WO2010116756A1 - 熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体 - Google Patents

熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体 Download PDF

Info

Publication number
WO2010116756A1
WO2010116756A1 PCT/JP2010/002596 JP2010002596W WO2010116756A1 WO 2010116756 A1 WO2010116756 A1 WO 2010116756A1 JP 2010002596 W JP2010002596 W JP 2010002596W WO 2010116756 A1 WO2010116756 A1 WO 2010116756A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
polymer
mass
additive
alkyl methacrylate
Prior art date
Application number
PCT/JP2010/002596
Other languages
English (en)
French (fr)
Inventor
木浦正明
笠井俊宏
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020117025502A priority Critical patent/KR101385375B1/ko
Priority to JP2010517218A priority patent/JP5668474B2/ja
Priority to US13/262,986 priority patent/US8765866B2/en
Priority to EP10761459.6A priority patent/EP2418245B1/en
Priority to CN201080021346.XA priority patent/CN102428141B/zh
Publication of WO2010116756A1 publication Critical patent/WO2010116756A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine

Definitions

  • the present invention relates to an additive for a thermoplastic resin containing a tetrafluoroethylene polymer and an alkyl methacrylate polymer, a method for producing the additive for a thermoplastic resin, a thermoplastic resin, and a heat containing the additive for a thermoplastic resin.
  • the present invention relates to a plastic resin composition and a molded body obtained by molding the thermoplastic resin composition.
  • Tetrafluoroethylene polymer is highly crystalline and has low intermolecular force, so it has the property of fiberizing with a slight stress. When blended with a thermoplastic resin, the tetrafluoroethylene polymer fiberizes. Accordingly, it is known that molding processability, mechanical properties, and dripping prevention properties are improved.
  • Patent Documents 1 and 2 propose a thermoplastic resin composition in which a tetrafluoroethylene-based polymer is blended with a thermoplastic resin.
  • Patent Document 3 proposes a thermoplastic resin composition in which a thermoplastic resin modifier containing a copolymer of methyl methacrylate and dodecyl methacrylate and a tetrafluoroethylene-based polymer is blended with a thermoplastic resin.
  • Patent Document 4 proposes a thermoplastic resin composition in which a thermoplastic resin modifier containing a polymer having a methyl methacrylate unit as a main component and a tetrafluoroethylene-based polymer is blended with a thermoplastic resin. Yes.
  • thermoplastic resin compositions described in Patent Documents 1 and 2 are produced by directly blending a tetrafluoroethylene polymer with a thermoplastic resin, the tetrafluoroethylene polymer in the thermoplastic resin is not produced. It has problems that it is inferior in dispersibility, inferior in the surface appearance of the resulting molded article, and inferior in flame retardancy of the obtained molded article.
  • thermoplastic resin composition of patent document 3 is a methyl methacrylate which is an alkyl methacrylate which has a C1-C1 alkyl group, and a dodecyl which is an alkyl methacrylate which has a C12 alkyl group.
  • thermoplastic resin composition described in Patent Document 4 As in Patent Document 3, a polymer mainly composed of a methyl methacrylate unit which is an alkyl methacrylate unit having an alkyl group having 1 carbon atom is added for the thermoplastic resin.
  • the dispersibility of the tetrafluoroethylene polymer in the thermoplastic resin is not sufficient, the surface appearance of the resulting molded product is inferior, and the flame resistance of the resulting molded product is inferior Inferior.
  • This invention is providing the additive for thermoplastic resins which is excellent in the moldability of the thermoplastic resin composition obtained, and is excellent in the surface external appearance and flame retardance of the molded object obtained.
  • the present invention relates to an additive for a thermoplastic resin comprising a tetrafluoroethylene polymer (A) and an alkyl methacrylate polymer (B) containing 50% by mass or more of an alkyl methacrylate unit having an alkyl group having 2 to 6 carbon atoms. is there.
  • this invention is a thermoplastic resin composition containing a thermoplastic resin and the said additive for thermoplastic resins.
  • this invention is a molded object obtained by shape
  • the present invention pulverizes a latex containing a tetrafluoroethylene polymer (A) and an alkyl methacrylate polymer (B) containing 50% by mass or more of an alkyl methacrylate unit having an alkyl group having 2 to 6 carbon atoms.
  • This is a method for producing an additive for thermoplastic resin.
  • thermoplastic resin additive of the present invention By using the thermoplastic resin additive of the present invention, the dispersibility of the tetrafluoroethylene-based polymer in the thermoplastic resin can be increased, and a molded article having excellent surface appearance and flame retardancy can be obtained. Moreover, the thermoplastic resin composition which is excellent in molding processability is obtained by using the additive for thermoplastic resins of the present invention.
  • the additive for thermoplastic resin of the present invention contains a tetrafluoroethylene polymer (A).
  • the tetrafluoroethylene polymer (A) of the present invention can be obtained by polymerizing a monomer component (a) containing tetrafluoroethylene (a1).
  • the monomer component (a) may contain other monomer (a2) copolymerizable with tetrafluoroethylene (a1) as long as the properties as a tetrafluoroethylene polymer are not impaired.
  • the other monomer (a2) include hexafluoropropylene, chlorotrifluoroethylene, fluoroalkylethylene, and perfluoroalkyl vinyl ether. These other monomers (a2) may be used alone or in combination of two or more.
  • the content of tetrafluoroethylene (a1) is 100% by mass in the monomer component (a). It is preferable that the content of the other monomer (a2) is 20% by mass or less, the tetrafluoroethylene (a1) is 90% by mass or more, and the other monomer (a2) is 10% by mass. % Or less is more preferable.
  • the polymerization method of the monomer component (a) is not particularly limited, and a known polymerization method may be mentioned.
  • the mass average molecular weight of the tetrafluoroethylene polymer (A) of the present invention is preferably 1 million to 50 million, more preferably 3 million to 30 million.
  • the mass average molecular weight of the tetrafluoroethylene polymer (A) is 1,000,000 or more, the molding processability of the resulting thermoplastic resin composition is excellent.
  • the mass average molecular weight of the tetrafluoroethylene polymer (A) is 50 million or less, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the surface of the resulting molded body Excellent appearance and flame retardancy.
  • the mass average particle diameter of the tetrafluoroethylene polymer (A) of the present invention is preferably 50 to 1000 nm, more preferably 50 to 500 nm.
  • the mass average particle diameter of the tetrafluoroethylene polymer (A) is 50 nm or more, the melt tension of the resulting thermoplastic resin composition is improved, and the moldability is excellent.
  • the tetrafluoroethylene polymer (A) has a mass average particle diameter of 1000 nm or less, high latex stability of the tetrafluoroethylene polymer (A) is obtained, and the tetrafluoroethylene polymer (A) is obtained.
  • the agglomerate formation is suppressed, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the surface appearance and flame retardancy of the resulting molded product are excellent.
  • Latexes of the tetrafluoroethylene polymer (A) of the present invention include, for example, “Fluon AD911L”, “Fullon AD912L”, “Fullon AD915L”, “Fullon AD938L”, “Fullon AD939L”, “Fullon AD939E”. (Trade name, manufactured by Asahi Glass Co., Ltd.). These latexes of tetrafluoroethylene polymer (A) may be used alone or in combination of two or more.
  • the additive for thermoplastic resins of the present invention contains an alkyl methacrylate polymer (B) containing 50% by mass or more of an alkyl methacrylate unit having an alkyl group having 2 to 6 carbon atoms.
  • the content of the alkyl methacrylate unit having an alkyl group having 2 to 6 carbon atoms in the alkyl methacrylate polymer (B) is 50% by mass or more in 100% by mass of the alkyl methacrylate polymer, and 70% by mass or more. Preferably, it is 80% by mass or more, and more preferably 90% by mass or more.
  • the tetrafluoroethylene polymer (A) in the thermoplastic resin It is excellent in the dispersibility of the resin, and is excellent in the surface appearance and flame retardancy of the resulting molded product.
  • the alkyl methacrylate polymer (B) containing 50% by mass or more of an alkyl methacrylate unit having an alkyl group having 2 to 6 carbon atoms of the present invention is 50% by mass of an alkyl methacrylate (b1) having an alkyl group having 2 to 6 carbon atoms. It is obtained by polymerizing the monomer component (b) containing at least%.
  • alkyl methacrylate (b1) having an alkyl group having 2 to 6 carbon atoms examples include ethyl methacrylate having 2 carbon atoms; n-propyl methacrylate having 3 carbon atoms; i-propyl methacrylate; n-butyl methacrylate having 4 carbon atoms; i-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate; n-pentyl methacrylate having 5 carbon atoms, 1-methylbutyl methacrylate, 2-methylbutyl methacrylate, 3-methylbutyl methacrylate, dimethylpropyl methacrylate, 3-pentyl methacrylate Cyclopentyl methacrylate; n-hexyl methacrylate having 6 carbon atoms, methyl pentyl methacrylate, dimethyl butyl methacrylate, ethyl butyl methacrylate, trimethyl propy
  • alkyl methacrylates (b1) having an alkyl group having 2 to 6 carbon atoms may be used alone or in combination of two or more.
  • the carbon number of the alkyl group of the alkyl methacrylate (b1) is 2 or more, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the molding appearance and flame retardancy of the resulting molded article Excellent.
  • the alkyl group of the alkyl methacrylate (b1) has 6 or less carbon atoms, the alkyl methacrylate polymer (B) has a sufficient glass transition temperature, and the resulting thermoplastic resin additive is handled as a powder. Property is improved.
  • alkyl methacrylates (b1) the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and since the surface appearance and flame retardancy of the resulting molded product are excellent, the alkyl methacrylate ( b-) n-butyl methacrylate, i-butyl methacrylate, sec-butyl methacrylate and t-butyl methacrylate having an alkyl group with 4 carbon atoms are preferred, and the resulting thermoplastic resin additive has excellent powder handling properties.
  • i-butyl methacrylate, t-butyl methacrylate, and sec-butyl methacrylate in which the alkyl group has a branched structure are more preferable.
  • the resulting molded article has excellent surface appearance and flame retardancy. preferable.
  • the monomer component (b) containing the alkyl methacrylate (b1) is a monomer that can be copolymerized with the alkyl methacrylate (b1) as long as the dispersibility of the tetrafluoroethylene polymer (A) is not impaired.
  • b2) may be included.
  • Examples of the other monomer (b2) include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, and chlorostyrene; methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, i-butyl Alkyl acrylates such as acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, stearyl acrylate; methyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate Alkyl methacrylates having an alkyl group having 2 to 6 carbon atoms, such as stearyl methacrylate; phenyl (meth) acrylate
  • alkyl acrylates such as methyl acrylate, ethyl acrylate and n-butyl acrylate are preferably used from the viewpoint of suppressing thermal decomposition of the alkyl methacrylate polymer (B).
  • These other monomers (b2) may be used individually by 1 type, and may use 2 or more types together.
  • “(meth) acrylate” means “acrylate” or “methacrylate”.
  • the composition ratio of the monomer component (b) is such that the content of the alkyl methacrylate (b1) is 50% by mass or more and the content of the other monomer (b2) is 100% by mass of the monomer component (b). It is preferably 50% by mass or less, the content of the alkyl methacrylate (b1) is preferably 70% by mass or more, and the content of the other monomer (b2) is preferably 30% by mass or less, and the content of the alkyl methacrylate (b1) More preferably, the content of the other monomer (b2) is 20% by mass or less, and the content of the alkyl methacrylate (b1) is 90% by mass or more. More preferably, the content of b2) is 10% by mass or less.
  • the content of the alkyl methacrylate (b1) is 50% by mass or more, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the surface appearance and flame retardancy of the resulting molded product are excellent. Excellent.
  • the content of the other monomer (b2) is 50% by mass or less, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the surface appearance and difficulty of the resulting molded product Excellent flammability.
  • alkyl acrylates such as methyl acrylate, ethyl acrylate and n-butyl acrylate as the other monomer (b2)
  • thermal decomposition of the alkyl methacrylate polymer (B) is suppressed.
  • the composition ratio of the monomer component (b) is such that the content of the alkyl methacrylate (b1) is 50 to 50% in 100% by mass of the monomer component (b).
  • the content of 99.9% by mass the content of the alkyl acrylate is 0.1 to 50% by mass
  • the content of the other monomer (b2) other than the alkyl acrylate is 49.9% by mass or less.
  • the content of (b1) is 70 to 99.8% by mass, the content of alkyl acrylate is 0.2 to 30% by mass, and the content of other monomers (b2) other than alkyl acrylate is 29.8% by mass.
  • the content of alkyl methacrylate (b1) is preferably 80 to 99.7% by mass, the content of alkyl acrylate is 0.3 to 20% by mass,
  • the content of other monomers (b2) other than the rate is more preferably 19.7% by mass or less
  • the content of the alkyl methacrylate (b1) is 90 to 99.5% by mass
  • the content of the alkyl methacrylate (b1) is 50% by mass or more, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the surface appearance and flame retardancy of the resulting molded product are excellent. Excellent. Moreover, thermal decomposition of the alkyl methacrylate polymer (B) is suppressed when the content of the alkyl methacrylate (b1) is 99.9% by mass or less. When the content of the alkyl acrylate is 0.1% by mass or more, the thermal decomposition of the alkyl methacrylate polymer (B) is suppressed.
  • the alkyl acrylate content is 50% by mass or less, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the surface appearance and flame retardancy of the resulting molded product are excellent.
  • the content of the other monomer (b2) other than the alkyl acrylate is 49.9% by mass or less, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the obtained molding The surface appearance and flame retardancy of the body are excellent, and the thermal decomposition of the alkyl methacrylate polymer (B) is suppressed.
  • a known polymerization method can be used, and examples thereof include emulsion polymerization, soap-free emulsion polymerization, fine suspension polymerization, suspension polymerization, bulk polymerization, and solution polymerization.
  • emulsion polymerization and soap-free emulsion polymerization are preferable, and emulsion polymerization is more preferable because the tetrafluoroethylene polymer (A) and the alkyl methacrylate polymer (B) can be easily mixed.
  • the particle structure may be a single layer structure or a multilayer structure. From the viewpoint of production cost, it is preferably 3 layers or less.
  • emulsifiers can be used as the emulsifier in the emulsion polymerization, and examples thereof include an anionic emulsifier, a nonionic emulsifier, a polymer emulsifier, a reactive anionic emulsifier, and a reactive nonionic emulsifier.
  • anionic emulsifier examples include “New Coal 560SF”, “Same 562SF”, “Same 707SF”, “Same 707SN”, “Same 714SF”, “Same 723SF”, “Same 740SF”, “Same 2308SF”, “ “Same 2320SN”, “Same 1305SN”, “Same 271A”, “Same 271NH”, “Same 210", “Same 220", “Same RA331”, “Same RA332” (trade name, manufactured by Nippon Emulsifier Co., Ltd.); “Latemul B-118E”, “Lebenol WZ”, “Neopelex G15” (trade name, manufactured by Kao Corporation); “Hitenol N08” (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • nonionic emulsifier examples include “Nonipol 200” and “New Pole PE-68” (trade names, manufactured by Sanyo Chemical Industries, Ltd.).
  • polymer emulsifier examples include polyvinyl alcohol, polyhydroxyethyl (meth) acrylate, polyhydroxypropyl (meth) acrylate, and polyvinylpyrrolidone.
