JP4650364B2 - NOx触媒の劣化検出装置 - Google Patents

NOx触媒の劣化検出装置 Download PDF

Info

Publication number
JP4650364B2
JP4650364B2 JP2006196102A JP2006196102A JP4650364B2 JP 4650364 B2 JP4650364 B2 JP 4650364B2 JP 2006196102 A JP2006196102 A JP 2006196102A JP 2006196102 A JP2006196102 A JP 2006196102A JP 4650364 B2 JP4650364 B2 JP 4650364B2
Authority
JP
Japan
Prior art keywords
nox
amount
nox catalyst
catalyst
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006196102A
Other languages
English (en)
Other versions
JP2008025381A (ja
Inventor
大介 柴田
裕 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006196102A priority Critical patent/JP4650364B2/ja
Publication of JP2008025381A publication Critical patent/JP2008025381A/ja
Application granted granted Critical
Publication of JP4650364B2 publication Critical patent/JP4650364B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、NOx触媒の劣化検出装置に関する。
ディーゼルエンジンの排気通路に設けられたNOx触媒の上流と下流にそれぞれ空燃比センサを配置し、リッチスパイク実行時のそれらの空燃比センサの出力に基づいてNOx触媒の劣化を検出する装置が知られている(例えば、特許文献1参照。)。
特開2004−308455号公報 特開2000−274279号公報 特開2002−47979号公報 特開平11−93742号公報
しかしながら、エンジンから排出されるPM等が触媒上流の空燃比センサに堆積する場合がある。この場合には、触媒上流の空燃比センサの出力が低下してしまい、NOx触媒の劣化を正確に検出することができなくなる可能性がある。
また、かかる触媒上流の空燃比センサに対するPM等の付着を防止すべく、該空燃比センサにカバーを設けた場合には、該空燃比センサの出力の応答性が低下してしまう可能性がある。
本発明は、上述のような課題を解決するためになされたもので、エンジンから排出されるPM等の影響を受けることなく、NOx触媒の劣化検出を精度良く行うことが可能なNOx触媒の劣化検出装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、NOx触媒の劣化検出装置であって、
内燃機関の排気通路に設けられ、排気空燃比に応じてNOxを吸蔵又は還元するNOx触媒と、
前記NOx触媒の下流の排気通路における排気空燃比を検出する空燃比センサと、
前記NOx触媒の下流の排気通路におけるNOx濃度を検出するNOxセンサと、
前記NOx触媒の上流の排気通路に還元剤を供給するリッチスパイクを実行するリッチスパイク実行手段と、
前記リッチスパイクの実行時に、前記排気空燃比に基づいて前記NOx触媒をすり抜ける余剰還元剤量を算出する余剰還元剤量算出手段と、
前記リッチスパイクの実行時に、前記NOx濃度に基づいて前記NOx触媒のNOx浄化率を算出するNOx浄化率算出手段と、
前記余剰還元剤量と前記NOx浄化率とによって規定される相関地点が所定範囲内に含まれる場合に、前記NOx触媒の劣化検出を実行する劣化検出手段とを備えたことを特徴とする。
また、第2の発明は、第1の発明において、
前記相関地点が前記所定範囲内に含まれない場合に、前記リッチスパイク実行手段により供給される還元剤の量を変更する還元剤量変更手段を更に備えたことを特徴とする。
また、第3の発明は、第2の発明において、
前記NOx浄化率算出手段は、前記NOx触媒に流入するNOx流入量を推定するNOx流入量推定手段を有し、
前記還元剤量変更手段により変更された還元剤の量が所定値以上である場合に、前記NOx流入量を変更するNOx流入量変更手段を更に備えたことを特徴とする。
第1の発明によれば、NOx触媒下流のNOxセンサ及び空燃比センサを用いて、NOx触媒の劣化が検出される。これにより、PM等の付着の影響を受けることなく、NOx触媒の劣化を検出することができる。さらに、第1の発明によれば、余剰還元剤量とNOx浄化率とに基づいてNOx触媒の劣化検出が行われる。ここで、NOx浄化率のみから正常であると判定されたNOx触媒には、エミッション特性の悪化を招来するNOx触媒が含まれてしまう。これに対して、NOx浄化率に加えて余剰還元剤量を考慮することで、NOx浄化率のみからNOx触媒の劣化検出を行う場合に比して、NOx触媒の劣化検出を精度良く行うことができる。
