WO2010116484A1 - 内燃機関のegr制御システム - Google Patents

内燃機関のegr制御システム Download PDF

Info

Publication number
WO2010116484A1
WO2010116484A1 PCT/JP2009/057078 JP2009057078W WO2010116484A1 WO 2010116484 A1 WO2010116484 A1 WO 2010116484A1 JP 2009057078 W JP2009057078 W JP 2009057078W WO 2010116484 A1 WO2010116484 A1 WO 2010116484A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure egr
fuel
exhaust
passage
air
Prior art date
Application number
PCT/JP2009/057078
Other languages
English (en)
French (fr)
Inventor
晃 山下
大木 久
由紀子 松原
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/057078 priority Critical patent/WO2010116484A1/ja
Priority to JP2011508124A priority patent/JP5110203B2/ja
Priority to EP09842994.7A priority patent/EP2418371B1/en
Publication of WO2010116484A1 publication Critical patent/WO2010116484A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an EGR control system for an internal combustion engine.
  • a turbocharger having a turbine provided in the exhaust passage and a compressor provided in the intake passage, a high-pressure EGR passage connecting the exhaust passage upstream of the turbine and the intake passage downstream of the compressor, and downstream of the turbine
  • An EGR system that includes a low pressure EGR passage that connects an exhaust passage and an intake passage upstream of the compressor, and recirculates part of the exhaust gas to the intake system of the internal combustion engine using the high pressure EGR passage and the low pressure EGR passage together are known.
  • Patent Literature 1 discloses that the CO 2 concentration downstream of the connection portion of the low pressure EGR passage in the intake passage and upstream of the connection portion of the high pressure EGR passage, and the CO 2 downstream of the connection portion of the high pressure EGR passage in the intake passage.
  • the ratio of the low pressure EGR gas amount to the intake air amount sucked into the internal combustion engine and the ratio of the high pressure EGR gas amount to the intake air amount obtained using the concentration and the CO 2 concentration exhausted from the internal combustion engine are respectively
  • An EGR control system that controls the target value is described.
  • the intake air amount and the intake air O 2 concentration are controlled so that the total EGR rate matches the target value, so that a deviation from the target value of the ratio of the high pressure EGR gas and the low pressure EGR gas cannot be detected. .
  • Patent Document 1 it is possible to independently control the ratio of the high pressure EGR gas and the ratio of the low pressure EGR gas to the intake air amount by providing three CO 2 concentration sensors. There is a problem that the number of sensors to be increased is high and the cost is high.
  • a temperature sensor is provided in the intake passage, and the ratio between the high pressure EGR gas and the low pressure EGR gas is obtained by utilizing the difference in temperature characteristics between the high pressure EGR gas and the low pressure EGR gas, or the high pressure EGR passage
  • an air-fuel ratio sensor is provided in the intake passage upstream of the connection location, and the ratio of the high-pressure EGR gas to the low-pressure EGR gas is acquired by acquiring the EGR rate before mixing with the high-pressure EGR gas.
  • it is necessary to additionally mount a new sensor such as a temperature sensor or an air-fuel ratio sensor, which raises a problem of increasing costs.
  • the present invention has been made in view of such problems, and detects the ratio of high-pressure EGR gas to low-pressure EGR gas in an EGR system that recirculates exhaust gas using a high-pressure EGR passage and a low-pressure EGR passage together.
  • An object is to construct a possible EGR control system at a lower cost.
  • an EGR control system for an internal combustion engine of the present invention provides: A turbocharger having a turbine provided in an exhaust passage of the internal combustion engine and a compressor provided in an intake passage of the internal combustion engine; A high pressure EGR passage connecting the upstream side of the turbine in the exhaust passage and the downstream side of the compressor in the intake passage; A low pressure EGR passage connecting the downstream side of the turbine in the exhaust passage and the upstream side of the compressor in the intake passage; Detecting means for detecting a change in predetermined characteristics of the exhaust gas downstream of the connection point of the high pressure EGR passage in the exhaust passage; Changing means for changing the characteristics of the exhaust; Based on the delay time from when the characteristic of the exhaust gas is changed by the changing means until the change of the characteristic is detected by the detecting means, the high-pressure EGR passage in all the exhaust gas recirculated to the intake passage is used. Obtaining means for obtaining a ratio of exhaust gas recirculated to the intake passage and exhaust gas recirculated to the intake passage via
  • Exhaust characteristics are exhaust characteristics that can be changed intentionally by changing means, such as air-fuel ratio, oxygen concentration, temperature, pressure, and the like.
  • the detection means may be any means as long as it can detect the change in characteristics. That is, it is only necessary to detect that the exhaust whose characteristics have been changed by the changing means has reached the position of the detecting means. It is not always necessary to be able to measure characteristic values.
  • Examples of the detecting means include an air-fuel ratio sensor, an oxygen concentration sensor, and a temperature sensor.
  • the delay time from when the characteristic of the exhaust gas is changed by the changing means until the change of the characteristic is detected by the detecting means is all exhaust gas recirculated to the intake passage (hereinafter referred to as all EGR).
  • high pressure EGR gas high pressure EGR gas
  • low pressure EGR gas low pressure EGR gas
  • the present invention is an invention that is intended to obtain the current ratio of high-pressure EGR gas to low-pressure EGR gas from the actually measured value of the delay time.
  • the measured value of the delay time is acquired as a time difference between the timing at which the characteristics of the exhaust gas are changed by the changing means and the timing at which the detecting means detects that the exhaust gas whose characteristics have changed has reached the position of the detecting means. can do.
  • various sensors as described above, and existing sensors provided for other purposes can be used.
  • sensors such as an air-fuel ratio sensor and an oxygen concentration sensor are already provided for exhaust purification processing such as filter regeneration processing and NOx reduction processing. It is common. Using these existing sensors as detection means in the present invention, it is possible to obtain an actual measurement value of the delay time.
  • a dedicated sensor is newly created by utilizing the relationship between the delay time and the ratio of the high pressure EGR gas and the low pressure EGR gas described above based on the actually measured value of the delay time thus obtained.
  • the ratio of the high pressure EGR gas and the low pressure EGR gas can be acquired without additional mounting. Therefore, a system capable of detecting the ratio between the high pressure EGR gas and the low pressure EGR gas can be configured at low cost.
  • the acquisition means includes A delay time from when the characteristics of the exhaust gas is changed by the changing means until the change of the characteristics is detected by the detecting means; The volume of the exhaust passage from the position where the characteristic of the exhaust is changed by the changing means to the position where the change of the characteristic is detected by the detecting means; The displacement of the internal combustion engine; Volumetric efficiency of the internal combustion engine; The temperature and pressure of the intake gas of the internal combustion engine; The temperature and pressure of the exhaust gas recirculated through the low pressure EGR passage to the intake passage; The rotational speed of the internal combustion engine; Based on the above, the ratio can be obtained.
  • A is the volume of the exhaust passage from the position where the characteristics of the exhaust gas are changed by the changing means to the position where the change of the characteristics is detected by the detecting means.
  • V is the displacement of the internal combustion engine.
  • is the volumetric efficiency of the internal combustion engine.
  • is a correction coefficient based on the difference in temperature and pressure between the intake gas of the internal combustion engine and the low pressure EGR gas.
  • the temperature of the intake gas of the internal combustion engine is Tb
  • the pressure is Pb
  • the temperature of the low pressure EGR gas is Ta. When the pressure is Pa, It is.
  • the delay time is obtained by converting this cycle number into time based on the rotational speed of the internal combustion engine. Since ⁇ includes information on the ratio of the high pressure EGR gas to the low pressure EGR gas in all EGR gases, by obtaining ⁇ based on the measured delay time and the equation (1), The ratio of the low pressure EGR gas can be acquired.
  • the detection means has air-fuel ratio measurement means for measuring the air-fuel ratio of the exhaust gas downstream of the connection point of the high-pressure EGR passage and upstream of the connection point of the low-pressure EGR passage in the exhaust passage
  • the changing means includes fuel supply means for supplying fuel to exhaust gas upstream from a position where the air-fuel ratio is measured by the air-fuel ratio measuring means
  • the acquisition means is based on a delay time from when fuel is added to the exhaust gas by the fuel addition means until a change in the air-fuel ratio of the exhaust gas accompanying the fuel addition is measured by the air-fuel ratio measurement means. You may make it acquire.
  • the fuel supply means supplies the fuel to the exhaust gas to intentionally change the air-fuel ratio of the exhaust gas
  • the fuel supply means supplies the fuel to the exhaust gas.
  • the measured value of the delay time can be acquired from the timing when the change in the air-fuel ratio of the exhaust gas is detected by the air-fuel ratio measuring means. Then, based on the actually measured value of the delay time, the current ratio of the high pressure EGR gas and the low pressure EGR gas can be obtained using the relationship between the ratio of the high pressure EGR gas and the low pressure EGR gas and the delay time described above. it can.
  • the exhaust gas purification process such as the regeneration process of the particulate filter and the reduction process of the NOx storage reduction catalyst generally involves the supply of fuel to the exhaust gas.
  • the acquisition means can acquire the ratio of the high-pressure EGR gas and the low-pressure EGR gas when fuel is supplied to the exhaust gas in accordance with such an exhaust purification process.
  • it is not always necessary to supply fuel specially to acquire the ratio, and it is also possible to acquire the ratio in parallel by capturing the opportunity for a general exhaust purification process involving fuel supply to the exhaust. it can. Therefore, it is not necessary to install a new sensor or the like for acquiring the ratio, and it is not necessary to supply fuel only for acquiring the ratio. This will not cause any impact.
  • the air-fuel ratio measuring means is a means for measuring the air-fuel ratio of the exhaust upstream from the connection point of the low-pressure EGR passage
  • the means for measuring the air-fuel ratio of the exhaust downstream of the connection point of the low-pressure EGR passage Even so, it is possible to obtain an actual measurement value of the delay time. Therefore, the existing air-fuel ratio measuring means for the exhaust gas purification process and other controls as described above is delayed in the present invention regardless of whether it is upstream or downstream from the connection point of the low pressure EGR passage. What is necessary is just to divert in order to acquire the actual value of time. By doing so, it is not necessary to newly install an air-fuel ratio measuring means in order to acquire the actual measurement value of the delay time, and it becomes possible to configure an EGR control system that can acquire the ratio at a low cost.
  • a fuel addition valve for adding fuel to the exhaust passage, a fuel injection valve for performing post injection, or the like is used as a fuel supply means for the exhaust purification process. Therefore, these existing fuel supply means may be used for obtaining the ratio in the present invention. By doing so, it is not necessary to newly install additional fuel supply means for acquiring the ratio, and thus an increase in cost can be suppressed.
  • control means for controlling the amount of exhaust may be further provided.
  • the predetermined target value is a ratio between the high pressure EGR gas and the low pressure EGR gas that is determined in advance so as to obtain desired fuel consumption performance and exhaust performance.
  • the high pressure EGR gas amount and the low pressure EGR gas amount can be feedback-controlled so that the mixing ratio matches the target value.
  • an abnormality determination unit that determines that an abnormality has occurred in the control unit may be further provided.
  • the predetermined threshold is determined in advance based on the upper limit value of the deviation that can occur between the current value of the mixing ratio and the target value when the control means is normal. According to the present invention, since the value of the current mixing ratio can be acquired by the acquisition unit, it is determined whether or not the current mixing ratio is abnormal based on a comparison between the current mixing ratio and the target value. can do.
  • an EGR control system capable of detecting the ratio of high-pressure EGR gas to low-pressure EGR gas at a low cost in an EGR system that recirculates exhaust gas using both a high-pressure EGR passage and a low-pressure EGR passage.
  • FIG. 1 is a diagram schematically showing a schematic configuration of an internal combustion engine to which an EGR control system for an internal combustion engine according to the present embodiment is applied, and an intake system and an exhaust system thereof.
  • the engine 1 includes four cylinders 2, and each cylinder 2 includes a fuel injection valve 29 that directly injects fuel into the cylinder.
  • the engine 1 is provided with a crank angle sensor 22 that measures the rotation angle of the crankshaft of the engine 1 and an accelerator opening sensor 27 that measures the amount of depression of an accelerator pedal (not shown).
  • Each cylinder 2 communicates with an intake manifold 5 and an exhaust manifold 6.
  • An intake passage 3 is connected to the intake manifold 5. Connected to the intake passage 3 is a high-pressure EGR passage 9 that guides part of the exhaust gas in the exhaust manifold 6 to the intake passage 3 at high temperature and pressure.
  • the high pressure EGR passage 9 corresponds to the high pressure EGR passage in the present invention.
  • the intake passage 3 upstream of the connection portion of the high-pressure EGR passage 9 is provided with a first throttle valve 23 that can change the flow passage area of the intake passage 3.
  • the intake passage 3 upstream of the first throttle valve 23 is provided with an intercooler 11 that cools the intake air.
  • the intake passage 3 upstream of the intercooler 11 is provided with a supercharger compressor 7.
  • a low-pressure EGR passage 12 Connected to the intake passage 3 upstream of the compressor 7 is a low-pressure EGR passage 12 that guides part of the exhaust gas in the exhaust passage 4 to the intake passage 3 at a low temperature and low pressure.
  • the low pressure EGR passage 12 corresponds to the low pressure EGR passage in the present invention.
  • the intake passage 3 upstream of the connection portion of the low pressure EGR passage 12 is provided with a second throttle valve 24 that can change the flow passage area of the intake passage 3.
  • the intake passage 3 upstream of the second throttle valve 24 is provided with an air flow meter 25 for measuring the amount of air flowing into the intake passage 3.
  • the intake passage 3 upstream of the air flow meter 25 is provided with an air cleaner 26 for removing foreign substances in the air.
  • the high-pressure EGR passage 9 described above is connected to the exhaust manifold 6 so that the exhaust manifold 6 and the intake passage 3 communicate with each other. Further, the exhaust manifold 6 is provided with a fuel addition valve 21 for adding fuel to the exhaust.
  • An exhaust passage 4 is connected to the exhaust manifold 6. The exhaust passage 4 is provided with a turbocharger turbine 8.
  • An exhaust gas purification device 17 is provided in the exhaust passage 4 on the downstream side of the turbine 8.
  • the exhaust emission control device 17 includes a filter 18 that collects particulate matter (PM) in the exhaust gas and an NOx storage reduction catalyst 19.
  • the low-pressure EGR passage 12 described above branches off from the exhaust passage 4 at the branch portion 30 in the exhaust passage 4 on the downstream side of the exhaust purification device 17.
  • the high-pressure EGR passage 9 is provided with a high-pressure EGR valve 10 that changes the flow area of the high-pressure EGR passage 9.
  • the low pressure EGR passage 12 is provided with a low pressure EGR valve 14 that changes the flow area of the low pressure EGR passage 12.
  • a low-pressure EGR cooler 13 that cools the low-pressure EGR gas is provided in the low-pressure EGR passage 12 upstream of the low-pressure EGR valve (that is, the exhaust passage 4 side).
  • the exhaust gas purification device 17 performs an exhaust gas purification process. That is, when it is determined that the amount of PM collected by the filter 18 has reached a predetermined reference amount, the PM collected by the filter 18 is added by adding fuel into the exhaust gas from the fuel addition valve 21. A process of oxidizing and removing is performed. Further, when it is determined that the amount of NOx occluded in the NOx catalyst 19 has reached a predetermined reference amount, the NOx occluded in the NOx catalyst 19 is added by adding fuel into the exhaust gas from the fuel addition valve 21. Is discharged from the NOx catalyst 19 and reduced and purified. Further, when it is determined that the amount of sulfur stored in the NOx catalyst 19 has reached a predetermined reference amount, the sulfur stored in the NOx catalyst 19 is added by adding fuel into the exhaust from the fuel addition valve 21. The process which removes is performed.
  • post-injection may be performed by the fuel injection valve 29 in addition to the fuel addition by the fuel addition valve 21.
  • the post-injection is a small amount of sub-injection that is performed at a timing not involved in combustion after the main fuel injection.
  • the system of this embodiment includes an air-fuel ratio sensor 20 downstream of the branch portion 30 of the low pressure EGR passage 12 in the exhaust passage 4. Based on the measured value of the air-fuel ratio of the exhaust gas by the air-fuel ratio sensor 20, fuel addition or fuel injection by the fuel addition valve 21 is performed so that the fuel necessary for suitably executing the exhaust purification process is accurately supplied to the exhaust gas.
  • the post injection by the valve 29 is controlled.
  • the engine 1 is provided with an ECU 28 which is a computer for controlling the operation of the engine 1.
  • the ECU 28 is connected to the crank angle sensor 22, the air flow meter 25, the air-fuel ratio sensor 20, and the accelerator opening sensor 27 described above, and measurement data from these sensors is input to the ECU 28.
  • the ECU 28 is connected to the fuel injection valve 29, the high pressure EGR valve 10, the first throttle valve 23, the low pressure EGR valve 14, the second throttle valve 24, and the fuel addition valve 21 described above. Is controlled by a command from the ECU 28.
  • the ECU 28 has a known configuration including a CPU, a memory, an input / output interface, and the like, acquires the operating state of the engine 1 and the driver's request from measurement data input from each of the connected sensors, and based on that The control target value of each device is acquired, and the operation of each device is controlled.
  • exhaust gas is recirculated by using two high-pressure EGR passages 9 and a low-pressure EGR passage 12 together.
  • the EGR rate is adjusted to the target value, but also the ratio between the high pressure EGR gas and the low pressure EGR gas in all exhaust gas recirculated to the intake passage 3 (hereinafter referred to as all EGR gas) is also set as a target. It is necessary to match the value.
  • the EGR rate is at the target value, if the ratio of the high-pressure EGR gas is higher than the target value, the intake air temperature rises, the reliability of the engine 1 and the components of the intake system decreases, and the exhaust gas deteriorates (NOx increases). There is a possibility of deteriorating fuel consumption.
  • the ratio of the low pressure EGR gas is higher than the target value, the intake air temperature may decrease, leading to exhaust deterioration (HC increase) and combustion instability.
  • the current ratio between the high pressure EGR gas and the low pressure EGR gas is acquired, and when the acquired value deviates from the target value, the high pressure EGR gas amount and the low pressure EGR gas amount are controlled so as to eliminate the deviation. There is a need to.
  • the ratio of the high-pressure EGR gas to the low-pressure EGR gas cannot be acquired in a conventional system that controls the intake air amount or the intake O 2 concentration so that only the EGR rate is adjusted to the target value.
  • a system that newly installs CO 2 concentration sensors, air-fuel ratio sensors, temperature sensors, etc. in the intake system and exhaust system, and acquires the ratio of high pressure EGR gas to low pressure EGR gas based on the measured values of those sensors Although it has already been proposed, there is a problem that the cost becomes high.
  • the ratio of the high pressure EGR gas to the low pressure EGR gas is obtained by using the air-fuel ratio sensor 20 provided for controlling the fuel supply to the exhaust gas in the exhaust gas purification process of the exhaust gas purification device 17 described above. To get the actual value.
  • the delay time ⁇ t from when the fuel is added to the exhaust gas by the fuel addition valve 21 until the air-fuel ratio enrichment accompanying the fuel addition is detected by the air-fuel ratio sensor 20 is equal to the delay time ⁇ t. This is based on the time required for the exhaust gas that has passed through the added position to reach the position where the air-fuel ratio measurement is performed by the air-fuel ratio sensor 20. Based on this idea, the delay time ⁇ t can be expressed by the number of cycles as shown in Equation 2.
  • A is the passage volume of the path through which the exhaust flows from the position where fuel is added to the exhaust by the fuel addition valve 21 to the position where the air-fuel ratio sensor 20 measures the air-fuel ratio.
  • V is the displacement of the engine 1.
  • is the volumetric efficiency of the engine 1.
  • is a correction coefficient based on the difference in temperature and pressure between the intake gas of the engine 1 and the low pressure EGR gas.
  • the temperature in the intake manifold 5 is Tb
  • the pressure is Pb
  • the temperature in the low pressure EGR passage 12 is Ta, When the pressure is Pa, It is.
  • FIG. 2 is a graph in which the number of reflux delay cycles for various low-pressure EGR gas amounts is obtained by calculation and measurement using the equation (2) and plotted.
  • the horizontal axis in FIG. 2 is the amount of low-pressure EGR gas, and the vertical axis is the number of reflux delay cycles.
  • the calculated value by Equation 1 explains the actual measured value well, and the reflux delay cycle number tends to decrease as the amount of low-pressure EGR gas increases.
  • the reflux delay cycle number is substantially determined by the low-pressure EGR gas amount regardless of the rotational speed of the engine 1. Accordingly, the number of cycles of the reflux delay is constant under the condition of the constant low pressure EGR gas, but when the number of cycles is converted to time, the cycle becomes shorter as the rotational speed of the engine 1 becomes higher. As the number of rotations of 1 increases, it tends to be shorter.
  • the inverse ⁇ of the ratio of the low-pressure EGR gas in the total EGR gas can be obtained from the actually measured value of the delay time ⁇ t obtained during the exhaust purification process. Based on this ⁇ , the ratio of the high pressure EGR gas to the low pressure EGR gas can be obtained.
  • the ratio between the high pressure EGR gas and the low pressure EGR gas is obtained. Therefore, it is not necessary to install a new sensor. Therefore, a system capable of acquiring the current value of the ratio between the high pressure EGR gas and the low pressure EGR gas can be configured at low cost.
  • the high-pressure EGR gas amount and the low-pressure EGR gas amount can be controlled so as to eliminate this deviation and adjust the ratio to the target value.
  • the air-fuel ratio of the exhaust corresponds to the exhaust characteristic in the present invention
  • the air-fuel ratio sensor 20 corresponds to the detection means in the present invention
  • the fuel addition valve 21 for adding fuel to the exhaust during the exhaust purification process or the fuel injection valve 29 for performing post injection corresponds to the changing means in the present invention.
  • step S101 the ECU 28 acquires the operating state of the engine 1.
  • the ECU 28 acquires the rotational speed and load of the engine 1 based on the measured value of the crank angle by the crank angle sensor 22 and the amount of depression of the accelerator pedal by the accelerator opening sensor 27.
  • step S102 the ECU 28 determines whether or not a condition for adding fuel to the exhaust gas is satisfied. As described above, whether the amount of PM collected by the filter 18 has reached the reference amount described above, whether the amount of NOx stored in the NOx catalyst 19 has reached the reference amount described above, NOx It is determined whether or not the amount of sulfur stored in the catalyst 19 has reached the above-described reference amount, whether or not the conditions for activating the catalyst supported on the filter 18 and the NOx catalyst 19 are satisfied, and the like. If it is determined in step S102 that the exhaust fuel addition execution condition is satisfied (Yes), the ECU 28 proceeds to step S103. If it is determined in step S102 that the exhaust fuel addition execution condition is not satisfied (No), the ECU 28 once exits the routine of this flowchart.
  • step S103 the ECU 28 executes fuel addition to the exhaust gas by the fuel addition valve 21.
  • post injection may be performed by the fuel injection valve 29 here.
  • the ECU 28 stores the time when the fuel addition is executed.
  • step S104 the ECU 28 acquires the timing at which the air-fuel ratio sensor 20 detects the change in the air-fuel ratio of the exhaust gas accompanying the fuel addition executed in step S103. Specifically, it is detected that the measured value by the air-fuel ratio sensor 20 changes to a rich air-fuel ratio corresponding to the amount of added fuel, and the time is stored.
  • step S105 the ECU 28 acquires the delay time ⁇ t from the time difference between the fuel addition execution timing acquired in step S103 and the timing at which the change in the air-fuel ratio of the exhaust gas accompanying the fuel addition acquired in step S104 is detected. To do.
  • step S106 the ECU 28 converts the delay time ⁇ t acquired in step S105 into the number of cycles and substitutes it into the formula 2 to acquire the actual value of the ratio ⁇ of the low pressure EGR gas in all the EGR gases.
  • step S107 the ECU 28 acquires the deviation between the actual value of the ratio ⁇ acquired in step S106 and the target value, and determines whether or not the magnitude of the deviation is equal to or less than a predetermined upper limit value. If it is determined in step S107 that the deviation is equal to or less than the upper limit value (Yes), the ECU 28 proceeds to the process of step S108. On the other hand, when it is determined in step S107 that the deviation exceeds the upper limit value (No), the ECU 28 proceeds to the process of step S110.
  • step S108 the ECU 28 acquires a correction amount of the opening degree of the low pressure EGR valve 14 for bringing the ratio ⁇ close to the target value based on the deviation between the actual value of the ratio ⁇ and the target value.
  • step S109 the ECU 28 performs the opening degree correction of the low pressure EGR valve 14 based on the opening degree correction amount acquired in step S108. For example, if the actual value of the ratio ⁇ acquired in step S106 is smaller than the target value, it means that the current ratio of the low-pressure EGR gas is too small, so the opening degree of the low-pressure EGR valve 14 is corrected to be increased. Conversely, if the actual value of the ratio ⁇ acquired in step S106 is larger than the target value, it means that the current ratio of the low pressure EGR gas is excessive, so the opening degree of the low pressure EGR valve 14 is corrected to decrease. .
  • the actual value of the ratio ⁇ can be acquired, it is possible to detect a deviation from the target value of the ratio of the low pressure EGR gas and the ratio of the high pressure EGR gas. It is possible to execute feedback control for adjusting the value to the target value.
  • the ECU 28 determines that some abnormality has occurred in the EGR control system, and the abnormality has occurred in step S110. MIL lighting for warning is performed, and accelerator opening restriction is performed in step S111.
  • the actual value of the ratio ⁇ can be acquired, for example, the total of the high pressure EGR gas ratio and the low pressure EGR gas ratio is greatly different from the target value. Even in a situation where the EGR rate of the EGR system matches the target value, it is possible to reliably detect abnormality of the EGR system.
  • the ECU 28 that executes the processing from step S103 to step S106 corresponds to the acquisition means in the present invention. Further, the ECU 28 that executes the processes of steps S107 to S109 corresponds to the control means in the present invention. Further, the ECU 28 that executes the processes of step S107 and steps S110 to S111 corresponds to the abnormality determination means in the present invention.
  • the air-fuel ratio sensor 20 serving as the detection means in the present embodiment is a sensor provided for exhaust purification processing, and can measure the air-fuel ratio of exhaust gas. It is sufficient that the change in the air-fuel ratio of the exhaust gas accompanying post-injection can be detected, and the value of the air-fuel ratio need not necessarily be measurable. Therefore, for example, an oxygen sensor capable of obtaining a binary output can be used as the detection means of the present invention, instead of an air-fuel ratio sensor capable of obtaining a linear output.
  • the present invention is applied to such a system.
  • a divertable sensor as the detection means of the present invention with other existing sensors.
  • the detection means of the present invention it is sufficient if it has an ability to detect the arrival of exhaust gas whose characteristics have changed.
  • the air-fuel ratio of the exhaust gas is used as the characteristic of the exhaust gas that is intentionally changed and the air-fuel ratio sensor is used as a means having the ability to detect the arrival of the exhaust gas whose air-fuel ratio has changed
  • the characteristic any characteristic that can be changed intentionally may be used.
  • the oxygen concentration, temperature, pressure, and the like may be used.
  • an oxygen concentration sensor, a temperature sensor, a pressure sensor, or the like can be used as the detection means.
  • the air-fuel ratio sensor has a fast response, the ratio of the high-pressure EGR gas to the low-pressure EGR gas can be obtained with high accuracy by obtaining the measured value of the delay time by the air-fuel ratio sensor as in this embodiment. Can do.
  • the configuration in which the air-fuel ratio sensor 20 is provided on the downstream side of the branch portion 30 of the low-pressure EGR passage 12 in the exhaust passage 4 has been described, but the air-fuel ratio sensor 20 is provided on the upstream side of the branch portion 30. Even in this configuration, it can be used for measuring the delay time as in the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

 高圧EGR通路(9)及び低圧EGR通路(12)を併用して排気の再循環を行うEGRシステムにおいて、高圧EGRガスと低圧EGRガスとの比率を検出可能なEGR制御システムをより低コストで構成する。 排気通路(4)におけるタービン(8)より上流側と吸気通路(3)におけるコンプレッサ(7)より下流側とを接続する高圧EGR通路(9)と、排気通路(4)におけるタービン(8)より下流側と吸気通路(3)におけるコンプレッサ(7)より上流側とを接続する低圧EGR通路(12)と、排気通路(4)における高圧EGR通路(9)の接続箇所より下流側において排気の所定の特性の変化を検出する検出手段(20)と、排気の特性を変化させる変化手段(21,29)と、変化手段(21,29)により排気の特性を変化させてから当該特性の変化が検出手段(20)により検出されるまでの遅れ時間に基づいて、全EGRガスにおける高圧EGRガスと低圧EGRガスの比率を取得する取得手段と、を備える。

Description

内燃機関のEGR制御システム
 本発明は、内燃機関のEGR制御システムに関する。
 排気通路に設けられたタービン及び吸気通路に設けられたコンプレッサを有するターボチャージャと、タービンより上流側の排気通路とコンプレッサより下流側の吸気通路とを接続する高圧EGR通路と、タービンより下流側の排気通路とコンプレッサより上流側の吸気通路とを接続する低圧EGR通路と、を備え、高圧EGR通路及び低圧EGR通路を併用して排気の一部を内燃機関の吸気系に再循環させるEGRシステムが知られている。
 例えば特許文献1には、吸気通路における低圧EGR通路の接続部位よりも下流且つ高圧EGR通路の接続部位よりも上流におけるCO2濃度と、吸気通路における高圧EGR通路の接続部位よりも下流におけるCO2濃度と、内燃機関から排出されるCO2濃度と、を用いて取得される、内燃機関が吸入する吸気量に対する低圧EGRガス量の比率及び該吸気量に対する高圧EGRガス量の比率が、それぞれの目標値となるように制御するEGR制御システムが記載されている。
特開2008-261300号公報
 高圧EGR通路及び低圧EGR通路を併用して排気の再循環を行うEGRシステムでは、EGR率を目標値に合わせるだけでなく、全EGRガス中の高圧EGRガスと低圧EGRガスの比率を目標値に合わせる必要がある。EGR率が目標値に合っていても、高圧EGRガスの比率が過剰に高ければ、吸気温度が上昇し、EGRバルブやエンジン部品の信頼性の低下や排気悪化(NOx増大)や燃費悪化を生じる可能性がある。逆に低圧EGRガスの比率が過剰に高ければ、吸気温度が低下し、排気悪化(HC増大)や燃焼不安定を生じる可能性がある。
 従来のEGR制御では、トータルのEGR率を目標値に合わせるように吸気量や吸気O2濃度を制御するため、高圧EGRガスと低圧EGRガスの比率の目標値からのずれを検出することができない。
 上記特許文献1に記載のシステムでは、3つのCO2濃度センサを備えることにより、吸気量に対する高圧EGRガスの比率及び低圧EGRガスの比率を独立に制御することが可能となっているが、搭載すべきセンサ数が多く、コストが高くなる問題がある。
 また、吸気通路に温度センサを備え、高圧EGRガスと低圧EGRガスとの温度特性に相違があることを利用して高圧EGRガスと低圧EGRガスの比率を取得したり、或いは、高圧EGR通路の接続箇所より上流側の吸気通路に空燃比センサを備え、高圧EGRガスと混合する前の状態のEGR率を取得することによって高圧EGRガスと低圧EGRガスの比率を取得したりすることも考えられるが、いずれの場合においても、温度センサや空燃比センサといった新規のセンサを追加搭載する必要があり、コストが高くなる問題がある。
 本発明はこのような問題点に鑑みてなされたものであり、高圧EGR通路及び低圧EGR通路を併用して排気の再循環を行うEGRシステムにおいて、高圧EGRガスと低圧EGRガスとの比率を検出可能なEGR制御システムをより低コストで構成することを目的とする。
 上記の課題を解決するために、本発明の内燃機関のEGR制御システムは、
 内燃機関の排気通路に設けられたタービン及び該内燃機関の吸気通路に設けられたコンプレッサを有する過給機と、
 前記排気通路における前記タービンより上流側と前記吸気通路における前記コンプレッサより下流側とを接続する高圧EGR通路と、
 前記排気通路における前記タービンより下流側と前記吸気通路における前記コンプレッサより上流側とを接続する低圧EGR通路と、
 前記排気通路における前記高圧EGR通路の接続箇所より下流側において排気の所定の特性の変化を検出する検出手段と、
 前記排気の特性を変化させる変化手段と、
 前記変化手段により前記排気の特性を変化させてから当該特性の変化が前記検出手段により検出されるまでの遅れ時間に基づいて、前記吸気通路に再循環する全ての排気における前記高圧EGR通路を介して前記吸気通路に再循環する排気と前記低圧EGR通路を介して前記吸気通路に再循環する排気の比率を取得する取得手段と、
を備えることを特徴とする。
 排気の特性とは、変化手段によって意図的に変化を与えることが可能な排気の特性であり、例えば空燃比、酸素濃度、温度、圧力等である。検出手段は、この特性の変化を検出可能な手段であればどのようなものでも良い。つまり、変化手段により特性の変化させられた排気が検出手段の位置まで到達したことを検出可能であれば良い。必ずしも特性の値を測定可能である必要はない。検出手段としては、空燃比センサ、酸素濃度センサ、温度センサ等を例示できる。
 出願人の鋭意研究により、変化手段によって排気の特性を変化させてから、当該特性の変化が検出手段によって検出されるまでの遅れ時間は、吸気通路に再循環する全ての排気(以下、全EGRガスという)における高圧EGR通路を介して吸気通路に再循環する排気(以下、高圧EGRガスという)と低圧EGR通路を介して吸気通路に再循環する排気(以下、低圧EGRガスという)の比率に対して、一定の関係を有することが見出された。
 本発明は、この関係に基づくことによって、遅れ時間の実測値から現在の高圧EGRガスと低圧EGRガスの比率を取得することを旨とする発明である。
 この遅れ時間の実測値は、変化手段によって排気の特性を変化させるタイミングと、当該特性の変化した排気が検出手段の位置に到達したことが検出手段により検出されるタイミングと、の時間差として、取得することができる。検出手段としては上記のような各種センサであって、他の目的のために備えられた既存のセンサ等を流用することができる。例えばパティキュレートフィルタやNOx触媒等の排気浄化装置を備えた内燃機関では、フィルタ再生処理やNOx還元処理等の排気浄化処理のために、空燃比センサや酸素濃度センサ等のセンサを既に備えているのが一般的である。これら既存のセンサを本発明における検出手段として利用して、遅れ時間の実測値を取得することができる。
 本発明によれば、このようにして取得した遅れ時間の実測値に基づいて、上述した遅れ時間と高圧EGRガスと低圧EGRガスの比率との関係を利用することにより、専用のセンサを新規に追加搭載することなく、高圧EGRガスと低圧EGRガスの比率を取得することができる。従って、高圧EGRガスと低圧EGRガスの比率を検出可能なシステムを低コストで構成することが可能となる。
 前記取得手段は、
  前記変化手段によって排気の特性を変化させてから当該特性の変化が前記検出手段によって検出されるまでの遅れ時間と、
  前記変化手段によって排気の特性が変化させられる位置から前記検出手段により当該特性の変化が検出される位置までの排気の流通経路の容積と、
  前記内燃機関の排気量と、
  前記内燃機関の体積効率と、
  前記内燃機関の吸入ガスの温度及び圧力と、
  前記低圧EGR通路を介して吸気通路に再循環する排気の温度及び圧力と、
  前記内燃機関の回転数と、
に基づいて、前記比率を取得することができる。
 上記遅れ時間をサイクル数で表すと、数1のようになる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Aは、変化手段によって排気の特性が変化させられる位置から、検出手段によりその特性の変化が検出される位置までの、排気の流通経路の容積である。βは、全EGRガス量に対する低圧EGRガス量の割合の逆数であり、全EGRガス量をGegr、低圧EGRガス量をGlplとした場合に、β=Gegr/Glplである。Vは、内燃機関の排気量である。ηは、内燃機関の体積効率である。αは、内燃機関の吸入ガスと低圧EGRガスとの間における温度及び圧力の相違に基づく補正係数であり、内燃機関の吸入ガスの温度をTb、圧力をPbとし、低圧EGRガスの温度をTa、圧力をPaとした場合、
Figure JPOXMLDOC01-appb-I000002
である。
 このサイクル数を内燃機関の回転数に基づいて時間に換算することにより、遅れ時間が得られる。βには全EGRガスにおける高圧EGRガスと低圧EGRガスの比率の情報が含まれているので、遅れ時間の実測値と数1の式とに基づいてβを取得することにより、高圧EGRガスと低圧EGRガスの比率を取得することができる。
 本発明において、
 前記検出手段は、前記排気通路における前記高圧EGR通路の接続箇所より下流且つ前記低圧EGR通路の接続箇所より上流の排気の空燃比を測定する空燃比測定手段を有し、
 前記変化手段は、前記空燃比測定手段による空燃比の測定が行われる位置より上流の排気に燃料を供給する燃料供給手段を有し、
 前記取得手段は、前記燃料添加手段により排気に燃料を添加してから、当該燃料添加に伴う排気の空燃比の変化が前記空燃比測定手段により測定されるまでの遅れ時間に基づいて、前記比率を取得するようにしても良い。
 上記構成によれば、燃料供給手段によって排気に燃料を供給することによって意図的に排気の空燃比を変化させ、当該燃料供給手段による排気への燃料供給を行ったタイミングと、当該燃料供給に伴う排気の空燃比の変化が空燃比測定手段によって検出されるタイミングと、から遅れ時間の実測値を取得することができる。そして、この遅れ時間の実測値に基づいて、上述した高圧EGRガスと低圧EGRガスの比率と遅れ時間との関係を利用して、現状の高圧EGRガスと低圧EGRガスの比率を取得することができる。
 ここで、パティキュレートフィルタの再生処理や吸蔵還元型NOx触媒の還元処理等の排気浄化処理は、一般に排気への燃料供給を伴う。本発明において、取得手段は、このような排気浄化処理に伴って排気への燃料供給が行われるときに、高圧EGRガスと低圧EGRガスの比率の取得を行うことができる。すなわち、比率の取得のために特別に燃料供給を行う必要は必ずしもなく、排気への燃料供給を伴う一般的な排気浄化処理が行われる機会を捉えて、比率の取得も並行して行うことができる。従って、比率の取得のために新規にセンサ等を追加搭載する必要がないだけでなく、比率の取得のためだけに燃料供給を行う必要もないので、比率の取得処理に起因して燃費性能への影響等が生じることもない。
 上記構成において、空燃比測定手段が低圧EGR通路の接続箇所より上流側の排気の空燃比を測定する手段であっても、低圧EGR通路の接続箇所より下流側の排気の空燃比を測定する手段であっても、遅れ時間の実測値を取得することは可能である。従って、上述したような排気浄化処理その他の制御のために既設の空燃比測定手段を、それが低圧EGR通路の接続箇所より上流側にあるか下流側にあるかに関わらず、本発明における遅れ時間の実測値を取得するために流用すればよい。そうすることにより、遅れ時間の実測値を取得するために新たに空燃比測定手段を追加搭載する必要がなくなるので、比率を取得可能なEGR制御システムを低コストで構成することが可能となる。
 排気浄化処理に伴う燃料供給手段としては、排気通路に燃料添加を行う燃料添加弁や、ポスト噴射を行う燃料噴射弁等が用いられる。従って、これら既存の燃料供給手段を、本発明における比率の取得のために流用すれば良い。そうすることによって、比率の取得のために新規に燃料供給手段を追加搭載する必要がなくなるので、コスト増を抑制できる。
 本発明において、
 前記取得手段により取得される比率が所定の目標値になるように、前記高圧EGR通路を介して前記吸気通路に再循環する排気の量及び前記低圧EGR通路を介して前記吸気通路に再循環する排気の量を制御する制御手段を更に備えても良い。
 所定の目標値とは、所望の燃費性能や排気性能が得られるように予め定められる、高圧EGRガスと低圧EGRガスの比率である。本発明によれば、取得手段により現状の混合比率の値を取得することができるので、混合比率を目標値に一致させるように高圧EGRガス量や低圧EGRガス量をフィードバック制御することができる。これにより、高圧EGR通路及び高圧EGR通路を併用して排気の再循環を行うEGRシステムにおいて、高コスト化を抑制しつつ、燃費性能や排気性能をより一層高めることが可能となる。
 本発明において、
 前記取得手段により取得される混合比率が所定の目標値から所定の閾値より大きく乖離している場合、前記制御手段に異常が発生していると判定する異常判定手段を更に備えても良い。
 所定の閾値とは、制御手段が正常な場合に混合比率の現在値と目標値との間に生じ得る乖離の上限値に基づいて予め定められる。本発明によれば、取得手段により現状の混合比率の値を取得することができるので、現状の混合比率と目標値との比較に基づいて、現状の混合比率が異常であるか否かを判定することができる。
 本発明によれば、高圧EGR通路及び低圧EGR通路を併用して排気の再循環を行うEGRシステムにおいて、高圧EGRガスと低圧EGRガスの比率を検出可能なEGR制御システムを低コストで構成することが可能となる。
実施例に係るEGR制御システムを適用する内燃機関とその吸気系及び排気系の概略構成を模式的に示す図である。 実施例に係るEGR制御システムにおける還流遅れサイクル数と低圧EGRガス量との関係を示す図である。 実施例における高圧EGRガスと低圧EGRガスの比率の取得及び当該取得結果に応じたEGR制御の処理内容を表すフローチャートである。
 実施例1に係る内燃機関のEGR制御システムを説明する。図1は、本実施例に係る内燃機関のEGR制御システムを適用する内燃機関とその吸気系及び排気系の概略構成を模式的に示す図である。図1においてエンジン1は4つの気筒2を備え、各気筒2には気筒内に直接燃料を噴射する燃料噴射弁29が備えられている。エンジン1には、エンジン1のクランクシャフトの回転角度を測定するクランク角度センサ22と、図示しないアクセルペダルの踏み込み量を測定するアクセル開度センサ27と、が備えられている。各気筒2は吸気マニホールド5及び排気マニホールド6に連通している。
 吸気マニホールド5には吸気通路3が接続されている。吸気通路3には、排気マニホールド6内の排気の一部を高温高圧で吸気通路3に導く高圧EGR通路9が接続されている。本実施例においては、高圧EGR通路9が、本発明における高圧EGR通路に相当する。高圧EGR通路9の接続部より上流側の吸気通路3には、吸気通路3の流路面積を変更可能な第1スロットル弁23が備えられている。第1スロットル弁23より上流側の吸気通路3には、吸気を冷却するインタークーラ11が備えられている。インタークーラ11より上流側の吸気通路3には、過給機のコンプレッサ7が備えられている。コンプレッサ7より上流側の吸気通路3には、排気通路4内の排気の一部を低温低圧で吸気通路3に導く低圧EGR通路12が接続されている。本実施例においては、低圧EGR通路12が、本発明における低圧EGR通路に相当する。低圧EGR通路12の接続部より上流側の吸気通路3には、吸気通路3の流路面積を変更可能な第2スロットル弁24が備えられている。第2スロットル弁24より上流側の吸気通路3には、吸気通路3に流入する空気量を測定するエアフローメータ25が備えられている。エアフローメータ25より上流側の吸気通路3には、空気中の異物を取り除くエアクリーナ26が備えられている。
 排気マニホールド6には上述した高圧EGR通路9が接続されており、排気マニホールド6と吸気通路3とを連通している。また、排気マニホールド6には、排気中に燃料を添加する燃料添加弁21が備えられている。また、排気マニホールド6には排気通路4が接続されている。排気通路4には、過給機のタービン8が備えられている。タービン8より下流側の排気通路4には、排気浄化装置17が備えられている。排気浄化装置17は、排気中の微粒子物質(PM)を捕集するフィルタ18及び吸蔵還元型NOx触媒19を有する。排気浄化装置17より下流側の排気通路4における分岐部30において、上述した低圧EGR通路12が排気通路4から分岐している。
 高圧EGR通路9には、高圧EGR通路9の流路面積を変更する高圧EGR弁10が備えられている。高圧EGR弁10の開度を変更することによって、高圧EGR通路9を介して吸気通路3に再循環する排気(以下、高圧EGRガスという)の流量を調節することができる。また、低圧EGR通路12には、低圧EGR通路12の流路面積を変更する低圧EGR弁14が備えられている。低圧EGR弁14の開度を変更することによって、低圧EGR通路12を介して吸気通路3に再循環する排気(以下、低圧EGRガスという)の流量を調節することができる。低圧EGR弁より上流側(すなわち、排気通路4側)の低圧EGR通路12には、低圧EGRガスを冷却する低圧EGRクーラ13が備えられている。
 排気浄化装置17について、排気浄化処理が行われる。すなわち、フィルタ18に捕集されたPMの量が所定の基準量に達したと判定されたときに、燃料添加弁21から排気中に燃料を添加することによって、フィルタ18に捕集されたPMを酸化除去する処理を行う。また、NOx触媒19に吸蔵されたNOxの量が所定の基準量に達したと判定されたときに、燃料添加弁21から排気中に燃料を添加することによって、NOx触媒19に吸蔵されたNOxをNOx触媒19から放出させて還元浄化する処理を行う。また、NOx触媒19に吸蔵された硫黄の量が所定の基準量に達したと判定されたときに、燃料添加弁21から排気中に燃料を添加することによって、NOx触媒19に吸蔵された硫黄を除去する処理を行う。
 なお、排気浄化処理において排気浄化触媒17より上流の排気に燃料を供給する手段としては、燃料添加弁21による燃料添加の他に、燃料噴射弁29によってポスト噴射を行ってもよい。ポスト噴射とは主たる燃料噴射の後に燃焼に関与しないタイミングで行う少量の副噴射である。
 排気浄化処理において排気に供給する燃料量を制御するために、本実施例のシステムでは排気通路4における低圧EGR通路12の分岐部30より下流側に空燃比センサ20を備えている。空燃比センサ20による排気の空燃比の測定値に基づいて、排気浄化処理を好適に実行するために必要な燃料が正確に排気に供給されるように、燃料添加弁21による燃料添加や燃料噴射弁29によるポスト噴射を制御する。
 エンジン1にはエンジン1の運転を制御するコンピュータであるECU28が併設されている。ECU28には、上述したクランク角度センサ22、エアフローメータ25、空燃比センサ20、アクセル開度センサ27が接続されており、これら各センサによる測定データがECU28に入力される。また、ECU28には、上述した燃料噴射弁29、高圧EGR弁10、第1スロットル弁23、低圧EGR弁14、第2スロットル弁24、燃料添加弁21が接続されており、これら各機器の動作がECU28からの指令により制御される。ECU28はCPU、メモリ、入出力インターフェース等を備えた既知の構成を有し、接続された上記各センサから入力される測定データからエンジン1の運転状態や運転者の要求を取得し、それに基づいて上記各機器の制御目標値を取得し、各機器の動作を制御する。
 本実施例のEGR制御システムでは、高圧EGR通路9及び低圧EGR通路12の2系統の通路を併用して排気の再循環を行う。このようなEGRシステムでは、EGR率を目標値に合わせるだけでなく、吸気通路3に再循環する全ての排気(以下、全EGRガスという)のうちの高圧EGRガスと低圧EGRガスの比率も目標値に合わせる必要がある。EGR率が目標値にあっていても、高圧EGRガスの比率が目標値より高くなれば、吸気温度が上昇し、エンジン1や吸気系の構成部品の信頼性の低下や排気悪化(NOx増大)や燃費悪化を招く可能性がある。逆に低圧EGRガスの比率が目標値より高くなれば、吸気温度が低下し、排気悪化(HC増大)や燃焼不安定を招く可能性がある。
 従って、現在の高圧EGRガスと低圧EGRガスの比率を取得し、その取得した値が目標値からずれている場合には、そのずれを解消するように高圧EGRガス量や低圧EGRガス量を制御する必要がある。
 しかしながら、従来のEGR率のみを目標値に合わせるように吸気量や吸気O2濃度を制御するシステムでは、高圧EGRガスと低圧EGRガスの比率を取得することはできない。また、CO2濃度センサや空燃比センサや温度センサ等を吸気系や排気系に新規に追加搭載し、それらのセンサの測定値に基づいて高圧EGRガスと低圧EGRガスの比率を取得するシステムは既に提案されているものの、コストが高くなる問題があった。
 そこで、本実施例のシステムでは、上述した排気浄化装置17の排気浄化処理において排気への燃料供給を制御するために備えられた空燃比センサ20を用いて、高圧EGRガスと低圧EGRガスの比率を実際値を取得するようにした。
 具体的には、排気浄化処理の実施時に、燃料添加弁21によって排気に燃料添加が行われてから、当該燃料添加に伴う空燃比のリッチ化が空燃比センサ20によって検出されるまでの、遅れ時間Δtを取得し、この遅れ時間Δtに基づいて全EGRガス中の低圧EGRガスの比率を取得する。
 以下、遅れ時間Δtに基づく全EGRガス中の低圧EGRガスの比率の取得方法を説明する。
 燃料添加弁21によって排気に燃料添加が行われてから、当該燃料添加に伴う空燃比のリッチ化が空燃比センサ20によって検出されるまでの遅れ時間Δtは、燃料添加弁21によって排気に燃料が添加される位置を通過した排気が、空燃比センサ20によって空燃比の測定が行われる位置に到達するまでに要する時間に基づく。この考えに基づけば、遅れ時間Δtは、サイクル数で数2の式のように表せる。
Figure JPOXMLDOC01-appb-M000003
 これを以下「還流遅れサイクル数」と称する。数2において、Aは、燃料添加弁21によって排気に燃料が添加される位置から空燃比センサ20による空燃比の測定が行われる位置まで排気が流通する経路の通路容積である。βは、全EGRガスに対する低圧EGRガスの比率の逆数であり、全EGRガス量をGegr、低圧EGRガス量をGlplとした場合に、β=Gegr/Glplである。Vは、エンジン1の排気量である。ηは、エンジン1の体積効率である。αは、エンジン1の吸入ガスと低圧EGRガスとの間における温度及び圧力の相違に基づく補正係数であり、吸気マニホールド5における温度をTb、圧力をPbとし、低圧EGR通路12における温度をTa、圧力をPaとした場合、
Figure JPOXMLDOC01-appb-I000004
である。
 図2は、種々の低圧EGRガス量における還流遅れサイクル数を、数2の式による計算及び実測により求めてそれぞれプロットした図である。図2の横軸は低圧EGRガス量であり、縦軸は還流遅れサイクル数である。図2に示すように、数1による計算値は実測値をよく説明しており、低圧EGRガス量が多くなるほど還流遅れサイクル数は少なくなる傾向がある。
 そして、この低圧EGRガス量と還流遅れサイクル数との関係を、エンジン1の回転数を変化させて(1200~2400rpm)調べると、この関係はエンジン1の回転数に依らないことが見出された。すなわち、還流遅れサイクル数は、エンジン1の回転数に依らず、低圧EGRガス量で略決まると考えられる。従って、等低圧EGRガス量条件では還流遅れサイクル数は一定だが、サイクル数を時間に換算すると、エンジン1の回転数が高くなるほど短くなるので、等低圧EGRガス量条件では、還流遅れは、エンジン1の回転数が高くなるほど短くなる傾向がある。
 数2の式に基づいて、排気浄化処理時に取得した遅れ時間Δtの実測値から、全EGRガス中の低圧EGRガスの比率の逆数βを取得することができる。このβに基づいて、高圧EGRガスと低圧EGRガスの比率を取得することができる。上述のように、遅れ時間Δtの実測値は、排気浄化処理のために備えられた既存の空燃比センサ20を用いて取得することができるので、高圧EGRガスと低圧EGRガスの比率を取得するために新規のセンサを追加搭載する必要がない。従って、高圧EGRガスと低圧EGRガスの比率の現在値を取得可能なシステムを低コストで構成することができる。
 このように、本実施例のシステムでは高圧EGRガスと低圧EGRガスの比率の現在値を取得することができるので、この比率の目標値からのずれを検出することが可能である。従って、このずれを解消して比率を目標値に合わせるように高圧EGRガス量及び低圧EGRガス量を制御することができる。これにより、高圧EGR通路9及び低圧EGR通路12を併用して排気の再循環を行うシステムにおいて、良好な燃費性能や排気性能を得ることができる。
 本実施例においては、排気の空燃比が、本発明における排気の特性に相当し、空燃比センサ20が、本発明における検出手段に相当する。また、排気浄化処理時に排気に燃料を添加する燃料添加弁21又はポスト噴射を行う燃料噴射弁29が、本発明における変化手段に相当する。
 本実施例における高圧EGRガスと低圧EGRガスの比率の取得及び当該取得結果に応じたEGR制御の処理内容について、図3のフローチャートに基づいて説明する。図3のフローチャートで表される処理は、エンジン1の稼働中、ECU28によって所定間隔おきに繰り返し実行される。
 ステップS101において、ECU28は、エンジン1の運転状態を取得する。ここでは、ECU28はクランク角度センサ22によるクランク角度の測定値とアクセル開度センサ27によるアクセルペダルの踏み込み量とに基づいて、エンジン1の回転数及び負荷を取得する。
 ステップS102において、ECU28は、排気に燃料添加を行う条件が成立しているか否かを判定する。上述したように、フィルタ18に捕集されたPMの量が上述した基準量に達したか否か、NOx触媒19に吸蔵されたNOxの量が上述した基準量に達したか否か、NOx触媒19に吸蔵された硫黄の量が上述した基準量に達したか否か、フィルタ18に担持される触媒やNOx触媒19を活性化させるべき条件が成立しているか否か等を判定する。ステップS102において排気燃料添加の実行条件が成立していると判定された場合(Yes)、ECU28はステップS103の処理に進む。ステップS102において排気燃料添加の実行条件が成立していないと判定された場合(No)、ECU28はこのフローチャートのルーチンを一旦抜ける。
 ステップS103において、ECU28は、燃料添加弁21により排気への燃料添加を実行する。なお、上述したように、ここでは燃料噴射弁29によりポスト噴射を行っても良い。この時、ECU28は、燃料添加を実行した時刻を記憶しておく。
 ステップS104において、ECU28は、ステップS103において実行した燃料添加に伴う排気の空燃比の変動が空燃比センサ20によって検出されるタイミングを取得する。具体的には、空燃比センサ20による測定値が添加燃料量に応じたリッチ空燃比に変化するのを検出し、その時刻を記憶する。
 ステップS105において、ECU28は、ステップS103で取得した燃料添加の実行タイミングと、ステップS104で取得した燃料添加に伴う排気の空燃比の変動が検出されたタイミングと、の時間差から、遅れ時間Δtを取得する。
 ステップS106において、ECU28は、ステップS105で取得した遅れ時間Δtをサイクル数に換算して数2の式に代入して、全EGRガス中の低圧EGRガスの比率βの実際値を取得する。
 ステップS107において、ECU28は、ステップS106で取得した比率βの実際値と目標値との偏差を取得し、その偏差の大きさが所定の上限値以下であるか否かを判定する。ステップS107において偏差が上限値以下であると判定された場合(Yes)には、ECU28はステップS108の処理に進む。一方、ステップS107において偏差が上限値を超えていると判定された場合(No)には、ECU28はステップS110の処理に進む。
 ステップS108において、ECU28は、比率βの実際値と目標値との偏差に基づいて、比率βを目標値に近付けるための低圧EGR弁14の開度の補正量を取得する。
 ステップS109において、ECU28は、ステップS108で取得した開度補正量に基づいて、低圧EGR弁14の開度補正を実行する。例えば、ステップS106で取得された比率βの実際値が目標値より小さかった場合、現状の低圧EGRガスの比率が過少であることを意味するので、低圧EGR弁14の開度を増加補正する。逆に、ステップS106で取得された比率βの実際値が目標値より大きかった場合、現状の低圧EGRガスの比率が過大であることを意味するので、低圧EGR弁14の開度を減少補正する。このように、本実施例のEGRシステムでは、比率βの実際値を取得できるので、低圧EGRガスの比率や高圧EGRガスの比率の目標値からの乖離を検出することが可能となり、これらの比率を目標値に合わせるためのフィードバック制御を実行することが可能となる。
 ステップS106で取得された比率βの実際値と目標値との偏差が上限値を超えている場合、ECU28は、EGR制御システムに何らかの異常が発生していると判定し、ステップS110において異常発生を警告するMIL点灯を行うとともに、ステップS111においてアクセル開度制限を実施する。このように、本実施例のEGRシステムでは、比率βの実際値を取得できるので、例えば、高圧EGRガスの比率や低圧EGRガスの比率が目標値から大幅に乖離しているにもかかわらずトータルのEGR率が目標値に合っているような状況においても、EGRシステムの異常を確実に検知することが可能となる。
 本実施例においては、ステップS103~ステップS106の処理を実行するECU28が、本発明における取得手段に相当する。また、ステップS107~ステップS109の処理を実行するECU28が、本発明における制御手段に相当する。また、ステップS107、ステップS110~ステップS111の処理を実行するECU28が、本発明における異常判定手段に相当する。
 なお、以上述べた実施例は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施例には種々の変更を加え得る。
 例えば、本実施例における検出手段たる空燃比センサ20は、排気浄化処理のために備えられたセンサであって、排気の空燃比を測定可能であるが、本発明の検出手段としては、燃料添加やポスト噴射に伴う排気の空燃比の変化を検出できれば十分であり、必ずしも空燃比の値を測定可能である必要はない。従って、例えばリニアな出力が得られる空燃比センサではなく、2値の出力が得られる酸素センサ等を本発明の検出手段として用いることもできる。
 但し、当該センサが、本実施例における空燃比センサ20のように、排気浄化処理その他の目的のためにシステムに既に搭載されている場合に、それを本発明における検出手段として流用するのが好ましい。つまり、当該センサが既設ではないシステムにおいて、高圧EGRガスと低圧EGRガスの比率を取得するためだけに新たに当該センサを搭載することは、コスト増につながるので、そのようなシステムに本発明を適用する場合には、その他の既設のセンサで本発明の検出手段として流用可能なセンサを用いるようにすることが好ましい。
 本発明の検出手段としては、特性の変化した排気の到達を検出できるだけの能力があれば十分である。
 本実施例では、意図的に変化させる排気の特性として排気の空燃比を利用し、空燃比の変化した排気の到達を検出する能力を有する手段として空燃比センサを用いる場合について説明したが、排気の特性としては、意図的に変化させることが可能な特性であればよく、例えば、酸素濃度、温度、圧力等でもよい。その場合、検出手段としては、酸素濃度センサ、温度センサ、圧力センサ等を用いることができる。但し、空燃比センサは応答が速いので、本実施例のように空燃比センサによって遅れ時間の実測値を取得するようにすることで、高圧EGRガスと低圧EGRガスの比率を精度良く取得することができる。
 本実施例では、排気通路4における低圧EGR通路12の分岐部30より下流側に空燃比センサ20が備えられた構成について説明したが、空燃比センサ20が分岐部30より上流側に備えられている構成であっても、本実施例と同様に遅れ時間の測定に用いることができる。
1     エンジン
2     気筒
3     吸気通路
4     排気通路
5     吸気マニホールド
6     排気マニホールド
7     コンプレッサ
8     タービン
9     高圧EGR通路
10   高圧EGR弁
11   インタークーラ
12   低圧EGR通路
13   低圧EGRクーラ
14   低圧EGR弁
17   排気浄化装置
18   フィルタ
19   吸蔵還元型NOx触媒
20   空燃比センサ
21   燃料添加弁
22   クランク角度センサ
23   第1スロットル弁
24   第2スロットル弁
25   エアフローメータ
26   エアクリーナ
27   アクセル開度センサ
28   ECU
29   燃料噴射弁
30   分岐部

Claims (8)

  1.  内燃機関の排気通路に設けられたタービン及び該内燃機関の吸気通路に設けられたコンプレッサを有する過給機と、
     前記排気通路における前記タービンより上流側と前記吸気通路における前記コンプレッサより下流側とを接続する高圧EGR通路と、
     前記排気通路における前記タービンより下流側と前記吸気通路における前記コンプレッサより上流側とを接続する低圧EGR通路と、
     前記排気通路における前記高圧EGR通路の接続箇所より下流側において排気の所定の特性の変化を検出する検出手段と、
     前記排気の特性を変化させる変化手段と、
     前記変化手段により前記排気の特性を変化させてから当該特性の変化が前記検出手段により検出されるまでの遅れ時間に基づいて、前記吸気通路に再循環する全ての排気における前記高圧EGR通路を介して前記吸気通路に再循環する排気と前記低圧EGR通路を介して前記吸気通路に再循環する排気の比率を取得する取得手段と、
    を備えることを特徴とする内燃機関のEGR制御システム。
  2.  請求項1において、
     前記取得手段は、
      前記変化手段によって排気の特性を変化させてから当該特性の変化が前記検出手段によって検出されるまでの遅れ時間と、
      前記変化手段によって排気の特性が変化させられる位置から前記検出手段により当該特性の変化が検出される位置までの排気の流通経路の容積と、
      前記内燃機関の排気量と、
      前記内燃機関の体積効率と、
      前記内燃機関の吸入ガスの温度及び圧力と、
      前記低圧EGR通路を介して吸気通路に再循環する排気の温度及び圧力と、
      前記内燃機関の回転数と、
    に基づいて、前記混合比率を取得することを特徴とする内燃機関のEGR制御システム。
  3.  請求項1又は2において、
     前記検出手段は、前記排気通路における前記高圧EGR通路の接続箇所より下流且つ前記低圧EGR通路の接続箇所より上流の排気の空燃比を測定する空燃比測定手段を有し、
     前記変化手段は、前記空燃比測定手段による空燃比の測定が行われる位置より上流の排気に燃料を供給する燃料供給手段を有し、
     前記取得手段は、前記燃料添加手段により排気に燃料を添加してから、当該燃料添加に伴う排気の空燃比の変化が前記空燃比測定手段により測定されるまでの遅れ時間に基づいて、前記比率を取得することを特徴とする内燃機関のEGR制御システム。
  4.  請求項1又は2において、
     前記検出手段は、前記排気通路における前記低圧EGR通路の接続箇所より下流の排気の空燃比を測定する空燃比測定手段を有し、
     前記変化手段は、前記空燃比測定手段による空燃比の測定が行われる位置より上流の排気に燃料を供給する燃料供給手段を有し、
     前記取得手段は、前記燃料添加手段により排気に燃料を添加してから、当該燃料添加に伴う排気の空燃比の変化が前記空燃比測定手段により測定されるまでの遅れ時間に基づいて、前記比率を取得することを特徴とする内燃機関のEGR制御システム。
  5.  請求項3又は4において、
     前記燃料供給手段は、前記空燃比測定手段による空燃比の測定が行われる位置より上流の排気通路に設けられた燃料添加弁を有し、該燃料添加弁により排気に燃料を添加することを特徴とする内燃機関のEGR制御システム。
  6.  請求項3又は4において、
     前記燃料供給手段は、前記内燃機関の気筒内に直接燃料を噴射する燃料噴射弁を有し、主たる燃料噴射の後に該燃料噴射弁によりポスト噴射を行うことを特徴とする内燃機関のEGR制御システム。
  7.  請求項1~6のいずれか1項において、
     前記取得手段により取得される混合比率が所定の目標値になるように、前記高圧EGR通路を介して前記吸気通路に再循環する排気の量及び前記低圧EGR通路を介して前記吸気通路に再循環する排気の量を制御する制御手段を更に備えることを特徴とする内燃機関のEGR制御システム。
  8.  請求項1~7のいずれか1項において、
     前記取得手段により取得される混合比率が所定の目標値から所定の閾値より大きく乖離している場合、前記制御手段に異常が発生していると判定する異常判定手段を更に備えることを特徴とする内燃機関のEGR制御システム。
PCT/JP2009/057078 2009-04-06 2009-04-06 内燃機関のegr制御システム WO2010116484A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/057078 WO2010116484A1 (ja) 2009-04-06 2009-04-06 内燃機関のegr制御システム
JP2011508124A JP5110203B2 (ja) 2009-04-06 2009-04-06 内燃機関のegr制御システム
EP09842994.7A EP2418371B1 (en) 2009-04-06 2009-04-06 Egr control system of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057078 WO2010116484A1 (ja) 2009-04-06 2009-04-06 内燃機関のegr制御システム

Publications (1)

Publication Number Publication Date
WO2010116484A1 true WO2010116484A1 (ja) 2010-10-14

Family

ID=42935794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057078 WO2010116484A1 (ja) 2009-04-06 2009-04-06 内燃機関のegr制御システム

Country Status (3)

Country Link
EP (1) EP2418371B1 (ja)
JP (1) JP5110203B2 (ja)
WO (1) WO2010116484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108464A (ja) * 2011-11-24 2013-06-06 Mitsubishi Motors Corp 排気ガス還流装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122561A (ja) * 1997-07-03 1999-01-26 Nissan Motor Co Ltd ディーゼル機関用egr制御装置
JP2008261300A (ja) 2007-04-13 2008-10-30 Toyota Motor Corp 内燃機関の排気還流装置
JP2008303825A (ja) * 2007-06-08 2008-12-18 Toyota Motor Corp 内燃機関の排気還流装置
JP2009024559A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009047130A (ja) * 2007-08-22 2009-03-05 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2434406A (en) * 2005-08-25 2007-07-25 Ford Global Tech Llc I.c. engine exhaust gas recirculation (EGR) system with dual high pressure and low pressure EGR loops
KR101383288B1 (ko) * 2007-03-28 2014-04-09 보르그워너 인코퍼레이티드 터보차지되는 압축 착화 엔진 시스템에서 배기 가스 재순환의 제어

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122561A (ja) * 1997-07-03 1999-01-26 Nissan Motor Co Ltd ディーゼル機関用egr制御装置
JP2008261300A (ja) 2007-04-13 2008-10-30 Toyota Motor Corp 内燃機関の排気還流装置
JP2008303825A (ja) * 2007-06-08 2008-12-18 Toyota Motor Corp 内燃機関の排気還流装置
JP2009024559A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009047130A (ja) * 2007-08-22 2009-03-05 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418371A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108464A (ja) * 2011-11-24 2013-06-06 Mitsubishi Motors Corp 排気ガス還流装置

Also Published As

Publication number Publication date
EP2418371B1 (en) 2013-10-16
EP2418371A4 (en) 2013-02-27
JP5110203B2 (ja) 2012-12-26
JPWO2010116484A1 (ja) 2012-10-11
EP2418371A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US9027535B2 (en) Control apparatus for internal combustion engine
JP5136654B2 (ja) 内燃機関の制御装置
JP5282848B2 (ja) Egr装置の異常検出装置
JP6093258B2 (ja) 過給機付きエンジンの排気還流装置のための故障検出装置
JP5278077B2 (ja) 内燃機関のegr制御システム
US20080051943A1 (en) Apparatus for calculating detection error of fresh air quantity detection device
JP2010096050A (ja) 過給システムの異常検出装置
JP4650370B2 (ja) 触媒劣化検出装置
JP4542489B2 (ja) 内燃機関のエキゾーストマニホールド内温度推定装置
JP5099263B2 (ja) 内燃機関のegr制御システム
JP4650364B2 (ja) NOx触媒の劣化検出装置
JP5110203B2 (ja) 内燃機関のegr制御システム
JP5608614B2 (ja) エンジンのegr流量検出装置
JP5493585B2 (ja) 内燃機関の制御装置
JP5111534B2 (ja) 内燃機関のegr制御装置
JP5004036B2 (ja) 内燃機関の排気浄化装置
JP2008106636A (ja) エンジンの異常検出装置
JP4600362B2 (ja) 還元剤添加弁の異常検出装置
JP2012137050A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2009191678A (ja) 内燃機関の制御装置
JP4710729B2 (ja) 内燃機関の制御装置
JP2013068210A (ja) エンジンの制御装置
JP5353362B2 (ja) 内燃機関のegr制御システム
JP2005023819A (ja) 内燃機関の空燃比制御装置
JP4255945B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009842994

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011508124

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE