydroxy-4-nitrotetrahydrohydrocarbon represented by the general formula (8). It can be obtained by reacting thiophenes with a known esterifying agent or halogenating agent.
  • a base may be used for assisting the reaction.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • bases may be used alone or in combination of two or more at an arbitrary ratio.
  • esterifying agent or halogenating agent used in the method for producing 3-nitrotetrahydrothiophene represented by the general formula (1a) of the present invention include carboxylic acid halides such as acetyl chloride and benzoyl chloride, acetic anhydride, trihydric anhydride.
  • Carboxylic anhydrides such as fluoroacetic acid, sulfonic acid halides such as toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, thionyl chloride, sulfuryl chloride, oxalic chloride, phosgene, diphosgene, triphosgene, phosphorus pentachloride, trichloride Examples thereof include phosphorus, phosphorus oxychloride, and phosphorus tribromide. These esterifying agents or halogenating agents may be used alone or in combination of two or more at any ratio.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents may
  • the amount of the solvent used in the reaction is not particularly limited, but it should be 50 times or less with respect to the weight of the 3-hydroxy-4-nitrotetrahydrothiophene represented by the general formula (8) from the economical viewpoint. Is preferred.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the 2-alkyl-3-nitrothiophene derivative represented by the general formula (3) is converted to the 3-nitro-2,5 represented by the general formula (5).
  • - Obtained by oxidizing dihydrothiophenes or 3-nitrotetrahydrothiophenes represented by the general formula (1a) using an oxidizing agent.
  • the oxidizing agent used includes manganese compounds, chromic acids, lead tetrachloride, osmium tetrachloride, tetrachloride. Ruthenium, chlorine, bromine, iodine, hypochlorous acid or its salt, chloric acid or its salt, bromic acid or its salt, oxygen, ozone, hydrogen peroxide, organic peroxide, organic peracid, sulfuryl chloride, thionyl chloride Oxalic chloride, phosgene, diphosgene, triphosgene and the like, and chlorine and sulfuryl chloride are preferably used.
  • a base may be used for assisting the reaction.
  • the base used may be either an inorganic base or an organic base.
  • the inorganic base alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, ammonia and the like can be used.
  • the organic base trialkylamine, pyridines and the like can be used.
  • Examples include pyridine, collidine, 2,6-lutidine, 4-dimethylaminopyridine, and the like. These bases may be used alone or in combination of two or more at any ratio.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents may be used alone, but two solvents such as benzene, toluene and xylene, hydrocarbons
  • the amount of the solvent used for the reaction is not particularly limited, but 3-nitro-2,5-dihydrothiophenes represented by the general formula (5) or 3 represented by the general formula (1a) from the economical viewpoint.
  • -It is preferably 50 times or less the weight of nitrotetrahydrothiophenes.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the 2-alkyl-3-aminothiophene derivative represented by the general formula (4) is converted into the 2-alkyl-3-nitro represented by the general formula (3). It can be obtained by reducing a thiophene derivative.
  • Examples of the reduction method used in the method for producing a 2-alkyl-3-aminothiophene derivative of the present invention include a catalytic hydrogenation method, a reduction method using an alkali metal in liquid ammonia, and a metal such as iron, zinc, aluminum and tin.
  • Reduction method using metal salt such as tin (II) chloride, reduction method using metal hydride complex such as sodium borohydride, lithium aluminum hydride, etc.
  • a reduction method and a reduction method with tin (II) chloride are preferably used.
  • a solvent can be appropriately used, but the solvent to be used is not particularly limited.
  • the solvent include alkyl halides such as dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, diethyl ether, diisopropyl ether, 1,2- Ethers such as dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, N, N′-dimethyl Examples include imidazolidinone, acetonitrile, water and the like. Each of these solvents may be used alone,
  • the amount of the solvent used in the reaction is not particularly limited, but may be 50 times or less with respect to the weight of the 2-alkyl-3-nitrothiophene derivative represented by the general formula (3) from an economic viewpoint. preferable.
  • the reaction temperature is not particularly limited, but it is preferably from the melting point to the boiling point of the solvent from the viewpoint of operation efficiency.
  • the 2-alkyl-3-aminothiophene obtained by the method for producing 2-alkyl-3-aminothiophene of the present invention includes an agricultural and horticultural fungicide production intermediate, an agricultural and horticultural insecticide production intermediate, and an agricultural and horticultural herbicide. It can be used as a production intermediate or a pharmaceutical production intermediate. For example, it is useful as an intermediate for agricultural and horticultural fungicides described in JP-A-09-235282.
  • the present invention it has become possible to efficiently provide a 2-alkyl-3-aminothiophene derivative, which is an effective production intermediate in the medical and agrochemical field. Furthermore, since the present invention can be advantageously produced industrially, the industrial utility value is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 一般式(1)で表される化合物を酸化して、一般式(3)で表される化合物を得る工程と、一般式(3)で表される化合物を還元する工程と、を含む製造方法で、一般式(4)で表される2-アルキル-3-アミノチオフェン誘導体を製造する。これにより、2-アルキル-3-アミノチオフェン誘導体の効率的な製造方法を提供することができる。 下記式中、Rはアルキル基等を表し、Xはヒドロキシ基、ハロゲン原子、または一般式(2)で表される置換基を表す。Aは炭素原子または硫黄原子を、Qはアルキル基等を表し、nは1または2を表す。#は結合位置を表す。

Description

2-アルキル-3-アミノチオフェン誘導体の製造方法
 本発明は2-アルキル-3-アミノチオフェンの製造方法およびその製造中間体に関する。
 2-アルキル-3-アミノチオフェンの製造方法としては、3-アミノチオフェン誘導体と各種カルボニル化合物を反応させ2-アルケニル-3-アミノチオフェン誘導体を製造し、還元工程を経ることによる製造方法が開示されている(例えば、特開2008-120710号公報参照)。
 また2-アルキル-3-ニトロチオフェンの製造方法として、3-ニトロチオフェンとグリニャール試薬を反応させた後、酸化することによる製造方法が開示されている(例えば、TETRAHEDORN 第44巻 第20号 (1988年)6435頁参照)。
 さらに3-ニトロチオフェンの製造方法として、チオフェンをニトロ化する製造方法が開示されている(例えば、JUSTUS LIEBIGS ANNALEN DER CHEMIE 第501巻 (1933年) 174頁参照)。
 しかし、特開2008-120710号公報に記載の製造方法では、3-アミノチオフェン誘導体は不安定であり取り扱いが難しいためアミノ基の保護基としてアシル基、カーバメート基等を使用することが必要であり、保護基の着脱工程を要することなど操作性、経済性の観点から改善の余地がある。
 一方、ニトロ基は接触水素添加反応に代表される還元反応により、アミノ基に変換できることが公知であることから、2-アルキル-3-ニトロチオフェン誘導体を還元することにより、3-アミノ-2-アルキルチオフェン誘導体が製造できることが予想される。しかしながら、2-アルキル-3-ニトロチオフェン誘導体が製造困難であることから、これまで2-アルキル-3-ニトロチオフェン誘導体を還元することによる、2-アルキル-3-アミノチオフェン誘導体の製造方法は報告されていない。
 ここで、TETRAHEDORN 第44巻 第20号 (1988年)6435頁に記載の2-アルキル-3-ニトロチオフェンの製造方法では、該製造方法における出発原料である3-ニトロチオフェン自体が製造困難であることから改善の余地がある。また、JUSTUS LIEBIGS ANNALEN DER CHEMIE 第501巻 (1933年) 174頁に記載の製造方法では、生成物が位置異性体混合物として得られるため低収率である。また異性体の分離工程を必要とするなど、経済性および操作性の観点から改善の余地がある。
 本発明は2-アルキル-3-アミノチオフェンを効率的に製造する方法を提供することを目的とする。
 本発明者は上記課題を解決するために、鋭意検討を行い、新規な2-アルキル-3-ニトロチオフェン誘導体の製造方法を見出し、該2-アルキル-3-ニトロチオフェン誘導体を還元することによる効率的な2-アルキル-3-アミノチオフェン誘導体の製造方法として、本発明を完成させるに至った。すなわち本発明は以下の通りである。
<1> 下記一般式(1)
Figure JPOXMLDOC01-appb-C000035
[一般式(1)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xはヒドロキシ基、ハロゲン原子、または下記一般式(2)
Figure JPOXMLDOC01-appb-C000036
(式中、Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。)で表される置換基を表す。)]で表される化合物を酸化して、下記一般式(3)
Figure JPOXMLDOC01-appb-C000037
[一般式(3)中、Rは前記一般式(1)におけるRと同一である]で表される化合物を得る工程(A)と、
 前記一般式(3)で表される化合物を還元する工程(B)と、を含む下記一般式(4)
Figure JPOXMLDOC01-appb-C000038
[一般式(4)中、Rは前記一般式(1)におけるRと同一である]で表される2-アルキル-3-アミノチオフェン誘導体の製造方法。
<2> 前記Rが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000039
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<1>に記載の製造方法。
<3> 前記Rが、1,3-ジメチルブチル基である前記<1>または<2>に記載の製造方法。
<4> 前記工程(A)が、下記一般式(8)
Figure JPOXMLDOC01-appb-C000040
[一般式(8)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物から、下記一般式(1a)
Figure JPOXMLDOC01-appb-C000041
[一般式(1a)中、Rは前記一般式(1)におけるRと同一である。Xはハロゲン原子または前記一般式(2)で表される置換基を表す。]で表される化合物を得る工程と、前記一般式(Ia)で表される化合物から、前記一般式(3)で表される化合物を得る工程と、をさらに含む前記<1>~<3>のいずれか1項に記載の製造方法。
<5> 前記工程(A)が、前記一般式(1)で表される化合物から、下記一般式(5)
Figure JPOXMLDOC01-appb-C000042
[一般式(5)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を得る工程(A-1)と、前記一般式(5)で表される化合物から、前記一般式(3)で表される化合物を得る工程(A-2)と、をさらに含む前記<1>~<3>のいずれか1項に記載の製造方法。
<6> 下記一般式(7)
Figure JPOXMLDOC01-appb-C000043
[一般式(7)中、Rは前記一般式(1)におけるRと同一であり、Xはハロゲン原子または前記一般式(2)で表される置換基を表す。]で表される化合物と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させて、下記一般式(8)
Figure JPOXMLDOC01-appb-C000044
[一般式(8)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を得る工程をさらに含む、前記<1>~<5>のいずれか1項に記載の製造方法。
<7> 下記一般式(9)
Figure JPOXMLDOC01-appb-C000045
[一般式(9)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物から、前記一般式(7)で表される化合物を得る工程を、更に含む前記<6>に記載の製造方法。
<8> 下記一般式(10)
Figure JPOXMLDOC01-appb-C000046
[一般式(10)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物と、ニトロメタンとを反応させて、前記一般式(9)で表される化合物を得る工程を、さらに含む請求項7に記載の製造方法。
<9> 下記一般式(11)
Figure JPOXMLDOC01-appb-C000047
[一般式(11)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させて、下記一般式(8)
Figure JPOXMLDOC01-appb-C000048
[一般式(8)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を得る工程を、さらに含む前記<1>~<5>のいずれか1項に記載の製造方法。
<10> 下記一般式(9)
Figure JPOXMLDOC01-appb-C000049
[一般式(9)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を脱水反応させて、前記一般式(11)で表される化合物を得る工程を、さらに含む前記<9>に記載の製造方法。
<11> 下記一般式(10)
Figure JPOXMLDOC01-appb-C000050
[一般式(10)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物と、ニトロメタンとを反応させて、前記一般式(9)で表される化合物を得る工程を、さらに含む前記<10>に記載の製造方法。
<12> 下記一般式(9)
Figure JPOXMLDOC01-appb-C000051
[一般式(9)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表されるヒドロキシニトロアルカン誘導体。
<13> 前記一般式(9)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000052
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<12>に記載のヒドロキシニトロアルカン誘導体。
<14> 一般式(9)におけるRが、1,3-ジメチルブチル基である前記<12>に記載のヒドロキシニトロアルカン誘導体。
<15> 下記一般式(7)
Figure JPOXMLDOC01-appb-C000053
[一般式(7)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xは、ハロゲン原子、または、下記一般式(2)
Figure JPOXMLDOC01-appb-C000054
(一般式(2)中、Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。)で表される置換基を表す。]で表されるニトロアルカン誘導体。
<16> 前記一般式(7)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000055
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<15>に記載のニトロアルカン誘導体。
<17> 前記一般式(7)におけるRが、1,3-ジメチルブチル基である前記<15>に記載のニトロアルカン誘導体。
<18> 下記一般式(11)
Figure JPOXMLDOC01-appb-C000056
[一般式(11)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表されるニトロオレフィン誘導体。
<19> 前記一般式(11)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000057
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<18>に記載のニトロオレフィン誘導体。
<20> 前記一般式(11)におけるRが、1,3-ジメチルブチル基である前記<18>に記載のニトロオレフィン誘導体。
<21> 下記一般式(8)
Figure JPOXMLDOC01-appb-C000058
[一般式(8)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン誘導体。
<22> 前記一般式(8)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000059
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<21>に記載の3-ヒドロキシ-4-ニトロテトラヒドロチオフェン誘導体。
<23> 前記一般式(8)におけるRが、1,3-ジメチルブチル基である前記<21>に記載の3-ヒドロキシ-4-ニトロテトラヒドロチオフェン誘導体。
<24> 下記一般式(1)
Figure JPOXMLDOC01-appb-C000060
[一般式(1)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xは、ヒドロキシ基、ハロゲン原子、または、下記一般式(2)
Figure JPOXMLDOC01-appb-C000061
(一般式(2)中、Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。)で表される置換基を表す。]で表される3-ニトロテトラヒドロチオフェン誘導体。
<25> 一般式(1)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000062

