WO2010119581A1 - 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置 - Google Patents

光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置 Download PDF

Info

Publication number
WO2010119581A1
WO2010119581A1 PCT/JP2009/064745 JP2009064745W WO2010119581A1 WO 2010119581 A1 WO2010119581 A1 WO 2010119581A1 JP 2009064745 W JP2009064745 W JP 2009064745W WO 2010119581 A1 WO2010119581 A1 WO 2010119581A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
groove
laser
contact layer
intermediate contact
Prior art date
Application number
PCT/JP2009/064745
Other languages
English (en)
French (fr)
Inventor
川添 浩平
宇田 和孝
馬場 智義
石出 孝
禎子 中尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/131,815 priority Critical patent/US8692153B2/en
Priority to CN2009801477369A priority patent/CN102227817A/zh
Priority to EP09843359A priority patent/EP2421051A1/en
Publication of WO2010119581A1 publication Critical patent/WO2010119581A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion device, a device for manufacturing a photoelectric conversion device, and a photoelectric conversion device, and more particularly to processing a groove of a thin film constituting the photoelectric conversion device.
  • a structure in which a plurality of photoelectric conversion layers are stacked is known.
  • a tandem solar cell in which an amorphous silicon layer and a microcrystalline silicon layer are stacked is known.
  • This tandem solar cell is formed by sequentially laminating thin films such as a transparent electrode, an amorphous silicon layer, a microcrystalline silicon layer, and a back electrode on a light transmissive substrate. Then, an intermediate contact layer (thin film) electrically and optically connected is provided between the amorphous silicon layer and the microcrystalline silicon layer, and a part of incident light is reflected to further improve the photoelectric conversion efficiency. It has been known.
  • a high voltage is obtained by obtaining a desired voltage by connecting a plurality of photoelectric conversion cells in series.
  • a connection groove that penetrates the amorphous silicon layer, the intermediate contact layer, and the microcrystalline silicon layer is formed, and the back electrode is filled in the connection groove, The transparent electrode is electrically connected.
  • the intermediate contact layer has conductivity, when it is electrically connected to the connection groove filled with the back electrode, the current generated in the amorphous silicon layer or the microcrystalline silicon layer passes through the intermediate contact layer. Leaks into the connection groove. Accordingly, various techniques for preventing leakage of current from the intermediate contact layer to the connection groove by separating the intermediate contact layer by laser processing have been proposed (see Patent Documents 1 and 2).
  • a plurality of irradiation regions 14 are formed using a pulse laser, and adjacent irradiation regions 14 are partially formed. Overlapping to form a continuous groove like a rosary chain.
  • the diameter D0 of the irradiation region 14 is a beam diameter that is collected and irradiated onto the film surface.
  • the reference character B0 is the overlapping width of adjacent irradiation regions 14.
  • a laser intensity distribution is inevitably generated in the irradiation region 14 corresponding to the laser diameter D0. Specifically, as shown in FIG.
  • the laser intensity distribution has a Gaussian distribution in which the intensity is the highest at the center of the irradiation region and the intensity is weaker toward the periphery. Therefore, the processed groove has a groove depth corresponding to the intensity distribution formed over the entire irradiation region 14. That is, as shown in FIG. 12B, a groove depth distribution corresponding to at least the energy density difference dp occurs. Further, the transparent electrode and the intermediate contact layer have an uneven texture shape in order to improve the reflectance and the absorption rate in the amorphous silicon layer and the crystalline silicon layer. Due to the above circumstances, it has been difficult to control the desired groove depth. Therefore, the groove is sometimes shallow enough to cut the thin film sufficiently, and sometimes the groove is formed deeper than necessary.
  • the processing grooves are connected in a daisy chain, which causes a problem that a depth distribution that repeatedly appears shallow / deep in the processing direction (left-right direction in the figure) occurs. It was.
  • symbol L0 shows the length of the process direction in the area
  • the intermediate contact layer when the intermediate contact layer is separated, if the laser is irradiated to the intermediate contact layer and the amorphous silicon layer, the amorphous silicon layer absorbs the thermal energy of the laser, and the amorphous silicon layer melts and scatters with the intermediate contact layer. Then, an intermediate contact layer separation groove is formed.
  • the intermediate contact layer separation groove is formed, the melted amorphous silicon layer is recrystallized at the wall portion (including the bottom wall) forming the intermediate contact layer separation groove. Since this recrystallized region has changed from the original amorphous silicon, it is considered that the resistance is lowered.
  • Such a recrystallized region with reduced resistance has a low effect of separating the intermediate contact layer from the connection portion between the transparent electrode and the back electrode, and becomes a new current leakage path, resulting in a decrease in battery performance. Therefore, in order to prevent the recrystallization region from becoming a current leakage path, it is required to appropriately control the position of the recrystallization region. That is, it is necessary to accurately control the end position (groove depth) of the intermediate contact layer separation groove.
  • the present invention has been made in view of such circumstances, and the structure of a processed groove capable of suppressing leakage current in the film thickness direction and the groove depth of the processed groove are controlled to a desired value. It is an object to provide a method for manufacturing a photoelectric conversion device, a device for manufacturing a photoelectric conversion device, and a photoelectric conversion device.
  • the photoelectric conversion device manufacturing method, the photoelectric conversion device manufacturing device, and the photoelectric conversion device of the present invention employ the following means. That is, in the method for manufacturing a photoelectric conversion device according to one embodiment of the present invention, the thin film included in the photoelectric conversion device is irradiated with a laser, and the laser is relatively moved with respect to the thin film in a predetermined scanning direction. In the method for manufacturing a photoelectric conversion device having a groove forming step for forming a processing groove, the groove forming step forms interference fringes arranged in parallel in one direction within an irradiation region corresponding to the beam diameter of the laser, The laser is relatively moved so that the interference fringes are connected in the scanning direction.
  • interference fringes are formed in the irradiation region.
  • the interference fringes are composed of a plurality of bright regions and dark regions arranged in parallel in one direction.
  • the laser intensity distribution in one bright region constituting the interference fringes is relatively smaller than the laser intensity distribution in the entire irradiation region.
  • the groove depth is determined by adjusting the laser intensity for a predetermined bright region having a relatively small laser intensity distribution, and a processed groove having a small groove depth distribution is formed.
  • channel which has a desired groove depth can be formed correctly.
  • a pulse laser is preferably used as the laser, and more specifically, a picosecond laser or a nanosecond laser is used.
  • the thin film formed by the laser include an intermediate contact layer of a photoelectric conversion device mainly having a tandem structure (or triple structure).
  • the present invention is not limited to this.
  • amorphous silicon It can also be used for forming a layer, a microcrystalline silicon layer, a transparent conductive film, a back electrode, and the like, and forming an insulating groove at the end of a module.
  • the method for manufacturing a photoelectric conversion device includes a first photoelectric conversion layer forming step of forming a first photoelectric conversion layer mainly composed of silicon, and the first photoelectric conversion layer.
  • a second photoelectric conversion layer forming step for forming a second photoelectric conversion layer mainly composed of silicon while being electrically and optically connected to the intermediate contact layer separator. As the groove forming step is performed.
  • the intermediate contact layer separation groove is formed in the intermediate contact layer by the above groove formation step, an intermediate contact layer separation groove having a desired depth can be obtained. Thereby, the current path flowing in the film surface direction of the intermediate contact layer can be surely cut.
  • An amorphous silicon layer is preferably used as the first photoelectric conversion layer, and a microcrystalline silicon layer is used as the second photoelectric conversion layer.
  • GZO Ga-doped ZnO
  • the intermediate contact layer separation groove is terminated at a midway position of the first photoelectric conversion layer.
  • the intermediate contact layer separation groove is terminated in the middle of the first photoelectric conversion layer, and the electrode connected to the first photoelectric conversion layer (or another intermediate contact layer in the case of the triple structure) is not allowed to reach.
  • the termination position of the intermediate contact layer separation groove is preferably a position where the recrystallization region does not contact the electrode (or other intermediate contact layer) connected to the first photoelectric conversion layer.
  • the depth at which at least the n layer or p layer of the first photoelectric conversion layer connected to the layer is cut is preferable. By cutting the n layer or the p layer, it is possible to avoid the dopant contained in the n layer or the p layer from being mixed into the recrystallized region and increasing the conductivity of the recrystallized region.
  • the laser is a pulse laser
  • the groove forming step is continuously performed by partially overlapping a plurality of the irradiation regions with the pulse laser.
  • adjacent irradiation regions are overlapped so that a plurality of bright regions of the interference fringes are continuous.
  • the irradiation region of the pulse laser is intermittently formed.
  • a continuous machining groove is formed by partially overlapping the intermittently formed irradiation regions.
  • a plurality of bright areas are made continuous by adjusting a partial overlapping area.
  • a processed groove in which a plurality of bright regions are formed is formed, so that a thin film (for example, an intermediate contact layer separation groove) is surely cut as compared with a processed groove in which only one bright region is formed.
  • the adjustment of the overlapping region can be realized by adjusting the relative moving speed between the thin film and the laser and adjusting the pulse interval of the pulse laser.
  • the “bright area” of the interference fringes in the present invention means an area of the interference fringes in which the laser intensity is enhanced by the interference, and is a synonym for the dark area in which the laser intensity is weakened by the interference.
  • the irradiation region is formed in a substantially rectangular shape, and the groove forming step is configured such that one side of the irradiation region that is formed in a rectangular shape is adjacent to the irradiation region. Partially overlap with one side.
  • the sides of adjacent irradiation regions that are substantially rectangular are overlapped, it is possible to overlap in a wide region extending in the direction of one side compared to the case of overlapping irradiation regions that are circular.
  • the overlap width in the scanning direction required when a plurality of bright regions are continued can be made narrower than in the case of a circular irradiation region. Accordingly, since the amount of movement in the scanning direction can be increased by the amount by which the overlap width of the irradiation areas is reduced, the groove forming step can be shortened.
  • the region irradiated with the laser a plurality of times is narrowed, so that damage to the thin film in this overlap region can be minimized.
  • a method of making the irradiation region substantially rectangular for example, a method of passing an opening formed with a rectangular hole that drops the periphery of a circular laser cross section, or an optical element such as a kaleidoscope that deforms the beam cross section is used. A method is mentioned.
  • the substantially rectangular shape does not mean a rectangular shape in which corners are clearly formed, but corners may be rounded, in other words, one side so that each side of adjacent irradiation regions overlaps each other. As long as the shape is formed.
  • the thin film is irradiated with a laser after uniformizing the intensity distribution in the irradiation region of the laser.
  • the laser intensity of each bright area constituting the interference fringes can be made equal.
  • region can be made equivalent, and a highly reliable groove process can be implement
  • a method for uniformizing the intensity distribution in the laser irradiation region include a method of increasing the focal length of the objective lens and a method of using an optical element such as a homogenizer (a kaleidoscope such as a rod integrator).
  • the groove forming step is performed by a pulse laser having a pulse width of 10 ps or more and 750 ps or less.
  • the pulse laser has a pulse width of 10 ps or more and 750 ps or less, thermal energy can be applied to the thin film (for example, the first photoelectric conversion layer) at an extremely short time interval. That is, compared to a conventional pulse laser having a nanosecond pulse width, the thermal diffusion in which the input thermal energy is absorbed and diffused by the thin film can be reduced. For this reason, sufficient heat energy can be input up to the vicinity of the wall portion where the processing groove (for example, the intermediate contact layer separation groove) is formed, and energy can be used for the groove processing without waste.
  • the formed processed groove can be formed.
  • a substrate side electrode formation step of forming a substrate side electrode on the substrate, and the substrate side electrode After the substrate-side electrode separation groove forming step of removing and forming the substrate-side electrode separation groove, and the second photoelectric conversion layer forming step, the second photoelectric conversion layer, the intermediate contact layer, and the first photoelectric conversion layer And a connection groove forming step for forming a connection groove for electrically connecting the back surface electrode and the substrate side electrode, and the intermediate contact layer separation step includes the intermediate contact layer separation step with respect to the substrate side electrode separation groove.
  • the contact layer separation groove is adjacent and partially overlapping, and / or the connection groove forming step is adjacent to and partially overlapping the intermediate contact layer separation groove. To be done.
  • the substrate-side electrode separation groove for example, a transparent conductive film
  • the intermediate contact layer separation groove, and the connection groove are formed adjacent to each other in this order.
  • the distance from the substrate-side electrode separation groove to the connection groove across the intermediate contact layer separation groove contributes to power generation as a photoelectric conversion device This is the part that does not (reactive power generation area).
  • the intermediate contact layer separation groove and the substrate side electrode separation groove and / or the connection groove are adjacent to each other and partially overlap. Thereby, the invalid power generation region can be narrowed, and the power generation amount with respect to the power generation area can be improved.
  • a plurality of intermediate contact layer separation grooves are formed, even if the intermediate contact layer separation grooves partially overlap the substrate side electrode separation grooves and / or connection grooves, a plurality of intermediate contact layer separation grooves are formed. Only the grooves located outside of the grooves overlap, and the groove located in the center does not overlap, so that the function as the intermediate contact layer separation groove is not lost. Further, among the intermediate contact layer separation grooves, the grooves located on the outer side generally have a low energy density during processing, so that the processing depth becomes shallow and does not reach the substrate side electrode.
  • a photoelectric conversion device manufacturing apparatus includes a laser oscillator that irradiates a laser to a thin film included in the photoelectric conversion device, and a predetermined scan by moving the laser relative to the thin film.
  • the moving means relatively moves the laser so that the interference fringes are connected in the scanning direction.
  • the interference fringes are formed in the irradiation region by the interference fringe forming means.
  • This interference fringe is composed of a plurality of bright regions arranged in parallel in one direction. The laser intensity distribution in one bright region constituting the interference fringes is relatively smaller than the laser intensity distribution in the entire irradiation region.
  • the groove depth is determined by adjusting the laser intensity for a predetermined bright region having a relatively small laser intensity distribution, and a processed groove having a small groove depth distribution is formed. Thereby, the groove
  • a pulse laser is preferably used as the laser, and more specifically, a picosecond laser or a nanosecond laser is used.
  • the thin film formed by the laser include an intermediate contact layer of a photoelectric conversion device mainly having a tandem structure (or triple structure), but the present invention is not limited to this. For example, an amorphous silicon layer It can also be used to form grooves in a microcrystalline silicon layer, a transparent conductive film, a back electrode, and the like.
  • the photoelectric conversion apparatus includes an irradiation region shape changing unit that changes the shape of the irradiation region to a substantially rectangular shape, and the moving unit has the rectangular irradiation region.
  • the laser is relatively moved so that one side is partially overlapped with one side of the adjacent irradiation region.
  • the sides of adjacent irradiation regions that are substantially rectangular are overlapped, it is possible to overlap in a wide region extending in the direction of one side compared to the case of overlapping irradiation regions that are circular.
  • the overlap width in the scanning direction required when a plurality of bright regions are continued can be made narrower than in the case of a circular irradiation region. Accordingly, since the amount of movement in the scanning direction can be increased by the amount by which the overlap width of the irradiation areas is reduced, the groove forming step can be shortened.
  • the irradiation region shape changing means for making the irradiation region substantially rectangular for example, a method of passing through an opening in which a rectangular hole that drops the circumference of a circular laser cross section is formed, or a beam cross sectional shape of a kaleidoscope or the like is deformed The method using an optical element is mentioned.
  • the substantially rectangular shape does not mean a rectangular shape in which corners are clearly formed, but the corners may be rounded.
  • each side of adjacent irradiation regions overlaps each other. As long as one side is formed in this way, it is sufficient.
  • the apparatus for manufacturing a photoelectric conversion device includes a laser intensity distribution uniformizing unit that uniformizes an intensity distribution in the irradiation region of the laser.
  • the intensity distribution in the laser irradiation area is made uniform by the laser intensity distribution uniformizing means.
  • the laser intensity of each bright region constituting the interference fringes can be made equal.
  • region can be made equivalent, and a highly reliable groove process can be implement
  • the laser intensity distribution uniformizing means include an optical element that increases the focal length of the objective lens and an optical element such as a homogenizer (a kaleidoscope such as a rod integrator).
  • the photoelectric conversion device is a photoelectric conversion device in which a plurality of thin films are stacked, and a processing groove formed by laser irradiation is formed in one direction on any of the thin films.
  • a plurality of grooves are arranged in parallel in the one direction within an irradiation region corresponding to the beam diameter of the laser.
  • the thin film can be cut more reliably.
  • Such a plurality of grooves can be obtained, for example, by forming interference fringes in the irradiation region.
  • a pulse laser is preferably used as the laser, and more specifically, a picosecond laser or a nanosecond laser is used.
  • the thin film formed by the laser include an intermediate contact layer of a photoelectric conversion device mainly having a tandem structure (or triple structure), but the present invention is not limited to this.
  • an amorphous silicon layer It can also be used to form grooves in a microcrystalline silicon layer, a transparent conductive film, a back electrode, and the like.
  • the photoelectric conversion device includes a substrate, a substrate-side electrode formed on the substrate, a substrate-side electrode separation groove that separates the substrate-side electrode, the substrate-side electrode, and A first photoelectric conversion layer mainly composed of silicon formed in the substrate-side electrode separation groove, and formed on the first photoelectric conversion layer, and electrically and optically with respect to the first photoelectric conversion layer Connected intermediate contact layer, the intermediate contact layer separating the intermediate contact layer and adjacent to the substrate-side electrode separation groove, and the intermediate contact layer and the intermediate contact layer A second photoelectric conversion layer formed in the separation groove and electrically and optically connected to the intermediate contact layer, mainly composed of silicon, the second photoelectric conversion layer, and the intermediate contact layer And said first
  • the substrate-side electrode separation groove has a connection groove that separates the photoelectric conversion layer and is adjacent to the intermediate contact layer separation groove, and electrically connects the back-side electrode and the substrate-side electrode.
  • the intermediate contact layer separation groove is the processing groove
  • the intermediate contact layer separation groove is the substrate. Adjacent to and partially overlapping the side electrode isolation trench, and / or the intermediate contact layer isolation trench is adjacent to and partially overlaps the connection trench.
  • the substrate-side electrode separation groove for example, a transparent conductive film
  • the intermediate contact layer separation groove, and the connection groove are formed adjacent to each other in this order.
  • the distance from the substrate-side electrode separation groove to the connection groove across the intermediate contact layer separation groove contributes to power generation as a photoelectric conversion device This is the part that does not (reactive power generation area).
  • the intermediate contact layer separation groove and the substrate side electrode separation groove and / or the connection groove are adjacent to each other and partially overlap. Thereby, the invalid power generation region can be narrowed, and the power generation amount with respect to the power generation area can be improved.
  • a plurality of intermediate contact layer separation grooves are formed, even if the intermediate contact layer separation grooves partially overlap the substrate side electrode separation grooves and / or connection grooves, a plurality of intermediate contact layer separation grooves are formed. Only the grooves located outside of the grooves overlap, and the groove located in the center does not overlap, so that the function as the intermediate contact layer separation groove is not lost. Further, among the intermediate contact layer separation grooves, the grooves located on the outer side generally have a low energy density during processing, so that the processing depth becomes shallow and does not reach the substrate side electrode.
  • the present invention has the following effects. Interference fringes were formed in the irradiation region, and a plurality of bright regions arranged in parallel in one direction were obtained. Since the laser intensity distribution in each bright region constituting the interference fringes is relatively smaller than the laser intensity distribution in the entire irradiation region, the groove depth distribution of the processing groove with respect to one clear region of the interference fringes is also Get smaller. Therefore, a groove having a desired groove depth can be accurately formed by adjusting the laser intensity for a predetermined bright region to determine the groove depth and obtaining a processed groove having a small groove depth distribution.
  • a separation groove having a desired depth with a small depth distribution can be formed, so that the intermediate contact layer can be cut reliably, and leakage current due to poor cutting of the intermediate contact layer can be prevented. Can be reduced. Thereby, the performance of the photoelectric conversion device is improved.
  • the positional relationship between the intermediate contact layer separation groove and the adjacent transparent electrode separation groove and connection groove is shown as a comparative example. It is the top view which showed the positional relationship of an intermediate contact layer isolation
  • FIG. 1 shows a longitudinal section of a tandem silicon thin film solar cell (photoelectric conversion device).
  • the solar cell 10 includes a glass substrate 1 that is a translucent insulating substrate, a transparent electrode layer 2, a top layer (first photoelectric conversion layer) 91, an intermediate contact layer 93, and a bottom layer (second photoelectric conversion layer). ) 92 and the back electrode layer 4.
  • the top layer 91 is a photoelectric conversion layer mainly including an amorphous silicon-based semiconductor
  • the bottom layer 92 is a photoelectric conversion layer mainly including a crystalline silicon-based semiconductor.
  • silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe).
  • Crystalstalline silicon means amorphous silicon, that is, silicon other than amorphous silicon, and includes microcrystalline silicon and polycrystalline silicon.
  • the solar cell 10 of the present embodiment having the above-described configuration is manufactured as follows.
  • the glass substrate soda float glass having an area of 1 m 2 or more is used.
  • the end face of the glass substrate 1 is preferably subjected to corner chamfering or R chamfering in order to prevent damage due to thermal stress or impact.
  • a transparent electrode film mainly composed of a tin oxide film (SnO 2 ) is preferably used as the transparent electrode layer 2.
  • This transparent electrode film has a thickness of about 500 nm to 800 nm, and can be obtained by film formation at about 500 ° C. using a thermal CVD apparatus. During this film forming process, a texture with appropriate irregularities is formed on the surface of the transparent electrode film.
  • an alkali barrier film (not shown) may be interposed between the transparent electrode film and the substrate 1.
  • the alkali barrier film is a silicon oxide film (SiO 2 ) having a thickness of, for example, 50 nm to 150 nm, and is obtained by performing a film forming process at about 500 ° C. with a thermal CVD apparatus.
  • the glass substrate 1 is placed on an XY table, and the first harmonic (1064 nm) of the YAG laser is irradiated from the film surface side (upper side in the drawing) of the transparent electrode layer 2.
  • the laser power is adjusted so as to be appropriate for the processing speed, and the transparent electrode layer 2 and the laser light in the direction perpendicular to the series connection direction of the power generation cells 5 (the direction perpendicular to the paper surface in the figure).
  • a transparent electrode separation groove substrate-side electrode separation groove
  • a p-layer film / i-layer film / n-layer film made of an amorphous silicon thin film is sequentially formed under the conditions of a reduced pressure atmosphere of 30 to 1000 Pa and a substrate temperature of about 200 ° C.
  • a top layer 91 is formed.
  • the top layer 91 is formed on the transparent electrode layer 2 by a process gas using SiH 4 gas and H 2 gas as main raw materials.
  • the p-layer, i-layer, and n-layer are laminated in this order from the sunlight incident side (glass substrate 1 side).
  • the top layer 91 is 10 nm to 30 nm mainly composed of B-doped amorphous SiC as an amorphous p layer, 200 nm to 350 nm mainly composed of amorphous Si as an amorphous i layer, and amorphous as an amorphous n layer. It is composed of a 30 nm to 50 nm film thickness mainly composed of a p-doped Si layer containing microcrystalline Si in Si. Further, a buffer layer may be provided between the p layer film and the i layer film in order to improve the interface characteristics.
  • a GZO (Ga doped ZnO) film is formed on the top layer 91 as the intermediate contact layer 93 (intermediate contact layer forming process).
  • the GZO (Ga doped ZnO) film has a thickness of 20 nm to 100 nm and is formed by a sputtering apparatus.
  • the intermediate contact layer 93 can improve the contact between the top layer 91 and the bottom layer 92 and obtain current matching.
  • the intermediate contact layer 93 is a semi-reflective film, and realizes an improvement in photoelectric conversion efficiency in the top layer 91 by reflecting a part of light incident from the glass substrate 1.
  • the intermediate contact layer separation groove 15 includes a first processed groove 15a and second and third processed grooves 15b and 15c located on both sides of the first processed groove 15a.
  • Each processed groove 15a, 15b, 15c terminates in an amorphous i layer 91i of the top layer 91, as shown in FIG.
  • the current flowing in the film surface direction of the intermediate contact layer 93 can be blocked by the intermediate contact layer separation groove 15.
  • the intermediate contact layer separation step will be described in detail later.
  • a bottom layer 92 is formed by sequentially forming a microcrystalline p layer film / a microcrystalline i layer film / a microcrystalline n layer film made of a crystalline silicon thin film (second photoelectric conversion layer forming step).
  • the bottom layer 92 has a thickness of 10 nm to 50 nm mainly composed of B-doped microcrystalline SiC as the microcrystalline p layer, and a thickness of 1.2 ⁇ m to 3 mainly composed of microcrystalline Si as the microcrystalline i layer.
  • the film thickness is 20 to 50 nm mainly composed of p-doped microcrystalline Si as a microcrystalline n layer.
  • the distance d between the plasma discharge electrode and the surface of the glass substrate 1 is preferably 3 mm to 10 mm. If it is smaller than 3 mm, it is difficult to keep the distance d constant from the accuracy of each component device in the film forming chamber corresponding to the large substrate, and there is a possibility that the discharge becomes unstable because it is too close. When it is larger than 10 mm, it is difficult to obtain a sufficient film forming speed (1 nm / s or more), and the uniformity of the plasma is lowered and the film quality is lowered by ion bombardment.
  • the glass substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is placed on the film surface side of the bottom layer 92 (upward in the figure) as shown by the arrow in the figure. Irradiate from the side. Pulse oscillation: 10 to 20 kHz The laser power is adjusted so as to be appropriate for the processing speed, and the connection groove 16 is formed at a position spaced apart from the transparent electrode separation groove 12 by about 50 to 350 ⁇ m laterally.
  • the laser may be irradiated from the glass substrate 1 side, and in this case, the intermediate contact layer 93 and the bottom layer 92 can be etched using the high vapor pressure generated by the energy absorbed by the top layer 91, so that it is more stable. Laser etching processing can be performed.
  • the position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.
  • the back electrode layer 4 an Ag film / Ti film is sequentially formed by a sputtering apparatus at a reduced pressure atmosphere at about 150 to 200 ° C.
  • the back electrode layer 4 has a thickness of about 150 to 500 nm, and a Ti film having a high anticorrosion effect is laminated in this order with a thickness of 10 to 20 nm to protect it.
  • a laminated structure of an Ag film and / or Cu film having a thickness of about 25 nm to 100 nm and an Al film or Ti film having a thickness of about 15 nm to 500 nm may be used.
  • a GZO (Ga-doped ZnO) film having a film thickness of 50 to 100 nm between the bottom layer 92 and the back electrode layer 4 is formed by a sputtering apparatus.
  • a film may be formed.
  • the glass substrate 1 is set on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is irradiated from the glass substrate 1 side (the lower side in the figure).
  • the laser light is absorbed by the top layer 91 and the bottom layer 92, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time.
  • Adjust the laser power so that the laser pulse oscillation frequency is 1 to 10 kHz and the processing speed is appropriate, and place the cell dividing groove (interstage separation) at a position about 250 to 400 ⁇ m apart from the transparent electrode separation groove 12 to the side.
  • (Groove) 18 is formed by laser etching.
  • a solar cell is manufactured through a process of attaching a back sheet having a high waterproof effect via an adhesive filler sheet such as EVA (ethylene vinyl acetate copolymer) so as to cover the back electrode 4.
  • EVA ethylene vinyl acetate copolymer
  • the laser used in this process is a picosecond pulse laser having a pulse width of 10 ps to 750 ps.
  • a picosecond pulse laser oscillator having a pulse width of 13 ps, an oscillation frequency of 10 kHz, and a beam spot diameter of 124 ⁇ m is preferably used.
  • Typical picosecond pulse laser oscillators include Nd: YVO4 laser, titanium / sapphire laser, and fiber laser.
  • the end position (bottom part) of the intermediate contact layer separation groove 15 is located in the i layer 91i of the top layer 91. That is, the termination position of the intermediate contact layer separation groove 15 is not located in the n layer 91n and the p layer 91p of the top layer 91.
  • the recrystallized region 20 of amorphous silicon is formed in the wall portion (including the bottom portion) forming the intermediate contact layer separation groove 15, the n layer 91 n and the p layer are formed in the recrystallized region 20. It is possible to prevent the 91p dopant from diffusing and to prevent the recrystallization region 20 from being lowered in resistance by the dopant.
  • the recrystallization region 20 can be confirmed with a transmission electron microscope or the like.
  • FIG. 3 shows an apparatus configuration of an optical system for processing the intermediate contact layer separation groove 15.
  • a total reflection mirror 24 is disposed between the picosecond pulse laser oscillator 22 and the glass substrate 1 (more precisely, the glass substrate 1 on which the top layer 91 and the intermediate contact layer 93 are formed).
  • the glass substrate 1 is moved in the direction of arrow T by a moving means such as a roller type / belt type conveyor (not shown), so that intermediate contact layer separation grooves 15 continuous in the scanning direction T are formed.
  • Interference fringe forming means 26 is provided between the picosecond pulse laser oscillator 22 and the total reflection mirror 24.
  • the interference fringe forming means 26 forms interference fringes arranged in parallel in one direction within an irradiation region 28 (see FIG. 4A) corresponding to the laser beam diameter D1.
  • the interference fringes are composed of a bright region 28a and a dark region 28b.
  • the bright region 28a is a region where the laser intensity is enhanced by interference
  • the dark region 28b is a region where the laser intensity is weakened by interference.
  • the processed grooves 15a, 15b, 15c, 15d, and 15e are formed by the clear region 28a of the interference fringes by one irradiation.
  • the region between the processing grooves 15a, 15b, 15c, 15d, and 15e corresponds to the dark region 28b of the interference fringes, and almost no groove is formed. That is, FIG.
  • 4B shows the processing depth formed by the interference fringes, and deep processing grooves 15a, 15b, 15c, 15d, and 15e are formed at positions corresponding to the bright region 28a, and the dark region 28b. It is shown that almost no machining groove is formed at the position corresponding to.
  • the groove depth distribution in each of the processed grooves 15a, 15b, 15c, 15d, and 15e is relatively small as compared with the case where no interference fringes are formed (FIG. 12B). Therefore, since the processed groove 15 having a small depth distribution is obtained, the desired groove depth can be accurately controlled by adjusting the laser intensity.
  • FIG. 5 shows an example of a specific configuration of the interference fringe forming unit 26.
  • the interference fringe forming unit 26 includes two beam splitting mirrors 30 and a beam combining mirror 31 that are arranged to face each other, and total reflection mirrors 34, 35, 36, and 37 that return the split light.
  • Incident laser light 32 emitted from the laser oscillator 22 has an energy density distribution indicated by reference numeral 38 and enters the beam splitting mirror 30.
  • the incident laser beam 32 is split into two at the center by the beam splitting mirror 30 to become two split laser beams 32a and 32b. These divided laser beams 32a and 32b cross each other after being folded by total reflection mirrors 34 and 35, respectively. When intersecting, the divided laser beams 32a and 32b interfere with each other.
  • the respective positions are switched.
  • the divided laser beams 32a and 32b are reflected by total reflection mirrors 36 and 37, respectively, and then enter the beam combining mirror 31.
  • the beam combining mirror 31 the divided laser beams 32a and 32b are combined by being superimposed.
  • the emitted laser beam 33 after superposition has an energy density distribution indicated by reference numeral 39 and is applied to the substrate 1.
  • an interference fringe is formed in the emitted laser beam 37.
  • the intensity distribution 39 of the emitted laser light 33 can be made uniform to a desired degree.
  • a similar optical system can be configured by using various prisms in place of the beam splitting mirror, the beam combining mirror, and the total reflection mirror shown in FIG.
  • FIG. 6 shows a method of forming continuous intermediate contact layer separation grooves 15.
  • Each irradiation region 28 is partially overlapped.
  • the horizontal direction in the figure is the direction in which the intermediate contact layer separation groove 28 is formed (scanning direction).
  • the overlapping width B1 of the adjacent irradiation regions 28 is determined so that the processed grooves 15 formed by the bright regions 28a are continuous.
  • the overlap width B1 is determined so that the three processed grooves 15a, 15b, and 15c corresponding to the three distinct regions are continuous.
  • three processed grooves 15a, 15b, and 15c as shown in FIGS. 1 and 2 are formed continuously.
  • the outermost processing grooves 15d and 15e are not continuous in the scanning direction.
  • the overlap width B1 can be adjusted by adjusting the relative moving speed between the substrate 1 and the laser and adjusting the pulse interval of the pulse second laser.
  • Interference fringes are formed in the irradiation region 28 of the picosecond pulse laser, and a plurality of bright regions 28a arranged in parallel in one direction are obtained.
  • the laser intensity distribution in each bright area 28a is relatively smaller than the laser intensity distribution in the entire irradiation area.
  • the groove depth is determined by adjusting the laser intensity for a predetermined bright region in which the laser intensity distribution is relatively small. Thereby, the processing grooves 15a, 15b, and 15c having a desired groove depth can be accurately formed.
  • the intermediate contact layer separation groove 15 is terminated at the middle position of the first photoelectric conversion layer, and is not allowed to reach the transparent electrode 2 connected to the top layer 91. Thereby, even if the recrystallized region 20 (see FIG. 2) is formed in the wall portion forming the intermediate contact layer separation groove 15, the recrystallized region 20 is physically connected to the transparent electrode 2. Therefore, the intermediate contact layer 93 and the transparent electrode 2 are not electrically connected.
  • the end position of the intermediate contact layer separation groove 15 is preferably a position where the recrystallization region 20 does not contact the transparent electrode 2 connected to the top layer 91, and is connected to the intermediate contact layer 93.
  • a depth at least cutting the n layer 91n of the top layer 91 is preferable. Thus, by cutting the n layer, it is possible to avoid the dopant contained in the n layer from entering the recrystallized region 20 and increasing the conductivity of the recrystallized region.
  • the processing widths 15a, 15b, and 15c corresponding to the plurality of bright regions of the interference fringes are made continuous by adjusting the overlap width B1. .
  • the intermediate contact layer 93 can be reliably cut as compared with a processed groove formed by only one bright region.
  • the laser power and the like are adjusted so that the groove depth of the specific processed groove 15a becomes a desired depth. In this case, current leakage from the intermediate contact layer is mainly prevented by the specific processed groove 15a.
  • the pulse second laser of the present embodiment has a pulse width of 10 ps or more and 750 ps or less, heat energy can be given to the top layer 91 at an extremely short time interval. That is, as compared with a conventional pulse laser having a nanosecond pulse width, the thermal diffusion in which the input thermal energy is absorbed and diffused by the thin film can be suppressed, so that the intermediate contact layer separation groove 15 is formed. Sufficient heat energy can be input to the vicinity of the wall portion to use the energy without waste in the groove processing, and the intermediate contact layer separation groove 15 formed at a desired depth can be formed.
  • the present embodiment has been described using a picosecond laser, the present invention is not limited to this, and other lasers may be used as long as a plurality of clear regions 28a can be formed in the irradiation region 28 by interference fringes.
  • a nanosecond laser may be used.
  • the intermediate contact layer 93 has been described as an example of the thin film to be processed, other thin films may be processed on the wing, for example, the top layer 91, the bottom layer 92, the transparent electrode 2, and the back electrode 4.
  • the substrate 1 is moved in the scanning direction T (see FIG. 3) with respect to the picosecond laser.
  • the present invention is not limited to this, and the laser, the thin film to be processed,
  • the laser beam may be scanned in the processing direction after fixing the substrate 1.
  • the third processed groove 15c may be the deepest groove depth.
  • FIG. 7 is a diagram corresponding to FIG. 6 of the first embodiment.
  • the irradiation region 40 has a substantially rectangular shape. Examples of the method of forming the rectangular irradiation region 40 include a method of passing through an opening in which a rectangular hole that drops the periphery of a circular laser cross section is formed, and a method of using a kaleidoscope.
  • one side of the irradiation region 40 is partially overlapped with one side of the adjacent irradiation region 40.
  • the overlapping width B2 of the region 40 can be reduced. Therefore, the amount of movement in the scanning direction can be increased, and consequently the intermediate layer separation step can be shortened.
  • the overlap width B2 ( ⁇ B1) of the irradiation region 40 can be narrowed in the scanning direction, the overlap region where the laser is irradiated a plurality of times is reduced, and the top layer 91 is damaged as much as possible. It can be kept small.
  • a large number of processed grooves that cannot be obtained in the circular irradiation region as in the first embodiment can be continuously formed.
  • the overlap width B2 ′ > B2
  • the number of continuous bright regions 28a can be increased, and the number of processed grooves 15 is increased.
  • the substantially rectangular shape does not mean a rectangular shape in which corners are clearly formed, but the corners may be rounded as shown in FIGS. 7 and 8. Any shape may be used as long as adjacent sides are formed so that the sides overlap each other.
  • FIGS. 9A to 10 a third embodiment of the present invention will be described with reference to FIGS. 9A to 10.
  • This embodiment is different from the first embodiment in that the depth of each processed groove 15 is substantially equal.
  • the processing grooves 15a, 15b, and 15c shown in the first embodiment have different groove depths as shown in FIG. 9A.
  • the groove depths of the processed grooves 15a, 15b, 15c, 15d, and 15e are substantially equal.
  • the laser intensity distribution in the irradiation region may be made uniform.
  • a laser intensity distribution uniforming means 50 that equalizes the intensity distribution of the laser emitted from the picosecond laser oscillator 22 is disposed in front of the total reflection mirror 24.
  • the laser intensity distribution uniformizing means 50 include an optical system that increases the focal length of the objective lens and a homogenizer (a kaleidoscope such as a rod integrator).
  • the laser is irradiated to the intermediate contact layer 93 after the intensity distribution in the laser irradiation region is made uniform, so that the laser intensity of each bright region constituting the interference fringes is made equal. Can do.
  • the groove depth of the processing groove 15 formed by each bright region can be made equal, and highly reliable groove processing can be realized.
  • FIGS. 11A and 11B a fourth embodiment of the present invention will be described with reference to FIGS. 11A and 11B.
  • This embodiment differs from the first embodiment in the intervals of the transparent electrode separation groove 12, the intermediate contact layer separation groove 15, and the connection groove 16.
  • FIG. 11A shows a comparative example in which a predetermined distance is provided between the transparent electrode separation groove 12 and the intermediate contact layer separation groove 15 and between the intermediate contact layer separation groove 15 and the connection groove 16. (For example, about 100 nm) is provided.
  • a cell division groove 18 is formed with a predetermined interval (for example, about 100 nm).
  • a region between the transparent electrode separation groove 12 and the cell division groove 18 is a reactive power generation region N0 that does not contribute to power generation.
  • the transparent electrode separation groove 12 and the intermediate contact layer separation groove 15, and the intermediate contact layer separation groove 15 and the connection groove 16 are adjacent and partially overlap. Like that. Thereby, compared with the comparative example of FIG. 11A, the reactive power generation region N1 can be reduced, and the power generation amount with respect to the power generation area can be improved.
  • the processing groove located outside of the intermediate contact layer separation groove 15 generally has a low energy density during processing (see, for example, FIG. 4B), so that the processing depth becomes shallow and can reach the substrate side electrode. Absent.
  • both the transparent electrode separation groove 12 and the connection groove 16 are partially overlapped with the intermediate contact layer separation groove 15, but even if only one of them is overlapped, the reactive power generation region Can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 加工溝の溝深さを所望値にコントロールすることができる光電変換装置の製造方法を提供する。光電変換装置(10)を構成する中間コンタクト層分離溝(15)に対してピコ秒レーザを照射するとともに、中間コンタクト層分離溝(15)に対してピコ秒レーザを相対移動させて所定の走査方向に加工溝(15)を形成する溝形成工程を有する光電変換装置(10)の製造方法において、溝形成工程は、ピコ秒レーザのビーム径に相当する照射領域内にて一方向に並列に並ぶ干渉縞を形成し、干渉縞が走査方向に接続されるようにピコ秒レーザを相対移動する。

Description

光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置
 本発明は、光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置に関し、特に光電変換装置を構成する薄膜の溝加工に関するものである。
 従来より、薄膜太陽電池(光電変換装置)の光電変換効率を向上させるため、複数の光電変換層を積層した構造が知られている。例えば、アモルファスシリコン層と微結晶シリコン層を積層したタンデム型太陽電池が知られている。このタンデム型太陽電池は、光透過性基板上に、透明電極、アモルファスシリコン層、微結晶シリコン層、及び裏面電極といった薄膜を順次積層することによって形成される。そして、アモルファスシリコン層と微結晶シリコン層との間に、電気的および光学的に接続された中間コンタクト層(薄膜)を設け、入射光の一部を反射させて更に光電変換効率向上を図る技術が知られている。
 このようなタンデム型太陽電池では、複数の光電変換セルを直列接続することによって所望の電圧を得る高電圧化を図っている。複数の光電変換セルを直列接続する際には、アモルファスシリコン層、中間コンタクト層及び微結晶シリコン層を貫通する接続溝を形成し、この接続溝内に裏面電極を充填することによって、裏面電極と透明電極とを電気的に接続する。
 一方、中間コンタクト層は、導電性を有しているため、裏面電極が充填された接続溝と電気的に接続されると、アモルファスシリコン層や微結晶シリコン層で発生した電流が中間コンタクト層を介して接続溝へと漏れてしまう。
 そこで、レーザ加工によって中間コンタクト層を分離することで、中間コンタクト層から接続溝への電流の漏洩を防止する技術が種々提案されている(特許文献1及び2参照)。
特開2002-261308号公報 特開2003-273383号公報
 レーザ加工によって薄膜に一方向に連続した溝を形成するには、例えば、図12Aに示したように、パルスレーザを用いて複数の照射領域14を形成し、隣り合う照射領域14を部分的に重ね合わせて数珠繋ぎのように連続した溝を形成する。照射領域14の直径D0が集光されて膜表面に照射されたビーム径である。同図において、符号B0が隣り合う照射領域14の重ね幅となる。
 しかしながら、レーザにはレーザ径D0に相当する照射領域14内でレーザ強度分布が不可避的に生じる。具体的には、図12Bに示すように、照射領域の中央では強度が最も強く周辺ほど強度が弱くなるガウス分布状のレーザ強度分布となる。したがって、加工溝は、この照射領域14の全体にわたって形成された強度分布に対応した溝深さとなる。つまり、図12Bに示したように、少なくともエネルギー密度差dpに対応する程度の溝深さの分布が生じてしまう。また、透明電極や中間コンタクト層は、反射率、アモルファスシリコン層や結晶質シリコン層での吸収率を向上させるために、凹凸のテクスチャー形状となっている。以上の事情により、所望の溝深さの制御が困難となっていた。したがって、ときには薄膜を十分に切断できない程度に浅い溝となってしまい、ときには必要以上に深く溝を形成してしまうという問題があった。
 また、加工溝は、図12Aに示したように、数珠繋ぎのようになっているので、加工方向(同図において左右方向)に浅い/深いが繰り返し現れる深さ分布が生じてしまうという問題があった。
 なお、同図において、符号L0は、照射領域14が重ね合わされていない領域における加工方向の長さを示す。
 一方、中間コンタクト層を分離する際にレーザを中間コンタクト層およびアモルファスシリコン層に照射すると、レーザの熱エネルギーをアモルファスシリコン層が吸収し、このアモルファスシリコン層が溶融し、中間コンタクト層を伴って飛散し、中間コンタクト層分離溝が形成される。この中間コンタクト層分離溝を形成する際に、中間コンタクト層分離溝を形成する壁部(底壁含む)では、溶融したアモルファスシリコン層が再結晶化する。この再結晶化した領域は、当初のアモルファスシリコンから変質しているため、低抵抗化すると考えられる。このように低抵抗化した再結晶領域は、中間コンタクト層を透明電極と裏面電極の接続部から分離する効果が低く、電流の新たな漏れ経路となり、電池性能の低下を来してしまう。
 したがって、再結晶化領域が電流の漏れ経路となることを防ぐためには、この再結晶化領域の位置を適切にコントロールすることが要求される。つまり、中間コンタクト層分離溝の終端位置(溝深さ)を正確にコントロールすることが必要となる。
 本発明は、このような事情に鑑みてなされたものであって、膜厚方向への漏れ電流を抑制することができる加工溝の構造、また、加工溝の溝深さを所望値にコントロールすることができる光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置を提供することを目的とする。
 上記課題を解決するために、本発明の光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置は以下の手段を採用する。
 すなわち、本発明の一態様にかかる光電変換装置の製造方法は、光電変換装置を構成する薄膜に対してレーザを照射するとともに、該薄膜に対して該レーザを相対移動させて所定の走査方向に加工溝を形成する溝形成工程を有する光電変換装置の製造方法において、前記溝形成工程は、前記レーザのビーム径に相当する照射領域内にて一方向に並列に並ぶ干渉縞を形成し、該干渉縞が前記走査方向に接続されるように前記レーザを相対移動する。
 レーザのビーム径に相当する照射領域内では、本発明のように干渉縞を形成しない場合、その中央では強度がもっとも強く周辺ほど強度が弱くなるレーザ強度分布が生じる。このように照射領域内の全体にわたってレーザ強度分布が生じると、所望の溝深さを実現することが困難となる。
 そこで、上記態様では、照射領域内で干渉縞を形成することとした。この干渉縞は、一方向に並列に並ぶ複数の明領域および暗領域から構成される。この干渉縞を構成する一つの明領域内でのレーザ強度分布は、照射領域全体におけるレーザ強度分布よりも相対的に小さくなる。相対的にレーザ強度分布が小さくなった所定の明領域についてレーザ強度を調整して溝深さを決定し、溝深さ分布の小さい加工溝を形成する。これにより、所望の溝深さを有する溝を正確に形成することができる。
 干渉縞を走査方向に接続することにより、連続した加工溝が形成される。
 レーザとしては、パルスレーザが好適に用いられ、より具体的には、ピコ秒レーザまたはナノ秒レーザが用いられる。
 レーザによって溝形成される薄膜としては、主としてタンデム構造(又はトリプル構造)とされた光電変換装置の中間コンタクト層が挙げられるが、上記態様においてはこれに限定されるものではなく、例えば、アモルファスシリコン層、微結晶シリコン層、透明導電膜、裏面電極等や、モジュール終端部の絶縁溝の溝形成にも用いることができる。
 さらに、本発明一態様にかかる光電変換装置の製造方法は、シリコンを主成分とする第1光電変換層を製膜する第1光電変換層製膜工程と、前記第1光電変換層上に、該第1光電変換層に対して電気的および光学的に接続される中間コンタクト層を製膜する中間コンタクト層製膜工程と、レーザを照射して、前記中間コンタクト層を除去するとともに、前記第1光電変換層まで到達する中間コンタクト層分離溝を形成して該中間コンタクト層を分離する中間コンタクト層分離工程と、前記中間コンタクト層上および前記中間コンタクト層分離溝内に、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層を製膜する第2光電変換層製膜工程とを有し、前記中間コンタクト層分離工程として、前記溝形成工程が行われる。
 上記の溝形成工程によって中間コンタクト層に中間コンタクト層分離溝が形成されるので、所望の深さとされた中間コンタクト層分離溝を得ることができる。これにより、中間コンタクト層の膜面方向に流れる電流経路を確実に切断することができる。
 第1光電変換層としては、好適には、アモルファスシリコン層が用いられ、第2光電変換層としては、微結晶シリコン層が用いられる。中間コンタクト層としては、GZO(GaドープZnO)が好適に用いられる。
 さらに、本発明の一態様にかかる光電変換装置の製造方法では、前記中間コンタクト層分離溝は、前記第1光電変換層の中途位置にて終端している。
 中間コンタクト層分離溝を第1光電変換層の中途位置にて終端させることとし、第1光電変換層に接続する電極(又はトリプル構造の場合は他の中間コンタクト層)まで到達させないこととした。これにより、分離溝を形成する壁部に再結晶化領域が形成されていても、この再結晶化領域が電極(又は他の中簡層)に物理的に接続されることがないので、中間コンタクト層と電極とが電気的に接続されることはない。
 このように、中間コンタクト層分離溝の終端位置は、第1光電変換層に接続する電極(又は他の中間コンタクト層)に再結晶化領域が接触しない位置とされていることが好ましく、中間コンタクト層に接続された第1光電変換層のn層またはp層を少なくとも切断する深さが好ましい。n層またはp層を切断することにより、n層またはp層に含まれるドーパントが再結晶化領域に混入し、再結晶化領域の導電性を増加させることを回避することができる。
 さらに、本発明の一態様にかかる光電変換装置の製造方法では、前記レーザは、パルスレーザとされ、前記溝形成工程は、前記パルスレーザによる複数の前記照射領域を部分的に重ね合わせることによって連続的に前記加工溝を形成する際に、前記干渉縞の複数の明領域が連続するように、隣り合う前記照射領域を重ね合わせる。
 レーザとしてパルスレーザを用いた場合には、パルスレーザの照射領域は断続的に形成されることになる。この断続的に形成される照射領域を部分的に重ねることによって連続した加工溝を形成する。
 隣り合う照射領域を重ね合わせる際に、部分的に重ね合わせる領域を調整することによって複数の明領域が連続するようにする。これにより、複数の明領域が連続した加工溝が形成されるので、1本のみの明領域が形成された加工溝に比べて、薄膜(例えば中間コンタクト層分離溝)の切断を確実に行うことができる。
 重ね合わせる領域の調整は、薄膜とレーザとの相対移動速度の調整や、パルスレーザのパルス間隔を調整することによって実現することができる。
 各明領域の溝深さが異なる場合には、特定の明領域の溝深さが所望深さとなるようにレーザパワー等が調整される。
 本発明における干渉縞の「明領域」とは、干渉縞のうち、レーザ強度が干渉によって強調された領域を意味し、レーザ強度が干渉によって弱められた暗領域の対義語である。
 本発明の一態様にかかる光電変換装置の製造方法では、前記照射領域は、略矩形状とされ、前記溝形成工程は、矩形状とされた前記照射領域の一辺を、隣り合う前記照射領域の一辺と部分的に重ね合わせる。
 略矩形状とされた隣り合う照射領域の一辺同士を重ねあわせるので、円形状とされた照射領域を重ね合わせる場合に比べて、一辺の延在方向にわたる幅広の領域で重ねあわせることができる。これにより、複数の明領域を連続させる際に必要な走査方向の重ね幅を、円形状の照射領域の場合よりも狭くすることができる。したがって、照射領域の重ね幅を狭くした分だけ走査方向の移動量を大きくすることができるので、溝形成工程を短縮化することができる。照射領域の重ね幅が狭いということはレーザが複数回照射される領域を狭くすることになるので、この重ね領域における薄膜の損傷を可及的に小さく抑えることができる。
 照射領域を略矩形状にする方法としては、例えば、円形状のレーザ断面の周囲を落とす矩形穴が形成された開口を通過させる方法や、カレイドスコープ等のビーム断面形状を変形させる光学素子を用いる方法が挙げられる。
 隣り合う略矩形状の照射領域が重なり合う領域の量を調整することにより、円形状の照射領域では得られなかった数の明領域を多く連続して形成することができる。
 略矩形状とは、角部が明瞭に形成された矩形状を意味しているのではなく、角部は丸まっていても良く、要するに、隣り合う照射領域のそれぞれの一辺同士が重なり合うように一辺が形成された形状であれば良い。
 本発明の一態様にかかる光電変換装置の製造方法では、前記レーザの前記照射領域における強度分布を均一化した後に前記薄膜にレーザを照射する。
 レーザの照射領域における強度分布を均一化した後に薄膜にレーザを照射するので、干渉縞を構成する各明領域のレーザ強度を同等とすることができる。これにより、各明領域による溝深さを同等にすることができ、信頼性の高い溝加工を実現することができる。また、所定の明領域のみのレーザ強度が強くなり過度の加工が発生してしまうことを回避できる。
 レーザの照射領域における強度分布を均一化する方法としては、例えば、対物レンズの焦点距離を長くする方法や、ホモジナイザ(ロッドインテグレータ等のカレイドスコープ)等の光学素子を用いる方法が挙げられる。
 本発明の一態様にかかる光電変換装置の製造方法では、前記溝形成工程は、パルス幅が10ps以上750ps以下とされたパルスレーザによって行われる。
 10ps以上750ps以下のパルス幅とされたパルスレーザとされているので、極めて短い時間間隔で熱エネルギーを薄膜(例えば第1光電変換層)に与えることができる。つまり、ナノ秒のパルス幅とされた従来のパルスレーザに比べて、投入された熱エネルギーが薄膜に吸収されて拡散する熱拡散を小さく抑えることができる。このため、加工溝(例えば中間コンタクト層分離溝)を形成する壁部近傍まで十分な熱エネルギーを投入して溝加工に無駄なくエネルギーを用いることができ、加工溝の周縁近傍まで所望深さに形成された加工溝を形成することができる。
 本発明の一態様にかかる光電変換装置の製造方法では、前記第1光電変換層製膜工程の前に、基板上に基板側電極を形成する基板側電極製膜工程と、該基板側電極を除去して基板側電極分離溝を形成する基板側電極分離溝形成工程と、前記第2光電変換層製膜工程の後に、前記第2光電変換層、前記中間コンタクト層および前記第1光電変換層を除去し、裏面電極と前記基板側電極とを電気的に接続する接続溝を形成する接続溝形成工程とを備え、前記中間コンタクト層分離工程は、前記基板側電極分離溝に対して前記中間コンタクト層分離溝が隣接しかつ部分的に重複するように行われ、および/または、前記接続溝形成工程は、前記中間コンタクト層分離溝に対して前記接続溝が隣接しかつ部分的に重複するように行われる。
 基板側電極分離溝(例えば透明導電膜)、中間コンタクト層分離溝および接続溝は、この順番で互いに隣り合う状態で形成される。基板側電極分離溝から中間コンタクト層分離溝を挟んで接続溝までの間(正確には、接続溝のさらに外側に形成される段間分離溝までの距離)は、光電変換装置として発電に寄与しない部分(無効発電領域)となる。上記態様では、中間コンタクト層分離溝と、基板側電極分離溝および/または接続溝とを、隣接させて部分的に重複するようにした。これにより、無効発電領域を狭めることができ、発電面積に対する発電量を向上させることができる。
 上記態様では、中間コンタクト層分離溝が複数形成されるので、中間コンタクト層分離溝が基板側電極分離溝および/または接続溝に部分的に重複していても、中間コンタクト層分離溝の複数の溝のうちの外側に位置する溝が重複するに過ぎず、中央に位置する溝が重複することがないので、中間コンタクト層分離溝としての機能が失われることがない。また、中間コンタクト層分離溝のうち、外側に位置する溝は、一般に加工時のエネルギー密度が小さいので、加工深さが浅くなり、基板側電極まで到達することがない。
 また、本発明の一態様にかかる光電変換装置の製造装置は、光電変換装置を構成する薄膜に対してレーザを照射するレーザ発振器と、前記薄膜に対して前記レーザを相対移動させて所定の走査方向に加工溝を形成する移動手段と、を備えた光電変換装置の製造装置において、前記レーザのビーム径に相当する照射領域内にて一方向に並列に並ぶ干渉縞を形成する干渉縞形成手段を備え、前記移動手段は、前記干渉縞が前記走査方向に接続されるように前記レーザを相対移動させる。
 レーザのビーム径に相当する照射領域内では、その中央では強度がもっとも強く周辺ほど強度が弱くなるレーザ強度分布が生じる。このように照射領域内の全体にわたってレーザ強度分布が生じると、所望の溝深さを実現することが困難となる。
 そこで、上記態様では、干渉縞形成手段によって、照射領域内で干渉縞を形成することとした。この干渉縞は、一方向に並列に並ぶ複数の明領域から構成される。この干渉縞を構成する一つの明領域内でのレーザ強度分布は、照射領域全体におけるレーザ強度分布よりも相対的に小さくなる。相対的にレーザ強度分布が小さくなった所定の明領域についてレーザ強度を調整して溝深さを決定し、溝深さ分布の小さい加工溝を形成する。これにより、所望の溝深さを有する溝を正確に形成することができる。
 そして、移動手段によって、干渉縞が走査方向に接続されるように相対移動させることにより、連続した加工溝を形成する。
 レーザとしては、パルスレーザが好適に用いられ、より具体的には、ピコ秒レーザまたはナノ秒レーザが用いられる。
 レーザによって溝形成される薄膜としては、主としてタンデム構造(又はトリプル構造)とされた光電変換装置の中間コンタクト層が挙げられるが、本発明はこれに限定されるものではなく、例えば、アモルファスシリコン層、微結晶シリコン層、透明導電膜、裏面電極等の溝形成にも用いることができる。
 さらに、本発明の一態様にかかる光電変換装置の製造装置では、前記照射領域の形状を略矩形状とする照射領域形状変更手段を備え、前記移動手段は、該矩形状とされた前記照射領域の一辺を、隣り合う前記照射領域の一辺と部分的に重ね合わせるように、前記レーザを相対移動させる。
 略矩形状とされた隣り合う照射領域の一辺同士を重ねあわせるので、円形状とされた照射領域を重ね合わせる場合に比べて、一辺の延在方向にわたる幅広の領域で重ねあわせることができる。これにより、複数の明領域を連続させる際に必要な走査方向の重ね幅を、円形状の照射領域の場合よりも狭くすることができる。したがって、照射領域の重ね幅を狭くした分だけ走査方向の移動量を大きくすることができるので、溝形成工程を短縮化することができる。照射領域の重ね幅が狭いということはレーザが複数回照射される領域を狭くすることになるので、この重ね領域における薄膜の損傷を可及的に小さく抑えることができる。
 照射領域を略矩形状にする照射領域形状変更手段としては、例えば、円形状のレーザ断面の周囲を落とす矩形穴が形成された開口を通過させる方法や、カレイドスコープ等のビーム断面形状を変形させる光学素子を用いる方法が挙げられる。
 また、移動手段によって、隣り合う略矩形状の照射領域が重なり合う領域を調整することにより、円形状の照射領域では得られなかった数の明領域を多く連続して形成することができる。
 ここで、略矩形状とは、角部が明瞭に形成された矩形状を意味しているのではなく、角部は丸まっていても良く、要するに、隣り合う照射領域のそれぞれの一辺同士が重なり合うように一辺が形成された形状であれば良い。
 本発明の一態様にかかる光電変換装置の製造装置では、前記レーザの前記照射領域における強度分布を均一化するレーザ強度分布均一化手段を備えている。
 レーザ強度分布均一化手段によって、レーザの照射領域における強度分布を均一化する。そして、薄膜にレーザを照射することにより、干渉縞を構成する各明領域のレーザ強度を同等とすることができる。これにより、各明領域による溝深さを同等にすることができ、信頼性の高い溝加工を実現することができる。また、所定の明領域のみのレーザ強度が強くなり過度の加工が発生してしまうことを回避できる。
 レーザ強度分布均一化手段としては、例えば、対物レンズの焦点距離を長くする光学配置や、ホモジナイザ(ロッドインテグレータ等のカレイドスコープ)等の光学素子が挙げられる。
 本発明の一態様にかかる光電変換装置は、複数の薄膜が積層され、いずれかの薄膜にはレーザ照射によって形成された加工溝が一方向に形成された光電変換装置において、前記加工溝は、前記レーザのビーム径に相当する照射領域内にて前記一方向に並列に並ぶ複数の溝とされている。
 レーザのビーム径に相当する照射領域内に、一方向に並列に並ぶ複数の溝を形成することとしたので、薄膜の切断をより確実に行うことができる。
 このような複数の溝は、例えば、照射領域内に干渉縞を形成することによって得ることができる。
 レーザとしては、パルスレーザが好適に用いられ、より具体的には、ピコ秒レーザまたはナノ秒レーザが用いられる。
 レーザによって溝形成される薄膜としては、主としてタンデム構造(又はトリプル構造)とされた光電変換装置の中間コンタクト層が挙げられるが、本発明はこれに限定されるものではなく、例えば、アモルファスシリコン層、微結晶シリコン層、透明導電膜、裏面電極等の溝形成にも用いることができる。
 さらに、本発明の一態様にかかる光電変換装置は、基板と、該基板上に製膜された基板側電極と、該基板側電極を分離する基板側電極分離溝と、該基板側電極上および前記基板側電極分離溝内に製膜されたシリコンを主成分とする第1光電変換層と、該第1光電変換層上に製膜され、該第1光電変換層に対して電気的および光学的に接続された中間コンタクト層と、該中間コンタクト層を分離するとともに、前記基板側電極分離溝に隣り合うように形成された中間コンタクト層分離溝と、前記中間コンタクト層上および前記中間コンタクト層分離溝内に製膜され、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層と、該第2光電変換層、前記中間コンタクト層、および前記第1光電変換層を分離するとともに、前記中間コンタクト層分離溝に隣り合うように形成され、裏面側電極と前記基板側電極とを電気的に接続する接続溝とを有し、前記基板側電極分離溝、前記中間コンタクト層分離溝および前記接続溝がこの順番で並列して形成された光電変換装置において、前記中間コンタクト層分離溝は、前記加工溝とされ、前記中間コンタクト層分離溝は、前記基板側電極分離溝に対して隣接しかつ部分的に重複し、かつ/または、前記中間コンタクト層分離溝は、前記接続溝に対して隣接しかつ部分的に重複する。
 基板側電極分離溝(例えば透明導電膜)、中間コンタクト層分離溝および接続溝は、この順番で互いに隣り合う状態で形成される。基板側電極分離溝から中間コンタクト層分離溝を挟んで接続溝までの間(正確には、接続溝のさらに外側に形成される段間分離溝までの距離)は、光電変換装置として発電に寄与しない部分(無効発電領域)となる。上記態様では、中間コンタクト層分離溝と、基板側電極分離溝および/または接続溝とを、隣接させて部分的に重複するようにした。これにより、無効発電領域を狭めることができ、発電面積に対する発電量を向上させることができる。
 上記態様では、中間コンタクト層分離溝が複数形成されるので、中間コンタクト層分離溝が基板側電極分離溝および/または接続溝に部分的に重複していても、中間コンタクト層分離溝の複数の溝のうちの外側に位置する溝が重複するに過ぎず、中央に位置する溝が重複することがないので、中間コンタクト層分離溝としての機能が失われることがない。また、中間コンタクト層分離溝のうち、外側に位置する溝は、一般に加工時のエネルギー密度が小さいので、加工深さが浅くなり、基板側電極まで到達することがない。
 本発明によれば、以下の効果を奏する。
 照射領域内で干渉縞を形成し、一方向に並列に並ぶ複数の明領域を得ることとした。この干渉縞を構成するそれぞれの明領域内でのレーザ強度分布は、照射領域全体におけるレーザ強度分布よりも相対的に小さくなるので、干渉縞の1つの明瞭域に対する加工溝の溝深さ分布も小さくなる。したがって、所定の明領域についてレーザ強度を調整して溝深さを決定し、溝深さ分布の小さい加工溝を得ることにより、所望の溝深さを有する溝を正確に形成することができる。
 中間コンタクト層を分離する際に、深さ分布の小さい所望深さの分離溝を形成することができるので、中間コンタクト層を確実に切断することができ、中間コンタクト層の切断不良による漏れ電流を低減させることができる。これにより、光電変換装置の性能が向上する。