また、第1の発明によれば、余剰還元剤量とNOx浄化率とによって規定される相関地点が所定範囲内に含まれる場合に、NOx触媒の劣化検出が実行される。この所定範囲は、NOx触媒以外の部品故障による影響を受けずに、NOx触媒の劣化検出を実行可能な範囲である。よって、NOx触媒以外の部品故障の影響を受けずに、NOx触媒の劣化検出を精度良く行うことができる。
第2の発明によれば、相関地点が所定範囲内に含まれない場合には、リッチスパイク実行時に供給される還元剤の量が変更される。これにより、次回のリッチスパイク実行時に相関地点を所定範囲内に含ませることができる。よって、次回のリッチスパイク実行時に、NOx触媒以外の部品故障の影響を受けずに、NOx触媒の劣化検出を精度良く行うことができる。
第3の発明によれば、変更された還元剤の量が所定値以上である場合には、NOx流入量が変更される。よって、相関地点が所定範囲から大きく外れている場合であっても、第3の発明による還元剤の量の変更と相まって、次回のリッチスパイク実行時に相関地点を所定範囲内に含ませることができる。
以下、図面を参照して本発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1によるシステム構成を説明するための図である。図1に示すシステムは、内燃機関1として、4サイクルのディーゼルエンジン(圧縮着火内燃機関)を備えている。ディーゼルエンジン1は、車両に搭載され、その動力源とされているものとする。図1に示すディーゼルエンジン1は直列4気筒型であるが、本発明において、気筒数および気筒配置はこれに限定されるものではない。
ディーゼルエンジン1の各気筒2のピストンは、クランク機構を介してクランク軸4に連結されている。クランク軸4の近傍には、クランク軸4の回転角度(クランク角)を検出するクランク角センサ5が設けられている。
ディーゼルエンジン1の各気筒2には、燃料を筒内に直接噴射するインジェクタ6が設置されている。各気筒のインジェクタ6は、共通のコモンレール7に接続されている。図示しない燃料タンク内の燃料は、サプライポンプ8によって所定の燃圧まで加圧される。この加圧された燃料は、コモンレール7内に蓄えられ、コモンレール7から各インジェクタ6に供給される。インジェクタ6は、1サイクル中に複数回、任意のタイミングで燃料を筒内に噴射することができる。
ディーゼルエンジン1の吸気ポート10には、吸気バルブ12が設けられている。この吸気バルブ12の開弁特性(開弁時期、リフト量、作用角)は、図示しない公知の可変動弁機構により変更可能である。
吸気ポート10は、吸気マニホールド16を介して吸気通路18に接続されている。吸気通路18の途中には、吸気絞り弁20が設けられている。吸気絞り弁20は、アクセル開度センサ21により検出されるアクセル開度AAに基づき、その開度が決定される電子制御弁である。吸気絞り弁20の上流には、インタークーラ22が設けられている。インタークーラ22の上流にはターボ過給機24のコンプレッサ24aが設けられている。コンプレッサ24aは、排気通路38のタービン24bと連結軸により連結されている。
コンプレッサ24aの上流には、吸入空気量Gaを検出するエアフロメータ26が設けられている。エアフロメータ26の上流にはエアクリーナ28が設けられている。
このような構成によれば、ターボ過給機24のコンプレッサ24aにより圧縮された吸入空気は、インタークーラ22で冷却される。インタークーラ22を通過した吸入空気は、吸気マニホールド16によって各気筒の吸気ポート10に分配される。
また、ディーゼルエンジン1の排気ポート30には、排気バルブ32が設けられている。この排気バルブ32の開弁特性(開弁時期、リフト量、作用角)は、図示しない公知の可変動弁機構により変更可能である。
排気ポート30は、排気マニホールド36を介して排気通路38に接続されている。排気通路38には、ターボ過給機24のタービン24bが設けられている。タービン24bの下流には、NOx触媒40が設けられている。NOx触媒40は、空燃比が理論空燃比より大きい雰囲気中、つまり理論空燃比よりリーンな雰囲気中では排気ガス中のNOxを吸蔵し、空燃比が理論空燃比以下の雰囲気中、つまり理論空燃比以下のリッチの雰囲気中では吸蔵されたNOxを還元浄化して放出する機能を有している。このNOx触媒40は、NOxを吸蔵還元する機能のみを有するものでもよく、あるいは、排気ガス中のすすを捕集する機能を併せ持つDPNR(Diesel Particulate-NOx-Reduction system)のようなものでもよい。また、NOx触媒40は、すすを捕集すること以外の機能を併せ持つものでもよい。
タービン24bとNOx触媒40との間には、排気ガス中に燃料を添加する排気燃料添加弁42が設けられている。NOx触媒40の下流には、排気空燃比A/Foutを検出する空燃比センサ44と、NOx濃度を検出するNOxセンサ46とが設けられている。
吸気通路18の吸気マニホールド16の近傍には、外部EGR通路52の一端が接続されている。外部EGR通路52の他端は、排気通路38の排気マニホールド36近傍に接続されている。本システムでは、この外部EGR通路52を通して、排気ガス(既燃ガス)の一部を吸気通路18に還流させること、つまり外部EGR(Exhaust Gas Recirculation)を行うことができる。