[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である<24>に記載の3-ニトロテトラヒドロチオフェン誘導体。
<26> 一般式(1)におけるRが、1,3-ジメチルブチル基である前記<24>に記載の3-ニトロテトラヒドロチオフェン誘導体。
<27> 下記一般式(5)
Figure JPOXMLDOC01-appb-C000063
[一般式(5)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される3-ニトロ-2,5-ジヒドロチオフェン誘導体。
<28> 一般式(5)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000064
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<27>に記載の3-ニトロ-2,5-ジヒドロチオフェン誘導体。
<29> 一般式(5)におけるRが、1,3-ジメチルブチル基である前記<27>に記載の3-ニトロ-2,5-ジヒドロチオフェン誘導体。
<30> 下記一般式(3)
Figure JPOXMLDOC01-appb-C000065
[一般式(3)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される2-アルキル-3-ニトロチオフェン誘導体。
<31> 一般式(3)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000066
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<30>に記載の2-アルキル-3-ニトロチオフェン誘導体。
<32> 一般式(3)におけるRが、1,3-ジメチルブチル基である前記<30>に記載の2-アルキル-3-ニトロチオフェン誘導体。
<33> 前記<12>から<32>のいずれか1項に記載の化合物の、医農薬製造中間体としての利用。
<34> 前記医農薬製造中間体が下記一般式(12)
Figure JPOXMLDOC01-appb-C000067
[一般式(12)中、YおよびZは、それぞれ独立にハロゲン原子または水素原子を表す。Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される農園芸用殺菌剤の製造中間体である前記<33>に記載の医農薬製造中間体としての利用。
<35> 前記一般式(12)におけるRが、下記一般式(6)
Figure JPOXMLDOC01-appb-C000068
[一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である前記<34>に記載の医農薬製造中間体としての利用。
<36> 一般式(12)におけるRが1,3-ジメチルブチル基、Yがフッ素原子、Zが水素原子である前記<34>に記載の医農薬製造中間体としての利用。
 本発明の下記一般式(4)で表される2-アルキル-3-アミノチオフェン誘導体の製造方法は、下記一般式(1)で表される化合物を酸化して、下記一般式(3)で表される化合物を得る工程(A)と、前記一般式(3)で表される化合物を還元する工程(B)と、を含む。
Figure JPOXMLDOC01-appb-C000069
 一般式(1)、一般式(3)および一般式(4)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xはヒドロキシ基、ハロゲン原子、または上記一般式(2)で表される置換基を表す。
 Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。
 本発明においては前記Rが、下記一般式(6)で表される置換基であることが好ましく、前記Rが、1,3-ジメチルブチル基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000070
 一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。
 また前記前記工程(A)が、下記一般式(8)で表される化合物から、下記一般式(1a)で表される化合物を得る工程と、前記一般式(Ia)で表される化合物から、前記一般式(3)で表される化合物を得る工程と、をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000071
 一般式(8)および一般式(1a)中、Rは前記一般式(1)におけるRと同一である。Xはハロゲン原子または前記一般式(2)で表される置換基を表す。
 また前記工程(A)が、前記一般式(1)で表される化合物から、下記一般式(5)で表される化合物を得る工程(A-1)と、前記一般式(5)で表される化合物から、前記一般式(3)で表される化合物を得る工程(A-2)と、をさらに含むこともまた好ましい。
Figure JPOXMLDOC01-appb-C000072
 一般式(5)中、Rは前記一般式(1)におけるRと同一である。
 また本発明の製造方法は、下記一般式(7)で表される化合物と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させて、下記一般式(8)で表される化合物を得る工程をさらに含むことが好ましい。さらに前記一般式(7)で表される化合物を、下記一般式(9)で表される化合物から得る工程を含むことがより好ましく、前記一般式(9)で表される化合物を下記一般式(10)で表される化合物と、ニトロメタンとを反応させて得る工程をさらに含むがより好ましい。
Figure JPOXMLDOC01-appb-C000073
 一般式(7)から一般式(10)中、Rは前記一般式(1)におけるRと同一であり、Xはハロゲン原子または前記一般式(2)で表される置換基を表す。
 また本発明の製造方法は、下記一般式(11)で表される化合物と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させて、下記一般式(8)で表される化合物を得る工程を、さらに含むことが好ましい。さらに前記一般式(11)で表される化合物を、下記一般式(9)で表される化合物を脱水反応させて得る工程をさらに含むことがより好ましく、前記一般式(9)で表される化合物を、下記一般式(10)で表される化合物と、ニトロメタンとを反応させて得る工程を、さらに含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000074
 一般式(8)から一般式(11)中、Rは前記一般式(1)におけるRと同一である。
 以下、本発明をさらに詳細に説明する。
 本発明において、一般式(10)で表されるアルデヒド類、一般式(9)で表されるヒドロキシニトロアルカン類、一般式(11)で表されるニトロオレフィン類、一般式(7)で表されるニトロアルカン類、一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類、一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類、一般式(1)で表される3-ニトロテトラヒドロチオフェン類、一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体、および一般式(4)で表される3-アミノアルキルチオフェン誘導体において、Rで表される炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数4から12のビシクロアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、イソブチル基、第二ブチル基、第三ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、シクロプロピルメチル基、シクロペンチルメチル基、シクロヘキシルエチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘキシルシクロヘキシル基、ヘキサヒドロインダン-1-イル基、ヘキサヒドロインダン-2-イル基、ヘキサヒドロインダン-4-イル基、ヘキサヒドロインダン-5-イル基、デカヒドロナフタレン-1-イル基、デカヒドロナフタレン-2-イル基などを挙げることができる。
 また、一般式(2)中、Qで表される炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、炭素数1から6のアルキル基で置換されてもよいアリール基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、イソブチル基、第二ブチル基、第三ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、メトキシ基、エトキシ基、第三ブチルオキシ基、ベンジルオキシ基、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基などを挙げることができる。
 また、一般式(10)で表されるアルデヒド類、一般式(9)で表されるヒドロキシニトロアルカン類、一般式(11)で表されるニトロオレフィン類、一般式(7)で表されるニトロアルカン類、一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類、一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類、一般式(1)で表される3-ニトロテトラヒドロチオフェン類、一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体、および一般式(4)で表される2-アルキル-3-アミノチオフェン類は、ジアステレオ異性体が存在する場合は、そのいずれか一つの化合物、またはその内2種類以上の任意の割合の混合物でよく、その構造は限定されない。
また、一般式(10)で表されるアルデヒド類、一般式(9)で表されるヒドロキシニトロアルカン類、一般式(11)で表されるニトロオレフィン類、一般式(7)で表されるニトロアルカン類、一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類、一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類、一般式(1)で表される3-ニトロテトラヒドロチオフェン類、一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体、および一般式(4)で表される3-アミノアルキルチオフェン類は、鏡像異性体が存在する場合は、そのいずれか一方の化合物、または両者の任意の割合の混合物でよく、その構造は限定されない。
 また、一般式(11)で表されるニトロオレフィン類は、シス体、トランス体のいずれか一方の化合物、または両者の任意の割合の混合物でよく、その構造は限定されない。
 本発明で出発化合物として用いられる一般式(10)で表されるアルデヒドは多くの場合市販されており、容易に入手できる。また、入手困難なものについても種々の製造方法が公知であり、例えば、JORNAL OF AMERICAN CHEMICAL SOCIETY 第75巻 第20号 (1953年) 4995頁に開示されている方法により製造することができる。
 本発明により開示される新規な製造方法によれば、一般式(9)で表されるヒドロキシニトロアルカン類は、一般式(10)で示されるアルデヒド類とニトロメタンとを塩基の存在下反応させることにより得られる。
 一般式(10)で示されるアルデヒド類に対して用いるニトロメタンおよび塩基の当量には特に制限を設けないが、経済的観点から3当量以下とすることが望ましい。
 用いる塩基は無機の塩基、有機の塩基のいずれでもよい。無機の塩基としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。塩基として具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(9)で表されるヒドロキシニトロアルカン類の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒には特に制限はない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(10)で示されるアルデヒド類の重量に対して50倍量以下とすることが好ましい。
 また反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば一般式(11)で表されるニトロオレフィン類は、一般式(9)で表されるヒドロキシニトロアルカン類を脱水反応させることで得られる。  
 本発明のニトロオレフィン類の製造方法においては、反応補助のため酸を用いてもよい。用いる酸は無機の酸、有機の酸のいずれでもよく、またブレンステッド酸、ルイス酸のいずれでもよい。
 具体的には例えば、硫酸、発煙硫酸、クロロ硫酸、硝酸、発煙硝酸、塩酸、リン酸、臭化水素、酢酸、トリフルオロ酢酸、シュウ酸、酒石酸、フマル酸、マレイン酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸、トシル酸、トリフルオロメタンスルホン酸、塩化アルミ、四塩化チタン、三フッ化ホウ素ジエチルエーテル錯体などを挙げることができる。これらの酸は、それぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明のニトロオレフィン類の製造方法においては、反応補助のため塩基を用いてもよい。用いる塩基は無機の塩基、有機の塩基のいずれでもよい。無機の塩基としてはアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基は、それぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 さらに本発明のニトロオレフィン類の製造方法においては、反応補助のため公知の脱水剤を用いてもよい。用いる脱水剤として塩化アセチル、塩化ベンゾイルなどのカルボン酸ハロゲン化物、無水酢酸、無水トリフルオロ酢酸などのカルボン酸無水物、塩化トルエンスルホニル、塩化メタンスルホニル、塩化トリフルオロメタンスルホニルなどのスルホン酸ハロゲン化物、塩化チオニル、塩化スルフリル、シュウ酸クロリド、ホスゲン、ジホスゲン、トリホスゲン、五塩化リン、三塩化リン、オキシ塩化リン、三臭化リン、五酸化リン、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ土類金属塩酸塩などを挙げることができる。これらの脱水剤は、それぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明のニトロオレフィン類の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒には特に制限はない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(9)で表されるヒドロキシニトロアルカン類の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば、一般式(7)で表されるニトロアルカン類は一般式(9)で表されるヒドロキシニトロアルカン類を公知のエステル化剤またはハロゲン化剤と反応させることにより得られる。
 本発明の一般式(7)で表されるニトロアルカン類の製造方法においては反応補助のため塩基を用いてもよい。用いる塩基は無機の塩基、有機の塩基のいずれでもよい。無機の塩基としてはアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。具体的には水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基は、それぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(7)で表されるニトロアルカン類の製造方法に用いるエステル化剤またはハロゲン化剤としては、塩化アセチル、塩化ベンゾイルなどのカルボン酸ハロゲン化物、無水酢酸、無水トリフルオロ酢酸などのカルボン酸無水物、塩化トルエンスルホニル、塩化メタンスルホニル、塩化トリフルオロメタンスルホニルなどのスルホン酸ハロゲン化物、塩化チオニル、塩化スルフリル、シュウ酸クロリド、ホスゲン、ジホスゲン、トリホスゲン、五塩化リン、三塩化リン、オキシ塩化リン、三臭化リンなどを挙げることができる。これらのエステル化剤またはハロゲン化剤はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(7)で表されるニトロアルカン類の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒には特に制限はない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(9)で表されるヒドロキシニトロアルカン類の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類は、一般式(11)で表されるニトロオレフィン類または一般式(7)で表されるニトロアルカン類と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させることで得られる。
 反応に際して、一般式(11)で表されるニトロオレフィン類または一般式(7)で表されるニトロアルカン類に対して用いるα-メルカプトアセトアルデヒドおよび1,4-ジチアン-2,5-ジオールの当量には特に制限を設けないが、経済的観点から(α-メルカプトアルデヒド換算で)3当量以下とすることが望ましい。α-メルカプトアセトアルデヒドはそのもの自身を単量体として用いることもできるが、一般に市販されている二量体である1,4-ジチアン-2,5-ジオールがより好適に使用される。
 本発明の一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類の製造方法においては、反応補助のため塩基を用いてもよい。用いる塩基は、無機の塩基、有機の塩基のいずれでもよい。無機の塩基としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。塩基として具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒には特に制限はない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(11)で表されるニトロオレフィン類または一般式(7)で表されるニトロアルカン類の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば、一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類は、一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類を脱水反応させることで得られる。
 本発明の3-ニトロ-2,5-ジヒドロチオフェン類の製造方法においては、反応補助のため酸を用いてもよい。用いる酸は無機の酸、有機の酸のいずれでもよく、またブレンステッド酸、ルイス酸のいずれでもよい。酸としては、例えば、硫酸、発煙硫酸、クロロ硫酸、硝酸、発煙硝酸、塩酸、リン酸、臭化水素、酢酸、トリフルオロ酢酸、シュウ酸、酒石酸、フマル酸、マレイン酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸、トシル酸、トリフルオロメタンスルホン酸、塩化アルミ、四塩化チタン、三フッ化ホウ素ジエチルエーテル錯体などを挙げることができる。これらの酸はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の3-ニトロ-2,5-ジヒドロチオフェン類の製造方法においては、反応補助のため塩基を用いてもよい。用いる塩基は無機の塩基、有機の塩基のいずれでもよい。無機の塩基としてはアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類の製造方法においては、反応補助のため公知の脱水剤を用いてもよい。用いる脱水剤として塩化アセチル、塩化ベンゾイルなどのカルボン酸ハロゲン化物、無水酢酸、無水トリフルオロ酢酸などのカルボン酸無水物、塩化トルエンスルホニル、塩化メタンスルホニル、塩化トリフルオロメタンスルホニルなどのスルホン酸ハロゲン化物、塩化チオニル、塩化スルフリル、シュウ酸クロリド、ホスゲン、ジホスゲン、トリホスゲン、五塩化リン、三塩化リン、オキシ塩化リン、三臭化リン、五酸化リン、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ土類金属塩酸塩などを挙げることができる。これらの脱水剤は、それぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒には特に制限はない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば、一般式(1a)で表される3-ニトロテトラヒドロチオフェン類は、一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類を公知のエステル化剤またはハロゲン化剤と反応させることにより得られる。
 本発明の一般式(1a)で表される3-ニトロテトラヒドロチオフェン類の製造方法においては反応補助のため塩基を用いてもよい。用いる塩基は無機の塩基、有機の塩基のいずれでもよい。無機の塩基としてはアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。具体的には水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基は、それぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(1a)で表される3-ニトロテトラヒドロチオフェン類の製造方法に用いるエステル化剤またはハロゲン化剤としては、塩化アセチル、塩化ベンゾイルなどのカルボン酸ハロゲン化物、無水酢酸、無水トリフルオロ酢酸などのカルボン酸無水物、塩化トルエンスルホニル、塩化メタンスルホニル、塩化トリフルオロメタンスルホニルなどのスルホン酸ハロゲン化物、塩化チオニル、塩化スルフリル、シュウ酸クロリド、ホスゲン、ジホスゲン、トリホスゲン、五塩化リン、三塩化リン、オキシ塩化リン、三臭化リンなどを挙げることができる。これらのエステル化剤またはハロゲン化剤はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の一般式(1a)で表される3-ニトロテトラヒドロチオフェン類の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒には特に制限はない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(8)で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン類の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体は一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類もしくは一般式(1a)で表される3-ニトロテトラヒドロチオフェン類を酸化剤を用いて酸化することにより得られる。
 本発明の一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体の製造方法において、使用される酸化剤としては、マンガン化合物、クロム酸類、四塩化鉛、四塩化オスミウム、四塩化ルテニウム、塩素、臭素、ヨウ素、次亜塩素酸またはその塩、塩素酸またはその塩、臭素酸またはその塩、酸素、オゾン、過酸化水素、有機過酸化物、有機過酸、塩化スルフリル、塩化チオニル、シュウ酸クロリド、ホスゲン、ジホスゲン、トリホスゲンなどを挙げることができるが、塩素、塩化スルフリルが好適に使用される。
 本発明の一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体の製造方法においては、反応補助のため塩基を用いてもよい。用いる塩基は無機の塩基、有機の塩基のいずれでもよい。無機の塩基としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の炭酸塩、アンモニア類等を用いることができる。有機の塩基としては、トリアルキルアミン、ピリジン類等を用いることができる。具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、液体アンモニア、アンモニア水溶液、トリエチルアミン、トリブチルアミン、ピリジン、コリジン、2,6-ルチジン、4-ジメチルアミノピリジンなどを挙げることができる。これらの塩基はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 本発明の2-アルキル-3-ニトロチオフェン誘導体の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒に特に制限を設けない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(5)で表される3-ニトロ-2,5-ジヒドロチオフェン類もしくは一般式(1a)で表される3-ニトロテトラヒドロチオフェン類の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 また、本発明により開示される新規な製造方法によれば一般式(4)で表される2-アルキル-3-アミノチオフェン誘導体は一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体を還元することにより得られる。
 本発明の2-アルキル-3-アミノチオフェン誘導体の製造方法において使用される還元方法としては接触水素添加法、液体アンモニア中アルカリ金属を用いて還元する方法、鉄、亜鉛、アルミニウム、スズなどの金属による還元法、塩化スズ(II)などの金属塩による還元法、水素化ホウ素ナトリウム、水素化アルミニウムリチウムなどの水素化金属錯体による還元法などを挙げることができるが、接触水素添加法、鉄による還元法および塩化スズ(II)による還元法が好適に使用される。
 本発明の2-アルキル-3-アミノチオフェン誘導体の製造方法においては、適宜溶媒を使用することができるが、用いる溶媒に特に制限を設けない。溶媒としては、例えば、ジクロロメタン、クロロホルム等のハロゲン化アルキル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、N,N’-ジメチルイミダゾリジノン、アセトニトリル、水などを挙げることができる。これらの溶媒はそれぞれ単独で用いてもよいが、2種類以上を任意の割合で組み合わせて使用することもできる。
 反応に用いる溶媒の量については特に制限を設けないが、経済的観点から一般式(3)で表される2-アルキル-3-ニトロチオフェン誘導体の重量に対して50倍量以下とすることが好ましい。
 反応温度については特に制限を設けないが、操作効率の観点から溶媒の融点以上沸点以下とすることが好ましい。
 本発明の2-アルキル-3-アミノチオフェンの製造方法で得られる2-アルキル-3-アミノチオフェンは、農園芸用殺菌剤製造中間体、農園芸用殺虫剤製造中間体、農園芸用除草剤製造中間体、あるいは医薬品製造中間体として利用することができる。例えば、特開平09-235282号公報に記載の農園芸用殺菌剤の中間体として有用である。
 日本出願2009-100217号の開示はその全体を本明細書に援用する。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
 以下、具体的に説明するために実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。
[実施例 1-1]
Figure JPOXMLDOC01-appb-C000075
 水50ml、エタノール50ml中に4℃で水酸化ナトリウム7.0gを溶解させたのち、ニトロメタン10.7g、2-メチルペンタナール10.0gを加え、室温に戻した後2時間攪拌した。エタノールを減圧下濃縮後、1mol/l塩酸で溶液のpHが7付近になるように中和した。酢酸エチルを溶液に加え、飽和食塩水溶液で洗浄して有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、3-メチル-1-ニトロ-2-ヘキサノール13.3g(収率:94.2%)を得た。
H-NMR(CDCl):δ=0.90-0.96(6H,m),1.18-1.47(4H,m),1.62(1H,m),4.15(1H,m),4.39(2H,m)
[実施例 1-2]
Figure JPOXMLDOC01-appb-C000076
 水25ml、エタノール25ml中に4℃で水酸化ナトリウム5.0gを溶解させたのち、ニトロメタン7.7g、2,4-ジメチルペンタナール7.2gを加え、室温に戻した後1時間攪拌した。エタノールを減圧下濃縮後、1mol/l塩酸で溶液のpHが7付近になるように中和した。酢酸エチルを溶液に加え、飽和食塩水溶液で洗浄して有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、3,5-ジメチル-1-ニトロ-2-ヘキサノール9.0g(収率:81.4%)を得た。
H-NMR(CDCl):δ=0.85-0.95(9H,m),1.12-1.28(2H,m),1.64-1.69(2H,m),4.22-4.24(1H,m),4.44-4.46(2H,m)
[実施例 2-1]
Figure JPOXMLDOC01-appb-C000077
 ジクロロメタン100mlに3-メチル-1-ニトロ-2-ヘキサノール15.0gを溶解させ、続いて4℃でメシルクロライド11.7g、トリエチルアミン18.8gをそれぞれゆっくりと滴下した後、溶液を室温に戻して1時間攪拌した。水で反応を停止させ、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、3-メチル-1-ニトロヘキサ-1-エン9.0g(収率:81.4%)を得た。
H-NMR(CDCl):δ=0.90-0.93(3H,t, 7.2),1.11-1.13(3H,d, 6.8),1.26-1.46(4H,m),2.41-4.45(1H,m),6.93-6.96(1H,d, J=13.2), 7.16-7.22(1H, dd, J=13.8, 5.6)
[実施例 2-2]
Figure JPOXMLDOC01-appb-C000078
 ジクロロメタン100mlに3,5-ジメチル-1-ニトロ-2-ヘキサノール9.0gを溶解させ、続いて4℃でメシルクロライド6.5g、トリエチルアミン10.4gをそれぞれゆっくりと滴下した後、溶液を室温に戻して1.5時間攪拌した。水で反応を停止させ、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、3, 5-ジメチル-1-ニトロヘキサ-1-エン6.8g(収率:83.9%)を得た。
H-NMR(CDCl):δ=0.89-0.95(6H,m),1.10-1.12(3H,d, J=6.8),1.25-1.43(2H,m),1.56-1.62(1H,m),2.49-2.53(1H,m), 6.95-6.99(1H, d, J=13.8), 7.14-7.20(1H, dd, J=13.8, 8.3)
[実施例 2-3]
Figure JPOXMLDOC01-appb-C000079

 
 ピリジン30mlに3, 5-ジメチル-1-ニトロヘキサン-2-オール7.8gを溶解させ、無水酢酸10ml加えて室温で2.5時間攪拌した。酢酸エチルを溶液に加え、1mol/lの塩酸水溶液および飽和食塩水溶液で洗浄して、有機層を硫酸マグネシウムで乾燥後濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、3, 5-ジメチル-1-ニトロヘキサン-2-イルアセテート8.4g(87.3%)を得た。
H-NMR(CDCl):δ=0.85-0.95(9H,m),1.12-1.28(2H,m),1.64-1.67(2H,m),2.23(3H,s),4.22-4.24(2H,m), 4.45(1H, m)
[実施例 2-4]
Figure JPOXMLDOC01-appb-C000080
 トルエン15mlに3,5-ジメチル-1-ニトロ-2-ヘキサノール2.0gを溶解させ、塩化チオニル4.1gおよびN,N-ジメチルホルムアミドを2滴加えて80℃で2.5時間攪拌した。室温に冷却したのち濃縮して、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、2-クロロ-3,5-ジメチル-1-ニトロヘキサン1.5g(収率:72.4%)を得た。
 H-NMR(CDCl):δ=0.86-1.36(9H,m),1.14-1.17(2H,m),1.64-1.68(2H,m),4.40-4.42(1H,m), 4.59-4.61(2H, m)
[実施例 3-1]
Figure JPOXMLDOC01-appb-C000081
 エタノール6mlに3-メチル-1-ニトロヘキサ-1-エン0.30gを溶解させ、続いてトリエチルアミン0.32g、1,4-ジチアン-2, 5-ジオール0.16gを加えた後、溶液を50℃に加熱して1時間攪拌した。室温に戻した後、酢酸エチルで希釈して、1mol/lの塩酸水溶液、飽和食塩水溶液でそれぞれ洗浄して有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、4-ニトロ-5-(ペンタン-2-イル)テトラヒドロチオフェン-3-オール0.18g(収率:42.6%)を得た。
H-NMR(CDCl):δ=0.87-1.03(6H,m),1.22-1.32(4H,m),1.64-1.69(1H,m),2.85-2.91(1H,m),3.08-3.11(1H,m), 3.30(1H, Brs), 3.79-3.85(1H, m), 4.70-4.76(2H, m)
[実施例 3-2]
Figure JPOXMLDOC01-appb-C000082
 ジクロロメタン40mlに3,5-ジメチル-1-ニトロヘキサ-1-エン6.8gを溶解させ、続いてトリエチルアミン6.7g、1,4-ジチアン-2,5-ジオール3.6gを加えた後、1.5時間攪拌した。酢酸エチルで希釈して、1mol/lの塩酸水溶液、飽和食塩水溶液でそれぞれ洗浄して有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、5-(4-メチルペンタン-2-イル)-4-ニトロテトラヒドロチオフェン-3-オール10.9g(収率:93.5%)を得た。
H-NMR(CDCl):δ=0.87-1.01(6H,m),1.14-1.28(5H,m),1.64-1.72(2H,m),2.85-3.12(3H,m), 4.11-4.31(1H, m), 4.70-4.83(2H, m)
[実施例 3-3]
Figure JPOXMLDOC01-appb-C000083