本発明の第1実施形態にかかるタンデム型太陽電池を示した縦断面図である。 中間コンタクト層分離工程において中間コンタクト層分離溝を形成した状態を示した縦断面図である。 本発明の第1実施形態にかかる太陽電池製造装置の中間コンタクト層分離溝を加工する装置の光学系を示した概略構成図である。 レーザの照射領域であって、干渉縞が形成された状態を示す。 レーザの照射領域であって、干渉縞のレーザ強度分布を示す。 干渉縞形成手段の一例としてのホモジナイザを示した概略構成図である。 連続した中間コンタクト層分離溝を形成する方法を示した説明図である。 本発明の第2実施形態にかかる照射領域を示した平面図である。 図7の変形例を示した平面図である。 加工溝の深さを模式的に示し、第1実施形態に相当する加工溝の深さ分布を示した模式図である。 加工溝の深さを模式的に示し、第3実施形態の加工溝の深さ分布を示した模式図である。 本発明の第3実施形態にかかる太陽電池製造装置の中間コンタクト層分離溝を加工する装置の光学系を示した概略構成図である。 中間コンタクト層分離溝と、隣り合う透明電極分離溝および接続溝との位置関係を示し、比較例である。 中間コンタクト層分離溝と、隣り合う透明電極分離溝および接続溝との位置関係を示し、第4実施形態を示した平面図である。 従来のパルスレーザを用いた場合であって、照射領域の重なり状態を示した平面図である。 従来のパルスレーザを用いた場合であって、パルスレーザのビーム断面におけるエネルギー密度を示したグラフである。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 図1には、タンデム型とされたシリコン系薄膜太陽電池(光電変換装置)の縦断面が示されている。
 太陽電池10は、透光性絶縁基板とされたガラス基板1と、透明電極層2と、トップ層(第1光電変換層)91と、中間コンタクト層93と、ボトム層(第2光電変換層)92と、裏面電極層4とを備えている。本実施形態において、トップ層91は非晶質シリコン系半導体を主として有する光電変換層であり、ボトム層92は結晶質シリコン系半導体を主として有する光電変換層である。
 ここで、「シリコン系」とはシリコン(Si)やシリコンカーバイド(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、「結晶質シリコン系」とは、アモルファスシリコン系すなわち非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
 上記構成の本実施形態の太陽電池10は、以下のように製造される。
 ガラス基板1としては、1m以上の面積を有するソーダフロートガラスが用いられる。1m角以上(具体的には1.4m×1.1m)の大きさとされ、板厚が3.5から4.5mmのものが用いられる。ガラス基板1の端面は、熱応力や衝撃などによる破損防止のために、コーナー面取り加工やR面取り加工が施されていることが好ましい。
 透明電極層2としては、例えば酸化錫膜(SnO)を主成分とする透明電極膜が好適に用いられる。この透明電極膜は、約500nmから800nmの膜厚とされ、熱CVD装置にて約500℃で製膜処理することによって得られる。この製膜処理の際に、透明電極膜の表面には適当な凹凸のあるテクスチャーが形成される。透明電極層2として、透明電極膜と基板1との間にアルカリバリア膜(図示されず)を介在させても良い。アルカリバリア膜は、例えば50nmから150nmの膜厚とされた酸化シリコン膜(SiO)とされ、熱CVD装置にて約500℃で製膜処理することによって得られる。
 その後、ガラス基板1をX-Yテーブルに設置して、YAGレーザの第1高調波(1064nm)を、透明電極層2の膜面側(図において上方側)から照射する。加工速度に対して適切となるようにレーザパワーを調整して、透明電極層2を発電セル5の直列接続方向に対して垂直な方向(図において紙面垂直方向)へ、ガラス基板1とレーザ光を相対移動させて、透明電極分離溝(基板側電極分離溝)12を形成する。これにより、透明電極層2が幅約6mmから15mmの所定幅とされた短冊状にレーザエッチングされる。
 次に、プラズマCVD装置により、減圧雰囲気を30から1000Paとし、基板温度を約200℃とした条件にて、アモルファスシリコン薄膜からなるp層膜/i層膜/n層膜を順次製膜してトップ層91を形成する。トップ層91は、SiHガスとHガスとを主原料としたプロセスガスによって、透明電極層2の上に製膜される。太陽光の入射する側(ガラス基板1側)からp層、i層、n層がこの順で積層される。
 トップ層91は、本実施形態では、アモルファスp層としてBドープしたアモルファスSiCを主とした膜厚10nmから30nm、アモルファスi層としてアモルファスSiを主とした膜厚200nmから350nm、アモルファスn層としてアモルファスSiに微結晶Siを含有するpドープしたSi層を主とした膜厚30nmから50nmから構成されている。また、p層膜とi層膜の間には、界面特性の向上のためにバッファー層を設けても良い。
 次に、中間コンタクト層93としてGZO(GaドープZnO)膜を、トップ層91上に製膜する(中間コンタクト層製膜工程)。GZO(GaドープZnO)膜は、20nmから100nmの膜厚とされ、スパッタリング装置により製膜される。中間コンタクト層93によって、トップ層91とボトム層92との間における接触性を改善するとともに電流整合性を得ることができる。中間コンタクト層93は、半反射膜とされており、ガラス基板1から入射した光の一部を反射させることによってトップ層91における光電変換効率の向上を実現している。
 次に、ガラス基板1をX-Yテーブルに設置して、10psから750psのパルス幅を有するパルスレーザ(以下「ピコ秒パルスレーザ」という。)を、透明電極層2の膜面側(図において上方側)から照射する。このピコ秒パルスレーザによって、透明電極分離溝12と接続溝16との間に中間コンタクト層分離溝15を形成する(中間コンタクト層分離工程)。中間コンタクト層分離溝(加工溝)15は、第1加工溝15aと、この第1加工溝15aの両側に位置する第2加工溝15b及び第3加工溝15cから構成されている。各加工溝15a,15b,15cは、図2に示されているように、トップ層91のアモルファスi層91iにて終端している。
 中間コンタクト層分離溝15によって、中間コンタクト層93の膜面方向に流れる電流を阻止することができる。
 中間コンタクト層分離工程については、後に詳述する。
 次に、中間コンタクト層93の上および中間コンタクト層分離溝15内に、プラズマCVD装置によって、減圧雰囲気を3000Pa以下、基板温度を約200℃、プラズマ発生周波数を40MHzから100MHzとした条件で、微結晶シリコン薄膜からなる微結晶p層膜/微結晶i層膜/微結晶n層膜を順次製膜してボトム層92を形成する(第2光電変換層製膜工程)。
 ボトム層92は、本実施形態では、微結晶p層としてBドープした微結晶SiCを主とした膜厚10nmから50nm、微結晶i層として微結晶Siを主とした膜厚1.2μmから3.0μm、微結晶n層としてpドープした微結晶Siを主とした膜厚20nmから50nmから構成されている。
 微結晶シリコン薄膜、特に微結晶i層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極とガラス基板1の表面との距離dは、3mmから10mmにすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離dを一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。
 次に、ガラス基板1をX-Yテーブルに設置して、レーザダイオード励起YAGレーザの第2高調波(532nm)を、図の矢印に示すように、ボトム層92の膜面側(図において上方側)から照射する。パルス発振:10から20kHzとして加工速度に適切となるようにレーザパワーを調整して、透明電極分離溝12から側方に約50から350μm離間した位置に、接続溝16を形成する。レーザはガラス基板1側から照射しても良く、この場合はトップ層91で吸収されたエネルギーで発生する高い蒸気圧を利用して中間コンタクト層93及びボトム層92をエッチングできるので、更に安定したレーザエッチング加工を行うことが可能となる。レーザエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
 次に、裏面電極層4として、Ag膜/Ti膜をスパッタリング装置により減圧雰囲気、約150から200℃にて順次製膜する。裏面電極層4は、本実施形態では、Ag膜を約150から500nmの膜厚とし、これを保護するものとして防食効果の高いTi膜を10から20nmの膜厚でこの順に積層する。あるいは約25nmから100nmの膜厚を有するAg膜および/またはCu膜と、約15nmから500nmの膜厚を有するAl膜またはTi膜との積層構造としても良い。n層と裏面電極層4との接触抵抗低減と光反射向上を目的として、ボトム層92と裏面電極層4との間にGZO(GaドープZnO)膜を膜厚50から100nmで、スパッタリング装置によって製膜しても良い。
 次に、ガラス基板1をX-Yテーブルに設置して、レーザダイオード励起YAGレーザの第2高調波(532nm)を、ガラス基板1側(図において下方側)から照射する。レーザ光がトップ層91及びボトム層92で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。レーザのパルス発振周波数を1から10kHzとして加工速度が適切となるようにレーザパワーを調整して、透明電極分離溝12から側方に約250から400μm離間した位置に、セル分割溝(段間分離溝)18を形成するようにレーザエッチングする。
 上記工程の後、裏面電極4を覆うように、EVA(エチレン酢酸ビニル共重合体)等の接着充填材シートを介して防水効果の高いバックシートを貼付する工程等を経て、太陽電池が製造される。
 以下に、上述した中間コンタクト層分離工程について詳述する。
 当該工程に用いられるレーザは、10psから750psのパルス幅を有するピコ秒パルスレーザである。具体的には、パルス幅13ps、発振周波数10kHz、ビームスポット径124μmとされたピコ秒パルスレーザ発振器が好適に用いられる。ピコ秒パルスレーザ発振器としては、代表的なものとして、Nd:YVO4レーザ、チタン・サファイアレーザ、ファイバーレーザ等が挙げられる。
 図2に示されているように、中間コンタクト層分離溝15の終端位置(底部)は、トップ層91のi層91i内に位置している。すなわち、中間コンタクト層分離溝15の終端位置は、トップ層91のn層91nおよびp層91p内に位置していない。これにより、万が一、中間コンタクト層分離溝15を形成する壁部(底部を含む)にアモルファスシリコンの再結晶化領域20が形成されたとしても、この再結晶化領域20にn層91nやp層91pのドーパントが拡散されることが防止され、ドーパントによる再結晶化領域20の低抵抗化を回避することができる。再結晶化領域20は、透過型電子顕微鏡等で確認することができる。
 図3には、中間コンタクト層分離溝15を加工する光学系の装置構成が示されている。
 ピコ秒パルスレーザ発振器22とガラス基板1(正確には、トップ層91及び中間コンタクト層93が形成されたガラス基板1)との間には、全反射ミラー24が配置されている。ガラス基板1は、図示しないローラ式/ベルト式コンベア等の移動手段によって矢印T方向に移動させられ、走査方向Tに連続した中間コンタクト層分離溝15が形成されるようになっている。
 ピコ秒パルスレーザ発振器22と全反射ミラー24との間には、干渉縞形成手段26が設けられている。
 干渉縞形成手段26は、レーザのビーム径D1に相当する照射領域28(図4A参照)内にて一方向に並列に並ぶ干渉縞を形成するものである。干渉縞は、明領域28aと暗領域28bとから構成されている。明領域28aは、レーザ強度が干渉によって強調された領域であり、暗領域28bは、レーザ強度が干渉によって弱められた領域である。図4Aに示されているように、1度の照射により干渉縞の明瞭域28aによって、加工溝15a,15b,15c,15d,15eが形成される。加工溝15a,15b,15c,15d,15e間の領域は干渉縞の暗領域28bに対応し、殆ど溝が形成されない。すなわち、図4Bには、干渉縞によって形成される加工深さが示されており、明領域28aに対応する位置では深い加工溝15a,15b,15c,15d,15eとされており、暗領域28bに対応する位置では殆ど加工溝が形成されていないことが示されている。
 それぞれの加工溝15a,15b,15c,15d,15eにおける溝深さ分布は、干渉縞を形成しない場合(図12B)に比べて、比較的小さいものとなる。したがって、深さ分布が小さい加工溝15が得られるので、レーザ強度を調整することによって所望の溝深さの制御が正確にできる。
 図5には、干渉縞形成手段26の具体的構成の一例が示されている。
 干渉縞形成手段26は、対向配置された2つのビーム分割ミラー30及びビーム結合ミラー31と、分割された光を折り返す全反射ミラー34,35,36,37を備えている。レーザ発振器22から出射された入射レーザ光32は、符号38で示したエネルギー密度分布を有してビーム分割ミラー30に入射する。入射レーザ光32は、ビーム分割ミラー30により、その中心で2分割されて2つの分割レーザ光32a,32bとなる。これら分割レーザ光32a,32bは、全反射ミラー34,35でそれぞれが折り返された後に交差する。交差する際に、分割レーザ光32a,32bは互いに干渉する。また、分割レーザ光32a,32bが交差することによって、それぞれの位置が入れ替わる。分割レーザ光32a,32bは、全反射ミラー36,37でそれぞれ折り返された後に、ビーム結合ミラー31へと入射する。ビーム結合ミラー31では、各分割レーザ光32a,32bが重畳することによって合成される。重畳後の出射レーザ光33は、符号39で示したエネルギー密度分布を有して基板1に照射される。以上の通り、分割レーザ光32a,32bが交差する際に干渉するので、出射レーザ光37には、干渉縞が形成される。
 なお、図5に示した光学系を適宜調整することにより、出射レーザ光33の強度分布39を所望の程度にて均一化させることもできる。また、図5に示したビーム分割ミラー及びビーム結合ミラーや全反射ミラーに代えて、各種のプリズムを用いることによって同様の光学系を構成することもできる。
 図6には、連続した中間コンタクト層分離溝15を形成する方法が示されている。
 それぞれの照射領域28が部分的に重ね合わせられている。同図における左右方向は、中間コンタクト層分離溝28の形成方向(走査方向)である。隣り合う照射領域28の重なり幅B1は、明領域28aによって形成された加工溝15が連続するように決定する。同図における実施形態では、3つの明瞭域に対応する3つの加工溝15a,15b,15cが連続するように重なり幅B1が定められている。これにより、図1及び図2に示したような3つの加工溝15a,15b,15cが連続して形成される。なお、図6に示されているように、最も外側に位置する加工溝15d,15eは、走査方向に連続していない。
 重なり幅B1の調整は、基板1とレーザとの相対移動速度の調整や、パルス秒レーザのパルス間隔を調整することによって実現することができる。
 上述した本実施形態によれば、以下の作用効果を奏する。
 ピコ秒パルスレーザの照射領域28内で干渉縞を形成し、一方向に並列に並ぶ複数の明領域28aを得ることとした。それぞれの明領域28a内でのレーザ強度分布は、照射領域全体におけるレーザ強度分布よりも相対的に小さくなる。相対的にレーザ強度分布が小さくなった所定の明領域についてレーザ強度を調整して溝深さを決定する。これにより、所望の溝深さを有する加工溝15a,15b,15cを正確に形成することができる。
 中間コンタクト層分離溝15を第1光電変換層の中途位置にて終端させることとし、トップ層91に接続する透明電極2まで到達させないこととした。これにより、中間コンタクト層分離溝15を形成する壁部に再結晶化領域20(図2参照)が形成されていても、この再結晶化領域20が透明電極2に物理的に接続されることがないので、中間コンタクト層93と透明電極2とが電気的に接続されることはない。
 このように、中間コンタクト層分離溝15の終端位置は、トップ層91に接続する透明電極2に再結晶化領域20が接触しない位置とされていることが好ましく、中間コンタクト層93に接続されたトップ層91のn層91nを少なくとも切断する深さが好ましい。このように、n層を切断することにより、n層に含まれるドーパントが再結晶化領域20に混入し、再結晶化領域の導電性を増加させることを回避することができる。
 ピコ秒パルスレーザの隣り合う照射領域28を部分的に重ね合わせる際に、重ね幅B1を調整することによって干渉縞の複数の明領域に対応する加工溝15a,15b,15cが連続するようにした。これにより、複数の連続した加工溝15a,15b,15cが形成されるので、1本のみの明領域によって形成される加工溝に比べて、中間コンタクト層93の切断を確実に行うことができる。
 各加工溝15a,15b,15cの溝深さが異なる場合には、特定の加工溝15aの溝深さが所望深さとなるようにレーザパワー等が調整される。この場合、特定の加工溝15aによって中間コンタクト層からの電流漏れが主として阻止される。
 本実施形態のパルス秒レーザは、10ps以上750ps以下のパルス幅とされているので、極めて短い時間間隔で熱エネルギーをトップ層91に与えることができる。つまり、ナノ秒のパルス幅とされた従来のパルスレーザに比べて、投入された熱エネルギーが薄膜に吸収されて拡散する熱拡散を小さく抑えることができるので、中間コンタクト層分離溝15を形成する壁部近傍まで十分な熱エネルギーを投入して溝加工に無駄なくエネルギーを用いることができ、所望深さに形成された中間コンタクト層分離溝15を形成することができる。
 中間コンタクト層分離溝15の深さ分布が低減して中間コンタクト層93を確実に切断するとともに、再結晶化領域20による影響を回避することができるので、漏れ電流による性能低下が低減され、電池性能が向上する。
 本実施形態では、ピコ秒レーザを用いて説明したが、本発明はこれに限定されるものではなく、干渉縞によって照射領域28内で複数の明瞭域28aを形成できれば他のレーザを用いてもよく、例えばナノ秒レーザが用いてもよい。
 加工される薄膜として中間コンタクト層93を一例として説明したが、他の薄膜でも翼、例えば、トップ層91、ボトム層92、透明電極2、裏面電極4を加工対象としても良い。
 本実施形態では、ピコ秒レーザに対して基板1を走査方向T(図3参照)に移動させる構成としたが、本発明はこれに限定されるものではなく、レーザと加工対象となる薄膜とが相対的に移動させれば良く、例えば、基板1を固定した上でレーザを加工方向に走査しても良い。
 本実施形態では、中央の第1加工溝15aの溝深さが最も深い場合として説明したが、本発明はこれに限定されるものではなく、光学系を調整して外側の第2加工溝15b又は第3加工溝15cが最も深い溝深さとしても良い。
[第2実施形態]
 次に、本発明の第2実施形態について、図7及び図8を用いて説明する。本実施形態は、第1実施形態に対して、照射領域の形状が異なり、その他の点については同様なので、相違点についてのみ説明し、その他については説明を省略する。
 図7は、第1実施形態の図6に対応する図である。図7に示されているように、照射領域40は、略矩形状とされている。
 矩形状の照射領域40を形成する方法としては、例えば、円形状のレーザ断面の周囲を落とす矩形穴が形成された開口を通過させる方法や、カレイドスコープを用いる方法が挙げられる。
 中間コンタクト層分離溝15を形成する際には、図7に示されているように、照射領域40の一辺を、隣り合う照射領域40の一辺と部分的に重ね合わせる。このように、一辺の延在方向の広い幅C2に渡って重ねあわせることができるので、図6のように円形状とされた照射領域28を重ね合わせる場合(幅C1参照)に比べて、照射領域40の重ね幅B2を狭くすることができる。したがって、走査方向の移動量を大きくすることができ、ひいては中間層分離工程を短縮化することができる。また、照射領域40の重なり幅B2(<B1)を走査方向に狭くできるので、複数回レーザが照射されることになる重なり領域を小さくすることになり、トップ層91の損傷を可及的に小さく抑えることができる。
 また、隣り合う略矩形状の照射領域が重なり合う領域を調整することにより、第1実施形態のような円形状の照射領域では得られなかった数の加工溝を多く連続して形成することができる。具体的には、図8に示したように、重なり幅B2’(>B2)を図7の場合よりも大きくすると、連続する明領域28aの数を多くすることができ、加工溝15の数を増やすことができる。つまり、図7の場合には3本の加工溝15a,15b,15cが連続しているのに対して、図8の場合には5本の加工溝15a,15b,15c,15d,15eを連続させることができる。
 本実施形態において、略矩形状とは、角部が明瞭に形成された矩形状を意味しているのではなく、図7及び図8に示したように角部は丸まっていても良く、要するに、隣り合う照射領域がそれぞれの一辺同士が重なり合うように一辺が形成された形状であれば良い。
[第3実施形態]
 次に、本発明の第3実施形態について、図9Aから図10を用いて説明する。本実施形態は、第1実施形態に対して、それぞれの加工溝15の深さを略均等としている点で異なる。しかし、それ以外の構成については同様であるので、その説明は省略する。
 第1実施形態に示した加工溝15a,15b,15cは、図9Aに示されているように、それぞれ溝深さが異なっている。これに対して、本実施形態では、図9Bに示されているように、加工溝15a,15b,15c,15d,15eの溝深さを略同等としている。
 このように各加工溝15a,15b,15c,15d,15eの溝深さを略均等とするには、照射領域におけるレーザ強度分布を均一化すればよい。具体的には、図10に示されているように、ピコ秒レーザ発振器22から出射されたレーザの強度分布を均一化するレーザ強度分布均一化手段50を全反射ミラー24の手前に配置する。レーザ強度分布均一化手段50としては、対物レンズの焦点距離を長くする光学系や、ホモジナイザ(ロッドインテグレータ等のカレイドスコープ)が挙げられる。
 このように、本実施形態によれば、レーザの照射領域における強度分布を均一化した後に中間コンタクト層93にレーザを照射するので、干渉縞を構成する各明領域のレーザ強度を同等とすることができる。これにより、各明領域によって形成される加工溝15の溝深さを同等にすることができ、信頼性の高い溝加工を実現することができる。
 また、所定の明領域のみのレーザ強度が強くなり(具体的には図9Aの加工溝15a)過度の加工が発生してしまうことを回避できる。
[第4実施形態]
 次に、本発明の第4実施形態について、図11A及び図11Bを用いて説明する。本実施形態は、第1実施形態に対して、透明電極分離溝12、中間コンタクト層分離溝15および接続溝16の間隔が異なる。しかし、それ以外の構成については同様であるので、その説明は省略する。
 図11Aには、比較例が示されており、透明電極分離溝12と中間コンタクト層分離溝15との間、及び、中間コンタクト層分離溝15と接続溝16との間には、所定の間隔(例えば100nm程度)が設けられている。接続溝16の隣には、所定の間隔(例えば100nm程度)を有してセル分割溝18が形成されている。同図の符号N0で示すように、透明電極分離溝12からセル分割溝18までの間の領域は、発電に寄与しない無効発電領域N0となる。
 本実施形態では、図11Bに示されているように、透明電極分離溝12と中間コンタクト層分離溝15、及び、中間コンタクト層分離溝15と接続溝16を、隣接させかつ部分的に重複するようにする。これにより、図11Aの比較例に比べて、無効発電領域N1を小さくすることができ、発電面積に対する発電量を向上させることができる。
 本実施形態では、中間コンタクト層分離溝15として複数の加工溝が形成されるので、中間コンタクト層分離溝15が透明電極分離溝12および接続溝16に部分的に重複していても、外側に位置する加工溝のみが重複するに過ぎず、中央側に位置する加工溝が重複することがないので、中間コンタクト層分離溝としての機能が失われることがない。また、中間コンタクト層分離溝15のうち、外側に位置する加工溝は、一般に加工時のエネルギー密度が小さいので(例えば図4B参照)、加工深さが浅くなり、基板側電極まで到達することがない。
 本実施形態では、中間コンタクト層分離溝15に対して透明電極分離溝12及び接続溝16の両者を部分的に重複させることとしたが、いずれか一方のみを重複させることとしても、無効発電領域を小さくすることができる。
1 ガラス基板
2 透明電極層
4 裏面電極層
5 発電セル
10 太陽電池(光電変換装置)
15 中間コンタクト層分離溝(加工溝)
15a 第1加工溝
15b 第2加工溝
15c 第3加工溝
20 再結晶化領域
22 ピコ秒レーザ発振器
26 干渉縞形成手段
50 レーザ強度分布均一化手段
91 トップ層(第1光電変換層)
92 ボトム層(第2光電変換層)
93 中間コンタクト層

Claims (13)

  1.  光電変換装置を構成する薄膜に対してレーザを照射するとともに、該薄膜に対して該レーザを相対移動させて所定の走査方向に加工溝を形成する溝形成工程を有する光電変換装置の製造方法において、
     前記溝形成工程は、前記レーザのビーム径に相当する照射領域内にて一方向に並列に並ぶ干渉縞を形成し、該干渉縞が前記走査方向に接続されるように前記レーザを相対移動する光電変換装置の製造方法。
  2.  シリコンを主成分とする第1光電変換層を製膜する第1光電変換層製膜工程と、
     前記第1光電変換層上に、該第1光電変換層に対して電気的および光学的に接続される中間コンタクト層を製膜する中間コンタクト層製膜工程と、
     レーザを照射して、前記中間コンタクト層を除去するとともに、前記第1光電変換層まで到達する中間コンタクト層分離溝を形成して該中間コンタクト層を分離する中間コンタクト層分離工程と、
     前記中間コンタクト層上および前記中間コンタクト層分離溝内に、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層を製膜する第2光電変換層製膜工程と、
    を有し、
     前記中間コンタクト層分離工程として、前記溝形成工程が行われる請求項1に記載の光電変換装置の製造方法。
  3.  前記中間コンタクト層分離溝は、前記第1光電変換層の中途位置にて終端している請求項2に記載の光電変換装置の製造方法。
  4.  前記レーザは、パルスレーザとされ、
     前記溝形成工程は、前記パルスレーザによる複数の前記照射領域を部分的に重ね合わせることによって連続的に前記加工溝を形成する際に、前記干渉縞の複数の明領域が連続するように、隣り合う前記照射領域を重ね合わせる請求項1から3のいずれかに記載の光電変換装置の製造方法。
  5.  前記照射領域は、略矩形状とされ、
     前記溝形成工程は、矩形状とされた前記照射領域の一辺を、隣り合う前記照射領域の一辺と部分的に重ね合わせる請求項4に記載の光電変換装置の製造方法。
  6.  前記レーザの前記照射領域における強度分布を均一化した後に前記薄膜にレーザを照射する請求項1から5のいずれかに記載の光電変換装置の製造方法。
  7.  前記溝形成工程は、パルス幅が10ps以上750ps以下とされたパルスレーザによって行われる請求項1から6のいずれかに記載の光電変換装置の製造方法。
  8.  前記第1光電変換層製膜工程の前に、基板上に基板側電極を形成する基板側電極製膜工程と、該基板側電極を除去して基板側電極分離溝を形成する基板側電極分離溝形成工程と、
     前記第2光電変換層製膜工程の後に、前記第2光電変換層、前記中間コンタクト層および前記第1光電変換層を除去し、裏面電極と前記基板側電極とを電気的に接続する接続溝を形成する接続溝形成工程と、を備え、
     前記中間コンタクト層分離工程は、前記基板側電極分離溝に対して前記中間コンタクト層分離溝が隣接しかつ部分的に重複するように行われ、
    および/または、
     前記接続溝形成工程は、前記中間コンタクト層分離溝に対して前記接続溝が隣接しかつ部分的に重複するように行われる請求項2から7のいずれかに記載の光電変換装置の製造方法。
  9.  光電変換装置を構成する薄膜に対してレーザを照射するレーザ発振器と、
     前記薄膜に対して前記レーザを相対移動させて所定の走査方向に加工溝を形成する移動手段と、
    を備えた光電変換装置の製造装置において、
     前記レーザのビーム径に相当する照射領域内にて一方向に並列に並ぶ干渉縞を形成する干渉縞形成手段を備え、
     前記移動手段は、前記干渉縞が前記走査方向に接続されるように前記レーザを相対移動させる光電変換装置の製造装置。
  10.  前記照射領域の形状を略矩形状とする照射領域形状変更手段を備え、
     前記移動手段は、該矩形状とされた前記照射領域の一辺を、隣り合う前記照射領域の一辺と部分的に重ね合わせるように、前記レーザを相対移動させる請求項9に記載の光電変換装置の製造装置。
  11.  前記レーザの前記照射領域における強度分布を均一化するレーザ強度分布均一化手段を備えている請求項9又は10に記載の光電変換装置の製造装置。
  12.  複数の薄膜が積層され、いずれかの薄膜にはレーザ照射によって形成された加工溝が一方向に形成された光電変換装置において、
     前記加工溝は、前記レーザのビーム径に相当する照射領域内にて前記一方向に並列に並ぶ複数の溝とされている光電変換装置。
  13.  基板と、
     該基板上に製膜された基板側電極と、
     該基板側電極を分離する基板側電極分離溝と、
     該基板側電極上および前記基板側電極分離溝内に製膜されたシリコンを主成分とする第1光電変換層と、
     該第1光電変換層上に製膜され、該第1光電変換層に対して電気的および光学的に接続された中間コンタクト層と、
     該中間コンタクト層を分離するとともに、前記基板側電極分離溝に隣り合うように形成された中間コンタクト層分離溝と、
     前記中間コンタクト層上および前記中間コンタクト層分離溝内に製膜され、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層と、
     該第2光電変換層、前記中間コンタクト層、および前記第1光電変換層を分離するとともに、前記中間コンタクト層分離溝に隣り合うように形成され、裏面側電極と前記基板側電極とを電気的に接続する接続溝と、
    を有し、
     前記基板側電極分離溝、前記中間コンタクト層分離溝および前記接続溝がこの順番で並列して形成された光電変換装置において、
     前記中間コンタクト層分離溝は、前記加工溝とされ、
     前記中間コンタクト層分離溝は、前記基板側電極分離溝に対して隣接しかつ部分的に重複し、
    かつ/または、
     前記中間コンタクト層分離溝は、前記接続溝に対して隣接しかつ部分的に重複する光電変換装置。
PCT/JP2009/064745 2009-04-13 2009-08-25 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置 WO2010119581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/131,815 US8692153B2 (en) 2009-04-13 2009-08-25 Method for manufacturing photoelectric-conversion-device, device for photoelectric-conversion-device manufacturing device, and photoelectric conversion device
CN2009801477369A CN102227817A (zh) 2009-04-13 2009-08-25 光电转换装置的制造方法、光电转换装置的制造装置及光电转换装置
EP09843359A EP2421051A1 (en) 2009-04-13 2009-08-25 Photoelectric conversion device manufacturing method, photoelectric conversion device manufacturing device, and photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-097328 2009-04-13
JP2009097328A JP2010251428A (ja) 2009-04-13 2009-04-13 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置

Publications (1)

Publication Number Publication Date
WO2010119581A1 true WO2010119581A1 (ja) 2010-10-21

Family

ID=42982258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064745 WO2010119581A1 (ja) 2009-04-13 2009-08-25 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置

Country Status (6)

Country Link
US (1) US8692153B2 (ja)
EP (1) EP2421051A1 (ja)
JP (1) JP2010251428A (ja)
KR (1) KR20110090933A (ja)
CN (1) CN102227817A (ja)
WO (1) WO2010119581A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649103A (zh) * 2018-05-16 2018-10-12 汪玉洁 一种非晶硅太阳能电池生产工艺

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168428B2 (ja) * 2010-03-18 2013-03-21 富士電機株式会社 薄膜太陽電池の製造方法
DE102012205378A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Verfahren zur Herstellung von Dünnschichtsolarmodulen sowie nach diesem Verfahren erhältliche Dünnschichtsolarmodule
DE102013109480A1 (de) * 2013-08-30 2015-03-05 Hanergy Holding Group Ltd. Verfahren zur Laser-Strukturierung von Dünnschichten auf einem Substrat für die Herstellung monolithisch verschalteter Dünnschichtsolarzellen und Herstellungsverfahren für ein Dünnschichtsolarmodul
US20150372173A1 (en) * 2014-06-24 2015-12-24 University Of Florida Research Foundation, Inc. Graded transparent conducting oxide (g-tco) for thin film solar cells
US20160172243A1 (en) * 2014-12-11 2016-06-16 Nxp B.V. Wafer material removal
CN105990471A (zh) * 2015-02-04 2016-10-05 大族激光科技产业集团股份有限公司 一种hit太阳能电池边缘隔离的方法
KR102497750B1 (ko) * 2017-07-11 2023-02-08 주성엔지니어링(주) 박막형 태양전지
JP6998703B2 (ja) 2017-08-29 2022-02-04 古河電気工業株式会社 透明導電膜付基板の製造方法、透明導電膜付基板及び太陽電池
DE102017216406A1 (de) * 2017-09-15 2019-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laseroptische Anordnung zur Laserinterferenzbearbeitung, insbesondere Laserstrukturierung von Oberflächen
CN107834715A (zh) * 2017-11-02 2018-03-23 浙江工业大学 基于万花筒光束均匀技术的激光无线充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261308A (ja) 2001-03-01 2002-09-13 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2003273383A (ja) 2002-03-15 2003-09-26 Sharp Corp 太陽電池素子およびその製造方法
JP2006080205A (ja) * 2004-09-08 2006-03-23 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法
JP2006110587A (ja) * 2004-10-14 2006-04-27 Canon Inc レーザー干渉加工方法および装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713518A (en) * 1984-06-08 1987-12-15 Semiconductor Energy Laboratory Co., Ltd. Electronic device manufacturing methods
JPS6240986A (ja) * 1985-08-20 1987-02-21 Fuji Electric Corp Res & Dev Ltd レ−ザ−加工方法
JPS63121813A (ja) * 1986-11-11 1988-05-25 Minolta Camera Co Ltd レ−ザ−切断用光学系
US5072091A (en) * 1989-04-03 1991-12-10 The Local Government Of Osaka Prefecture Method and apparatus for metal surface process by laser beam
JPH0727994A (ja) * 1993-07-12 1995-01-31 Toshiba Corp ビーム分布均一化装置
JPH07308788A (ja) * 1994-05-16 1995-11-28 Sanyo Electric Co Ltd 光加工法及び光起電力装置の製造方法
US5880430A (en) * 1995-08-11 1999-03-09 Wein; Joseph H. Method and apparatus for laser engraving
US5864430A (en) * 1996-09-10 1999-01-26 Sandia Corporation Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
JPH10258385A (ja) * 1997-03-14 1998-09-29 Komatsu Ltd レーザ加工機、レーザ加工機の加工方法、及びレーザ加工機用マスク
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
US20050155956A1 (en) * 2002-08-30 2005-07-21 Sumitomo Heavy Industries, Ltd. Laser processing method and processing device
GB2402230B (en) * 2003-05-30 2006-05-03 Xsil Technology Ltd Focusing an optical beam to two foci
JP2005099858A (ja) * 2004-12-06 2005-04-14 Dainippon Printing Co Ltd 回折格子を用いた絵柄体の製造方法
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
US8624157B2 (en) * 2006-05-25 2014-01-07 Electro Scientific Industries, Inc. Ultrashort laser pulse wafer scribing
US7982127B2 (en) * 2006-12-29 2011-07-19 Industrial Technology Research Institute Thin film solar cell module of see-through type
KR101120269B1 (ko) * 2007-08-14 2012-03-06 미츠비시 쥬고교 가부시키가이샤 광전 변환 장치 및 그 제조 방법
TWI378565B (en) * 2008-04-30 2012-12-01 Nexpower Technology Corp Stacked-layered thin film solar cell and manufacturing method thereof
US7999175B2 (en) * 2008-09-09 2011-08-16 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells with laser ablated grooves
JP2010114190A (ja) * 2008-11-05 2010-05-20 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法および光電変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261308A (ja) 2001-03-01 2002-09-13 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2003273383A (ja) 2002-03-15 2003-09-26 Sharp Corp 太陽電池素子およびその製造方法
JP2006080205A (ja) * 2004-09-08 2006-03-23 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法
JP2006110587A (ja) * 2004-10-14 2006-04-27 Canon Inc レーザー干渉加工方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649103A (zh) * 2018-05-16 2018-10-12 汪玉洁 一种非晶硅太阳能电池生产工艺

Also Published As

Publication number Publication date
CN102227817A (zh) 2011-10-26
US20110226748A1 (en) 2011-09-22
US8692153B2 (en) 2014-04-08
JP2010251428A (ja) 2010-11-04
KR20110090933A (ko) 2011-08-10
EP2421051A1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2010119581A1 (ja) 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置
US6168968B1 (en) Method of fabricating integrated thin film solar cells
JP4648105B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
US20050272175A1 (en) Laser structuring for manufacture of thin film silicon solar cells
JP5459901B2 (ja) 光電変換装置モジュールの作製方法
EP3185307B1 (en) Solar cell and method of manufacturing the same
EP0827212B1 (en) Method of fabricating integrated thin film solar cells
JP5180781B2 (ja) 光電変換装置の製造方法および光電変換装置
US8835253B2 (en) Photoelectric conversion device fabrication method and photoelectric conversion device
JP2011056514A (ja) 光電変換素子の製造方法
JP2007184421A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
KR20180076197A (ko) 태양 전지 및 이의 제조 방법
JP3655025B2 (ja) 薄膜光電変換装置およびその製造方法
JP7349509B2 (ja) 太陽電池の製造方法
WO2013051323A1 (ja) 太陽電池素子およびその製造方法
JP2012038902A (ja) 集積型光電変換装置の製造方法
JP4786010B2 (ja) 集積型ハイブリッド薄膜太陽電池の製造方法
JP5111450B2 (ja) 薄膜太陽電池およびその製造方法
JP2009094272A (ja) 光電変換モジュールおよび光電変換モジュールの製造方法
JP2011138951A (ja) 薄膜太陽電池およびその製造方法
WO2012147200A1 (ja) レーザ加工装置及び方法
JP2006019715A (ja) 太陽電池及び太陽電池の製造方法
JP2013105850A (ja) 太陽電池セルの製造方法
JP2014086509A (ja) 太陽電池、電極付き基板、太陽電池の製造方法
JP2014194977A (ja) 結晶シリコン系太陽電池およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147736.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011282

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13131815

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009843359

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE