WO2010113959A1 - 試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法 - Google Patents

試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法 Download PDF

Info

Publication number
WO2010113959A1
WO2010113959A1 PCT/JP2010/055721 JP2010055721W WO2010113959A1 WO 2010113959 A1 WO2010113959 A1 WO 2010113959A1 JP 2010055721 W JP2010055721 W JP 2010055721W WO 2010113959 A1 WO2010113959 A1 WO 2010113959A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample analysis
analysis chip
well
base material
chip according
Prior art date
Application number
PCT/JP2010/055721
Other languages
English (en)
French (fr)
Inventor
知之 小澤
奈緒 西嶋
明 殷
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP10758730.5A priority Critical patent/EP2416160B1/en
Priority to US13/138,756 priority patent/US8546129B2/en
Priority to JP2011507222A priority patent/JP4962658B2/ja
Priority to CN201080014320.2A priority patent/CN102369443B/zh
Publication of WO2010113959A1 publication Critical patent/WO2010113959A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0449Combinations of the above using centrifugal transport of liquid

Definitions

  • the present invention relates to a sample analysis chip and a sample analysis method used for detection and analysis of biochemical reactions, and a method for manufacturing a sample analysis chip.
  • the present invention relates to a disposable chip that can be used for DNA analysis and a method for manufacturing the same.
  • reaction apparatuses for processing a small amount of sample solution.
  • This is a single chip or cartridge provided with a plurality of reaction chambers (hereinafter referred to as wells) and channels, and can analyze a plurality of specimens or perform a plurality of reactions.
  • the benefits include, for example, the fact that the amount of strong acids and strong alkaline chemicals that have been used in the past has been reduced to a much lower level, and the impact on the human body and the environment will be significantly reduced. For example, the amount of reagents consumed can be reduced so that the cost of analysis and reaction can be reduced.
  • Patent Document 1 in a chip that sends liquid from a liquid reservoir to a well using centrifugal force, the flow path is deformed and sealed in order to make the well independent. Therefore, a mechanism for crushing the flow path is necessary, and automation is difficult. In addition, when the centrifugal liquid feeding is performed from the central liquid reservoir to the surrounding wells as in the conventional centrifugal liquid feeding chip, the liquid feeding amount to each well varies.
  • Patent Document 2 variation in the amount of liquid fed to each well is solved by interweaving rotation + revolution of the centrifugation method.
  • this method also requires a complicated mechanism and space for the tip to rotate and revolve.
  • Patent Document 3 an analysis medium in which a plurality of wells each having a liquid reservoir and a channel extending in the centrifugal direction are connected is disclosed.
  • the fluid is controlled by pushing against the air clogged in the well.
  • the liquid in the flow path between the liquid storage part and the liquid storage part is not supplied, and the amount of liquid supplied to each well varies greatly, resulting in a difference in the results for each reaction.
  • the first problem of the prior art is that a chip with a simple liquid feeding method and small liquid volume variation in each well has not been realized.
  • these methods need to distribute the sample material to a plurality of wells in the apparatus, which may lead to erroneous test results due to cross-contamination of the chamber.
  • Patent Document 1 discloses a conduit that includes a first main surface member that provides a structure including a loading chamber, a main conduit, and a process chamber (well), and a second main surface member, and the process chamber extends from the loading chamber.
  • a closed process array and sample processing apparatus are disclosed wherein the loading chamber, conduit, and process chamber are aligned along the length of the sample processing apparatus.
  • the process array described in Patent Document 4 is provided with a plurality of process chambers connected via a feed conduit branched from one main conduit. Therefore, operations such as processing a plurality of types of specimens with the same reagent are possible.
  • operations such as processing a plurality of types of specimens with the same reagent are possible.
  • first, different types of chemicals, specimens, and enzymes are arranged in a plurality of reaction fields.
  • a reagent that reacts with these is poured into each reaction field from one or more main conduits. In this way, a plurality of different reactions need to occur. If this method is used, a plurality of types of specimens can be simultaneously processed with the same reagent, or conversely, a plurality of types of processing can be simultaneously performed on one type of specimen. As a result, the time and labor required in the past can be greatly reduced.
  • a microfluidic chip having a liquid inlet, a channel, a liquid outlet, etc. is used, and a part of the reagent components necessary for the reaction is lyophilized in the chip channel by a method such as freeze drying.
  • a technique is disclosed in which a solid state is fixed, the remaining reagent components necessary for the reaction are sent in a liquid state, and these components are brought into contact in the flow path to cause a reaction.
  • Patent Document 5 discloses a sample processing apparatus formed by laminating a resin base material on which a loading chamber, a process chamber, and a flow path are formed, and a flat metal base material. Also, a method is disclosed in which each process chamber is closed by closing the flow path when different reaction is performed in each process chamber. In this sample processing apparatus, the flow path is closed by deforming a flat metal substrate so as to be pushed into the flow path.
  • a pressure sensitive adhesive is used between the first main surface member and the second main surface member.
  • the use of a pressure sensitive adhesive can cause effluent from the adhesive during the reaction and affect the reagents in the well. Further, the heat resistance and water resistance problems of the adhesive layer are likely to occur, and in the configuration of Patent Document 1, it is insufficient to seal the flow path so as not to be affected by the outside.
  • JP-T-2004-502164 Japanese Patent No. 3699721 JP 2008-83017 A Japanese Patent No. 4181406 JP-T-2004-502164
  • the present invention provides a sample analysis chip for supplying liquid to a well.
  • the sample analysis chip is simple in liquid supply method and has no liquid amount variation in each well. It is an issue to provide. It is another object of the present invention to provide a sample analysis chip that can be easily manufactured and that does not cause sample contamination in a well on the chip and a method for manufacturing the same.
  • the invention according to claim 1 of the present invention which has been made to solve the above-mentioned problems, includes a plurality of wells in a substrate, a channel connected to each well, and a note for injecting a solution into the channel.
  • the invention according to claim 2 is the sample analysis chip according to claim 1, wherein the well and the main channel communicate with each other at a valley portion between the peaks of the main channel.
  • the invention according to claim 3 is the sample analysis chip according to claim 1 or 2, characterized in that the width of the main channel is relatively small at the peak and large at the valley.
  • the base is disk-shaped, and the wells are arranged concentrically with the base. Chip.
  • the invention according to claim 5 is the sample analysis chip according to any one of claims 1 to 4, further comprising a side path connecting the main channel and the well.
  • the invention according to claim 6 is the sample analysis chip according to claim 5, wherein the side passage is formed to be inclined with respect to the rotation center direction.
  • the invention according to claim 7 is the sample analysis chip according to any one of claims 1 to 6, wherein the main flow path is formed to be inclined with respect to the rotation center direction.
  • the invention according to claim 8 has a side passage connecting the main flow path and the well, and is provided with a waste liquid portion for storing an excess solution in the side path.
  • the invention according to claim 9 is characterized in that the waste liquid section has a waste liquid chamber for storing waste liquid, and a waste liquid chamber branching channel that branches and communicates with the waste liquid chamber.
  • the invention according to claim 10 is characterized in that the side passage is formed to be inclined with respect to the rotation center direction, and the waste liquid part is provided inside the side passage with respect to the rotation center direction.
  • the invention according to claim 11 is characterized in that the branch flow path communicating with the well has a lower pressure loss during liquid feeding than the branch flow path communicating with the waste liquid chamber. It is an analysis chip.
  • the invention according to claim 12 is the sample analysis chip according to claim 11, wherein a cross-sectional area of the branch flow path communicating with the well is larger than a cross-sectional area of the waste liquid chamber branch flow path.
  • the invention according to claim 13 is the sample analysis chip according to claim 11, characterized in that the surface roughness of the branch channel communicating with the well is smaller than that of the waste liquid chamber branch channel.
  • the invention according to claim 14 is the sample analysis chip according to claim 11, wherein the inner surface of the waste liquid chamber branch channel is subjected to water repellent treatment.
  • the invention according to claim 15 is the sample analysis chip according to claim 11, wherein the inner surface of the branch channel communicating with the well is subjected to a hydrophilic treatment.
  • the sample analysis chip includes a first base material on which the well and the flow path are formed, and a second base material bonded to the base material.
  • the invention according to claim 17 is the sample analysis chip according to claim 16, wherein any one of the substrates is formed of a light-transmitting material.
  • the invention according to claim 18 is the sample analysis chip according to claim 17, wherein the first substrate is a light-transmitting resin material, and the second substrate is a metal material. .
  • the first base material is made of a resin that is transparent to visible light and light-absorbing to infrared light, and the second base material has at least a wavelength.
  • the invention according to claim 20 is the chip for liquid sample analysis according to claim 19, wherein the first substrate is a resin substrate of polypropylene, polycarbonate, or acrylic resin.
  • the invention according to claim 21 is the sample analysis chip according to claim 19 or 20, wherein the first base material includes an infrared absorbent having absorption in a wavelength region of 800 nm or more.
  • the invention according to claim 23 is characterized in that the second substrate is a resin substrate of any one of polypropylene, polycarbonate, and acrylic resin. It is a chip for liquid sample analysis.
  • the second substrate is a resin substrate of any one of polypropylene, polycarbonate, and acrylic resin. It is a chip for liquid sample analysis.
  • 24. The sample analysis according to any one of claims 1 to 23, wherein the thickness of the second base material is in the range of 0.05 to 0.5 mm. Chip.
  • 25 The sample analysis chip according to any one of claims 1 to 24, wherein the first base member is provided with a supporting portion for rotating the sample analysis chip. It is.
  • the invention according to claim 26 is the method for producing a sample analysis chip according to any one of claims 19 to 23, wherein the first substrate is irradiated with an infrared laser from the second substrate side. And the second base material are melt-bonded and bonded together.
  • the invention according to claim 27 is the method for manufacturing a sample analysis chip according to claim 26, wherein the wavelength of the infrared laser is in the range of 800 to 1200 nm.
  • the invention according to claim 28 includes a step of immobilizing a reagent in the well before the first base material and the second base material are bonded together in the manufacture of the sample analysis chip.
  • the invention according to claim 29 is a sample comprising: means for installing and rotating the sample analysis chip according to any one of claims 1 to 24; and a detection measurement means for detecting a reaction in the well. It is an analysis device.
  • a thirty-third aspect of the invention is a method of injecting a solution into the main flow path of the sample analysis chip according to any one of the first to twenty-fourth aspects, and rotating the sample analysis chip to distribute the solution to each well.
  • the invention according to claim 31 is the sample analysis method according to claim 30, further comprising the step of dispensing mineral oil into each well after the step of dispensing into the well. Is the method.
  • the invention according to claim 32 is a gene analysis method characterized by using the sample analysis method according to claim 30 or 31.
  • sample analysis chip of the first aspect of the present invention a simple, functional, safe and inexpensive sample analysis chip can be realized. Furthermore, a plurality of processes can be performed on one type of specimen.
  • the main flow path forms a single crest with respect to the center of rotation between the wells, liquid feeding is cut off at the crest of the main flow path, and liquid distribution unevenness can be reduced. Furthermore, by reducing the cross-sectional area of the channel crest, unevenness during liquid distribution can be further reduced.
  • the volume of the main channel from the channel crest to the adjacent channel crest is arbitrarily designed, a well that communicates a sample of the same capacity from the channel trough sandwiched between the previous channel crests. Therefore, the amount of the solution sample to be used can be arbitrarily set for each well.
  • the sample analysis chip of the second aspect of the present invention when the liquid is fed from the main channel to the well by centrifugal force, the surplus in the well that has been fed over a predetermined amount due to the unevenness of the liquid feeding. The portion can be discarded into the waste chamber. Therefore, if the liquid is supplied to all the wells in excess of the desired liquid amount, the same amount of solution can be sent to all the wells, so that variation in liquid distribution can be reduced.
  • a small and inexpensive reaction chip can be realized with a simple configuration.
  • the first base material and the second base material are combined and fused with an infrared laser, so that there is almost no influence on the chip and the reagent fixed to the chip. This chip can be realized.
  • the top view of the uniform state of the sample analysis chip concerning the 1st form of the present invention The top view of the uniform state of the sample analysis chip concerning the 1st form of the present invention
  • the top view of the uniform state of the sample analysis chip concerning the 1st form of the present invention The top view of the uniform state of the sample analysis chip concerning the 2nd form of the present invention
  • the top view of the uniform state of the sample analysis chip concerning the 2nd form of the present invention The top view of the uniform state of the sample analysis chip concerning the 2nd form of the present invention
  • the perspective view of the uniform state of the sample analysis chip concerning the 2nd form of the present invention The perspective view for description of the sample analysis chip of the present invention Sectional drawing for description of the sample analysis chip of the present invention It is a perspective view of the sample analysis chip concerning the 3rd form of the present invention.
  • FIG. 1 is a plan view showing an embodiment of the sample analysis chip of the present invention.
  • the chip of the present invention has a plurality of wells 102 on a substrate 101 and a flow path for sending a solution, for example, a liquid sample (solution) to the wells.
  • the flow path has at least one main flow path 103 that communicates with each well and supplies a side path 105 that connects the main flow path and the well in order to send liquid to each well.
  • the flow path has an inlet for injecting the solution.
  • an inlet (INLET) is provided at the end of the main channel, and an outlet (OUTLET) for excess solution that also serves as an air outlet for the other end.
  • the disk shape Since the sample analysis chip of the present invention distributes liquid to each well 102 by centrifugal force generated by rotating the chip, the disk shape has a point through which the rotation shaft penetrates (hereinafter, center point) at the center.
  • center point a point through which the rotation shaft penetrates
  • the well can be arranged so as to be concentric with the disk-shaped chip so that the center thereof is the rotation axis, and thus the space is efficient. It is important to apply a centrifugal force evenly to distribute wells to the wells, but the tip is designed so as to have rotational symmetry about the center point except for the area of INLET / OUTLET107. It can be easily realized.
  • centrifugal force can be applied evenly if N wells are provided. Of course, this is not the case when the liquid distribution amount of each well is varied. Since the wells are arranged concentrically, all wells can be analyzed in one inspection region by rotating the substrate.
  • the main channel 103 is formed closer to the center point than the well.
  • the sample analysis chip of the present invention is characterized in that the main flow path is formed so as to have one peak in the center point direction between adjacent wells.
  • the wells adjacent to each other mean wells in which the liquid supply flow path from the main flow path to the well is moving back and forth.
  • having a mountain in the direction of the center point means having a maximum point (main channel peak portion 103a) in the direction of the center point.
  • main channel peak portion 103a main channel peak portion 103a
  • connection point between the well 102 and the main channel 103 that is, the connection point between the main channel 103 and the side channel 105 is a valley portion 130b between the peaks of the main channel.
  • a trough is a point farthest from the center point between the mountains of the main channel.
  • connection port between the main channel 103 and the well 102 has a width and a disconnection enough to prevent the solution from entering the well before the chip is rotated. It needs to be an area.
  • the main channel in order not to leave air in the well 102, it is preferable to connect to the main channel at a point closest to the center point of the well. That is, when the side path 105 is formed, it is preferable to form the side path 105 so as to connect the point closest to the center point on the well side and the valley on the main flow path side.
  • FIG. 2 is a plan view showing another embodiment of the sample analysis chip of the present invention.
  • the main channel width is narrow at the main channel peak 103a and wide at the main channel valley 103b.
  • the amount of liquid distributed to each well 102 can be controlled by increasing the width of the main channel valley 103b. Therefore, as in the sample analysis chip of FIG. 3, if the channel between the peaks is made chamber-like and the volume of the main channel from the main channel peak to the adjacent main channel peak is arbitrarily designed, it is equivalent. Since a sample of the volume can be sent to a well communicating from a valley portion sandwiched between both mountain portions, an arbitrary amount of solution can be set in each well.
  • the volume of the well 102 is preferably 1 ⁇ l or more and 100 ⁇ l or less. If it is smaller than 1 ⁇ l, the centrifugal force does not work sufficiently, and liquid feeding to the well is difficult to perform, and if it is larger than 100 ⁇ l, the mixing property of the reagent is lowered and the uniformity of the temperature in the well is lowered. Such a phenomenon may occur.
  • the side path 105 is formed to be inclined from the direction of the center point.
  • the angle formed by the direction of the center point and the side path is preferably between 10 degrees and 80 degrees. If it is less than 10 degrees, the exhaust from the well and the penetration of the solution into the well may interfere to prevent the entry of the solution. If it exceeds 80 degrees, the centrifugal force in the lateral direction is weak, and the solution is in the well May not move to.
  • FIG. 3 shows still another embodiment of the sample analysis chip of the present invention.
  • the sample analysis chip of FIG. 3 since the peaks of the main flow path 103 are inclined with respect to the center point direction, the areas on the left and right substrate planes of the main flow path are unevenly designed with respect to the side path 105. Yes.
  • the right and left main channels with respect to the side channel 105 have a narrow channel width side and a wide channel side, and the side channel 105 serving as a connection port with the well is formed on the wide channel side.
  • the air that has moved to the side path and the solution in the main channel are switched, the bubbles and the liquid are switched in a biased direction toward the main channel having a large area. For this reason, the residual liquid to a main channel can be reduced.
  • the side channel and the main channel connected to each well are configured as described above, and the main channel is formed so that the narrow channel side and the wide channel side are alternately formed with the mountain portion as the boundary. Since the same phenomenon occurs in each chamber-like main flow path at the same time, the variation in the liquid distribution can be reduced.
  • FIG. 4 is a plan view showing an embodiment of the sample analysis chip of the present invention.
  • the chip of the present invention has a plurality of wells 102 on a substrate 101 and a flow path for sending a solution, for example, a liquid sample (solution) to the wells.
  • the flow path has at least one main flow path 103 that communicates with each well and supplies a side path 105 that connects the main flow path and the well in order to send liquid to each well.
  • the flow path has an inlet for injecting the solution.
  • the end of the main channel has an inlet (INLET) and the other end has an outlet (OUTLET) for excess solution that also serves as an air outlet.
  • the disk shape Since the sample analysis chip of the present invention distributes liquid to each well 102 by centrifugal force generated by rotating the chip, the disk shape has a point through which the rotation shaft penetrates (hereinafter, center point) at the center.
  • center point a point through which the rotation shaft penetrates
  • the well can be arranged so as to be concentric with the disk-shaped chip so that the center thereof is the rotation axis, and thus the space is efficient. It is important to apply a centrifugal force evenly to distribute wells to the wells, but the tip is designed so as to have rotational symmetry about the center point except for the area of INLET / OUTLET107. It can be easily realized.
  • centrifugal force can be applied evenly if N wells are provided. Of course, this is not the case when the liquid distribution amount of each well is varied. Since the wells are arranged concentrically, all wells can be analyzed in one inspection region by rotating the substrate.
  • the main channel 103 is formed closer to the center point than the well 102.
  • the communication port between the main channel 103 and the well 102 has a width and a cross-sectional area that do not allow the solution to enter the well before the chip is rotated. Need to be. Although it depends on the solution to be used because the surface tension is related, for example, if the solvent is water, this condition is satisfied if it is 2 ⁇ 2 mm 2 or less.
  • the volume of the well 102 is preferably 1 ⁇ l or more and 100 ⁇ l or less. If it is smaller than 1 ⁇ l, the centrifugal force does not work sufficiently, and liquid feeding to the well is difficult to perform, and if it is larger than 100 ⁇ l, the mixing property of the reagent is lowered and the uniformity of the temperature in the well is lowered. Such a phenomenon may occur.
  • the main channel in order not to leave air in the well 102, it is preferable to connect to the main channel at a point closest to the center point of the well. That is, it is preferable that the side path 105 and the well be connected at a point closest to the center point on the well side.
  • a waste liquid portion 104 is provided for each side path in the side path 105 connecting each well 102 and the main flow path 103.
  • the waste liquid part can be constituted by a waste liquid branch flow path 104a branched from a side path and a waste liquid chamber 104b connected to the waste liquid branch flow path. Since the waste liquid part is provided on the side path connecting the well 102 and the main flow path 103, when the excess solution is sent to the well, the surplus solution is sent and stored in the waste liquid part. A volume of solution is left in the well and well branch channel 105a. Therefore, it is possible to reduce the distribution variation due to the excess solution.
  • the well 102 When dispensing, the well 102 is filled with the solution before the waste chamber 104b, so that each well can be surely filled with the solution sample. For this purpose, it is important that the liquid is more easily fed to the well branch channel than the waste chamber branch channel.
  • the waste liquid part is configured by the waste liquid chamber branch flow path 104a having a small cross-sectional area and the waste liquid chamber 104b having a large capacity, so that the liquid can be easily fed to the well branch flow path side and the capacity of the waste liquid part can be adjusted. it can.
  • the amount of excess solution waste can be adjusted by the well volume and the waste chamber volume. The greater the variation between the wells during centrifugal feeding, the greater the capacity of the waste chamber.
  • the surface roughness in the well branch channel is made smaller than the waste chamber branch channel, thereby causing a difference in pressure loss at the time of liquid feeding, so that the liquid is preferentially fed to the well. be able to.
  • water-repellent treatment on the flow channel surface of the waste liquid chamber branch flow channel, a difference occurs in pressure loss during liquid feeding, and the liquid can be fed preferentially to the well.
  • a hydrophilic treatment by subjecting the surface of the well branch channel to a hydrophilic treatment, a difference occurs in the pressure loss during liquid feeding, and the liquid can be fed preferentially to the well.
  • coating with a fluorine-based material is generally used, and the chemical resistance is strong, and conversely, the reaction is not affected.
  • plasma treatment, corona discharge treatment, etc. are mentioned as a hydrophilic treatment method, and both can be said to be general methods.
  • FIGS. 5A and 5B schematically show a waste liquid portion including the side passage 105, the well 102, the waste liquid chamber 104b, and the waste chamber branch flow path 104a.
  • the solid line arrow indicates the direction of the center point (direction of rotation center).
  • the side passage 105 is formed to be inclined from the rotation center direction.
  • the air in the well 102 moves along the inner side of the side passage in the direction of the main flow path when a centrifugal force is applied, while the solution moves along the outer side of the side passage. Since it moves in the well direction, the solution can be smoothly moved into the well.
  • the angle to be inclined the angle formed by the direction of the center point and the side path is preferably between 10 degrees and 80 degrees. If it is less than 10 degrees, the exhaust from the well and the penetration of the solution into the well may interfere to prevent the entry of the solution. If it exceeds 80 degrees, the centrifugal force in the lateral direction is weak, and the solution is in the well May not move to.
  • the waste liquid portion 104 is branched from the side path 105 on the center point side by the waste liquid chamber branch flow path 104a.
  • the side path 105 goes straight to the well 102
  • the side path on the well side (well branch flow path 105a) is bent at the branch point with the waste liquid part. is there.
  • the bent portion of the waste liquid chamber branch flow path 104a can have any shape as long as it is inclined in the same direction as the inclination of the side path before branching. Further, when the amount of waste liquid is sufficient in the capacity of the waste liquid chamber branch flow path portion, the waste liquid chamber 104b at the end of the waste liquid portion may not be provided.
  • the centrifugal force applied to the solution causes the flow from the center point indicated by the dashed arrow to the outer flow path, that is, the branch flow path on the well side, so that the well 102 precedes the waste liquid chamber 104b. It is possible to fill each well with a solution sample without fail.
  • the well branch channel 105a is small or the well can be directly connected at the branch point of the side channel, so that the well is filled with the solution. Thereafter, the flow path until the surplus solution is sent to the waste liquid chamber is shortened, and the distribution variation to the well can be further reduced.
  • a sample analysis chip in a form combined with the sample analysis chip of the first aspect of the present invention can be obtained.
  • 6 and 7 show another aspect of the sample analysis chip of the present invention. Note that the items of the sample analysis chip of the first form that are not described in the following modes can also be combined to form the sample analysis chip of the present invention as long as it is consistent with the second form.
  • the main flow path 103 is formed so as to have one peak in the center point direction between adjacent wells.
  • the wells adjacent to each other mean wells in which the liquid supply flow path from the main flow path to the well is moving back and forth.
  • having a mountain in the direction of the center point means having a maximum point (main channel peak portion 103a) in the direction of the center point.
  • connection point between the well 102 and the main channel 103 that is, the connection point between the main channel 103 and the side channel 105 is a valley portion 130b between the peaks of the main channel.
  • a trough is a point farthest from the center point between the mountains of the main channel.
  • the width of the main channel 103 is narrow at the main channel peak 103a and wide at the main channel valley 103b.
  • the amount of liquid distributed to each well 102 can be controlled by increasing the width of the main channel valley 103b. Therefore, if the channel between the peaks is made like a chamber like the sample analysis chip in FIG. 2b and the volume of the main channel from the main channel peak to the adjacent main channel peak is arbitrarily designed, it is equivalent. Since a sample of the volume can be sent to a well communicating from a valley portion sandwiched between both mountain portions, an arbitrary amount of solution can be set in each well.
  • FIG. 7 shows another embodiment of the sample analysis chip of the present invention.
  • the crest of the main channel 103 is inclined with respect to the center point direction, so that the areas of the main channel on the left and right substrate planes are unevenly designed with respect to the side channel 105.
  • the right and left main channels with respect to the side channel 105 have a narrow channel width side and a wide channel side, and the side channel 105 serving as a connection port with the well is formed on the wide channel side.
  • the side channel and the main channel connected to each well are configured as described above, and the main channel is formed so that the narrow channel side and the wide channel side are alternately formed with the mountain portion as the boundary. Since the same phenomenon occurs in each chamber-like main flow path at the same time, the variation in the liquid distribution can be reduced.
  • FIG. 8 is a perspective view showing one embodiment of the structure of the sample analysis chip of the present invention.
  • the sample analysis chip of the present invention can be manufactured by bonding the second base material 402 to the first base material 401 in which the well and the flow path (including the main flow path and the side path) are formed.
  • At least one of the first base material and the second base material has a supporting unit 405 for fixing to the chip rotating mechanism, for example, as a rotating means for rotating the chip by the chip rotating mechanism included in the sample analyzer.
  • at least one through hole for an inlet (INLET / OUTLET) that also serves as an inlet / outlet for air is formed in one of the first substrate and the second substrate.
  • the through hole coincides with the end of the main channel when the base material is bonded.
  • the base material side positioned on the surface to be measured when detecting and measuring the fluorescence reaction and the like is referred to as “upper side”, and the lower side is referred to as “lower side”.
  • the base material is not particularly limited as long as it does not affect the sample, but good visible light transmission can be secured by using a resin material containing any of polypropylene, polycarbonate, and acrylic. .
  • a resin material containing any of polypropylene, polycarbonate, and acrylic.
  • polypropylene homopolypropylene or a random copolymer of polypropylene and polyethylene can be used.
  • an acryl the copolymer of monomers, such as polymethyl methacrylate or methyl methacrylate, and other methacrylic acid ester, acrylic acid ester, styrene, can be used.
  • tip can also be ensured.
  • the material other than the resin material include aluminum, copper, silver, nickel, brass, and gold.
  • transparent and “light transmittance” mean that the average transmittance in the wavelength region of the detection light is 70% or more. If a light-transmitting material is used in the visible light region (wavelength 350 to 780 nm), it is easy to visually recognize the sample state in the chip, but this is not restrictive.
  • the processing method of the base material forming the well, the flow path, and the waste liquid portion in the case of a resin material, various resin molding methods such as injection molding and vacuum molding, mechanical cutting, and the like can be used.
  • a metal material it can be formed by grinding or etching using a thick base material, or pressing or drawing a thin metal sheet.
  • the first base material when a resin material including any of polypropylene, polycarbonate, and acrylic is used as the first base material, good light transmittance, heat resistance, and strength can be ensured. In addition, when the thickness of the first base material is in the range of 50 ⁇ m to 3 mm, good light transmittance, heat resistance, and strength can be ensured, and the recess can be reliably processed.
  • the thickness of the second substrate is in the range of 10 ⁇ m to 300 ⁇ m, both the thermal conductivity and the sealing property of the second substrate can be satisfied.
  • the thickness of the second base material is larger than 300 ⁇ m, the heat capacity becomes large and the thermal responsiveness may be lowered.
  • FIG. 9 shows a cross-sectional view of the sample analysis chip of the present invention.
  • the first substrate 401 includes a solution injection port 203 penetrating the chip, a groove 103 serving as a main flow path for the injection solution to flow into the chip, and a side path communicating with each well extending to the outer periphery of the chip.
  • a groove 105 to be formed and a recess 102 to be a well on the outer peripheral portion of the chip are formed.
  • the cross-sectional view of FIG. 5 schematically shows the path from the inlet (INLET / OUTLET) to the well, and the shapes of the main channel and the side channel are not limited to this.
  • the volume of the main channel needs to be larger than the sum of the volumes of each well.
  • the reagent 501 is fixed to the well, the amount of the liquid sample to be put into the reaction well is reduced by that amount, and therefore the volume of the flow channel into which it flows may be reduced accordingly.
  • the concave portion of the well has a smooth shape that does not scatter light.
  • the reaction reagent 501 is fixed to the well 102. Different reagents can be used in each well. By fixing different reagents in each reaction well, a plurality of treatments can be performed on one specimen (sample). Further, a part of the reagent for actually performing the reaction may be fixed to each well, and the remaining reagent may be introduced together with the liquid sample.
  • a liquid reagent is dropped onto the well portion of the first base material with a pipette or the like, and the first base material 401 is centrifuged at 2000 to 3000 rpm for about 5 minutes with a centrifuge.
  • the liquid reagent can be fixed to the well by allowing the liquid surface to remain flat and drying it.
  • wax 502 may be dropped after fixing the reagent to the well. Specifically, wax is melted on a hot plate and dropped using a pipette so as to cover the dried reagent. At this time, the wax solidifies in a few seconds. The wax has a role of fixing the reagent in the recess of the well.
  • a resin coating layer is provided as an adhesive layer on one base material, and this is melted to bond both base materials.
  • the resin coating layer is preferably provided on a metal material substrate having high thermal conductivity and melt bonded.
  • a resin material such as PET, polyacetal, polyester, or polypropylene can be used.
  • a light-transmitting resin material suitable for fluorescence measurement is used for the first base material, and the second material has a high thermal conductivity and is provided with a resin coating layer for melting. It is preferable to use a metal material that can be easily bonded by bonding. Further, by forming a resin coating layer on the surface of the metal substrate, the chemical resistance of the metal substrate itself need not be considered when selecting the material.
  • the resin coating layer when the resin coating layer is formed on the surface of the substrate, it is possible to perform fusion using a laser by forming an anchor layer as a base of the resin coating layer. Carbon black (light-absorbing material) that absorbs laser wavelength light is kneaded into the anchor layer, and the resin coating layer can be melt-bonded by generating heat when irradiated with laser light.
  • carbon black instead of adding carbon black to the anchor layer, carbon black may be added to the resin coating layer, or the surface of the resin coating layer may be painted black.
  • the resin coating layer can be efficiently melted also by irradiating light of an infrared photodiode laser having a wavelength of about 900 nm. Laser welding, unlike thermal welding, does not require heating of the chip, so that the substrates can be bonded together with little effect on the chip and the reagent fixed to the chip.
  • a sample analysis chip and a manufacturing method thereof according to a third embodiment of the present invention will be described with reference to the drawings.
  • the substrate side located on the side of the surface to be measured when detecting and measuring the fluorescence reaction or the like is referred to as “upper side”, and the side located on the lower side as “lower side”.
  • FIG. 10 is a perspective view of a sample analysis chip according to the third embodiment of the present invention.
  • the sample analysis chip of the present invention is formed by combining two members, an upper first base material 401 ′ and a lower second base material 402 ′.
  • the base material is formed with a channel for feeding a solution such as a reagent and a well for reacting the solution with the reagents.
  • at least one through-hole 403 is provided as an outlet serving as an inlet and an air outlet in order to inject the solution into the formed flow path in the first base or the second base.
  • FIG. 11 shows an example of the well 102 and the flow path (main flow path or injection portion 103, side path 105) formed on the first base material.
  • the chip of the present invention has a plurality of wells 102 on the outer peripheral portion on the substrate 101 and a flow path for feeding a solution, for example, a liquid sample, to the wells.
  • the flow path has a shape as shown in FIG. 11A or FIG. 11B, and a main flow path or injection section 103 for injecting a solution from the injection port, and a side path 105 for connecting the main flow path or injection section and the well to distribute each well.
  • sample analysis chip according to the third aspect of the present invention can be combined with the matters of the present invention according to the first aspect and the second aspect to provide the sample analysis chip of the present invention as long as there is no contradiction.
  • shape of the main flow path 103 may be a wavy shape shown in the first form, or a shape having a waste liquid portion in the side path 105 may be used.
  • the sample analysis chip of the present invention distributes liquid to each well 102 by centrifugal force generated by rotating the chip.
  • the advantage of liquid feeding by centrifugal force is that there is no need to provide an opening for exhaustion in each well 102, and the solution sample and air in each well can be replaced by centrifugal force and enter the well. . This can improve the sealing of the well and prevent contamination from the outside.
  • the shape of the tip is preferably a disc shape with a point through which the rotation shaft penetrates (hereinafter referred to as the center point) at the center, but is formed so as to be rotatable with respect to the rotation shaft passing through the tip. If it enters, there is no restriction in particular.
  • the center can be the rotation axis, and the wells can be arranged concentrically on the disk-shaped chip, so that the space is efficient and the wells are concentrically circular.
  • all wells can be analyzed in one inspection region by rotating the substrate.
  • a rotating means for rotating the chip by an external rotating mechanism for example, a supporting portion 405 as shown in FIG. 10 is provided on the first base material.
  • the first resin base material 401 ′ is a light-transmitting resin base material that transmits visible light
  • the second resin base material 402 ′ has infrared transmittance.
  • the first resin base material 401 ′ is a light-transmitting resin base material that transmits visible light
  • the second resin base material 402 ′ has infrared transmittance.
  • it can manufacture by fuse
  • laser welding has the greatest advantage that it hardly affects the chip and the reagent fixed to the chip at the time of chip manufacture.
  • the reagent in the well is not contaminated by the adhesive, and the heat resistance and water resistance of the welded chip can be sufficiently ensured. This will be described in more detail below.
  • At least the well 102 portion of the first base material 401 ′ located on the side of the surface to be measured has a light transmittance that transmits visible light of 750 nm or less.
  • the average transmittance is preferably 50% or more at least at the fluorescence wavelength, and more preferably 70% or more.
  • the resin material containing any of a polypropylene, a polycarbonate, and an acryl as a 1st base material. By using these materials, good visible light transmittance can be secured.
  • polypropylene homopolypropylene or a random copolymer of polypropylene and polyethylene can be used.
  • the copolymer of monomers such as polymethyl methacrylate or methyl methacrylate, and other methacrylic acid ester, acrylic acid ester, styrene, can be used.
  • tip can also be ensured.
  • the thickness of the first base material 401 ′ is in the range of 0.05 mm to 3 mm, good visible light permeability, heat resistance, and strength can be secured, and the flow path and the well can be reliably processed. it can.
  • various resin molding methods such as injection molding and vacuum molding, machine cutting, and the like can be used.
  • the second substrate on the infrared irradiation side can be a plate-like or film-like substrate, as will be described later.
  • at least the bottom of the well of the first substrate forms a flat surface for optical measurement such as fluorescence reaction.
  • the first base material 401 and the second base material 402 ′ are welded with an infrared laser
  • the first base material may be light-absorbing with respect to the infrared laser in order to increase the efficiency of laser welding.
  • the first substrate including the bonding surface absorbs infrared rays, so that it is easy to melt and bond the resin.
  • an infrared absorbent in the first base material 401 ′, the efficiency of absorbing infrared laser light and converting infrared light energy into thermal energy can be increased.
  • resin which does not absorb in an infrared part can be used by containing an infrared absorber.
  • Infrared laser light is generally obtained by using a semiconductor laser having a wavelength of 750 nm or more. Therefore, as an infrared absorber, a compound having a maximum absorption wavelength in a region of 750 nm or more, that is, a so-called dye compound can be used.
  • the coloring compound can be generally classified into two types, that is, a dye and a pigment.
  • a dye type is preferable. Furthermore, in order to ensure transparency in the visible light region, an infrared absorber that absorbs as little as possible in the visible region of 750 nm or less is preferable. Specific examples include Lumogen (registered trademark) IR765 and Lumogen (registered trademark) IR788 of BASF.
  • an infrared absorber to the propylene resin because polypropylene does not absorb in the infrared part.
  • 0.01 part by weight of an infrared absorber is added in advance to 100 parts by weight of propylene resin and compounded to produce propylene resin pellets containing the infrared absorber.
  • the first base material of the sample analysis chip of this embodiment is manufactured by injection molding.
  • 0.1 part by weight of an infrared absorbent is added in advance to 100 parts by weight of the propylene resin to prepare a propylene resin master batch containing the infrared absorbent.
  • the content of the infrared absorber can be adjusted by performing injection molding by mixing the propylene resin master batch containing the infrared absorber and the propylene resin at a certain ratio. .
  • the second base material 402 ' it is necessary to have transparency to an infrared laser.
  • a resin having the same or close composition as the first base material is preferable.
  • the second base material is preferably homopolypropylene or a random copolymer of polypropylene and polyethylene. Resins having the same or similar composition are generally easily bonded. Also, resins having the same or similar composition usually have a small difference in melting temperature. Thereby, the effect of laser welding can be obtained.
  • the second base material 402 ′ can form the well 102, the flow path, and the supporting portion 405 in the same manner as the first base material.
  • a material is preferred.
  • the thickness of the second base material is in the range of 0.01 mm to 2 mm, more preferably 0.05 to 0.5 mm, the weldability and strength of the second base material can be ensured. .
  • the second substrate is in contact with the heat block, sufficient thermal efficiency can be obtained with the thickness described above.
  • FIG. 12 is a cross-sectional view of the sample analysis chip in FIG.
  • the volume of the main channel communicating with the inlet needs to be larger than the sum of the volumes of the wells.
  • the volume of the liquid sample put into the well is reduced accordingly, so the volume of the main channel may be reduced accordingly.
  • a reagent is fixed to each well.
  • a plurality of treatments can be performed on one specimen (sample) by fixing different reagents to each well.
  • the remaining reagents can be introduced with the liquid sample.
  • the reaction reagent 501 is fixed to the well 102. Different reagents can be used in each well. By fixing different reagents in each reaction well, a plurality of treatments can be performed on one specimen (sample). Further, a part of the reagent for actually performing the reaction may be fixed to each well, and the remaining reagent may be introduced together with the liquid sample. As a result, the storage stability of the chip can be improved and different reactions can be performed in each well, and a plurality of tests can be performed simultaneously.
  • a liquid reagent is dropped onto the well portion of the first base material 401 ′ with a pipette or the like, and the first base material is centrifuged at 2000 to 3000 rpm for about 5 minutes using a centrifuge.
  • the liquid reagent is allowed to remain in a flat state and can be fixed to the well by drying.
  • wax 502 may be dropped after fixing the reagent to the well. Specifically, wax is melted on a hot plate and dropped using a pipette so as to cover the dried reagent. At this time, the wax solidifies in a few seconds. The wax has a role of fixing the reagent in the recess of the well.
  • the first base material and the second base material 402 ′ are bonded with an infrared laser.
  • Sealing type chips are manufactured by welding.
  • the infrared laser is not particularly limited as long as the surface of the first substrate can be melted, but the infrared wavelength is preferably 800 to 1200 nm because it is convenient for laser welding.
  • the output of the laser welder is preferably 30 or more. For example, since laser machines with an output of 30 to 250 W are generally commercially available, there is no particular problem if these laser machines are used.
  • the first base material and the second base material are bonded together, and a laser beam is emitted from the second base material side at a constant speed using, for example, an infrared light photoauto laser having a wavelength of about 808 nm.
  • the second substrate is welded to the first substrate by scanning with and irradiating the chip. Laser welding can be performed efficiently by adjusting the output power and scanning speed of the laser. With the above steps, the manufacture of the sample analysis chip is completed.
  • the sample analysis chip of the present invention can be used for detection and analysis of biochemical substances in samples such as DNA and protein.
  • a reagent is fixed to each well 102, and a liquid sample is distributed to each well.
  • different reagents can be used for each well.
  • a sample is fixed to each well, and a liquid reagent is distributed to each well.
  • a different sample can be used for each well.
  • a solution such as a reagent is injected into the main channel 103 from the injection port 403 (107).
  • a solution such as a reagent is injected into the main channel 103 from the injection port 403 (107).
  • the main channel is filled with the solution and does not enter the side channel as described above. This is because there is air pressure from the well side due to the surface tension of the solution and the absence of air holes on the well side.
  • the sample analyzer used for the sample analysis method may be provided with such a solution injection means.
  • the sample analyzer used for the sample analysis method has a chip rotation mechanism for rotating the sample analysis chip.
  • a known general centrifugal device can be used for the tip rotating mechanism.
  • a sample analysis chip is installed in the sample analyzer, and the chip is rotated by the rotation mechanism with the vertical direction of the chip as the rotation axis at the center point of the chip.
  • the rotation speed requires a rotation speed at which the centrifugal force applied to the solution overcomes the aforementioned air pressure and surface tension and flows into the well. Although it depends on the form of the chip, it is preferably about 1000 rpm or more. If the rotation speed of the chip is less than about 1000 rpm, the solution does not flow into the well, and the liquid amount may not be constant.
  • oil that does not inhibit the sample / reagent reaction may be distributed to each well in the same process. Oil injection can prevent evaporation of the liquid during the reaction. It is necessary to use oil having a lighter specific gravity than the previously dispensed solution. This is because when the tip is rotated and dispensed by centrifugal force, it serves as a stopper for each well on the side path side.
  • the type of oil is not particularly limited as long as it does not inhibit the sample / reagent reaction, but mineral oil or silicone oil can be preferably used.
  • the sample analyzer may be provided with a temperature control means using a heater or a Peltier element made of a heating wire or the like. By heating the chip above the melting point of the wax, the wax can be melted and the reagent and the solution (sample) can be mixed in the well.
  • the temperature control means can also be used for reaction control of reagents such as PCR reaction.
  • the sample analyzer has a detection measurement means for performing measurement at the position of the well on the upper side of the substrate of the sample analysis chip.
  • a predetermined well can be measured by rotating the chip by a rotating mechanism.
  • genes analysis include detection of somatic mutations and detection of germline mutations. Since the type of protein to be expressed differs depending on the genotype, for example, it causes a difference in the function of the metabolic enzyme of the drug, resulting in individual differences in the optimal dose of the drug and the likelihood of side effects. By utilizing this in the medical field and examining the “genotype” of each patient, custom-made medical care can be performed.
  • SNP Single Nucleotide Polymorphism
  • SNP identification methods for example, a PCR-PHFA (PCR-Preferences Modulation Formation Assay) method using fluorescence is used.
  • the PCR-PHFA method includes a PCR process for amplifying a detection mutation site and a competitive strand displacement reaction process using an amplified fragment and a corresponding probe.
  • sample analysis chip of the present invention can also be used for the Invader method (registered trademark), the Taqman PCR method and the like as SNP detection methods other than those described above.
  • a sample nucleic acid obtained from blood or the like is purified to obtain a solution sample.
  • the sample nucleic acid is amplified before or after the injection into the sample analysis chip of the present invention.
  • SNPs in VKORC1 and CYP2C9 are often discussed for detection of SNPs involved in warfarin, and CYP2C9 * 2 and CYP2C9 * 3 are famous.
  • Gene fragments containing these SNPs from the specimen are amplified by multiplex PCR.
  • the sample in which the nucleic acid is amplified by the PCR is filled in each well.
  • Each well is temperature-controlled, and mutation is detected by the difference in luminescence of the fluorescent reagent mixed in the reagent. If only one of the two wells is positive for one SNP, it can be determined to be homozygous, and if two are positive, it can be determined to be heterozygous.
  • the K-ras gene is a gene whose molecular target drug has been shown to be ineffective in most patient groups when mutations are present in cancer cells. Hope to detect this gene simply, quickly, inexpensively and with high accuracy It is being done.
  • a reagent containing a probe nucleic acid is fixed to the well for detecting a genetic mutation. Since detection of K-ras gene has 13 types of mutations in the wild type, the sample analysis chip of the present invention in which at least 14 wells are formed is used, and reagents corresponding to each of the wells are immobilized. Is preferred.
  • Collect cancer cells such as colorectal cancer, purify the sample nucleic acid, and use it as a solution sample.
  • the sample nucleic acid is amplified before or after the injection into the sample analysis chip of the present invention.
  • the sample in which the nucleic acid is amplified by the PCR is filled in each well.
  • a well can be temperature-controlled and a variation
  • mutation can be detected by the luminescence difference of the fluorescence reagent mixed in the said reagent.
  • Example 1 shows an example in which the sample analysis chip of the present invention is used as an SNPs analysis chip.
  • a SNPs chip base material using polypropylene resin, having a disk-shaped outer shape as shown in FIG. 2, a corrugated main channel 103 on a concentric circle, a side channel 105 having a communication port in the main channel valley 103b, A chip having a well 102 at the end of the side passage was formed by injection molding.
  • this base material polypropylene base material
  • 23 wells and side paths are respectively formed.
  • the main channel was designed such that the area of the main channel was periodically changed and the volume of the main channel between adjacent main channel crests 103a was 12 ⁇ l.
  • an aluminum sheet substrate coated with a polypropylene resin as a resin coating layer was used as the second substrate to be bonded to the polypropylene substrate.
  • a resin coating layer having a thickness of about 0.07 mm was used as the second substrate to be bonded to the polypropylene substrate.
  • the resin coating layer has a melting point of around 120 degrees, and is coated on the aluminum base so that it melts when heat is applied to the aluminum side.
  • an anchor layer in which carbon is kneaded is provided between the aluminum layer and the resin coating layer, and the resin coating layer is melted even by heat generated by laser light irradiation.
  • the wells on the polypropylene base material were instilled with a probe reagent for invader reaction, and an enzyme such as DNA polymerase and chestnut was dropped and fixed.
  • the polypropylene base material and the aluminum base material were overlapped, and heat of 130 ° C. or more was applied to the aluminum base material side to melt the resin coating layer and weld the polypropylene base material and the aluminum base material.
  • the buffer solution in which the purified genome was added to the chip produced in the above process was sent as a solution sample with a pipette and filled into the main channel 103. At this stage, no sample had entered the wells and the sideways.
  • the tip was rotated around the tip center at 5000 rpm, and 11 ⁇ l of the sample was sent to each well.
  • a simple centrifuge device using a desktop small centrifuge used for separation of reagents in chemical and biological reactions was prepared and used. The rotational speed during centrifugation was measured and adjusted with a rotational speed measuring device.
  • an invader reaction probe was immobilized as a reaction reagent in 22 wells. Further, in order to determine the success or failure of the reaction result, a negative control was set at one place as a confirmation of the presence or absence of contamination, and a reaction test was performed on one chip.
  • the sample analysis chip in a state where the reaction vessel is independent of oil is subjected to 35 cycles alternately at 95 ° C. and 68 ° C., and the sample genome is amplified by PCR reaction. Subsequently, the temperature is adjusted at 63 ° C. for 30 minutes, thereby causing a fluorescence detection reaction in the well by an enzyme reaction.
  • the fluorescence reaction was measured by a fluorescence detection device combining a photomultiplier tube and an optical fiber.
  • 13 and 14 are graphs showing the analysis results of SNPs by the fluorescence reaction detected by this example.
  • the vertical axis of each graph is the intensity of detected light and indicates the intensity of fluorescence.
  • the horizontal axis is the time axis.
  • FIG. 13 shows the result of one well in which the reaction was performed, and it was confirmed that a fluorescence detection reaction was caused by the reagents mixed within a predetermined time.
  • FIG. 14 shows wells in which reagents are not fixed in advance, and thus no fluorescence reaction was detected. This confirmed that there was no contamination from both sides.
  • FIG. 15 shows detection data obtained by mixing the reagent and sample in an optimal quantity ratio by a general method using a polypropylene tube (positive control). Comparing FIG. 6 and FIG. 8, the reaction in the chip according to this example shown in FIG. 15 is the same as the reaction in FIG. . Thus, it can be seen that a desired amount of sample can be distributed.
  • Example 1 in the present invention, by selecting a base material to be bonded with a material suitable for the reaction, the reaction process can be performed more easily and efficiently in a short time.
  • Example 2 As Example 2, a sample analysis chip of the present invention having another flow path shape was studied.
  • Example 1 a sample analysis chip having the shape shown in FIG. 3 was produced.
  • a chip was manufactured by injection-molding a highly chemical-resistant polypropylene resin in order to prevent mixing of substances that inhibit the biochemical reaction.
  • the flow path shape was formed by machining with an end mill up to ⁇ 0.4 mm.
  • the sample analysis chip (chip 1) having the shape shown in FIG. 2 and the sample analysis chip (chip 2) having the shape shown in FIG. 3 used in Example 1 are fed to the main channel with pure water colored with bromophenol blue dye.
  • the center of the circular chip was rotated at 5000 rpm around the axis, and the variation was measured in 10 trials. Note that the liquid volume when assuming that any of the sample analysis chips is uniformly fed to each well is 12 ⁇ l.
  • the liquid feeding amount was 9.5 ⁇ l at the minimum value and 14.0 ⁇ l at the maximum value.
  • the variation in the chip 2 is 11.0 ⁇ l at the minimum value and 12.5 ⁇ l at the maximum value, which indicates that the variation in the liquid distribution amount can be further suppressed.
  • Example 3 As the first substrate 401 of the sample analysis chip according to the present invention in Example 3, a polypropylene resin is used and has a disk-shaped outer shape as shown in FIG. A side passage 105 having a communication port in the road valley portion 103b, a well 102 at the end of the side passage, and further, a well branch flow path 105a branched from the side path, a waste liquid chamber branch flow path 104a, and a waste liquid chamber 105b A chip was formed by injection molding. In this base material (polypropylene base material), 23 wells and side paths are respectively formed. The area of the main channel is changed periodically, and the volume of the valley 103b between the peaks of the main channel is designed to be 15 ⁇ l. The volume of the well branch channel is 2 ⁇ l and the inner volume of the well is The volume was designed to be 11 ⁇ l and the waste chamber volume to be 5 ⁇ l.
  • an aluminum sheet base material coated with a polypropylene resin as a resin coating layer was used as the second base material 402 to be bonded to the polypropylene base material.
  • a resin coating layer having a thickness of about 0.07 mm was used as the second base material 402 to be bonded to the polypropylene base material.
  • the resin coating layer has a melting point of around 120 degrees, and is coated on the aluminum base so that it melts when heat is applied to the aluminum side.
  • an anchor layer in which carbon is kneaded is provided between the aluminum layer and the resin coating layer, and the resin coating layer is melted even by heat generated by laser light irradiation.
  • the wells on the polypropylene base material were instilled with a probe reagent for invader reaction, and an enzyme such as DNA polymerase and chestnut was dropped and fixed.
  • the polypropylene base material and the aluminum base material were overlapped, and heat of 130 ° C. or more was applied to the aluminum base material side, whereby the resin coating layer was melted and the polypropylene base material and the aluminum base material were welded.
  • the buffer solution in which the purified genome was added to the chip produced in the above process was sent as a solution sample with a pipette and filled into the main channel 103. At this stage, no sample had entered the wells and the sideways.
  • each said reagent was used in the quantity similar to the quantity described in Table 1 of Example 1.
  • the tip was rotated about the tip center at 5000 rpm.
  • Each well and the well branch channel were filled, and 0.5 ⁇ l to 3 ⁇ l of solution was stored in the waste liquid chamber.
  • Each well received 11 ⁇ l of sample.
  • a simple centrifuge device using a desktop small centrifuge used for separation of reagents in chemical and biological reactions was prepared and used. The rotational speed during centrifugation was measured and adjusted with a rotational speed measuring device. *
  • an invader reaction probe was immobilized as a reaction reagent in 22 wells. Further, in order to determine the success or failure of the reaction result, a negative control was set at one place as a confirmation of the presence or absence of contamination, and a reaction test was performed on one chip.
  • the sample analysis chip in a state where the reaction vessel is independent of oil is subjected to 35 cycles alternately at 95 ° C. and 68 ° C., and the sample genome is amplified by PCR reaction. Subsequently, the temperature is adjusted at 63 ° C. for 30 minutes, thereby causing a fluorescence detection reaction in the well by an enzyme reaction.
  • the fluorescence reaction was measured by a fluorescence detection apparatus combining a photomultiplier tube and an optical fiber.
  • Example 1 As a result of the measurement, as in Example 1, it was confirmed that the fluorescence detection reaction caused by the reagents mixed within a predetermined time was caused by the reagent distributed in each well. The same results as the detection data obtained by mixing the reagents and the sample at a volume ratio were obtained. In addition, no fluorescence reaction was detected in the negative control wells. This confirmed that there was no contamination from both sides.
  • Example 4 As an example of the sample analysis chip of the present invention, the sample analysis chip described in FIG. 11B and FIG. 3 was produced.
  • the first substrate 401 ′ was processed by injection molding using a polypropylene resin.
  • the width of the side passage 105 is about 1 mm
  • the well 102 has a trapezoid shape with a flat top
  • the diameter of the bottom of the well is about 3 mm
  • the volume is about 7 ⁇ l.
  • a propylene film having a thickness of about 0.15 mm was used as the second base material 402 '.
  • an invader reaction probe reagent and enzymes such as DNA polymerase and chestnut were dropped with a pipette and dried and fixed.
  • the first base material 401 ′ and the second base material 402 ′ are overlapped, and a laser beam is emitted from the second base material side at a constant speed using an infrared photo die auto laser having a wavelength of 808 nm and an output of 140 W.
  • the second substrate was welded to the first substrate by scanning and irradiating the chip.
  • the buffer solution in which the buffer solution and the purified genome were added to the chip prepared in the above step was pipetted as a solution sample and filled into the main channel 103. At this stage, no sample had entered the wells and the sideways.
  • each said reagent was used in the quantity similar to the quantity described in Table 1 of Example 1.
  • an invader reaction probe was immobilized as a reaction reagent in 22 wells. Further, in order to determine the success or failure of the reaction result, a negative control was set at one place as a confirmation of the presence or absence of contamination, and a reaction test was performed on one chip.
  • the sample analysis chip in a state where the reaction vessel is independent of oil is subjected to 35 cycles alternately at 95 ° C. and 68 ° C., and the sample genome is amplified by PCR reaction. Subsequently, the temperature is adjusted at 63 ° C. for 30 minutes, thereby causing a fluorescence detection reaction in the well by an enzyme reaction.
  • fluorescence detection was performed from the outside of the first substrate 401 'side of the chip.
  • the fluorescence reaction was measured by a fluorescence detection apparatus combining a photomultiplier tube and an optical fiber.
  • Example 1 As a result of the measurement, as in Example 1, it was confirmed that the reagent distributed in each well caused a fluorescence detection reaction by the reagents mixed within a predetermined time. The same results as the detection data obtained by mixing the reagents and the sample at a volume ratio were obtained. In addition, no fluorescence reaction was detected in the negative control wells. This confirmed that there was no contamination from both sides.
  • the reaction chip of the present invention can be used for detection and analysis of biochemical substances in samples such as nucleic acids.
  • SNP mutations can be detected, it can be used in methods for detecting mutations in genes such as cancer, germ cells and somatic cells. Further, it can be used as a container or a reaction container for mixing a plurality of solutions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】チップ上に形成されたウェルへ送液を行い、反応を行う試料分析チップにおいて、送液方法が簡易でかつ各ウェルの液量ばらつきがなく、低コストの試料分析チップを提供すること。 【解決手段】複数のウェル102と、各ウェルに繋がる流路とを有する試料分析チップであって、前記流路は、各ウェルに送液する主流路103を有し、主流路は前記ウェルより回転中心側に設けられ、隣り合うウェルの間で回転中心方向に一つの山を有するように形成されていることを特徴とする試料分析チップとする。

Description

試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法
 本発明は、生化学反応の検出や分析等に用いる試料分析チップ及び試料分析方法並びに試料分析チップの製造方法に関する。特にDNA解析に使用可能なディスポーザブルチップとその製造方法に関する。
 本願は、2009年3月31日に日本に出願された特願2009-085272号、特願2009-085273号及び特願2009-085274号に基づき優先権を主張し、その内容をここに援用する。
 従来、例えばDNA反応、たんぱく質反応等の生化学反応の分野において、微量の試料溶液を処理する反応装置として、μ-TAS(Total Analysis System)やLab-on-Chipと呼ばれる技術が知られている。これは、1個のチップやカートリッジに複数の反応室(以下、ウェル)や流路を供えたものであり、複数の検体の解析、あるいは複数の反応を行うことができる。これらの技術はチップ及びカートリッジを小型化することで扱う薬品を少量にすることが出来、様々なメリットがあるとされてきた。
 そのメリットとは例えば従来使用していた強酸や強アルカリ薬品の分量が微量化することで人体への影響や環境への影響が格段に低くなること、また、生化学反応等に用いられる高額な試薬類の消費量が微量化することで分析、反応に費やすコストを低減できること、などが挙げられる。
 チップやカートリッジを用いて生化学反応を最も効率よく行うためには、複数のウェルにそれぞれ異なる種類の薬品や検体、酵素を配置し、これら薬品や検体、酵素と反応を起こす試薬を一本ないし数本の主導管からまとめてウェルに流し入れ、異なった複数の反応を生じさせる必要がある。
 この手法を用いれば、複数種の検体を同じ試薬で同時に処理をしたり、また逆に一種類の検体に同時に複数の処理を施したりすることが出来、従来かかっていた時間や手間を大幅に減らすことが可能である。
 この種の手法を用いる際、複数の反応場に等量のサンプルを送液する技術と、各ウェルの中身を混ざり合わないようにする技術が重要となる。このようなウェルへの送液を行うチップについての先行技術としては以下のものが挙げられる。
 特許文献1では、液溜めから遠心力を用いてウェルへの送液を行うチップにおいて、ウェルを独立させるために流路を変形、密封している。そのため流路を押しつぶす機構が必要であり、自動化が困難である。また、従来の遠心送液チップのように中央の液溜りから周囲のウェルに遠心送液を行うと、各ウェルへの送液量にばらつきが生じてしまう。
 特許文献2では、遠心方法を自転+公転を織り交ぜることで各ウェルへの送液量にばらつきを解決している。しかし、この手法もチップが自転+公転するための複雑な機構とスペースが必要となる。
 特許文献3では液体貯留部と遠心方向に伸びる流路を有するウェルを複数連結させた分析用媒体が公開されているが、この文献では液の配液性などには注視しておらず、逆にウェルに詰まった空気との押し合いで流体を制御するとある。この手法では液体貯留部と液体貯留部の間流路の液体は送液されない上、各ウェルに送液される液量は大きくバラつき、反応のたびに結果に差異が生じてしまう。
 従って、従来の第一の問題点は、送液方法が簡易でかつ各ウェルの液量ばらつきが少ないチップが実現されていないということである。
 また第二の問題点として、これらの手法には、サンプル物質を装置中の複数のウェルに分配する必要があるため、チャンバの相互汚染による誤った試験結果に繋がるおそれがある。
 上記問題を解決する手法としては、少なくとも一方の部材に流路などの加工が施された2つの部材を張り合わせてからなる密閉型のチップが提案されている。例えば、特許文献1には、装填チャンバ、主導管およびプロセスチャンバ(ウェル)を含む構造を提供する第1の主面部材と、第2の主面部材からなり、プロセスチャンバが装填チャンバから延びる導管に沿って配置され、装填チャンバ、導管、およびプロセスチャンバはサンプル処理装置の長さに沿って整列される密閉型のプロセスアレイ及びサンプル処理装置が開示された。
 特許文献4に記載のプロセスアレイには、1本の主導管から枝分かれしたフィード導管を介して接続された複数のプロセスチャンバが設けられている。このため、複数種の検体を同じ試薬で処理する等の操作が可能である。これらのプロセスアレイを用いて生化学反応を最も効率良く行うためには、まず、複数の反応場にそれぞれ異なる種類の薬品や検体、酵素を配置する。そして、これらと反応を起こす試薬を、1本ないし複数本の主導管からそれぞれの反応場に流し入れる。このようにして、複数の異なる反応を生じさせる必要がある。この手法を用いれば、複数種の検体を同じ試薬で同時に処理したり、逆に1種類の検体に対して複数の処理を同時に施したりすることができる。これによって、従来かかっていた時間や手間を大幅に減らすことが可能である。
 この種の手法として、例えば、液体導入口、流路、液体排出口等を備えたマイクロ流体チップを用い、反応に必要な試薬成分の一部をチップの流路内に凍結乾燥等の方法により固体状態で固定し、反応に必要な残りの試薬成分を液体状態で送液し、流路内でこれらの成分を接触させて反応を生じさせる、という技術が開示される。
 また、特許文献5には、装填チャンバ、プロセスチャンバ、及び流路が形成された樹脂基材と平板状の金属基材とを貼り合せてからなるサンプル処理装置が開示されている。また、各プロセスチャンバに異なる反応を行わせるときなどには流路を閉塞して各プロセスチャンバを密閉空間にする方法が開示されている。このサンプル処理装置では平坦な金属基材を流路内に押し込むように変形させることで流路を閉塞させている。
 しかしながら、特許文献1に記載のプロセスアレイは、第1の主面部材と第2の主面部材との間に感圧接着剤が使用されている。感圧接着剤の使用は反応中に接着剤からの溶出物が発生し、ウェル内の試薬に影響を与える可能性がある。また、接着層の耐熱性や耐水性の問題が生じやすく、特許文献1の構成では流路を外部からの影響を受けないように密閉するのは不十分である。
 また、生化学反応等を行わせる際に反応温度や温度サイクル条件を精密に制御することは極めて重要である。特許文献2に記載のサンプル処理装置には、金属基材側を平坦な板状形成されている。このため、熱ブロック等との密着性が上がり、熱サイクルを伴う反応を行うときに好適である、と記載されている。しかしながら、特許文献2に記載のサンプル処理装置を用い反応を行う際には、流路を閉塞し各プロセスチャンバを密閉空間にする必要がある。このサンプル処理装置では平坦な金属基材を流路内に押し込むように変形させることで、流路を閉塞している。このように金属基材を変形させることによって、金属基材の平坦性が損なわれ、熱ブロックとの密着性が低下し、熱応答性が不十分になり、所望の反応を確実かつ短時間に行わせることが難しいという問題がある。さらに、特許文献2の方法では、流路の閉塞が不十分になってしまう場合、チャンバの相互汚染による誤った試験結果に繋がる場合がある。
特表2004-502164号公報 特許第3699721号公報 特開2008-83017号公報 特許第4181046号公報 特表2004-502164号公報
 以上のような従来技術の問題点を鑑みて、本発明はウェルへの送液を行う試料分析チップにおいて、送液方法が簡易でかつ各ウェルの液量ばらつきがなく、低コストの試料分析チップを提供することを課題とする。
 また、容易に作製することができ、かつチップ上のウェルでの試料汚染等の生じることのない試料分析チップ及びその製造方法を提供することを目的とする。
 上記のような問題を解決するために為された本発明の請求項1に係る発明は、基材に複数のウェルと、各ウェルに繋がる流路と、流路に溶液を注入するための注入口とを有し、該基材を回転させてウェルに溶液を配液する試料分析チップであって、 前記流路は、各前記ウェルに送液する主流路を有し、該主流路は前記ウェルより回転中心側に設けられ、隣り合うウェルの間で回転中心方向に対して一つの山を有するように形成されていることを特徴とする試料分析チップである。
 また請求項2に係る発明は、前記主流路の山と山との間の谷部で前記ウェル及び主流路が連絡することを特徴とする請求項1に記載の試料分析チップである。
 また請求項3に係る発明は、前記主流路の路幅が相対的に山部で小さく、谷部で大きいことを特徴とする請求項1又は2に記載の試料分析チップである。
 また請求項4に係る発明は、前記基材が円盤状であり、前記ウェルは該基材と同心円状に配置されていることを特徴とする請求項1ないし3のいずれかに記載の試料分析チップである。
 また請求項5に係る発明は、前記主流路とウェルとを連絡する側路を有することを特徴とする請求項1ないし4のいずれかに記載の試料分析チップである。
 また請求項6に係る発明は、前記側路が、回転中心方向に対して傾いて形成されていることを特徴とする請求項5に記載の試料分析チップである。
 また請求項7に係る発明は、前記主流路が、回転中心方向に対して傾いて形成されていることを特徴とする請求項1ないし6のいずれかに記載の試料分析チップである。
 また請求項8に係る発明は、前記主流路とウェルとを連絡する側路を有し、 前記側路に余剰溶液を溜める廃液部が設けられたことを特徴とする請求項1ないし7のいずれかに記載の試料分析チップである。
 また請求項9に係る発明は、前記廃液部が、廃液を溜める廃液チャンバと、前記側路を分岐し、該廃液チャンバと、連絡する廃液チャンバ分岐流路とを有することを特徴とする請求項8記載の試料分析チップである。
 また請求項10に係る発明は、前記側路は、回転中心方向に対して傾いて形成されており、前記廃液部は、回転中心方向に対して側路の内側に設けられていることを特徴とする請求項8又は9に記載の試料分析チップである。
 また請求項11に係る発明は、前記ウェルに連通する分岐流路は前記廃液チャンバに連通する分岐流路より送液時の圧力損失が低いことを特徴とする請求項9または10に記載の試料分析チップである。
 また請求項12に係る発明は、前記ウェルに連絡する分岐流路の断面積が、前記廃液チャンバ分岐流路の断面積よりも大きいことを特徴とする請求項11に記載の試料分析チップである。
 また請求項13に係る発明は、廃液チャンバ分岐流路よりもウェルに連絡する分岐流路の表面粗さが小さいことを特徴とする請求項11に記載の試料分析チップである。
 また請求項14に係る発明は、廃液チャンバ分岐流路の流路内表面を撥水処理したことを特徴とする請求項11に記載の試料分析チップである。
 また請求項15に係る発明は、ウェルに連絡する分岐流路の流路内表面を親水処理したことを特徴とする請求項11に記載の試料分析チップである。
 また請求項16に係る発明は、前記試料分析チップは前記ウェル及び前記流路を形成した第一の基材と、該基材と貼り合わせた第二の基材とを有する請求項1ないし15のいずれかに記載の試料分析チップである。
 また請求項17に係る発明は、前記基材のいずれか一方が光透過性材料で形成されていることを特徴とする請求項16に記載の試料分析チップである。
 また請求項18に係る発明は、第一の基材が光透過性の樹脂材料であり、第二の基材が金属材料であることを特徴とする請求項17に記載の試料分析チップである。
 また請求項19に係る発明は、前記第一の基材が、可視光に対して光透過性でありかつ赤外線に対して光吸収性の樹脂からなり、前記第二の基材が、少なくとも波長800nm以上の赤外線を透過する板状又はフィルム状であることを特徴とする請求項17に記載の試料分析チップである。
 また請求項20に係る発明は、前記第一の基材は、ポリプロピレン、ポリカーボネート、アクリル樹脂のいずれかの樹脂基材であることを特徴とする請求項19に記載の液体試料分析用チップである。
 また請求項21に係る発明は、前記第一の基材は、800nm以上の波長領域に吸収を有する赤外線吸収剤を含むことを特徴とする請求項19又は20に記載の試料分析チップである。
 また請求項23に係る発明は、前記第二の基材は、ポリプロピレン、ポリカーボネート、アクリル樹脂のいずれかの樹脂基材であることを特徴とする請求項1ないし3のいずれか1項に記載の液体試料分析用チップである。
 また請求項24に係る発明は、前記第二の基材の厚みが、0.05~0.5mmの範囲にあることを特徴とする請求項1ないし23のいずれか1項に記載の試料分析チップである。
 また請求項25に係る発明は、前記第一の基材に試料分析チップを回転させるための担持部が設けられていることを特徴とする請求項1ないし24のいずれかに記載の試料分析チップである。
 また請求項26に係る発明は、請求項19~23のいずれかに記載の試料分析チップの製造方法であって、前記第二の基材側から赤外線レーザを照射し、前記第一の基材と前記第二の基材とを溶融接着し、張り合わせることを特徴とする試料分析チップの製造方法である。
 また請求項27に係る発明は、前記赤外線レーザの波長が、800~1200nmの範囲にあることを特徴とする請求項26に記載の試料分析チップの製造方法である。
 また請求項28に係る発明は、前記試料分析チップの製造において、前記第一の基材と前記第二の基材とを張り合わせる前に、前記ウェルに試薬を固定する工程を含むことを特徴とする請求項27又は27に記載の試料分析チップの製造方法である。
 また請求項29に係る発明は、請求項1ないし24のいずれかに記載の試料分析チップを設置し、回転させる手段と、前記ウェルでの反応を検出するための検出測定手段と、を有する試料分析装置である。
 また請求項30に係る発明は、請求項1ないし24のいずれかに記載の試料分析チップの前記主流路に溶液を注入する工程と、該試料分析チップを回転させて溶液を前記各ウェルに配液する工程と、を有する試料分析方法。
 また請求項31に係る発明は、請求項30に記載の試料分析方法において、前記ウェルに配液する工程の後に、ミネラルオイルを前記各ウェルに配液する工程を有することを特徴とする試料分析方法である。
 また請求項32に係る発明は、請求項30又は31に記載の試料分析方法を用いたことを特徴とする遺伝子解析方法である。
 本発明による第一の形態の試料分析チップによれば、簡易で機能的、かつ安全安価な試料分析チップを実現することができる。さらに、1種類の検体に対して複数の処理を施すことができる。
 また、主流路が各ウェルの間で回転中心に対して一つの山を形成しているので、この主流路の山部で送液が切れ、液分配のムラを低減させることができる。さらには当該流路山部の断面積を小さくすることで、液分配時のムラをより減少させることができる。
 さらには、流路山部から隣接する流路山部までの主流路の容積を任意に設計すれば、同等の容量のサンプルを前期流路山部に挟まれた流路谷部から連通するウェルに送液することができるため、使用する溶液試料の量をウェルごとに任意に設定することができる。
 また、本発明による第二の形態の試料分析チップによれば、主流路からウェルに遠心力によって送液された際、送液のムラによって所定の分量を越えて送液されたウェルでは、余剰分を廃液チャンバに捨てることができる。そのため、全てのウェルに所望の液量よりも余分に送液すれば、全てのウェルに同じ量の溶液を送液することができることから、配液バラつきを低減することができる。
 更に、主流路とウェルとを連通する側路に廃液チャンバに連通する分岐流路を設けることで他のウェルとのサンプルの接触を失くし、コンタミネーションを抑えることができる。
 また、本発明の第三の形態に係る試料分析チップによれば、簡易な構成で小型、安価な反応チップを実現することができる。本発明の試料分析チップでは、第一の基材と第二の基材とを組み合わせて、赤外線レーザで融着することにより、チップやチップに固定されている試薬に殆ど影響を与えない密閉型のチップを実現することができる。
本発明の第一の形態に係る試料分析チップの一様態の平面図 本発明の第一の形態に係る試料分析チップの一様態の平面図 本発明の第一の形態に係る試料分析チップの一様態の平面図 本発明の第二の形態に係る試料分析チップの一様態の平面図 本発明の第二の形態に係る試料分析チップの側路、廃液部及びウェルの配置を示した平面図 本発明の第二の形態に係る試料分析チップの一様態の平面図 本発明の第二の形態に係る試料分析チップの一様態の平面図 本発明の試料分析チップの説明のための斜視図 本発明の試料分析チップの説明のための断面図 本発明の第三の形態に係る試料分析チップの斜視図である。 本発明の第三の形態に係る試料分析チップを構成する第一の基材の平面図である。 本発明の第三の形態に係る試料分析チップの一実施形態における流路とウェルの断面図である。 実施例1における検出測定結果のグラフ 実施例1におけるネガティブコントロール測定結果のグラフ 実施例1におけるポジティブコントロール測定結果のグラフ
 本発明の第一の形態の試料分析チップを図面に基づいて説明する。
 図1は本発明の試料分析チップの一様態を示した平面図である。本発明のチップは、基材101上に複数のウェル102と、ウェルに溶液、例えば液体試料(溶液)を送液するための流路を有している。流路は、各ウェルに送液するために、少なくとも各ウェルと連絡する一つの主流路103を有し、さらに主流路とウェルをつなぐ側路105を有する。流路には溶液を注入するための注入口を有する。図1の様態では、主流路の端部に注入口(INLET)及びもう一方の端部に空気の脱出口を兼ねた余剰溶液の出口(OUTLET)を有している。
 本発明の試料分析チップは当該チップを回転させることにより生じる遠心力により、各ウェル102に配液するものであることから、中央部に回転軸の貫く点(以下、中心点)のある円盤形状であることが好ましいが、チップを貫く回転軸に対して回転可能に形成されて入れば特に制限はない。円盤形状であれば、その中心が回転軸となるようにして、その円盤形状のチップに同心円状になるようにウェルを配置することができるため、スペースが効率的である。均等にウェルに配液するには遠心力を均等に掛けることが重要であるが、チップを、INLET/OUTLET107の領域を除き、中心点を軸とする回転対称性を持つように設計することで容易に実現することができる。すなわち、N個のウェルがあるとすると、N回対称となるようにすると、均等に遠心力を掛けることができる。もちろん、各ウェルの配液量を異ならせる場合には、この限りではない。また同心円状にウェルが配置されていることにより、基材を回転させることによって、一箇所の検査領域で全てのウェルの分析が可能である。
 主流路103はウェルよりも中心点側に形成されている。さらに、本発明の試料分析チップでは、この主流路が、隣り合うウェルの間で中心点方向に一つの山を有するように形成されていることを特徴とする。ここで隣り合うウェルとは、主流路からウェルへの送液流路が前後しているウェルを意味する。また、中心点方向への山を有するとは中心点方向への極大点(主流路山部103a)を持つことを意味している。このように、隣り合うウェルの間で中心点方向に一つの山を有するように形成することで、主流路に注入された液体が、チップ回転時に主流路山部で自然と途切れるため、各ウェルへの配液量のバラツキを低減することができる。
 ウェル102と主流路103との連絡箇所、即ち主流路103と側路105との接続箇所は、主流路の山部と山部の間の谷部130bであることが好ましい。谷部とは主流路の山と山との間で最も中心点から距離が遠い箇所である。この箇所でウェルと主流路を連絡することにより、配液時の主流路への溶液の残留を減らすことができる。
 また主流路103と、ウェル102との連絡口は、後述する試料分析チップを用いた処理方法に記載するように、チップを回転させる前の段階では、ウェルに溶液が浸入しない程度の幅及び断面積である必要がある。
 また、ウェル102内に空気を残留させないために、ウェルの中心点に最も距離が近い点で主流路と連結することが好ましい。つまり、側路105を形成する場合には、ウェル側の中心点に最も近い点と、主流路側の谷部を結ぶように形成することが好ましい。
 図2は本発明の試料分析チップの別の一様態を示した平面図である。図2の様態では、主流路の路幅が主流路山部103aで狭く、主流路谷部103bで広くなっている。主流路山部103aに該当する領域に存在する溶液が少ない方が、配液バラツキが少ないため、山部の主流路の断面積は、他の部分の断面積よりも小さいことが好ましい。したがって、山部の流路幅を狭くする、及び/または、深さを浅くすることが好ましい。また同様の理由で山部に近づくにつれて主流路の断面積が小さくなるようにすることが好ましい。
 さらに、主流路谷部103bの路幅を広げることで、各ウェル102への配液量を制御することができる。したがって、図3の試料分析チップのように山と山との間の流路をチャンバ様とし、主流路山部から隣接する主流路山部までの主流路の容積を任意に設計すれば、同等の容量のサンプルを両山部に挟まれた谷部から連通するウェルに送液することができるため、任意量の溶液を各ウェルに設定することが可能である。
 またウェル102の容積は1μl以上100μl以下であることが好ましい。1μlより小さいと、遠心力が十分に働かず、ウェルへの送液が行われ辛く、また100μlよりも大きいと、試薬の混合性が低下したり、ウェル内の温度の均一性が低下する、といった現象が生じる可能性がある.
 また図2の様態では、側路105は中心点の方向から傾いて形成されている。このように側路を傾斜させて形成することにより、遠心力を掛けたときにウェルの空気が側路の内側に沿って主流路方向へ移動し、一方溶液は側路の外側に沿ってウェル方向へ移動するため、スムーズにウェル内へ溶液を移動させることができる。傾斜させる角度としては、中心点の方向と側路との為す角が10度から80度の間であることが好ましい。10度以下だとウェルからの排気とウェルへの溶液の浸入が干渉して溶液の浸入を阻んでしまう場合があり、80度を超えると、側路方向への遠心力が弱く、溶液がウェルへ移動しない場合がある。
 図3は本発明の試料分析チップのさらに別の一様態である。図3の試料分析チップでは、主流路103の山が中心点方向に対して傾いていることで、側路105に対して主流路の左右の基材平面での面積が不均等に設計されている。側路105に対して左右の主流路が路幅の狭い流路側と、広い流路側が存在し、広い流路側にウェルとの連絡口である側路105が形成されていることで、ウェルから側路へ移動した空気と、主流路の溶液の入れ替わり時に面積が大きい主流路側に偏って気泡と液体の入れ替わりが生じる。このため主流路への残液を減らすことができる。したがって、各ウェルに接続する側路及び主流路を上記のような構成とし、主流路が路幅の狭い流路側と、広い流路側が山部を境に交互に形成されるようにすることで、各チャンバ様主流路で同様の現象が同時に生じるために、配液のバラつきを減少する事ができる。
 本発明の第二の形態の試料分析チップを図面に基づいて説明する。
 図4は本発明の試料分析チップの一様態を示した平面図である。本発明のチップは、基材101上に複数のウェル102と、ウェルに溶液、例えば液体試料(溶液)を送液するための流路を有している。流路は、各ウェルに送液するために、少なくとも各ウェルと連絡する一つの主流路103を有し、さらに主流路とウェルをつなぐ側路105を有する。流路には溶液を注入するための注入口を有する。図4の様態では、主流路の端部に注入口(INLET)及びもう一方の端部に空気の脱出口を兼ねた余剰溶液の出口(OUTLET)を有している。
 本発明の試料分析チップは当該チップを回転させることにより生じる遠心力により、各ウェル102に配液するものであることから、中央部に回転軸の貫く点(以下、中心点)のある円盤形状であることが好ましいが、チップを貫く回転軸に対して回転可能に形成されて入れば特に制限はない。円盤形状であれば、その中心が回転軸となるようにして、その円盤形状のチップに同心円状になるようにウェルを配置することができるため、スペースが効率的である。均等にウェルに配液するには遠心力を均等に掛けることが重要であるが、チップを、INLET/OUTLET107の領域を除き、中心点を軸とする回転対称性を持つように設計することで容易に実現することができる。すなわち、N個のウェルがあるとすると、N回対称となるようにすると、均等に遠心力を掛けることができる。もちろん、各ウェルの配液量を異ならせる場合には、この限りではない。また同心円状にウェルが配置されていることにより、基材を回転させることによって、一箇所の検査領域で全てのウェルの分析が可能である。
 主流路103はウェル102よりも中心点側に形成されている。主流路103と、ウェル102との連絡口は、後述する試料分析チップを用いた処理方法に記載するように、チップを回転させる前の段階では、ウェルに溶液が浸入しない程度の幅及び断面積である必要がある。表面張力が関係するため用いる溶液にも拠るが、例えば溶媒が水であるとすると、2×2mm2以下であればこの条件を満たす。
 ウェル102の容積は1μl以上100μl以下であることが好ましい。1μlより小さいと、遠心力が十分に働かず、ウェルへの送液が行われ辛く、また100μlよりも大きいと、試薬の混合性が低下したり、ウェル内の温度の均一性が低下する、といった現象が生じる可能性がある.
 また、ウェル102内に空気を残留させないために、ウェルの中心点に最も距離が近い点で主流路と連結することが好ましい。つまり、ウェル側の中心点に最も近い点で、側路105とウェルとが接続するように形成することが好ましい。
 さらに、本発明の試料分析チップでは、各ウェル102と主流路103を連絡する側路105において、側路ごとに廃液部104が設けられている。廃液部は、側路から分岐した廃液分岐流路104aと、廃液分岐流路に連結した廃液チャンバ104bにより構成することができる。廃液部がウェル102と主流路103とを連絡する側路に設けられていることにより、ウェルに余剰な溶液が送液された際に、廃液部に余剰溶液が送液されて溜められ、一定の容量の溶液がウェルとウェル分岐流路105aに残される。したがって、余剰溶液による配液バラツキを低減させることができる。
 配液の際に、廃液チャンバ104bよりもウェル102が先に溶液で満たされることで、各ウェルに確実に溶液試料を充填することができる。そのために、廃液チャンバ分岐流路よりもウェル分岐流路に送液されやすいようにすることが重要である。
 このための方法としては、廃液チャンバ分岐流路104aよりもウェル分岐流路105aの断面積を広くすることで送液時の圧力損失に差が生じ、ウェルに優先的に送液することができる。この手法により、まずウェルが溶液で満たされ、その後余剰溶液を廃液チャンバに送液することができる。したがって、廃液部を断面積の狭い廃液チャンバ分岐流路104aと容量の大きい廃液チャンバ104bからなる構成とすることで、ウェル分岐流路側に送液されやすく、かつ廃液部の容量を調整することができる。なお余剰溶液の廃液量は、ウェルの容量と、廃液チャンバの容量によって調節することができる。遠心送液時の各ウェル間のばらつきが大きいほど廃液チャンバの容量が必要となる。
 また、別の方法としては、廃液チャンバ分岐流路よりもウェル分岐流路の流路内の表面粗さを小さくすることで送液時の圧損に差が生じ、ウェルに優先的に送液することができる。
 また、別の方法としては、廃液チャンバ分岐流路の流路表面を撥水処理することにより、送液時の圧損に差が生じ、ウェルに優先的に送液することができる。また逆に、ウェル分岐流路の流路表面を親水処理することにより、送液時の圧損に差が生じ、ウェルに優先的に送液することができる。撥水処理の方法としては、フッ素系材料によるコーティング等が一般的であり、対薬品性も強く、逆に反応への影響も生じない。また、親水処理の手法としてはプラズマ処理やコロナ放電処理などが挙げられ、どちらも一般的な手法と言える。
 さらに、側路105の形状及び廃液部104の配置によってもウェル側の分岐流路に優先的に送液されやすいようにすることができる。図5(A)、(B)は、側路105とウェル102、廃液チャンバ104bおよび廃液チャンバ分岐流路104aからなる廃液部を模式的に示したものである。実線の矢印は中心点の方向(回転中心方向)を示している。
 図5の各構成では、側路105は回転中心方向から傾いて形成されている。このように側路を傾斜させて形成することにより、遠心力を掛けたときにウェル102の空気が側路の内側に沿って主流路方向へ移動し、一方溶液は側路の外側に沿ってウェル方向へ移動するため、スムーズにウェル内へ溶液を移動させることができる。傾斜させる角度としては、中心点の方向と側路との為す角が10度から80度の間であることが好ましい。10度以下だとウェルからの排気とウェルへの溶液の浸入が干渉して溶液の浸入を阻んでしまう場合があり、80度を超えると、側路方向への遠心力が弱く、溶液がウェルへ移動しない場合がある。
 図5(A)図5(B)では、傾いた側路105において、廃液チャンバ分岐流路104aにより廃液部104が側路105から中心点側で分岐している。図5(A)では側路105はウェル102に直進しているパターン、図5(B)では廃液部との分岐点でウェル側の側路(ウェル分岐流路105a)が折れ曲がっているパターンである。廃液チャンバ分岐流路104aの折れ曲がりは、分岐前の側路の傾きと同じ方向に傾いていれば任意の形状とすることができる。また、廃液量が廃液チャンバ分岐流路部分の容量で十分な場合には、廃液部の末端の廃液チャンバ104bがなくともよい。
 前述のように、溶液に掛かる遠心力により、破線の矢印で示した中心点から外側の流路、すなわちウェル側の分岐流路に先に流れ込むことになり、廃液チャンバ104bよりもウェル102が先に溶液で満たされ、各ウェルに確実に溶液試料を充填することができる。また、図5(B)のようにウェル側の流路を曲げると、ウェル分岐流路105a小さく、あるいはウェルを直接側路の分岐箇所で接続することができることから、ウェルに溶液が充填された後、余剰溶液を廃液チャンバに送液するまでの流路が短くなり、ウェルへの配液バラつきをより低減させることができる。
 一方、溶液量が所定の容量より少ない場合は、廃液部によって各ウェルの試料容量のバラつきを低減することができないが、主流路の形状を工夫することによって、元々の送液時の送液量のばらつきについても抑えることが可能である。例えば、本発明の第一の形態の試料分析チップと組み合わせた様態の試料分析チップとすることができる。図6および図7に、このような本発明の試料分析チップの別の様態を示した。
 なお、下記の様態で説明していない第一の形態の試料分析チップの事項についても、第二の形態と矛盾しない限り、組み合わせて本発明の試料分析チップとすることができる。
 図6の試料分析チップでは、主流路103が、隣り合うウェルの間で中心点方向に一つの山を有するように形成されている。ここで隣り合うウェルとは、主流路からウェルへの送液流路が前後しているウェルを意味する。また、中心点方向への山を有するとは中心点方向への極大点(主流路山部103a)を持つことを意味している。このように、隣り合うウェルの間で中心点方向に一つの山を有するように形成することで、主流路に注入された液体が、チップ回転時に主流路山部で自然と途切れるため、各ウェルへの配液量のバラツキを低減することができる。
 ウェル102と主流路103との連絡箇所、即ち主流路103と側路105との接続箇所は、主流路の山部と山部の間の谷部130bであることが好ましい。谷部とは主流路の山と山との間で最も中心点から距離が遠い箇所である。この箇所でウェルと主流路を連絡することにより、配液時の主流路への溶液の残留を減らすことができる。
 また図6の試料分析チップでは、主流路103の路幅が主流路山部103aで狭く、主流路谷部103bで広くなっている。主流路山部103aに該当する領域に存在する溶液が少ない方が、配液バラツキが少ないため、山部の主流路の断面積は、他の部分の断面積よりも小さいことが好ましい。したがって、山部の流路幅を狭くする、及び/または、深さを浅くすることが好ましい。また同様の理由で山部に近づくにつれて主流路の断面積が小さくなるようにすることが好ましい。
 さらに、主流路谷部103bの路幅を広げることで、各ウェル102への配液量を制御することができる。したがって、図2bの試料分析チップのように山と山との間の流路をチャンバ様とし、主流路山部から隣接する主流路山部までの主流路の容積を任意に設計すれば、同等の容量のサンプルを両山部に挟まれた谷部から連通するウェルに送液することができるため、任意量の溶液を各ウェルに設定することが可能である。
 図7は本発明の試料分析チップの別の一様態である。図7の試料分析チップでは、主流路103の山が中心点方向に対して傾いていることで、側路105に対して主流路の左右の基材平面での面積が不均等に設計されている。側路105に対して左右の主流路が路幅の狭い流路側と、広い流路側が存在し、広い流路側にウェルとの連絡口である側路105が形成されていることで、ウェルから側路へ移動した空気と、主流路の溶液の入れ替わり時に面積が大きい主流路側に偏って気泡と液体の入れ替わりが生じる。このため主流路への残液を減らすことができる。したがって、各ウェルに接続する側路及び主流路を上記のような構成とし、主流路が路幅の狭い流路側と、広い流路側が山部を境に交互に形成されるようにすることで、各チャンバ様主流路で同様の現象が同時に生じるために、配液のバラつきを減少する事ができる。
 次に第一の実施形態及び第二の実施形態に係る本発明の試料分析チップの製造方法について説明する。
 図8は本発明の試料分析チップの構造の一様態を示した斜視図である。
 本発明の試料分析チップはウェル及び流路(主流路及び側路を含む)を形成した第一の基材401に、第二の基材402を貼り合わせることで作製することができる。第一の基材及び第二の基材の少なくとも一方には試料分析装置の具備するチップ回転機構によってチップを回転させるための回転手段として、例えばチップ回転機構に固定するための担持部405を有する。また注入口及び空気の脱出口を兼ねた出口(INLET/OUTLET)のための貫通孔を第一の基材及び第二の基材の一方に、少なくとも一つ形成する。貫通孔は基材を貼り合わせたときに主流路の端部に一致する。以下では、説明の便宜上、蛍光反応等を検出、測定する際に測定する面に位置する基材側を「上側」、下側に位置する側を「下側」とする。
 基材としては、試料に影響を与えないものであれば特に制限はないが、特にポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いれば、良好な可視光透過性を確保することができる。ポリプロピレンとしては、ホモポリプロピレンやポリプロピレンとポリエチレンとのランダム共重合体を使用することができる。また、アクリルとしては、ポリメタクリル酸メチル、または、メタクリル酸メチルとその他のメタクリル酸エステル、アクリル酸エステル、スチレンなどのモノマーとの共重合体を使用することができる。また、これらの樹脂材料を使用する場合、チップの耐熱性や強度を確保することもできる。樹脂材料以外としては、アルミニウム、銅、銀、ニッケル、真鍮、金等の金属材料を挙げることができる。金属材料を用いた場合、加えて熱伝導率及び封止性能に優れる。なお貼り合わせる基材のうち少なくとも上側基材のウェル底部を透明とすることで、蛍光等の検出・分析を外部から行うことができる。なお本発明における「透明」及び「光透過性」とは、検出光の波長領域での平均透過率が70%以上であるものとする。可視光領域(波長350~780nm)で光透過性材料の材料を用いれば、チップ内での試料状態の視認が容易であるが、これに限られるわけではない。
 ウェル及び流路、廃液部を形成する基材の加工方法としては、樹脂材料の場合には、射出成形、真空成形等の各種樹脂成形法や、機械切削などを用いることができる。金属材料の場合には、厚手の基材を用いた研削加工やエッチング、薄手の金属シートにプレス加工や絞り加工を施すことで形成することができる。
 また、第1の基材として特にポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いた場合、良好な光透過性、耐熱性、強度を確保することができる。また、第1の基材の厚みが50μm~3mmの範囲にある場合、良好な光透過性、耐熱
性、強度を確保でき、凹部の加工を確実に行うことができる。
 また、第2の基材の厚みが10μm~300μmの範囲にある場合、第2の基材の熱伝導性及び封止性の双方を満足することができる。第2の基材の厚みが300μmよりも大きいと、熱容量が大きくなり、熱応答性が低下するおそれがある。
 図9に本発明の試料分析チップの断面図を示した。第一の基材401には、チップを貫通する溶液の注入口203と、注入液がチップに流れ込むための主流路となる溝103と、チップの外周部に延びた各ウェルと連通する側路となる溝105と、チップの外周部のウェルとなる窪み102とが成形されている。なお図5の断面図は注入口(INLET/OUTLET)からウェルまでの経路を模式的に示したものであり、主流路及び側路の形状はこれに限られない。注入される溶液をすべてのウェルに充満するためには、主流路の容積は、各ウェルの容積の合計より大きい必要がある。ただし、ウェルに試薬501が固定されている場合、その分反応ウェルに入れる液体試料の量が減るため、流れ込む流路の容積をその分減少してもよい。蛍光反応や測定のため、第一基材側で検出測定を行なう場合には、ウェルの凹部が光を散乱させない平滑な形状となっていることが好ましい。
 基材を貼り合わせる前に、ウェル102に反応用の試薬501を固定する。各ウェルで異なる試薬を用いることができる。各反応ウェルにそれぞれ異なる試薬を固定することによって、1つ検体(試料)に対して複数の処理を施すことができる。また、実際反応を行うための試薬の一部を各ウェルに固定し、残りの試薬は液体試料と一緒に導入するようにしてもよい。
 試薬501の固定方法としては、例えば第1の基材のウェル部分に液体試薬をピペット等で滴下し、第一の基材401を遠心装置で2000~3000rpm、5分程度遠心することで適量の液体試薬が液面を平坦な状態で残存するようにして、これを乾燥させることでウェルに固定することができる。
 また、試薬をウェルに固定した後、ワックス502を滴下してもよい。具体的には、ワックスをホットプレート上に溶融させ、ピペットを用いて乾燥させた試薬を覆うように滴下する。このとき、ワックスは数秒で固化する。ワックスは、試薬をウェルの凹部に固定させる役割を有する。
 基材の貼り合わせ方法としては、一方の基材に接着層として樹脂コーティング層を設け、これを溶融させて両基材を接着する方法が挙げられる。樹脂コーティング層は、熱伝導率の高い金属材料基材に設けて溶融接着することが好ましい。樹脂コーティング層の材料としては、PETやポリアセタール、ポリエステルやポリプロピレン等の樹脂材料を用いることができる。
 この貼り合わせ方法においては、微細加工しやすく、蛍光測定に好適な光透過性の樹脂材料を第一の基材に用い、第二の材料としては熱伝導率が高く樹脂コーティング層を設けて溶融接着による貼り合わせが容易な金属材料を用いることが好ましい。また金属基材表面に樹脂コーティング層を形成することにより、材料を選定する際に金属基材自体の耐薬品性は考慮しなくて良い。
 また、基材表面に樹脂コーティング層を形成する際、樹脂コーティング層の下地としてアンカー層を形成することによりレーザを用いた融着が可能である。アンカー層にはレーザ波長光を吸収するカーボンブラック(光吸収性材料)が練り込まれており、レーザ光を照射することにより発熱して樹脂コーティング層を溶融接着することができる。あるいは、アンカー層にカーボンブラックを添加することに代えて、樹脂コーティング層にカーボンブラックを添加したり、樹脂コーティング層の表面を黒色に塗装したりしても良い。例えば波長900nm程度の赤外光フォトダイオードレーザーの光を照射することによっても樹脂コーティング層を効率良く溶融することができる。レーザ溶着は、熱溶着と異なり、チップを加熱する必要がないことから、チップやチップに固定されている試薬に殆ど影響を与えずに 基材の貼り合わせをすることができる。
 本発明の第三の形態の試料分析チップ及びその製造方法を図面に基づいて説明する。
 なお、説明の便宜上、蛍光反応等を検出、測定する際に測定する面の側に位置する基材側を「上側」、下側に位置する側を「下側」とする。
 図10は、本発明の第三の形態に係る試料分析チップの斜視図である。図10に示した本発明の試料分析チップの形態では、上側の第一の基材401’と、下側の第二の基材402’の2つの部材を組み合わせて形成されており、第一の基材には試薬等の溶液を送液するための流路と、溶液と試薬類とを反応させるためのウェルが形成されている。また第一の基材又は第二の基材に、形成された流路に溶液を注入するために注入口及び空気の脱出口を兼ねた出口として少なくとも一つの貫通孔403が設けられている。
 図11に、第一の基材上に形成されたウェル102及び流路(主流路又は注入部103、側路105)の例を示した。本発明のチップは、基材101上の外周部の複数のウェル102と、ウェルに溶液、例えば液体試料を送液するための流路を有している。流路は図11A又は図11Bのような形状で注入口から溶液を注入する主流路又は注入部103と、各ウェルに配液するために主流路又は注入部とウェルとを連絡する側路105を有する。
 また、本発明の第三の形態に係る試料分析チップは、矛盾しない限り、第一の形態及び第二の形態に係る本発明の事項と組み合わせて本発明の試料分析チップとすることができる。例えば、主流路103の形状を第一の形態で示した波状の形状としてもよく、あるいは側路105に廃液部を有する形状としても良い。また、第一の形態あるいは第二の形態以外の構成と組み合わせても良い。
 本発明の試料分析チップは当該チップを回転させることにより生じる遠心力により、各ウェル102に配液するものである。遠心力による送液の利点は、各ウェル102に排気のための開口部を設置する必要がなく、遠心力によって、溶液試料と各ウェルにある空気を置換してウェルに入ることができることである。このことによりウェルの密閉性を高めることができ、外部からの汚染を防ぐことができる。チップを回転させることから、チップの形状は中央部に回転軸の貫く点(以下、中心点)のある円盤形状であることが好ましいが、チップを貫く回転軸に対して回転可能に形成されて入れば特に制限はない。円盤形状であれば、その中心が回転軸となるようにして、その円盤形状のチップに同心円状になるようにウェルを配置することができるため、スペースが効率的であるまた同心円状にウェルが配置されていることにより、基材を回転させることによって、一箇所の検査領域で全てのウェルの分析が可能である。
 外部の回転機構によりチップを回転させるための回転手段として、例えば図10で示したような担持部405が第一の基材に設けられている。
 本発明の試料分析チップは、第1の樹脂基材401’が、可視光を透過する光透過性樹脂基材であり、また第2の樹脂基材402’は、赤外線透過性を有する。このような構成とすることで、赤外線レーザによって第一の基材の第二の基材との界面の部分を溶融し、接着することにより製造することが可能である。レーザ溶着は、熱溶着に比べ、チップ製造時に、チップやチップに固定されている試薬に殆ど影響を与えないことが最大の利点である。感圧接着剤の使用に比べて、接着剤によるウェル内の試薬の汚染がなく、溶着したチップの耐熱性や耐水性を十分に確保することができる。以下、さらに詳細に説明する。
 ウェルの蛍光測定を行うためには、測定する面の側に位置する第一の基材401’の少なくともウェル102部分が750nm以下の可視光を透過する光透過性を有することが必要である。少なくとも蛍光波長において50%以上の平均透過率であることが好ましく、より好ましくは70%以上の平均透過率である。このため、第一の基材としてポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いることが好ましい。これらの材料を用いることで、良好な可視光透過性を確保することができる。ポリプロピレンとしては、ホモポリプロピレンやポリプロピレンとポリエチレンとのランダム共重合体を使用することができる。また、アクリルとしては、ポリメタクリル酸メチル、または、メタクリル酸メチルとその他のメタクリル酸エステル、アクリル酸エステル、スチレンなどのモノマーとの共重合体を使用することができる。また、これらの樹脂材料を使用する場合、チップの耐熱性や強度を確保することもできる。
 また、第一の基材401’の厚みが0.05mm~3mmの範囲にある場合、良好な可視光透過性、耐熱性、強度を確保でき、流路とウェルの加工を確実に行うことができる。なお、第一の基材は射出成形、真空成形等の各種樹脂成形法や、機械切削などを用いることができる。第一の基材側にウェル102、流路及び担持部405を形成することによって、赤外線照射側である第二の基材を板状あるいはフィルム状の基材とすることができ、後述のように、融着ムラのない張り合わせが可能である。また第一の基材の少なくともウェルの底部は、蛍光反応等の光学測定のため、平坦な面を形成する。
 また、赤外線レーザで第一の基材401と第二の基材402’を溶着する際、レーザ溶着の効率を上げるため、第一の基材は赤外線レーザに対して光吸収性であることが好ましい。特に第一の基材の少なくとも張り合わせ面を含む一部が赤外線吸収することにより、樹脂を溶融させ、接着することが容易である。
 また第一の基材401’に赤外線吸収剤を含有することによって、赤外線レーザ光を吸収し、赤外線の光エネルギーを熱エネルギーに変換する効率を上げることができる。また赤外線吸収剤を含有させることで赤外線部分に吸収がない樹脂を用いることができる。赤外線レーザ光は、一般的に750nm以上の波長を有する半導体レーザを使用することによって得られる。したがって、赤外吸収剤としては、750nm以上の領域に最大吸収波長を有する化合物、いわゆる色素化合物を使用することができる。色素化合物は、一般的に染料と顔料の2つの種類に分けることができるが、樹脂基材との相溶性や透明性の観点から、染料タイプのものが好ましい。さらに可視光領域の透明性を確保するため、できるだけ750nm以下の可視領域に吸収の少ない赤外線吸収剤が好ましい。具体的な例としては、BASF社のLumogen(登録商標)IR765、Lumogen(登録商標)IR788などが挙げられる。
 例えば、ポリプロピレンを樹脂基材として使用される場合、ポリプロピレンは赤外線部分に吸収がないため、プロピレン樹脂に赤外線吸収剤を添加することが必要である。具体的には、一例として、予めプロピレン樹脂100重量部に対して赤外線吸収剤を0.01重量部添加し、コンパウンドし赤外線吸収剤含有のプロピレン樹脂ペレットを作製する。これを用いて射出成形によって本実施形態の試料分析チップの第一の基材が作製される。また、予めプロピレン樹脂100重量部に対して赤外線吸収剤を0.1重量部添加し、赤外線吸収剤含有のプロピレン樹脂マスターバッチを作製する。そして、射出成形を行う際、前記の赤外線吸収剤含有のプロピレン樹脂マスターバッチとプロピレン樹脂との一定の割合で混合して射出成形を行うことによって、赤外線吸収剤の含有量を調整することができる。
 第二の基材402’としては、赤外線レーザに対して透過性を有することが必要である。第二の基材に用いる材料としては、第一の基材と同じ又は近い組成を有する樹脂が好ましい。例えば、第一の基材にポリプロピレンを使う場合、第二の基材はホモポリプロピレンやポリプロピレンとポリエチレンとのランダム共重合体が好ましい。組成の同じ又は近い樹脂同士は、一般的に接着しやすい。また、組成の同じ又は近い樹脂は、普通溶融温度の差が小さい。これによって、レーザ溶着の効果を挙げることができる。
 第二の基材402’は、第一の基材と同様な方法でウェル102、流路及び担持部405を形成することが可能であるが、両面が平滑面の板状あるいはフィルム状の基材であることが好ましい。板状あるいはフィルム状の基材であれば、基材の膜厚差等に起因する融着ムラがなく第一の基材と第二の基材を密着性よく張り合わせるができる。また、第二の基材の厚みは、0.01mm~2mm、より好ましくは、0.05~0.5mmの範囲にあれば、第二の基材の溶着性や強度を確保することができる。さらに、第二の基材は、ヒートブロックと接するため、前記の厚みであれば、十分な熱効率を得ることができる。
 図12は、図11Bの試料分析チップの破線Sでの断面図である。注入される液体試料をすべてのウェルに充満するため、注入口と連通している主流路の容積は、各ウェルの容積の合計より大きい必要がある。ただし、ウェルに試薬が固定されている場合、その分ウェルに入れる液体試料の量が減るため、主流路の容積をその分減少してもよい。
 図12に示す本発明の試料分析チップでは、各ウェルに試薬が固定されている。各ウェルにそれぞれ異なる試薬を固定することによって、1つ検体(試料)に対して複数の処理を施すことができる。また、実際反応を行うための試薬の一部を各ウェルに固定してもよい。残りの試薬は液体試料と一緒に導入することができる。
 基材を張り合わせる前に、ウェル102に反応用の試薬501を固定する。各ウェルで異なる試薬を用いることができる。各反応ウェルにそれぞれ異なる試薬を固定することによって、1つ検体(試料)に対して複数の処理を施すことができる。また、実際反応を行うための試薬の一部を各ウェルに固定し、残りの試薬は液体試料と一緒に導入するようにしてもよい。これによって、チップの保存性が向上すると共に各ウェルに異なる反応を行うことができ、複数の検査を同時に施すことができる。
 試薬501の固定方法としては、例えば第1の基材401’のウェル部分に液体試薬をピペット等で滴下し、第一の基材を遠心装置で2000~3000rpm、5分程度遠心することで適量の液体試薬が液面を平坦な状態で残存するようにして、これを乾燥させることでウェルに固定することができる。
 さらに、試薬をウェルに固定した後、ワックス502を滴下してもよい。具体的には、ワックスをホットプレート上に溶融させ、ピペットを用いて乾燥させた試薬を覆うように滴下する。このとき、ワックスは数秒で固化する。ワックスは、試薬をウェルの凹部に固定させる役割を有する。
 次に、本発明の試料分析チップにおいては、第一の基材側401’のウェル102の窪みに試薬を固定した後、赤外線レーザで第一の基材と第二の基材402’とを溶着させることによって、密閉型のチップが製造される。赤外線レーザとしては、第一の基材表面を溶融させることができれば特に制限はないが、赤外線の波長としては800~1200nmがレーザ溶着に好都合で好ましい。実用的な観点から、レーザ溶着機の出力は30以上であることが好ましい。例えば、出力30~250Wのレーザ機は一般的に市販されているので、これらのレーザ機を使えば特に問題ない。具体的には、第一の基材と第二の基材を貼り合せて、例えば波長808nm程度の赤外光フォトダイオートレーザを用いて、第二の基材側からレーザビームを一定の速度でスキャンしチップを照射することによって、第一の基材を第二の基材が溶着される。レーザの出力パワーとスキャン速度を調整することによって、レーザ溶着は効率よく行うことができる。以上の工程で、試料分析チップの製造が完了する。
 次に本発明の各実施形態の試料分析チップを用いた試料分析方法について説明する。
 本発明の試料分析チップは、例えば、DNA、たんぱく質等の試料において生化学物質の検出や分析に用いることができる。各ウェル102に試薬を固定し、液体試料を各ウェルに配液する。この場合には各ウェルで異なる試薬を用いることができる。あるいは試料を各ウェルに固定し、液体試薬を各ウェルに配液する。この場合には各ウェルで異なる試料を用いることができる。
 次に第一の基材401と第二の基材402を貼り合わせた本発明の試料分析チップに対して、まず、注入口403(107)から試薬等の溶液を主流路103に注入する。この段階では、主流路のみが溶液で満たされ、前述のように側路には浸入していない。これは、溶液の表面張力と、ウェル側には空気の抜け穴がないことによりウェル側からの空気圧があるためである。試料分析方法に用いる試料分析装置にはこのような溶液注入手段を備えていてもよい。
 次に、試料分析方法に用いる試料分析装置には試料分析チップを回転させるためのチップ回転機構を有する。チップ回転機構には、公知一般の遠心装置を用いることができる。試料分析装置に試料分析チップを設置し、回転機構によりチップの中心点でチップの垂直方向を回転軸として、チップを回転させる。回転速度としては溶液に掛かる遠心力が前述の空気圧と表面張力に打ち勝って、ウェルに流入する回転速度が必要である。チップの形態にも寄るが、約1000rpm以上であることが好ましい。チップの回転速度が約1000rpmより小さいと、ウェルに溶液が流入せず、液量が一定にならないおそれがある。
 液体試料の配液後、試料・試薬の反応を阻害しないオイルを同様の工程で各ウェルに配液してもよい。オイルの注入によって、反応中に液の蒸発を防ぐことができる。オイルには先に配液した溶液よりも比重が軽いものを用いる必要がある。チップを回転させ、遠心力によって配液した際に、側路側で各ウェルの栓の役割をするためである。オイルの種類としては、試料・試薬の反応を阻害しないものであれば特に制限はないが、ミネラルオイルやシリコンオイルを好適に用いることができる。
 ワックス502を試薬の固定に用いる場合には、試料分析装置に電熱線等からなるヒータやペルチェ素子を用いた温度制御手段を備えていてもよい。ワックスの融点以上にチップを加熱することでワックスを溶融させ、ウェル内で試薬と溶液(試料)を混合させることができる。また当該温度制御手段は、例えばPCR反応等の試薬の反応制御にも用いることができる。
 その後、ウェルで試薬及び試料を混合し、反応状態を蛍光検出等の手法によって分析することができる。試料分析装置は、試料分析チップの基材上側のウェルの位置で測定を行なうための検出測定手段を有する。回転機構によりチップを回転させて、所定のウェルを測定することができる。本発明の試料分析チップでは基材の上側を透明とすることで、チップの外部から光学的測定を行なうことが可能である。
 以上のように各工程で試料分析チップに作用させる機構を備えることで、省スペースかつ試料分析の容易な試料分析装置とすることができる。
 次に本発明の試料分析方法の例を説明する。
 遺伝子解析の1例としては、例えば体細胞変異の検出や、生殖細胞変異の検出が挙げられる。遺伝子型の違いによって、発現するタンパク質の種類等が異なるため、例えば薬の代謝酵素の働きの違いを生み、結果として薬の最適投与量や副作用の出やすさ等に個人差が生じる。この事を医療現場で利用し、各患者の“遺伝子型”を調べる事で、オーダーメイド医療を行うことが出来る。
・SNPsの検出
 ヒトゲノムの中には、その約0.1%に個人特有の塩基配列の違いが存在し、SNP(Single Nucleotide Polymorphism)と呼ばれおり、生殖細胞変異のひとつである。SNPの特定方法の一つとして、例えば蛍光を用いたPCR‐PHFA(PCR-Preferential Homoduplex Formation Assay)法が利用されている。PCR‐PHFA法は検出変異部位を増幅するPCR工程と、増幅断片と対応プローブによる競合的鎖置換反応工程から成り立っている。当該方法によれば、蛍光試薬の発光差によって変異を検出するが、本発明の試料分析チップを用いることで、各ウェルの配液バラツキが少ないため、正確なSNPs検出を行うことが出来る。また上記以外のSNP検出方法としてインベーダー法(登録商標)、Taqman PCR法等についても同様に本発明の試料分析チップを用いることが可能である。
以下に、本発明を用いてワルファリン(抗血液凝固剤。心臓病や高血圧用の薬として用いられる)に対する副作用に関与するSNPついてPCR‐PHFA法を使った解析例を説明する。
血液などから得られる検体核酸を精製して、溶液試料とする。本発明の試料分析チップに注入前または注入後配液前に、検体核酸の増幅を行なう。なお、ワルファリンに関与するSNPの検出にはVKORC1やCYP2C9内のSNPが議論されることが多く、CYP2C9*2やCYP2C9*3などが有名である。検体からこれらのSNPを含む遺伝子断片をマルチプレックスPCRにて増幅する。
 上記の検出方法では、一つのSNPを判定するために2つの検出用のウェルが必要となるので1検体試料につき10個以上のウェルが形成された試料分析チップを使用すると良く、それぞれのウェルに競合的鎖置換反応を行うためのSNP検出用の試薬を固定する。
 上記PCRにより核酸が増幅された試料を、各ウェルに配液充填する。各ウェルを温調し、前記試薬に混入された蛍光試薬の発光差によって変異を検出する。一つのSNPに対し2つのウェルのうち一つのみ陽性反応ならばホモ、二つ陽性ならヘテロと判定することができる。
・K‐ras遺伝子変異の検出
上がん細胞に特徴的な変異、また分子標的薬に抵抗性を示す変異はそのほとんどが体細胞変異である.生殖細胞変異(SNPなど)の場合、どの細胞でも共通の変異が見られるのに対し、体細胞変異では変異を起こした細胞でのみ変異がみられ、変異を起こしていない細胞(通常は正常細胞)では変異は見られない.
つまり、試料のうちの多くは正常細胞で一部変異細胞が含まれる場合、多くの正常な遺伝子中に存在するわずかな変異遺伝子を検出しなければならず、この点が生殖細胞における変異検出と異なる点で、体細胞の遺伝子変異検出をより困難にしている点である.
 K‐ras遺伝子は変異ががん細胞に存在すると分子標的薬がほとんどの患者群で奏効しないことが示された遺伝子であり、この遺伝子を簡便、迅速、安価、高精度に検出することが希望されつつある。
以下に、K‐ras遺伝子のPCR‐PHFA法での解析例を説明する. 
上記遺伝子変異の検出用のウェルにはプローブ核酸を含む試薬が固定される。K‐ras遺伝子の検出は野生型と13種類の変異があるので少なくとも14のウェルが形成された本発明の試料分析チップを使用し、当該ウェルのそれぞれに対応した試薬が固定化されていることが好ましい。
 大腸癌などのがん細胞を採取し、検体核酸を精製して、溶液試料とする。本発明の試料分析チップに注入前または注入後配液前に、検体核酸の増幅を行なう。
 上記PCRにより核酸が増幅された試料を、各ウェルに配液充填する。ウェルを温調し、前記試薬に混入された蛍光試薬の発光差によって変異を検出することができる。
 以下に本発明における実施例を示すが本発明はこれらに限定されるものではない。
<実施例1>
 実施例1では、本発明の試料分析チップをSNPs解析チップとして用いた例を示す。
 SNPsチップ基材として、ポリプロピレン樹脂を用いて、図2に示すような円盤状の外形を持ち、同心円上に波状の主流路103と、主流路谷部103bに連絡口を持つ側路105と、側路の末端にウェル102を有するチップを射出成形により形成した。この基材(ポリプロピレン基材)にはそれぞれ23個のウェル及び側路が形成されている。また主流路は周期的に面積を変え、隣接する主流路山部103aの間の主流路の容積は12μlとなるように設計した。
 上記ポリプロピレン基材と貼り合わせる第二の基材として、樹脂コーティング層としてポリプロピレン樹脂がコーティングされたアルミシート基材を用いた。樹脂コーティング層には、厚みが約0.07mmのものを使用した。樹脂コーティング層は融点が120度前後であり、アルミニウム側に熱を与えれば溶融するように該アルミ基材にコーティングされている。
 さらに、アルミニウム層と樹脂コーティング層の間にカーボンを練りこんだアンカー層が設けられ、レーザ光照射による発熱でも樹脂コーティング層が溶融する構成となっている。
 該ポリプロピレン基材上のウェルにはインベーダー反応用プローブ試薬とDNAポリメラーゼ、クリベースといった酵素類をピペットで滴下し乾燥固定させた。
 該ポリプロピレン基材と該アルミ基材を重ね合わせ、アルミ基材側に130度以上の熱を加えることで、該樹脂コーティング層を溶融させて該ポリプロピレン基材とアルミ基材を溶着した。
 上記の工程で作製したチップに、精製されたゲノムを加えたバッファ溶液を溶液試料としてピペットにて送液し、主流路103に充填した。この段階ではウェル及び側路には試料は浸入していなかった。
 なお上記各試薬類は下記表1に記載した分量で用いた。
Figure JPOXMLDOC01-appb-T000001
 送液後、5000rpmにてチップ中心を軸としてチップを回転させたところ、各ウェルには11μlの試料が送液された。チップに遠心力を与える手段として、化学、生物反応における試薬の分離などに用いられる卓上小型遠心機を利用した簡易な遠心装置を作成し、これを用いた。遠心時の回転数は回転数測定器にて測定して調整した。 
 なお、遠心時のチップの回転方向に関しては、側路の傾き方向に対していずれの方向に回転させた場合でも回転数の増加中はチップ内の液挙動に影響を及ぼすが、ウェルの配液のばらつきに影響しない事が確認できた。
 続いて、反応に阻害の無いミネラルオイルを同様の手法で送液したところ、試料はウェルを満たし、残った溶液で側路の半分程度を満たし、オイルは側路の残り半分と流路谷の8割を満たした。
 なお、本実施例はウェル22箇所に反応用試薬としてインベーダー反応用プローブを固定した。また、反応結果の成否を判定するために、コンタミネーションの有無の確認としてネガティブコントロールを1箇所に設定し、1枚のチップ上で反応試験を行った。
 該反応容器がオイルによって独立した状態の試料分析チップに95℃と68℃を交互に35サイクルかけ、PCR反応によってサンプルのゲノムを増幅する。続いて、63℃で30min温調することにより、酵素反応によりウェル内で蛍光検出反応を生じる。
 また、このときチップのポリプロピレン基材側は透明であることから、蛍光検出をポリプロピレン基材を通して外部から行った。本実施例では光電子増倍管と光ファイバを組み合わせた蛍光検出装置によって上記蛍光反応を測定した。
 図13及び14は本実施例によって検出された蛍光反応によるSNPsの解析結果のグラフである。各グラフの縦軸は検出された光の強度であり、蛍光の強度を示す。横軸は時間軸である。
 図13は反応を行った1つのウェルの結果であり、所定の時間内に混合した試薬類による蛍光検出反応が生じていることが確認された。
 図14は試薬類をあらかじめ固定していないウェルのため、蛍光反応は検出されなかった。これにより両隣からのコンタミネーションは生じていないことが確認された。
 また、図15はポリプロピレン製のチューブにて一般的な手法で最適の分量比で試薬類とサンプルを混合して得られた検出データである(ポジティブコントロール)。図6と図8を比較すると、図15が示す本実施例によるチップ内の反応は図8の反応と一致していることから、本実施例では最適な分量比による反応であることが確認できる。これにより、所望した量のサンプルを配液できていることが分かる。
 本実施例1のように本発明では貼り合わせる基材を反応に合った材質で選定することで、より簡易に、かつ短時間で効率よく反応工程を行うことが可能となった。
<実施例2>
 実施例2として、別の流路の形状の本発明試料分析チップの検討を行なった。
 本実施例では、図3に示した形状の試料分析チップを作製した。実施例1では生化学反応の阻害物質の混合を防ぐために耐薬品性の高いポリプロピレン樹脂を射出成形することによりチップを製作したが、流路形状の検討を行うために今回はアクリル樹脂をφ6mmからφ0.4mmまでのエンドミルによって機械切削加工し、流路形状を形成した。
 実施例1で使用した図2の形状の試料分析チップ(チップ1)及び上記図3の形状の試料分析チップ(チップ2)にブロモフェノールブルー色素で色付けをした純水を主流路に送液し、実施例1同様に5000rpmで円形状のチップの中心を軸に回転させ、10回の試行でばらつきを計測した。なお、いずれの試料分析チップも各ウェルに均等に送液されたと想定した場合の液量は12μlである。
 チップ1では、送液量は最小値で9.5μl、最大値で14.0μlであった。これに対し、チップ2でのばらつきは最小値で11.0μl、最大値で12.5μlとなり、配液量のばらつきをさらに大きく抑制できる事が示された。
<実施例3>
 実施例3における本発明に係る試料分析チップの第一の基材401として、ポリプロピレン樹脂を用いて、図7に示すような円盤状の外形を持ち、同心円上に波状の主流路103と、主流路谷部103bに連絡口を持つ側路105と、側路の末端にウェル102を有し、さらに側路から分岐したウェル分岐流路105aと廃液チャンバ分岐流路104a、及び廃液チャンバ105bを有するチップを射出成型により形成した。この基材(ポリプロピレン基材)にはそれぞれ23個のウェル及び側路が形成されている。主流路は周期的に面積を変え、主流路の山と山の間の谷部103bの容積は15μlとなるように設計し、また、ウェル分岐流路の容積が、2μl、ウェルの内容積が11μl、廃液チャンバの容積が5μlとなるように設計した。
 上記ポリプロピレン基材と貼り合わせる第二の基材402として、樹脂コーティング層としてポリプロピレン樹脂がコーティングされたアルミシート基材を用いた。樹脂コーティング層には、厚みが約0.07mmのものを使用した。樹脂コーティング層は融点が120度前後であり、アルミニウム側に熱を与えれば溶融するように該アルミ基材にコーティングされている。
 さらに、アルミニウム層と樹脂コーティング層の間にカーボンを練りこんだアンカー層が設けられ、レーザ光照射による発熱でも樹脂コーティング層が溶融する構成となっている。
 該ポリプロピレン基材上のウェルにはインベーダー反応用プローブ試薬とDNAポリメラーゼ、クリベースといった酵素類をピペットで滴下し乾燥固定させた。
 該ポリプロピレン基材と該アルミ基材を重ね合わせ、アルミ基材側に130度以上の熱を加えることで、該樹脂コーティング層が溶融させて該ポリプロピレン基材とアルミ基材を溶着した。
 上記の工程で作製したチップに、精製されたゲノムを加えたバッファ溶液を溶液試料としてピペットにて送液し、主流路103に充填した。この段階ではウェル及び側路には試料は浸入していなかった。
 なお上記各試薬類は実施例1の表1に記載した分量と同様の分量で用いた。
 送液後、5000rpmにてチップ中心を軸としてチップを回転させたところ、各ウェルとウェル分岐流路が満たされ、廃液チャンバには0.5μl~3μlの溶液が溜められた。各ウェルには11μlの試料が送液された。チップに遠心力を与える手段として、化学、生物反応における試薬の分離などに用いられる卓上小型遠心機を利用した簡易な遠心装置を作成し、これを用いた。遠心時の回転数は回転数測定器にて測定して調整した。 
 なお、遠心時のチップの回転方向に関しては、側路の傾き方向に対していずれの方向に回転させた場合でも回転数の増加中はチップ内の液挙動に影響を及ぼすが、ウェルの配液のばらつきに影響しない事が確認できた。
 続いて、反応に阻害の無い試薬類表(表1)記載のミネラルオイルを同様の手法で送液したところ、試料はウェルを満たし、残った溶液で側路の半分程度を満たし、ミネラルオイルはウェル分岐流路と廃液チャンバ分岐流路及び側路を完全に満たし、主流路の一部を満たした。
 なお、本実施例はウェル22箇所に反応用試薬としてインベーダー反応用プローブを固定した。また、反応結果の成否を判定するために、コンタミネーションの有無の確認としてネガティブコントロールを1箇所に設定し、1枚のチップ上で反応試験を行った。
 該反応容器がオイルによって独立した状態の試料分析チップに95℃と68℃を交互に35サイクルかけ、PCR反応によってサンプルのゲノムを増幅する。続いて、63℃で30min温調することにより、酵素反応によりウェル内で蛍光検出反応を生じる。
 また、このときチップのポリプロピレン基材側は透明であることから、蛍光検出をポリプロピレン基材を通して外部から行った。本実施例では光電子増倍管と光ファイバを組み合わせた蛍光検出装置によって上記蛍光反応を測定した。
 測定の結果、実施例1と同様に、各ウェルに配液された試薬により、所定の時間内に混合した試薬類による蛍光検出反応が生じていることが確認され、一般的な手法で最適の分量比で試薬類とサンプルを混合して得られた検出データと同様の結果が得られた。また、ネガティブコントロールのウェルでは、蛍光反応は検出されなかった。これにより両隣からのコンタミネーションは生じていないことが確認された。
<実施例4>
 本発明の試料分析チップの実施例として、図11(B)及び図3に記載された試料分析チップを作製した。第一の基材401’は、ポリプロピレン樹脂を用いて射出成形により加工した。側路105の幅は約1mmであり、ウェル102は上部が平坦な台形になっており、ウェル底部の直径は約3mmで、容積約7μlである。
 ポリプロピレンは赤外線部分に吸収がないため、プロピレン樹脂に赤外線吸収剤を添加することが必要である。本実施例では、予めプロピレン樹脂100重量部に対して赤外線吸収剤としてBASF社のLumogen(登録商標)IR765を0.01重量部添加し、混合して赤外線吸収剤含有のプロピレン樹脂ペレットを用意し、これを用いて射出成形により上記試料分析チップの第一の基材を作製した。
 また第二の基材402’として、厚み約0.15mmのプロピレンフィルムを使用した。
 第一の基材401’上のウェルにはインベーダー反応用プローブ試薬とDNAポリメラーゼ、クリベースといった酵素類をピペットで滴下し乾燥固定させた。
 第一の基材401’と第二の基材402’を重ね合わせ、波長808nm、出力140Wの赤外光フォトダイオートレーザを用いて、第二の基材側からレーザビームを一定の速度でスキャンしチップを照射することによって、第一の基材を第二の基材を溶着した。
 上記の工程で作製したチップに、バッファ溶液と精製されたゲノムを加えたバッファ溶液を溶液試料としてピペットにて送液し、主流路103に充填した。この段階ではウェル及び側路には試料は浸入していなかった。
 なお上記各試薬類は実施例1の表1に記載した分量と同様の分量で用いた。
 送液後、5000rpmにてチップ中心を軸としてチップを回転させたところ、各ウェルに11μlの試料が送液された。チップに遠心力を与える手段として、化学、生物反応における試薬の分離などに用いられる卓上小型遠心機を利用した簡易な遠心装置を作成し、これを用いた。遠心時の回転数は回転数測定器にて測定して調整した。
 続いて、反応に阻害の無い試薬類表(表1)記載のミネラルオイルを同様の手法で送液したところ、試料はウェルを満たし、残った溶液で側路の半分程度を満たした。
 なお、本実施例はウェル22箇所に反応用試薬としてインベーダー反応用プローブを固定した。また、反応結果の成否を判定するために、コンタミネーションの有無の確認としてネガティブコントロールを1箇所に設定し、1枚のチップ上で反応試験を行った。
 該反応容器がオイルによって独立した状態の試料分析チップに95℃と68℃を交互に35サイクルかけ、PCR反応によってサンプルのゲノムを増幅する。続いて、63℃で30min温調することにより、酵素反応によりウェル内で蛍光検出反応を生じる。
 また、このとき蛍光検出をチップの第一の基材401’側の外部から行った。本実施例では光電子増倍管と光ファイバを組み合わせた蛍光検出装置によって上記蛍光反応を測定した。
 測定の結果、実施例1と同様に、各ウェルに配液された試薬により、所定の時間内に混合した試薬類による蛍光検出反応が生じていることが確認され、一般的な手法で最適の分量比で試薬類とサンプルを混合して得られた検出データと同様の結果が得られた。また、ネガティブコントロールのウェルでは、蛍光反応は検出されなかった。これにより両隣からのコンタミネーションは生じていないことが確認された。
 本発明の反応チップは、例えば核酸等の試料において生化学物質の検出や分析に用いることができる。特にSNPの変異を検出できることから、がんなどの遺伝子、生殖細胞や体細胞遺伝子の変異を検出する手法へ利用することができる。また、複数の溶液を混合する容器、反応容器として利用することが可能である。
101・・・基材
102・・・ウェル
103・・・主流路
103a・・主流路山部
103b・・主流路谷部
104・・・廃液部
104a・・・廃液チャンバ分岐流路
104b・・・廃液チャンバ
105a・・・ウェル分岐流路
105・・・側路
107・・・INLET/OUTLET
401・・・第一の基材
401’・・・第一の基材(光透過性樹脂)
402・・・第二の基材
402’・・・第二の基材(赤外線透過性樹脂)
403・・・INLET/OUTLET(貫通孔)
405・・・担持部
501・・・固定試薬類
502・・・ワックス

 
 

Claims (31)

  1.  基材に複数のウェルと、各ウェルに繋がる流路と、流路に溶液を注入するための注入口とを有し、該基材を回転させてウェルに溶液を配液する試料分析チップであって、
     前記流路は、各前記ウェルに送液する主流路を有し、該主流路は前記ウェルより回転中心側に設けられ、隣り合うウェルの間で回転中心方向に対して一つの山を有するように形成されていることを特徴とする試料分析チップ。
  2.  前記主流路の山と山との間の谷部で前記ウェル及び主流路が連絡することを特徴とする請求項1に記載の試料分析チップ。
  3.  前記主流路の路幅が相対的に山部で小さく、谷部で大きいことを特徴とする請求項1又は2に記載の試料分析チップ。
  4.  前記基材が円盤状であり、前記ウェルは該基材と同心円状に配置されていることを特徴とする請求項1ないし3のいずれかに記載の試料分析チップ。
  5.  前記主流路とウェルとを連絡する側路を有することを特徴とする請求項1ないし4のいずれかに記載の試料分析チップ。
  6.  前記側路が、回転中心方向に対して傾いて形成されていることを特徴とする請求項5に記載の試料分析チップ。
  7.  前記主流路が、回転中心方向に対して傾いて形成されていることを特徴とする請求項1ないし6のいずれかに記載の試料分析チップ。
  8.  前記主流路とウェルとを連絡する側路を有し、
     前記側路に余剰溶液を溜める廃液部が設けられたことを特徴とする請求項1ないし7のいずれかに記載の試料分析チップ。
  9.  前記廃液部が、廃液を溜める廃液チャンバと、前記側路を分岐し、該廃液チャンバと、連絡する廃液チャンバ分岐流路とを有することを特徴とする請求項8記載の試料分析チップ。
  10.  前記側路は、回転中心方向に対して傾いて形成されており、
     前記廃液部は、回転中心方向に対して側路の内側に設けられていることを特徴とする請求項8に記載の試料分析チップ。
  11.  前記ウェルに連通する分岐流路は前記廃液チャンバに連通する分岐流路より送液時の圧力損失が低いことを特徴とする請求項9または10に記載の試料分析チップ。
  12.  前記ウェルに連絡する分岐流路の断面積が、前記廃液チャンバ分岐流路の断面積よりも大きいことを特徴とする請求項11に記載の試料分析チップ。
  13.  廃液チャンバ分岐流路よりもウェルに連絡する分岐流路の表面粗さが小さいことを特徴とする請求項11に記載の試料分析チップ。
  14.  廃液チャンバ分岐流路の流路内表面を撥水処理したことを特徴とする請求項11に記載の試料分析チップ。
  15.  ウェルに連絡する分岐流路の流路内表面を親水処理したことを特徴とする請求項11に記載の試料分析チップ。
  16.  前記試料分析チップは前記ウェル及び前記流路を形成した第一の基材と、該基材と貼り合わせた第二の基材とを有する請求項1ないし15のいずれかに記載の試料分析チップ。
  17.  前記基材のいずれか一方が光透過性材料で形成されていることを特徴とする請求項16に記載の試料分析チップ。
  18.  第一の基材が光透過性の樹脂材料であり、第二の基材が金属材料であることを特徴とする請求項17に記載の試料分析チップ。
  19.  前記第一の基材が、可視光に対して光透過性でありかつ赤外線に対して光吸収性の樹脂からなり、前記第二の基材が、少なくとも波長800nm以上の赤外線を透過する板状又はフィルム状であることを特徴とする請求項17に記載の試料分析チップ。
  20.  前記第一の基材は、ポリプロピレン、ポリカーボネート、アクリル樹脂のいずれかの樹脂基材であることを特徴とする請求項19に記載の液体試料分析用チップ。
  21.  前記第一の基材は、800nm以上の波長領域に吸収を有する赤外線吸収剤を含むことを特徴とする請求項19又は20に記載の試料分析チップ。
  22.  前記第二の基材は、ポリプロピレン、ポリカーボネート、アクリル樹脂のいずれかの樹脂基材であることを特徴とする請求項1ないし3のいずれか1項に記載の液体試料分析用チップ。
  23.  前記第二の基材の厚みが、0.05~0.5mmの範囲にあることを特徴とする請求項1ないし23のいずれか1項に記載の試料分析チップ。
  24.  前記第一の基材に試料分析チップを回転させるための担持部が設けられていることを特徴とする請求項1ないし24のいずれかに記載の試料分析チップ。
  25.  請求項19~23のいずれかに記載の試料分析チップの製造方法であって、
     前記第二の基材側から赤外線レーザを照射し、前記第一の基材と前記第二の基材とを溶融接着し、張り合わせることを特徴とする試料分析チップの製造方法。
  26.  前記赤外線レーザの波長が、800~1200nmの範囲にあることを特徴とする請求項26に記載の試料分析チップの製造方法。
  27.  前記試料分析チップの製造において、前記第一の基材と前記第二の基材とを張り合わせる前に、前記ウェルに試薬を固定する工程を含むことを特徴とする請求項27又は27に記載の試料分析チップの製造方法。
  28.  請求項1ないし24のいずれかに記載の試料分析チップを設置し、回転させる手段と、
     前記ウェルでの反応を検出するための検出測定手段と、を有する試料分析装置。
  29.  請求項1ないし24のいずれかに記載の試料分析チップの前記主流路に溶液を注入する工程と、
     該試料分析チップを回転させて溶液を前記各ウェルに配液する工程と、を有する試料分析方法。
  30.  請求項30に記載の試料分析方法において、
     前記ウェルに配液する工程の後に、ミネラルオイルを前記各ウェルに配液する工程を有することを特徴とする試料分析方法。
  31.  請求項30又は31に記載の試料分析方法を用いたことを特徴とする遺伝子解析方法。
PCT/JP2010/055721 2009-03-31 2010-03-30 試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法 WO2010113959A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10758730.5A EP2416160B1 (en) 2009-03-31 2010-03-30 Sample analysis chip, sample analyzer using sample analysis chip, sample analysis method, and method of producing sample analysis chip
US13/138,756 US8546129B2 (en) 2009-03-31 2010-03-30 Sample analysis chip, sample analyzer using sample analysis chip, sample analysis method, and method of producing sample analysis chip
JP2011507222A JP4962658B2 (ja) 2009-03-31 2010-03-30 試料分析チップ、これを用いた試料分析装置、試料分析方法及び遺伝子解析方法、並びに試料分析チップの製造方法
CN201080014320.2A CN102369443B (zh) 2009-03-31 2010-03-30 试样分析芯片、采用该试样分析芯片的试样分析装置和试样分析方法、以及试样分析芯片的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009085272 2009-03-31
JP2009-085274 2009-03-31
JP2009-085273 2009-03-31
JP2009-085272 2009-03-31
JP2009085273 2009-03-31
JP2009085274 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113959A1 true WO2010113959A1 (ja) 2010-10-07

Family

ID=42828248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055721 WO2010113959A1 (ja) 2009-03-31 2010-03-30 試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法

Country Status (6)

Country Link
US (1) US8546129B2 (ja)
EP (1) EP2416160B1 (ja)
JP (2) JP4962658B2 (ja)
CN (1) CN102369443B (ja)
TW (1) TWI468685B (ja)
WO (1) WO2010113959A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185000A (ja) * 2011-03-04 2012-09-27 Toppan Printing Co Ltd 試料分析チップ及びこれを用いた試料分析方法
WO2013077391A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
JP2013538559A (ja) * 2010-07-23 2013-10-17 バイオニア コーポレーション 試料内蔵マイクロチャンバープレート及び分析用マイクロチャンバープレートの製造方法、分析用マイクロチャンバープレート及び試料内蔵マイクロチャンバープレートの製造装置セット
JP2014070991A (ja) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd 複数試料を分析するための試料分析チップとその分析装置
JP2014070904A (ja) * 2012-09-27 2014-04-21 Toppan Printing Co Ltd 生化学物質を処理または分析するための生化学反応チップ及びその分析方法
JP2015206715A (ja) * 2014-04-22 2015-11-19 凸版印刷株式会社 試料分析チップ
JPWO2017061600A1 (ja) * 2015-10-08 2018-08-02 凸版印刷株式会社 マイクロ流体デバイスおよび試料分析方法
JPWO2017115863A1 (ja) * 2015-12-28 2018-10-18 凸版印刷株式会社 マイクロ流体デバイスおよび観察方法
CN108686727A (zh) * 2018-06-26 2018-10-23 宁波奥丞生物科技有限公司 快速定量检测PLGF和sFLT-1的微流控芯片
CN112076806A (zh) * 2019-06-14 2020-12-15 中国科学院青岛生物能源与过程研究所 一种针对低浓度液体样本的离心富集微流控芯片
CN112934279A (zh) * 2021-01-29 2021-06-11 中新国际联合研究院 一种磁性数字微流体芯片及其装载结构

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389371A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种圆盘式多指标分析芯片
JP6295578B2 (ja) 2013-09-30 2018-03-20 凸版印刷株式会社 反応容器、核酸解析装置、および核酸解析方法
CN103831140B (zh) * 2014-03-07 2015-12-30 博奥生物集团有限公司 一种多指标检测的微流控芯片
CN106662455B (zh) * 2014-08-06 2019-12-10 三菱电机株式会社 警告通知系统和警告通知方法
JP6323274B2 (ja) * 2014-09-16 2018-05-16 凸版印刷株式会社 試料分析チップ
TWI561808B (en) * 2015-01-09 2016-12-11 Delta Electronics Inc Centrifugal channel device
CN104630373B (zh) * 2015-02-13 2017-11-21 博奥生物集团有限公司 一种微流控芯片核酸快速并行检测方法及系统
USD841186S1 (en) * 2015-12-23 2019-02-19 Tunghai University Biochip
CN105964313B (zh) * 2016-01-22 2019-04-09 上海快灵生物科技有限公司 一种离心式多通道微流体芯片
CN108884430B (zh) * 2016-04-20 2019-11-19 希森美康株式会社 核酸分析装置及核酸分析方法
WO2017188401A1 (ja) * 2016-04-27 2017-11-02 凸版印刷株式会社 反応容器及び生化学分析方法
CN107121421A (zh) * 2017-06-20 2017-09-01 内江师范学院 用于现场检测水样中重金属离子的便携式目测荧光仪及方法
EP3680663B1 (en) 2017-09-07 2023-12-06 Mitsubishi Gas Chemical Company, Inc. Substrate for biochip, biochip, method for manufacturing biochip, and method for preserving biochip
CN108732370B (zh) * 2018-03-28 2021-07-09 无锡科智达科技有限公司 一种试剂的均分方法
BR112021003169A2 (pt) 2018-08-24 2021-05-11 Zoetis Services Llc sistemas e métodos para a inspecionar um dispositivo de rotor microfluídico
ES2963294T3 (es) * 2018-08-24 2024-03-26 Zoetis Services Llc Procedimientos para la fabricación de un dispositivo de rotor microfluídico
EP3840883A1 (en) 2018-08-24 2021-06-30 Zoetis Services LLC Microfluidic rotor device
CA3108277C (en) 2018-08-24 2023-08-08 Zoetis Services Llc Microfluidic rotor device
CN110295107A (zh) * 2019-07-01 2019-10-01 贵州金玖生物技术有限公司 一种用于核酸检测的多通量微流控芯片
CN114308164A (zh) * 2022-01-12 2022-04-12 无锡博奥玛雅医学科技有限公司 一种可适配荧光定量pcr仪的微流控芯片
DE102022106693B3 (de) 2022-03-22 2023-03-16 Dermagnostix GmbH Centrifugal Microfluidic Biochip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154160A (ja) * 1984-01-23 1985-08-13 Hitachi Koki Co Ltd 遠心試料の分注、測定機構
JP2004529333A (ja) * 2001-03-19 2004-09-24 ユィロス・アクチボラグ 流体機能を規定する構造ユニット
JP2005518531A (ja) * 2002-02-26 2005-06-23 バイエル・ヘルスケア・エルエルシー 遠心力及び/又は毛管力によって流体を正確に移動し、操作する方法及び装置
JP2007033226A (ja) * 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd 検査ディスク
JP2007527517A (ja) * 2003-07-01 2007-09-27 スリーエム イノベイティブ プロパティズ カンパニー 開口部のないチャンネルを備えたサンプル処理装置
JP3142125U (ja) * 2008-03-19 2008-06-05 株式会社島津製作所 容器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810449B2 (ja) 1989-10-26 1998-10-15 株式会社アマダ 切断機における切込み制御方法
JPH04181046A (ja) 1990-11-15 1992-06-29 Toyota Motor Corp 歯車変速機の回転同期装置
US5246666A (en) * 1992-05-08 1993-09-21 Becton, Dickinson And Company Additive having dual surface chemistry for blood collection container and assembly containing same
US6156270A (en) 1992-05-21 2000-12-05 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membranes
US5631166A (en) * 1995-03-21 1997-05-20 Jewell; Charles R. Specimen disk for blood analyses
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
US6627159B1 (en) 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US6653625B2 (en) * 2001-03-19 2003-11-25 Gyros Ab Microfluidic system (MS)
US7429354B2 (en) * 2001-03-19 2008-09-30 Gyros Patent Ab Structural units that define fluidic functions
US6919058B2 (en) * 2001-08-28 2005-07-19 Gyros Ab Retaining microfluidic microcavity and other microfluidic structures
CA2470350C (en) 2001-12-21 2010-11-09 3M Innovative Properties Company Centrifugal filling of sample processing devices
US7083974B2 (en) * 2002-07-12 2006-08-01 Applera Corporation Rotatable sample disk and method of loading a sample disk
US7125711B2 (en) * 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
US20070095393A1 (en) * 2004-03-30 2007-05-03 Piero Zucchelli Devices and methods for programmable microscale manipulation of fluids
US20090123337A1 (en) * 2005-06-24 2009-05-14 Arkray,Inc Cartridge
JP2008083017A (ja) 2006-09-26 2008-04-10 Taiyo Yuden Co Ltd 液体試料の流路を有する分析用媒体及び液体試料を流動させる方法
EP2096444B1 (en) * 2006-10-31 2016-12-07 Panasonic Healthcare Holdings Co., Ltd. Microchip and analyzer using the same
KR101410752B1 (ko) * 2007-07-20 2014-06-23 삼성전자 주식회사 광학 검출 장치, 광학 검출 방법, 및 상기 광학 검출장치를 포함하는 미세유동 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154160A (ja) * 1984-01-23 1985-08-13 Hitachi Koki Co Ltd 遠心試料の分注、測定機構
JP2004529333A (ja) * 2001-03-19 2004-09-24 ユィロス・アクチボラグ 流体機能を規定する構造ユニット
JP2005518531A (ja) * 2002-02-26 2005-06-23 バイエル・ヘルスケア・エルエルシー 遠心力及び/又は毛管力によって流体を正確に移動し、操作する方法及び装置
JP2007527517A (ja) * 2003-07-01 2007-09-27 スリーエム イノベイティブ プロパティズ カンパニー 開口部のないチャンネルを備えたサンプル処理装置
JP2007033226A (ja) * 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd 検査ディスク
JP3142125U (ja) * 2008-03-19 2008-06-05 株式会社島津製作所 容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416160A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538559A (ja) * 2010-07-23 2013-10-17 バイオニア コーポレーション 試料内蔵マイクロチャンバープレート及び分析用マイクロチャンバープレートの製造方法、分析用マイクロチャンバープレート及び試料内蔵マイクロチャンバープレートの製造装置セット
JP2012185000A (ja) * 2011-03-04 2012-09-27 Toppan Printing Co Ltd 試料分析チップ及びこれを用いた試料分析方法
JPWO2013077391A1 (ja) * 2011-11-25 2015-04-27 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
WO2013077391A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
US9453255B2 (en) 2011-11-25 2016-09-27 Toppan Printing Co., Ltd. Sample analysis chip, sample analysis method and gene analysis method
CN103988082A (zh) * 2011-11-25 2014-08-13 凸版印刷株式会社 试样分析芯片和试样分析方法以及基因分析方法
JP2014070904A (ja) * 2012-09-27 2014-04-21 Toppan Printing Co Ltd 生化学物質を処理または分析するための生化学反応チップ及びその分析方法
JP2014070991A (ja) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd 複数試料を分析するための試料分析チップとその分析装置
JP2015206715A (ja) * 2014-04-22 2015-11-19 凸版印刷株式会社 試料分析チップ
JPWO2017061600A1 (ja) * 2015-10-08 2018-08-02 凸版印刷株式会社 マイクロ流体デバイスおよび試料分析方法
JPWO2017115863A1 (ja) * 2015-12-28 2018-10-18 凸版印刷株式会社 マイクロ流体デバイスおよび観察方法
CN108686727A (zh) * 2018-06-26 2018-10-23 宁波奥丞生物科技有限公司 快速定量检测PLGF和sFLT-1的微流控芯片
CN112076806A (zh) * 2019-06-14 2020-12-15 中国科学院青岛生物能源与过程研究所 一种针对低浓度液体样本的离心富集微流控芯片
CN112076806B (zh) * 2019-06-14 2022-12-30 中国科学院青岛生物能源与过程研究所 一种针对低浓度液体样本的离心富集微流控芯片
CN112934279A (zh) * 2021-01-29 2021-06-11 中新国际联合研究院 一种磁性数字微流体芯片及其装载结构
CN112934279B (zh) * 2021-01-29 2023-03-10 中新国际联合研究院 一种磁性数字微流体芯片及其装载结构

Also Published As

Publication number Publication date
JP2012132935A (ja) 2012-07-12
TW201040525A (en) 2010-11-16
JP4962658B2 (ja) 2012-06-27
US20120015828A1 (en) 2012-01-19
CN102369443A (zh) 2012-03-07
US8546129B2 (en) 2013-10-01
EP2416160B1 (en) 2021-08-18
EP2416160A1 (en) 2012-02-08
JP5392369B2 (ja) 2014-01-22
JPWO2010113959A1 (ja) 2012-10-11
EP2416160A4 (en) 2016-09-07
TWI468685B (zh) 2015-01-11
CN102369443B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5392369B2 (ja) 試料分析チップ、これを用いた試料分析装置、試料分析方法及び遺伝子解析方法、並びに試料分析チップの製造方法
JP6075293B2 (ja) 試料分析チップ並びに試料分析方法及び遺伝子解析方法
WO2017186063A1 (zh) 一种离心式多通道微流体芯片
JP6323274B2 (ja) 試料分析チップ
US8048387B2 (en) Centrifugal microfluidic device having sample distribution structure and centrifugal microfluidic system including the centrifugal microfluidic device
US9101935B2 (en) Microfluidic apparatus and control method thereof
JP5521454B2 (ja) 試料分析チップ、これを用いた試料分析装置及び試料分析方法
US20010001060A1 (en) Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
US20080153152A1 (en) Microfluidic chip
US7919306B2 (en) Biological sample reaction chip, biological sample reaction apparatus, and biological sample reaction method
JP2015121493A (ja) 試料分析チップ
JP2012185000A (ja) 試料分析チップ及びこれを用いた試料分析方法
JP5707683B2 (ja) 試料分析チップ、これを用いた試料分析装置及び試料分析装置、並びに遺伝子解析方法
JP2011214943A (ja) 試料分析チップ、試料分析方法及び試料分析装置
JP6155591B2 (ja) 複数試料を分析するための試料分析チップとその分析方法
JP5505041B2 (ja) 生化学反応用チップ及びその製造方法
JP2015206715A (ja) 試料分析チップ
JP2017053650A (ja) 試料分析チップ、試料分析方法及び試料分析装置
JP5499840B2 (ja) 試料分析チップ及びこれを用いた試料分析方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014320.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13138756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758730

Country of ref document: EP