 
 3, 5-ジメチル-1-ニトロヘキサン-2-イルアセテート1.20gをトルエン7.0mlに溶解させた後、トリエチルアミン0.80gおよび1,4-ジチアン-2,5-ジオール0.60gを加えた。室温で30分攪拌したのち、不溶成分をろ過した。ろ液を濃縮したのち、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、5-(4-メチルペンタン-2-イル)-4-ニトロテトラヒドロチオフェン-3-オール1.26g(99.0%)を得た。
[実施例 3-4]
Figure JPOXMLDOC01-appb-C000084
 2-クロロ-3,5-ジメチル-1-ニトロヘキサン1.5gをトルエン10mlに溶解させた後、4℃でトリエチルアミン0.9gおよび1,4-ジヒドロキシジチアン0.9gを加えた。室温で4.5時間攪拌したのち、固形物をろ過して、溶液を濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、5-(4-メチルペンタン-2-イル)-4-ニトロテトラチオフェン-3-オール0.7g(収率:39.3%)を得た。
[実施例 4-1]
Figure JPOXMLDOC01-appb-C000085
 ジクロロメタン4mlに4-ニトロ-5-(ペンタン-2-イル)テトラヒドロチオフェン-3-オール150mgを溶解させ、続いて4℃でメシルクロライド86mg、トリエチルアミン138mgをそれぞれゆっくりと滴下した後、溶液を室温に戻して3.5時間攪拌した。水で反応を停止させ、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、3-ニトロ-2-(ペンタン-2-イル)-2,5-ジヒドロチオフェン78mg(収率:57.3%)を得た。
H-NMR(CDCl):δ=0.84-0.98(6H,m),1.17-1.40(4H,m),2.10-2.25(1H,m),3.76-3.80(2H,m),4.60-4.75(1H,m), 7.22-7.24(1H, m)
[実施例 4-2]
Figure JPOXMLDOC01-appb-C000086
 ジクロロメタン4mlに5-(4-メチルペンタン-2-イル)-4-ニトロテトラヒドロチオフェン-3-オール0.50gを溶解させ、続いて4℃でメシルクロライド0.27g、トリエチルアミン0.33gをそれぞれゆっくりと滴下した後、溶液を室温に戻して7.5時間攪拌した。水で反応を停止させ、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、2-(4-メチルペンタン-2-イル)-3-ニトロ-2,5-ジヒドロチオフェン0.22g(収率:47.7%)を得た。
H-NMR(CDCl):δ=0.87-1.00(6H,m),1.15-1.30(5H,m),1.64-1.72(2H,m),3.75-3.79(2H,m),4.60-4.74(1H,m), 7.21-7.24(1H, m)
[実施例 4-3]
Figure JPOXMLDOC01-appb-C000087

 
 トルエン10mlに5-(4-メチルペンタン-2-イル)-4-ニトロテトラヒドロチオフェン-3-オール1.00gを溶解させ、ピリジン0.7gおよび無水酢酸1.4gをくわえて室温で2時間攪拌した。水で反応を停止させ、1mol/lの塩酸水溶液および飽和食塩水溶液で洗浄して、有機層を硫酸マグネシウムで乾燥後濃縮した。シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=9/1)で精製し、5-(4-メチルペンタン-2-イル)-4-ニトロテトラヒドロチオフェン-3-イル-アセテート1.10g(94.8%)を得た。
H-NMR(CDCl):δ=0.87-1.01(6H,m),1.14-1.28(5H,m),1.64-1.72(2H,m),2.41(3H,s),2.85-3.12(3H,m), 4.11-4.31(1H, m), 4.70-4.83(2H, m)
[実施例 5-1]
Figure JPOXMLDOC01-appb-C000088
 ジクロロメタン2mlに3-ニトロ-2-(ペンタン-2-イル)-2,5-ジヒドロチオフェン78mgを溶解させ、スルフリルクロライド78mgのジクロロメタン2mlの溶液を加えて室温で2.5時間攪拌した。飽和炭酸水素ナトリウム水溶液を加えた後、ジクロロメタンで抽出し、さらに飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後濃縮させ、NH-シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、3-ニトロ-2-(ペンタン-2-イル)チオフェン69mg(収率:88.7%)を得た。
H-NMR(CDCl):δ=0.90-0.93(3H,m),1.30-1.42(5H,m),1.60-1.70(2H,m),4.01-4.07(1H,m),7.01-7.10(1H,d, J=5.9Hz), 7.53-7.55(1H, d, J=5.4Hz)
[実施例 5-2]
Figure JPOXMLDOC01-appb-C000089
 ジクロロメタン40mlに2-(4-メチルペンタン-2-イル)-3-ニトロ-2,5-ジヒドロチオフェン2.8gを溶解させ、スルフリルクロライド2.6gのジクロロメタン5mlの溶液を加えて室温で1.5時間攪拌した。飽和炭酸水素ナトリウム水溶液を加えた後、ジクロロメタンで抽出し、さらに飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後濃縮させ、NH-シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、2-(4-メチルペンタン-2-イル)-3-ニトロチオフェン2.0g(収率:70.1%)を得た。
H-NMR(CDCl):δ=0.80-0.96(6H,m),1.30-1.34(3H,m),1.44-1.64(2H,m),3.06-3.08(1H,m),4.12-4.14(1H,m), 7.09-7.10(1H, d, J=5.4Hz), 7.53-7.54(1H, d, J=5.9Hz)
[実施例 5-3]
Figure JPOXMLDOC01-appb-C000090

 
 5-(4-メチルペンタン-2-イル)-4-ニトロテトラヒドロチオフェン-3-イル-アセテート1.10gを7mlのトルエンに溶解させた後、反応溶液を4℃に冷却した。その後塩化スルフリル0.80gをトルエン2mlに溶かしたものをくわえ、室温に戻した後2時間攪拌した。水で反応を停止させ、1mol/lの水酸化ナトリウム水溶液、飽和食塩水溶液で洗浄した。有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、2-(4-メチルペンタン-2-イル)-3-ニトロチオフェン0.80g(85.0%)を得た。
[実施例6]
Figure JPOXMLDOC01-appb-C000091
 エタノール6mlに2-(4-メチルペンタン-2-イル)-3-ニトロチオフェン0.33gを溶解させ、塩化スズ(II)を0.88gおよび濃塩酸を0.97g加えたのち、反応溶液を70℃に加熱して1時間攪拌した。室温に溶液を冷却した後、1mol/lの水酸化ナトリウム水溶液を加えて5分間攪拌した。セライト上でろ過し、溶液を酢酸エチルで抽出して、さらに1mol/lの水酸化ナトリウム水溶液、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後濃縮させ、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=8/1)で精製し、2-(4-メチルペンタン-2-イル)-3-アミノチオフェンを0.11g(収率:39.0%)を得た。
H-NMR(CDCl):δ=0.83-0.98(6H,m),1.19-1.60(5H,m),2.93-2.95(1H,m),3.38(1H,Brs),6.41-6.55(1H,dd, J=4.9Hz, 5.4Hz), 6.93-7.04(1H, dd, J=4.9Hz, 5.4Hz)
 本発明によると、医農薬分野における有効な製造中間体である2-アルキル-3-アミノチオフェン誘導体を効率的に提供することが可能になった。さらに、本発明は工業的にも有利に生産可能であるために産業上の利用価値は高い。

Claims (36)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001

    [一般式(1)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xはヒドロキシ基、ハロゲン原子、または下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。)で表される置換基を表す。)]で表される化合物を酸化して、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003

    [一般式(3)中、Rは前記一般式(1)におけるRと同一である]で表される化合物を得る工程(A)と、
     前記一般式(3)で表される化合物を還元する工程(B)と、を含む下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004

    [一般式(4)中、Rは前記一般式(1)におけるRと同一である]で表される2-アルキル-3-アミノチオフェン誘導体の製造方法。
  2.  前記Rが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000005

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項1に記載の製造方法。
  3.  前記Rが、1,3-ジメチルブチル基である請求項1または請求項2に記載の製造方法。
  4.  前記工程(A)が、下記一般式(8)
    Figure JPOXMLDOC01-appb-C000006

    [一般式(8)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物から、下記一般式(1a)
    Figure JPOXMLDOC01-appb-C000007

    [一般式(1a)中、Rは前記一般式(8)におけるRと同一である。Xはハロゲン原子または前記一般式(2)で表される置換基を表す。]で表される化合物を得る工程と、
     前記一般式(Ia)で表される化合物から、前記一般式(3)で表される化合物を得る工程と、
    をさらに含む請求項1~請求項3のいずれか1項に記載の製造方法。
  5.  前記工程(A)が、
     前記一般式(1)で表される化合物から、下記一般式(5)
    Figure JPOXMLDOC01-appb-C000008

    [一般式(5)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を得る工程(A-1)と、
     前記一般式(5)で表される化合物から、前記一般式(3)で表される化合物を得る工程(A-2)と、
    をさらに含む請求項1~請求項3のいずれか1項に記載の製造方法。
  6.  下記一般式(7)
    Figure JPOXMLDOC01-appb-C000009

    [一般式(7)中、Rは前記一般式(1)におけるRと同一であり、Xはハロゲン原子または前記一般式(2)で表される置換基を表す。]で表される化合物と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させて、下記一般式(8)
    Figure JPOXMLDOC01-appb-C000010

    [一般式(8)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を得る工程をさらに含む請求項1~請求項5のいずれか1項に記載の製造方法。
  7.  下記一般式(9)
    Figure JPOXMLDOC01-appb-C000011

    [一般式(9)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物から、前記一般式(7)で表される化合物を得る工程を、更に含む請求項6に記載の製造方法。
  8.  下記一般式(10)
    Figure JPOXMLDOC01-appb-C000012

    [一般式(10)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物と、ニトロメタンとを反応させて、前記一般式(9)で表される化合物を得る工程を、さらに含む請求項7に記載の製造方法。
  9.  下記一般式(11)
    Figure JPOXMLDOC01-appb-C000013

    [一般式(11)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物と、α-メルカプトアセトアルデヒドまたは1,4-ジチアン-2,5-ジオールとを反応させて、下記一般式(8)
    Figure JPOXMLDOC01-appb-C000014

    [一般式(8)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を得る工程を、さらに含む請求項1~請求項5のいずれか1項に記載の製造方法。
  10.  下記一般式(9)
    Figure JPOXMLDOC01-appb-C000015

    [一般式(9)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物を脱水反応させて、前記一般式(11)で表される化合物を得る工程を、さらに含む請求項9に記載の製造方法。
  11.  下記一般式(10)
    Figure JPOXMLDOC01-appb-C000016

    [一般式(10)中、Rは前記一般式(1)におけるRと同一である。]で表される化合物と、ニトロメタンとを反応させて、前記一般式(9)で表される化合物を得る工程を、さらに含む請求項10に記載の製造方法。
  12.  下記一般式(9)
    Figure JPOXMLDOC01-appb-C000017

    [一般式(9)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表されるヒドロキシニトロアルカン誘導体。
  13.  前記一般式(9)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000018

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項12に記載のヒドロキシニトロアルカン誘導体。
  14.  一般式(9)におけるRが、1,3-ジメチルブチル基である請求項12に記載のヒドロキシニトロアルカン誘導体。
  15.  下記一般式(7)
    Figure JPOXMLDOC01-appb-C000019

    [一般式(7)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xは、ハロゲン原子、または、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000020

    (一般式(2)中、Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。)で表される置換基を表す。]で表されるニトロアルカン誘導体。
  16.  前記一般式(7)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000021

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項15に記載のニトロアルカン誘導体。
  17.  前記一般式(7)におけるRが、1,3-ジメチルブチル基である請求項15に記載のニトロアルカン誘導体。
  18.  下記一般式(11)
    Figure JPOXMLDOC01-appb-C000022

    [一般式(11)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表されるニトロオレフィン誘導体。
  19.  前記一般式(11)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000023

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項18に記載のニトロオレフィン誘導体。
  20.  前記一般式(11)におけるRが、1,3-ジメチルブチル基である請求項18に記載のニトロオレフィン誘導体。
  21.  下記一般式(8)
    Figure JPOXMLDOC01-appb-C000024

    [一般式(8)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される3-ヒドロキシ-4-ニトロテトラヒドロチオフェン誘導体。
  22.  前記一般式(8)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000025

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項21に記載の3-ヒドロキシ-4-ニトロテトラヒドロチオフェン誘導体。
  23.  前記一般式(8)におけるRが、1,3-ジメチルブチル基である請求項21に記載の3-ヒドロキシ-4-ニトロテトラヒドロチオフェン誘導体。
  24.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000026

    [一般式(1)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。Xは、ヒドロキシ基、ハロゲン原子、または、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000027

    (一般式(2)中、Aは炭素原子または硫黄原子を表し、Aが炭素原子の場合nは1を表し、Aが硫黄原子の場合nは1または2を表す。Qは炭素数1から10のアルキル基、炭素数3から10のシクロアルキル基、炭素数1から10のハロアルキル基、炭素数1から10のヒドロカルビルオキシ基、または、炭素数1から6のアルキル基で置換されてもよいアリール基を表す。#は結合位置を表す。)で表される置換基を表す。]で表される3-ニトロテトラヒドロチオフェン誘導体。
  25.  一般式(1)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000028

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項24に記載の3-ニトロテトラヒドロチオフェン誘導体。
  26.  一般式(1)におけるRが、1,3-ジメチルブチル基である請求項24に記載の3-ニトロテトラヒドロチオフェン誘導体。
  27.  下記一般式(5)
    Figure JPOXMLDOC01-appb-C000029

    [一般式(5)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される3-ニトロ-2,5-ジヒドロチオフェン誘導体。
  28.  一般式(5)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000030

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項27に記載の3-ニトロ-2,5-ジヒドロチオフェン誘導体。
  29.  一般式(5)におけるRが、1,3-ジメチルブチル基である請求項27に記載の3-ニトロ-2,5-ジヒドロチオフェン誘導体。
  30.  下記一般式(3)
    Figure JPOXMLDOC01-appb-C000031

    [一般式(3)中、Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される2-アルキル-3-ニトロチオフェン誘導体。
  31.  一般式(3)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000032

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項30に記載の2-アルキル-3-ニトロチオフェン誘導体。
  32.  一般式(3)におけるRが、1,3-ジメチルブチル基である請求項30に記載の2-アルキル-3-ニトロチオフェン誘導体。
  33.  請求項12から請求項32のいずれか1項に記載の化合物の、医農薬製造中間体としての利用。
  34.  前記医農薬製造中間体が下記一般式(12)
    Figure JPOXMLDOC01-appb-C000033

    [式中、YおよびZは、それぞれ独立にハロゲン原子または水素原子を表す。Rは炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数1から18のアルキル基、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数3から10のシクロアルキル基、または、炭素数1から10のアルキル基もしくは炭素数3から10のシクロアルキル基で置換されてもよい炭素数6から12のビシクロアルキル基を表す。]で表される農園芸用殺菌剤の製造中間体である請求項33に記載の医農薬製造中間体としての利用。
  35.  前記一般式(12)におけるRが、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000034

    [一般式(6)中、Rは水素原子、または、炭素数1から6の直鎖もしくは分岐のアルキル基を表す。#は結合位置を表す。]で表される置換基である請求項34に記載の医農薬製造中間体としての利用。
  36.  一般式(12)におけるRが1,3-ジメチルブチル基、Yがフッ素原子、Zが水素原子である請求項34に記載の医農薬製造中間体としての利用。
PCT/JP2010/056702 2009-04-16 2010-04-14 2-アルキル-3-アミノチオフェン誘導体の製造方法 WO2010119902A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080016049.6A CN102395573B (zh) 2009-04-16 2010-04-14 2-烷基-3-氨基噻吩衍生物的制造方法
JP2011509320A JP5281152B2 (ja) 2009-04-16 2010-04-14 2−アルキル−3−アミノチオフェン誘導体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100217 2009-04-16
JP2009-100217 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010119902A1 true WO2010119902A1 (ja) 2010-10-21

Family

ID=42982561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056702 WO2010119902A1 (ja) 2009-04-16 2010-04-14 2-アルキル-3-アミノチオフェン誘導体の製造方法

Country Status (3)

Country Link
JP (1) JP5281152B2 (ja)
CN (2) CN103467443B (ja)
WO (1) WO2010119902A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059051B (zh) * 2014-07-10 2016-02-03 西南大学 三取代四氢噻吩的制备方法
CN108047196B (zh) * 2017-12-08 2020-06-02 沈阳化工大学 一种催化合成含手性季碳的2,5-二氢噻吩类化合物的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2545433A (en) * 1946-05-08 1951-03-20 Haco Ges A G 3-nitro-4-hydroxy-thiophanes
US2822252A (en) * 1955-05-31 1958-02-04 Ethyl Corp Antiknock compositions
JPS49101393A (ja) * 1973-01-22 1974-09-25
JPS61115055A (ja) * 1984-11-09 1986-06-02 Hodogaya Chem Co Ltd クロロアセテ−ト誘導体および殺菌剤
JPS6368504A (ja) * 1986-09-11 1988-03-28 Hodogaya Chem Co Ltd 殺菌剤
JPH09235282A (ja) * 1995-04-11 1997-09-09 Mitsui Toatsu Chem Inc 置換チオフェン誘導体およびこれを有効成分とする農園芸用殺菌剤
JPH11228567A (ja) * 1998-02-17 1999-08-24 Mitsui Chem Inc 置換チオフェン誘導体およびこれを有効成分とする植物病害防除剤
JP2008120710A (ja) * 2006-11-10 2008-05-29 Mitsui Chemicals Inc 2−アルキル−3−アミノチオフェン誘導体の製造方法
WO2008082486A2 (en) * 2006-12-19 2008-07-10 Schering Corporation Preparation of 3-amino-3-(cyclobutylmethyl)-2-(hydroxy)-propionamide hydrochloride
WO2009029844A1 (en) * 2007-08-31 2009-03-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compounds for inhibiting wip1, prodrugs and compositions thereof, and related methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2545433A (en) * 1946-05-08 1951-03-20 Haco Ges A G 3-nitro-4-hydroxy-thiophanes
US2822252A (en) * 1955-05-31 1958-02-04 Ethyl Corp Antiknock compositions
JPS49101393A (ja) * 1973-01-22 1974-09-25
JPS61115055A (ja) * 1984-11-09 1986-06-02 Hodogaya Chem Co Ltd クロロアセテ−ト誘導体および殺菌剤
JPS6368504A (ja) * 1986-09-11 1988-03-28 Hodogaya Chem Co Ltd 殺菌剤
JPH09235282A (ja) * 1995-04-11 1997-09-09 Mitsui Toatsu Chem Inc 置換チオフェン誘導体およびこれを有効成分とする農園芸用殺菌剤
JPH11228567A (ja) * 1998-02-17 1999-08-24 Mitsui Chem Inc 置換チオフェン誘導体およびこれを有効成分とする植物病害防除剤
JP2008120710A (ja) * 2006-11-10 2008-05-29 Mitsui Chemicals Inc 2−アルキル−3−アミノチオフェン誘導体の製造方法
WO2008082486A2 (en) * 2006-12-19 2008-07-10 Schering Corporation Preparation of 3-amino-3-(cyclobutylmethyl)-2-(hydroxy)-propionamide hydrochloride
WO2009029844A1 (en) * 2007-08-31 2009-03-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compounds for inhibiting wip1, prodrugs and compositions thereof, and related methods

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ARZNEIMITTEL-FORSCHUNG, vol. 8, 1948, pages 374 - 376 *
BALLINI, R. ET AL.: "Alkylation Orientation Rules in Conjugate Addition of Grignard Reagents to Nitropyrrole and Ntrothiophene Systems", TETRAHEDRON, vol. 44, no. 20, 1988, pages 6435 - 6440 *
CONCELLON, J. ET AL.: "A Convenient Samarium-Promoted Synthesis of Aliphatic (E)-Nitroalkenes under Mild Conditions", JOURNAL OF ORGANIC CHEMISTRY, vol. 72, no. 14, 2007, pages 5421 - 5423 *
DATABASE CAPLUS 2 July 2010 (2010-07-02), SCHONHOFER, F. ET AL.: "Some new nitro compounds as external antibacterial agents", accession no. STN Database accession no. 1959:12389 *
DATABASE CAPLUS 2 July 2010 (2010-07-02), VILLE, J. ET AL.: "Nitric acid chloride and chloronitroalkanes", accession no. STN Database accession no. 1962:482601 *
GRONOWITZ, S. ET AL.: "On the Base-catalyzed Reaction of Some Methyl Nitrothiophenes with Aldehydes. Unexpected Cyclobutane Formation", ACTA CHEMICA SCANDINAVICA, SERIES B: ORGANIC CHEMISTRY AND BIOCHEMISTRY, vol. B29, no. 4, 1975, pages 513 - 523 *
KELLOGG, R. M. ET AL.: "Cyclopropylthiophenes. Syntheses, Reactions, and Ultraviolet Spectra", JOURNAL OF ORGANIC CHEMISTRY, vol. 36, no. 16, 1971, pages 2236 - 2244 *
KITAYAMA, T. ET AL.: "Asymmetric syntheses of nitroalkanols using Pseudomonas sp. lipase: a proposal for the selection of the solvent system of lipase-catalyzed transesterification", JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC, vol. 7, no. 5-6, 1999, pages 291 - 297 *
MEMORIAL DES POUDRES, vol. 41A, no. 3295, 1959, pages 1 - 90 *
O'CONNOR, C. J. ET AL.: "Facile Synthesis of 3-Nitro-2-substituted Thiophenes", JOURNAL OF ORGANIC CHEMISTRY, vol. 75, no. 8, 16 April 2010 (2010-04-16), pages 2534 - 2538 *
RENE, L. ET AL.: "Recherches sur les derives nitres d'interet biologique. XII. Activites contre les microorganismes d'alcoyl-2 nitro-3 2H-chromenes (Studies of nitro-derivatives of biological interest. XII. Activities of 2-alkyl -3-nitro 2H-chromenes against microorganisms)", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 12, no. 4, 1977, pages 385 - 386 *

Also Published As

Publication number Publication date
JP5281152B2 (ja) 2013-09-04
CN102395573B (zh) 2014-05-07
CN103467443A (zh) 2013-12-25
CN102395573A (zh) 2012-03-28
JPWO2010119902A1 (ja) 2012-10-22
CN103467443B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
JP4725977B2 (ja) 2−ジハロアシル−3−アミノ−アクリル酸エステルおよび3−ジハロメチル−ピラゾール−4−カルボン酸エステルの製造方法
US11932613B2 (en) Process for preparing 1,1,3-trioxo-1,2-benzothiazole-6-carboxamide
JP2018507871A (ja) 3−クロロ−2−ビニルフェニルスルホネート類の製造方法
JP5281152B2 (ja) 2−アルキル−3−アミノチオフェン誘導体の製造方法
KR900007189B1 (ko) 치환된 3-(4-니트로페녹시) 피라졸과 제초제로서의 이들의 용도
JP6614699B2 (ja) 有害生物防除剤の製造方法およびその中間体
US5723654A (en) Process for the preparation of alkyl 2-fluoro-isobutyrates
US8367846B2 (en) Method of producing 2-alkyl-3-aminothiophene derivative
EP2982673B1 (en) Process for manufacturing 5-chloromethyl-2,3-dicarboxylic anhydride
ES2392735T3 (es) Método para producir un derivado de ácido nicotínico o una sal del mismo
ES2244770T3 (es) Proceso de produccion de acidos 2-(4-(2,2,-dihalociclopropil)fenoxil)-alcanoicos y de esteres de los mismos.
JP2023544212A (ja) 5-(1-シアノシクロプロピル)-ピリジン-2-カルボン酸のエステル アミド、及びニトリルの調製方法
CN116082155B (zh) 一种利用对称环氧化合物制备唑啉草酯中间体的方法
WO2016152831A1 (ja) ピラゾール誘導体の製造方法
JP2009023991A (ja) アントラニルアミド系化合物の製造方法
PL130528B1 (en) Process for preparing n-/halomethyl/-acylamides
JP5064125B2 (ja) ピラゾール類の合成方法
JP4600859B2 (ja) ヘテロ環置換チオフェノール化合物、その製造中間体および製造法
CN116239468A (zh) 2-(2,6-二乙基-4-甲基苯基)-丙二酸二甲酯的制备方法
MX2007002317A (es) Derivados de acido 3-haloftalico quirales.
KR950003333B1 (ko) α,β-불포화케톤 및 케토옥심유도체
CN116947837A (zh) 苯唑草酮中间体及其制备方法
EP0659735A1 (en) Process for producing aniline derivative
JPS60139672A (ja) アミド誘導体の製造法
JP4690733B2 (ja) 3−ヒドロキシピラゾール−1−カルボキサミド誘導体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016049.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509320

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8306/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10764486

Country of ref document: EP

Kind code of ref document: A1