  • Examples of the reactive anionic emulsifier include “Antox MS-60” and “MS-2N” (trade name, manufactured by Nippon Emulsifier Co., Ltd.); “Eleminol JS-2” (trade name, Sanyo Chemical Industries, Ltd.) "Latemul S-120", “S-180", “S-180A”, “PD-104" (trade name, manufactured by Kao Corporation); “Adekaria Soap SR-10" "SE-10” (trade name, manufactured by ADEKA Corporation); “Aqualon KH-05", “KH-10", “HS-10” (trade name, Daiichi Kogyo Seiyaku Co., Ltd.) Is mentioned.
  • emulsifiers may be used alone or in combination of two or more.
  • a known polymerization initiator can be used as the polymerization initiator in the polymerization of the monomer component (b).
  • a persulfate compound such as potassium persulfate, sodium persulfate, ammonium persulfate; azobisisobutyronitrile 2,2′-azobis- (2-methylbutyronitrile), 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2,4- Oil-soluble azo compounds such as dimethylvaleronitrile), 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile; 2,2′-azobis- ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) ) -2-Hydroxyethyl] propionamide ⁇ , 2,2′-azobis- ⁇ 2-methyl-N- [2- (1-hydroxyethyl)] propionamide ⁇ , 2,2′-a Bis- ⁇ 2-methyl-N-
  • a reducing agent such as sodium bisulfite, ferrous sulfate or ascorbate is combined with the persulfate compound or the organic peroxide. It can also be used.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the mass average molecular weight of the alkyl methacrylate polymer (B) of the present invention is preferably 5,000 to 5,000,000, more preferably 7,000 to 1,000,000, still more preferably 8,000 to 200,000. Most preferably, it is 10,000 to 50,000.
  • the alkyl methacrylate polymer (B) has a mass average molecular weight of 5000 or more, the alkyl methacrylate polymer (B) has a sufficient glass transition temperature, and the resulting powder handling property of the additive for thermoplastic resin Becomes better.
  • the mass average molecular weight of the alkyl methacrylate polymer (B) is 5 million or less, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the surface appearance of the resulting molded product Excellent flame retardancy.
  • Examples of the method for adjusting the mass average molecular weight include known methods, such as a method for adjusting the amount of polymerization initiator and the amount of chain transfer agent.
  • chain transfer agent known chain transfer agents can be used, for example, n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan, n-butyl mercaptan, etc.
  • Mercaptan halogen compounds such as carbon tetrachloride and ethylene bromide
  • ⁇ -methylstyrene dimer may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the chain transfer agent used is not particularly limited, and may be appropriately set according to the type of chain transfer agent used and the composition of the monomer component (b).
  • the mass average particle diameter of the alkyl methacrylate polymer (B) of the present invention is preferably 30 to 1000 nm, more preferably 30 to 500 nm, still more preferably 30 to 300 nm, and more preferably 30 to 100 nm. Most preferably.
  • the mass average particle diameter of the alkyl methacrylate polymer (B) is 30 nm or more, it can be produced by emulsion polymerization.
  • the mass average particle diameter of the alkyl methacrylate polymer (B) is 1000 nm or less, the tetrafluoroethylene polymer (A) particles can be highly coated with the alkyl methacrylate polymer (B) particles.
  • the alkyl methacrylate polymer (B) of the present invention may be used alone or in combination of two or more polymers having different compositions, molecular weights, particle sizes and the like.
  • the additive for thermoplastic resin of the present invention contains a tetrafluoroethylene polymer (A) and an alkyl methacrylate polymer (B).
  • the composition ratio of the thermoplastic resin additive is such that the content of the tetrafluoroethylene polymer (A) is 1 to 75 mass% and the alkyl methacrylate polymer (B) is 100 mass% of the thermoplastic resin additive.
  • the content is preferably 25 to 99% by mass.
  • the content in the tetrafluoroethylene polymer (A) is 1% by mass or more, the obtained molded article is excellent in flame retardancy, the melt tension of the resulting thermoplastic resin composition is improved, and molding processability is improved. Excellent.
  • the content in the tetrafluoroethylene polymer (A) is 75% by mass or less, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the resulting molded article Excellent surface appearance and does not reduce flame retardancy.
  • the content of the alkyl methacrylate polymer (B) is 25% by mass or more, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the surface appearance of the resulting molded article is excellent. Does not reduce flame retardancy.
  • the content of the alkyl methacrylate polymer (B) is 99% by mass or less, the molded article obtained is excellent in flame retardancy, the melt tension of the obtained thermoplastic resin composition is improved, and molding processability is improved. Excellent.
  • thermoplastic resin additive of the present invention is preferably used for obtaining a molded article excellent in surface appearance and in a case where it is used for obtaining a molded article excellent in flame retardancy.
  • the composition ratio is different.
  • the composition ratio of the additive for thermoplastic resin when used for obtaining a molded article having an excellent surface appearance is such that the content of the tetrafluoroethylene polymer (A) is 1 to 100% by mass in the additive for thermoplastic resin. It is preferable that the content of the alkyl methacrylate polymer (B) is 60 to 99% by mass and 40 to 99% by mass.
  • the content in the tetrafluoroethylene-based polymer (A) is 1% by mass or more, the melt tension of the resulting thermoplastic resin composition is improved and the moldability is excellent.
  • the content in the tetrafluoroethylene polymer (A) is 60% by mass or less, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the resulting molded article Excellent surface appearance.
  • the content of the alkyl methacrylate polymer (B) is 40% by mass or more, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the surface appearance of the resulting molded article is excellent.
  • the content of the alkyl methacrylate polymer (B) is 99% by mass or less, the melt tension of the resulting thermoplastic resin composition is improved, and the moldability is excellent.
  • the composition ratio of the additive for thermoplastic resin when used to obtain a molded article excellent in flame retardancy is such that the content of the tetrafluoroethylene polymer (A) is 15 in 100% by mass of the additive for thermoplastic resin. It is preferable that the content of the alkyl methacrylate polymer (B) is 25 to 85% by mass. When the content in the tetrafluoroethylene-based polymer (A) is 15% by mass or more, the resulting molded article is excellent in flame retardancy.
  • the content in the tetrafluoroethylene polymer (A) is 75% by mass or less, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the resulting molded article Does not reduce flame retardancy.
  • the content of the alkyl methacrylate polymer (B) is 25% by mass or more, the dispersibility of the tetrafluoroethylene polymer (A) in the thermoplastic resin is excellent, and the flame retardancy of the resulting molded product is excellent. Do not decrease.
  • the composition ratio of the additive for thermoplastic resin when used to obtain a molded article having excellent surface appearance and excellent flame retardancy is such that the content of the tetrafluoroethylene polymer (A) is 15 to 60% by mass.
  • the content of the alkyl methacrylate polymer (B) is preferably 40 to 85% by mass, the content of the tetrafluoroethylene polymer (A) is 20 to 55% by mass, and the alkyl methacrylate polymer (B ) Is preferably 45 to 80% by mass.
  • the content in the tetrafluoroethylene-based polymer (A) is 15% by mass or more, the resulting molded article is excellent in flame retardancy.
  • the surface appearance of the molded object obtained as the content rate in a tetrafluoroethylene type polymer (A) is 60 mass% or less.
  • the content of the alkyl methacrylate polymer (B) is 40% by mass or more, the surface appearance of the obtained molded article is excellent.
  • it is excellent in the flame retardance of the molded object obtained as the content rate of an alkylmethacrylate type polymer (B) is 85 mass% or less.
  • the method for mixing the tetrafluoroethylene polymer (A) and the alkyl methacrylate polymer (B) is, for example, mixing a latex of the tetrafluoroethylene polymer (A) and a latex of the alkyl methacrylate polymer (B).
  • examples thereof include a latex blend method and a polymerization method in the presence of polymerizing the monomer component (b) in the presence of the tetrafluoroethylene-based polymer (A).
  • the latex blending method has a low thermal history to the tetrafluoroethylene-based polymer (A), suppresses aggregation of the tetrafluoroethylene-based polymer particles, and is excellent in the surface appearance of the resulting molded product. preferable.
  • the method of pulverizing the resin solid content from the latex of the thermoplastic resin additive obtained by the latex blend method and the polymerization method in the presence is not particularly limited, and may be a known method. Among these methods, since aggregation of the tetrafluoroethylene-based polymer (A) is suppressed, a coagulation method and a spray drying method are preferable, and a coagulation method is more preferable.
  • Examples of the coagulation method include a method of bringing a latex of an additive for thermoplastic resin into contact with the coagulant at 30 to 90 ° C., coagulating with stirring to form a slurry, and dehydrating and drying.
  • Examples of the coagulant include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as formic acid and acetic acid; and inorganic salts such as aluminum sulfate, magnesium sulfate, calcium acetate, and calcium sulfate.
  • thermoplastic resin composition of the present invention contains a thermoplastic resin and the additive for a thermoplastic resin of the present invention.
  • thermoplastic resin of the present invention examples include polyolefin resins, polyvinyl chloride resins, polyester resins, polycarbonate resins, acrylic resins, polystyrene resins, and polyamide resins.
  • thermoplastic elastomers such as a polyolefin-type elastomer and a styrene-type elastomer, are also mentioned. These thermoplastic resins may be used alone or in combination of two or more.
  • polyolefin resins and thermoplastic elastomers are preferred because they are excellent in the effect of improving the melt tension of the obtained thermoplastic resin composition and the effect of improving the flame retardancy of the obtained molded product.
  • the polyolefin resin of the present invention is a homopolymer of an olefin monomer or a copolymer of a monomer mixture mainly composed of olefins.
  • the olefin monomer include ethylene, propylene, 1-butene, 1-hexene, 1-decene, 1-octene, and 4-methyl-1-pentene.
  • polystyrene resin examples include low density polyethylene, high density polyethylene, polypropylene, ethylene / propylene copolymer, polymethylpentene, polybutene, and mixed resins of the above resins.
  • polyolefin resin examples include polyolefin elastomers such as ethylene elastomer and propylene elastomer. These polyolefin resins may be used alone or in combination of two or more.
  • polystyrene-based resins low-density polyethylene, high-density polyethylene, polypropylene, ethylene / propylene copolymer, polyolefin-based elastomers are preferred because they are excellent in the effect of improving the melt tension of the obtained thermoplastic resin composition.
  • a polyolefin-based elastomer is more preferable.
  • the melt flow rate is preferably from 0.1 to 70 g / 10 min, and the melt flow rate is more preferably from 0.2 to 35 g / 10 min.
  • the melt flow rate of the polyolefin resin is 0.1 g / 10 min or more, the molding processability of the resulting thermoplastic resin composition is excellent.
  • the melt flow rate is measured according to ASTM D1238. Specifically, under the condition of a load of 2.16 kg, the temperature specified according to the type of the thermoplastic resin, for example, 190 ° C. for the polyethylene resin and 230 ° C. for the polypropylene resin, the thermoplastic resin Is measured in a molten state.
  • the composition ratio of the thermoplastic resin composition of the present invention is preferably such that the compounding amount of the additive for thermoplastic resin is 0.01 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition.
  • the compounding amount of the resin additive is more preferably 0.1 to 18 parts by mass.
  • the blending amount of the additive for thermoplastic resin is 0.01 parts by mass or more, the molding processability of the obtained thermoplastic resin composition and the flame retardancy of the obtained molded article are excellent.
  • the blending amount of the additive for thermoplastic resin is 20 parts by mass or less, the dispersibility of the tetrafluoroethylene-based polymer (A) in the thermoplastic resin is excellent, and the surface appearance of the obtained molded article is not deteriorated.
  • the thermoplastic resin composition of the present invention may contain additives such as a flame retardant, a filler, a stabilizer, a lubricant, and a foaming agent as necessary.
  • the additive for a thermoplastic resin of the present invention is preferably added to a thermoplastic resin together with a flame retardant because the flame retardancy of the obtained molded article is remarkably improved.
  • the flame retardant examples include halogenated flame retardants such as tetrabromobisphenol A, decabromodiphenyl ether, hexabromocyclododecane, bis (tetrabromophthalimide) ethane, brominated polystyrene, and hexabromobenzene; triphenyl phosphate, tricresyl Phosphate ester flame retardants such as phosphate, trixylenyl phosphate, cresyl phenyl phosphate, 2-ethylhexyl diphenyl phosphate; phosphate flame retardants such as ammonium polyphosphate salt and melamine polyphosphate salt; antimony trioxide, pentoxide Examples include inorganic flame retardants such as antimony, aluminum hydroxide, magnesium hydroxide, zinc oxide, and iron oxide.
  • halogenated flame retardants such as tetrabromobisphenol A, decabromodipheny
  • These flame retardants may be used alone or in combination of two or more.
  • halogen-based flame retardants, phosphate ester-based flame retardants, and phosphate-based flame retardants are preferable.
  • phosphate ester-based flame retardants and phosphate-based flame retardants are more preferable.
  • a phosphate flame retardant is more preferable.
  • melamine polyphosphate flame retardants are preferable because they are excellent in heat resistance of the flame retardant and suppress coloring of the resulting molded article.
  • Examples of the melamine polyphosphate flame retardant include “ADEKA STAB FP-2200”, “FP-2100J” (trade name, manufactured by ADEKA Corporation), “MELAPUR200”, “70” (trade name, Ciba Japan Co., Ltd.).
  • the blending amount of the flame retardant depends on the kind of the flame retardant, but is preferably 3 to 50 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the blending amount of the flame retardant is 3 parts by mass or more, the obtained molded article is excellent in flame retardancy.
  • the blending amount of the flame retardant is 50 parts by mass or less, the original characteristics of the thermoplastic resin are not impaired.
  • filler examples include calcium carbonate, talc, glass fiber, carbon fiber, magnesium carbonate, mica, kaolin, calcium sulfate, barium sulfate, titanium white, white carbon, and carbon black. These fillers may be used individually by 1 type, and may use 2 or more types together.
  • Stabilizers include pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis- [3- (3-t-butyl- Phenol antioxidants such as 5-methyl-4-hydroxyphenyl) propionate]; Phosphorus antioxidants such as tris (monononylphenyl) phosphite and tris- (2,4-di-t-butylphenyl) phosphite Agents: Sulfur-based antioxidants such as dilauryl thiodipropionate; “Tinuvin-770” (trade name, manufactured by Ciba Japan Co., Ltd.), “Adeka Stub LA-57” (trade name, manufactured by ADEKA Corp.) Hindered amine light stabilizers such as “Tinuvin 1577FF” (trade name, manufactured by Ciba Japan Co., Ltd.), “Adeka Stub LA-
  • lubricants examples include sodium, calcium or magnesium salts of lauric acid, palmitic acid, oleic acid or stearic acid. These lubricants may be used individually by 1 type, and may use 2 or more types together.
  • foaming agent known foaming agents can be used, and examples thereof include inorganic foaming agents, volatile foaming agents, and decomposable foaming agents.
  • Examples of the inorganic foaming agent include carbon dioxide, air, and nitrogen.
  • Examples of the volatile blowing agent include aliphatic hydrocarbons such as propane, n-butane, i-butane, pentane and hexane; cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane; trichlorofluoromethane and dichlorodifluoromethane.
  • Halogenated hydrocarbons such as dichlorotetrafluoroethane, methyl chloride, ethyl chloride, and methylene chloride.
  • decomposable foaming agent examples include azodicarboxylic acid amide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, and sodium bicarbonate. These foaming agents may be used individually by 1 type, and may use 2 or more types together.
  • the blending amount of the foaming agent is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the thermoplastic resin, although it depends on the type of the foaming agent.
  • the effect as a foaming agent is acquired as the compounding quantity of a foaming agent is 0.1 mass part or more. Further, when the specific gravity of the foaming agent is 25 parts by mass or less, stable foam molding is possible.
  • thermoplastic resin composition of the present invention As a method for mixing the thermoplastic resin composition of the present invention, a known method can be used, and examples thereof include melt-kneading methods such as extrusion kneading and roll kneading.
  • the blending method of the thermoplastic resin composition of the present invention is not particularly limited, and the thermoplastic resin, the additive for the thermoplastic resin of the present invention and, if necessary, an additive such as a flame retardant are mixed together.
  • a part of the thermoplastic resin, the total amount of additives for the thermoplastic resin of the present invention and, if necessary, the total amount of additives such as flame retardant are mixed to produce a master batch, and the remaining thermoplasticity A resin may be mixed.
  • the molded product of the present invention is obtained by molding the thermoplastic resin composition of the present invention.
  • a known molding method can be used, and examples thereof include extrusion molding, injection molding, calendar molding, blow molding, thermoforming, foam molding, vacuum molding, and melt spinning.
  • the molded body of the present invention Since the molded body of the present invention has excellent surface appearance, it is a sheet material such as an optical sheet, a film material such as a food film, a material for home appliances, a material for OA equipment, a material for automobiles, a medical material, a building material, and a coating for electric wires. Suitable for materials and the like.
  • the molded article of the present invention is excellent in flame retardancy, it is suitable for home appliance materials, OA equipment materials, automotive materials, and wire coating materials.
  • Mass average particle diameter A sample obtained by diluting the obtained latex of the alkyl methacrylate polymer (B) with ion-exchanged water was measured using a particle size distribution meter (model name “CHDF2000 type”, manufactured by MATEC). .
  • the measurement conditions were standard conditions recommended by MATEC. That is, using a special particle separation capillary cartridge and carrier liquid, the liquidity is almost neutral, the flow rate is 1.4 ml / min, the pressure is about 4000 psi (2600 KPa), and the temperature is 35 ° C. 0.1 ml of 3% diluted sample was used for the measurement.
  • Example 2 As the standard particle size substance, a total of 12 monodisperse polystyrenes with known particle sizes were used in the range of 20 to 800 nm.
  • the mass average particle diameter in Example 2 and Comparative Example 4 was measured using the latex of the obtained additive for thermoplastic resin, and the mass average particle diameter derived from the tetrafluoroethylene polymer (A). The non-peak side was defined as the mass average particle diameter of the alkyl methacrylate polymer (B).
  • Mass average molecular weight Gel permeation chromatography (model name “HLC-8220”, Tosoh Corporation (model name “HLC-8220”) was prepared by using the tetrahydrofuran-soluble content of the solid content obtained by drying the latex of the obtained alkyl methacrylate polymer (B) as a sample. And a column (trade name “TSK-GEL SUPER HZM-M”, manufactured by Tosoh Corporation), using an eluent tetrahydrofuran at a temperature of 40 ° C. The mass average molecular weight was determined from a calibration curve using standard polystyrene. In addition, the mass average molecular weight in Example 2 and Comparative Example 4 was measured using the latex of the obtained additive for thermoplastic resins.
  • the melt tension of the thermoplastic resin composition is one of the indicators for determining molding processability such as thermoformability, blow moldability, and foam moldability, and improvement in melt tension can be regarded as improvement in moldability.
  • melt flow rate The obtained thermoplastic resin composition was measured according to ASTM D1238 using a melt indexer (model name L243, manufactured by TAKARA THERISTOR). In addition, the heating temperature was 230 degreeC prescribed
  • the number of irregularities is 100 or less
  • the number of irregularities on the surface of the molded product is thermoplastic This is one of the indexes for judging the dispersibility of the tetrafluoroethylene polymer (A) in the resin and the surface appearance of the molded body. The smaller the number of surface irregularities of the molded body, the better the dispersibility and the surface appearance.
  • Example 1 In a separable flask equipped with a thermometer, a nitrogen introduction tube, a cooling tube, and a stirring device, 176 parts of water, 2 parts of sodium dodecylbenzenesulfonate, 0.00016 part of ferrous sulfate, 0.00048 part of disodium ethylenediaminetetraacetate Then, 0.384 part of ascorbic acid was added, and the inside of the container was purged with nitrogen.
  • the obtained alkyl methacrylate polymer (B1) had a mass average particle diameter of 70 nm and a mass average molecular weight of 30,000.
  • the internal temperature was set to 40 ° C., and 80 parts of the latex of the alkyl methacrylate polymer (B1) obtained (in terms of solid content of the alkyl methacrylate polymer (B1)) was added to the tetrafluoroethylene polymer (A).
  • 80 parts of the latex of the alkyl methacrylate polymer (B1) obtained was added to the tetrafluoroethylene polymer (A).
  • 20 parts (in terms of solid content of the tetrafluoroethylene polymer (A)) of “Fluon AD939L” (trade name, manufactured by Asahi Glass Co., Ltd., mass average particle diameter of 300 nm, solid content of 60% by mass) are dropped.
  • the latex mixture was dropped into 320 parts of 50 ° C.
  • thermoplastic resin (1) The obtained additive for thermoplastic resins was excellent in powder handling.
  • Example 2 In a separable flask equipped with a thermometer, a nitrogen introduction tube, a cooling tube, and a stirring device, 20 parts of “Fluon AD939L” as a latex of tetrafluoroethylene polymer (A) (latex of tetrafluoroethylene polymer (A)) 176 parts of water, 2 parts of sodium dodecylbenzenesulfonate, 0.00016 part of ferrous sulfate, 0.00048 part of disodium ethylenediaminetetraacetate, 0.384 part of ascorbic acid, and the inside of the container. Replaced with nitrogen.
  • the internal temperature was raised to 73 ° C., and a monomer mixture of 78.4 parts i-butyl methacrylate, 1.6 parts ethyl acrylate, 0.16 parts cumene hydroperoxide, and 0.8 parts n-octyl mercaptan.
  • a latex containing a tetrafluoroethylene polymer (A) and an alkyl methacrylate polymer (B). From the gas chromatograph, the polymerization rate of the monomer was 99.9% or more.
  • the obtained latex was cooled to 25 ° C., dropped into 320 parts of 50 ° C. hot water containing 5 parts of calcium acetate, and then heated to 90 ° C. for coagulation. The obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an additive for thermoplastic resin (2).
  • thermoplastic resin additive (3) was obtained in the same manner as in Example 1 except that 2 parts of sodium dodecylbenzenesulfonate was changed to 0.8 part.
  • thermoplastic resin additive (4) was obtained in the same manner as in Example 1 except that 0.8 part of n-octyl mercaptan was changed to 0.16 part.
  • thermoplastic resin additive (5) was obtained in the same manner as in Example 1 except that 0.8 part of n-octyl mercaptan was not added.
  • Example 6 Except that 78.4 parts of i-butyl methacrylate were replaced with 70.4 parts of i-butyl methacrylate and 8 parts of methyl methacrylate, an additive for thermoplastic resin (6) was obtained in the same manner as in Example 1.
  • Example 7 Except that 78.4 parts of i-butyl methacrylate were replaced with 62.4 parts of i-butyl methacrylate and 16 parts of methyl methacrylate, an additive for thermoplastic resin (7) was obtained in the same manner as in Example 1.
  • thermoplastic resin additive (8) was obtained in the same manner as in Example 1 except that i-butyl methacrylate was changed to n-butyl methacrylate.
  • Example 9 In the same manner as in Example 1, an alkyl methacrylate polymer (B1) was obtained. To 95 parts of the latex of the alkyl methacrylate polymer (B1) obtained (in terms of solid content of the alkyl methacrylate polymer (B1)), 5 parts of “Fluon AD939L” as the latex of the tetrafluoroethylene polymer (A) (Conversion of solid content of tetrafluoroethylene polymer (A)) was added dropwise and stirred for 1 hour. After cooling to 25 ° C., the latex mixture was dropped into 320 parts of 50 ° C. warm water containing 5 parts of calcium acetate, and then the temperature was raised to 90 ° C. for coagulation. The obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an additive for thermoplastic resin (9).
  • Example 10 In the same manner as in Example 1, an alkyl methacrylate polymer (B1) was obtained. 50 parts of “Fluon AD939L” as the latex of the tetrafluoroethylene polymer (A) is added to 50 parts of the latex of the alkyl methacrylate polymer (B1) (in terms of solid content of the alkyl methacrylate polymer (B1)). (Conversion of solid content of tetrafluoroethylene polymer (A)) was added dropwise and stirred for 1 hour. After cooling to 25 ° C., the latex mixture was dropped into 375 parts of 80 ° C. warm water containing 0.175 part of aluminum sulfate, and then the temperature was raised to 90 ° C. for coagulation. The obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an additive (10) for thermoplastic resin.
  • “Fluon AD939L” as the latex of the tetrafluoroethylene
  • thermoplastic resin additive (11) was obtained in the same manner as in Example 10, except that 0.5 part of n-octyl mercaptan was changed to 0.1 part.
  • thermoplastic resin additive (12) was obtained in the same manner as in Example 1 except that i-butyl methacrylate was changed to methyl methacrylate.
  • the internal temperature was set to 40 ° C., and 80 parts of latex of the resulting alkyl methacrylate polymer (B2) (in terms of solid content of the alkyl methacrylate polymer (B2)) was added to the tetrafluoroethylene polymer (A).
  • 20 parts of “Fluon AD939L” in terms of solid content of the tetrafluoroethylene polymer (A)
  • the latex mixture was dropped into 320 parts of 50 ° C. warm water containing 5 parts of calcium acetate, and then the temperature was raised to 90 ° C. for coagulation.
  • the obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an additive for thermoplastic resin (13).
  • the powder handling property was inferior, and the subsequent evaluation was interrupted.
  • thermoplastic resin additive (14) was obtained in the same manner as in Example 1 except that 78.4 parts of i-butyl methacrylate were replaced with 16 parts of n-butyl methacrylate and 62.4 parts of methyl methacrylate.
  • a monomer mixture of 19.6 parts of methyl methacrylate, 0.4 part of ethyl acrylate and 0.2 part of n-octyl mercaptan was added dropwise over 1 hour, and the mixture was kept at the same temperature for 1 hour.
  • a latex containing a tetrafluoroethylene polymer (A) and an alkyl methacrylate polymer (B) was obtained. From the gas chromatograph, the polymerization rate of the monomer was 99.9% or more.
  • the obtained latex was cooled to 25 ° C., dropped into 320 parts of 50 ° C. hot water containing 5 parts of calcium acetate, and then heated to 90 ° C. for coagulation. The obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an additive for thermoplastic resin (15).
  • thermoplastic resin additive (16) was obtained in the same manner as in Example 9 except that i-butyl methacrylate was changed to methyl methacrylate.
  • thermoplastic resin additive (17) was obtained in the same manner as in Example 10 except that i-butyl methacrylate was changed to methyl methacrylate.
  • Table 1 and Table show the composition of the monomer component (b) used, the mass average particle diameter and mass average molecular weight of the alkyl methacrylate polymer (B), the production method of the additive for thermoplastic resins, and the powder handleability. It is shown in 2.
  • MMA methyl methacrylate n-BMA: normal butyl methacrylate i-BMA: isobutyl methacrylate 2-EHMA: 2-ethylhexyl methacrylate DMA: dodecyl methacrylate EA: ethyl acrylate n-BA: normal butyl acrylate Abbreviations described in the column of production method These show the manufacturing method of the following additives for thermoplastic resins.
  • X Latex blend method
  • Y Polymerization method in the presence
  • thermoplastic resin additive (13) obtained in Comparative Example 2 is an alkyl methacrylate polymer (mainly composed of an alkyl methacrylate monomer unit in which the carbon number of the alkyl group is larger than the range of the present invention). Since B) was used, the glass transition temperature of the alkyl methacrylate polymer (B) was low and the powder handleability was poor.
  • thermoplastic resin polypropylene (trade name “NOVATEC PP FY-4”, manufactured by Nippon Polypro Co., Ltd.) was used.
  • Table 3 shows the composition of the master batch obtained in the production example.
  • a phosphate flame retardant (trade name “ADEKA STAB FP-2200”, manufactured by ADEKA Corporation) was used as the flame retardant.
  • the obtained thermoplastic resin composition was dried at 80 ° C. for 12 hours and molded at a molding temperature of 200 ° C. using a 100 t injection molding machine (model name “SE-100DU”, manufactured by Sumitomo Heavy Industries, Ltd.). A molded body (1/16 inch test bar) was obtained.
  • Tables 4 to 9 show the composition, melt tension and MFR of the thermoplastic resin composition, the surface appearance and flame retardancy of the molded product.
  • PP1 Polypropylene (trade name “Novatech PP FY-4”, manufactured by Nippon Polypro Co., Ltd., melt flow rate 5 g / 10 min)
  • PP2 Polypropylene (trade name “NOVATEC PP MA3”, manufactured by Nippon Polypro Co., Ltd., melt flow rate 12 g / 10 min)
  • SEBS Hydrogenated styrene elastomer (trade name “Tuftec H1062”, manufactured by JSR Corporation)
  • thermoplastic resin compositions obtained in Examples 12 to 21 were excellent in molding processability, and the obtained molded articles were excellent in surface appearance and flame retardancy.
  • the molded body obtained in Comparative Examples 7, 8, and 10 uses an alkyl methacrylate polymer (B) whose main component is a methyl methacrylate unit whose alkyl group has 1 carbon atom, a tetrafluoroethylene-based polymer is used. The dispersibility of the polymer (A) was poor, and the surface appearance and flame retardancy were poor.
  • the molded body obtained in Comparative Example 9 was obtained in Comparative Examples 7, 8, and 10 because the alkyl methacrylate polymer (B) containing an alkyl methacrylate unit having 1 and 12 carbon atoms in the alkyl group was used.
  • the surface appearance was slightly improved as compared with the molded product, but the flame retardancy was inferior.
  • the thermoplastic resin composition obtained in Comparative Example 11 did not contain an additive for thermoplastic resin, the molding processability was inferior, and the obtained molded article was inferior in flame retardancy.
  • thermoplastic resin additive having different compositions of the tetrafluoroethylene polymer (A) and the alkyl methacrylate polymer (B) in the thermoplastic resin additive. It was confirmed that the effect of was obtained.
  • the molded body of the present invention Since the molded body of the present invention has excellent surface appearance, it is a sheet material such as an optical sheet, a film material such as a food film, a material for home appliances, a material for OA equipment, a material for automobiles, a medical material, a building material, and a coating for electric wires. Suitable for materials and the like.
  • the molded article of the present invention is excellent in flame retardancy, it is suitable for home appliance materials, OA equipment materials, automotive materials, and wire coating materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 得られる熱可塑性樹脂組成物の成形加工性に優れ、得られる成形体の表面外観及び難燃性に優れる熱可塑性樹脂用添加剤を提供する。テトラフルオロエチレン系重合体(A)及び炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)を含む熱可塑性樹脂用添加剤。

Description

熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体
 本発明は、テトラフルオロエチレン系重合体及びアルキルメタクリレート系重合体を含む熱可塑性樹脂用添加剤、前記熱可塑性樹脂用添加剤の製造方法、熱可塑性樹脂及び前記熱可塑性樹脂用添加剤を含む熱可塑性樹脂組成物並びに前記熱可塑性樹脂組成物を成形して得られる成形体に関する。
 本願は、2009年4月10日に日本に出願された特願2009-095948号、及び2009年9月30日に日本に出願された特願2009-226729号に基づき優先権を主張し、その内容をここに援用する。
 テトラフルオロエチレン系重合体は、高結晶性で分子間力が低いため、僅かな応力で繊維化する性質を有しており、熱可塑性樹脂に配合した場合、テトラフルオロエチレン系重合体の繊維化に伴い、成形加工性、機械特性、滴下防止性が改良されることが知られている。
 例えば、特許文献1及び2には、テトラフルオロエチレン系重合体を熱可塑性樹脂に配合した熱可塑性樹脂組成物が提案されている。
 また、特許文献3には、メチルメタクリレートとドデシルメタクリレートの共重合体とテトラフルオロエチレン系重合体を含む熱可塑性樹脂用改質剤を熱可塑性樹脂に配合した熱可塑性樹脂組成物が提案されている。
 更に、特許文献4には、メチルメタクリレート単位を主成分とする重合体とテトラフルオロエチレン系重合体を含む熱可塑性樹脂用改質剤を熱可塑性樹脂に配合した熱可塑性樹脂組成物が提案されている。
特開平5-214184号公報 特開平6-306212号公報 特開平11-124478号公報 国際公開第2002/090440号パンフレット
 しかしながら、特許文献1及び2記載の熱可塑性樹脂組成物は、テトラフルオロエチレン系重合体を直接熱可塑性樹脂に配合して製造しているため、熱可塑性樹脂中でのテトラフルオロエチレン系重合体の分散性に劣り、得られる成形体の表面外観に劣り、かつ、得られる成形体の難燃性に劣るという課題を有する。
 また、特許文献3記載の熱可塑性樹脂組成物は、前記課題は改善されたものの、炭素数1のアルキル基を有するアルキルメタクリレートであるメチルメタクリレートと炭素数12のアルキル基を有するアルキルメタクリレートであるドデシルメタクリレートの共重合体を熱可塑性樹脂用添加剤として用いて製造されるため、熱可塑性樹脂中でのテトラフルオロエチレン系重合体の分散性が充分でなく、得られる成形体の表面外観に劣り、かつ、得られる成形体の難燃性に劣る。
 更に、特許文献4記載の熱可塑性樹脂組成物も、特許文献3と同様に、炭素数1のアルキル基を有するアルキルメタクリレート単位であるメチルメタクリレート単位を主成分とする重合体を熱可塑性樹脂用添加剤として用いて製造されるため、熱可塑性樹脂中でのテトラフルオロエチレン系重合体の分散性が充分でなく、得られる成形体の表面外観に劣り、かつ、得られる成形体の難燃性に劣る。
 本発明は、得られる熱可塑性樹脂組成物の成形加工性に優れ、得られる成形体の表面外観及び難燃性に優れる熱可塑性樹脂用添加剤を提供することにある。
 本発明は、テトラフルオロエチレン系重合体(A)及び炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)を含む熱可塑性樹脂用添加剤である。
 また、本発明は、熱可塑性樹脂及び前記熱可塑性樹脂用添加剤を含む熱可塑性樹脂組成物である。
 また、本発明は、前記熱可塑性樹脂組成物を成形して得られる成形体である。
 更に、本発明は、テトラフルオロエチレン系重合体(A)及び炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)を含むラテックスを粉体化する熱可塑性樹脂用添加剤の製造方法である。
 本発明の熱可塑性樹脂用添加剤を用いることにより、熱可塑性樹脂中でのテトラフルオロエチレン系重合体の分散性を高めることができ、表面外観及び難燃性に優れる成形体が得られる。また、本発明の熱可塑性樹脂用添加剤を用いることにより、成形加工性に優れる熱可塑性樹脂組成物が得られる。
 本発明の熱可塑性樹脂用添加剤は、テトラフルオロエチレン系重合体(A)を含む。
 本発明のテトラフルオロエチレン系重合体(A)は、テトラフルオロエチレン(a1)を含む単量体成分(a)を重合することにより得られる。
 単量体成分(a)は、テトラフルオロエチレン系重合体としての特性を損なわない範囲において、テトラフルオロエチレン(a1)と共重合可能なその他の単量体(a2)を含んでもよい。
 その他の単量体(a2)としては、例えば、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、フルオロアルキルエチレン、パーフルオロアルキルビニルエーテルが挙げられる。これらのその他の単量体(a2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 単量体成分(a)の組成比は、得られる熱可塑性樹脂組成物の成形加工性に優れることから、単量体成分(a)100質量%中、テトラフルオロエチレン(a1)の含有率が80質量%以上、その他の単量体(a2)の含有率が20質量%以下であることが好ましく、テトラフルオロエチレン(a1)が90質量%以上、その他の単量体(a2)が10質量%以下であることがより好ましい。
 単量体成分(a)の重合方法は、特に限定されるものではなく、公知の重合方法が挙げられる。
 本発明のテトラフルオロエチレン系重合体(A)の質量平均分子量は、100万~5000万であることが好ましく、300万~3000万であることがより好ましい。
 テトラフルオロエチレン系重合体(A)の質量平均分子量が100万以上であると、得られる熱可塑性樹脂組成物の成形加工性に優れる。また、テトラフルオロエチレン系重合体(A)の質量平均分子量が5000万以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 本発明のテトラフルオロエチレン系重合体(A)の質量平均粒子径は、50~1000nmであることが好ましく、50~500nmであることがより好ましい。
 テトラフルオロエチレン系重合体(A)の質量平均粒子径が50nm以上であると、得られる熱可塑性樹脂組成物の溶融張力が向上し、成形加工性に優れる。また、テトラフルオロエチレン系重合体(A)の質量平均粒子径が1000nm以下であると、テトラフルオロエチレン系重合体(A)の高いラテックス安定性が得られ、テトラフルオロエチレン系重合体(A)の凝集物生成を抑制し、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 本発明のテトラフルオロエチレン系重合体(A)のラテックスの市販品としては、例えば、「フルオンAD911L」、「フルオンAD912L」、「フルオンAD915L」、「フルオンAD938L」、「フルオンAD939L」、「フルオンAD939E」(商品名、旭硝子(株)製)が挙げられる。これらのテトラフルオロエチレン系重合体(A)のラテックスは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の熱可塑性樹脂用添加剤は、炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)を含む。
 アルキルメタクリレート系重合体(B)中の炭素数2~6のアルキル基を有するアルキルメタクリレート単位の含有率は、アルキルメタクリレート系重合体100質量%中、50質量%以上であり、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 アルキルメタクリレート系重合体(B)中の炭素数2~6のアルキル基を有するアルキルメタクリレート単位の含有率が50質量%以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 本発明の炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)は、炭素数2~6のアルキル基を有するアルキルメタクリレート(b1)を50質量%以上含む単量体成分(b)を重合することにより得られる。
 炭素数2~6のアルキル基を有するアルキルメタクリレート(b1)としては、例えば、炭素数2のエチルメタクリレート;炭素数3のn-プロピルメタクリレート、i-プロピルメタクリレート;炭素数4のn-ブチルメタクリレート、i-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレート;炭素数5のn-ペンチルメタクリレート、1-メチルブチルメタクリレート、2-メチルブチルメタクリレート、3-メチルブチルメタクリレート、ジメチルプロピルメタクリレート、3-ペンチルメタクリレート、シクロペンチルメタクリレート;炭素数6のn-ヘキシルメタクリレート、メチルペンチルメタクリレート、ジメチルブチルメタクリレート、エチルブチルメタクリレート、トリメチルプロピルメタクリレート、2-ヘキシルメタクリレート、3-ヘキシルメタクリレート、メチルシクロペンチルメタクリレート、シクロヘキシルメタクリレートが挙げられる。これらの炭素数2~6のアルキル基を有するアルキルメタクリレート(b1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 アルキルメタクリレート(b1)のアルキル基の炭素数が2以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の成形外観及び難燃性に優れる。また、アルキルメタクリレート(b1)のアルキル基の炭素数が6以下であると、アルキルメタクリレート系重合体(B)が充分なガラス転移温度を有し、得られる熱可塑性樹脂用添加剤の粉体取扱性が良好となる。
 これらのアルキルメタクリレート(b1)の中でも、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れることから、アルキルメタクリレート(b1)のアルキル基の炭素数が4であるn-ブチルメタクリレート、i-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレートが好ましく、得られる熱可塑性樹脂用添加剤の粉体取扱性に優れることから、アルキル基が分岐構造であるi-ブチルメタクリレート、t-ブチルメタクリレート、sec-ブチルメタクリレートがより好ましく、特に得られる成形体の表面外観及び難燃性に優れることから、i-ブチルメタクリレートが更に好ましい。
 アルキルメタクリレート(b1)を含む単量体成分(b)は、テトラフルオロエチレン系重合体(A)の分散性を損なわない範囲において、アルキルメタクリレート(b1)と共重合可能なその他の単量体(b2)を含んでもよい。
 その他の単量体(b2)としては、例えば、スチレン、α-メチルスチレン、クロロスチレン等の芳香族ビニル単量体;メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、t-ブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、ステアリルアクリレート等のアルキルアクリレート;メチルメタクリレート、n-オクチルメタクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、ステアリルメタクリレート等の炭素数2~6でないアルキル基を有するアルキルメタクリレート;フェニル(メタ)アクリレート;(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート等のカルボキシル基含有単量体;(メタ)アクリロニトリル等のシアン化ビニル単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル単量体;エチレン、プロピレン、ブチレン等のオレフィン類が挙げられる。これらのその他の単量体(b2)の中でも、アルキルメタクリレート系重合体(B)の熱分解の抑制の観点から、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート等のアルキルアクリレートを用いることが好ましい。これらのその他の単量体(b2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 尚、本明細書において、「(メタ)アクリレート」は、「アクリレート」又は「メタクリレート」を示す。
 単量体成分(b)の組成比は、単量体成分(b)100質量%中、アルキルメタクリレート(b1)の含有率が50質量%以上、その他の単量体(b2)の含有率が50質量%以下であり、アルキルメタクリレート(b1)の含有率が70質量%以上、その他の単量体(b2)の含有率が30質量%以下であることが好ましく、アルキルメタクリレート(b1)の含有率が80質量%以上、その他の単量体(b2)の含有率が20質量%以下であることがより好ましく、アルキルメタクリレート(b1)の含有率が90質量%以上、その他の単量体(b2)の含有率が10質量%以下であることが更に好ましい。
 アルキルメタクリレート(b1)の含有率が50質量%以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 その他の単量体(b2)の含有率が50質量%以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 その他の単量体(b2)としてメチルアクリレート、エチルアクリレート、n-ブチルアクリレート等のアルキルアクリレートを用いることにより、アルキルメタクリレート系重合体(B)の熱分解が抑制される。
 その他の単量体(b2)としてアルキルアクリレートを用いる場合の単量体成分(b)の組成比は、単量体成分(b)100質量%中、アルキルメタクリレート(b1)の含有率が50~99.9質量%、アルキルアクリレートの含有率が0.1~50質量%、アルキルアクリレート以外のその他の単量体(b2)の含有率が49.9質量%以下であることが好ましく、アルキルメタクリレート(b1)の含有率が70~99.8質量%、アルキルアクリレートの含有率が0.2~30質量%、アルキルアクリレート以外のその他の単量体(b2)の含有率が29.8質量%以下であることが好ましく、アルキルメタクリレート(b1)の含有率が80~99.7質量%、アルキルアクリレートの含有率が0.3~20質量%、アルキルアクリレート以外のその他の単量体(b2)の含有率が19.7質量%以下であることがより好ましく、アルキルメタクリレート(b1)の含有率が90~99.5質量%、アルキルアクリレートの含有率が0.5~10質量%、アルキルアクリレート以外のその他の単量体(b2)の含有率が9.5質量%以下であることが更に好ましい。
 アルキルメタクリレート(b1)の含有率が50質量%以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。また、アルキルメタクリレート(b1)の含有率が99.9質量%以下であると、アルキルメタクリレート系重合体(B)の熱分解が抑制される。
 アルキルアクリレートの含有率が0.1質量%以上であると、アルキルメタクリレート系重合体(B)の熱分解が抑制される。また、アルキルアクリレートの含有率が50質量%以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 アルキルアクリレート以外のその他の単量体(b2)の含有率が49.9質量%以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れ、アルキルメタクリレート系重合体(B)の熱分解が抑制される。
 単量体成分(b)の重合方法は、公知の重合方法を用いることができ、例えば、乳化重合、ソープフリー乳化重合、微細懸濁重合、懸濁重合、塊状重合、溶液重合が挙げられる。
 これらの重合方法の中でも、テトラフルオロエチレン系重合体(A)とアルキルメタクリレート系重合体(B)の混合が容易であることから、乳化重合、ソープフリー乳化重合が好ましく、乳化重合がより好ましい。
 単量体成分(b)の重合方法として乳化重合やソープフリー乳化重合等の重合方法を用いる場合、その粒子構造は単層構造であっても多層構造であってもよいが、多層構造の場合、製造コストの観点から、3層以下であることが好ましい。
 乳化重合における乳化剤は、公知の乳化剤を用いることができ、例えば、アニオン性乳化剤、ノニオン性乳化剤、高分子乳化剤、反応性アニオン性乳化剤、反応性ノニオン性乳化剤が挙げられる。
 アニオン性乳化剤としては、例えば、「ニューコール560SF」、「同562SF」、「同707SF」、「同707SN」、「同714SF」、「同723SF」、「同740SF」、「同2308SF」、「同2320SN」、「同1305SN」、「同271A」、「同271NH」、「同210」、「同220」、「同RA331」、「同RA332」(商品名、日本乳化剤(株)製);「ラテムルB-118E」、「レベノールWZ」、「ネオペレックスG15」(商品名、花王(株)製);「ハイテノールN08」(商品名、第一工業製薬(株)製)が挙げられる。
 ノニオン性乳化剤としては、例えば、「ノニポール200」、「ニューポールPE-68」(商品名、三洋化成工業(株)製)が挙げられる。
 高分子乳化剤としては、例えば、ポリビニルアルコール、ポリヒドロキシエチル(メタ)アクリレート、ポリヒドロキシプロピル(メタ)アクリレート、ポリビニルピロリドンが挙げられる。
 反応性アニオン性乳化剤としては、例えば、「Antox MS-60」、「同MS-2N」(商品名、日本乳化剤(株)製);「エレミノールJS-2」(商品名、三洋化成工業(株)製);「ラテムルS-120」、「同S-180」、「同S-180A」、「同PD-104」(商品名、花王(株)製);「アデカリアソープSR-10」、「同SE-10」(商品名、(株)ADEKA製);「アクアロンKH-05」、「同KH-10」、「同HS-10」(商品名、第一工業製薬(株))が挙げられる。
 反応性ノニオン性乳化剤としては、「アデカリアソープNE-10」、「同ER-10」、「同NE-20」、「同ER-20」、「同NE-30」、「同ER-30」、「同NE-40」、「同ER-40」(商品名、(株)ADEKA製)、「アクアロンRN-10」、「同RN-20」、「同RN-30」、「同RN-50」(商品名、第一工業製薬(株)製)が挙げられる。
 これらの乳化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 単量体成分(b)の重合における重合開始剤は、公知の重合開始剤を用いることができ、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸化合物;アゾビスイソブチロニトリル、2,2’-アゾビス-(2-メチルブチロニトリル)、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等の油溶性アゾ化合物;2,2’-アゾビス-{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス-{2-メチル-N-[2-(1-ヒドロキシエチル)]プロピオンアミド}、2,2’-アゾビス-{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス-[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]及びその塩、2,2’-アゾビス-[2-(2-イミダゾリン-2-イル)プロパン]及びその塩、2,2’-アゾビス-[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]及びその塩、2,2’-アゾビス-{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}及びその塩、2,2’-アゾビス-(2-メチルプロピオンアミジン)及びその塩、2,2’-アゾビス-(2-メチルプロピンアミジン)及びその塩、2,2’-アゾビス-[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]及びその塩等の水溶性アゾ化合物;過酸化ベンゾイル、クメンヒドロパーオキシド、t-ブチルヒドロパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート等の有機過酸化物が挙げられる。また、乳化重合により単量体成分(b)の重合を行う場合には、重亜硫酸ナトリウム、硫酸第一鉄、アスコルビン酸塩等の還元剤を上記過硫酸化合物や上記有機過酸化物と組み合わせて用いることもできる。これらの重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明のアルキルメタクリレート系重合体(B)の質量平均分子量は、5000~500万であることが好ましく、7000~100万であることがより好ましく、8000~20万であることが更に好ましく、1万~5万であることが最も好ましい。
 アルキルメタクリレート系重合体(B)の質量平均分子量が5000以上であると、アルキルメタクリレート系重合体(B)が充分なガラス転移温度を有し、得られる熱可塑性樹脂用添加剤の粉体取扱性が良好となる。また、アルキルメタクリレート系重合体(B)の質量平均分子量が500万以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 質量平均分子量を調整する方法は、公知の方法を挙げることができ、例えば、重合開始剤量や連鎖移動剤量を調整する方法が挙げられる。
 連鎖移動剤としては、公知の連鎖移動剤を用いることができ、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、n-テトラデシルメルカプタン、n-ヘキシルメルカプタン、n-ブチルメルカプタン等のメルカプタン;四塩化炭素、臭化エチレン等のハロゲン化合物;α-メチルスチレンダイマーが挙げられる。これらの連鎖移動剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 連鎖移動剤の使用量としては、特に制限されるものではなく、用いる連鎖移動剤の種類や単量体成分(b)の組成に応じて適宜設定すればよい。
 本発明のアルキルメタクリレート系重合体(B)の質量平均粒子径は、30~1000nmであることが好ましく、30~500nmであることがより好ましく、30~300nmであることが更に好ましく、30~100nmであることが最も好ましい。
 アルキルメタクリレート系重合体(B)の質量平均粒子径が30nm以上であると、乳化重合により製造することが可能である。また、アルキルメタクリレート系重合体(B)の質量平均粒子径が1000nm以下であると、テトラフルオロエチレン系重合体(A)の粒子をアルキルメタクリレート系重合体(B)粒子により高度に被覆でき、テトラフルオロエチレン系重合体(A)の凝集物生成を抑制し、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観及び難燃性に優れる。
 本発明のアルキルメタクリレート系重合体(B)は、1種を単独で用いてもよく、組成、分子量、粒子径等の異なる重合体2種以上を併用してもよい。
 本発明の熱可塑性樹脂用添加剤は、テトラフルオロエチレン系重合体(A)及びアルキルメタクリレート系重合体(B)を含む。
 熱可塑性樹脂用添加剤の組成比は、熱可塑性樹脂用添加剤100質量%中、テトラフルオロエチレン系重合体(A)の含有率が1~75質量%、アルキルメタクリレート系重合体(B)の含有率が25~99質量%であることが好ましい。
 テトラフルオロエチレン系重合体(A)中の含有率が1質量%以上であると、得られる成形体の難燃性に優れ、得られる熱可塑性樹脂組成物の溶融張力が向上し、成形加工性に優れる。また、テトラフルオロエチレン系重合体(A)中の含有率が75質量%以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観に優れ、難燃性を低下させない。
 アルキルメタクリレート系重合体(B)の含有率が25質量%以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観に優れ、難燃性を低下させない。また、アルキルメタクリレート系重合体(B)の含有率が99質量%以下であると、得られる成形体の難燃性に優れ、得られる熱可塑性樹脂組成物の溶融張力が向上し、成形加工性に優れる。
 尚、本発明の熱可塑性樹脂用添加剤を、表面外観に優れる成形体を得るために用いる場合と、難燃性に優れる成形体を得るために用いる場合とで、好ましい熱可塑性樹脂用添加剤の組成比は異なる。
 表面外観に優れる成形体を得るために用いる場合の熱可塑性樹脂用添加剤の組成比は、熱可塑性樹脂用添加剤100質量%中、テトラフルオロエチレン系重合体(A)の含有率が1~60質量%、アルキルメタクリレート系重合体(B)の含有率が40~99質量%であることが好ましい。
 テトラフルオロエチレン系重合体(A)中の含有率が1質量%以上であると、得られる熱可塑性樹脂組成物の溶融張力が向上し、成形加工性に優れる。また、テトラフルオロエチレン系重合体(A)中の含有率が60質量%以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観に優れる。
 アルキルメタクリレート系重合体(B)の含有率が40質量%以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観に優れる。また、アルキルメタクリレート系重合体(B)の含有率が99質量%以下であると、得られる熱可塑性樹脂組成物の溶融張力が向上し、成形加工性に優れる。
 難燃性に優れる成形体を得るために用いる場合の熱可塑性樹脂用添加剤の組成比は、熱可塑性樹脂用添加剤100質量%中、テトラフルオロエチレン系重合体(A)の含有率が15~75質量%、アルキルメタクリレート系重合体(B)の含有率が25~85質量%であることが好ましい。
 テトラフルオロエチレン系重合体(A)中の含有率が15質量%以上であると、得られる成形体の難燃性に優れる。また、テトラフルオロエチレン系重合体(A)中の含有率が75質量%以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の難燃性を低下させない。
 アルキルメタクリレート系重合体(B)の含有率が25質量%以上であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の難燃性を低下させない。また、アルキルメタクリレート系重合体(B)の含有率が85質量%以下であると、得られる成形体の難燃性に優れる。
 表面外観に優れ、かつ、難燃性に優れる成形体を得るために用いる場合の熱可塑性樹脂用添加剤の組成比は、テトラフルオロエチレン系重合体(A)の含有率が15~60質量%、アルキルメタクリレート系重合体(B)の含有率が40~85質量%であることが好ましく、テトラフルオロエチレン系重合体(A)の含有率が20~55質量%、アルキルメタクリレート系重合体(B)の含有率が45~80質量%であることが好ましい。
 テトラフルオロエチレン系重合体(A)中の含有率が15質量%以上であると、得られる成形体の難燃性に優れる。また、テトラフルオロエチレン系重合体(A)中の含有率が60質量%以下であると、得られる成形体の表面外観に優れる。
 アルキルメタクリレート系重合体(B)の含有率が40質量%以上であると、得られる成形体の表面外観に優れる。また、アルキルメタクリレート系重合体(B)の含有率が85質量%以下であると、得られる成形体の難燃性に優れる。
 テトラフルオロエチレン系重合体(A)とアルキルメタクリレート系重合体(B)の混合方法は、例えば、テトラフルオロエチレン系重合体(A)のラテックス及びアルキルメタクリレート系重合体(B)のラテックスを混合するラテックスブレンド法、テトラフルオロエチレン系重合体(A)の存在下で単量体成分(b)を重合する存在下重合法が挙げられる。
 これらの方法の中でも、テトラフルオロエチレン系重合体(A)への熱履歴が少なくテトラフルオロエチレン系重合体粒子の凝集が抑制され、得られる成形体の表面外観に優れることから、ラテックスブレンド法が好ましい。
 ラテックスブレンド法及び存在下重合法で得られた熱可塑性樹脂用添加剤のラテックスから樹脂固形分を粉体化する方法は、特に限定されるものではなく、公知の方法が挙げられる。これらの方法の中でも、テトラフルオロエチレン系重合体(A)の凝集が抑制されることから、凝析法、スプレードライ法が好ましく、凝析法がより好ましい。
 凝析法は、例えば、熱可塑性樹脂用添加剤のラテックスを30~90℃で凝析剤に接触させ、攪拌しながら凝析させてスラリーとし、脱水乾燥する方法が挙げられる。
 凝析剤としては、例えば、塩酸、硫酸、硝酸、燐酸等の無機酸;蟻酸、酢酸等の有機酸;硫酸アルミニウム、硫酸マグネシウム、酢酸カルシウム、硫酸カルシウム等の無機塩が挙げられる。
 本発明の熱可塑性樹脂組成物は、熱可塑性樹脂及び本発明の熱可塑性樹脂用添加剤を含む。
 本発明の熱可塑性樹脂は、例えば、ポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂が挙げられる。また、ポリオレフィン系エラストマー、スチレン系エラストマー等の熱可塑性エラストマーも挙げられる。これらの熱可塑性樹脂は、1種を用いてもよく、2種以上を併用してもよい。
 これらの熱可塑性樹脂の中でも、得られる熱可塑性樹脂組成物の溶融張力向上効果及び得られる成形体の難燃性向上効果に優れることから、ポリオレフィン系樹脂、熱可塑性エラストマーが好ましい。
 本発明のポリオレフィン系樹脂は、オレフィン系単量体の単独重合体又はオレフィン類を主成分とする単量体混合物の共重合体を示す。
 オレフィン系単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-デセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。
 ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン/プロピレン共重合体、ポリメチルペンテン、ポリブテン、前記樹脂の混合樹脂が挙げられる。また、ポリオレフィン系樹脂として、エチレン系エラストマーやプロピレン系エラストマー等のポリオレフィン系エラストマーも挙げられる。これらのポリオレフィン系樹脂は、1種を用いてもよく、2種以上を併用してもよい。
 これらのポリオレフィン系樹脂の中でも、得られる熱可塑性樹脂組成物の溶融張力向上効果に優れることから、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン/プロピレン共重合体、ポリオレフィン系エラストマーが好ましく、ポリプロピレン、ポリオレフィン系エラストマーがより好ましい。
 本発明のポリオレフィン系樹脂の流動性は、メルトフローレートが0.1~70g/10分であることが好ましく、メルトフローレートが0.2~35g/10分であることがより好ましい。
 ポリオレフィン系樹脂のメルトフローレートが0.1g/10分以上であると、得られる熱可塑性樹脂組成物の成形加工性に優れる。また、ポリオレフィン系樹脂のメルトフローレートが70g/10分以下であると、得られる熱可塑性樹脂組成物の溶融張力向上効果に優れる。
 尚、メルトフローレートは、ASTM D1238に準じて測定される。具体的には、荷重2.16kgの条件で、熱可塑性樹脂の種類に応じて規定されている温度、例えば、ポリエチレン系樹脂では190℃、ポリプロピレン系樹脂では230℃に加熱して、熱可塑性樹脂が溶融した状態で測定される。
 本発明の熱可塑性樹脂組成物の組成比は、熱可塑性樹脂組成物100質量部に対して、熱可塑性樹脂用添加剤の配合量が0.01~20質量部であることが好ましく、熱可塑性樹脂用添加剤の配合量が0.1~18質量部であることがより好ましい。
 熱可塑性樹脂用添加剤の配合量が0.01質量部以上であると、得られる熱可塑性樹脂組成物の成形加工性及び得られる成形体の難燃性に優れる。熱可塑性樹脂用添加剤の配合量が20質量部以下であると、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性に優れ、得られる成形体の表面外観を悪化させない。
 本発明の熱可塑性樹脂組成物は、必要に応じて、難燃剤、充填剤、安定化剤、滑剤、発泡剤等の添加剤を含んでもよい。
 特に本発明の熱可塑性樹脂用添加剤は、難燃剤と共に熱可塑性樹脂に配合すると、得られる成形体の難燃性が顕著に向上するため、好ましい。
 難燃剤としては、例えば、テトラブロモビスフェノールA、デカブロモジフェニルエーテル、ヘキサブロモシクロドデカン、ビス(テトラブロモフタルイミド)エタン、臭素化ポリスチレン、ヘキサブロモベンゼン等のハロゲン系難燃剤;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート等のリン酸エステル系難燃剤;ポリリン酸アンモニウム塩、ポリリン酸メラミン塩等のリン酸塩系難燃剤;三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化鉄等の無機系難燃剤が挙げられる。これらの難燃剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの難燃剤の中でも、ハロゲン系難燃剤、リン酸エステル系難燃剤、リン酸塩系難燃剤が好ましく、環境負荷の観点から、リン酸エステル系難燃剤、リン酸塩系難燃剤がより好ましく、得られる成形体の難燃性に優れることから、リン酸塩系難燃剤が更に好ましい。また、リン酸塩系難燃剤の中でも、難燃剤の耐熱性に優れ、得られる成形体の着色が抑制されることから、ポリリン酸メラミン塩系難燃剤が好ましい。
 ポリリン酸メラミン塩系難燃剤としては、例えば、「アデカスタブFP-2200」、「同FP-2100J」(商品名、(株)ADEKA製)、「MELAPUR200」、「同70」(商品名、チバ・ジャパン(株)製)が挙げられる。
 難燃剤の配合量は、難燃剤の種類にもよるが、熱可塑性樹脂100質量部に対して、3~50質量部であることが好ましく、5~30質量部であることがより好ましい。
 難燃剤の配合量が3質量部以上であると、得られる成形体の難燃性に優れる。難燃剤の配合量が50質量部以下であると、熱可塑性樹脂本来の特性を損なわない。
 充填剤としては、例えば、炭酸カルシウム、タルク、ガラス繊維、炭素繊維、炭酸マグネシウム、マイカ、カオリン、硫酸カルシウム、硫酸バリウム、チタンホワイト、ホワイトカーボン、カーボンブラックが挙げられる。これらの充填剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 安定化剤としては、ペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]等のフェノール系酸化防止剤;トリス(モノノニルフェニル)フォスファイト、トリス-(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系酸化防止剤;ジラウリルチオジプロピオネート等の硫黄系酸化防止剤;「チヌビン-770」(商品名、チバ・ジャパン(株)製)、「アデカスタブLA-57」(商品名、(株)ADEKA製)等のヒンダードアミン系光安定剤;「チヌビン1577FF」(商品名、チバ・ジャパン(株)製)、「アデカスタブLA-32」(商品名、(株)ADEKA製)等の紫外線吸収剤が挙げられる。これらの安定化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 滑剤としては、例えば、ラウリル酸、パルミチン酸、オレイン酸又はステアリン酸のナトリウム、カルシウム又はマグネシウム塩が挙げられる。これらの滑剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 発泡剤としては、公知の発泡剤を用いることができ、例えば、無機発泡剤、揮発性発泡剤、分解型発泡剤が挙げられる。
 無機発泡剤としては、例えば、二酸化炭素、空気、窒素が挙げられる。
 揮発性発泡剤としては、例えば、プロパン、n-ブタン、i-ブタン、ペンタン、ヘキサン等の脂肪族炭化水素;シクロブタン、シクロペンタン等の環式脂肪族炭化水素;トリクロロフロロメタン、ジクロロジフロロメタン、ジクロロテトラフロロエタン、メチルクロリド、エチルクロリド、メチレンクロリド等のハロゲン化炭化水素が挙げられる。
 分解型発泡剤としては、例えば、アゾジカルボン酸アミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、重炭酸ナトリウムが挙げられる。
 これらの発泡剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 発泡剤の配合量は、発泡剤の種類にもよるが、熱可塑性樹脂100質量部に対して、0.1~25質量部であることが好ましい。
 発泡剤の配合量が0.1質量部以上であると、発泡剤としての効果が得られる。また、発泡剤の比重が25質量部以下であると、安定な発泡成形が可能である。
 本発明の熱可塑性樹脂組成物の混合方法は、公知の方法を用いることができ、例えば、押出混練、ロール混練等の溶融混練法が挙げられる。
 本発明の熱可塑性樹脂組成物の配合方法は、特に限定されることはなく、熱可塑性樹脂、本発明の熱可塑性樹脂用添加剤及び必要に応じて難燃剤等の添加剤を、一括で混合してもよく、熱可塑性樹脂の一部、本発明の熱可塑性樹脂用添加剤の全量及び必要に応じて難燃剤等の添加剤の全量を混合してマスターバッチを製造後、残りの熱可塑性樹脂を混合してもよい。
 本発明の成形体は、本発明の熱可塑性樹脂組成物を成形して得られる。
 成形方法は、公知の成形方法を用いることができ、例えば、押出成形、射出成形、カレンダー成形、ブロー成形、熱成形、発泡成形、真空成形、溶融紡糸が挙げられる。
 本発明の成形体は、表面外観に優れるため、光学シート等のシート材料、食品フィルム等のフィルム材料、家電用材料、OA機器用材料、自動車用材料、医療用材料、建築材料、電線用被覆材料等に好適である。特に、本発明の成形体は、難燃性に優れるため、家電用材料、OA機器用材料、自動車用材料、電線用被覆材料に好適である。
 以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
 尚、実施例中の「部」及び「%」は、「質量部」及び「質量%」を示す。
 実施例、比較例における各評価は、以下の方法により実施した。
 (1)重合率
 得られたアルキルメタクリレート系重合体(B)のラテックス1gをアセトン10gで希釈した試料を、ガスクロマトグラフ(機種名「7890」、アジレント・テクノロジー(株)製)、カラム(商品名「HP-5」、内径0.25mm、長さ30m、膜厚0.25μm、アジレント・テクノロジー(株)製)を用い、ラテックス中に残存する単量体成分(b)量を測定し、残存する単量体成分(b)量から単量体成分(b)の重合率を算出した。内部標準物質としては、メチルイソブチルケトンを用いた。
 尚、実施例2及び比較例4における重合率は、得られた熱可塑性樹脂用添加剤のラテックスを用いて測定した。
 (2)質量平均粒子径
 得られたアルキルメタクリレート系重合体(B)のラテックスをイオン交換水で希釈した試料を、粒度分布計(機種名「CHDF2000型」、MATEC社製)を用いて測定した。測定条件は、MATEC社が推奨する標準条件で行った。即ち、専用の粒子分離用キャピラリー式カートリッジ及びキャリア液を用い、液性をほぼ中性とし、流速1.4ml/分、圧力約4000psi(2600KPa)、温度35℃の条件で、ラテックス固形分濃度約3%の希釈試料0.1mlを測定に用いた。標準粒子径物質としては、粒子径既知の単分散ポリスチレンを20~800nmの範囲で合計12点用いた。
 尚、実施例2及び比較例4における質量平均粒子径は、得られた熱可塑性樹脂用添加剤のラテックスを用いて測定し、テトラフルオロエチレン系重合体(A)に由来する質量平均粒子径のピークでない方をアルキルメタクリレート系重合体(B)の質量平均粒子径とした。
 (3)質量平均分子量
 得られたアルキルメタクリレート系重合体(B)のラテックスを乾燥させた固形分のテトラヒドロフラン可溶分を試料として、ゲルパーミエーションクロマトグラフィー(機種名「HLC-8220」、東ソー(株)製)、カラム(商品名「TSK-GEL SUPER HZM-M」、東ソー(株)製)を用い、溶離液テトラヒドロフラン、温度40℃の条件で測定した。質量平均分子量は、標準ポリスチレンによる検量線から求めた。
 尚、実施例2及び比較例4における質量平均分子量は、得られた熱可塑性樹脂用添加剤のラテックスを用いて測定した。
 (4)粉体取扱性
 得られた熱可塑性樹脂用添加剤を、8メッシュの篩に通過させ、通過した試料量を求め、以下の基準で粉体取扱性を評価した。
  A:篩通過量が、80%以上
  B:篩通過量が、65%以上80%未満
  C:篩通過量が、50%以上65%未満
  D:篩通過量が、50%未満
 (5)溶融張力
 得られた熱可塑性樹脂組成物を、キャピラリー式レオメーター(機種名「ツインキャピラリーレオメーター RH-7型」、ROSAND社製)を用いて、ダイスφ1.0mm、L/D=16、温度190℃の条件で、一定量(0.54cm/分)で押出し、ストランドを一定速度(3m/分)で引き取った。
 熱可塑性樹脂組成物の溶融張力は、熱成形性、ブロー成形性、発泡成形性等の成形加工性を判断する指標の1つであり、溶融張力の向上は成形加工性の向上と見なし得る。
 (6)メルトフローレート(MFR)
 得られた熱可塑性樹脂組成物を、メルトインデクサ(機種名L243、TAKARA THERMISTOR社製)を用いて、ASTM D1238に準じて測定した。尚、加熱温度は、ポリプロピレン系樹脂の加熱温度として規定されている230℃で行った。
 (7)表面外観
 得られた成形体(厚さ500μmのフィルム)中に存在する異物の数を評価した。評価手順としては、目視でフィルム1m(幅0.1m、長さ10m)の表面上に見られる凹凸に印を付け、印を付けた凹凸部を実体顕微鏡を用いて観察し、テトラフルオロエチレン系重合体(A)の凝集物由来の凹凸のみをカウントし、以下の基準で表面外観を評価した。尚、赤外吸収スペクトル測定により、凹凸がテトラフルオロエチレン系重合体(A)の凝集物由来であるか確認することができる。
  A:凹凸数が、100個以下
  B:凹凸数が、101個~300個
  C:凹凸数が、301個~1000個
  D:凹凸数が、1001個以上
 成形体の表面凹凸数は、熱可塑性樹脂中でのテトラフルオロエチレン系重合体(A)の分散性と成形体の表面外観を判断する指標の1つであり、成形体の表面凹凸数が少ないほど分散性と表面外観に優れる。
 (8)難燃性
 得られた成形体(1/16インチの試験棒)のUL94V試験を行い、難燃性を評価した。
[実施例1]
 温度計、窒素導入管、冷却管及び攪拌装置を備えたセパラブルフラスコに、水176部、ドデシルベンゼンスルホン酸ナトリウム2部、硫酸第一鉄0.00016部、エチレンジアミン四酢酸二ナトリウム0.00048部、アスコルビン酸0.384部を投入し、容器内を窒素置換した。次いで、内温を73℃まで昇温させ、i-ブチルメタクリレート78.4部、エチルアクリレート1.6部、クメンヒドロパーオキシド0.16部、n-オクチルメルカプタン0.8部の単量体混合物を1時間かけて滴下し、更に同温で1時間保持して、アルキルメタクリレート系重合体(B1)のラテックスを得た。ガスクロマトグラフより、単量体の重合率は99.9%以上であった。得られたアルキルメタクリレート系重合体(B1)の質量平均粒子径は70nm、質量平均分子量は3万であった。
 次いで、内温を40℃とし、得られたアルキルメタクリレート系重合体(B1)のラテックス80部(アルキルメタクリレート系重合体(B1)の固形分換算)に、テトラフルオロエチレン系重合体(A)のラテックスとして「フルオンAD939L」(商品名、旭硝子(株)製、質量平均粒子径300nm、固形分60質量%)を20部(テトラフルオロエチレン系重合体(A)の固形分換算)滴下し、1時間攪拌した。25℃まで冷却後、ラテックス混合物を、酢酸カルシウム5部を含む50℃の温水320部中に滴下した後、90℃まで昇温させ、凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて熱可塑性樹脂用添加剤(1)を得た。得られた熱可塑性樹脂用添加剤は粉体取扱性に優れた。
[実施例2]
 温度計、窒素導入管、冷却管及び攪拌装置を備えたセパラブルフラスコに、テトラフルオロエチレン系重合体(A)のラテックスとして「フルオンAD939L」20部(テトラフルオロエチレン系重合体(A)のラテックスの固形分換算)、水176部、ドデシルベンゼンスルホン酸ナトリウム2部、硫酸第一鉄0.00016部、エチレンジアミン四酢酸二ナトリウム0.00048部、アスコルビン酸0.384部を投入し、容器内を窒素置換した。次いで、内温を73℃まで昇温させ、i-ブチルメタクリレート78.4部、エチルアクリレート1.6部、クメンヒドロパーオキシド0.16部、n-オクチルメルカプタン0.8部の単量体混合物を1時間かけて滴下し、更に同温で1時間保持して、テトラフルオロエチレン系重合体(A)及びアルキルメタクリレート系重合体(B)を含むラテックスを得た。ガスクロマトグラフより、単量体の重合率は99.9%以上であった。
 次いで、得られたラテックスを25℃まで冷却後、酢酸カルシウム5部を含む50℃の温水320部中に滴下した後、90℃まで昇温させ、凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて熱可塑性樹脂用添加剤(2)を得た。
[実施例3]
 ドデシルベンゼンスルホン酸ナトリウム2部を0.8部とした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(3)を得た。
[実施例4]
 n-オクチルメルカプタン0.8部を0.16部とした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(4)を得た。
[実施例5]
 n-オクチルメルカプタン0.8部を添加しなかったこと以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(5)を得た。
[実施例6]
 i-ブチルメタクリレート78.4部をi-ブチルメタクリレート70.4部、メチルメタクリレート8部とした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(6)を得た。
[実施例7]
 i-ブチルメタクリレート78.4部をi-ブチルメタクリレート62.4部、メチルメタクリレート16部とした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(7)を得た。
[実施例8]
 i-ブチルメタクリレートをn-ブチルメタクリレートとした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(8)を得た。
[実施例9]
 実施例1と同様に、アルキルメタクリレート系重合体(B1)を得た。
 得られたアルキルメタクリレート系重合体(B1)のラテックス95部(アルキルメタクリレート系重合体(B1)の固形分換算)に、テトラフルオロエチレン系重合体(A)のラテックスとして「フルオンAD939L」を5部(テトラフルオロエチレン系重合体(A)の固形分換算)滴下し、1時間攪拌した。25℃まで冷却後、ラテックス混合物を、酢酸カルシウム5部を含む50℃の温水320部中に滴下した後、90℃まで昇温させ、凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて熱可塑性樹脂用添加剤(9)を得た。
[実施例10]
 実施例1と同様に、アルキルメタクリレート系重合体(B1)を得た。
 得られたアルキルメタクリレート系重合体(B1)のラテックス50部(アルキルメタクリレート系重合体(B1)の固形分換算)に、テトラフルオロエチレン系重合体(A)のラテックスとして「フルオンAD939L」を50部(テトラフルオロエチレン系重合体(A)の固形分換算)滴下し、1時間攪拌した。25℃まで冷却後、ラテックス混合物を、硫酸アルミニウム0.175部を含む80℃の温水375部中に滴下した後、90℃まで昇温させ、凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて熱可塑性樹脂用添加剤(10)を得た。
[実施例11]
 n-オクチルメルカプタン0.5部を0.1部とした以外は、実施例10と同様に行い、熱可塑性樹脂用添加剤(11)を得た。
[比較例1]
 i-ブチルメタクリレートをメチルメタクリレートとした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(12)を得た。
[比較例2]
 水174部、2-エチルヘキシルメタクリレート78.4部、エチルアクリレート1.6部、ドデシルベンゼンスルホン酸ナトリウム2部、n-オクチルメルカプタン0.8部の混合液をホモミキサーにて10,000rpmで2分間攪拌した後、ホモジナイザーに30MPaの圧力で2回通過させ、安定な予備分散液を得た。この予備分散液に、クメンヒドロパーオキシドを0.16部加え、充分に攪拌した後、温度計、窒素導入管、冷却管及び攪拌装置を備えたセパラブルフラスコに投入し、60℃まで昇温させた。60℃に到達した時点で、水2部に硫酸第一鉄0.00016部、エチレンジアミン四酢酸二ナトリウム0.00048部、アスコルビン酸0.384部を溶解させた水溶液を添加し、重合を開始し、60℃で2時間保持した。ガスクロマトグラフより、単量体の重合率は99.9%以上であった。
 次いで、内温を40℃とし、得られたアルキルメタクリレート系重合体(B2)のラテックス80部(アルキルメタクリレート系重合体(B2)の固形分換算)に、テトラフルオロエチレン系重合体(A)のラテックスとして「フルオンAD939L」を20部(テトラフルオロエチレン系重合体(A)の固形分換算)滴下し、1時間攪拌した。25℃まで冷却後、ラテックス混合物を、酢酸カルシウム5部を含む50℃の温水320部中に滴下した後、90℃まで昇温させ、凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて熱可塑性樹脂用添加剤(13)を得たが、粉体取扱性に劣り、以後の評価を中断した。
[比較例3]
 i-ブチルメタクリレート78.4部をn-ブチルメタクリレート16部、メチルメタクリレート62.4部とした以外は、実施例1と同様に行い、熱可塑性樹脂用添加剤(14)を得た。
[比較例4]
 水240部、ドデシルメタクリレート30部、メチルメタクリレート28.8部、エチルアクリレート1.2部、ドデシルベンゼンスルホン酸ナトリウム1.5部、n-オクチルメルカプタン0.6部の混合液をホモミキサーにて10,000rpmで2分間攪拌した後、ホモジナイザーに30MPaの圧力で2回通過させ、安定な予備分散液を得た。この予備分散液に、クメンヒドロパーオキシドを0.12部加え、充分に攪拌した後、温度計、窒素導入管、冷却管及び攪拌装置を備えたセパラブルフラスコに投入し、60℃まで昇温させた。60℃に到達した時点で、水2部に硫酸第一鉄0.00012部、エチレンジアミン四酢酸二ナトリウム0.00036部、アスコルビン酸0.288部を溶解させた水溶液を添加し、重合を開始し、60℃で2時間保持した。
 次いで、テトラフルオロエチレン系重合体(A)のラテックスとして「フルオンAD939L」を20部(テトラフルオロエチレン系重合体(A)の固形分換算)添加し、1時間攪拌した。その後、80℃まで昇温させ、ドデシルベンゼンスルホン酸ナトリウム0.5部、水2部に硫酸第一鉄0.00004部、エチレンジアミン四酢酸二ナトリウム0.00012部、アスコルビン酸0.096部を溶解させた水溶液を添加し、メチルメタクリレート19.6部、エチルアクリレート0.4部、n-オクチルメルカプタン0.2部の単量体混合物を1時間かけて滴下し、更に同温で1時間保持して、テトラフルオロエチレン系重合体(A)及びアルキルメタクリレート系重合体(B)を含むラテックスを得た。ガスクロマトグラフより、単量体の重合率は99.9%以上であった。
 次いで、得られたラテックスを25℃まで冷却後、酢酸カルシウム5部を含む50℃の温水320部中に滴下した後、90℃まで昇温させ、凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて熱可塑性樹脂用添加剤(15)を得た。
[比較例5]
 i-ブチルメタクリレートをメチルメタクリレートとした以外は、実施例9と同様に行い、熱可塑性樹脂用添加剤(16)を得た。
[比較例6]
 i-ブチルメタクリレートをメチルメタクリレートとした以外は、実施例10と同様に行い、熱可塑性樹脂用添加剤(17)を得た。
 用いた単量体成分(b)の組成、アルキルメタクリレート系重合体(B)の質量平均粒子径及び質量平均分子量、熱可塑性樹脂用添加剤の製造方法及び粉体取扱性を、表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 尚、表1及び表2に記載の略号は、以下の化合物を示す。
  MMA   :メチルメタクリレート
  n-BMA :ノルマルブチルメタクリレート
  i-BMA :イソブチルメタクリレート
  2-EHMA:2-エチルヘキシルメタクリレート
  DMA   :ドデシルメタクリレート
  EA    :エチルアクリレート
  n-BA  :ノルマルブチルアクリレート
 また、製造方法の欄に記載の略号は、以下の熱可塑性樹脂用添加剤の製造方法を示す。
  X:ラテックスブレンド法
  Y:存在下重合法
 表1及び表2から明らかなように、実施例1~11で得られた熱可塑性樹脂用添加剤(1)~(11)は、粉体取扱性に優れた。一方、比較例2で得られた熱可塑性樹脂用添加剤(13)は、アルキル基の炭素数が本発明の範囲より大きいアルキルメタクリレート系単量体単位を主成分としたアルキルメタクリレート系重合体(B)を用いたため、アルキルメタクリレート系重合体(B)のガラス転移温度が低く、粉体取扱性に劣った。
[製造例1~2]
 熱可塑性樹脂及び熱可塑性樹脂用添加剤を、表3記載の比率にて配合し、ハンドブレンドで混合した。その後、φ30mm同方向二軸押出機((株)プラスチック工学研究所製、L/D=30)を用いて、スクリュー回転数200rpm、シリンダー温度200℃の条件で押出し、マスターバッチ(M1)及び(M2)を得た。
 尚、熱可塑性樹脂として、ポリプロピレン(商品名「ノバテックPP FY-4」、日本ポリプロ(株)製)を用いた。
 製造例で得られたマスターバッチの組成を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
[実施例12~30、比較例7~20]
 熱可塑性樹脂及び熱可塑性樹脂用添加剤を、表4~表9記載の比率にて配合し、ハンドブレンドで混合した。その後、φ30mm同方向二軸押出機((株)プラスチック工学研究所製、L/D=30)を用いて、スクリュー回転数200rpm、シリンダー温度200℃の条件で押出し、熱可塑性樹脂組成物を得た。
 得られた熱可塑性樹脂組成物を80℃で12時間乾燥させ、Tダイを取り付けた単軸押出機((株)ジー・エム・エンジニアリング製、L/D=30)を用いて、スクリュー回転数20rpm、シリンダー温度200℃、Tダイ温度210℃の条件で、厚さ500μm、幅0.1mになるように製膜し、成形体(フィルム)を得た。
 また、熱可塑性樹脂、難燃剤及び熱可塑性樹脂用添加剤を、表4~表9記載の比率にて配合し、ハンドブレンドで混合した。その後、φ30mm同方向二軸押出機((株)プラスチック工学研究所製、L/D=30)を用いて、スクリュー回転数200rpm、シリンダー温度200℃の条件で押出し、熱可塑性樹脂組成物を得た。
 尚、難燃剤として、リン酸塩系難燃剤(商品名「アデカスタブFP-2200」、(株)ADEKA製)を用いた。
 得られた熱可塑性樹脂組成物を80℃で12時間乾燥させ、100t射出成形機(機種名「SE-100DU」、住友重機械工業(株)製)を用いて、成形温度200℃で成形し、成形体(1/16インチの試験棒)を得た。
 熱可塑性樹脂組成物の組成、溶融張力及びMFR、成形体の表面外観及び難燃性を、表4~表9に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 尚、表4~表9に記載の略号は、以下の化合物を示す。
  PP1 :ポリプロピレン(商品名「ノバテックPP FY-4」、日本ポリプロ(株)製、メルトフローレート5g/10分)
  PP2 :ポリプロピレン(商品名「ノバテックPP MA3」、日本ポリプロ(株)製、メルトフローレート12g/10分)
  SEBS:水添スチレン系エラストマー(商品名「タフテック H1062」、JSR(株)製)
 表4及び5から明らかなように、実施例12~21で得られた熱可塑性樹脂組成物は、成形加工性に優れ、得られた成形体は、表面外観及び難燃性に優れた。一方、比較例7、8、10で得られた成形体は、アルキル基の炭素数が1であるメチルメタクリレート単位を主成分としたアルキルメタクリレート系重合体(B)を用いたため、テトラフルオロエチレン系重合体(A)の分散性に劣り、表面外観及び難燃性に劣った。また、比較例9で得られた成形体は、アルキル基の炭素数が1と12のアルキルメタクリレート単位を含むアルキルメタクリレート系重合体(B)を用いたため、比較例7、8、10で得られた成形体と比べて表面外観がやや改善されたが、難燃性に劣った。更に、比較例11で得られた熱可塑性樹脂組成物は、熱可塑性樹脂用添加剤を配合していないので、成形加工性に劣り、得られた成形体は、難燃性に劣った。
 表6から明らかなように、表4及び5で用いた熱可塑性樹脂とは異なる熱可塑性樹脂を用いても、同様の効果が得られることが確認できた。
 表7から明らかなように、熱可塑性樹脂用添加剤中のテトラフルオロエチレン系重合体(A)とアルキルメタクリレート系重合体(B)の組成が異なる熱可塑性樹脂用添加剤を用いても、同様の効果が得られることが確認できた。
 表8から明らかなように、熱可塑性樹脂用添加剤の配合量を変えても、同様の効果が得られることが確認できた。
 表9から明らかなように、マスターバッチを用いても、同様の効果が得られることが確認できた。
 本発明の成形体は、表面外観に優れるため、光学シート等のシート材料、食品フィルム等のフィルム材料、家電用材料、OA機器用材料、自動車用材料、医療用材料、建築材料、電線用被覆材料等に好適である。特に、本発明の成形体は、難燃性に優れるため、家電用材料、OA機器用材料、自動車用材料、電線用被覆材料に好適である。

Claims (11)

  1.  テトラフルオロエチレン系重合体(A)及び炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)を含む熱可塑性樹脂用添加剤。
  2.  炭素数2~6のアルキル基を有するアルキルメタクリレート単位が炭素数4のアルキル基を有するアルキルメタクリレート単位である請求項1記載の熱可塑性樹脂用添加剤。
  3.  炭素数2~6のアルキル基を有するアルキルメタクリレート単位がi-ブチルメタクリレート単位である請求項1記載の熱可塑性樹脂用添加剤。
  4.  熱可塑性樹脂及び請求項1記載の熱可塑性樹脂用添加剤を含む熱可塑性樹脂組成物。
  5.  熱可塑性樹脂がポリオレフィン系樹脂である請求項4記載の熱可塑性樹脂組成物。
  6.  更に難燃剤を含む請求項4記載の熱可塑性樹脂組成物。
  7.  難燃剤がリン酸塩系難燃剤である請求項6の熱可塑性樹脂組成物。
  8.  請求項4記載の熱可塑性樹脂組成物を成形して得られる成形体。
  9.  テトラフルオロエチレン系重合体(A)及び炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)を含むラテックスを粉体化する熱可塑性樹脂用添加剤の製造方法。
  10.  テトラフルオロエチレン系重合体(A)のラテックス及び炭素数2~6のアルキル基を有するアルキルメタクリレート単位を50質量%以上含むアルキルメタクリレート系重合体(B)のラテックスを混合し、得られたラテックスを凝析する請求項9記載の熱可塑性樹脂用添加剤の製造方法。
  11.  テトラフルオロエチレン系重合体(A)の存在下でアルキルメタクリレート(b1)を50質量%以上含む単量体成分(b)を重合し、得られたラテックスを凝析する請求項9記載の熱可塑性樹脂用添加剤の製造方法。
PCT/JP2010/002596 2009-04-10 2010-04-09 熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体 WO2010116756A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117025502A KR101385375B1 (ko) 2009-04-10 2010-04-09 열가소성 수지용 첨가제 및 그의 제조 방법, 열가소성 수지 조성물 및 성형체
JP2010517218A JP5668474B2 (ja) 2009-04-10 2010-04-09 熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体
US13/262,986 US8765866B2 (en) 2009-04-10 2010-04-09 Additive for a thermoplastic resin, a process for producing the same, a thermoplastic resin composition, and a shaped article
EP10761459.6A EP2418245B1 (en) 2009-04-10 2010-04-09 Additive for thermoplastic resin and method for producing same, thermoplastic resin composition, and molded article
CN201080021346.XA CN102428141B (zh) 2009-04-10 2010-04-09 热塑性树脂用添加剂及其制造方法、热塑性树脂组合物及成型体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-095948 2009-04-10
JP2009095948 2009-04-10
JP2009226729 2009-09-30
JP2009-226729 2009-09-30

Publications (1)

Publication Number Publication Date
WO2010116756A1 true WO2010116756A1 (ja) 2010-10-14

Family

ID=42936047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002596 WO2010116756A1 (ja) 2009-04-10 2010-04-09 熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体

Country Status (7)

Country Link
US (1) US8765866B2 (ja)
EP (1) EP2418245B1 (ja)
JP (1) JP5668474B2 (ja)
KR (1) KR101385375B1 (ja)
CN (1) CN102428141B (ja)
TW (1) TWI568784B (ja)
WO (1) WO2010116756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120277379A1 (en) * 2009-11-26 2012-11-01 Mitsubishi Rayon Co., Ltd. Processing aid for polyolefin-based resin, polyolefin-based resin composition and molded article

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484829B1 (ko) * 2010-04-27 2015-01-20 미츠비시 레이온 가부시키가이샤 폴리올레핀계 수지용 첨가제를 위한 분산제, 폴리올레핀계 수지 조성물 및 성형체
EP2942360B1 (en) * 2013-01-07 2017-07-26 Mitsubishi Chemical Corporation Thermoplastic resin powder and method for producing same
WO2015008649A1 (ja) * 2013-07-18 2015-01-22 旭硝子株式会社 含フッ素重合体水性分散液の製造方法、含フッ素重合体水性分散液および含フッ素重合体
DE112016005008B4 (de) * 2015-10-30 2023-06-01 Yazaki Corporation Hitzebeständiges flexibles stromkabel und kabelbaum, der dieses verwendet
CN109307727A (zh) * 2017-07-28 2019-02-05 中国石油天然气股份有限公司 一种羧基丁苯胶乳中残留单体和其它有机成分的测定方法
CN113527724B (zh) * 2021-07-21 2023-12-08 常熟理工学院 一种粒径可控的含氟聚合物乳液凝聚方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214184A (ja) 1992-02-07 1993-08-24 Mitsubishi Rayon Co Ltd 加工性の改良されたポリプロピレン樹脂組成物
JPH06306212A (ja) 1993-04-23 1994-11-01 Kanegafuchi Chem Ind Co Ltd ポリオレフィン系樹脂組成物
JPH1160871A (ja) * 1997-08-22 1999-03-05 Mitsubishi Rayon Co Ltd ポリオレフィン樹脂用リサイクル性向上剤、その使用法およびその製造方法
JPH11124478A (ja) 1997-08-22 1999-05-11 Mitsubishi Rayon Co Ltd ポリオレフィン樹脂用溶融張力向上剤およびその製造方法
JP2000290461A (ja) * 1999-04-06 2000-10-17 Mitsubishi Rayon Co Ltd メタクリル酸メチル系樹脂組成物
JP2002090440A (ja) 2000-09-18 2002-03-27 Toshiba Corp 投下物を用いた計測システム
WO2002090440A1 (fr) * 2001-05-08 2002-11-14 Mitsubishi Rayon Co., Ltd. Modificateur de resine thermoplastique et composition de resine thermoplastique contenant ce modificateur
JP2004155946A (ja) * 2002-11-07 2004-06-03 Mitsubishi Rayon Co Ltd 熱可塑性樹脂用改質剤及びこれを用いた熱可塑性樹脂組成物ならびに製品
JP2005036118A (ja) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd 熱可塑性樹脂用改質剤およびこれを用いた熱可塑性樹脂組成物、成形品
JP2009095948A (ja) 2007-10-18 2009-05-07 Chiyoda Integre Co Ltd 板状部材製造装置及び板状部材製造方法
JP2009226729A (ja) 2008-03-21 2009-10-08 Fujifilm Corp 防曇フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859120A (en) * 1971-05-26 1975-01-07 Du Pont Exterior siding of an aluminum substrate coated with a durable low gloss clear coating composition containing fluorocarbon polymer particles
US6344493B2 (en) * 1997-08-22 2002-02-05 Mitsubishi Rayon Co., Ltd. Melt tension improver for polyolefin resins and process for producing the same
US20040143068A1 (en) * 2001-05-08 2004-07-22 Souichiro Honda Modifier for thermoplastic resin and thermoplastic resin composition using the same
US7067574B2 (en) * 2001-07-30 2006-06-27 Daikin Industries, Ltd. Aqueous dispersion composition of fluororesin for coating
JP2004018638A (ja) 2002-06-14 2004-01-22 Asahi Glass Co Ltd 含フッ素重合体水性分散液

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214184A (ja) 1992-02-07 1993-08-24 Mitsubishi Rayon Co Ltd 加工性の改良されたポリプロピレン樹脂組成物
JPH06306212A (ja) 1993-04-23 1994-11-01 Kanegafuchi Chem Ind Co Ltd ポリオレフィン系樹脂組成物
JPH1160871A (ja) * 1997-08-22 1999-03-05 Mitsubishi Rayon Co Ltd ポリオレフィン樹脂用リサイクル性向上剤、その使用法およびその製造方法
JPH11124478A (ja) 1997-08-22 1999-05-11 Mitsubishi Rayon Co Ltd ポリオレフィン樹脂用溶融張力向上剤およびその製造方法
JP2000290461A (ja) * 1999-04-06 2000-10-17 Mitsubishi Rayon Co Ltd メタクリル酸メチル系樹脂組成物
JP2002090440A (ja) 2000-09-18 2002-03-27 Toshiba Corp 投下物を用いた計測システム
WO2002090440A1 (fr) * 2001-05-08 2002-11-14 Mitsubishi Rayon Co., Ltd. Modificateur de resine thermoplastique et composition de resine thermoplastique contenant ce modificateur
JP2004155946A (ja) * 2002-11-07 2004-06-03 Mitsubishi Rayon Co Ltd 熱可塑性樹脂用改質剤及びこれを用いた熱可塑性樹脂組成物ならびに製品
JP2005036118A (ja) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd 熱可塑性樹脂用改質剤およびこれを用いた熱可塑性樹脂組成物、成形品
JP2009095948A (ja) 2007-10-18 2009-05-07 Chiyoda Integre Co Ltd 板状部材製造装置及び板状部材製造方法
JP2009226729A (ja) 2008-03-21 2009-10-08 Fujifilm Corp 防曇フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418245A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120277379A1 (en) * 2009-11-26 2012-11-01 Mitsubishi Rayon Co., Ltd. Processing aid for polyolefin-based resin, polyolefin-based resin composition and molded article

Also Published As

Publication number Publication date
EP2418245B1 (en) 2017-05-31
TWI568784B (zh) 2017-02-01
TW201041965A (en) 2010-12-01
US20120065305A1 (en) 2012-03-15
KR101385375B1 (ko) 2014-04-14
US8765866B2 (en) 2014-07-01
JP5668474B2 (ja) 2015-02-12
EP2418245A4 (en) 2012-10-10
KR20120022830A (ko) 2012-03-12
CN102428141B (zh) 2014-08-27
CN102428141A (zh) 2012-04-25
JPWO2010116756A1 (ja) 2012-10-18
EP2418245A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5668474B2 (ja) 熱可塑性樹脂用添加剤及びその製造方法、熱可塑性樹脂組成物並びに成形体
EP0822226B1 (en) Thermoplastic resin composition containing polytetrafluoroethylene powder mixture
JP3272985B2 (ja) ポリテトラフルオロエチレン含有混合粉体の製造方法
KR101544232B1 (ko) 폴리올레핀계 수지용 분체상 가공 조제와 그의 제조방법, 수지 조성물 및 성형품
JP5794146B2 (ja) ポリオレフィン系樹脂用添加剤のための分散剤、ポリオレフィン系樹脂組成物及び成形体
JP6150266B2 (ja) ポリオレフィン系樹脂用加工助剤、ポリオレフィン系樹脂組成物及び成形品
JP5189412B2 (ja) ポリオレフィン樹脂用加工助剤、ポリオレフィン樹脂組成物及び成形体
JP5673991B2 (ja) 分散性向上剤、熱可塑性樹脂組成物及び成形体
JP2015227420A (ja) ポリオレフィン樹脂組成物及び成形体
JP2011252177A (ja) 熱可塑性樹脂用改質剤マスターバッチ、熱可塑性樹脂組成物及び成形体
JP2014224207A (ja) 艶消し効果調整剤、艶消し剤組成物、艶消し効果調整剤含有熱可塑性樹脂組成物及びその成形体
JP2014001370A (ja) ポリオレフィン樹脂用加工助剤、ポリオレフィン樹脂組成物及び成形体
JP3280904B2 (ja) 熱成形用ポリオレフィン系シート
JP6175876B2 (ja) ポリオレフィン樹脂組成物及び成形体
JP2010120981A (ja) カレンダー成形用ポリオレフィン系樹脂組成物及びその成形品を得る方法
WO2022176852A1 (ja) 樹脂添加剤、樹脂組成物および成形体
JP2011246688A (ja) 難燃剤分散性向上剤、熱可塑性樹脂組成物及び成形体
JP2013224386A (ja) 熱可塑性樹脂組成物及び成形体
JP2010126708A (ja) 熱成形用ポリオレフィン系シート、樹脂組成物、成形体の成形方法
JP2009286819A (ja) 熱可塑性エラストマー組成物、ポリオレフィン系樹脂用改質剤、及び樹脂組成物、並びに成形体
JP2012233095A (ja) テトラフルオロエチレン系樹脂含有粉体の製造方法、該製造方法により製造された熱可塑性樹脂用改質剤及び熱可塑性樹脂組成物。

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021346.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010517218

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761459

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010761459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010761459

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7311/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117025502

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13262986

Country of ref document: US