WO2010116602A1 - 浚渫窪地の埋め戻し方法 - Google Patents

浚渫窪地の埋め戻し方法 Download PDF

Info

Publication number
WO2010116602A1
WO2010116602A1 PCT/JP2010/001421 JP2010001421W WO2010116602A1 WO 2010116602 A1 WO2010116602 A1 WO 2010116602A1 JP 2010001421 W JP2010001421 W JP 2010001421W WO 2010116602 A1 WO2010116602 A1 WO 2010116602A1
Authority
WO
WIPO (PCT)
Prior art keywords
steelmaking slag
sand
slag
layer
backfilling
Prior art date
Application number
PCT/JP2010/001421
Other languages
English (en)
French (fr)
Inventor
三木理
加藤敏朗
赤司有三
中川雅夫
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42935902&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010116602(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010531749A priority Critical patent/JP4719316B2/ja
Priority to BRPI1014832-9A priority patent/BRPI1014832B1/pt
Publication of WO2010116602A1 publication Critical patent/WO2010116602A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/16Sealings or joints

Definitions

  • the present invention relates to a method of backfilling an Oi depression by using dredged material.
  • Priority is claimed on Japanese Patent Application No. 2009-083560, filed March 30, 2009, the content of which is incorporated herein by reference.
  • Ogikubo site a depression-like site that has been dug deeper than the seabed in the surrounding area. For example, in Tokyo Bay, that such "dredging depression” exists approximately 100 million m 3 has been elucidated.
  • sulfides and phosphorus
  • the sulfide consumes the dissolved oxygen in the seawater as in the following reaction formula (1) showing the reaction between the sulfide and the dissolved oxygen.
  • an oxygen-free water mass (referred to as an oxygen-deficient water mass) is likely to be generated.
  • this poor-oxygen water mass (called blue tide, bitter tide, etc.) intrudes into the coastal area, fish and shellfish die and serious fishing damage occurs.
  • Non-Patent Document 1 the necessity of restoration by backfilling of the Ogikubo ground, etc. is strongly demanded.
  • Sulfate reducing bacteria is a general term for a group of bacteria that oxidize organic matter using sulfate ion (SO 4 2- ) as an oxidizing agent.
  • the sulfate reducing bacteria reduce sulfate ions (SO 4 2 ⁇ ) in seawater with organic substances (CH 2 O) as shown in the equation (2).
  • CH 2 O organic substances
  • FIG. 1 the formation of hydrogen sulfide (H 2 S) is promoted (FIG. 1).
  • Total sulfide suspended sulfide (FeS, MnS, etc.) + dissolved sulfide (5)
  • dissolved sulfide is the sum of hydrogen sulfide [H 2 S (g)] and sulfide ion. That is, the following equation holds.
  • Dissolved sulphide [H 2 S (g) ] + [HS -] + [S 2 -] ⁇ [H 2 S (g) ] + [HS -] (pH of normal seawater) ... (6)
  • the percentage of free hydrogen sulfide [H 2 S (g)], which is considered to be the most toxic of dissolved sulfides, is 50% or more at pH 7 or less, but 10% if pH is more than 8 It falls to less than%.
  • the percentage of dissolved sulfide ion [HS ⁇ ] is the highest.
  • the pH of seawater is about 8 to 8.5, it is considered that most of the dissolved sulfides exist as dissolved sulfide ions [HS ⁇ ].
  • sulfide consumes dissolved oxygen in a short time as shown in equation (2), and is also toxic to aquatic organisms, so it is desirable to minimize its elution into seawater.
  • red tide abnormal occurrence of algae in the sea area
  • eutrophication abnormal occurrence of algae in the sea area
  • Phosphorus contained in urban sewage and industrial drainage is one of the eutrophication substances in the sea area, and from the viewpoint of environmental protection, phosphorus removal from sewage and drainage is being promoted.
  • the influx of phosphorus from the surrounding area into the sea area has decreased due to the strengthening of many water quality regulations.
  • phosphorus has accumulated in the sediments of the polluted sea area for many years, and in particular in the summer when the water temperature rises, phosphorus is eluted from the anaerobic sediments, which is one of the causes of red tide generation.
  • the generated algae is likely to be deposited and then to be deposited, and in summer, it is rotted / analyzed and phosphorus is likely to be re-eluted. Therefore, if it is possible to prevent such elution of phosphorus from the Ogikubo area, it is considered that there is a possibility that abnormal occurrence of algae in the sea area can be reduced.
  • the sulfate reduction reaction is the main factor of sulfide generation in the submarine Obosubaki area, and the rate-limiting factor of this sulfate reduction reaction is not the sulfate in seawater but the organic matter contained in the sediment. Therefore, in order to prevent poor oxygenation derived from sulfide generation, it is desirable that the content of organic matter be as small as possible also for "soil and sand" used for the backfill material.
  • the present invention uses the steelmaking slag generated from the iron and steel process in a method to backfill the seabed environment by using "soil and sand" to backfill the seabed Oshikubo, and significantly improves the sea area environment improvement effect by backfilling using the sand It aims to provide a way to improve.
  • a first aspect of the present invention is a method of backfilling a submarine depression in a seabed, comprising: mixing step of mixing gravel and sand and a first steelmaking slag to obtain mixed gravel; And the mixed coral sediment layer forming step for forming the mixed coral sediment layer.
  • the gravel and sand in the mixing step, so that the mixing ratio of the first steelmaking slag is 10% by mass to 50% by mass. And the first steelmaking slag may be mixed.
  • the method of backfilling a submarine floodplain according to (1) above may further include the step of carbonizing the first steelmaking slag in advance.
  • a second steelmaking slag is placed on the top of the mixed gravel bedrock layer to make the steelmaking slag layer. You may further comprise the steel-making slag layer formation process to form.
  • the second steelmaking slag may contain 50% by mass or more of steelmaking slag having a particle size of less than 10 mm.
  • a plurality of layers of the mixed gravel sediment layer and the steelmaking slag layer may be provided repeatedly.
  • the method of backfilling a submarine floodplain according to the above (5) may further include the step of carbonizing the second steelmaking slag in advance.
  • the upper portion of the steelmaking slag layer may be further coated with natural sand.
  • a second aspect of the present invention is a method of backfilling a submarine floodplain, comprising: dredging sediment layer forming step of forming dredged sediment layer by injecting dredged sediment into the flood basin; A mixed straw-sand layer or a steelmaking slag layer forming step of forming a mixed straw-sand layer or a steelmaking slag layer by laying a mixed straw-sand or steelmaking slag on the upper part of the layer.
  • a plurality of layers may be provided repeatedly between the gravel-sand layer and the mixed gravel-sand layer or the steelmaking slag layer.
  • the method of backfilling a submarine floodplain according to the above (10) may further include the step of carbonizing the steelmaking slag in advance.
  • the upper portion of the steelmaking slag layer may be further coated with natural sand.
  • the steelmaking slag used as the uppermost layer is solidified
  • Other layers may use steelmaking slag which is easy to solidify, using carbonation steelmaking slag which is hard to do.
  • the shielding effect by the steelmaking slag layer can suppress the formation of sulfides and phosphorus in the mixed coral sediment layer. In addition, even if sulfides and phosphorus are formed, elution of the sulfides into seawater can be suppressed. According to the method of the present invention described in (6) above, it is possible to suppress the decrease in the dissolution rate of calcium ions and silica. According to the method of the present invention described in (7) above, the shielding effect by the steelmaking slag layer can be more effectively obtained.
  • the shielding effect of the steelmaking slag layer can suppress the formation of sulfides and phosphorus in the gravel sediment layer. In addition, even if sulfides and phosphorus are formed, elution of the sulfides into seawater can be suppressed. According to the method of the present invention described in (11) above, the shielding effect by the steelmaking slag layer can be more effectively obtained.
  • the sea area environment is improved by backfilling the seabed Okusubun area with coral sediment.
  • steelmaking slag is used in combination and effectively utilized to form sulfide and phosphorus in the floodplain and dissolve it in water. Suppress.
  • Iron and steel slag generated from a steelmaking plant is generated as a by-product in the iron and steel manufacturing process.
  • Iron and steel slag is roughly classified into blast furnace slag and steelmaking slag, and each is used as a useful material in various fields.
  • Blast furnace slag is a general term for slag generated when producing pig iron in blast furnaces. Components other than iron of iron ore melted in the blast furnace and limestone of the secondary material and ash of coke become blast furnace slag.
  • the blast-furnace slag forms about 290 to 300 kg per ton of pig iron (slag ratio kg / t-pig iron).
  • Slag just removed from the blast furnace is in a molten state of about 1500 ° C., and is further classified into two types of slags, blast furnace ground slag and blast furnace annealed slag, according to the manufacturing method (cooling method).
  • Granulated blast furnace slag is a slag produced by injecting pressurized water onto slag in a molten state of about 1500 ° C. and rapidly cooling it, and is amorphous (glassy) and granular.
  • Granulated slag is mainly used as a cement raw material. In addition, it is widely used for ordinary cement mixture, fine aggregate for concrete, etc.
  • the blast furnace slowly cooled slag is a slag produced by pouring high temperature slag into a yard or pit and slowly cooling it by natural cooling and moderate water sprinkling, and is crystalline and rocky.
  • Slow-cooling slag is mainly used as a coarse aggregate for concrete and a cement clinker raw material (clay substitute).
  • aging after taking measures to prevent the generation of sulfur odor and yellow turbid water by outdoor curing treatment (hereinafter referred to as aging) for 1 to 3 months, it is also used as a roadbed material for roads and the like.
  • Steelmaking slag is a general term for slag generated when producing steel from pig iron and scrap in a steelmaking furnace (converter, electric furnace). The following description will be focused on a converter steelmaking slag mainly using pig iron.
  • the removal of impurities is insufficient only with the refining by the converter, and the refining method which adds the process (hot metal pretreatment, secondary refining) before and after the converter becomes common.
  • the hot metal pretreatment slag and secondary refining slag generated from such high-grade steel manufacturing process are also included in the converter-based steelmaking slag, similarly to the converter slag.
  • the converter steelmaking slag produces about 110 to 130 kg per ton of crude steel. Similar to blast furnace slowly cooled slag, steelmaking slag is produced by pouring high temperature slag into yard and pit and slowly cooling it by natural cooling and moderate water sprinkling. Since steelmaking slag has a high content of f-CaO (soluble lime) and has the property of being easily expanded when it comes in contact with water, after taking measures to prevent expansion by outdoor aging treatment or accelerated aging treatment using steam etc. Used as road base materials for roads. It is also used as a cement clinker raw material (FeO supply material), a ground improvement material, and a civil engineering material.
  • f-CaO soluble lime
  • the blast furnace slag recycling rate is almost 100%, and it is used as a recycled resource, but the steelmaking slag recycling rate is high in expansivity and iron content.
  • the recycling rate has not reached 100% for reasons such as Therefore, with regard to steelmaking slag, not only applications on an extension line of conventional applications, but also methods for effective utilization in water areas such as sea areas are widely studied taking advantage of the features of steelmaking slag.
  • the steel slag used for the submarine depression of the present invention of the present invention is also a steelmaking slag, not a blast furnace slag.
  • sulfate reducing bacteria reduce sulfate ions (SO 4 2- ) in seawater with organic substances (CH 2 O), and as a result, form sulfides such as hydrogen sulfide (H 2 S) Do.
  • the following can be considered as a measure to prevent the formation of sulfides and the elution of sulfides into water accompanying the progress of such a sulfuric acid reduction reaction.
  • the activity of the sulfate reducing bacteria does not decrease unless the pH is maintained at 9.5 or more and for a long time.
  • a measure to increase pH also affects other general bacteria, a measure to reduce the activity of such sulfate reducing bacteria is not realistic.
  • the steelmaking slag is made of a compound such as Ca, Si, Al, Fe, etc., and is treated at a high temperature of 1500 ° C., and therefore contains no organic matter.
  • the present inventors as a result of various examinations, when steelmaking slag is mixed with slag, while the organic matter content ratio decreases in proportion to the degree of steelmaking slag mixing, the number of sulfate reducing bacteria decreases and generation of sulfide I found that the amount decreased.
  • mixing steelmaking slag also has the effect of being able to prevent the pH drop due to the decay of organic matter in straw and sand.
  • the mixing ratio of steelmaking slag to dredged earth and sand is 10 mass% or more and 50 mass% or less as a standard, conduct batch experiments etc. in advance, so that the pH of nearby seawater is 8 or less and less than 9.5.
  • Steelmaking slag can be utilized as a coating material which reduces such water permeability.
  • the permeability of the soil is the ease of water movement in the interstices of the soil and is generally evaluated by the permeability coefficient k (cm / sec) as shown in Table 2.
  • the inventors have found that if the thickness of the steelmaking slag layer to be coated is about 5 mm to 1 cm, it is effective for the elution of sulfide. However, in an actual sea area, it is difficult to uniformly cover the entire surface to a thickness of less than 1 cm using steelmaking slag, so it is desirable to lay it at 1 to 10 cm. If it is a grade of laying of such steelmaking slag, the pH of the seawater of the slag layer vicinity will hardly rise by the dilution effect by seawater normally.
  • the thickness of steelmaking slag When the thickness of steelmaking slag is increased, the shielding effect is enhanced, but there is also a possibility that the pH of seawater near the slag layer temporarily rises over 9.5, for example, when the seawater exchange rate is small. For this reason, it is not preferable that the thickness of a steelmaking slag layer exceeds 10 cm.
  • a means of repeatedly providing a plurality of layers of sand and sand layers and steelmaking slag layers in a sandwich-like manner is also effective as a means for suppressing such pH increase of seawater.
  • the steelmaking slag carbonation steelmaking slag
  • the steelmaking slag used for coating cover, it is desirable to contain 50 mass% or more of steelmaking slag with many fine particle parts whose particle size is less than 10 mm from a viewpoint of solidification promotion of steelmaking slag.
  • the steelmaking slag having a particle size of greater than 10 mm is unlikely to increase in pH but, conversely, the dissolution rate of calcium ions and silica necessary for promoting solidification is reduced, so the solidification rate is reduced. Therefore, it is desirable that the steelmaking slag used for coating contains 50% by mass or more of steelmaking slag having many fine particles having a particle size of less than 10 mm and having a large dissolution rate of calcium ions and silica.
  • the top part is further covered with natural sand, and living space such as polychaea, shellfish etc. You may provide. You may use the dam sand of the good quality with few amounts of organic substance.
  • gravel-sand 3 mixed with gravel-sand or steel-making slag is introduced into the bottom portion of the Obisubumi ground 2 on the seabed 1.
  • the batch experiment which mixed indigo and sand, steelmaking slag, and seawater was carried out in advance, and the pH of the seawater is 8 or more and less than 9.5. Determine the mixing rate.
  • steelmaking slag 4 is added alone to a thickness of 1 to 10 cm on the entire upper surface of the crucible sediment 3 mixed with slag, sand or steelmaking slag.
  • the layer thickness may be increased. That is, in the case of carbonized steelmaking slag, the pH of seawater does not exceed 9.5 even if the layer thickness is up to 100 cm. By increasing the layer thickness, the elution of sulfide can be further suppressed. Furthermore, natural sand 5 is laid as a living space above the steelmaking slag 4. The layer thickness of natural sand is 30 to 100 cm. In addition, in the bottom part of the Oi depression 2 of the seabed 1, actually, the case where the gravel earth and sand is partially thrown in already exists.
  • the layer of coral sediment 3 mixed with coral sediment or steelmaking slag and the layer of steelmaking slag 4 may be repeatedly laid in a sandwich form. In this case, the elution of sulfide into seawater can be suppressed more reliably.
  • the entire surface may not be covered with the steelmaking slag 4. Since elution of calcium is important in promoting such solidification reaction, it is desirable to use steelmaking slag which is not subjected to carbonation treatment. Furthermore, it is desirable that 50 mass% or more of steelmaking slags with many fine particles having a particle diameter of less than 10 mm and a large dissolution rate of calcium ions be contained. In addition, when backfilling a submarine floodplain with a plurality of layers, carbonized steel slag that is hard to solidify may be used as steel slag used for the top layer, and steel slag that is easy to solidify may be used for the other layers. .
  • Fe (III) the reduction reaction of Fe (III) proceeds for the first time to elute Fe (II) ions and phosphate ions (PO 4 -P).
  • Bacteria that promote such a reaction are iron reducing bacteria.
  • Iron reducing bacteria is a generic name of bacteria groups which oxidize organic matter using ferric iron as an oxidizing agent.
  • the following can be considered as a measure to prevent the formation of phosphate ion (PO 4 -P) and the elution into water accompanying the progress of such iron reduction reaction.
  • E Decrease the activity of iron-reducing bacteria and suppress the formation of phosphate ion (PO 4 -P).
  • F Reduce the amount of organic substances and the number of iron reducing bacteria to suppress the formation of phosphate ion (PO 4 -P).
  • G prevent elution into water even if phosphate ion (PO 4 -P) is formed.
  • (e) is a method of reducing the activity of iron-reducing bacteria, but a method of raising dissolved oxygen (O 2 ) by aeration etc., a method of adding nitrate ion (NO 3 ⁇ ), etc. are widely known. However, it is difficult to apply to the Okubuchi ground. In addition, since pH also affects the activity of iron-reducing bacteria, there is also a method of adjusting pH. Generally, bacteria are most active at about pH 7-9, and iron reducing bacteria are not the exception. It can be easily estimated that the activity of the iron-reducing bacteria is the highest at pH around 8 to 8.5, which is near the pH of seawater.
  • the activity of the iron-reducing bacteria does not decrease unless the pH is maintained at 9.5 or more and continuously for a long time.
  • a measure to increase pH also affects other general bacteria, a measure to reduce the activity of such iron-reducing bacteria is not realistic.
  • the steelmaking slag is made of a compound such as Ca, Si, Al, Fe, etc., and is treated at a high temperature of 1500 ° C., and therefore contains no organic matter.
  • iron reducing bacteria inhabit general soil, and inhabit "soil and sand", but steelmaking slag is processed at a high temperature of 1500 ° C, and there is almost no water, Habitation of iron reducing bacteria seems to be difficult. That is, by utilizing the steelmaking slag, it is possible to reduce the ratio of organic substances in the coral sediment and the number of iron reducing bacteria, and to suppress the formation of sulfide.
  • the steelmaking slag has weak hydraulicity, and the water permeability also decreases with time, and the water permeability coefficient k decreases to about 10 ⁇ 5 to 10 ⁇ 6 cm / sec.
  • water soluble silica elutes from dredged earth and sand, and calcium elutes from steelmaking slag, and this water soluble silica reacts with calcium to form calcium silicate (CSH), which solidifies.
  • CSH calcium silicate
  • To form an impervious stratum with a permeability coefficient k (cm / sec) 10 -6 to 10 -7 cm / sec. It is thought that the phosphate ion (PO 4 -P) generated and accumulated in the “sand” also can not be easily eluted into seawater by such an impermeable water-covering effect (Covering).
  • steelmaking slag generally has a high proportion of f-CaO (soluble lime) present alone, and has a characteristic that the pH in water tends to rise temporarily. For this reason, it is also possible to give "carbonation treatment” and to set “f-CaO as CaCO 3 " as a "carbonated steelmaking slag” and to lower the pH of elution water.
  • Carbonation treatment of steelmaking slag can be implemented by bringing steelmaking slag into contact with carbon dioxide or carbonic acid-containing water.
  • Patent Document 2 it is less than the moisture value at which free water starts to be present in steelmaking slag in the atmosphere, pressurized atmosphere, or steam atmosphere, and at least 10 mass% less than the moisture value.
  • a method of carbonating steelmaking slag by flowing a gas having a relative humidity of 75 to 100% containing carbon dioxide gas after adjusting the amount of water or the amount of carbonated water.
  • free water When water is poured into the powder, the powder absorbs water for a while (called bound water). When the amount of input water exceeds a certain level, the powder can no longer absorb water and is present around the powder. The water in this state is called "free water". When this free water is present, the powder group is in the form of paste, and it becomes difficult for the gas containing carbon dioxide gas to pass in the region where the free water is present. From such a point of view, the maximum carbonation rate can be obtained at the stage of confined water in which the surface and the inside of the void inside the slag are moistened from such a viewpoint, and efficient carbonation becomes possible. It reports.
  • CaO becomes CaCO 3
  • the ratio of CaO and Ca (OH) 2 can be made 0.9 mass% or less, and CaCO 3 is formed on the surface of steelmaking slag. For this reason, rapid elution of remaining CaO or Ca (OH) 2 can be suppressed.
  • the method of carbonation-processing the slag used by this embodiment is not limited to the said method. Any carbonation method may be used as long as CaO can be stabilized as CaCO 3 .
  • Example 1 Verification example of elution suppression of sulfide by coating using steelmaking slag The sediment was centrifuged at 3000 rpm for 20 minutes, and used for the experiment. As steelmaking slag, converter-type steelmaking slag without carbonation treatment was used. Both sand and sand and steelmaking slag met the water standard for fishery (Table 3).
  • Table 5 shows the pH and dissolved sulfide (DS) concentration of seawater after 20 days.
  • Example 2 Verification example of generation
  • the indigo and sand were centrifuged for 20 minutes at 3000 rpm, and it used for experiment.
  • the steelmaking slag used the steelmaking slag (The carbonation steelmaking slag is described hereafter) which gave carbonation treatment.
  • Both dredged material and sand and carbonated steelmaking slag satisfied the water standard for fishery (Table 6).
  • wetted material (wet) and carbonized steelmaking slag having a particle size of 5 mm or less (50% particle size: 2 mm) were added to a glass bottle (volume: 1 L) under the conditions shown in Table 7. Thereafter, artificial seawater which was aerated with nitrogen and from which dissolved oxygen (DO) was removed was added to each glass bottle, and the glass bottle was filled with seawater, and then left sealed at room temperature (20 ° C.) for 35 days. After 35 days, the pH of the glass bottle water was measured. Since sulfides are easily dissipated in the analysis process, the pH was immediately adjusted to 10 after seawater was collected.
  • the dissolved sulfide in the filtered water was immobilized with zinc acetate and measured. Calcium ion was measured in the residual solution.
  • the total number of bacteria was determined by the ATP (adenosine triphosphate) method, and the number of sulfate reducing bacteria was determined by the real time PCR (polymerase chain reaction) method.
  • FIG. 4 shows the relationship (after 35 days) between the addition ratio of carbonized steelmaking slag and the sulfide and sulfide-derived COD in seawater.
  • the sulfide concentration in seawater was 7.5 mg / L.
  • the sulfide concentration decreased substantially in proportion to the addition rate of the carbonized slag, and in the case of 100% carbonized steelmaking slag, the elution of the sulfide was below the detection limit.
  • sulfide is measured as COD (chemical oxygen demand), and 1 mg / L of sulfide corresponds to 2 mg / L of COD.
  • COD chemical oxygen demand
  • 1 mg / L of sulfide corresponds to 2 mg / L of COD.
  • the COD attributable to sulfide is about 15 mg / L, but COD can also be reduced by utilizing carbonized slag as sediment, and oxygen consumption can be reduced.
  • the total amount of microorganisms of the dredged soil was about 3 ⁇ 10 8 CELL / g, it decreased with the increase of the addition rate of carbonated steelmaking slag.
  • the abundance ratio of the total amount of microorganisms decreased to more than the carbonation steelmaking slag addition ratio.
  • the measurement result (The relative quantitative value in each sample of a sulfate reducing bacteria origin gene) of the number of sulfate reducing bacteria is shown in FIG.
  • the abundance ratio of sulfate reducing bacteria is also NO. 1> NO. 2> NO. 3> NO. It is 4 and the relative concentration ratio of the sulfuric acid reducing bacteria fell to more than the slag addition ratio by raising the addition ratio of carbonation steelmaking slag.
  • Example 3 Verification example of elution suppression effect of sulfide by steelmaking slag coating
  • the formation potential of sulfide can be reduced by mixing carbonation steelmaking slag with gravel and sand compared with the time of gravel and sand alone.
  • the production of sulfide can not be reduced to 0 unless carbonation steelmaking slag is replaced with 100% soot and sand (Example 2).
  • the sediment was centrifuged at 3000 rpm for 20 minutes and used for the experiment.
  • steelmaking slag steelmaking slag subjected to carbonation treatment (hereinafter referred to as carbonated steelmaking slag) or converter-based steelmaking slag (hereinafter steelmaking slag) was used. Both dredged earth and sand, carbonized steelmaking slag and steelmaking slag satisfied the water standard for fishery (Tables 3 and 6).
  • a 5 L glass bottle was filled with 2 kg (wet) of clay.
  • a system (No. 4 series) coated with steelmaking slag and sand was provided and compared.
  • the carbonized steelmaking slag and steelmaking slag used a slag having a maximum particle size of 5 mm or less and a 50% particle size of 3 mm. Natural sand with a particle size of 2 to 5 mm was used.
  • Carbonated steelmaking slag, steelmaking slag or natural sand was added so as to be even over the entire surface of the gravel under the conditions shown in Table 8.
  • seawater seawater
  • the pH of the seawater was no. It decreased from 8.3 to 7.5 to 7.8 in 1 system.
  • TS is the sum of dissolved sulfide ions (hereinafter referred to as DS) in seawater and sulfide salts such as insoluble iron.
  • I-C inorganic carbon
  • FIG. No. 1 DS in seawater and pore water at the completion of the experiment is shown in FIG. No. 1 where steelmaking slag was laid. In the 2 to 4 systems, no DS was detected. On the other hand, although quite high concentrations of DS were detected in all systems in pore water, no. The formation of D-S concentration was clearly suppressed in the system in which the carbonized steelmaking slag was mixed with dredged material as in the 4th system as compared with the other systems.
  • I-C in seawater and pore water at the time of completion of the experiment is shown in FIG. IC accumulates when the sulfuric acid reduction reaction proceeds as shown in FIG. No.
  • the 2 24 system it decreased. It is considered that this is because Ca 2+ eluted from the carbonized steelmaking slag and the steelmaking slag reacts with carbonate ions to form CaCO 3 having low solubility.
  • FIG. 9 in all the systems, a considerably high concentration of I-C was detected in the pore water as well as the sulfide. The formation of I-C concentration was clearly suppressed in the system in which the carbonized steelmaking slag was mixed with dredged material as in the 4th system, as compared with the other systems.
  • Example 4 A verification example of the elution suppression effect of sulfide and phosphorus by the formation of a solidified layer in which steelmaking slag not subjected to carbonation treatment is mixed with soot and sand: 50 mass% of carbonation steel slag mixed with soot and sand
  • the formation potential of sulfide can be reduced compared to the case of dredging and sediment alone, the formation of sulfide can not be made 0 unless carbonation steelmaking slag is replaced with 100% dredging and sediment ( Example 2). It is presumed that this is one factor that in the case of carbonized steelmaking slag, the supply amount of calcium ions becomes small and it is difficult to solidify even when mixed with soot and sand.
  • the water quality of the glass bottle water was measured. Since sulfides are easily dissipated in the analysis process, the pH was immediately adjusted to 10 after seawater was collected. After filtration with a syringe using a 0.45 ⁇ m millipore filter, dissolved sulfide (DS) in the filtered water was immobilized with zinc acetate and measured. Furthermore, the phosphate ion (PO 4 -P) eluted in the residual solution was measured.
  • DS dissolved sulfide
  • DS dissolved sulfide
  • PO 4 -P phosphate ion
  • Example 5 Verification example of the elution suppression effect of sulfide and phosphorus by the sediment formation which mixed steelmaking slag in the upper part of dredged soil and sand The dredged sediment has already been partially introduced to the bottom of the seabed in the depression. The case actually exists. Even in such a case, it is considered that the elution of sulfides and phosphorus can be suppressed by providing the mixed earth and sand or steelmaking slag on the top of the input soot and sand and providing the mixed earth and sand layer.
  • the experiment was carried out according to the following procedure. Slag mixed soil obtained by mixing steelmaking slag (50% particle diameter: 9 mm) with coral sand (wet) and coral sand (wet) was added to a glass bottle (volume: 1 L) under the conditions shown in Table 10. Thereafter, artificial seawater which was aerated with nitrogen and from which dissolved oxygen (DO) was removed was added to each glass bottle, and the glass bottle was filled with seawater, and then left sealed at room temperature (20 ° C.) for 30 days. Four experimental sequences were prepared.
  • the water quality of the glass bottle water was measured. Since sulfides are easily dissipated in the analysis process, the pH was immediately adjusted to 10 after seawater was collected. After filtration with a syringe using a 0.45 ⁇ m millipore filter, dissolved sulfide (DS) in the filtered water was immobilized with zinc acetate and measured. Furthermore, the phosphate ion (PO 4 -P) eluted in the residual solution was measured.
  • DS dissolved sulfide
  • dissolved sulfide (D-S) was detected in seawater after 3 days, and remained at about 1 mg / L from the 10th day until the 30th day.
  • phosphate ion (PO 4 -P) was also detected after 3 days, and remained at about 0.9 to 1.2 mg / L from day 10 to day 30.
  • dissolved sulfide (D-S) and phosphate ion (PO 4 -P) are also on the 30th day It remained below the detection limit.
  • the steelmaking slag generated from the steel process can be used to significantly improve the sea area environment improvement effect by the backfilling using the gravel, the industrial applicability is extremely large.

Abstract

 本発明の海底の浚渫窪地の埋め戻し方法は、浚渫土砂と、第1の製鋼スラグとを混合して混合浚渫土砂を得る混合工程と;前記混合浚渫土砂を前記浚渫窪地に投入して、混合浚渫土砂層を形成する混合浚渫土砂層形成工程と;を備える。

Description

浚渫窪地の埋め戻し方法
 本発明は、浚渫土砂を用いて浚渫窪地を埋め戻す方法に関する。
 本願は、2009年3月30日に、日本に出願された特願2009-083560号に基づき優先権を主張し、その内容をここに援用する。
 まず、海域内湾の海底に見られる「浚渫窪地」と、「浚渫窪地」の存在による水域環境への悪影響とについて説明する。
 沿岸埋め立て用材のための土砂を安価に得るために、あるいは海砂利を採取するために内湾において過去に行なわれた浚渫作業に起因する浚渫跡地が各地に残っている。浚渫跡地の中で、周辺の海底よりも特に深く掘り下げた窪地状の浚渫跡地が「浚渫窪地」と呼ばれている。例えば、東京湾では、このような「浚渫窪地」が約1億m存在していることが明らかになっている。「浚渫窪地」では、夏季に硫化物(及びりん)が発生・集積し易い。硫化物は、硫化物と溶存酸素との反応を示す以下の反応式(1)式のように海水中の溶存酸素を消費する。このため、酸素を含まない水塊(貧酸素水塊と呼ばれる)が発生し易い。この貧酸素水塊(青潮、苦潮等と呼ばれる)が沿岸域に押し寄せると、魚介類が死滅し、大きな漁業被害が生じる。
2-+2O=SO 2-  ・・・(1)
 このため、近年、浚渫窪地の埋め戻し等による修復の必要性が強く求められている(非特許文献1参照)。
 この「浚渫窪地」における硫化物と貧酸素水域の発生メカニズムについて説明する。海水中には、表1に示すように硫酸イオン(SO 2-)が28mM(2.7g/L、SO 2--Sとして930mg/L)存在する。このため、海域底質に有機物が十分に存在し、また、SO 2-よりも高次の酸化剤(溶存酸素等)が無くなる環境条件(嫌気条件と呼ばれる)が整えば、硫酸還元菌(SRB:Sulfate Reducing Bacteria)が活性化し、(2)式のような硫酸還元反応が容易に進行する。硫酸還元菌(SRB)とは、酸化剤として硫酸イオン(SO 2-)を用い有機物を酸化する細菌群の総称である。硫酸還元菌は、海水中の硫酸イオン(SO 2-)を有機物(CHO)によって、(2)式のように還元する。この結果、硫化水素(HS)の生成が促進される(図1)。
SO 2-+2CHO+2H=HS+2HO+CO  ・・・(2)
 さらに、このようにして、底質において生成し海水中に溶出した硫化水素(HS)の存在形態は、以下のようにpHによって支配される。
[H][HS]/[HS(g)]=10-7  ・・・(3)
[H][S2-]/[HS]=10-13  ・・・(4)
 水中の全硫化物濃度は、以下のように整理される。
全硫化物=懸濁態硫化物(FeS、MnS等)+溶存態硫化物  ・・・(5)
 (5)式中、溶存態硫化物は硫化水素[HS(g)]と硫化物イオンとの和である。即ち、以下の式が成り立つ。
 溶存態硫化物=[HS(g)]+[HS]+[S
       ≒[HS(g)]+[HS](通常の海水域のpH)・・・(6)
 溶存態硫化物の中で最も毒性の強いとされる遊離態の硫化水素[HS(g)]の存在割合は、pHが7以下では50%以上であるが、pHが8を超えると10%以下まで下がる。一方、pHが7~13の領域では溶存態の硫化物イオン[HS]の存在割合が最も高い。通常、海水のpHは、8~8.5程度であるから、溶存態硫化物の中で、大半が溶存態の硫化物イオン[HS]として存在すると考えられる。
Figure JPOXMLDOC01-appb-T000001
 いずれにせよ、硫化物は(2)式のように溶存酸素を短時間で消費すると共に、水生生物への毒性もあるため、海水中への溶出を極力抑制することが望ましい。
 また、海域での藻類の異常発生(赤潮と呼ばれる)は、水中の窒素、りん等の栄養塩類濃度が増大し、栄養過多の結果生ずるものであり、富栄養化と呼ばれている。都市下水や産業排水に含まれるりんは、海域の富栄養化原因物質の一つであり、環境保全の観点から、下水・排水からのりん除去が進められている。近年、多くの水質規制の強化により、周辺からのりんの海域への流入負荷量は減少している。しかし、長年に亘り汚染された海域の底質にはりんが蓄積しており、特に水温が上昇する夏季、嫌気化した底質からりんが溶出し、赤潮発生の1つの要因となっている。特に、浚渫窪地には、発生した藻類が死滅後、堆積し易く、夏季に腐敗・嫌気化し、りんが再溶出し易い。このため、このような浚渫窪地からのりんの溶出を防止できれば、海域での藻類の異常発生を低下できる可能性があると考えられる。
 このため、現在、「浚渫窪地」の埋め戻しが各地で進められるようになってきている。この場合、埋め戻し材としては、海域での航路の維持や港湾工事等で大量に発生する「浚渫土砂」が用いられていることが多い。「浚渫土砂」は、「廃棄物」には相当しないため、海域で容易に有効利用され得る。しかし、「浚渫土砂」単独では、「浚渫窪地」の埋め戻しには不足する場合もある。このため、「浚渫土砂」以外の埋め戻し材として、「ダムの堆積砂」や「鉄鋼スラグ」等を用いる事例が報告されている(特許文献1、非特許文献1)。
 また、特許文献2は、製鐵所などで発生する製鋼スラグを安定処理する方法について開示している。
特開2004-223514号公報 特開2005-47789号公報
内湾における環境修復の方向性と新手法、平成20年度日本水産工学会秋季シンポジウム、2008
 浚渫窪地は、元々は良質な無機物が主体の海砂から成っていたと推定される。したがって、本来であれば、海底の浚渫窪地への埋め戻し材としては有機物を極力含まない天然砂等の無機物が望ましい。しかし、実際には大量の天然砂は入手が難しく、地元の海域から発生する「浚渫土砂」が入手の容易さ、コスト、量確保の観点から現実的な埋め戻しの手段と考えられる。
 一方で、海底の浚渫窪地においては硫酸還元反応が硫化物発生の主要な要因であり、また、この硫酸還元反応の律速要因は、海水中の硫酸塩ではなく、土砂に含まれる有機物である。したがって、硫化物発生に由来する貧酸素化を防止するためには、埋め戻し材に用いる「浚渫土砂」も、有機物含有量が極力小さいことが望ましい。
 本発明は、海底の浚渫窪地を「浚渫土砂」により埋め戻し、海域環境を改善する方法において、鉄鋼プロセスから発生する製鋼スラグを活用し、浚渫土砂を用いた埋め戻しによる海域環境改善効果を著しく向上させる方法の提供を目的とする。
 本発明は、上記課題を解決するために、以下の手段を用いた。
(1)本発明の第1態様は、海底の浚渫窪地の埋め戻し方法であって、浚渫土砂と、第1の製鋼スラグとを混合して混合浚渫土砂を得る混合工程と;前記混合浚渫土砂を前記浚渫窪地に投入し、混合浚渫土砂層を形成する混合浚渫土砂層形成工程と;を備える。
(2)上記(1)に記載の海底の浚渫窪地の埋め戻し方法では、前記混合工程において、前記第1の製鋼スラグの混合率が10質量%以上50質量%以下となるように前記浚渫土砂と前記第1の製鋼スラグとを混合してもよい。
(3)上記(1)に記載の海底の浚渫窪地の埋め戻し方法では、前記混合工程では、海水をpH8以上9.5未満に変性させるような混合率で前記浚渫土砂と前記第1の製鋼スラグとを混合してもよい。
(4)上記(1)に記載の海底の浚渫窪地の埋め戻し方法で、前記第1の製鋼スラグを予め炭酸化処理する工程を更に備えてもよい。
(5)上記(1)~(4)のいずれか一項に記載の海底の浚渫窪地の埋め戻し方法で、前記混合浚渫土砂層の上部に第2の製鋼スラグを敷いて、製鋼スラグ層を形成する製鋼スラグ層形成工程を更に備えてもよい。
(6)上記(5)に記載の海底の浚渫窪地の埋め戻し方法では、前記第2の製鋼スラグは、粒径が10mm未満の製鋼スラグを50質量%以上含んでもよい。
(7)上記(5)に記載の海底の浚渫窪地の埋め戻し方法では、前記混合浚渫土砂層と前記製鋼スラグ層とを繰り返し複数層設けてもよい。
(8)上記(5)に記載の海底の浚渫窪地の埋め戻し方法では、前記第2の製鋼スラグを予め炭酸化処理する工程を更に備えてもよい。
(9)上記(5)に記載の海底の浚渫窪地の埋め戻し方法では、前記製鋼スラグ層の上部をさらに天然砂で被覆してもよい。
(10)本発明の第2態様は、海底の浚渫窪地の埋め戻し方法であって、浚渫土砂を前記浚渫窪地に投入して、浚渫土砂層を形成する浚渫土砂層形成工程と;前記浚渫土砂層の上部に、混合浚渫土砂又は製鋼スラグを敷いて、混合浚渫土砂層又は製鋼スラグ層を形成する混合浚渫土砂層又は製鋼スラグ層形成工程と;を備える。
(11)上記(10)に記載の海底の浚渫窪地の埋め戻し方法では、前記浚渫土砂層と前記混合浚渫土砂層又は前記製鋼スラグ層とを繰り返し複数層設けてもよい。
(12)上記(10)に記載の海底の浚渫窪地の埋め戻し方法では、前記製鋼スラグを予め炭酸化処理する工程を更に備えてもよい。
(13)上記(10)に記載の海底の浚渫窪地の埋め戻し方法では、前記製鋼スラグ層の上部をさらに天然砂で被覆してもよい。
(14)上記(10)~(13)のいずれかに記載の海底の浚渫窪地の埋め戻し方法では、前記浚渫窪地を複数の層で埋め戻す場合、最上部の層に用いる製鋼スラグとしては固化しにくい炭酸化製鋼スラグを用い、その他の層は固化しやすい製鋼スラグを用いてもよい。
 上記(1)に記載の本発明の方法によれば、浚渫窪地を埋め戻すための浚渫土砂に製鋼スラグを混合して利用するため、硫化物やりんの生成を抑制することが可能となる。
 上記(2)に記載の本発明の方法によれば、浚渫土砂の軟弱な性状を改善する効果が得られる。また、海水のpHが一時的に9.5を超えて上昇することを抑制することができる。
 上記(3)に記載の本発明の方法によれば、海水のpHが8以上9.5未満となるため、遊離態の硫化水素[HS(g)]の存在割合を低下できるとともに、海水中のMg2+がMg(OH)として析出することを抑制することができる。
 上記(4)に記載の本発明の方法によれば、海水のpH上昇を抑えることができる。
 上記(5)に記載の本発明の方法によれば、製鋼スラグ層による遮蔽効果により、混合浚渫土砂層での硫化物やりんの生成を抑制できる。また、硫化物やりんが生成したとしても、その硫化物が海水中に溶出することを抑制することができる。
 上記(6)に記載の本発明の方法によれば、カルシウムイオンやシリカの溶解速度の低下を抑制できる。
 上記(7)に記載の本発明の方法によれば、製鋼スラグ層による遮蔽効果を更に効果的に得ることができる。
 上記(8)に記載の本発明の方法によれば、海水のpH上昇を抑えることができる。
 上記(9)に記載の本発明の方法によれば、多毛類、貝類等の生物居住空間を提供することができる。
 上記(10)に記載の本発明の方法によれば、製鋼スラグ層による遮蔽効果により、浚渫土砂層での硫化物やりんの生成を抑制できる。また、硫化物やりんが生成したとしても、その硫化物が海水中に溶出することを抑制することができる。
 上記(11)に記載の本発明の方法によれば、製鋼スラグ層による遮蔽効果を更に効果的に得ることができる。
 上記(12)に記載の本発明の方法によれば、海水のpH上昇を抑えることができる。
 上記(13)に記載の本発明の方法によれば、多毛類、貝類等の生物居住空間を提供することができる。
 上記(14)に記載の本発明の方法によれば、固化しやすい製鋼スラグによる硫化物やりんの溶出防止効果を発揮させながら、最上部において生物が生息しやすい環境を作ることができる。
 以上のように、本発明によれば、従来の方法よりも効果的に浚渫窪地における硫化物及びりんの生成と水中への溶出をより効果的に抑制することが可能となり、海域での貧酸素化を防止することができる。
硫酸還元菌(SRB)によって硫化物が生成する機構を示す図である。 浚渫窪地を浚渫土砂、製鋼スラグ及び天然砂を用いて埋め戻しした一例を示す図である。 浚渫窪地を浚渫土砂、製鋼スラグ及び天然砂を用いて埋め戻しした他の例を示す図である。 浚渫土砂へ製鋼スラグを混合させることにより、硫化物の生成が抑制されることを示す図である。 浚渫土砂へ製鋼スラグを混合させることにより、硫酸還元菌数が低下することを示す図である。 浚渫土砂へ製鋼スラグを混合させることにより、pH及びCaイオン濃度が上昇することを示す図である。 海水中のT-S(全硫化物)濃度の比較を示す図である。 製鋼スラグを敷設材に用いることにより、硫化物の溶出が抑制されていることを示す図である。 製鋼スラグを敷設材に用いることにより、I-C(無機炭素)の溶出が抑制されていることを示す図である。 浚渫土砂へ炭酸化していない製鋼スラグを混合し、固化させることにより、硫化物の生成・溶出が抑制されることを示す図である。 浚渫土砂へ炭酸化していない製鋼スラグを混合し、固化させることにより、りんの溶出が抑制されることを示す図である。
 本発明では、海底の浚渫窪地を浚渫土砂で埋め戻すことで海域環境を改善する。
 以下、本発明の好ましい実施形態について詳細に説明する。本実施形態においては、海底の浚渫窪地の埋め戻し材として、浚渫土砂に加えて、製鋼スラグを併用して有効に活用することにより、浚渫窪地における硫化物及びりんの生成と水中への溶出を抑制する。
 まず、鉄鋼スラグの概要と利用状況について概説する。
 製鐵所から発生する鉄鋼スラグは鉄鋼製造工程において副産物として発生する。鉄鋼スラグは大別して、高炉スラグと製鋼スラグに分けられ、それぞれ、有用な資材として各方面で利用されている。
(i) 高炉スラグ
 高炉スラグは,高炉で銑鉄を製造する際に発生するスラグの総称である。高炉で溶融された鉄鉱石の鉄以外の成分や副原料の石灰石やコークスの灰分が高炉スラグとなる。高炉スラグは、銑鉄1tあたり290~300kg程度生成する(スラグ比kg/t-銑鉄)。高炉から取り出されたばかりのスラグは,約1500℃の溶融状態にあるが,製造方法(冷却方法)によって、さらに、高炉水砕スラグと高炉徐冷スラグの2種類のスラグに分類される。
 高炉水砕スラグは、約1500℃の溶融状態にあるスラグに加圧水を噴射し、急激に冷却して製造したスラグであり、非晶質(ガラス質)・粒状である。水砕スラグは、主としてセメント原料に用いられている。この他、普通セメント混合材、コンクリート用細骨材等に広く用いられている。
 高炉徐冷スラグは、ヤードやピットに高温のスラグを流し込み、自然放冷と適度の散水によってゆっくりと冷却して製造したスラグであり、結晶質・岩石状である。徐冷スラグは、主としてコンクリート用粗骨材やセメントクリンカー原料(粘土代替材)として用いられている。また、1~3ヶ月の屋外養生処理(以下、エージングと称する)により、硫黄臭や黄濁水の発生防止対策を施した後、道路用の路盤材等にも用いられている。
(ii) 製鋼スラグ
 製鋼スラグは、製鋼炉(転炉、電気炉)において、銑鉄やスクラップから鋼を製造する際に発生するスラグの総称である。以下、銑鉄を主として用いる転炉系製鋼スラグを中心に説明する。近年、鋼品質の高度化に対応するため、転炉による精錬のみでは不純物の除去が不十分となり、転炉前後の工程(溶銑予備処理、2次精錬)を付加する精練方法が一般的となった。このような高級鋼製造工程から発生する溶銑予備処理スラグや2次精錬スラグも、転炉スラグと同様に転炉系製鋼スラグに含まれる。転炉系製鋼スラグは、粗鋼1tあたり約110~130kg生成する。製鋼スラグは、高炉徐冷スラグと同様、ヤードやピットに高温のスラグを流し込み、自然放冷と適度の散水によってゆっくりと冷却し製造する。製鋼スラグは、f-CaO(可溶性石灰)の含有量が高く、水と接触すると膨張し易い特性があるため、屋外エージング処理や蒸気等を用いた促進エージング処理により、膨張防止対策を施した後、道路用路盤材等に用いられている。また、セメントクリンカー原料(FeO供給材)、地盤改良材、土木工事用資材として用いられている。
 このような2種類の鉄鋼スラグの中で、高炉スラグのリサイクル率はほぼ100%となっており、再生資源として活用されているが、製鋼スラグのリサイクル率は、膨張性や鉄分含有量が高い等の理由からリサイクル率は100%に至っていない。そこで、製鋼スラグについては、従来の用途の延長線上での用途ばかりでなく、製鋼スラグの有する特長を生かして、海域等の水域において有効利用する方法が広く検討されている状況にある。
 本発明の海底の浚渫窪地修復に用いる鉄鋼スラグも、高炉スラグではなく、製鋼スラグである。製鋼スラグの特性を生かすことにより、浚渫窪地での硫化物の発生抑制と海域での貧酸素化の防止を可能とする。
 まず、本発明の基本的な硫化物生成と溶出抑制の考え方について説明する。
 図1に示すように、硫酸還元菌は、海水中の硫酸イオン(SO 2-)を有機物(CHO)によって還元し、この結果、硫化水素(HS)等の硫化物を生成する。
 したがって、このような硫酸還元反応の進行に伴う硫化物の生成や硫化物の水中への溶出を防止する方策として、以下のようなことが考えられる。
 (a) 硫酸還元菌の活性を低下させ、硫化物の生成を抑制する。
 (b) 有機物量及び硫酸還元菌数を減らし、硫化物の生成を抑制する。
 (c) 硫酸イオンを減らし、硫化物の生成を抑制する。
 (d) 硫化物が生成したとしても水中への溶出を防止する。
 まず、(a)の硫酸還元菌の活性を低下させる方法としては、曝気等により溶存酸素(O)を上昇させる方法、硝酸イオン(NO )を添加する等の方法が広く知られている。しかしながら、これらの方法を浚渫窪地に適用することは困難である。また、pHも硫酸還元菌の活性に影響するため、pH調整を図る方法もある。一般的に細菌類はpH=7~9程度が最も活性が高く、硫酸還元菌もこの例外ではない。海水のpHに近いpH=8~8.5程度では硫酸還元菌の活性が最も高いことは容易に推定できる。したがって、pH調整の場合、例えば、pHを9.5以上に、しかも、長期継続して維持しないと硫酸還元菌の活性は低下しない。しかし、このようなpHの上昇を図る方策は他の一般細菌にも影響を与えるため、このような硫酸還元菌の活性を低下させる方策は現実的でない。
 本発明の特長は、(b)~(d)に示した考え方に基づく。
 まず、(b)の有機物量及び硫酸還元菌数を減らし、硫化物の生成を抑制する方策を説明する。具体的には「浚渫土砂」に製鋼スラグの一定量を混合して埋め戻し材とする。これによって、「浚渫土砂」を単独で浚渫窪地の埋め戻し材とするよりも、埋め戻し材に含まれる有機物量を削減することができる。製鋼スラグは、Ca、Si、Al、Fe等の化合物からなり、1500℃の高温で処理されているため、有機物は含まれていない。また、硫酸還元菌は一般の土壌に生息しており、「浚渫土砂」中にも生息しているが、製鋼スラグは、1500℃の高温で処理されており、また、水分も殆ど無いため、硫酸還元菌の生息は難しい。即ち、製鋼スラグを活用することにより、浚渫土砂中の有機物割合及び硫酸還元菌数を減らせ、硫化物の生成を抑制することが可能となる。これに対して、「ダムの堆積砂」等の他の自然界の埋め戻し材は、必ずしも無機物ばかりでなく、自然界由来の有機物が含まれており、また、硫酸還元菌もかなり生息しているため、製鋼スラグほどの硫化物生成抑制効果は得られない。
 本発明者らは、種々の検討の結果、浚渫土砂に製鋼スラグを混合すると、製鋼スラグ混合の程度に比例して有機物含有比が低下すると共に、硫酸還元菌数が減少し、硫化物の発生量が低下することを発見した。また、製鋼スラグを混合すると、浚渫土砂中の有機物の腐敗に伴うpH低下を防止できる効果もあることを見出した。
 通常、浚渫土砂に製鋼スラグを混合して用いても、海水による希釈効果により、近傍の海水のpHが上昇することは殆どないが、製鋼スラグの混合率をあまりに高めると、海水交換速度が小さい場合等、近傍の海水のpHが一時的に9.5を超えて上昇する可能性もある。このため、製鋼スラグの混入率は50質量%程度が上限である。pHが9.5を超えると、海水中のMg2+がMg(OH)となり、析出し易くなる。なお、後述する炭酸化処置を施した製鋼スラグ(炭酸化製鋼スラグ)の場合は、海水のpH上昇を抑えているため、製鋼スラグの添加率をさらに高めることが可能である。
 さらに、浚渫土砂に製鋼スラグを混合すると、浚渫土砂の軟弱な性状が改善される。従って、地盤性状が改善される利点もある。この視点からも、浚渫土砂に製鋼スラグを混合することは望ましいことである。地盤性状を改善する視点からは製鋼スラグの混合率を10質量%以上とすることが望ましい。
 いずれにせよ、浚渫土砂への製鋼スラグの混合率は10質量%以上50質量%以下を目安とし、事前にバッチ実験等を実施し、近傍の海水のpHが8以上9.5未満となるように、浚渫土砂への製鋼スラグの混合率を定めることが望ましい。
 次に、(c)の硫酸イオンを減らし、硫化物の生成を抑制する方法、及び、(d)の硫化物が生成したとしても水中への溶出を防止する方法について説明する。
 海水が「浚渫土砂」中に容易に浸透しなければ、海水中の硫酸イオンが常に「浚渫土砂」に供給されなくなるため、硫化物の生成が抑制される。即ち、透水性の小さい材料で「浚渫土砂」の表面全面を被覆(Covering)すれば、「浚渫土砂」中での硫化物の生成は、海水から硫酸イオンが供給されなくなり、硫酸イオン律速となって硫化物の生成が抑制される。また、逆に、「浚渫土砂」中で生成・蓄積した硫化物も海水中へ容易に溶出できなくなる。このような透水性を低減せしめる被覆材として製鋼スラグを活用することができる。土の透水性は、土の間隙中における水の移動し易さであり、一般的には、表2に示すような透水係数k(cm/sec)で評価される。製鋼スラグは弱い水硬性があり、透水性も経時的に低下し、k=10-5~10-6cm/sec程度まで低下する。
Figure JPOXMLDOC01-appb-T000002
 さらに、発明者らは、被覆する製鋼スラグ層の厚みが5mm~1cm程度あれば、硫化物の溶出防止に効果があることを発見した。しかし、実際の海域では製鋼スラグを用いて、1cm未満の厚さに全面に均一に覆うことは難しいため、1~10cmを目処に敷設することが望ましい。このような製鋼スラグの敷設の程度であれば、通常、海水による希釈効果により、スラグ層近傍の海水のpHが上昇することは殆どない。製鋼スラグの厚みを高めると、遮蔽効果は大きくなるが、海水交換速度が小さい場合など、スラグ層近傍の海水のpHが一時的に9.5を超えて上昇する可能性もある。このため、製鋼スラグ層の厚みは10cmを超えることは好ましくない。サンドイッチ状に浚渫土砂層と製鋼スラグ層を繰り返し複数層設ける手段もこのような海水のpH上昇を抑制する手段として有効である。なお、後述する炭酸化処置を施した製鋼スラグ(炭酸化製鋼スラグ)の場合は、海水のpH上昇を抑えているため、この限りではない。
 いずれにせよ、事前にバッチ実験等を実施し、硫化物の溶出抑制効果があると共に、近傍の海水のpHが8以上9.5未満となるように、製鋼スラグの浚渫土砂への添加率を定めることが望ましい。
 また、被覆に用いる製鋼スラグは、製鋼スラグの固化促進の観点から、粒径が10mm未満の細粒分の多い製鋼スラグを50質量%以上含むことが望ましい。粒径が10mmよりも大きい製鋼スラグは、pHが上昇しにくいものの、逆に、固化促進に必要なカルシウムイオンやシリカの溶解速度が低下するため、固化速度が低下する。したがって、被覆に用いる製鋼スラグはカルシウムイオンやシリカの溶解速度が大きい粒径が10mm未満の細粒分の多い製鋼スラグを50質量%以上含むことが望ましい。
 さらに、浚渫土砂に製鋼スラグを混合すると、製鋼スラグ単独の場合よりも、固化がより促進し易くなる。これは、浚渫土砂から溶解性シリカが、また、製鋼スラグからカルシウムイオンが供給され、これらの反応によって、ケイ酸カルシウム(CSH)が生成し、固化が進むと考えられる。このような固化反応を促進する場合には、製鋼スラグとしては、炭酸化処置を施していない製鋼スラグが望ましく、さらに、カルシウムイオンの溶解速度が大きい粒径が10mm未満の細粒分の多い製鋼スラグを50質量%以上含むことが望ましい。この場合、透水係数はさらに1×10-6~10-7cm/secまで低下する。
 製鋼スラグ又は浚渫土砂と製鋼スラグを混合させた層による遮蔽効果をより効果的に行うためには、サンドイッチ状に浚渫土砂層と製鋼スラグ層又は浚渫土砂と製鋼スラグを混合させた層を繰り返し複数層設けることが望ましい。
 また、浚渫窪地を埋め戻した上部を製鋼スラグ又は浚渫土砂と製鋼スラグを混合させた層で被覆した後、さらに、その最上部を天然砂で被覆し、多毛類、貝類等の生物居住空間を設けてもよい。有機物量の少ない良質のダム砂を用いてもよい。
 以上の方策をより具体的に、図を用いて説明する。
 図2のように、まず、海底1の浚渫窪地2の底部には、浚渫土砂又は製鋼スラグを混合した浚渫土砂3を投入する。なお、製鋼スラグを混合する場合、事前に浚渫土砂と製鋼スラグと海水とを混ぜたバッチ実験を実施し、海水のpHが8以上9.5未満となるように、浚渫土砂への製鋼スラグの混合率を定める。さらに、浚渫土砂又は製鋼スラグを混合した浚渫土砂3の上部全面に、製鋼スラグ4を単独で層厚が1~10cmとなるように添加する。製鋼スラグ4が炭酸化製鋼スラグの場合には、海水のpHが上昇する懸念が小さいので、その層厚を増やしてもかまわない。即ち、炭酸化製鋼スラグの場合は、層厚を最大100cmとしても、海水のpHが9.5超になることはない。層厚を厚くすることによって、より硫化物の溶出を抑制できる。さらに、製鋼スラグ4の上部には天然砂5を生物空間として敷設する。天然砂の層厚は、30~100cmとなるように敷設する。
 なお、海底1の浚渫窪地2の底部に、既に、浚渫土砂が部分的に投入されている場合が実際には存在する。浚渫窪地の容積が大きく、浚渫土砂の入手量が小さい場合などは窪地が満杯になるまでかなりの年月を要してしまう。このようなケースでは夏場の嫌気化は避けられず、硫化物やりんの発生の抑制は期待できない。このような場合でも、投入された浚渫土砂の上部に混合浚渫土砂を敷いて混合土砂層、または、製鋼スラグを敷いて製鋼スラグ層を設けることにより硫化物やりんの溶出を抑制することができる。
 さらに、図3のように、浚渫土砂又は製鋼スラグを混合した浚渫土砂3の層と製鋼スラグ4の層をサンドイッチ状に繰り返し敷設してもよい。この場合、硫化物の海水への溶出をより確実に抑制できる。
 なお、製鋼スラグを混合した浚渫土砂3がほぼ完全に固化する場合には、製鋼スラグ4で全面を被覆しなくても構わない。このような固化反応を促進する場合には、カルシウムの溶出が重要であるため、用いる製鋼スラグ4は炭酸化処置を施していない製鋼スラグを用いることが望ましい。さらに、カルシウムイオンの溶解速度が大きい粒径が10mm未満の細粒分の多い製鋼スラグを50質量%以上含むことが望ましい。
 また、海底の浚渫窪地を複数の層で埋め戻す場合、最上部の層に用いる製鋼スラグとしては固化しにくい炭酸化製鋼スラグを用い、その他の層は固化しやすい製鋼スラグを用いてもかまわない。硫化物やりんの溶出防止の観点からは固化層を設けることが望ましいが、最上部に関しては、生物生息性の観点から固化しにくい炭酸化製鋼スラグを用いてもかまわない。
 次に、本発明の基本的なりんの溶出抑制の考え方について説明する。
 一般に嫌気性条件下で海域底質からりん酸イオン(PO-P)が溶出する場合、Fe(III)に吸着していた、りん酸イオン(PO-P)が溶出すると考えられている。この場合、Fe(III)の還元反応が生ずることが必要であり、溶存酸素のあるような状況ではりん酸イオン(PO-P)の溶出は生じ難い。即ち、有機物が過剰に存在するような嫌気性条件下で、初めてFe(III)の還元反応が進行しFe(II)イオンとりん酸イオン(PO-P)が溶出する。このような反応を進める細菌が鉄還元菌である。鉄還元菌とは、酸化剤として三価鉄を用い有機物を酸化する細菌群の総称である。
 したがって、このような鉄還元反応の進行に伴うりん酸イオン(PO-P)の生成と水中への溶出を防止する方策として、以下のようなことが考えられる。
 (e) 鉄還元菌の活性を低下させ、りん酸イオン(PO-P)の生成を抑制する。
 (f) 有機物量及び鉄還元菌数を減らし、りん酸イオン(PO-P)の生成を抑制する。
 (g) りん酸イオン(PO-P)が生成したとしても水中への溶出を防止する。
 まず、(e)の鉄還元菌の活性を低下させる方法であるが、曝気等により溶存酸素(O)を上昇させる方法、硝酸イオン(NO )を添加する等の方法が広く知られているが、浚渫窪地に適用することは困難である。また、pHも鉄還元菌の活性に影響するため、pH調整を図る方法もある。一般的に、細菌類はpH=7~9程度が最も活性が高く、鉄還元菌もこの例外ではない。海水のpHに近いpH=8~8.5程度では、鉄還元菌の活性が最も高いことは容易に推定できる。したがって、pH調整の場合、例えば、pHを9.5以上に、しかも、長期継続して維持しないと、鉄還元菌の活性は低下しない。しかし、このようなpHの上昇を図る方策は他の一般細菌にも影響を与えるため、このような鉄還元菌の活性を低下させる方策は現実的でない。
 本発明の特長は、(f)~(g)に示した考え方に基づいている。
 まず、(f)の有機物量及び鉄還元菌数を減らし、りん酸イオン(PO-P)の生成を抑制する方策を説明する。具体的には「浚渫土砂」に製鋼スラグの一定量を混合して埋め戻し材とする。これによって、「浚渫土砂」を単独で浚渫窪地の埋め戻し材とするよりも、埋め戻し材に含まれる有機物量を削減することができる。製鋼スラグは、Ca、Si、Al、Fe等の化合物からなり、1500℃の高温で処理されているため、有機物は含まれていない。また、鉄還元菌は一般の土壌に生息しており、「浚渫土砂」中にも生息しているが、製鋼スラグは、1500℃の高温で処理されており、また、水分も殆ど無いため、鉄還元菌の生息は難しいと思われる。即ち、製鋼スラグを活用することにより、浚渫土砂中の有機物割合及び鉄還元菌数を減らせ、硫化物の生成を抑制することが可能となる。これに対して、「ダムの堆積砂」等の他の自然界の埋め戻し材は、必ずしも無機物ばかりでなく、自然界由来の有機物が含まれており、また、鉄還元菌もかなり生息しているため、製鋼スラグほどのりん酸イオン(PO-P)生成抑制効果は得られないと思われる。発明者らは、種々の検討の結果、浚渫土砂に製鋼スラグを混合すると、製鋼スラグ混合の程度に比例して有機物含有比が低下すると共に、鉄還元菌数が減少し、りん酸イオン(PO-P)の発生量が低下することを知見した。
 最後に、(g)のりん酸イオンが生成したとしても水中への溶出を防止する方法について説明する。
 りん酸イオン(PO-P)は、十分なカルシウムイオン(Ca2+)の存在下で、pHを上昇させると、(5)式のように、溶解度が小さいカルシウムアパタイトを形成する。
 5Ca2++3PO 3-+OH→Ca(OH)(PO  ・・・(7)
 この反応式の進行を促すためには、Ca2+供給及びpHを上昇させることが重要である。海水中には400mg/LのCa2+が既に存在しているが、製鋼スラグを浚渫土に混合すると、製鋼スラグからCa2+がさらに供給される。また、浚渫土単独では、有機物の腐敗によりpHが低下するが、製鋼スラグを混合するとpHを8~9.5に維持することが可能となる。これらの結果、りん酸イオン(PO-P)が生成しても、カルシウムアパタイトとして、りん酸イオン(PO-P)を不溶化することができると考えられる。
 また、先に述べたように、製鋼スラグは弱い水硬性があり、透水性も経時的に低下し、透水係数k=10-5~10-6cm/sec程度まで低下する。また、製鋼スラグと浚渫土砂を混合すると、浚渫土砂から水溶性シリカが、また、製鋼スラグからカルシウムが溶出し、この水溶性シリカとカルシウムが反応し、ケイ酸カルシウム(CSH)が生成し、固化が進行し、透水係数k(cm/sec)=10-6~10-7cm/sec程度の不透水性の地層が形成される。このような不透水性の地層形成による被覆効果(Covering)によっても、「浚渫土砂」中で生成・蓄積したりん酸イオン(PO-P)も海水中へ容易に溶出できなくなると考えられる。
 最後に、製鋼スラグを炭酸化する手法について説明する。
 前述したように製鋼スラグは一般に単体で存在するf-CaO(可溶性石灰)の割合が高く、水中のpHが一時的に上昇し易い特性がある。このため、「炭酸化処置」を施し、f-CaOをCaCOとした「炭酸化製鋼スラグ」とし、溶出水のpHを低下させることも可能である。製鋼スラグの炭酸化処理は、製鋼スラグを二酸化炭素又は炭酸含有水と接触させることにより実施することができる。 
 例えば、特許文献2では、大気雰囲気下、加圧雰囲気下、又は水蒸気雰囲気下で、製鋼スラグに自由水が存在し始める水分値未満で、かつ、該水分値よりも10質量%少ない値以上になるように水分量又は炭酸水量を調整した後に、炭酸ガスを含有する相対湿度が75~100%のガスを流して、製鋼スラグを炭酸化する方法が述べられている。
 ここで、自由水について説明する。粉末に水を投入していくと暫くの間は粉末が水分を吸収する(拘束水と呼ばれる)。投入水量がある一定以上になると、もはや粉末が水を吸収できず、粉末の周囲に存在する状態となる。この状態の水が「自由水」と呼ばれる。この自由水が存在すると、粉体群がペースト状となり、自由水が存在する領域では、炭酸ガスを含むガスが通過し難くなる。特許文献2は、このような視点からスラグ内部の空隙表面や外部が、湿り気を帯びる程度の拘束水の段階で、最大の炭酸化速度が得られ、効率的に炭酸化が可能となることを報告している。この操作により、CaOはCaCOとなり、CaO及びCa(OH)の割合を0.9質量%以下とでき、また、CaCOは、製鋼スラグ表面上に形成される。このため、残存するCaOやCa(OH)の急激な溶出を抑制できる。このような炭酸化処理を製鋼スラグに施すことにより、一時的なpHの上昇を防ぐことができる。なお、本実施形態で使用されるスラグを炭酸化処理する方法は、上記方法に限定されるものではない。CaOをCaCOとし安定化できる方法であれば、どのような炭酸化処理方法でもよい。
 (実施例1) 製鋼スラグを用いた被覆による硫化物の溶出抑制の検証例
 浚渫土砂は3000rpm、20分間遠心分離し,実験に使用した。製鋼スラグは,炭酸化処置を施していない転炉系製鋼スラグを使用した。浚渫土砂、製鋼スラグとも水産用水基準を満たしていた(表3)。
Figure JPOXMLDOC01-appb-T000003
 浚渫土砂(wet)と粒径が5mm以下の製鋼スラグ(50%粒径:2mm)又は水酸化カルシウムを表4に示す条件でガラスびん(容量:300mL)に添加した。製鋼スラグの添加厚みは、1cm程度であった。その後、窒素で曝気し、溶存酸素(DO)を除去した人工海水を各ガラスびんに添加し、ガラスびんを海水で満杯にした後、密閉状態で室温(20℃)で20日間放置した。20日後に、ガラスびんの海水のpHを測定した。硫化物は、分析過程で散逸し易いため、海水を採取後、直ちにpH=10とした。0.45μmミリポアフィルターを用いた注射器でろ過した後、ろ過水中の溶存硫化物(D-S)を酢酸亜鉛で固定化し測定した。
Figure JPOXMLDOC01-appb-T000004
 表5に、20日後の海水のpH及び溶存態硫化物(D-S)濃度を示す。
 浚渫土砂単独のNo.1系の場合、海水のpHは8.3から20日後に6.7まで低下し、溶存態硫化物濃度は、2.3mg/Lまで蓄積した。水酸化カルシウムを添加したNo.2系では、海水のpHは8.3から20日後に12.2まで上昇し、また、溶存硫化物濃度も7.7mg/Lまで蓄積していた。即ち、pH上昇による硫酸還元菌の活性阻害効果は明確には認められなかった。
 一方、製鋼スラグを土砂の表面に敷設したNo.3系では、海水のpHは8.3から20日後に9.0程度まで上昇していたが、9.5未満には維持されていた。また、海水中の溶存態硫化物の濃度は、0.8mg/Lであり、他の2系列と比較して、最も抑制されていた。
 これらの結果から、浚渫土砂に製鋼スラグを1cm程度敷設することによって、近傍の海水のpHを9.5以下に維持できると共に、浚渫土砂単独時と比較して、硫化物の溶出を抑制できることも明らかになった。
Figure JPOXMLDOC01-appb-T000005
 (実施例2) 浚渫土砂への炭酸化製鋼スラグ混合による硫化物の生成抑制の検証例
 浚渫土砂は3000rpm、20分間遠心分離し、実験に使用した。製鋼スラグは、炭酸化処置を施した製鋼スラグ(以下、炭酸化製鋼スラグと述べる)を使用した。浚渫土砂、炭酸化製鋼スラグとも水産用水基準を満たしていた(表6)。
Figure JPOXMLDOC01-appb-T000006
 浚渫土砂(wet)と粒径が5mm以下の炭酸化製鋼スラグ(50%粒径:2mm)を表7に示す条件でガラスびん(容量:1L)に添加した。その後、窒素で曝気し、溶存酸素(DO)を除去した人工海水を各ガラスびんに添加し、ガラスびんを海水で満杯にした後、密閉状態で室温(20℃)で35日間放置した。35日後に、ガラスびんの海水のpHを測定した。硫化物は、分析過程で散逸し易いため、海水を採取後、直ちにpH=10とした。0.45μmミリポアフィルターを用いた注射器でろ過した後、ろ過水中の溶存硫化物を酢酸亜鉛で固定化し測定した。残液でカルシウムイオンを測定した。また、ATP(アデノシン三りん酸)法で全菌数を、リアルタイムPCR(Polymerase Chain Reaction)法で硫酸還元菌数の定量を実施した。
Figure JPOXMLDOC01-appb-T000007
 図4に炭酸化製鋼スラグ添加割合と海水中の硫化物及び硫化物起因のCODとの関係(35日後)を示す。
 浚渫土砂単独の場合、海水中の硫化物濃度は、7.5mg/Lであった。硫化物濃度は、炭酸化スラグの添加率にほぼ比例して減少し、炭酸化製鋼スラグ100%の場合、硫化物の溶出は検出限界以下となった。また、硫化物はCOD(化学的酸素要求量)として計測され、硫化物1mg/LはCOD2mg/Lに相当する。浚渫土砂単独の場合、硫化物起因のCODは約15mg/Lであるが、底質として炭酸化スラグを利用することによりCODも減少し、酸素消費を減少させることができる。
 また、浚渫土砂(No.1系)の全微生物量は、3×10CELL/g程度であったが、炭酸化製鋼スラグの添加率の増加に従い減少した。全微生物量の存在比は、炭酸化製鋼スラグ添加割合以上に低減した。また、硫酸還元菌数の測定結果(硫酸還元菌由来遺伝子の各試料における相対定量値)を図5に示す。硫酸還元菌の存在比も、NO.1>NO.2>NO.3>NO.4であり、炭酸化製鋼スラグの添加割合が上昇することにより、硫酸還元菌の相対濃度比がスラグ添加割合以上に低下した。
 さらに、浚渫土砂単独の場合、腐敗によって有機酸が生成し、海水の酸性化が観測された。しかし、炭酸化製鋼スラグの浚渫土砂への適用割合を増やすと、海水のpH低下も抑制された(図6参照)。例えば、炭酸化製鋼スラグを50質量%添加すると、pHを海水並みのpH(海水初期pH=8.0~8.3)に維持できた。
 これらの結果から、浚渫土砂に炭酸化製鋼スラグを50質量%程度混合することによって、pHを海水並みに維持できると共に、浚渫土砂単独時と比較して、硫化物の生成ポテンシャルを半減でき、この結果、硫化物に起因する酸素消費量も半減できることが明らかになった。
 (実施例3) 製鋼スラグ被覆による硫化物の溶出抑制効果の検証例
 浚渫土砂に炭酸化製鋼スラグを混合することによって、浚渫土砂単独時と比較して、硫化物の生成ポテンシャルを低減できるものの、炭酸化製鋼スラグを100%浚渫土砂に替えて用いない限り、硫化物の生成を0とすることはできない(実施例2)。
 そこで、浚渫土砂の全面を製鋼スラグで被覆する方策を併用することによる硫化物の海水への溶出防止効果を検証した。
 浚渫土砂は3000rpm、20分間遠心分離し、実験に使用した。製鋼スラグは、炭酸化処置を施した製鋼スラグ(以下、炭酸化製鋼スラグと述べる)又は転炉系製鋼スラグ(以下、製鋼スラグ)を使用した。浚渫土砂、炭酸化製鋼スラグ、製鋼スラグとも水産用水基準を満たしていた(表3及び表6)。
 容量が5Lのガラス瓶に、浚渫土砂を2kg(wet)充填した。浚渫土砂単独の系(No.1系)、浚渫土砂を炭酸化製鋼スラグで被覆した系(No.2系)、浚渫土砂を炭酸化製鋼スラグと天然砂で被覆した系(No.3系)及び浚渫土砂を炭酸化製鋼スラグで改質した後、製鋼スラグと砂で被覆した系(No.4系)を設けて比較した。炭酸化製鋼スラグ、及び、製鋼スラグは、最大粒径が5mm以下で50%粒径が3mmのスラグを使用した。天然砂は粒径が2~5mmのものを使用した。
 炭酸化製鋼スラグ、製鋼スラグ又は天然砂は、表8に示す条件で浚渫土砂の全面に均等となるよう添加した。
Figure JPOXMLDOC01-appb-T000008
 その後、人工海水5Lを各ガラス瓶にゆっくりと添加し、各ガラス瓶を光を遮断しながら、室温(22~24℃)で約1ヶ月放置した。浚渫土砂あるいは炭酸化製鋼スラグの海水(以下、海水)中のpH、DO(溶存酸素)、ORP(酸化還元電位)、水温を連続的にモニタリング、記録(10秒毎)した。評価試験は、35日間継続して実施した。
 海水のpHは、敷設物の無いNo.1系で8.3から7.5~7.8まで低下した。一方、炭酸化製鋼スラグを敷設したNo.2系では8.3から8.6~8.8まで上昇した。炭酸化製鋼スラグと天然砂を敷設したNo.3系では8.3~8.4程度であり、海水と殆ど変らなかった。製鋼スラグと天然砂を敷設したNo.4系で8.3から8.8~9.1と最も上昇したが9.5以下には維持されていた。
 海水のDO、ORPは、敷設物の無いNo.1系でそれぞれDO=0mg/L、ORP=-400mV(銀/塩化銀電極基準)以下まで低下した。一方、炭酸化製鋼スラグを敷設したNo.2系、炭酸化製鋼スラグと砂を敷設したNo.3系、製鋼スラグと砂を敷設したNo.4系では、いずれもDO=0.2mg/L前後、ORP(酸化還元電位)=+50~+100mV(銀/塩化銀電極基準)に維持されていた。
 定期的に海水を100mL、浚渫土砂を乱さないように採取後、直ちにpH=10とし、I-C(無機炭素)を測定した。その後さらに、酢酸亜鉛で硫化物を硫化亜鉛として固定化し、この硫化物の濃度を分析した(以下、T-S)。T-Sとは、海水中の溶解している硫化物イオン(以下、D-S)と不溶性の鉄等の硫化塩の和である。実験終了時に浚渫土砂を遠心分離し、得られた間隙水を直ちにpH=10とし、無機炭素(以下、I-C)を測定した。さらに、0.45μmミリポアフィルターを用いた注射器でろ過した後、浚渫土砂中で生成したD-Sを測定した。
 海水中のT-Sの経日変化を図7に示す。この結果、No.1系では海水中にはT-Sが検出されたが、炭酸化製鋼スラグや製鋼スラグを被覆材として添加したNo.2~4系ではいずれも検出されなかった。
 さらに、実験完了時の海水および間隙水中のD-Sを図8に示す。製鋼スラグを敷設したNo.2~4系ではいずれもD-Sは検出されなかった。一方、間隙水中にはどの系もかなり高濃度のD-Sが検出されたが、No.4系のように炭酸化製鋼スラグを浚渫土砂に混合した系では、他の系と比較して、明らかにD-S濃度の生成が抑制されていた。
 このように、製鋼スラグや炭酸化スラグを被覆材として用いることにより、D-Sの溶出をほぼ抑制できることが明らかになった。また、製鋼スラグを浚渫土砂に混合することにより、生成量そのものも低減できることが明らかになった。
 また、実験完了時の海水および間隙水中のI-Cを図9に示す。I-Cは、図1に示すような硫酸還元反応が進行すると蓄積する。No.1系の海水ではI-Cが蓄積したが、炭酸化製鋼スラグや製鋼スラグを被覆材として用いたNo.2~4系では逆に減少した。これは、炭酸化製鋼スラグや製鋼スラグから溶出したCa2+と炭酸イオンとが反応し、溶解性の小さいCaCOを形成したためと思われる。さらに、図9に示すように、間隙水中にはどの系も、硫化物と同様にかなり高濃度のI-Cが検出されたが、No.4系のように炭酸化製鋼スラグを浚渫土砂に混合した系では、他の系と比較して、明らかにI-C濃度の生成が抑制されていた。
 このように、製鋼スラグや炭酸化スラグを被覆材として用いることにより、I-Cの溶出もほぼ抑制できることが明らかになった。また、製鋼スラグを浚渫土砂に混合することにより、生成量そのものも低減できることが明らかになった。このように、炭酸化製鋼スラグや製鋼スラグを被覆材として用いることにより、D-Sと同様にI-Cの溶出も抑制されることが明らかになった。
 これらの結果から、たとえ浚渫土砂中で硫化物が生成、蓄積したとしても、製鋼スラグや炭酸化製鋼スラグを被覆材として表面を覆うことにより、海水への硫化物の溶出を効果的に抑制できると考えられる。
 (実施例4) 炭酸化処置を施していない製鋼スラグと浚渫土砂を混合した固化層生成による硫化物とりんの溶出抑制効果の検証例
 浚渫土砂に炭酸化製鋼スラグを50質量%混合することによって、浚渫土砂単独時と比較して、硫化物の生成ポテンシャルを低減できるものの、炭酸化製鋼スラグを100%浚渫土砂に替えて用いない限り、硫化物の生成を0とすることはできなかった(実施例2)。これは、炭酸化製鋼スラグの場合、カルシウムイオンの供給量が小さくなり、浚渫土砂と混合しても固化し難いことが1つの要因であることが推定された。
 そこで、浚渫土砂と炭酸化していない製鋼スラグを混合し、固化層を形成し、硫化物及びりんの海水への溶出防止効果を検証した。炭酸化処置を施していない製鋼スラグは、カルシウムイオンの溶出が炭酸化製鋼スラグよりも大きく、これと浚渫土砂から溶出するシリカが反応し、固化が促進されると考えられる。
 実験は以下の手順で実施した。
 浚渫土砂(wet)と粒径が5mm以下の製鋼スラグ(50%粒径:2mm)をよく混合し、表9に示す条件でガラスびん(容量:1L)に添加した。その後、窒素で曝気し、溶存酸素(DO)を除去した人工海水を各ガラスびんに添加し、ガラスびんを海水で満杯にした後、密閉状態で室温(20℃)で30日間放置した。各実験系列を4本ずつ作製した。
 3、10、20、30日後に、ガラスびんの海水の水質を測定した。硫化物は、分析過程で散逸し易いため、海水を採取後、直ちにpH=10とした。0.45μmミリポアフィルターを用いた注射器でろ過した後、ろ過水中の溶存態硫化物(D-S)を酢酸亜鉛で固定化し測定した。さらに、残液で溶出したりん酸イオン(PO-P)を測定した。
Figure JPOXMLDOC01-appb-T000009
 海水中の溶存態硫化物(D-S)及びりん酸イオン(PO-P)の経日変化を図10、図11に示す。
 この結果、浚渫土砂系では、3日後には海水中には溶存態硫化物(D-S)が検出され、10日目以降30日目までは1mg/L程度で推移した。また、りん酸イオン(PO-P)も3日後には検出され、10日目以降30日目までは0.9~1.2mg/L程度で推移した。
 一方、製鋼スラグを50質量%混合し、固化した系では、溶存態硫化物(D-S)、及び、りん酸イオン(PO-P)は30日目まで全く検出限界以下で推移した。
 これらの結果から、たとえ浚渫土砂中で溶存態硫化物(D-S)及びりん酸イオン(PO-P)が生成、蓄積したとしても、製鋼スラグと浚渫土砂を混合し固化を促進することにより、海水への溶存態硫化物(D-S)及びりん酸イオン(PO-P)の溶出を効果的に抑制できると考えられる。また、スラグ混合土の透水係数kは1.2×10-7cm/secまで低下していた。
(実施例5) 浚渫土砂の上部に製鋼スラグを混合した土砂層生成による硫化物とりんの溶出抑制効果の検証例
 海底の浚渫窪地の底部に、既に、浚渫土砂が部分的に投入されている場合が実際には存在する。このような場合でも、投入された浚渫土砂の上部に混合浚渫土砂または製鋼スラグを敷いて混合土砂層を設けることにより硫化物やりんの溶出を抑制することができると考えられる。
 そこで、浚渫土砂層の上部に浚渫土砂と炭酸化していない製鋼スラグ(最大粒径:20mm;50%粒径:9mm)を混合し、固化層を形成し、硫化物及びりんの海水への溶出防止効果を検証した。炭酸化処置を施さず、粒径が10mm未満の製鋼スラグは、カルシウムイオンの溶出量が大きく、カルシウムイオンと浚渫土砂から溶出するシリカが反応し、固化が容易に促進される。
 実験は以下の手順で実施した。
 浚渫土砂(wet)と浚渫土砂(wet)に製鋼スラグ(50%粒径:9mm)を混合したスラグ混合土を、表10に示す条件でガラスびん(容量:1L)に添加した。その後、窒素で曝気し、溶存酸素(DO)を除去した人工海水を各ガラスびんに添加し、ガラスびんを海水で満杯にした後、密閉状態で室温(20℃)で30日間放置した。各実験系列を4本ずつ作製した。
 3、10、20、30日後に、ガラスびんの海水の水質を測定した。硫化物は、分析過程で散逸し易いため、海水を採取後、直ちにpH=10とした。0.45μmミリポアフィルターを用いた注射器でろ過した後、ろ過水中の溶存態硫化物(D-S)を酢酸亜鉛で固定化し測定した。さらに、残液で溶出したりん酸イオン(PO-P)を測定した。
Figure JPOXMLDOC01-appb-T000010
 この結果、浚渫土砂系では、3日後には海水中には溶存態硫化物(D-S)が検出され、10日目以降30日目までは1mg/L程度で推移した。また、りん酸イオン(PO-P)も3日後には検出され、10日目以降30日目までは0.9~1.2mg/L程度で推移した。一方、製鋼スラグを50質量%混合し、固化した層を浚渫土砂の上部に設けた系では、溶存態硫化物(D-S)、及び、りん酸イオン(PO-P)も30日目まで検出限界以下で推移した。
 これらの結果から、たとえ浚渫土砂中で溶存態硫化物(D-S)及びりん酸イオン(PO-P)が生成、蓄積したとしても、製鋼スラグと浚渫土砂を混合し固化を促進した層を浚渫土砂の上部に設けることにより、海水への溶存態硫化物(D-S)及びりん酸イオン(PO-P)の溶出を効果的に抑制できると考えられた。また、スラグ混合土の透水係数kは1.0×10-7cm/secまで低下していた。
 本発明によれば、鉄鋼プロセスから発生する製鋼スラグを活用し、浚渫土砂を用いた埋め戻しによる海域環境改善効果を著しく向上させることができるため、産業上の利用可能性は極めて大きい。
 1  海底
 2  浚渫窪地
 3  浚渫土砂又は製鋼スラグを混合した浚渫土砂
 4  製鋼スラグ
 5  天然砂

Claims (14)

  1.  海底の浚渫窪地の埋め戻し方法であって、
     浚渫土砂と、第1の製鋼スラグとを混合して混合浚渫土砂を得る混合工程と;
     前記混合浚渫土砂を前記浚渫窪地に投入して、混合浚渫土砂層を形成する混合浚渫土砂層形成工程と;
     を備えることを特徴とする海底の浚渫窪地の埋め戻し方法。
  2.  前記混合工程では、前記第1の製鋼スラグの混合率が10質量%以上50質量%以下となるように前記浚渫土砂と前記第1の製鋼スラグとを混合することを特徴とする請求項1に記載の海底の浚渫窪地の埋め戻し方法。
  3.  前記混合工程では、海水をpH8以上9.5未満に変性させるような混合率で前記浚渫土砂と前記第1の製鋼スラグとを混合することを特徴とする請求項1に記載の海底の浚渫窪地の埋め戻し方法。
  4.  前記第1の製鋼スラグを予め炭酸化処理する工程
     を更に備えることを特徴とする請求項1に記載の海底の浚渫窪地の埋め戻し方法。
  5.  前記混合浚渫土砂層の上部に第2の製鋼スラグを敷いて、製鋼スラグ層を形成する製鋼スラグ層形成工程
     を更に備えることを特徴とする請求項1~4のいずれか1項に記載の海底の浚渫窪地の埋め戻し方法。
  6.  前記第2の製鋼スラグは、粒径が10mm未満の製鋼スラグを50質量%以上含むことを特徴とする請求項5に記載の海底の浚渫窪地の埋め戻し方法。
  7.  前記混合浚渫土砂層と前記製鋼スラグ層とを繰り返し複数層設けることを特徴とする請求項5に記載の海底の浚渫窪地の埋め戻し方法。
  8.  前記第2の製鋼スラグを予め炭酸化処理する工程
    を更に備えることを特徴とする請求項5に記載の海底の浚渫窪地の埋め戻し方法。
  9.  前記製鋼スラグ層の上部をさらに天然砂で被覆することを特徴とする請求項5に記載の海底の浚渫窪地の埋め戻し方法。
  10.  海底の浚渫窪地の埋め戻し方法であって、
     浚渫土砂を前記浚渫窪地に投入して、浚渫土砂層を形成する浚渫土砂層形成工程と;
     前記浚渫土砂層の上部に、混合浚渫土砂又は製鋼スラグを敷いて、混合浚渫土砂層又は製鋼スラグ層を形成する混合浚渫土砂層又は製鋼スラグ層形成工程と;
     を備えることを特徴とする海底の浚渫窪地の埋め戻し方法。
  11.  前記浚渫土砂層と前記混合浚渫土砂層又は前記製鋼スラグ層とを繰り返し複数層設けることを特徴とする請求項10に記載の海底の浚渫窪地の埋め戻し方法。
  12.  前記製鋼スラグを予め炭酸化処理する工程を更に備えることを特徴とする請求項10に記載の海底の浚渫窪地の埋め戻し方法。
  13.  前記製鋼スラグ層の上部をさらに天然砂で被覆することを特徴とする請求項10に記載の海底の浚渫窪地の埋め戻し方法。
  14.  前記浚渫窪地を複数の層で埋め戻す場合、最上部の層に用いる製鋼スラグとしては固化しにくい炭酸化製鋼スラグを用い、その他の層は固化しやすい製鋼スラグを用いることを特徴とする請求項10~13のいずれか1項に記載の海底の浚渫窪地の埋め戻し方法。
PCT/JP2010/001421 2009-03-30 2010-03-02 浚渫窪地の埋め戻し方法 WO2010116602A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010531749A JP4719316B2 (ja) 2009-03-30 2010-03-02 浚渫窪地の埋め戻し方法
BRPI1014832-9A BRPI1014832B1 (pt) 2009-03-30 2010-03-02 Método de aterramento de áreas de empréstimo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009083560 2009-03-30
JP2009-083560 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116602A1 true WO2010116602A1 (ja) 2010-10-14

Family

ID=42935902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001421 WO2010116602A1 (ja) 2009-03-30 2010-03-02 浚渫窪地の埋め戻し方法

Country Status (3)

Country Link
JP (1) JP4719316B2 (ja)
BR (1) BRPI1014832B1 (ja)
WO (1) WO2010116602A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149424A (ja) * 2011-01-18 2012-08-09 Nippon Steel Corp 窪地の処理方法
JP2012246729A (ja) * 2011-05-31 2012-12-13 Nippon Steel & Sumitomo Metal 浚渫窪地の埋め戻し方法
JP2013198849A (ja) * 2012-03-23 2013-10-03 Jfe Steel Corp 水域の底質からのメタン含有ガスの発生抑制方法
JP2014000560A (ja) * 2012-06-21 2014-01-09 Nippon Steel & Sumitomo Metal 改質土の製造方法
JP2014038027A (ja) * 2012-08-15 2014-02-27 Jfe Steel Corp 放射線遮蔽構造体および盛土
JP2016215191A (ja) * 2015-05-15 2016-12-22 Jfeスチール株式会社 浚渫土の改質方法
JP2020018239A (ja) * 2018-08-01 2020-02-06 日本製鉄株式会社 底生生物育成用の土壌作製方法及び底生生物の育成方法
CN111661915A (zh) * 2020-06-12 2020-09-15 广州市广绿园林绿化有限公司 一种湿地生态系统修复方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097590B1 (ko) * 2017-12-14 2020-04-06 재단법인 포항산업과학연구원 제강 슬래그를 포함하는 개량 준설토 및 이를 이용한 가설 도로
JP6903297B1 (ja) * 2020-07-03 2021-07-14 Jfeスチール株式会社 深堀窪地の埋戻し方法
CN114105244A (zh) * 2020-09-01 2022-03-01 神华神东煤炭集团有限责任公司 一种污水净化系统、污水处理系统和污水的处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370092A (ja) * 2001-03-21 2002-12-24 Nkk Corp 水底の環境改善方法
JP2005133309A (ja) * 2003-10-28 2005-05-26 Nippon Steel Corp 干潟、浅場用水域環境修復材料
JP2005320230A (ja) * 2004-04-09 2005-11-17 Nippon Steel Corp 水域環境保全材料およびその使用方法
JP2006214085A (ja) * 2005-02-01 2006-08-17 Jfe Steel Kk 浅場等の造成方法
JP2007063923A (ja) * 2005-09-01 2007-03-15 Jfe Steel Kk 水底の覆砂構造及び覆砂方法
JP2008175008A (ja) * 2007-01-19 2008-07-31 Nippon Steel Corp 海域底質からのリンの溶出抑制方法
JP2009030366A (ja) * 2007-07-27 2009-02-12 Toyo Constr Co Ltd 水底窪地埋戻し工法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238398A (ja) * 1985-04-17 1986-10-23 Nippon Jiryoku Senko Kk 深層ヘドロ硬化材の製造方法
JP4150283B2 (ja) * 2003-04-10 2008-09-17 新日本製鐵株式会社 底質被覆材
JP2006288322A (ja) * 2005-04-13 2006-10-26 Jfe Steel Kk 人工水底基盤
JP2007136452A (ja) * 2005-10-21 2007-06-07 Jfe Steel Kk スラグ材及びその製造方法並びにそのスラグ材を利用した環境改善材料、環境改善方法及び土木建築材料
JP4751181B2 (ja) * 2005-11-01 2011-08-17 新日本製鐵株式会社 覆砂工法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370092A (ja) * 2001-03-21 2002-12-24 Nkk Corp 水底の環境改善方法
JP2005133309A (ja) * 2003-10-28 2005-05-26 Nippon Steel Corp 干潟、浅場用水域環境修復材料
JP2005320230A (ja) * 2004-04-09 2005-11-17 Nippon Steel Corp 水域環境保全材料およびその使用方法
JP2006214085A (ja) * 2005-02-01 2006-08-17 Jfe Steel Kk 浅場等の造成方法
JP2007063923A (ja) * 2005-09-01 2007-03-15 Jfe Steel Kk 水底の覆砂構造及び覆砂方法
JP2008175008A (ja) * 2007-01-19 2008-07-31 Nippon Steel Corp 海域底質からのリンの溶出抑制方法
JP2009030366A (ja) * 2007-07-27 2009-02-12 Toyo Constr Co Ltd 水底窪地埋戻し工法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149424A (ja) * 2011-01-18 2012-08-09 Nippon Steel Corp 窪地の処理方法
JP2012246729A (ja) * 2011-05-31 2012-12-13 Nippon Steel & Sumitomo Metal 浚渫窪地の埋め戻し方法
JP2013198849A (ja) * 2012-03-23 2013-10-03 Jfe Steel Corp 水域の底質からのメタン含有ガスの発生抑制方法
JP2014000560A (ja) * 2012-06-21 2014-01-09 Nippon Steel & Sumitomo Metal 改質土の製造方法
JP2014038027A (ja) * 2012-08-15 2014-02-27 Jfe Steel Corp 放射線遮蔽構造体および盛土
JP2016215191A (ja) * 2015-05-15 2016-12-22 Jfeスチール株式会社 浚渫土の改質方法
JP2020018239A (ja) * 2018-08-01 2020-02-06 日本製鉄株式会社 底生生物育成用の土壌作製方法及び底生生物の育成方法
JP7077852B2 (ja) 2018-08-01 2022-05-31 日本製鉄株式会社 底生生物育成用の土壌作製方法及び底生生物の育成方法
CN111661915A (zh) * 2020-06-12 2020-09-15 广州市广绿园林绿化有限公司 一种湿地生态系统修复方法
CN111661915B (zh) * 2020-06-12 2022-02-22 广州市广绿园林绿化有限公司 一种湿地生态系统修复方法

Also Published As

Publication number Publication date
BRPI1014832A2 (pt) 2016-04-12
BRPI1014832B1 (pt) 2020-03-31
JP4719316B2 (ja) 2011-07-06
JPWO2010116602A1 (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
WO2010116602A1 (ja) 浚渫窪地の埋め戻し方法
Kefeni et al. Acid mine drainage: Prevention, treatment options, and resource recovery: A review
KR100697671B1 (ko) 점토질성 미립토의 이화학성을 개선하고 중금속에 오염된토양을 복원하는 토양 개량제, 이의 제조 방법 및 이를이용한 토양 개량 방법
Kuyucak et al. Successful implementation and operation of a passive treatment system in an extremely cold climate, northern Quebec, Canada
Geller et al. Remediation and management of acidified pit lakes and outflowing waters
JP5070667B2 (ja) 水中の環境改善方法
JP2000157094A (ja) 水中沈設用石材及びその製造方法
JP2007136452A (ja) スラグ材及びその製造方法並びにそのスラグ材を利用した環境改善材料、環境改善方法及び土木建築材料
JP5742477B2 (ja) 浚渫窪地の埋め戻し方法
JP5135533B2 (ja) 海域底質からのリンの溶出抑制方法
JP3729160B2 (ja) 水中又は水浜の環境改善方法及び環境改善用資材
TW201348148A (zh) 來自水域底質之含甲烷氣體的產生抑制方法
JP3968898B2 (ja) スラグを主原料とする人工石材およびその製造方法
JP4069056B2 (ja) 干潟、浅場用水域環境修復材料
WO2004108624A1 (ja) 製鋼スラグの安定化処理方法と安定化製鋼スラグおよび該スラグを用いる水域環境保全材料と水域環境保全方法
JP6079986B2 (ja) ヘドロを分解して砂地化する方法
JP5135552B2 (ja) 水域投入用製鋼スラグの製造方法
JP4013368B2 (ja) 水中沈設用石材およびその製造方法
JP2010099655A (ja) 汚泥造粒品及びその製造方法
JP5316492B2 (ja) 藻類の増殖抑制方法
KR101898801B1 (ko) 고농도 망간을 포함하는 광산배수의 자연정화 처리시스템
JP4997687B2 (ja) 水底の環境改善方法
CN114634346B (zh) 一种用于处理硫铁矿渣的固废基胶凝材料及其使用方法
Geller et al. Restoration of acid drainage
JP4012962B2 (ja) 水産資源生育環境改善用施肥材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010531749

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7241/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761310

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014832

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014832

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110928