外部EGR通路52の途中には、外部EGRガスを冷却するためのEGRクーラ54が設けられている。外部EGR通路52におけるEGRクーラ54の下流には、EGR弁56が設けられている。このEGR弁56の開度を大きくするほど、外部EGR通路52を通る排気ガス量(すなわち、外部EGR量もしくは外部EGR率)を増大させることができる。
また、本実施の形態1のシステムは、制御装置としてのECU(Electronic Control Unit)60を備えている。ECU60の出力側には、インジェクタ6、サプライポンプ8、吸気絞り弁20、排気燃料添加弁42、EGR弁56等が接続されている。ECU60の入力側には、クランク角センサ5、アクセル開度センサ21、エアフロメータ26、空燃比センサ44、NOxセンサ46等が接続されている。
また、ECU60は、クランク角センサ5の出力に基づいて、機関回転数NEを算出する。また、ECU60は、アクセル開度AA等に基づいて、機関負荷KLを算出する。また、ECU60は、機関負荷KLに基づいて、インジェクタ6からの燃料噴射量Qを算出する。ECU60は、各センサからの信号に基づき、所定のプログラムに従って各アクチュエータを作動させることにより、ディーゼルエンジン1の運転状態を制御する。
[実施の形態1の特徴]
上記のように、本実施の形態1によるシステムは、NOx触媒40を備えている。かかるNOx触媒40の劣化検出方法として、既述した特許文献1のように、NOx触媒の上流と下流とにそれぞれ設けられた2つの空燃比センサの出力を用いる方法が知られている。しかし、エンジンから排出されるPM等がNOx触媒上流の空燃比センサに堆積すると、該空燃比センサの出力低下が起こってしまい、正確にNOx触媒の劣化検出を行うことができなくなる可能性がある。そこで、NOx触媒上流の空燃比センサへのPM等の付着を防止すべく、空燃比センサにカバー(すす対策用カバー)を設ける対策が行われている。
しかし、空燃比センサにカバーを設けた場合には、図2に示すように、空燃比センサの出力(以下「センサ出力」という。)の応答性能が低下してしまう。図2は、空燃比センサにPM等の付着防止用のカバーを設けた場合と設けない場合との、センサ出力の応答性能を比較するための図である。図2において符号Aを付した直線は、触媒上流における実際の空燃比の変化を示している。符号Bを付した一点鎖線は、空燃比センサにカバーを設けた場合のセンサ出力の変化を示している。符号Cを付した破線は、空燃比センサにカバーを設けていない場合のセンサ出力の変化を示している。
図2に示すように、直線Aと破線Cとはほぼ一致している。このため、カバーを設けていない場合にはセンサ出力の応答性能が高いことが分かる。一方、直線Aの変化に対して、一点鎖線Bの変化は大きく遅れている。このため、カバーを設けた場合にはセンサ出力の応答性能が低下してしまうことが分かる。このように、空燃比センサにPM付着防止用のカバーを設けると、センサ出力の応答性能が低下してしまうため、NOx触媒の劣化検出を精度良く行うことは難しい。
そこで、NOx触媒上流のセンサを用いずに、リッチスパイク実行時に、NOx触媒下流のセンサのみを用いて、NOx触媒の劣化検出を行う手法が考えられる。例えば、NOx触媒の下流に配置されたNOxセンサの出力のみを用いて、NOx触媒の劣化を検出する手法が考えられる。この手法によれば、リッチスパイク実行時にNOx触媒から排出されるNOx濃度をNOxセンサにより検出し、その検出結果を用いてNOx浄化率が算出される。そして、算出されたNOx浄化率に基づいて、NOx触媒の劣化検出が行われる。つまり、NOx浄化率が基準値よりも低い場合に、NOx触媒が劣化していると判断される。
しかし、本発明者等の検討の結果、リッチスパイク実行時にNOx触媒40をすり抜ける余剰還元剤量(以下「余剰HC量」という。)に応じて、NOx浄化率が大きく変化することが分かった。具体的には、リッチスパイク実行時にNOx触媒40をすり抜ける余剰HC量Ghcと、NOx触媒40のNOx浄化率Rnoxとの間には、図3に示すような相関関係があることが分かった。図3は、リッチスパイク実行時の余剰HC量GhcとNOx浄化率Rnoxとの相関関係を示す図である。図3には、浄化性能が異なる4つのNOx触媒C1〜C4の相関関係が示されている。かかる触媒C1〜C4の相関関係から分かるように、余剰HC量Ghcが多いほど、NOx浄化率Rnoxが高くなっている。
よって、上述したNOx浄化率のみによって触媒劣化を検出する手法によっては、余剰HC量Ghcが多い場合に、精度良くNOx触媒の劣化検出を行うことができない。つまり、余剰HC量Ghcが多い場合にのみNOx浄化率Rnoxが基準値Rthを超えるNOx触媒C2は、排気エミッション特性の観点から劣化触媒であると判断すべきであるが、NOx浄化率Rnoxだけを基準とすると正常触媒であると判断され得る。
そこで、本実施の形態1では、リッチスパイク実行時に、余剰HC量GhcとNOx浄化率Rnoxとの両方を考慮して、NOx触媒40の劣化を検出する。ここで、「余剰HC量Ghc」とは、リッチスパイク実行時に排気燃料添加弁42から添加されたHC量のうち、NOx触媒40におけるNOxの還元に用いられず、NOx触媒をすり抜けたHC量のことをいう。この余剰HC量Ghcは、当業者間では「すり抜けHC量」ともいわれる。また、「NOx浄化率Rnox」とは、前回のリッチスパイク終了後にNOx触媒40に流入したNOx量に対する、リッチスパイク実行時に供給された還元剤により還元されたNOx量の割合のことをいう。以下、本実施の形態1によるNOx触媒40の劣化検出手法につき具体的に説明する。
図3においてハッチングが付された所定範囲Rは、余剰HC量GhcとNOx浄化率Rnoxとによって規定されている。この所定範囲Rは、NOx触媒40以外の部品(例えば、排気燃料添加弁42)の故障の影響を受けずに、NOx触媒40の浄化能力を判別することが可能な範囲である。
そこで、本実施の形態1では、余剰HC量GhcとNOx浄化率Rnoxとによって定まる相関地点Pがこの所定範囲R内に含まれる場合に、NOx触媒40の劣化検出を実行する。具体的には、該相関地点Pが所定範囲R内に含まれる場合において、NOx浄化率Rnoxが基準値Rth(例えば40%)よりも小さければNOx触媒40が劣化していると判別し、NOx浄化率Rnoxが基準値Rth以上であればNOx触媒40が正常であると判別する。
かかる本実施の形態1による劣化検出手法に照らせば、図3に示す触媒C1,C2については、相関地点P1,P2が所定範囲R内に含まれ、その相関地点P1,P2におけるNOx浄化率Rnoxが基準値Rthよりも小さいため、劣化触媒であると判別される。また、同図に示す触媒C3,C4については、相関地点P3,P4が所定範囲R内に含まれ、その相関地点P3,P4におけるNOx浄化率Rnoxが基準値Rth以上であるため、正常触媒であると判別される。なお、この所定範囲Rは、車両やNOx触媒40の種類毎に異なるため、予めマップとして作成され、ECU60内に格納されている。
次に、上記の余剰HC量GhcとNOx浄化率Rnoxの算出方法について説明する。
先ず、図4を参照して、上記余剰HC量Ghcの算出方法について説明する。図4は、余剰HC量Ghcの算出方法を説明するための図である。図4には、リッチスパイク実行時の、空燃比センサ出力A/Foutの変化が示されている。図4に示すように、時刻t1において、リッチスパイクが開始されている。つまり、排気通路38を流れる排気ガスに対して排気燃料添加弁42から還元剤であるHCの添加が開始されている。なお、HCの添加は、所定量を1回だけ添加してもよく、所定量を分割して複数回に分けて添加するようにしてもよい。この添加されたHCは、NOx触媒40に吸蔵されたNOxの還元・浄化に用いられる。
このHCによりNOxが還元されている間(例えば、時刻t2)は、NOx触媒40からHCはすり抜けてこない。このため、空燃比センサ出力A/Foutは理論空燃比A/Fstに維持される。そして、NOx触媒40のNOxが全て還元された後(例えば、時刻t3)、添加されたHCはNOxの還元に用いられないため、NOx触媒40をすり抜けてくる。このため、空燃比センサ出力A/Foutが、理論空燃比A/Fstよりもリッチ側に変化する。そして、排気燃料添加弁42から添加されたHCが全てNOx触媒40をすり抜けると(例えば、時刻t4)、空燃比センサ出力A/Foutは、理論空燃比A/Fstよりもリーン側に再度変化する。このNOx触媒40をすり抜けたHCの量の総和が、上記「余剰HC量Ghc」に相当する。この余剰HC量Ghcは、空燃比センサ出力A/Foutを用いて、次式(1)によって算出することができる。次式(1)において、「Ga」は吸入空気量である。
Ghc=∫{(Ga/(A/Fout))-(Ga/(A/Fst))}dt・・・(1)
次に、上記NOx浄化率Rnoxの算出方法について説明する。上述したように、「NOx浄化率Rnox」とは、前回のリッチスパイク終了後からNOx触媒40に流入したNOx量に対する、リッチスパイク実行時に供給された還元剤により還元されたNOx量の割合のことをいう。よって、NOx浄化率Rnoxは、次式(2)により算出することができる。次式(2)において、「Nin」は、NOx触媒40に流入するNOx量であり、「Nout」は、リッチスパイク実行時にNOx触媒40から排出されるNOx量である。この「Nin」は、機関回転数Neと燃料噴射量Qとの関係で定められたマップ(図示せず)を参照して推定することができる。また、「Nout」は、NOxセンサ出力と、吸入空気量Gaとを用いて算出することができる。なお、この「Nin」を、上記マップによらず、モデル計算により求めることもできる。
Rnox={1-(Nout/Nin)}×100・・・(2)
本実施の形態1によれば、NOx触媒40下流の空燃比センサ44の出力とNOxセンサ46の出力とを用いて求められた余剰HC量GhcとNOx浄化率Rnoxとに基づいて、NOx触媒40の劣化検出を行うようにした。よって、エンジン1から排出されるPM等の影響を受けることなく、NOx触媒40の劣化を検出することができる。さらに、NOx浄化率Rnoxだけでなく余剰HC量Ghcを考慮することで、NOx浄化率RnoxだけでNOx触媒の劣化を検出する場合に比して、精度良くNOx触媒40の劣化を検出することができる。
また、本実施の形態1によれば、余剰HC量GhcとNOx浄化率Rnoxとによって定まる相関地点Pが所定範囲R内に含まれる場合に、NOx触媒40の劣化検出が行われる。よって、NOx触媒40以外の部品故障の影響を受けることなく、NOx触媒40の劣化検出を精度良く行うことができる。
ところで、経時により、排気燃料添加弁42の噴射精度が低下する場合がある。そうすると、図3において符号P41,42を付して示す相関地点のように、該相関地点P41,42が所定範囲R内に含まれない可能性がある。かかる場合には、排気燃料添加弁42により添加されるHC量を変更する。例えば、相関地点P41の場合、HC量の変更量は、余剰HC量Ghcと所定範囲Rとの差dに応じて、マップあるいは計算式により算出する。このようにHC量を変更することで、すなわちリッチ深さを変更することで、次回のリッチスパイク実行時に、余剰HC量GhcとNOx浄化率Rnoxとによって定まる相関地点を所定範囲R内に含ませることができる。よって、次回のリッチスパイク実行時に、NOx触媒40以外の部品故障の影響を受けることなく、NOx触媒40の劣化を検出することができる。
[実施の形態1における具体的処理]
図5は、本実施の形態1において、ECU60が実行するルーチンを示すフローチャートである。本ルーチンは、所定間隔毎に起動されるものである。
図5に示すルーチンによれば、先ず、NOx触媒40の劣化判定を実行するための前提条件を具備しているか否かを判別する(ステップ100)。このステップ100では、排気燃料添加弁42、空燃比センサ44及びNOxセンサ46の信号線に断線がないかを、その出力をモニタすることにより判別する。このステップ100で前提条件を具備していないと判別された場合には、本ルーチンを一旦終了する。
上記ステップ100で前提条件を具備していると判別された場合には、リッチスパイクを実行しているか否かを判別する(ステップ102)。本実施の形態1によるNOx触媒40の劣化検出は、リッチスパイク実行時に行われる。よって、このステップ102でリッチスパイクが実行されていないと判別された場合には、本ルーチンを一旦終了する。
一方、上記ステップ102でリッチスパイクが実行されていると判別された場合には、空燃比センサ出力を用いて、上式(1)に従って余剰HC量Ghcを算出する(ステップ104)。その後、NOxセンサ出力を用いて、上式(2)に従ってNOx浄化率Rnoxを算出する(ステップ106)。そして、算出されたNOx浄化率Rnoxでの余剰HC量Ghcが、所定範囲に含まれるか否かを判別する(ステップ108)。すなわち、このステップ108では、上記ステップ104で算出された余剰HC量Ghcと上記ステップ106で算出されたNOx浄化率Rnoxとによって定まる相関地点Pが、所定範囲Rに含まれるか否かを判別する。この所定範囲Rとは、車両やNOx触媒の種類に応じて予め定められた範囲であって、NOx触媒40以外の部品故障の影響を受けずにNOx触媒40の劣化検出を行うことができる範囲である。このステップ108では、ECU60内に予め格納され、上記所定範囲がR定められているマップを読み出して、上記ステップ104,106でそれぞれ算出された余剰HC量GhcとNOx浄化率Rnoxとによって定まる相関地点Pが該マップの所定範囲Rに含まれるか否かを判別する。
上記ステップ108で相関地点Pが所定範囲Rに含まれないと判別された場合、例えば、図3に示す相関地点P41,P42のような場合には、排気燃料添加弁42から添加されるHC量を変更する(ステップ110)。このステップ110では、余剰HC量Ghcが所定範囲よりも多い場合にはHC量が減量され、余剰HC量Ghaが所定範囲よりも少ない場合にはHC量が増量される。ここで、HC量の変更量は、相関地点Pにおける余剰HC量Ghcと所定範囲Rとの差分(例えば、図3に示す差分d)に応じて決定することができる。具体的には、ECU60内に予め記憶されているマップを参照して、若しくは、数式を用いて、該差分に応じてHC量の変更量を求めることができる。ステップ110の処理後、ステップ102の判別処理に戻る。
一方、ステップ108で相関地点Pが所定範囲Rに含まれると判別された場合には、上記ステップ106で算出されたNOx浄化率Rnoxが基準値Rthよりも小さいか否かを判別する(ステップ112)。この基準値Rthは、NOx触媒40の劣化判定を行うための基準値であり、例えば、40(%)である。このステップ112でNOx浄化率Rnoxが基準値Rthよりも小さいと判別された場合には、NOx触媒40が劣化していると判定される(ステップ114)。この場合、触媒劣化を車両運転者に認知させるべく、警告ランプの点灯等の処理が行われる。また、NOx浄化率Rnoxが基準値Rth以上であると判別された場合には、NOx触媒40は正常であると判定される(ステップ116)。
以上説明したように、図5に示すルーチンによれば、リッチスパイク実行時に余剰HC量GhcとNOx浄化率Rnoxとによって定まる相関地点Pが所定範囲R内に含まれる場合に、NOx浄化率Rnoxと基準値Rthとを比較することでNOx触媒40の劣化検出が実行される。よって、NOx触媒40の劣化検出を実行するに当たり、余剰HC量Ghcが考慮されている。このため、NOx浄化率RnoxだけでNOx触媒の劣化を検出する場合に比して、精度良くNOx触媒40の劣化を検出することができる。
また、相関地点Pが所定範囲R内に含まれる場合には、NOx触媒40以外の部品故障の影響を受けることなく、NOx触媒40の浄化性能を精度良く判別することができる。
また、相関地点Pが所定範囲R内に含まれない場合には、排気燃料添加弁42により添加されるHC量が変更される。これにより、次回のリッチスパイク実行時に相関地点Pを所定範囲R内に含めることができる。このため、排気燃料添加弁42の経時変化が起こった場合であっても、次回のリッチスパイク実行時に、NOx触媒40以外の部品故障の影響を受けることなく、NOx触媒40の浄化性能を精度良く判別することができる。
ところで、本実施の形態1では、ディーゼルエンジンについて説明したが、本発明を火花着火式のガソリンエンジンにも適用することができる。PM排出量が比較的多い筒内燃料噴射型のガソリンエンジンに対して本発明を適用することが好適である(後述する実施の形態2についても同様)。
尚、本実施の形態1においては、NOx触媒40が第1の発明における「NOx触媒」に、空燃比センサ44が第1の発明における「空燃比センサ」に、NOxセンサ46が第1の発明における「NOxセンサ」に、排気燃料添加弁42が第1の発明における「リッチスパイク実行手段」に、それぞれ相当する。また、本実施の形態1においては、ECU60が、ステップ102の処理を実行することにより第1の発明における「リッチスパイク実行手段」が、ステップ104の処理を実行することにより第1の発明における「余剰還元剤量算出手段」が、ステップ106の処理を実行することにより第1の発明における「NOx浄化率算出手段」及び第4の発明における「NOx流入量推定手段」が、ステップ108,112,114の処理を実行することにより第1及び第2の発明における「劣化検出手段」が、ステップ110の処理を実行することにより第3の発明における「還元剤量変更手段」が、それぞれ実現されている。
実施の形態2.
次に、図6を参照して、本発明の実施の形態2について説明する。
本実施の形態2のシステムは、図1に示すハードウェア構成を用いて、ECU60に、後述する図6に示すルーチンを実行させることにより実現することができる。
[実施の形態2の特徴]
上記実施の形態1では、余剰HC量GhcとNOx浄化率Rnoxとによって定まる相関地点Pが所定範囲R内に含まれない場合には、排気燃料添加弁42により添加されるHC量が変更されている。これは、経時変化により排気燃料添加弁42から噴射されるHC量が変化しやすいことを考慮したものである。かかるHC量の変更により、次回のリッチスパイク実行時に相関地点Pを所定範囲R内に含ませることができる。よって、次回のリッチスパイク実行時に、NOx触媒40の劣化検出を精度良く行うことができる。
ところが、HC変更量が基準値よりも多い場合、例えば、相関地点Pが所定範囲Rから大きく外れているような場合には、排気燃料添加弁42が主要因ではないと推定することができる。この場合、NOx浄化率Rnoxを正確に算出することができていないと推定する。ここで、NOx浄化率Rnoxを算出する上式(2)では、NOx触媒40に流入するNOx量Ninが、マップもしくはモデル計算により求められている。
そこで、本実施の形態2では、HC変更量が基準値よりも多い場合には、マップもしくはモデル計算により求められるNOx量Ninを変更する。これにより、NOx浄化率Rnoxを正確に算出することができる。よって、次回のリッチスパイク実行時に、相関地点Pを所定範囲R内に含めることができる。よって、本実施の形態2によっても、NOx触媒40以外の部品故障の影響を受けることなく、NOx触媒40の劣化検出を精度良く行うことができる。
[実施の形態2における具体的処理]
図6は、本実施の形態2において、ECU60が実行するルーチンを示すフローチャートである。本ルーチンは、図5に示すルーチンと並行して実行することが可能であり、所定間隔毎に起動されるものである。
図6に示すルーチンによれば、先ず、リッチスパイク実行時に排気燃料添加弁42から添加されるHC量(いわゆる、リッチ深さ)が変更されたか否かを判別する(ステップ120)。このステップ120では、図5に示すルーチンのステップ110が実行履歴を参照し、HC量が変更されたか否かを判別することができる。このステップ120でHC量が変更されていないと判別された場合には、本ルーチンを一旦終了する。よって、図5に示すルーチンのステップ110の処理が実行された後に、本ルーチンの処理が有効に実行されることとなる。
上記ステップ120でHC量が変更されたと判別された場合には、そのHC変更量を読み込む(ステップ122)。その後、上記ステップ122で読み込まれたHC変更量が所定値よりも大きいか否かを判別する(ステップ124)。この所定値は、相関地点Pが所定範囲R内に含まれないことの主要因が排気燃料添加弁42にあるか否かを判別するための基準値である。この所定値は、車両を用いて行われた耐久試験の結果により定めることができる。このステップ124でHC変更量が所定値以下であると判別された場合、例えば、相関地点Pと所定範囲Rとの差が小さい場合には、HC量の変更のみで次回のリッチスパイク実行時に相関地点Pを所定範囲R内に含ませることが可能であると判断される。よって、この場合には、本ルーチンを一旦終了する。
一方、上記ステップ124でHC変更量が所定値よりも大きい場合には、排気燃料添加弁42の経時変化のみが要因でないと判断される。この場合、相関地点P(つまり、該相関地点Pにおける余剰HC量Ghc,NOx浄化率Rnox、以下同じ)が所定範囲Rよりも大きいか否かが判別される(ステップ126)。このステップ126で相関地点Pが所定範囲Rよりも大きいと判別された場合(例えば、図3に示す相関地点P42の場合)には、マップもしくはモデル計算により算出されたNOx触媒40に流入するNOx量の推定値(以下「触媒流入NOx推定量」という。)、すなわち上式(2)の「Nin」が、実際にNOx触媒40に流入したNOx量よりも少ないと判断される。よって、この場合には、触媒流入NOx推定量Ninを増量する(ステップ128)。具体的には、触媒流入NOx推定量Ninが増量されるように、マップ値の変更もしくはモデル計算の係数の変更が行われる。
上記ステップ126で相関地点Pが所定範囲Rよりも大きくないと判別された場合には、相関地点Pが所定範囲Rよりも小さいか否かを判別する(ステップ130)。このステップ130で相関地点Pが所定範囲Rよりも小さくないと判別された場合、つまり、相関地点Pが所定範囲Rに含まれている場合には、触媒流入NOx推定量の変更が不要であるため、本ルーチンを終了する。
一方、上記ステップ130で相関地点Pが所定範囲Rよりも小さいと判別された場合(例えば、図3に示す相関地点P41の場合)には、マップもしくはモデル計算により算出された触媒流入NOx推定値Ninが、実際にNOx触媒40に流入したNOx量よりも多いと判断される。よって、この場合には、触媒流入NOx推定量Ninを減量する(ステップ132)。具体的には、触媒流入NOx推定量Ninが減量されるように、マップ値の変更もしくはモデル計算の係数の変更が行われる。
以上説明したように、図6に示すルーチンによれば、排気燃料添加弁42により添加されるHC量の変更量が所定値よりも大きい場合に、触媒流入NOx推定量が変更される。これにより、HC量の変更と相まって、次回のリッチスパイク実行時に相関地点Pを所定範囲R内に含ませることができる。よって、次回のリッチスパイク実行時に、NOx触媒40以外の部品故障の影響を受けることなく、NOx触媒40の劣化検出を精度良く実行することができる。
ところで、本実施の形態2では、HC変更量が所定値よりも大きい場合には、NOx触媒40に流入するNOx推定量を増量又は減量させることとしたが、このNOx推定量の増減に代えて若しくはこのNOx推定量の増減と共に、エアフロメータ26の出力特性(すなわち、吸入空気量Ga)を変更するようにしてもよい。このエアフロメータ26の出力特性を変更することで、上記実施の形態2と同様に、NOx浄化率Rnoxを正確に求めることができ、相関地点Pを所定範囲R内に含ませることができる。
尚、本実施の形態2においては、ECU60が、ステップ128又は132の処理を実行することにより第4の発明における「NOx流入量変更手段」が実現されている。
本発明の実施の形態1によるシステム構成を説明するための図である。 空燃比センサにPM等の付着防止用のカバーを設けた場合と設けない場合との、センサ出力の応答性能を比較するための図である。 リッチスパイク実行時の余剰HC量GhcとNOx浄化率Rnoxとの相関関係を示す図である。 余剰HC量Ghcの算出方法を説明するための図である。 本発明の実施の形態1において、ECU60が実行するルーチンを示すフローチャートである。 本発明の実施の形態2において、ECU60が実行するルーチンを示すフローチャートである。
符号の説明
1 内燃機関
26 エアフロメータ
40 NOx触媒
42 排気燃料添加弁
44 NOxセンサ
46 空燃比センサ
60 ECU

Claims (3)

  1. 内燃機関の排気通路に設けられ、排気空燃比に応じてNOxを吸蔵又は還元するNOx触媒と、
    前記NOx触媒の下流の排気通路における排気空燃比を検出する空燃比センサと、
    前記NOx触媒の下流の排気通路におけるNOx濃度を検出するNOxセンサと、
    前記NOx触媒の上流の排気通路に還元剤を供給するリッチスパイクを実行するリッチスパイク実行手段と、
    前記リッチスパイクの実行時に、前記排気空燃比に基づいて前記NOx触媒をすり抜ける余剰還元剤量を算出する余剰還元剤量算出手段と、
    前記リッチスパイクの実行時に、前記NOx濃度に基づいて前記NOx触媒のNOx浄化率を算出するNOx浄化率算出手段と、
    前記余剰還元剤量と前記NOx浄化率とによって規定される相関地点が所定範囲内に含まれる場合に、前記NOx触媒の劣化検出を実行する劣化検出手段とを備えたことを特徴とするNOx触媒の劣化検出装置。
  2. 請求項1に記載のNOx触媒の劣化検出装置において、
    前記相関地点が前記所定範囲内に含まれない場合に、前記リッチスパイク実行手段により供給される還元剤の量を変更する還元剤量変更手段を更に備えたことを特徴とするNOx触媒の劣化検出装置。
  3. 請求項2に記載のNOx触媒の劣化検出装置において、
    前記NOx浄化率算出手段は、前記NOx触媒に流入するNOx流入量を推定するNOx流入量推定手段を有し、
    前記還元剤量変更手段により変更された還元剤の量が所定値以上である場合に、前記NOx流入量を変更するNOx流入量変更手段を更に備えたことを特徴とするNOx触媒の劣化検出装置。
JP2006196102A 2006-07-18 2006-07-18 NOx触媒の劣化検出装置 Expired - Fee Related JP4650364B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196102A JP4650364B2 (ja) 2006-07-18 2006-07-18 NOx触媒の劣化検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196102A JP4650364B2 (ja) 2006-07-18 2006-07-18 NOx触媒の劣化検出装置

Publications (2)

Publication Number Publication Date
JP2008025381A JP2008025381A (ja) 2008-02-07
JP4650364B2 true JP4650364B2 (ja) 2011-03-16

Family

ID=39116292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196102A Expired - Fee Related JP4650364B2 (ja) 2006-07-18 2006-07-18 NOx触媒の劣化検出装置

Country Status (1)

Country Link
JP (1) JP4650364B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027300A1 (ja) * 2011-08-25 2013-02-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR20130077400A (ko) 2011-12-29 2013-07-09 삼성전기주식회사 박막형 코일 부품 및 그 제조 방법
DE102012211684A1 (de) * 2012-07-05 2014-01-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine
JP5708593B2 (ja) * 2012-08-06 2015-04-30 株式会社デンソー 触媒の劣化診断装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193647A (ja) * 1997-09-18 1999-04-06 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2006138273A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193647A (ja) * 1997-09-18 1999-04-06 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2006138273A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2008025381A (ja) 2008-02-07

Similar Documents

Publication Publication Date Title
US20080040014A1 (en) Unburned fuel amount-estimating device in engine and temperature-estimating device of exhaust emission purifier
JP4853381B2 (ja) セタン価推定装置及び方法
JP5136654B2 (ja) 内燃機関の制御装置
JP2010190089A (ja) 多気筒内燃機関の異常診断装置
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5151697B2 (ja) 内燃機関の制御装置
JP4650370B2 (ja) 触媒劣化検出装置
JP2008101502A (ja) 過給機付き内燃機関の制御装置
JP4650364B2 (ja) NOx触媒の劣化検出装置
US7997067B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP5195624B2 (ja) 内燃機関の排気浄化装置
US9574483B2 (en) System and method for controlling exhaust gas temperature during particulate matter filter regeneration
US20190293617A1 (en) Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP4600362B2 (ja) 還元剤添加弁の異常検出装置
JP2014206103A (ja) 内燃機関の制御装置
JP4710729B2 (ja) 内燃機関の制御装置
JP5659997B2 (ja) 内燃機関の制御装置
JP4450233B2 (ja) 内燃機関の排気空燃比推定装置
JP5206355B2 (ja) 内燃機関の出力トルク制御装置及び制御方法
JP2008038738A (ja) NOx触媒の劣化検出装置
JP5110203B2 (ja) 内燃機関のegr制御システム
JP4935426B2 (ja) 内燃機関の制御装置
JP2008045413A (ja) 還元剤添加弁の異常検出装置
JP4154589B2 (ja) 内燃機関の燃焼制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R151 Written notification of patent or utility model registration

Ref document number: 4650364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees