WO2010116689A1 - 車両駆動装置の発熱部冷却構造 - Google Patents

車両駆動装置の発熱部冷却構造 Download PDF

Info

Publication number
WO2010116689A1
WO2010116689A1 PCT/JP2010/002368 JP2010002368W WO2010116689A1 WO 2010116689 A1 WO2010116689 A1 WO 2010116689A1 JP 2010002368 W JP2010002368 W JP 2010002368W WO 2010116689 A1 WO2010116689 A1 WO 2010116689A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
passage
opening
catch tank
heat generating
Prior art date
Application number
PCT/JP2010/002368
Other languages
English (en)
French (fr)
Inventor
林宏司
冨田誠
小島真一
長谷川隆一
三木隆広
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112010001550.3T priority Critical patent/DE112010001550B4/de
Priority to US13/057,875 priority patent/US8456045B2/en
Priority to CN2010800073676A priority patent/CN102317656B/zh
Publication of WO2010116689A1 publication Critical patent/WO2010116689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/045Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0476Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a heat generating portion cooling structure for a vehicle drive device, and more particularly to a heat generating portion cooling structure for a vehicle drive device suitable when a catch tank and heat generating portions on both sides thereof are provided in the case.
  • a rotating machine, a transmission mechanism, and a power split mechanism are provided in a transmission case fastened to the engine. Since differential mechanisms and the like are mounted with high density, it is necessary to sufficiently lubricate and cool these mechanisms and cool the rotating machine.
  • motor generators such as a generator motor
  • a cooling structure that cools the motor generator and its peripheral part is important.
  • a cooling system having an oil pump such as a gear pump and a heat exchanger for exchanging heat with an oil cooler or a coolant circulation path on the radiator side, and allowing the cooled oil to pass to the motor generator side (For example, refer to Patent Document 3).
  • the vehicle drive device having the conventional motor cooling structure as described above employs a power split mechanism with a planetary gear structure, one side and the other side with respect to the engine output shaft coupled to the carrier
  • the motor generators on the one side are collinear with each other, the motor generator on one side exclusively has the maximum heat generation amount on the low vehicle speed side, and the motor generator on the other side exclusively has the maximum heat generation amount on the high vehicle speed side.
  • the present invention can sufficiently supply cooling oil to the heat generating portion when the heat generating portion reaches the maximum heat generation amount even though it has a simple configuration, and can increase the efficiency of the vehicle drive device.
  • An object is to provide a cooling structure for a vehicle drive device.
  • a cooling structure for a vehicle drive device includes (1) a pumping means for pumping oil stored in a case into a catch tank provided in the case, and the oil in the catch tank.
  • An oil circulation passage that circulates in the case through the catch tank while supplying the heat generation portion on one side and the heat generation portion on the other side of the heat generation portion cooling structure for a vehicle drive device, wherein the oil circulation passage A first passage for causing the oil to flow down to the heat generating part on the one side when the liquid level of the oil in the catch tank rises to a first height, and a liquid level of the oil in the catch tank.
  • the amount of oil flowing down to the heat generating part on the other side is larger than the amount of oil flowing down to the heat generating part on the one side.
  • the heat generating part on the other side has the maximum heat generation amount when the cooling oil is insufficient, it is reliably prevented that the heat generating part is insufficiently cooled. Further, there is no need to provide a valve or a switching mechanism for switching the cooling oil supply flow path or adjusting the flow rate of the oil, and a simple configuration can be achieved.
  • the heat generating part cooling structure for a vehicle drive device described in (1) above is (2) the first passage has a first opening that opens on the inner wall surface of the catch tank, and the second passage is the catch tank. It is preferable that the first opening and the second opening have different positions in the vertical direction.
  • the first passage has a third opening that opens on the inner wall surface of the catch tank separately from the first opening.
  • the third opening may be positioned at a height in the vertical direction equivalent to the second opening, and the opening area may be smaller than that of the second opening.
  • the heat generating part cooling structure for a vehicle drive device is: (4) a plurality of oil introductions in which the oil circulation passage introduces the oil pumped up by the pumping means into the catch tank through a plurality of different paths;
  • the passage has a passage, and the second passage is formed so as to communicate with any one of the plurality of oil introduction passages by a passage forming member having an orifice hole opened inward of the catch tank.
  • the main part of the second passage formed by the passage forming member is a passage having a cross-sectional area larger than that of the orifice hole.
  • a passage portion upstream of the orifice hole of the second passage extends to the upper side in the vertical direction of the catch tank, and
  • the passage forming member forms a conduit that bends in the vicinity of the orifice hole so that a passage portion downstream of the orifice hole of the second passage extends from the catch tank to the one side in the horizontal direction. It is good.
  • the heat generating part cooling structure for a vehicle drive device is: (6) a plurality of oil introductions in which the oil circulation passage introduces the oil pumped up by the pumping means into the catch tank through a plurality of different paths; A passage, an opening on one side that opens the first passage to the catch tank, and an opening on the other side that opens the second passage to the catch tank.
  • a passage forming member that forms any one of the oil introduction passages and forms an orifice hole on one side facing the opening on the one side and an orifice hole on the other side facing the opening on the other side And the passage forming member partially closes the opening on the one side and the opening on the other side so that the opening on the one side and the other side
  • the heat generating part on the other side has the maximum heat generation amount when the cooling oil is insufficient, it is reliably prevented that the heat generating part is insufficiently cooled.
  • the passage forming member partially closes the opening on one side and the opening on the other side, the heights of both openings are made different, so that the opening on one side and the opening on the other side are formed on the wall surface of the catch tank. Can be formed at the same height, and the processing or molding can be facilitated.
  • the opening area of the orifice hole on the one side is preferably smaller than the opening area of the orifice hole on the other side.
  • oil is preferentially supplied to the heat generating part on the other side through the second passage from the stage where the oil level in the catch tank is low, but an appropriate amount of oil is also supplied to the heat generating part on one side through the first passage. Is supplied. Further, when the oil level in the catch tank is high, the passage forming member restricts the oil in the catch tank from flowing into the second passage from the opening on the other side. It is not so limited that oil flows into the first passage from the opening on one side, and the oil is sufficiently supplied to the heat generating portion on one side.
  • the circulation passage includes a plurality of oil introduction passages for introducing the oil pumped up by the pumping means into the catch tank through a plurality of different paths, and a level of the oil in the catch tank rises to a first height.
  • the plurality of oil introduction passages so that the height of the liquid level in the first tank portion is always lower than the height of the liquid level in the second tank portion except when the oil is filled in both of the portions. The ratio of introduction of the oil into the first tank part and the second tank part is set.
  • the volume ratio between the first tank part and the second tank part can be set as appropriate depending on the installation position and height of the partition wall part, and the period during which oil is preferentially supplied to the heat generating part on the other side can be set optimally.
  • the horizontal cross-sectional area ratio between the first tank part and the second tank part may not be changed depending on the height of the partition wall part, or may be changed.
  • the pumping means increases the pumping amount of the oil to the catch tank when the output of the vehicle drive device increases. Is preferred.
  • This configuration makes it possible to perform sufficient cooling when the output of the vehicle drive device increases and the amount of heat generated by the entire device increases.
  • the heat generating part cooling structure for a vehicle drive device is (10) the pumping means is rotatably incorporated in the case, and the oil stored in the case is pumped up to the catch tank It is preferable to include at least one rotational transmission element and a pump that pumps oil stored in the case into the catch tank.
  • This configuration can reduce the amount of oil stored on the bottom side of the case during high-speed rotation of the rotary transmission element, thereby reducing the rotational resistance of the rotary transmission element.
  • the rotation transmission element increases the rotation speed when the output of the vehicle drive device increases, and the oil to the catch tank is increased. It is preferable to increase the pumping amount.
  • This configuration can increase the amount of oil pumped by the rotational transmission element at high output, and ensure a sufficient amount of oil supply.
  • the heat generating part is preferably an electric motor capable of generating power.
  • the fluid flows through the second passage to the heat generating part on the other side, and the heat generating part on the other side is cooled.
  • the oil level in the tank rises to the first height
  • the oil flows down to the heat generating part on one side through the first passage, and the heat generating part on the one side is cooled.
  • the supply amount is insufficient
  • oil can be preferentially supplied to the heat generating part on the other side through the second passage, and when the heat generating part on the other side becomes the maximum heat generation amount when the cooling oil is insufficient, Insufficient cooling of the heat generating portion can be reliably prevented.
  • the cooling oil can be sufficiently supplied to the heat generating portion, and the efficiency of the vehicle drive device can be increased.
  • the cooling structure can be provided.
  • FIG. 2 is a schematic cross-sectional view of the main part of the heat generating part cooling structure of the vehicle drive device according to the first embodiment of the present invention corresponding to the cross-sectional view taken along the line II-II in FIG. The flow of oil at vehicle speed is also shown.
  • FIG. 1 is a schematic cross-sectional view of a main part of a heat generating part cooling structure for a vehicle drive device according to a first embodiment of the present invention, showing a state where the liquid level in a catch tank is high and the engine traveling speed is high.
  • FIG. 2 is a side cross-sectional view of the vicinity of a catch tank in the heat generating portion cooling structure of the vehicle drive device according to the first embodiment of the present invention, showing a state at a low engine speed.
  • FIG. 1 is a schematic cross-sectional view of a main part of a heat generating part cooling structure for a vehicle drive device according to a first embodiment of the present invention, showing a state where the liquid level in a catch tank is high and the engine traveling speed is high.
  • FIG. 2 is a side cross-sectional view of the vicinity of a catch tank in the heat generating portion cooling structure of the vehicle drive device according to the first embodiment of the present invention, showing a state at a low engine speed.
  • FIG. 2 is a side cross-sectional view around the catch tank in the heat generating part cooling structure of the vehicle drive device according to the first embodiment of the present invention, showing a state at a high engine traveling speed.
  • FIG. 2 is a side cross-sectional view of the periphery of a catch tank in the heat generating part cooling structure of the vehicle drive device according to the first embodiment of the present invention, showing a state at an EV traveling high vehicle speed.
  • FIG. 2 is a side sectional view of the periphery of a catch tank in the heat generating part cooling structure of the vehicle drive device according to the first embodiment of the present invention, showing a state at the time of EV traveling at a low vehicle speed.
  • FIGS. 1 and 2 are views showing a vehicle drive device and a heat generating portion cooling structure thereof according to a first embodiment of the present invention.
  • the vehicle drive device of this embodiment is mounted on a hybrid vehicle, and includes an internal combustion engine (not shown) (hereinafter simply referred to as an engine) and a transaxle 1 (power transmission device) as shown in FIGS. 1 and 2. It is fastened together.
  • the transaxle 1 is connected to an input shaft 11 connected to an engine output shaft and left and right drive wheel shafts in a case 10 integrally fastened to the engine.
  • the case 10 constitutes a part of the transmission case.
  • this case 10 incorporates a pair of planetary gear mechanisms (shown schematically by dotted lines in FIG. 1) that serve as a power split mechanism and a speed reduction mechanism, and an outer cylinder portion 12a in which these ring gears are integrated.
  • a known transmission mechanism 12 having a counter drive gear 12b (rotational transmission element), a first generator motor 13 (one heat generating portion) coupled to the input element 12c on the power split mechanism side of the transmission mechanism 12, and the transmission mechanism 12
  • the second generator motor 14 (the other heat generating part) coupled to the input element 12d on the speed reduction mechanism side, the counter driven gear 15 (rotational transmission element) meshed with the counter drive gear 12b of the transmission mechanism 12, and the counter driven gear 15
  • Differential power is input to the differential ring gear 16 (rotational transmission element) and the power is output to the left and right drive shafts.
  • the first motor generator 13 is arranged on one side of the case 10
  • the second motor generator 14 is arranged on the other side of the case 10.
  • the structure of such a gear train is the same as that of a known one.
  • the operation of the transaxle 1 is comprehensively controlled by an unillustrated ECU (electronic control unit) in accordance with the traveling state of the vehicle and the requested operation input (for example, range switching request operation, acceleration request, deceleration request, etc.) from the driver.
  • the first generator motor 13 and the second generator motor 14 are each controlled by the motor or the generator and the operating conditions thereof. Further, the engine is operated or stopped, and the operating conditions during operation are controlled by an engine ECU that cooperates with an ECU that performs overall control of the transaxle 1.
  • the input shaft 11 is coupled to the output shaft of the engine via a damper 18 on the outer end side, and is coupled to the carrier of the power split mechanism of the transmission mechanism 12 on the inner end side. Further, a rotor 21 of a gear pump type or vane pump type oil pump 20 is connected to an end portion of the rotary transmission shaft 19 which is inserted into the inner end side of the input shaft 11 and penetrates the center portion of the second generator motor 14. The oil pump 20 pumps up the lubricating / cooling oil stored on the bottom side in the case 10 according to the rotation of the input shaft 11.
  • the first generator motor 13 and the second generator motor 14 (hereinafter also simply referred to as the generator motors 13 and 14) include stators 31 and 41 and rotors 32 and 42.
  • the stators 31 and 41 are attached to the case 10. Each is fastened by a plurality of fastening bolts (not shown).
  • the stators 31 and 41 are each formed by winding a stator coil around a substantially annular stator core formed by laminating a plurality of electromagnetic steel plates, for example. Permanent magnets are embedded at equiangular intervals in a rotor body formed by laminating electromagnetic steel sheets.
  • Such a generator motor itself is the same as a known one.
  • the case 10 is lifted from the inner bottom side of the case 10 by a differential ring gear 16, a counter driven gear 15 and a counter drive gear 12 b (hereinafter also referred to as a differential ring gear 16 or the like) that are rotational transmission elements.
  • An oil introduction passage 51 through which oil can be introduced is formed.
  • the oil introduction passage 51 is configured to draw oil that is lifted up in the direction of arrow f1 in FIG. It is guided in the introduction direction indicated by f3 and f4, and flows into the catch tank 52 located in the upper side in the vertical direction in the case 10.
  • the catch tank 52 is located on the center side of the case 10 in the left-right direction, and is defined by a plurality of case members 10 a, 10 b that are fastened to the left and right to form the case 10.
  • the oil pumped up by the differential ring gear 16 and the like can be stored, and the oil can gradually flow down from the lower flow hole 52a (see FIG. 1) to the counter drive gear 12b and the like. That is, the catch tank 52 can temporarily store the oil pumped up by the differential ring gear 16 or the like, and increases the amount of stored oil as long as the oil flowing in more than the flow amount continues. Can be made.
  • the differential ring gear 16, the counter driven gear 15, the counter drive gear 12 b, and the oil pump 20 described above constitute pumping means for pumping oil stored in the case 10 into a catch tank 52 provided in the case 10.
  • the oil introduction passage 51 and the catch tank 52 are configured to supply oil to the first generator motor 13 that is a heat generating part on one side of the catch tank 52 and the second generator motor 14 that is a heat generating part on the other side, while the catch tank 52
  • An oil circulation passage 50 that circulates oil in the case 10 through 52 is configured.
  • the oil circulation passage 50 is further connected to the stator 31 of the first generator motor 13 and its peripheral portion (one heat generating portion) when the oil level L in the catch tank 52 rises to the first height h1.
  • the oil circulation passage 50 catches the oil pumped up from the inner bottom side of the case 10 by the oil pump 20 separately from the oil introduction passage 51 for introducing the oil pumped up by the differential ring gear 16 or the like.
  • the liquid level L of the oil stored in the interior is raised.
  • the first passage 61 has a first opening 61b (one side opening) opened on the inner wall surface 52b on one side in the left-right direction of the catch tank 52, and a stator of the first generator motor 13 from the first opening 61b. And a flow-down passage portion 61a extending to one side in the left-right direction (left side in FIG. 2) toward the upper half of the 31 and flows oil from the catch tank 52 to the stator 31 of the first generator motor 13 or the vicinity thereof. It is supposed to let you.
  • the stator 31 is obtained by winding a coil around a core, which is a laminated body of magnetic steel plates, and the coil is integrally covered and protected with a resin.
  • the second passage 62 is formed by any one of the oil introduction passages 51 and 56 by a passage forming member 63 having an orifice hole 63a that opens to the inner side of the catch tank 52 so as to substantially face the first opening 61b. It is formed to communicate with an introduction passage, for example, an oil introduction passage 56 for introducing oil from the oil pump 20.
  • the second passage 62 extends from the upstream end connected to the oil introduction passage 56 to the downstream end located above the stator 41 of the second generator motor 14 as shown in FIGS.
  • the passage has a larger cross-sectional area than the orifice hole 63a.
  • a passage portion 62 u on the upstream side of the orifice hole 63 a of the second passage 62 extends to the upper side in the vertical direction of the catch tank 52, and a passage portion 62 d on the downstream side of the orifice hole 63 a of the second passage 62 extends from the catch tank 52.
  • the passage forming member 63 forms a pipe line that bends in an L shape in the vicinity of the orifice hole 63a so as to extend to the other side in the left-right direction (the right side in FIG. 2).
  • the passage forming member 63 is disposed in the catch tank 52, but the upstream passage portion 62 u extends along the inner wall surface 52 c on the other side in the left-right direction of the catch tank 52. Or you may arrange
  • the second height h2 in the present embodiment is sufficiently smaller than the first height h1 and is the height of the liquid level L at the start of the operation of the oil pump 20, and thus is close to zero.
  • the first passage 61, the second passage 62, and the oil introduction passages 51, 56 are respectively a passage and a case defined by the concave portions facing each other or the concave wall and a flat wall surface of the plurality of case members 10a, 10b of the case 10. 10 or a passage formed by a passage forming member such as a pipe or a hose, or a passage drilled or molded in each case member 10a or 10b of the case 10. It may be a combination.
  • the oil pump 20 is a mechanical pump that rotates the rotor 21 by the rotation of the input shaft 11, it may be an electric oil pump that is controlled according to the traveling mode of the vehicle. And electric type may be used together.
  • At least one of the engine and the generator motors 13 and 14 operates as a prime mover to generate a vehicle drive force, and the generator motor Any one of 13 and 14 operates as a generator, and stores it in a battery (not shown).
  • the second generator motor 14 operates as a travel drive motor (hereinafter referred to as an EV travel mode).
  • a travel drive motor hereinafter referred to as an EV travel mode.
  • Cooperative control between the ECU for overall control of the transaxle 1 and the engine ECU is executed.
  • the required power exceeds a specified value, the engine shifts to driving.
  • the first generator motor 13 operates as a generator and the second generator motor 14 assists (power assist). ) Acts as a motor.
  • the second generator motor 14 serving as a driving motor is relatively compared to the first generator motor 13. Large calorific value.
  • the amount of oil pumped by the differential ring gear 16 or the like rotating at a low rotational speed is small, and the oil pump 20 that is a mechanical pump pumps up oil according to the engine speed.
  • Oil discharged from the pump 20 is introduced into the oil introduction passage 56.
  • the oil flows into the second passage 62 from the oil introduction passage 56, flows down to the second generator motor 14 side through the second passage 62, and cools the second generator motor 14, while passing through the orifice hole 63a. Oil is also introduced into the catch tank 52.
  • the oil level L in the catch tank 52 is approximately the height of the lower half of the first opening 61b of the first passage 61, that is, the height at which oil can be supplied to the first generator motor 13. It becomes slightly lower than h1, and an appropriate amount of oil is also supplied to the first generator motor 13.
  • the first generator-motor 13 is controlled so as to perform reverse rotation at a rotational speed with good fuel efficiency in the engine when normal driving is performed by engine driving, and the second power generation is performed when the charge amount is reduced.
  • the electric motor 14 operates as a generator.
  • the engine speed increases due to acceleration, and the first generator motor 13 becomes a generator to increase the speed.
  • Driving assistance by the second generator motor 14 is performed by the electric power and the electric power for taking out the insufficient battery.
  • the first generator motor 13 is controlled so as to appropriately maintain the engine speed, and performs power running or reverse regenerative operation depending on conditions.
  • the first generator motor 13 is more likely to generate the second power generation under the relatively high speed running state of the vehicle in which the rotation speed of the first generator motor 13 during power generation is higher or the operation state is frequently switched. Compared to the electric motor 14, the heat generation amount is relatively large.
  • the oil in the catch tank 52 flows into the first passage 61 from the first opening 61b, the oil flows down to the first generator motor 13 side through the first passage 61, and the first generator motor 13 is cooled. Further, oil is pumped up according to the engine speed by the oil pump 20, and oil discharged from the oil pump 20 is introduced into the oil introduction passage 56 and flows into the second passage 62, and passes through the second passage 62. Oil flows down to the two generator motor 14 side, and the second generator motor 14 is also cooled.
  • FIG. 6A and 6B show the vicinity of the catch tank 52 when the vehicle travels in the EV travel mode.
  • the amount of oil pumped up by the differential ring gear 16 and the like increases in the absence of oil supply from the oil pump 20, Since the liquid level L has risen to such an extent that the upper half of one opening 61b is immersed in the oil in the catch tank 52, the oil flows down to the first generator motor 13 side through the first passage 61, and the first generator motor 13 is cooled. Further, the oil in the catch tank 52 flows into the second passage 62 through the orifice hole 63a, and an appropriate amount of oil flows down to the second generator motor 14 side, so that the second generator motor 14 is also cooled.
  • the oil circulation passage 50 introduces a plurality of oil introduction passages 51 and 56 for introducing the oil pumped up by the differential ring gear 16 and the oil and the oil pumped up by the oil pump 20 to the catch tank 52 side through different paths.
  • the second passage 62 is formed so as to communicate with one oil introduction passage 56 by a passage forming member 63 having an orifice hole 63 a that opens to the inside of the catch tank 52, and is formed by the passage forming member 63. Since the main portion 62a of the second passage 62 is a passage having a larger cross-sectional area than the orifice hole 63a, the heat generating portion on the other side passes through the second passage 62 from the stage where the oil level L in the catch tank 52 is low.
  • the oil level in the catch tank becomes high.
  • the oil in the catch tank that flows into the second passage being restricted by the orifice hole the oil is sufficiently supplied to the second motor generator 14 through the first passage from the catch tank. Therefore, it can be said that the cooling oil is sufficiently supplied to the generator motor 13 or 14 when the heat generation amount of each generator motor 13 or 14 increases.
  • the passage portion 62u on the upstream side of the second passage 62 extends to the upper side in the vertical direction of the catch tank 52, and the passage portion 62d on the downstream side of the second passage 62 extends in the horizontal direction from the catch tank 52. Since the passage forming member 63 forms a conduit that bends in the vicinity of the orifice hole 63a so as to extend to one side of the motor, the amount of heat generated by each of the generator motors 13 and 14 while using the simple passage forming member 63. It can be said that the oil for cooling is sufficiently supplied to the generator motor 13 or 14 when the temperature increases, and a simple cooling structure capable of suppressing the decrease in the efficiency is obtained.
  • differential ring gear 16 and the like as the pumping means and the oil pump 20 increase the pumping amount of oil to the catch tank 52 when the engine output and the rotational output of the transaxle 1 increase.
  • the amount of oil supplied can be secured and sufficient cooling can be performed.
  • the pumping means is built in the case 10 so as to be rotatable, and at least one rotary transmission element that pumps up the oil stored in the case 10 to the catch tank 52, for example, the differential ring gear 16, the counter driven gear 15 and the counter drive gear. 12b and the oil pump 20 that pumps the oil stored in the case 10 to the catch tank 52, so that the bottom side of the case 10 is rotated at a high speed such as when the differential ring gear 16 that is a rotation transmission element rotates.
  • the amount of oil stored in the engine can be reduced, and the rotational resistance of the differential ring gear 16 and the like can be reduced.
  • the fluid flows down to the second generator motor 14 through the second passage 62, and the second
  • the generator motor 14 is preferentially cooled and then the oil level L in the catch tank 52 rises to the first height h1
  • the oil flows down to the first generator motor 13 through the first passage 61
  • the second generator motor 14 has the maximum heat generation amount when the cooling oil is insufficient, it is possible to reliably prevent the second generator motor 14 from being insufficiently cooled.
  • the configuration is simple, the cooling oil can be sufficiently supplied to the second generator motor 14 when the second generator motor 14 reaches the maximum heat generation amount, and the efficiency of the transaxle 1 is increased. It is something that can be done.
  • FIGS. 7 and 8B are views showing a heat generating part cooling structure of a vehicle drive device according to a second embodiment of the present invention. Since the heat generating part cooling structure of the vehicle drive device of each embodiment described below has a configuration similar to that of the first embodiment, the same components as those of the first embodiment are shown in FIGS. Explanation will be made using the reference numerals of the corresponding components shown, and only differences from the first embodiment will be described in detail.
  • the oil circulation passage 50 has a plurality of oil introduction passages 51 and 56 for introducing the oil pumped up by the pumping means into the catch tank 52 through a plurality of different routes. ing.
  • the oil circulation passage 50 is provided with a stator of the first generator motor 13 when the oil level L in the catch tank 52 rises to the first height h1. 31 and the peripheral part (one side heat generating part) of the first passage 71 and the second height h2 where the oil level L in the catch tank 52 is sufficiently lower than the first height h1
  • the second generator motor 14 and the second passage 72 for allowing oil to flow down to the peripheral portion (other-side heat generating portion).
  • the first passage 71 has a first opening 71b (one side opening) that opens on the inner wall surface 52b on one side of the catch tank 52, and the stator 31 of the first generator motor 13 from the first opening 71b.
  • a flow passage portion 71a extending to one side in the left-right direction (left side in FIG. 2) toward the upper half side, so that oil flows from the catch tank 52 to the stator 31 of the first generator motor 13 or the vicinity thereof. It has become.
  • the second passage 72 is generally opposed to the main portion 72a from the upstream end side connected to the oil introduction passage 56 to the downstream end side located above the stator 41 of the second generator motor 14 and the first opening 71b.
  • the second opening 72b (the opening on the other side) that opens to the inner side of the catch tank 52 is provided. That is, the oil circulation passage 50 has a first opening 71 b that opens the first passage 71 to the catch tank 52 and a second opening 72 b that opens the second passage 72 to the catch tank 52.
  • a passage forming member 73 as shown in FIG. 7 is provided on the inner side of the catch tank 52.
  • the passage forming member 73 forms one oil introduction passage 56 of the plurality of oil introduction passages 51 and 56, and also has one orifice passage 73a (one orifice hole) and the first opposite to the first opening 71b. 2 has an orifice passage 73b on the other side (orifice hole on the other side) opposed to the opening 72b, and the orifice passage 73a on one side has a smaller cross-sectional area than the orifice passage 73b on the other side.
  • the passage forming member 73 extends to the upper side in the vertical direction of the catch tank 52 so that the passage portion 73u upstream of the other orifice passage 73b communicates with the oil introduction passage 56, and the one orifice passage.
  • An inverted T-shape is formed so that 73a communicates with the first opening 71b and the other orifice passage 73b communicates with the second opening 72b.
  • the passage forming member 73 partially closes the first opening 71b and the second opening 72b from the inside of the catch tank 52 at both ends of the lower pipe portion 73c extending to the left and right, thereby
  • the substantial opening height of the second opening 72b is different from each other in the vertical direction, and the substantial opening area is different.
  • the opening area of the one-side orifice passage 73a that opens into the first opening 71b is smaller than the opening area of the other-side orifice passage 73b that opens into the second opening 72b.
  • the first opening 71b narrowed on the small diameter end side of the lower pipe portion 73c of the member 73 is substantially wider than the second opening 72b narrowed on the large diameter end side of the lower pipe portion 73c of the passage forming member 73.
  • the first opening 71b has a substantial opening height (the centroid position of the opening) that is lower than the substantial opening height of the second opening 72b.
  • the oil is not pumped up from the oil pump 20, so when the oil level L in the catch tank 52 reaches the first height h1, the catch tank 52 When the inflow of oil into the first passage 71 is started and the oil level L in the catch tank 52 reaches a third height h3 higher than the first height h1, the lower side of the passage forming member 73 The inflow of oil from the catch tank 52 to the second passage 72 is started through the second opening 72b narrowed on the large diameter end side of the pipe portion 73c. However, at this time, since the second opening 72b is narrower than the first opening 71b, the preferential supply state to the first passage 71 is maintained.
  • the oil level L in the catch tank 52 reaches the second height h2, but is not so high, and the second generator motor 14 is passed through the second passage 72 at low vehicle speed when the oil supply amount is insufficient.
  • the oil is preferentially supplied, and it is reliably prevented that the cooling of the second generator motor 14 that has the maximum heat generation amount when the cooling oil is insufficient is insufficient. Therefore, the same effect as that of the first embodiment can be expected.
  • both the openings 71b and 72b can have the same height, and there is an advantage that the processing or molding can be facilitated.
  • the above-described passage forming member 73 closes the first opening 71b and the second opening 72b on the inner wall surfaces 52b and 52c of the catch tank 52.
  • the lower pipe portion 73c of the member 73 is inserted into the first passage 71 and the second passage 72 through both the openings 71b and 72b, so that the first opening 71b and the second opening 72b are narrowed. Needless to say.
  • FIGS. 9A and 9B are views showing a heat generating part cooling structure of the vehicle drive device according to the third embodiment of the present invention.
  • the oil circulation passage 50 has a plurality of oil introduction passages 51 and 56 for introducing the oil pumped up by the pumping means into the catch tank 52 through a plurality of different routes.
  • the oil circulation passage 50 is configured such that when the oil level L in the catch tank 52 rises to the first height h1, the stator 31 of the first generator motor 13 and its peripheral portion (one side) A first passage 81 for causing the oil to flow down to the heat generating portion on the side) and the second generator motor when the oil level L in the catch tank 52 rises to a second height h2 lower than the first height h1. 14 and a second passage 82 through which oil flows down to the peripheral portion (the heat generating portion on the other side).
  • the first passage 81 on one of the left and right sides of the catch tank 52 has a first opening 81b (one side opening) that opens on the inner wall surface 52b on one side of the catch tank 52, and a first passage 81b through the first opening 81b. 1 has a flow-down passage portion 81a extending to one side in the left-right direction (left side in FIG. 2) toward the upper half side of the stator 31 of the generator motor 13, and as shown in FIG.
  • a high vehicle speed when the oil level L of the oil becomes high sufficient oil is allowed to flow from the catch tank 52 to the stator 31 of the first generator motor 13 or in the vicinity thereof, so that sufficient cooling is performed when the first generator motor 13 generates maximum heat. To do.
  • the second passage 82 on the other side of the catch tank 52 has a second opening 82b (an opening on the other side) that opens on the inner wall surface 52c on the other side of the catch tank 52, and the second generator motor from the opening 82b. 14, and a flow-down passage portion 82 a extending to the other half side (right side in FIG. 2) toward the upper half of the stator 41.
  • the oil in the catch tank 52 At a low vehicle speed when the liquid level L is low, oil is sufficiently allowed to flow from the catch tank 52 to the stator 41 of the second generator motor 14 or the vicinity thereof, so that sufficient cooling is performed when the second generator motor 14 generates maximum heat. It has become.
  • the first opening 81b and the second opening 82b are thus different from each other in the vertical direction.
  • the oil level L in the catch tank 52 rises to the second height h2
  • the fluid flows down to the second generator motor 14 through the second passage 82, and the second generator motor 14
  • the oil flows down to the first generator motor 13 through the first passage 81, and the first generator motor 13 is cooled.
  • the oil can be preferentially supplied to the second generator motor 14 through the second passage 82 when the supply amount of the cooling oil is insufficient.
  • the electric motor 14 has the maximum heat generation amount when the cooling oil is insufficient, it is possible to reliably prevent the second generator motor 14 from being insufficiently cooled.
  • the cooling oil can be sufficiently supplied to the second generator motor 14 when the second generator motor 14 reaches the maximum heat generation amount, and the efficiency of the transaxle 1 is increased. Therefore, the same effect as the first embodiment can be obtained.
  • the opening positions of the first opening 81b and the second opening 82b are different in the vertical direction as described above, the first opening 81b and the second opening on the inner wall surfaces 52b and 52c of the catch tank 52 are provided. It is only necessary to make the position different from that of 82b, and the configuration is simple.
  • FIGS. 10A and 10B are views showing a heat generating part cooling structure of a vehicle drive device according to a fourth embodiment of the present invention.
  • the present embodiment has a configuration similar to that of the third embodiment, except that a third flow-down passage is provided in addition to the first passage and the second passage.
  • the oil circulation passage 50 is configured such that when the oil level L in the catch tank 52 rises to the first height h1, the stator 31 of the first generator motor 13 and its peripheral portion (on one side) A first passage 91 that causes oil to flow down to the heat generating portion), and the second generator motor 14 when the oil level L in the catch tank 52 rises to a second height h2 that is lower than the first height h1.
  • a second passage 92 through which oil flows down to the peripheral portion (the heat generating portion on the other side).
  • the first passage 91 on one of the left and right sides of the catch tank 52 has two openings on one side opened on the inner wall surface 52b on one side of the catch tank 52, that is, the first opening 91b and the third opening 91e (one side).
  • Side opening) and a flow-down passage portion 91a extending from the first opening 91b and the third opening 91e to the upper half side of the stator 31 of the first generator motor 13 on one side in the left-right direction (left side in FIG. 2).
  • 91c and flows down from the catch tank 52 to the stator 31 of the first generator motor 13 or in the vicinity thereof at a high vehicle speed at which the oil level L of the oil in the catch tank 52 increases as shown in FIG. 10B.
  • a sufficient amount of oil is allowed to flow down from the passage portion 91a to perform sufficient cooling when the first generator motor 13 generates maximum heat.
  • the second passage 92 on the other side of the catch tank 52 has a second opening 92b (an opening on the other side) that opens on the inner wall surface 52c on the other side of the catch tank 52 and a second passage 92b through the second opening 92b.
  • 10 has a flow-down passage portion 92a extending to the other half side (right side in FIG. 2) in the left-right direction toward the upper half of the stator 41 of the generator motor 14, and as shown in FIG.
  • the oil is sufficiently allowed to flow from the catch tank 52 to the stator 41 of the second generator motor 14 or the vicinity thereof, so that sufficient cooling is performed when the second generator motor 14 generates the maximum heat. To do.
  • the opening height h2 ′ of the opening 91e (third opening) and the opening height h2 of the opening 92b (second opening) are the same position in the vertical direction, but the opening 91b (first The height h1 of the opening) is set sufficiently higher than the second opening 92b. Therefore, the oil can be supplied to the stator 31 of the first generator motor 13 only through the flow-down passage portion 91a at a low vehicle speed at which the oil level L in the catch tank 52 becomes low.
  • the oil level L in the catch tank 52 rises to the second height h2
  • the fluid flows down to the second generator motor 14 through the second passage 92, and the second generator motor 14
  • the oil flows down to the first generator motor 13 through the first passage 91, and the first generator motor 13 is cooled.
  • the oil can be preferentially supplied to the second generator motor 14 through the second passage 92 when the supply amount of the cooling oil is insufficient.
  • the electric motor 14 has the maximum heat generation amount when the cooling oil is insufficient, it is possible to reliably prevent the second generator motor 14 from being insufficiently cooled.
  • the cooling oil can be sufficiently supplied to the second generator motor 14 when the second generator motor 14 reaches the maximum heat generation amount, and the efficiency of the transaxle 1 is increased. Therefore, the same effect as the first embodiment can be obtained.
  • the first passage 91 has an opening 91e that opens on the inner wall surface 52b of the catch tank 52 in addition to the opening 91b, and the opening 91e is in the vertical direction equivalent to the opening 92b. Since the opening area is smaller than the opening 92b, the oil level L of the oil in the catch tank 52 passes through the first passage 91 from a low stage where it rises to the second height h2. Thus, an appropriate amount of oil can be supplied to the first generator motor 13, and cooling according to the heat generation state of the generator motors 13 and 14 can be performed accurately.
  • FIG. 12A and FIG. 12B are views showing a heat generating part cooling structure of a vehicle drive device according to a fifth embodiment of the present invention.
  • a passage forming member 94 is provided in the catch tank 52 in place of the downflow passage 91c of the fourth embodiment, and has a configuration similar to that of the fourth embodiment.
  • a bottomed cylindrical passage forming member 94 is disposed at a portion where the first passage 91 opens into the catch tank 52.
  • the passage forming member 94 includes a longitudinal passage 94a that is continuous with the flow-down passage portion 91a of the first passage 91 and extends in the vertical direction along the inner wall surface 52b of the catch tank 52, and a first passage on the lower end side of the longitudinal passage 94a.
  • An orifice hole 94b for opening the passage 91 into the catch tank 52 and an opening 94c on the upper end side of the vertical passage 94a are formed.
  • the opening 94 c of the passage forming member 94 that forms the first passage 91 is orthogonal to the inner wall surface 52 b on one side of the catch tank 52, and the orifice hole 94 b is substantially parallel to the inner wall surface 52 b on one side of the catch tank 52.
  • the second passage 92 is opposed to the second passage 92.
  • the first passage 91 has one opening 91b that opens on the inner wall surface 52b on one side of the catch tank 52, and one side in the left-right direction from the opening 91b to the upper half of the stator 31 of the first generator motor 13. (A left side in FIG. 2) and a flow-down passage portion 91 a extending to the left (in FIG. 2).
  • FIG. 12B the first from the catch tank 52 at the high vehicle speed when the oil level L in the catch tank 52 becomes high.
  • a sufficient amount of oil is allowed to flow from the downflow passage portion 91a to the stator 31 of the generator motor 13 or in the vicinity thereof, so that sufficient cooling is performed when the first generator motor 13 generates maximum heat.
  • the second passage 92 has a second opening 92b that opens on the inner wall surface 52c on the other side of the catch tank 52, and the opening 92b toward the upper half of the stator 41 of the second generator motor 14 as shown in FIGS. 12A and 12B. 12a, and the oil level in the catch tank 52 is low, for example, at a low vehicle speed when the oil level L in the catch tank 52 is low, as shown in FIG. 12A.
  • L rises to a second height h2 that is lower than the first height h1
  • the oil is sufficiently allowed to flow from the catch tank 52 to the stator 41 of the second generator motor 14 or the vicinity thereof, thereby generating the second power generation.
  • Sufficient cooling is performed when the electric motor 14 generates maximum heat.
  • the opening height h2 ′ of the orifice hole 94b (third opening) and the opening height h2 of the opening 92b (second opening) are the same position in the vertical direction, but the opening 94c (first opening). 1 opening) is set sufficiently higher than the second opening 92b.
  • the oil level L in the catch tank 52 rises to the second height h2
  • the fluid flows down to the second generator motor 14 through the second passage 92, and the second generator motor 14
  • the oil flows down to the first generator motor 13 through the first passage 91, and the first generator motor 13 is cooled.
  • the oil can be preferentially supplied to the second generator motor 14 through the second passage 92 when the supply amount of the cooling oil is insufficient.
  • the electric motor 14 has the maximum heat generation amount when the cooling oil is insufficient, it is possible to reliably prevent the second generator motor 14 from being insufficiently cooled.
  • the cooling oil can be sufficiently supplied to the second generator motor 14 when the second generator motor 14 reaches the maximum heat generation amount, and the efficiency of the transaxle 1 is increased. Therefore, the same effect as the first embodiment can be obtained.
  • the first passage 91 has an orifice hole 94b that generally faces the second opening 92b separately from the opening 94c, and the orifice hole 94b has a vertical height equivalent to that of the opening 92b. Since the opening area is smaller than that of the opening 92b, the oil level L in the catch tank 52 rises to the second height h2 from the low stage through the first passage 91. It becomes possible to supply an appropriate amount of oil to the one generator motor 13, and cooling according to the heat generation state of the generator motors 13 and 14 can be performed accurately.
  • (Sixth embodiment) 13A and 13B show a heat generating part cooling structure of a vehicle drive device according to a sixth embodiment of the present invention.
  • the catch tank 52 is divided into two parts on the left and right. That is, in the present embodiment, the oil circulation passage 50 includes the first generator motor 13 when the oil level in the catch tank 52 rises to the first height h1.
  • the one side opening 91b opened on one inner wall surface 52b of the catch tank 52 so that the oil flows down to the vicinity of the stator 31 and the oil level L of the oil in the catch tank 52 up to the second height h2.
  • There is an opening 92b on the other side that opens on the inner wall surface 52c on the other side of the catch tank 52 so that the oil flows down in the vicinity of the stator 41 of the second generator motor 14 when it rises.
  • the catch tank 52 has a partition wall portion 101 that divides the inside of the catch tank 52 into a first tank portion 54 having an opening 91b on one side and a second tank portion 55 having an opening 92b on the other side.
  • the pumped oil is first stored in the second tank portion 55 through the oil introduction passages 51 and 56.
  • the oil is stored in the first tank portion 54 side after the second tank portion 55 is full.
  • the liquid level in the first tank unit 54 is equal to the liquid in the second tank unit except when both the first tank unit 54 and the second tank unit 55 are filled with oil.
  • the ratio of oil introduction from the plurality of oil introduction passages 51 and 56 to the first tank portion 54 and the second tank portion 55 is set so as to be always lower than the height of the surface.
  • the second generator motor 14 is preferentially given through the opening 92b on the other side. Oil will be supplied. Therefore, when the second generator motor 14 has the maximum heat generation amount when the cooling oil is insufficient, it is surely prevented that the heat generating portion is insufficiently cooled, and the same effect as that of the first embodiment described above is obtained. can get.
  • the volume ratio between the first tank portion 54 and the second tank portion 55 can be set as appropriate depending on the installation position and height of the partition wall portion 101, the period during which oil is preferentially supplied to the second generator motor 14 is optimized. Can be set.
  • 13A and 13B show that the ratio of the horizontal cross-sectional areas of the first tank portion 54 and the second tank portion 55 is a constant ratio regardless of the height of the partition wall portion 101.
  • the ratio of the horizontal cross-sectional areas of the first tank portion 54 and the second tank portion 55 may be changed according to the height of the partition wall portion 101.
  • oil is introduced from the oil pump 20 into the catch tank 52 through the oil introduction passage 56, but is introduced into the oil introduction passage 56 from an external cooler or the like instead of the oil pump 20. It may be a thing.
  • the first generator motor 13 is the heat generating part on one side and the second generator motor 14 is the heat generating part on the other side.
  • the heat generating part is not limited to the generator motor. May be either a generator or an electric motor, or may be a part where an inverter or other electrical heating element is mounted. Therefore, the present invention is not limited to the heat generating part cooling structure of the two-motor type vehicle drive device.
  • the fluid flows down to the heat generating part on the other side through the second passage, thereby causing the other side to flow.
  • the oil heating part is cooled and the oil level in the catch tank rises to the first height, the oil flows down to the one heating part through the first passage, thereby cooling the one heating part. Therefore, when the supply amount of the cooling oil is insufficient, the oil can be preferentially supplied to the heat generating part on the other side through the second passage, and the heat generating part on the other side can supply the cooling oil.
  • the maximum heat generation amount is reached when there is a shortage, it is possible to reliably prevent the heat generation portion from being insufficiently cooled.
  • the present invention is useful for the entire heat generating part cooling structure of a vehicle drive device that is suitable when a tank and heat generating parts on both sides thereof are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Details Of Gearings (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

発熱部が最大発熱量となる時に冷却用オイルを発熱部に十分に供給でき、車両駆動装置の効率を高め得る車両駆動装置の冷却構造を提供するため、ケース(10)内のオイルをキャッチタンク(52)に汲み上げる手段(20)と、オイルを一方側および他方側の発熱部(13、14)に供給しながらキャッチタンク(52)を通し循環させるオイル循環通路とを備えた車両駆動装置の発熱部冷却構造において、オイル循環通路は、オイル液面(L)が第1の高さ(h1)まで上昇したときに一方側の発熱部(13)にオイルを流下させる第1通路(61)と、オイル液面(L)が第1の高さ(h1)より低い第2の高さ(h2)まで上昇したときに他方側の発熱部(14)にオイルを流下させる第2通路(62)とを有し、オイル液面(L)が低いとき、一方側の発熱部(13)へのオイル流下量より他方側の発熱部(14)へのオイル流下量が多くなるようにする。

Description

車両駆動装置の発熱部冷却構造
 本発明は、車両駆動装置の発熱部冷却構造に関し、特にそのケース内にキャッチタンクとその両側の発熱部を備える場合に好適な車両駆動装置の発熱部冷却構造に関する。
 内燃エンジンおよび回転機(電動機、発電機、発電電動機等の意)を装備したハイブリッド型の車両駆動装置においては、そのエンジンに締結される変速機ケース内に、回転機、変速機構、動力分割機構、ディファレンシャル機構等が高密度に実装されることから、それらの機構の潤滑・冷却および回転機の冷却が十分になされる必要がある。また、発電電動機等の回転機(以下、単にモータジェネレータという)を複数設ける車両駆動装置では、各モータジェネレータが最大発熱量になる時に適切な冷却を行って効率の低下を抑える必要があり、発熱部であるモータジェネレータやその周辺部を冷却する冷却構造が重要になる。
 従来のこの種のモータ冷却構造を備えた車両駆動装置としては、例えばディファレンシャルリングギヤによりケース内底部側からかき上げられた潤滑用および電動機冷却用のオイル(例えば、オートマチックトランスミッションフルード)を、ケース内の上方側に位置するキャッチタンクに導入して一時的に貯留するとともに、そのキャッチタンクから徐々に予め定めた潤滑・冷却経路で流下させることによって、運転中の大物ギヤ等の負荷を有効に低減させつつ、各動作部の潤滑および発熱部の冷却を行うようにしたものが知られている(例えば、特許文献1、2参照)。
 また、ギヤポンプ等のオイルポンプを有するとともに、オイルクーラやラジエータ側の冷却液循環経路との間で熱交換する熱交換器を有し、冷却後のオイルをモータジェネレータ側に通すようにした冷却システムを備えるものも知られている(例えば、特許文献3参照)。
特開2008-195196号公報 特開2008-286247号公報 特開2006-312353号公報
 上述のような従来のモータ冷却構造を備えた車両駆動装置にあっては、プラネタリギヤ構成の動力分割機構を採用しているため、そのキャリアに結合するエンジン出力軸に対して、一方側および他方側のモータジェネレータが互いに共線性を持つことになり、一方側のモータジェネレータが専ら低車速側で最大発熱量となり、他方側のモータジェネレータが専ら高車速側で最大発熱量となっていた。
 そのため、高車速時には、ファイナルリングギヤ等からのオイルのかき上げ量が増すものの、最大発熱量となる側のモータジェネレータについて冷却が十分とは言えない状態が生じ得ることになり、低車速時には、かき上げ量が不足するために最大発熱量となる側のモータジェネレータにおいて冷却が不十分になり、特許文献3に記載のように、オイルポンプからのオイルをキャッチタンクに供給するといったことが必要であった。
 しかも、オイルポンプからのオイルをキャッチタンクに供給する場合に、冷却が不十分な片側のモータジェネレータに多くのオイルを供給するということができず、冷却用のオイルを冷却が十分なもう片側のモータジェネレータに無駄に供給することになり、効率的でなかった。
 一方、冷却が不十分な片側のモータジェネレータに多くのオイルを供給するように、複数のモータジェネレータへの冷却用オイルの供給流路を切り換えたりそのオイルの流量を加減したりするように、バルブや切換え機構を設けることも考えられるが、構成が複雑でコスト高を招くばかりか、重量の増加や信頼性の低下を招く可能性があった。
 そこで、本発明は、簡素な構成でありながらも、発熱部が最大発熱量となる時に冷却用のオイルをその発熱部に十分に供給することができ、車両駆動装置の効率を高めることのできる車両駆動装置の冷却構造を提供することを目的とする。
 本発明に係る車両駆動装置の冷却構造は、上記目的達成のため、(1)ケース内に貯留されたオイルを前記ケース内に設けられたキャッチタンクに汲み上げる汲み上げ手段と、前記オイルを前記キャッチタンクの一方側の発熱部および他方側の発熱部に供給しながら前記キャッチタンクを通して前記ケース内で循環させるオイル循環通路と、を備えた車両駆動装置の発熱部冷却構造であって、前記オイル循環通路は、前記キャッチタンク内の前記オイルの液面が第1の高さまで上昇したときに前記一方側の発熱部に前記オイルを流下させる第1通路と、前記キャッチタンク内の前記オイルの液面が前記第1の高さより低い第2の高さまで上昇したときに前記他方側の発熱部に前記オイルを流下させる第2通路と、を有し、前記キャッチタンク内の前記オイルの液面が低いときに、前記一方側の発熱部への前記オイルの流下量より前記他方側の発熱部への前記オイルの流下量が多くなることを特徴とするものである。
 この構成により、キャッチタンク内のオイルの液面が第2の高さまで上昇すると、第2通路を通して他方側の発熱部にオイルが流下し、他方側の発熱部が冷却される。次いで、キャッチタンク内のオイルの液面が第1の高さまで上昇すると、第1通路を通して一方側の発熱部にオイルが流下し、一方側の発熱部が冷却される。したがって、キャッチタンク内のオイルの液面が第2の高さに達するもののさほど高くならず、オイル供給量が不足するときには、第2通路を通して他方側の発熱部に優先的にオイルが供給されることになる。よって、他方側の発熱部が冷却用オイルの不足時に最大発熱量となる場合に、その発熱部の冷却が不十分になることが確実に防止される。また、冷却用オイルの供給流路を切り換えたりそのオイルの流量を加減したりするバルブや切換え機構を設ける必要が無く、簡素な構成にできる。
 上記(1)に記載の車両駆動装置の発熱部冷却構造は、(2)前記第1通路が前記キャッチタンクの内壁面上に開口する第1開口を有するとともに、前記第2通路が前記キャッチタンクの内壁面上に開口する第2開口を有し、前記第1開口と前記第2開口の位置が鉛直方向に異なっているのが好ましい。
 この構成により、キャッチタンクの内壁面上における第1開口と第2開口との位置を相違させるだけで済み、簡素な構成となる。
 上記(2)に記載の車両駆動装置の発熱部冷却構造においては、(3)前記第1通路が、前記第1開口とは別に前記キャッチタンクの内壁面上に開口する第3開口を有し、前記第3開口は、前記第2開口と同等の鉛直方向の高さに位置するとともに、前記第2開口より開口面積が小さくなっていてもよい。
 この構成により、キャッチタンク内のオイルの液面が第2の高さまで上昇する低い段階から第1通路を通した一方側の発熱部への適量のオイル供給を行うことが可能になり、両方の発熱部の発熱状態に応じた冷却を的確に行うことが可能になる。
 上記(1)に記載の車両駆動装置の発熱部冷却構造は、(4)前記オイル循環通路が、前記汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路で前記キャッチタンクに導入する複数のオイル導入通路を有し、前記第2通路が、前記キャッチタンクの内方側に開口するオリフィス穴を有する通路形成部材によって前記複数のオイル導入通路のうちいずれかのオイル導入通路に連通するように形成され、該通路形成部材によって形成される前記第2通路の主要部が前記オリフィス穴より断面積の大きい通路となっているものであっても好ましい。
 この構成により、キャッチタンク内のオイルの液面が低い段階から第2通路を通して他方側の発熱部に優先的にオイルが供給され、一方、キャッチタンク内のオイルの液面が高くなっているときには、キャッチタンク内のオイルが第2通路に流入することがオリフィス穴で制限される状態で、キャッチタンクから第1通路を通して一方側の発熱部にオイルが十分に供給される。したがって、各発熱部の発熱量が増加する時に冷却用のオイルをその発熱部に十分に供給するということができることになる。
 上記(4)に記載の車両駆動装置の発熱部冷却構造においては、(5)前記第2通路の前記オリフィス穴より上流側の通路部分が前記キャッチタンクの鉛直方向上方側にまで延びるとともに、前記第2通路の前記オリフィス穴より下流側の通路部分が前記キャッチタンクから水平方向の前記一方側に延びるように、前記通路形成部材が、前記オリフィス穴の近傍で屈曲する管路を形成しているのがよい。
 この構成により、簡素な通路形成部材を用いながらも、各発熱部の発熱量が増加する時に冷却用のオイルをその発熱部に十分に供給するということができることになり、簡素な冷却構造となる。
 上記(1)に記載の車両駆動装置の発熱部冷却構造は、(6)前記オイル循環通路が、前記汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路で前記キャッチタンクに導入する複数のオイル導入通路と、前記第1通路を前記キャッチタンクに開口させる一方側の開口と、前記第2通路を前記キャッチタンクに開口させる他方側の開口と、を有し、前記キャッチタンク内には、前記複数のオイル導入通路のうちいずれかのオイル導入通路を形成するとともに、前記一方側の開口に対向する一方側のオリフィス穴および前記他方側の開口に対向する他方側のオリフィス穴を形成する通路形成部材が設けられ、前記通路形成部材が、前記一方側の開口と前記他方側の開口とを部分的に閉塞することで、前記一方側の開口と前記他方側の開口との高さを相違させているものであってもよい。
 この構成により、キャッチタンク内のオイルの液面が第2の高さまで上昇すると、他方側の開口から第2通路を通して他方側の発熱部にオイルが流下し、他方側の発熱部が冷却される。次いで、キャッチタンク内のオイルの液面が第1の高さまで上昇すると、一方側の開口から第1通路を通して一方側の発熱部にオイルが流下し、一方側の発熱部が冷却される。したがって、キャッチタンク内のオイルの液面が第2の高さに達するもののさほど高くならず、オイル供給量が不足するときには、第2通路を通して他方側の発熱部に優先的にオイルが供給されることになり、他方側の発熱部が冷却用オイルの不足時に最大発熱量となる場合に、その発熱部の冷却が不十分になることが確実に防止される。しかも、通路形成部材が、一方側の開口と他方側の開口とを部分的に閉塞することで、両開口の高さを相違させるので、キャッチタンクの壁面に一方側の開口と他方側の開口を形成する際には同一高さとすることもでき、その加工あるいは成型が容易化できる。
 上記(6)に記載の車両駆動装置の発熱部冷却構造は、(7)前記一方側のオリフィス穴の開口面積が、前記他方側のオリフィス穴の開口面積より小さいのが好ましい。
 この構成により、キャッチタンク内のオイルの液面が低い段階から第2通路を通して他方側の発熱部に優先的にオイルが供給されるものの、第1通路を通して一方側の発熱部にも適量のオイルが供給される。また、キャッチタンク内のオイルの液面が高くなっているときには、キャッチタンク内のオイルが他方側の開口から第2通路に流入することが通路形成部材によって制限される一方で、キャッチタンク内のオイルが一方側の開口から第1通路に流入することがさほど制限されず、一方側の発熱部にオイルが十分に供給されることになる。
 あるいは、本発明に係る車両駆動装置の冷却構造は、上記目的達成のため、(8)ケース内に貯留されたオイルを前記ケース内に設けられたキャッチタンクに汲み上げる汲み上げ手段と、前記オイルを前記キャッチタンクの一方側の発熱部および他方側の発熱部に供給しながら前記キャッチタンクを通して前記ケース内で循環させるオイル循環通路と、を備えた車両駆動装置の発熱部冷却構造であって、前記オイル循環通路は、前記汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路で前記キャッチタンクに導入する複数のオイル導入通路と、前記キャッチタンク内の前記オイルの液面が第1の高さまで上昇したときに前記一方側の発熱部に前記オイルを流下させる一方側の開口と、前記キャッチタンク内の前記オイルの液面が第2の高さまで上昇したときに前記他方側の発熱部に前記オイルを流下させる他方側の開口と、を有し、前記キャッチタンクは、該キャッチタンクの内部を前記一方側の開口が開口する第1タンク部と前記他方側の開口が開口する第2タンク部とに区画する区画壁部を有し、前記汲み上げ手段により前記オイルが汲み上げられるとき、前記第1タンク部と前記第2タンク部との双方に前記オイルが満たされるときを除いて前記第1タンク部内の前記液面の高さが前記第2タンク部内の前記液面の高さより常に低くなるよう、前記複数のオイル導入通路から前記第1タンク部および前記第2タンク部への前記オイルの導入比率が設定されているものである。
 この構成により、キャッチタンク内のオイルの液面が第2の高さまで上昇すると、他方側の開口を通して他方側の発熱部にオイルが流下し、他方側の発熱部が冷却される。次いで、キャッチタンク内のオイルの液面が第1の高さまで上昇すると、一方側の開口を通して一方側の発熱部にオイルが流下し、一方側の発熱部が冷却される。したがって、キャッチタンク内のオイルの液面が第2の高さに達するもののさほど高くならず、オイル供給量が不足するときには、他方側の開口を通して他方側の発熱部に優先的にオイルが供給されることになる。よって、他方側の発熱部が冷却用オイルの不足時に最大発熱量となる場合に、その発熱部の冷却が不十分になることが確実に防止される。しかも、第1タンク部と第2タンク部の容積比を区画壁部の設置位置や高さによって適宜設定でき、他方側の発熱部に優先的にオイルが供給される期間を最適に設定できる。なお、第1タンク部と第2タンク部の水平断面積比が区画壁部の高さによって変化しないようにしてもよいし、変化するようにしてもよい。
 上記(8)に記載の車両駆動装置の発熱部冷却構造は、(9)前記汲み上げ手段が、前記車両駆動装置の出力が増大するときに前記キャッチタンクへの前記オイルの汲み上げ量を増加させるのが好ましい。
 この構成により、車両駆動装置の出力が増大し、装置全体の発熱量が増加するときに、十分な冷却を行うことが可能になる。
 上記(9)に記載の車両駆動装置の発熱部冷却構造は、(10)前記汲み上げ手段が、前記ケース内に回転可能に内蔵され、前記ケース内に貯留されたオイルを前記キャッチタンクにかき上げる少なくとも1つの回転伝動要素と、前記ケース内に貯留されたオイルを前記キャッチタンクに汲み上げるポンプと、を含んで構成されているのが好ましい。
 この構成により、回転伝動要素の高速回転時にケース内の底部側に貯留されるオイル量を減少させ、回転伝動要素の回転抵抗を減少させることができる。
 上記(10)に記載の車両駆動装置の発熱部冷却構造は、(11)前記回転伝動要素が、前記車両駆動装置の出力が増大するときに回転速度を増大させ、前記キャッチタンクへの前記オイルの汲み上げ量を増加させるのが好ましい。
 この構成により、高出力時に回転伝動要素によるオイルの汲み上げ量を増加させ、オイルの供給量を十分に確保することができる。
 上記(1)~(11)に記載の車両駆動装置の発熱部冷却構造は、(12)前記発熱部が、発電可能な電動機であるのが好ましい。
 この構成により、発電電動機を複数設ける車両駆動装置において、各発電電動機が最大発熱量になる時に適切な冷却を行って、その効率の低下を抑えることができる。
 本発明によれば、キャッチタンク内のオイルの液面が第2の高さまで上昇すると、第2通路を通して他方側の発熱部に流体が流下し、他方側の発熱部が冷却され、次いで、キャッチタンク内のオイルの液面が第1の高さまで上昇すると、第1通路を通して一方側の発熱部にオイルが流下し、一方側の発熱部が冷却されるようにしているので、冷却用のオイルの供給量が不足するときに、第2通路を通して他方側の発熱部に優先的にオイルを供給することができ、他方側の発熱部が冷却用オイルの不足時に最大発熱量となる場合に、その発熱部の冷却が不十分になることを確実に防止することができる。その結果、簡素な構成でありながらも、発熱部が最大発熱量となる時に冷却用のオイルをその発熱部に十分に供給することができ、車両駆動装置の効率を高めることのできる車両駆動装置の冷却構造を提供することができる。
本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造を有するその車両駆動装置の概略断面図である。 図1のII-II矢視断面図に対応する本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、キャッチタンク内の液面が高くなるEV走行高車速時のオイルの流れを併せて示している。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造における通路形成部材の模式的な斜視図である。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、キャッチタンク内の液面が低いエンジン走行低車速時の状態を示している。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、キャッチタンク内の液面が高いエンジン走行高車速時の状態を示している。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造におけるキャッチタンク周辺の側面断面図で、エンジン走行低車速時の状態を示している。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造におけるキャッチタンク周辺の側面断面図で、エンジン走行高車速時の状態を示している。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造におけるキャッチタンク周辺の側面断面図で、EV走行高車速時の状態を示している。 本発明の第1実施形態に係る車両駆動装置の発熱部冷却構造におけるキャッチタンク周辺の側面断面図で、EV走行低車速時の状態を示している。 本発明の第2実施形態に係る車両駆動装置の発熱部冷却構造における通路形成部材の模式的な斜視図である。 本発明の第2実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、キャッチタンク内の液面が低いエンジン走行低車速時の状態を示している。 本発明の第2実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、キャッチタンク内の液面が高いエンジン走行高車速時の状態を示している。 本発明の第2実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、キャッチタンク内の液面が高いEV走行高車速時の状態を示している。 本発明の第3実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行低車速時の状態を示している。 本発明の第3実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行高車速時の状態を示している。 本発明の第4実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行低車速時の状態を示している。 本発明の第4実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行高車速時の状態を示している。 本発明の第5実施形態に係る車両駆動装置の発熱部冷却構造における通路形成部材の模式的な斜視図である。 本発明の第5実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行低車速時の状態を示している。 本発明の第5実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行高車速時の状態を示している。 本発明の第6実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行低車速時の状態を示している。 本発明の第6実施形態に係る車両駆動装置の発熱部冷却構造の要部模式断面図で、エンジン走行高車速時の状態を示している。
 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
 (第1実施形態)
 図1~図6は、本発明の第1実施形態に係る車両駆動装置とその発熱部冷却構造を示す図である。本実施形態の車両駆動装置は、ハイブリッド車両に搭載されるもので、図示しない内燃エンジン(以下、単にエンジンという)と、図1および図2に示すようなトランスアクスル1(動力伝達装置)とを一体に締結したものである。
 まず、その構成について説明する。
 図1および図2に示すように、トランスアクスル1は、エンジンに一体に締結されるケース10内に、エンジンの出力軸に連結される入力軸11と、左右の駆動車輪軸に連結される図示しない一対の出力軸とを有しており、ケース10は、トランスミッションケースの一部を構成している。
 詳細は図示しないが、このケース10は、動力分割機構および減速機構となる一対の遊星歯車機構(図1に点線で略示)を内蔵するとともに、それらのリングギヤを一体化した外筒部分12aにカウンタドライブギヤ12b(回転伝動要素)を有する公知の伝動機構12と、伝動機構12の動力分割機構側の入力要素12cに結合する第1発電電動機13(一方側の発熱部)と、伝動機構12の減速機構側の入力要素12dに結合する第2発電電動機14(他方側の発熱部)と、伝動機構12のカウンタドライブギヤ12bに噛合するカウンタドリブンギヤ15(回転伝動要素)と、カウンタドリブンギヤ15からの動力をディファレンシャルリングギヤ16(回転伝動要素)に入力しその動力を左右の駆動軸に出力するディファレンシャル機構とを収納しており、第1発電電動機13はケース10の一方側に配置され、第2発電電動機14はケース10の他方側に配置されている。このようなギヤトレーンの構成自体は、公知のものと同様である。
 トランスアクスル1の作動は、図示しないECU(電子制御ユニット)によって車両の走行状態と運転者からの要求操作入力(例えば、レンジ切換え要求操作、加速要求、減速要求等)とに応じて統括制御され、第1発電電動機13および第2発電電動機14は、それぞれ電動機または発電機のいずれで作動するかとその作動条件とを制御される。また、エンジンは、トランスアクスル1を統括制御するECUと協働するエンジンECUによってその運転または停止と、運転時の運転条件を制御されるようになっている。
 入力軸11は、外端側でダンパ18を介してエンジンの出力軸に連結されるとともに、内端側で伝動機構12の動力分割機構のキャリアに結合されている。また、その入力軸11の内端側に嵌入されるとともに第2発電電動機14の中心部を貫通する回転伝動軸19の端部にギヤポンプ型もしくはベーンポンプ型のオイルポンプ20のロータ21が連結され、オイルポンプ20が入力軸11の回転に応じてケース10内の底部側に貯留された潤滑・冷却用のオイルを汲み上げるようになっている。
 第1発電電動機13および第2発電電動機14(以下、単に発電電動機13、14ともいう)は、ステータ31、41およびロータ32、42を備えており、それらのステータ31、41は、ケース10にそれぞれ図示しない複数の締結ボルトで締結されている。なお、詳細を図示しないが、ステータ31、41は、例えばそれぞれ複数の電磁鋼板を積層してなる略円環状のステータコアにステータコイルを巻回したものであり、ロータ32、42は、例えば複数の電磁鋼板が積層されてなるロータ本体に永久磁石を等角度間隔に埋設したものである。このような発電電動機自体は、公知のものと同様である。
 図1に示すように、ケース10は、回転伝動要素であるディファレンシャルリングギヤ16、カウンタドリブンギヤ15およびカウンタドライブギヤ12b(以下、ディファレンシャルリングギヤ16等ともいう)によってケース10の内底部側からかき上げられたオイルを導入することができるオイル導入通路51を形成しており、このオイル導入通路51は、ディファレンシャルリングギヤ16等により図1中の矢印f1方向にかき上げられてf2方向に飛ばされるオイルを、矢印f3、f4で示す導入方向に案内し、ケース10内で鉛直方向における上方側に位置するキャッチタンク52に流入させるようになっている。
 図2に示すように、キャッチタンク52は、左右方向でケース10の中央側に位置しており、ケース10を構成するよう左右に締結され一体された複数のケース部材10a、10bによって画成されており、ディファレンシャルリングギヤ16等によりかき上げられたオイルを貯留するとともに、その最下部の流下孔部52a(図1参照)からカウンタドライブギヤ12b等へとオイルを徐々に流下させることができる。すなわち、キャッチタンク52は、ディファレンシャルリングギヤ16等によりかき上げられたオイルを一時的ではあるが貯留することができ、流下量以上のオイルが導入される状態が続く限り、そのオイルの貯留量を増加させることができる。
 上述のディファレンシャルリングギヤ16、カウンタドリブンギヤ15およびカウンタドライブギヤ12bと、オイルポンプ20とは、ケース10内に貯留されたオイルをケース10内に設けられたキャッチタンク52に汲み上げる汲み上げ手段を構成しており、オイル導入通路51およびキャッチタンク52は、キャッチタンク52の一方側の発熱部である第1発電電動機13と他方側の発熱部である第2発電電動機14とにオイルを供給しながら、キャッチタンク52を通してケース10内でオイルを循環させるオイル循環通路50を構成している。
 オイル循環通路50は、さらに、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇したときに第1発電電動機13のステータ31およびその周辺部(一方側の発熱部)にオイルを流下させる第1通路61と、キャッチタンク52内のオイルの液面Lが第1の高さh1より十分に低い第2の高さh2まで上昇したときに第2発電電動機14およびその周辺部(他方側の発熱部)にオイルを流下させる第2通路62と、を有している。
 より具体的には、オイル循環通路50は、ディファレンシャルリングギヤ16等によりかき上げられたオイルを導入するオイル導入通路51とは別に、オイルポンプ20によりケース10の内底部側から汲み上げられたオイルをキャッチタンク52に導入する別のオイル導入通路56を有しており、キャッチタンク52は、これら複数のオイル導入通路51、56からの導入量が流下孔部52aからのオイル流下量より多くなるときに、その内部に貯留されるオイルの液面Lを上昇させるようになっている。
 ここで、第1通路61は、キャッチタンク52の左右方向一方側の内壁面52b上に開口する第1開口61b(一方側の開口)と、この第1開口61bから第1発電電動機13のステータ31の上半部側へと左右方向の一方側(図2中の左側)に延びる流下通路部分61aとを有し、キャッチタンク52から第1発電電動機13のステータ31またはその近傍にオイルを流下させるようになっている。なお、ここで、ステータ31は、磁性鋼板の積層体であるコアにコイルを巻回したもので、そのコイルは樹脂で一体に被覆および保護されている。
 第2通路62は、第1開口61bに概ね対向するようキャッチタンク52の内方側に開口するオリフィス穴63aを有する通路形成部材63によって、複数のオイル導入通路51、56のうちいずれかのオイル導入通路、例えばオイルポンプ20からのオイルを導入するオイル導入通路56に連通するように形成されている。
 また、第2通路62は、図3、図4Aおよび図4Bに示すように、オイル導入通路56に接続する上流端側から第2発電電動機14のステータ41の上方側に位置する下流端側までの略全域をなすその主要部62aにおいて、オリフィス穴63aより断面積の大きい通路となっている。また、第2通路62のオリフィス穴63aより上流側の通路部分62uがキャッチタンク52の鉛直方向上方側にまで延び、第2通路62のオリフィス穴63aより下流側の通路部分62dがキャッチタンク52から左右方向の他方側(図2中の右側)に延びるように、通路形成部材63は、オリフィス穴63aの近傍でL字形に屈曲する管路を形成している。なお、図2中では、通路形成部材63はキャッチタンク52内に配置されているが、上流側の通路部分62uがキャッチタンク52の左右方向他方側の内壁面52cに沿ってキャッチタンク52の内部あるいは外部に配置されてもよい。また、オリフィス穴63aが他方側の内壁面52cを貫通して第1開口61bに対向するようになっていれば、上流側の通路部分62uがキャッチタンク52の他方側の内壁面52cから離れていてもよい。
 本実施形態においては、図2および図4Bに示すように、キャッチタンク52内のオイルの液面Lが高さh1より高いときには、キャッチタンク52から第1開口61bを通して第1通路61にオイルが流入し、かつ、キャッチタンク52内のオイルが第2通路62側に流入することがオリフィス穴63aによって制限される。したがって、一方の発熱部である第1発電電動機13のステータ31へのオイルの流下量が多くなる。
 一方、図4Aに示すように、キャッチタンク52内のオイルの液面Lが高さh1より十分に低いときには、キャッチタンク52から第1通路61にオイルが流入することはなく、オイルポンプ20からオイル導入通路56を通して供給されるオイルが、第2通路62に流入するとともに、第2通路62内からキャッチタンク52側へのオイルの流出がオリフィス穴63aによってある程度制限される。したがって、一方側の発熱部である第1発電電動機13のステータ31へのオイルの流下量よりも、他方側の発熱部である第2発電電動機14のステータ41へのオイルの流下量が多くなるようになっている。
 なお、本実施形態における第2の高さh2は、第1の高さh1より十分に小さく、オイルポンプ20の作動開始時の液面Lの高さであるから、ゼロに近い。また、第1通路61、第2通路62およびオイル導入通路51、56は、それぞれケース10の複数のケース部材10a、10bの対向する凹部同士または凹部と平坦な壁面によって画成される通路、ケース10の装着されたパイプやホース等の通路形成部材により形成される通路、ケース10の各ケース部材10a、10bに穿孔もしくは成型された通路のいずれかであってもよいし、そのような通路の組合せであってもよい。さらに、オイルポンプ20は、入力軸11の回転によってロータ21を回転させる機械式のポンプであるが、車両の走行モードに応じて制御される電動式のオイルポンプであってもよいし、機械式と電動式の両方を併用するものであってもよい。
 次に、作用について説明する。
 上述のように構成された本実施形態の車両駆動装置の発熱部冷却構造においては、エンジンと発電電動機13、14のうち少なくとも1つが原動機として作動することで、車両駆動力が発生し、発電電動機13、14のうち任意の一方が発電機として作動し、図外のバッテリに蓄電する。
 例えば、発進時および軽負荷時には、必要な動力が規定値(充電状態により変化する)以下であれば、第2発電電動機14が走行駆動モータとして作動する電気自動車走行モード(以下、EV走行モードという)となるように、トランスアクスル1の統括制御用のECUとエンジンECUとの協調制御が実行される。また、必要動力が規定値を超えると、エンジンによる駆動に移行するが、エンジン駆動による低速高負荷時には、第1発電電動機13が発電機として作動するとともに、第2発電電動機14がアシスト(動力補助)用のモータとして作動する。
 このように第2発電電動機14による走行駆動や動力補助用のモータとして作動する低車速走行する状態では、駆動用モータとなる第2発電電動機14において、第1発電電動機13に比べて相対的に大きな発熱量となる。
 このとき、図5Aに示すように、低回転速度で回転するディファレンシャルリングギヤ16等によるオイルの汲み上げ量は少なく、機械式ポンプであるオイルポンプ20ではエンジン回転数に応じたオイルの汲み上げがなされ、オイルポンプ20から吐出されるオイルがオイル導入通路56に導入される。そして、オイル導入通路56から第2通路62にオイルが流入し、第2通路62を通して第2発電電動機14側にオイルが流下し、第2発電電動機14が冷却される一方で、オリフィス穴63aを通してキャッチタンク52にもオイルが導入される。
 また、このとき、キャッチタンク52内のオイルの液面Lは第1通路61の第1開口61bの下半部の高さ程度、すなわち、第1発電電動機13へのオイル供給がなされ得る高さh1よりわずかに低い程度になり、第1発電電動機13にも適量のオイルが供給される。
 一方、図5Bに示すように、エンジン駆動による通常走行がなされるときには、第1発電電動機13はエンジンでの燃費の良い回転速度で逆転力行するように制御され、充電量の低下時には第2発電電動機14が発電機として作動する。また、加速時や登坂時その他の中・高速高負荷運転時には、例えば加速のためにエンジン回転数が増加するとともに、第1発電電動機13が発電機となってその回転数が高くなり、その発電電力と不足分のバッテリ持ち出し分の電力とによって第2発電電動機14による駆動アシストがなされる。さらに、回生(発電)制動時には、第1発電電動機13がエンジン回転数を適切に保持するように制御され、条件によって力行あるいは逆転回生作動する。
 このように第1発電電動機13の発電時の回転数が高くなったり作動状態の切換えが頻繁になったりする車両の比較的高速の走行状態下では、第1発電電動機13の方が第2発電電動機14に比べて相対的に大きな発熱量となる。
 このとき、高回転速度で回転するディファレンシャルリングギヤ16等によるオイルの汲み上げ量は多くなり、第1開口61bの上半部がキャッチタンク52内のオイルに浸漬する程度に液面Lが上昇しているので、キャッチタンク52内のオイルが第1開口61bから第1通路61に流入し、第1通路61を通して第1発電電動機13側にオイルが流下し、第1発電電動機13が冷却される。さらに、オイルポンプ20によりエンジン回転数に応じたオイルの汲み上げがなされ、オイルポンプ20から吐出されるオイルが、オイル導入通路56に導入されて第2通路62に流入し、第2通路62を通して第2発電電動機14側にオイルが流下し、第2発電電動機14も冷却される。
 図6Aおよび図6Bは、車両がEV走行モードで走行する場合のキャッチタンク52の近傍を示している。この場合、EV走行モードで比較的高車速の走行をするときには、図6Aに示すように、オイルポンプ20からのオイル供給が無い状態で、ディファレンシャルリングギヤ16等によるオイルの汲み上げ量は多くなり、第1開口61bの上半部がキャッチタンク52内のオイルに浸漬する程度に液面Lが上昇しているので、第1通路61を通して第1発電電動機13側にオイルが流下し、第1発電電動機13が冷却される。さらに、キャッチタンク52内のオイルがオリフィス穴63aを通して第2通路62にも流入し、第2発電電動機14側に適量のオイルが流下して、第2発電電動機14も冷却される。
 EV走行モードで比較的低車速の走行をするときには、図6Bに示すように、オイルポンプ20からのオイル供給が無い状態で、ディファレンシャルリングギヤ16等によるオイルの汲み上げ量も少なくなり、オイルの液面Lが第1開口61bより低い位置まで低下するので、キャッチタンク52内のオイルは冷却用としてはさほど使用されない。
 上述のような本実施形態の冷却構造では、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇するときには、第1通路61を通して一方側の発熱部である第1発電電動機13にオイルが流下して、第1発電電動機13が冷却される。また、キャッチタンク52内のオイルの液面Lが第2の高さh2には達するもののさほど高くならず、オイル供給量が不足するときには、第2通路62を通して他方側の発熱部である第2発電電動機14に優先的にオイルが供給されることになる。よって、冷却用のオイルが効率的に分配され、第2発電電動機14が冷却用オイルの不足時に最大発熱量となる場合に、その第2発電電動機14の冷却が不十分になることが確実に防止される。しかも、冷却用オイルの供給流路を切り換えたりそのオイルの流量を加減したりするバルブや切換え機構を設ける必要も無いので、簡素な構成にできる。
 また、本実施形態では、オイル循環通路50が、ディファレンシャルリングギヤ16等により汲み上げられるオイルと、オイルポンプ20により汲み上げられるオイルとを異なる経路でキャッチタンク52側に導入する複数のオイル導入通路51、56を有し、第2通路62が、キャッチタンク52の内方側に開口するオリフィス穴63aを有する通路形成部材63によって片方のオイル導入通路56に連通するように形成され、通路形成部材63によって形成される第2通路62の主要部62aがオリフィス穴63aより断面積の大きい通路となっているので、キャッチタンク52内のオイルの液面Lが低い段階から第2通路62を通して他方側の発熱部に優先的にオイルが供給され、一方、キャッチタンク内のオイルの液面が高くなっているときには、キャッチタンク内のオイルが第2通路に流入することがオリフィス穴で制限される状態で、キャッチタンクから第1通路を通して第2発電電動機14にオイルが十分に供給される。したがって、各発電電動機13、14の発熱量が増加する時に冷却用のオイルをその発電電動機13または14に十分に供給するということができる。
 さらに、本実施形態では、第2通路62の上流側の通路部分62uがキャッチタンク52の鉛直方向上方側にまで延びるとともに、第2通路62の下流側の通路部分62dがキャッチタンク52から水平方向の一方側に延びるように、通路形成部材63がオリフィス穴63aの近傍で屈曲する管路を形成しているので、簡素な通路形成部材63を用いながらも、各発電電動機13、14の発熱量が増加する時に冷却用のオイルをその発電電動機13または14に十分に供給するということができ、その効率の低下を抑えることができる簡素な冷却構造となる。
 加えて、汲み上げ手段としてのディファレンシャルリングギヤ16等とオイルポンプ20とが、エンジン出力およびトランスアクスル1の回転出力が増大するときにキャッチタンク52へのオイルの汲み上げ量を増加させるので、トランスアクスル1の出力が増大して装置全体の発熱量が増加するときに、オイルの供給量を確保して十分な冷却を行うことができる。
 特に、汲み上げ手段が、ケース10内に回転可能に内蔵され、ケース10内に貯留されたオイルをキャッチタンク52にかき上げる少なくとも1つの回転伝動要素、例えばディファレンシャルリングギヤ16、カウンタドリブンギヤ15およびカウンタドライブギヤ12bと、ケース10内に貯留されたオイルをキャッチタンク52に汲み上げるオイルポンプ20と、を含んで構成されているので、回転伝動要素であるディファレンシャルリングギヤ16等の高速回転時にケース10内の底部側に貯留されるオイル量を減少させ、ディファレンシャルリングギヤ16等の回転抵抗を減少させることができる。
 このように、本実施形態においては、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇するときには、第2通路62を通して第2発電電動機14に流体が流下し、第2発電電動機14が優先的に冷却され、次いで、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇すると、第1通路61を通して第1発電電動機13にオイルが流下し、第1発電電動機13が十分に冷却されるようにしているので、冷却用のオイルの供給量が不足するときに、第2通路62を通して第2発電電動機14に優先的にオイルを供給することができ、第2発電電動機14が冷却用オイルの不足時に最大発熱量となる場合に、その第2発電電動機14の冷却が不十分になることを確実に防止することができる。その結果、簡素な構成でありながらも、第2発電電動機14が最大発熱量となる時に冷却用のオイルをその第2発電電動機14に十分に供給することができ、トランスアクスル1の効率を高めることができるものである。
 (第2実施形態)
 図7、図8Aおよび図8Bは、本発明の第2実施形態に係る車両駆動装置の発熱部冷却構造を示す図である。なお、以下に述べる各実施形態の車両駆動装置の発熱部冷却構造は、上述の第1実施形態と類似する構成を有するので、第1実施形態と同一の構成要素については図1~図6に示した対応する構成要素の符号を用いて説明し、第1実施形態との相違点についてのみ詳述することとする。
 本実施形態においては、第1実施形態と同様に、オイル循環通路50が、汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路でキャッチタンク52に導入する複数のオイル導入通路51、56を有している。
 また、図7、図8Aおよび図8Bに示すように、オイル循環通路50は、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇したときに第1発電電動機13のステータ31およびその周辺部(一方側の発熱部)にオイルを流下させる第1通路71と、キャッチタンク52内のオイルの液面Lが第1の高さh1より十分に低い第2の高さh2まで上昇したときに第2発電電動機14およびその周辺部(他方側の発熱部)にオイルを流下させる第2通路72と、を有している。
 ここで、第1通路71は、キャッチタンク52の一方側の内壁面52b上に開口する第1開口71b(一方側の開口)と、この第1開口71bから第1発電電動機13のステータ31の上半部側へと左右方向の一方側(図2中の左側)に延びる流下通路部分71aとを有し、キャッチタンク52から第1発電電動機13のステータ31またはその近傍にオイルを流下させるようになっている。また、第2通路72は、オイル導入通路56に接続する上流端側から第2発電電動機14のステータ41の上方側に位置する下流端側までの主要部72aと、第1開口71bに概ね対向するようキャッチタンク52の内方側に開口する第2開口72b(他方側の開口)とを有している。すなわち、オイル循環通路50は、第1通路71をキャッチタンク52に開口させる第1開口71bと、第2通路72をキャッチタンク52に開口させる第2開口72bとを有している。
 キャッチタンク52の内方側には、さらに、図7に示すような通路形成部材73が設けられている。この通路形成部材73は、複数のオイル導入通路51、56のうち片方のオイル導入通路56を形成するとともに、第1開口71bに対向する一方側のオリフィス通路73a(一方側のオリフィス穴)および第2開口72bに対向する他方側のオリフィス通路73b(他方側のオリフィス穴)を有しており、一方側のオリフィス通路73aは他方側のオリフィス通路73bより断面積の小さい通路となっている。また、通路形成部材73は、他方側のオリフィス通路73bより上流側の通路部分73uをオイル導入通路56に連通させるようキャッチタンク52の鉛直方向上方側にまで延在するとともに、一方側のオリフィス通路73aを第1開口71bに、他方側のオリフィス通路73bを第2開口72bに、それぞれ連通させるように逆T字形状をなしている。
 この通路形成部材73は、その左右に延びる下側管部73cの両端でキャッチタンク52の内方から第1開口71bと第2開口72bとを部分的に閉塞することで、第1開口71bと第2開口72bとの実質の開口高さを鉛直方向に互いに相違させるとともに、実質的な開口面積を相違させている。
 より具体的には、第1開口71b中に開口する一方側のオリフィス通路73aの開口面積は、第2開口72b中に開口する他方側のオリフィス通路73bの開口面積より小さくなっており、通路形成部材73の下側管部73cの小径端側で狭められる第1開口71bは、通路形成部材73の下側管部73cの大径端側で狭められる第2開口72bよりも実質的に広い開口面積を有し、第1開口71bの実質的な開口高さ(開口の図心位置)は、第2開口72bの実質的な開口高さより低くなっている。
 このように構成された本実施形態の冷却構造では、図8Aに示すように、キャッチタンク52内のオイルの液面Lが十分に低い第2の高さh2まで上昇すると、オイル導入通路56および上流側通路部分73uを通して、オイルポンプ20からのオイルが第2開口72bから第2通路72に流入し、第2通路72から第2発電電動機14(他方側の発熱部)に優先的にオイルが流下され、第2発電電動機14が冷却される。また、このとき、第1通路71を通して第1発電電動機13(一方側の発熱部)にも必要量のオイルが供給される。
 一方、図8Bに示すように、キャッチタンク52内のオイルの液面Lが高くなっているときには、キャッチタンク52内のオイルが第2開口72bから第2通路72に流入することが通路形成部材73によって制限される一方で、キャッチタンク52内のオイルが第1開口71bから第1通路71に流入することがさほど制限されず、第1発電電動機13にオイルが十分に供給されることになる。
 さらに、図8Cに示すEV走行高車速時には、オイルポンプ20からのオイルの汲み上げがなされないので、キャッチタンク52内のオイルの液面Lが第1の高さh1に達すると、キャッチタンク52から第1通路71へのオイルの流入が開始され、キャッチタンク52内のオイルの液面Lが第1の高さh1よりさらに高い第3の高さh3に達すると、通路形成部材73の下側管部73cの大径端側で狭められる第2開口72bを通して、キャッチタンク52から第2通路72へのオイルの流入が開始される。ただし、このとき、第2開口72bは第1開口71bよりも狭められているから、第1通路71への優先的な供給状態が維持される。
 本実施形態では、キャッチタンク52内のオイルの液面Lが第2の高さh2に達するもののさほど高くならず、オイル供給量が不足する低車速時には、第2通路72を通して第2発電電動機14に優先的にオイルが供給されることになり、冷却用オイルの不足時に最大発熱量となる第2発電電動機14の冷却が不十分になることが確実に防止される。したがって、上述の第1実施形態と同様な効果が期待できる。
 しかも、通路形成部材73が、第1開口71bと第2開口72bとを部分的に閉塞することで、両開口71b、72bの高さを相違させるので、キャッチタンク52の壁面に第1開口71bと第2開口72bを形成する際には両開口71b、72bを同一高さとすることもでき、その加工あるいは成型が容易化できるという利点もある。
 なお、図8Aないし図8Cでは、上述の通路形成部材73が、第1開口71bと第2開口72bとをキャッチタンク52の内壁面52b、52c上で閉塞するものとしたが、上述の通路形成部材73の下側管部73cが両開口71b、72bを通して第1通路71および第2通路72内に挿入されることで、第1開口71bと第2開口72bとが狭められるようにしてもよいことはいうまでもない。
 (第3実施形態)
 図9Aおよび図9Bは、本発明の第3実施形態に係る車両駆動装置の発熱部冷却構造を示す図である。
 本実施形態においては、第1実施形態と同様に、オイル循環通路50が、汲み上げ手段により汲み上げられるオイルを異なる複数の経路でキャッチタンク52に導入する複数のオイル導入通路51、56を有しているが、キャッチタンク52内に挿入される通路形成部材は存在しない。
 すなわち、本実施形態においては、オイル循環通路50は、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇したときに第1発電電動機13のステータ31およびその周辺部(一方側の発熱部)にオイルを流下させる第1通路81と、キャッチタンク52内のオイルの液面Lが第1の高さh1より低い第2の高さh2まで上昇したときに第2発電電動機14およびその周辺部(他方側の発熱部)にオイルを流下させる第2通路82と、を有している。
 ここで、キャッチタンク52の左右一方側の第1通路81は、キャッチタンク52の一方側の内壁面52b上に開口する第1開口81b(一方側の開口)と、この第1開口81bから第1発電電動機13のステータ31の上半部側へと左右方向の一方側(図2中の左側)に延びる流下通路部分81aとを有しており、図9Bに示すように、キャッチタンク52内のオイルの液面Lが高くなる高車速時に、キャッチタンク52から第1発電電動機13のステータ31またはその近傍に十分にオイルを流下させて、第1発電電動機13の最大発熱時に十分な冷却を行うようになっている。
 また、キャッチタンク52の左右他方側の第2通路82は、キャッチタンク52の他方側の内壁面52c上に開口する第2開口82b(他方側の開口)と、この開口82bから第2発電電動機14のステータ41の上半部側へと左右方向の他方側(図2中の右側)に延びる流下通路部分82aとを有しており、図9Aに示すように、キャッチタンク52内のオイルの液面Lが低くなる低車速時に、キャッチタンク52から第2発電電動機14のステータ41またはその近傍にもオイルを十分に流下させて、第2発電電動機14の最大発熱時に十分な冷却を行うようになっている。
 本実施形態においては、このように、第1開口81bと第2開口82bとは、互いの開口位置が鉛直方向に異なっている。
 本実施形態においても、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇するときには、第2通路82を通して第2発電電動機14に流体が流下し、第2発電電動機14が優先的に冷却され、次いで、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇すると、第1通路81を通して第1発電電動機13にオイルが流下し、第1発電電動機13が十分に冷却されるようにしているので、冷却用のオイルの供給量が不足するときに、第2通路82を通して第2発電電動機14に優先的にオイルを供給することができ、第2発電電動機14が冷却用オイルの不足時に最大発熱量となる場合に、その第2発電電動機14の冷却が不十分になることを確実に防止することができる。その結果、簡素な構成でありながらも、第2発電電動機14が最大発熱量となる時に冷却用のオイルをその第2発電電動機14に十分に供給することができ、トランスアクスル1の効率を高めることができるものであり、第1実施形態と同様の効果が得られる。
 また、本実施形態では、このように第1開口81bと第2開口82bの開口位置が鉛直方向に異なっているので、キャッチタンク52の内壁面52b、52c上における第1開口81bと第2開口82bとの位置を相違させるだけで済み、簡素な構成となる。
 (第4実施形態)
 図10Aおよび図10Bは、本発明の第4実施形態に係る車両駆動装置の発熱部冷却構造を示す図である。なお、本実施形態は、第1通路、第2通路に加えて第3の流下通路を有している点以外は、第3実施形態と類似する構成を有している。
 本実施形態においては、オイル循環通路50は、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇したときに第1発電電動機13のステータ31およびその周辺部(一方側の発熱部)にオイルを流下させる第1通路91と、キャッチタンク52内のオイルの液面Lが第1の高さh1より低い第2の高さh2まで上昇したときに第2発電電動機14およびその周辺部(他方側の発熱部)にオイルを流下させる第2通路92と、を有している。
 ここで、キャッチタンク52の左右一方側の第1通路91は、キャッチタンク52の一方側の内壁面52b上に開口する一方側の2つの開口、すなわち第1開口91bおよび第3開口91e(一方側の開口)と、これら第1開口91bおよび第3開口91eから第1発電電動機13のステータ31の上半部側へと左右方向の一方側(図2中の左側)に延びる流下通路部分91a、91cとを有しており、図10Bに示すように、キャッチタンク52内のオイルの液面Lが高くなる高車速時に、キャッチタンク52から第1発電電動機13のステータ31またはその近傍に流下通路部分91aから十分にオイルを流下させて第1発電電動機13の最大発熱時に十分な冷却を行うようになっている。
 また、キャッチタンク52の左右他方側の第2通路92は、キャッチタンク52の他方側の内壁面52c上に開口する第2開口92b(他方側の開口)と、この第2開口92bから第2発電電動機14のステータ41の上半部側へと左右方向の他方側(図2中の右側)に延びる流下通路部分92aとを有しており、図10Aに示すように、キャッチタンク52内のオイルの液面Lが低くなる低車速時に、キャッチタンク52から第2発電電動機14のステータ41またはその近傍にもオイルを十分に流下させて、第2発電電動機14の最大発熱時に十分な冷却を行うようになっている。
 本実施形態においては、開口91e(第3開口)の開口高さh2´と開口92b(第2開口)の開口高さh2とは、鉛直方向において同等の位置であるが、開口91b(第1開口)の高さh1が、第2開口92bに対して十分に高く設定されている。したがって、キャッチタンク52内のオイルの液面Lが低くなる低車速時に、流下通路部分91aのみを通して第1発電電動機13のステータ31にオイルを供給できる。
 本実施形態においても、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇するときには、第2通路92を通して第2発電電動機14に流体が流下し、第2発電電動機14が優先的に冷却され、次いで、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇すると、第1通路91を通して第1発電電動機13にオイルが流下し、第1発電電動機13が十分に冷却されるようにしているので、冷却用のオイルの供給量が不足するときに、第2通路92を通して第2発電電動機14に優先的にオイルを供給することができ、第2発電電動機14が冷却用オイルの不足時に最大発熱量となる場合に、その第2発電電動機14の冷却が不十分になることを確実に防止することができる。その結果、簡素な構成でありながらも、第2発電電動機14が最大発熱量となる時に冷却用のオイルをその第2発電電動機14に十分に供給することができ、トランスアクスル1の効率を高めることができるものであり、第1実施形態と同様の効果が得られる。
 しかも、本実施形態では、第1通路91が、開口91bとは別にキャッチタンクの52の内壁面52b上に開口する開口91eを有しており、この開口91eは、開口92bと同等の鉛直方向高さh2´に位置するとともに、開口92bより開口面積が小さくなっているので、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇する低い段階から第1通路91を通した第1発電電動機13への適量のオイル供給を行うことが可能になり、発電電動機13、14の発熱状態に応じた冷却を的確に行うことができる。
 (第5実施形態)
 図11、図12Aおよび図12Bは、本発明の第5実施形態に係る車両駆動装置の発熱部冷却構造を示す図である。なお、本実施形態は、第4実施形態の流下通路91cに代えて、キャッチタンク52内に通路形成部材94を設けたものであり、第4実施形態と類似する構成を有している。
 本実施形態においては、第1通路91がキャッチタンク52に開口する部分に有底円筒状の通路形成部材94が配置されている。この通路形成部材94は、第1通路91の流下通路部分91aに連続しかつキャッチタンク52の内壁面52bに沿って鉛直方向に延在する縦通路94aと、縦通路94aの下端側で第1通路91をキャッチタンク52の内部に開口させるオリフィス穴94bと、縦通路94aの上端側の開口94cとを形成している。
 第1通路91を形成する通路形成部材94の開口94cは、キャッチタンク52の一方側の内壁面52bと直交しており、オリフィス穴94bは、キャッチタンク52の一方側の内壁面52bと略平行に開口しつつ、第2通路92に対向している。
 第1通路91は、キャッチタンク52の一方側の内壁面52b上に開口する一方側の開口91bと、開口91bから第1発電電動機13のステータ31の上半部側へと左右方向の一方側(図2中の左側)に延びる流下通路部分91aとを有しており、図12Bに示すように、キャッチタンク52内のオイルの液面Lが高くなる高車速時に、キャッチタンク52から第1発電電動機13のステータ31またはその近傍に、流下通路部分91aから十分にオイルを流下させて第1発電電動機13の最大発熱時に十分な冷却を行うようになっている。
 第2通路92は、キャッチタンク52の他方側の内壁面52c上に開口する第2開口92bと、この開口92bから第2発電電動機14のステータ41の上半部側へと図12Aおよび図12B中の右側に延びる流下通路部分92aとを有しており、図12Aに示すように、キャッチタンク52内のオイルの液面Lが低くなる低車速時に、例えばキャッチタンク52内のオイルの液面Lが第1の高さh1より低い第2の高さh2まで上昇したときに、キャッチタンク52から第2発電電動機14のステータ41またはその近傍にもオイルを十分に流下させて、第2発電電動機14の最大発熱時に十分な冷却を行うようになっている。
 本実施形態においては、オリフィス穴94b(第3開口)の開口高さh2´と開口92b(第2開口)の開口高さh2とは、鉛直方向において同等の位置であるが、開口94c(第1開口)の高さが、第2開口92bに対して十分に高く設定されている。
 本実施形態においても、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇するときには、第2通路92を通して第2発電電動機14に流体が流下し、第2発電電動機14が優先的に冷却され、次いで、キャッチタンク52内のオイルの液面Lが第1の高さh1まで上昇すると、第1通路91を通して第1発電電動機13にオイルが流下し、第1発電電動機13が十分に冷却されるようにしているので、冷却用のオイルの供給量が不足するときに、第2通路92を通して第2発電電動機14に優先的にオイルを供給することができ、第2発電電動機14が冷却用オイルの不足時に最大発熱量となる場合に、その第2発電電動機14の冷却が不十分になることを確実に防止することができる。その結果、簡素な構成でありながらも、第2発電電動機14が最大発熱量となる時に冷却用のオイルをその第2発電電動機14に十分に供給することができ、トランスアクスル1の効率を高めることができるものであり、第1実施形態と同様の効果が得られる。
 しかも、本実施形態では、第1通路91が、開口94cとは別に第2開口92bに概ね対向するオリフィス穴94bを有しており、このオリフィス穴94bは、開口92bと同等の鉛直方向高さh2´に位置するとともに、開口92bより開口面積が小さくなっているので、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇する低い段階から第1通路91を通した第1発電電動機13への適量のオイル供給を行うことが可能になり、発電電動機13、14の発熱状態に応じた冷却を的確に行うことができるものとなる。
 (第6実施形態)
 図13Aおよび図13Bは、本発明の第6実施形態に係る車両駆動装置の発熱部冷却構造を示しており、本実施形態においては、キャッチタンク52の内部が左右2つに区画されている。
 すなわち、本実施形態においては、オイル循環通路50は、複数のオイル導入通路51、56と、キャッチタンク52内のオイルの液面が第1の高さh1まで上昇したときに第1発電電動機13のステータ31の近傍にオイルを流下させるようキャッチタンク52の一方側の内壁面52b上に開口する一方側の開口91bと、キャッチタンク52内のオイルの液面Lが第2の高さh2まで上昇したときに第2発電電動機14のステータ41の近傍にオイルを流下させるようキャッチタンク52の他方側の内壁面52c上に開口する他方側の開口92bと、を有している。
 また、キャッチタンク52は、このキャッチタンク52の内部を一方側の開口91bが開口する第1タンク部54と、他方側の開口92bが開口する第2タンク部55とに区画する区画壁部101を有しており、汲み上げ手段であるディファレンシャルリングギヤ16等とオイルポンプ20とによるオイルの汲み上げがなされるとき、汲み上げられたオイルがオイル導入通路51、56を通して第2タンク部55に最初に貯留され、第2タンク部55が満杯になってから第1タンク部54側にオイルが貯留されるようになっている。
 すなわち、本実施形態では、第1タンク部54と第2タンク部55との双方にオイルが満たされるときを除いて、第1タンク部54内の液面の高さが第2タンク部内の液面の高さより常に低くなるよう、複数のオイル導入通路51、56から第1タンク部54および第2タンク部55へのオイルの導入比率が設定されている。
 このように構成される本実施形態の冷却構造では、キャッチタンク52の第2タンク部55内のオイルの液面Lがまず第2の高さh2まで上昇すると、他方側の開口92bを通して第2発電電動機14のステータ41側にオイルが流下し、第2発電電動機14が冷却される。次いで、第2タンク部55が満杯になり、第2タンク部55から溢れたオイルが第1タンク部54内に貯留されることで、第1タンク部54内のオイルの液面Lが第1の高さh1まで上昇すると、一方側の開口91bを通して第1発電電動機13のステータ31の近傍にオイルが流下し、第1発電電動機13が冷却される。
 したがって、キャッチタンク52内のオイルの液面Lが第2の高さh2に達するもののさほど高くならず、オイル供給量が不足するときには、他方側の開口92bを通して第2発電電動機14に優先的にオイルが供給されることになる。よって、第2発電電動機14が冷却用オイルの不足時に最大発熱量となる場合に、その発熱部の冷却が不十分になることが確実に防止され、上述の第1実施形態と同様の効果が得られる。
 しかも、第1タンク部54と第2タンク部55の容積比を区画壁部101の設置位置や高さによって適宜設定できることから、第2発電電動機14に優先的にオイルが供給される期間を最適に設定できる。
 なお、図13Aおよび図13Bでは、第1タンク部54と第2タンク部55の水平断面積の比が区画壁部101の高さによらず一定の比率であるものとして示しているが、第1タンク部54と第2タンク部55の水平断面積の比が区画壁部101の高さに応じて変化するようにしてもよい。
 また、上述の各実施形態においては、オイルポンプ20からオイル導入通路56を通してキャッチタンク52にオイルが導入されるものとしたが、オイルポンプ20でなく、外部クーラ等からオイル導入通路56に導入されるものであってもよい。
 さらに、上述の各実施形態においては、第1発電電動機13を一方側の発熱部とし、第2発電電動機14を他方側の発熱部としたが、発電電動機に限定されるものではなく、発熱部は、発電機または電動機のいずれか一方でもよいし、インバータその他の電気的な発熱要素が搭載される部位であってもよい。したがって、本発明は2モータタイプの車両駆動装置の発熱部冷却構造に限定されるものではない。
 以上説明したように、本発明は、キャッチタンク内のオイルの液面が相対的に低い第2の高さまで上昇するとき、第2通路を通して他方側の発熱部に流体が流下することで他方側の発熱部が冷却され、キャッチタンク内のオイルの液面が第1の高さまで上昇するとき、第1通路を通して一方側の発熱部にオイルが流下することで一方側の発熱部が冷却されるようにしているので、冷却用のオイルの供給量が不足するときに、第2通路を通して他方側の発熱部に優先的にオイルを供給することができ、他方側の発熱部が冷却用オイルの不足時に最大発熱量となる場合に、その発熱部の冷却が不十分になることを確実に防止することができ、簡素な構成でありながらも、発熱部が最大発熱量となる時に冷却用のオイルをその発熱部に十分に供給することができ、車両駆動装置の効率を高めることのできる車両駆動装置の冷却構造を提供することができるという効果を奏するものであり、車両駆動装置の発熱部冷却構造、特にそのケース内にキャッチタンクとその両側の発熱部を備える場合に好適な車両駆動装置の発熱部冷却構造全般に有用である。
 1 トランスアクスル(車両駆動装置、動力伝達装置)
 10 ケース(トランスミッションケース)
 11 入力軸
 12 伝動機構(動力分割機構、減速機構)
 12b カウンタドライブギヤ(回転伝動要素、汲み上げ手段)
 13 第1発電電動機(一方側の発熱部、発電可能な電動機)
 14 第2発電電動機(他方側の発熱部、発電可能な電動機)
 15 カウンタドリブンギヤ(回転伝動要素、汲み上げ手段)
 16 ディファレンシャルリングギヤ(回転伝動要素、汲み上げ手段)
 20 オイルポンプ(汲み上げ手段)
 31、41 ステータ
 50 オイル循環通路
 51、56 オイル導入通路(複数のオイル導入通路)
 52 キャッチタンク
 52b 一方側の内壁面
 52c 他方側の内壁面
 54 第1タンク部
 55 第2タンク部
 61、71、81、91 第1通路
 61a、71a、81a、82a、91a、91c、92a 流下通路部分
 61b、71b、81b、91b 開口(第1開口、一方側の開口)
 62、72、82、92 第2通路
 62a、72a 主要部
 62d 下流側の通路部分
 63、73、94 通路形成部材
 63a オリフィス穴
 72b、82b、92b 開口(第2開口、他方側の開口)
 73a、73b オリフィス通路(オリフィス穴)
 73c 下側管部
 91e 開口(第3開口、一方側の開口)
 94a 縦通路
 94b オリフィス穴(第3開口)
 94c 開口
 101 区画壁部
 

Claims (12)

  1.  ケース内に貯留されたオイルを前記ケース内に設けられたキャッチタンクに汲み上げる汲み上げ手段と、前記オイルを前記キャッチタンクの一方側の発熱部および他方側の発熱部に供給しながら前記キャッチタンクを通して前記ケース内で循環させるオイル循環通路と、を備えた車両駆動装置の発熱部冷却構造であって、
     前記オイル循環通路は、前記キャッチタンク内の前記オイルの液面が第1の高さまで上昇したときに前記一方側の発熱部に前記オイルを流下させる第1通路と、前記キャッチタンク内の前記オイルの液面が前記第1の高さより低い第2の高さまで上昇したときに前記他方側の発熱部に前記オイルを流下させる第2通路と、を有し、
     前記キャッチタンク内の前記オイルの液面が低いときに、前記一方側の発熱部への前記オイルの流下量より前記他方側の発熱部への前記オイルの流下量が多くなることを特徴とする車両駆動装置の発熱部冷却構造。
  2.  前記第1通路が前記キャッチタンクの内壁面上に開口する第1開口を有するとともに、前記第2通路が前記キャッチタンクの内壁面上に開口する第2開口を有し、前記第1開口と前記第2開口の位置が鉛直方向に異なっていることを特徴とする請求項1に記載の車両駆動装置の発熱部冷却構造。
  3.  前記第1通路が、前記第1開口とは別に前記キャッチタンクの内壁面上に開口する第3開口を有し、
     前記第3開口は、前記第2開口と同等の鉛直方向の高さに位置するとともに、前記第2開口より開口面積が小さくなっていることを特徴とする請求項2に記載の車両駆動装置の発熱部冷却構造。
  4.  前記オイル循環通路が、前記汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路で前記キャッチタンクに導入する複数のオイル導入通路を有し、
     前記第2通路が、前記キャッチタンクの内方側に開口するオリフィス穴を有する通路形成部材によって前記複数のオイル導入通路のうちいずれかのオイル導入通路に連通するように形成され、該通路形成部材によって形成される前記第2通路の主要部が前記オリフィス穴より断面積の大きい通路となっていることを特徴とする請求項1に記載の車両駆動装置の発熱部冷却構造。
  5.  前記第2通路の前記オリフィス穴より上流側の通路部分が前記キャッチタンクの鉛直方向上方側にまで延びるとともに、前記第2通路の前記オリフィス穴より下流側の通路部分が前記キャッチタンクから水平方向の前記一方側に延びるように、前記通路形成部材が、前記オリフィス穴の近傍で屈曲する管路を形成していることを特徴とする請求項4に記載の車両駆動装置の発熱部冷却構造。
  6.  前記オイル循環通路が、前記汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路で前記キャッチタンクに導入する複数のオイル導入通路と、前記第1通路を前記キャッチタンクに開口させる一方側の開口と、前記第2通路を前記キャッチタンクに開口させる他方側の開口と、を有し、
     前記キャッチタンク内には、前記複数のオイル導入通路のうちいずれかのオイル導入通路を形成するとともに、前記一方側の開口に対向する一方側のオリフィス穴および前記他方側の開口に対向する他方側のオリフィス穴を形成する通路形成部材が設けられ、
     前記通路形成部材が、前記一方側の開口と前記他方側の開口とを部分的に閉塞することで、前記一方側の開口と前記他方側の開口との高さを相違させていることを特徴とする請求項1に記載の車両駆動装置の発熱部冷却構造。
  7.  前記一方側のオリフィス穴の開口面積が、前記他方側のオリフィス穴の開口面積より小さいことを特徴とする請求項6に記載の車両駆動装置の発熱部冷却構造。
  8.  ケース内に貯留されたオイルを前記ケース内に設けられたキャッチタンクに汲み上げる汲み上げ手段と、前記オイルを前記キャッチタンクの一方側の発熱部および他方側の発熱部に供給しながら前記キャッチタンクを通して前記ケース内で循環させるオイル循環通路と、を備えた車両駆動装置の発熱部冷却構造であって、
     前記オイル循環通路は、前記汲み上げ手段により汲み上げられる前記オイルを異なる複数の経路で前記キャッチタンクに導入する複数のオイル導入通路と、前記キャッチタンク内の前記オイルの液面が第1の高さまで上昇したときに前記一方側の発熱部に前記オイルを流下させる一方側の開口と、前記キャッチタンク内の前記オイルの液面が第2の高さまで上昇したときに前記他方側の発熱部に前記オイルを流下させる他方側の開口と、を有し、
     前記キャッチタンクは、該キャッチタンクの内部を前記一方側の開口が開口する第1タンク部と前記他方側の開口が開口する第2タンク部とに区画する区画壁部を有し、
     前記汲み上げ手段により前記オイルが汲み上げられるとき、前記第1タンク部と前記第2タンク部との双方に前記オイルが満たされるときを除いて前記第1タンク部内の前記液面の高さが前記第2タンク部内の前記液面の高さより常に低くなるよう、前記複数のオイル導入通路から前記第1タンク部および前記第2タンク部への前記オイルの導入比率が設定されていることを特徴とする車両駆動装置の発熱部冷却構造。
  9.  前記汲み上げ手段が、前記車両駆動装置の出力が増大するときに前記キャッチタンクへの前記オイルの汲み上げ量を増加させることを特徴とする請求項1ないし請求項8のうちいずれか1項に記載の車両駆動装置の発熱部冷却構造。
  10.  前記汲み上げ手段が、前記ケース内に回転可能に内蔵され、前記ケース内に貯留されたオイルを前記キャッチタンクにかき上げる少なくとも1つの回転伝動要素と、前記ケース内に貯留されたオイルを前記キャッチタンクに汲み上げるポンプと、を含んで構成されていることを特徴とする請求項9に記載の車両駆動装置の発熱部冷却構造。
  11.  前記回転伝動要素が、前記車両駆動装置の出力が増大するときに回転速度を増大させ、前記キャッチタンクへの前記オイルの汲み上げ量を増加させることを特徴とする請求項10に記載の車両駆動装置の発熱部冷却構造。
  12.  前記発熱部が、発電可能な電動機であることを特徴とする請求項1ないし請求項11のうちいずれか1項に記載の車両駆動装置の発熱部冷却構造。
     
PCT/JP2010/002368 2009-04-08 2010-03-31 車両駆動装置の発熱部冷却構造 WO2010116689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010001550.3T DE112010001550B4 (de) 2009-04-08 2010-03-31 Kühlungsanordnung für einen wärmeerzeugenden abschnitt eines fahrzeugantriebsgeräts
US13/057,875 US8456045B2 (en) 2009-04-08 2010-03-31 Heat-generating portion cooling structure of vehicle drive apparatus
CN2010800073676A CN102317656B (zh) 2009-04-08 2010-03-31 车辆驱动装置的发热部冷却构造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009093503A JP4683140B2 (ja) 2009-04-08 2009-04-08 車両駆動装置の発熱部冷却構造
JP2009-093503 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116689A1 true WO2010116689A1 (ja) 2010-10-14

Family

ID=42935987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002368 WO2010116689A1 (ja) 2009-04-08 2010-03-31 車両駆動装置の発熱部冷却構造

Country Status (5)

Country Link
US (1) US8456045B2 (ja)
JP (1) JP4683140B2 (ja)
CN (1) CN102317656B (ja)
DE (1) DE112010001550B4 (ja)
WO (1) WO2010116689A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238209B1 (ko) * 2010-11-29 2013-03-04 엘지전자 주식회사 전동기
CN103460564B (zh) * 2011-04-06 2016-05-11 本田技研工业株式会社 车辆用驱动装置
EP2720352B1 (en) * 2011-06-07 2019-08-07 Honda Motor Co., Ltd. Drive device for vehicle
JP5545413B2 (ja) 2011-07-19 2014-07-09 トヨタ自動車株式会社 ハイブリッド車両用動力伝達装置の潤滑装置
JP5790565B2 (ja) * 2012-03-26 2015-10-07 トヨタ自動車株式会社 ハイブリッド車両の油圧制御装置
JP5790630B2 (ja) * 2012-12-05 2015-10-07 トヨタ自動車株式会社 潤滑油供給構造
JP5939351B2 (ja) * 2013-02-15 2016-06-22 日産自動車株式会社 モータ駆動ユニットの冷却装置
CN105408666A (zh) * 2013-08-30 2016-03-16 爱信艾达株式会社 动力传递装置
US10439477B2 (en) * 2014-01-31 2019-10-08 Tesla, Inc. Pressurized and gravity-fed liquid cooling of electric motor
JP6458435B2 (ja) * 2014-10-08 2019-01-30 三菱自動車工業株式会社 車両用モータ装置
DE102014221667A1 (de) * 2014-10-24 2016-04-28 Zf Friedrichshafen Ag Hybridantriebsanordnung eines Kraftfahrzeuges
US9410610B1 (en) * 2015-08-12 2016-08-09 Borgwarner Inc. Eco mode E-assist
JP6364443B2 (ja) * 2016-06-13 2018-07-25 本田技研工業株式会社 回転電機ユニット
JP2018117481A (ja) * 2017-01-20 2018-07-26 いすゞ自動車株式会社 モータージェネレーター
JP6628779B2 (ja) * 2017-10-25 2020-01-15 本田技研工業株式会社 機電一体型回転電機装置
JP6651496B2 (ja) * 2017-12-22 2020-02-19 本田技研工業株式会社 回転電機
DE102018203696A1 (de) * 2018-03-12 2019-09-12 Volkswagen Aktiengesellschaft System mit einem Schmierölkreislauf und mit einem Kühlölkreislauf
US10272767B1 (en) * 2018-03-23 2019-04-30 Sf Motors, Inc. Dual loop liquid cooling of integrated electric drivetrain
DE102018213990B3 (de) * 2018-08-20 2019-09-05 Magna Pt B.V. & Co. Kg Hybridgetriebe
KR102084324B1 (ko) * 2018-08-31 2020-03-03 현대트랜시스 주식회사 변속기 케이스 및 오일처닝을 방지하는 변속기 케이스
CN110855065B (zh) * 2019-12-13 2020-06-12 浙江巨龙电机股份有限公司 一种高效散热电机
CN110925405A (zh) * 2019-12-27 2020-03-27 中车戚墅堰机车车辆工艺研究所有限公司 一种减速器壳体、双驱动减速器及汽车
WO2021237539A1 (zh) * 2020-05-27 2021-12-02 华为数字能源技术有限公司 一种动力总成及电动车
DE102020207252A1 (de) * 2020-06-10 2021-12-30 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
KR20220012091A (ko) * 2020-07-22 2022-02-03 현대모비스 주식회사 모터 구동 모듈
DE102021200276B4 (de) 2021-01-14 2022-10-27 Zf Friedrichshafen Ag Antriebsvorrichtung mit einer Vorrichtung zum Kühlen und Schmieren von Komponenten eines Fahrzeugs
DE102021202838A1 (de) 2021-03-23 2022-09-29 Volkswagen Aktiengesellschaft Antriebsanordnung für ein Kraftfahrzeug
CN113067428B (zh) * 2021-03-24 2023-05-09 宁波狮球通风机电有限公司 一种可以自动冷却的电机
DE102021205052A1 (de) 2021-05-18 2022-11-24 Volkswagen Aktiengesellschaft Ölverteilbehälter für eine Kühl- und Schmieranordnung eines Kraftfahrzeugantriebs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238406A (ja) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd 駆動装置
JP2006312353A (ja) * 2005-05-06 2006-11-16 Toyota Motor Corp 車両の制御装置
JP2007166803A (ja) * 2005-12-14 2007-06-28 Toyota Motor Corp 車両の駆動装置
JP2007247706A (ja) * 2006-03-14 2007-09-27 Toyota Motor Corp 駆動装置の制御装置
JP2008195196A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp ハイブリッド車両用駆動装置
JP2008286247A (ja) * 2007-05-15 2008-11-27 Toyota Motor Corp オイルレベル調整装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414532A (en) * 1944-06-09 1947-01-21 Westinghouse Electric Corp Electrical machine
US2610992A (en) * 1950-05-16 1952-09-16 Westinghouse Electric Corp Construction of dynamoelectric machines
US4965477A (en) * 1989-03-17 1990-10-23 Sundstrand Corporation Integrated drive generator with permanent magnet generator on second shaft
JPH07217725A (ja) 1994-02-04 1995-08-15 Toyota Motor Corp 差動装置の潤滑構造
FR2751726B1 (fr) * 1996-07-25 1998-09-18 Renault Agencement perfectionne pour la lubrification d'un train d'engrenages et boite de vitesses de vehicule automobile equipee d'un tel agencement
JP2005083491A (ja) 2003-09-09 2005-03-31 Toyota Motor Corp キャッチタンク
US7402923B2 (en) * 2004-07-29 2008-07-22 General Motors Corporation Electrically variable transmission
JP4539531B2 (ja) * 2005-10-26 2010-09-08 トヨタ自動車株式会社 車両の駆動装置
US7893581B2 (en) * 2006-07-12 2011-02-22 Toyota Jidosha Kabushiki Kaisha Motor module
KR101220375B1 (ko) * 2010-10-13 2013-01-09 현대자동차주식회사 하이브리드 자용차의 모터/제너레이터 냉각 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238406A (ja) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd 駆動装置
JP2006312353A (ja) * 2005-05-06 2006-11-16 Toyota Motor Corp 車両の制御装置
JP2007166803A (ja) * 2005-12-14 2007-06-28 Toyota Motor Corp 車両の駆動装置
JP2007247706A (ja) * 2006-03-14 2007-09-27 Toyota Motor Corp 駆動装置の制御装置
JP2008195196A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp ハイブリッド車両用駆動装置
JP2008286247A (ja) * 2007-05-15 2008-11-27 Toyota Motor Corp オイルレベル調整装置

Also Published As

Publication number Publication date
JP4683140B2 (ja) 2011-05-11
US8456045B2 (en) 2013-06-04
CN102317656B (zh) 2012-07-18
DE112010001550T5 (de) 2012-07-05
CN102317656A (zh) 2012-01-11
JP2010242900A (ja) 2010-10-28
DE112010001550B4 (de) 2021-07-01
US20120091836A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP4683140B2 (ja) 車両駆動装置の発熱部冷却構造
CN109474127B (zh) 车辆用旋转电机的冷却装置
CN109790914B (zh) 车辆用驱动装置
US11192444B2 (en) Drive unit for a hybrid vehicle
JP4770947B2 (ja) 車両の動力伝達装置
JP5425164B2 (ja) 車両用駆動装置
JP6314947B2 (ja) 動力伝達装置の冷却構造
JP5218007B2 (ja) 動力伝達装置
JP2018057243A (ja) 車両用駆動装置
JP2010261534A (ja) 車両用駆動装置
WO2019208083A1 (ja) モータユニット
WO2019208081A1 (ja) モータユニットおよび車両駆動装置
CN213892154U (zh) 马达单元
JPWO2020032026A1 (ja) モータユニット
CN112020817A (zh) 马达单元和马达单元的控制方法
WO2019194073A1 (ja) モータユニット
JP5141353B2 (ja) 動力伝達装置の流体通路構造
JP5527240B2 (ja) 動力伝達システムの潤滑装置
JP2011250524A (ja) 車両用動力伝達装置の冷却装置
CN111936337A (zh) 马达单元
JP2006271149A (ja) モータの冷却装置
JP5200910B2 (ja) 動力伝達装置の潤滑油供給装置
WO2019208082A1 (ja) モータユニット
JP2019119402A (ja) 潤滑装置
JP2006145043A (ja) 潤滑装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007367.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13057875

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100015503

Country of ref document: DE

Ref document number: 112010001550

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761395

Country of ref document: EP

Kind code of ref document: A1