CN108686727A - 快速定量检测PLGF和sFLT-1的微流控芯片 - Google Patents

快速定量检测PLGF和sFLT-1的微流控芯片 Download PDF

Info

Publication number
CN108686727A
CN108686727A CN201810673732.5A CN201810673732A CN108686727A CN 108686727 A CN108686727 A CN 108686727A CN 201810673732 A CN201810673732 A CN 201810673732A CN 108686727 A CN108686727 A CN 108686727A
Authority
CN
China
Prior art keywords
sflt
plgf
chip
zone
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810673732.5A
Other languages
English (en)
Inventor
唐静
陈星星
蒋理国
周义正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Austria Cheng Biological Technology Co Ltd
Original Assignee
Ningbo Austria Cheng Biological Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Austria Cheng Biological Technology Co Ltd filed Critical Ningbo Austria Cheng Biological Technology Co Ltd
Priority to CN201810673732.5A priority Critical patent/CN108686727A/zh
Publication of CN108686727A publication Critical patent/CN108686727A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明公开了快速定量检测PLGF和sFLT‑1的微流控芯片,包括芯片基板和芯片盖板,包括芯片基板与芯片盖板通过键合而成,芯片基板上设有对称设置的2个微流控通道,芯片基板上包括依次连通的加样区、反应区、检测区、废液区,芯片盖板上设有加样孔,加样孔的位置与加样区相对应,反应区包被有荧光微球标记的PLGF抗体I或荧光微球标记的sFLT‑1抗体I,检测区内固定包被有不同表位的PLGF抗体II或sFLT‑1抗体II;本发明具有灵敏度高、可重复性好的优点,所需样本量极少,检测时间短,操作简便,检测全自动,可同时对PLGF和sFLT‑1进行检测,能够快速帮助医生预测子痫前期患病风险,对高危人群进行早期识别并干预,从而保障妊娠期母婴安全。

Description

快速定量检测PLGF和sFLT-1的微流控芯片
技术领域
本发明涉及医学检验领域,具体涉及快速定量检测PLGF和sFLT-1的微流控芯片。
背景技术
可溶性血管内皮生长因子受体1(sVEGFR-1),也称可溶性fms样酪氨酸激酶-1(sFLT-1),最初被发现于人类脐静脉内皮细胞,是一种具有酪氨酸激酶活性的糖蛋白;胎盘生长因子(PLGF)是由胎盘分泌的血管生长因子,能够促进血管内皮细胞的增殖,是一种主要的血管生成因子,并增加内皮细胞的通透性;作为妊娠期特有的严重并发症之一,子痫前期发生率约为所有妊娠的3-5%,15%的早产和42%的孕妇死亡由子痫前期导致,对母婴健康造成严重威胁。在发病早期对有子痫前期风险的孕妇进行及时、准确的诊断有利于临床对患者进行密切监测、及时进行有效护理以控制病情、延长孕周,对于降低子痫前期发病率与死亡率、保障母婴安全具有重要意义。目前,已有大量研究证明sFLT-1和PLGF浓度的改变明显早于子痫前期发病,sFLT-1/PLGF比值可以更好地反映胎盘血管的生长情况,在评估蛋白尿和血压的基础上,联合检测sFLT-1/PLGF比值能够帮助临床更好地预测子痫前期患病风险,帮助医生对高危人群进行早期识别并干预,从而保障妊娠期母婴安全。
微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程;能够极大地简化了操作流程,降低了样品和试剂消耗,并且不需要配备昂贵的仪器,使现场即时检测成为可能,具有可预见的巨大的经济价值和社会价值;因此,建立一种检测PLGF和sFLT-1的微流控芯片技术平台具有十分重要的意义。
发明内容
本发明的目的在于提供快速定量检测PLGF和sFLT-1的微流控芯片,能够快速帮助医生预测子痫前期患病风险,对高危人群进行早期识别并干预,从而保障妊娠期母婴安全。
为实现上述目的,本发明提供如下技术方案:快速定量检测PLGF和sFLT-1的微流控芯片,包括芯片基板和芯片盖板,包括芯片基板与芯片盖板通过键合而成,芯片基板上设有对称设置的2个微流控通道,芯片基板上包括依次连通的加样区、反应区、检测区、废液区,芯片盖板上设有加样孔,加样孔的位置与加样区相对应,加样孔位于加样区上方,反应区包被有荧光微球标记的PLGF抗体I或荧光微球标记的sFLT-1抗体I,检测区内固定包被有不同表位的PLGF抗体II或sFLT-1抗体II。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述芯片基板、芯片上盖的截面为圆形结构。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述微流控通道沿芯片基板的半径方向设置,2个微流控通道到芯片基板的距离相等。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述加样区靠近芯片基板的中心。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述加样区与反应区通过第一通道相连通,第一通道内设有过滤垫,过滤垫为全血分离膜,膜中大孔能够通过物理方式截留全血中的红细胞、白细胞,血浆从膜下游面的小孔流出,可快读分离全血中的血浆而无溶血现象,避免红细胞对检测结果的影响;所述反应区与检测区通过第二通道相连通,第二通道内设有限流柱,限流柱可有效控制流体在第二通道内的时间,从而使待测流体与抗体反应充分、完全,检测区与废液区通过第三通道相连通,第三通道内设有限位杆,限位杆靠近检测区,限位杆可以阻挡废液区中的废液返回检测区,限位杆朝向废液区的一侧设有齿状凸起,便于引流,使得检测区的流体能顺利流入废液区。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述限流柱包括一体设计的第一限流段、第二限流段、第三限流段,第二限流段位于第一限流段、第三限流段之间,第一限流段、第三限流段的截面为长条形结构,第二限流段的截面为s形结构,限流柱的数量为2条,2条限流柱平行设置,第二通道与限流柱之间形成导流槽。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述芯片基板、芯片上盖选用聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚四氟乙烯中的一种。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述加样区的截面为等腰梯形结构,反应区、检测区的截面为圆形结构,废液区的截面为等腰三角形结构。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述废液区的体积大于加样区、反应区、检测区的总体积之和。
本发明还提供一种制备上述微流控芯片的方法,包括如下步骤:
(1)将过滤垫固定于第一通道中靠近加样区的一侧;
(2)将荧光微球用0.05mol/L MES缓冲液(pH=7.2)洗涤,洗涤后,加入碳二亚胺和N-羟基琥珀酰亚胺,室温反应2h,得到荧光微球溶液,将抗体I溶于0.05mol/L的PBS缓冲液(pH=7.2),得到抗体I溶液,将荧光微球溶液加入抗体I溶液中,室温反应2h,离心过滤,用0.01mol/L的PBS缓冲液(pH=7.2)洗涤3-5次,得到荧光微球标记的抗体I,将荧光微球标记的抗体I滴涂于反应区;
(3)将抗体II固定包被于检测区。
检测原理:将全血样本从加样孔中加进加样区,在离心力的驱动下,全血样本经过第一通道内的过滤点,去除红细胞、白细胞,随后进入反应区;样本中的抗原与荧光微球标记的抗体反应形成,形成抗原-抗体-荧光微球复合物,在离心力的驱动下,反应区中的抗原-抗体I-荧光微球复合物从第二通道的导流槽中进入检测区,抗原-抗体I-荧光微球复合物与检测区固定的抗体II发生特异性免疫反应,形成荧光微球-抗体I-抗原-抗体II的双抗体夹心复合物,并固定在检测区;在离心力的驱动下,没有固定的样本进入废液区,通过加样孔加入清洗液,清洗微流控通道,最后将微流控芯片通过荧光检测仪进行检测。
本发明具有有益效果:本发明提供了一种快速定量检测PLGF和sFLT-1的微流控芯片,灵敏度高、可重复性好,所需样本量极少,检测时间短,操作简便,检测全自动,可同时对PLGF和sFLT-1进行检测,能够极大地简化了操作流程,降低了样品和试剂消耗,并且不需要配备昂贵的仪器,使现场即时检测成为可能,具有巨大的经济价值和社会价值;同时能够快速帮助医生预测子痫前期患病风险,对高危人群进行早期识别并干预,从而保障妊娠期母婴安全。
附图说明
图1为本发明芯片基板结构示意图;
图2为微流控通道结构示意图;
图3为图2中A处放大图;
图中:1-芯片基板,2-第一微流控通道,3-第二微流控通道,4-加样区,5-反应区,6-检测区,7-废液区,8-第一通道,9-第二通道,10-第三通道,11-过滤垫,12-限流柱,13-第一限流段,14-第二限流段,15-第三限流段,16-限位杆。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本实施例详细阐述了微流控芯片的结构;
如图1-2所示,快速定量检测PLGF和sFLT-1的微流控芯片,包括芯片基板1和芯片盖板,包括芯片基板与芯片盖板通过键合而成,芯片基板上设有对称设置的2个微流控通道,芯片基板上包括依次连通的加样区4、反应区5、检测区6、废液区7,芯片盖板上设有加样孔,加样孔的位置与加样区4相对应,加样孔位于加样区上方,反应区宝贝有荧光微球标记的PLGF抗体I或荧光微球标记的sFLT-1抗体I,检测区内固定包被有不同表位的PLGF抗体II或sFLT-1抗体II,
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述芯片基板1、芯片上盖的截面为圆形结构。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述微流控通道沿芯片基板的半径方向设置,2个微流控通道到芯片基板的距离相等。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述加样区靠近芯片基板的中心。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述加样区与反应区通过第一通道8相连通,第一通道内设有过滤垫11,过滤垫为全血分离膜,膜中大孔能够通过物理方式截留全血中的红细胞、白细胞,血浆从膜下游面的小孔流出,可快读分离全血中的血浆而无溶血现象,避免红细胞对检测结果的影响;所述反应区与检测区通过第二通道相连通,第二通道9内设有限流柱12,限流柱可有效控制流体在第二通道内的时间,从而使待测流体与抗体反应充分、完全,检测区与废液区通过第三通道10相连通,第三通道内设有限位杆,限位杆靠近检测区,限位杆可以阻挡废液区中的废液返回检测区,限位杆16朝向废液区的一侧设有齿状凸起,便于引流,使得检测区的流体能顺利流入废液区。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述限流柱12包括一体设计的第一限流段13、第二限流段14、第三限流段15,第二限流段位于第一限流段、第三限流段之间,第一限流段、第三限流段的截面为长条形结构,第二限流段的截面为s形结构,限流柱的数量为2条,2条限流柱平行设置,第二通道与限流柱之间形成导流槽。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述芯片基板、芯片上盖选用聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯、聚四氟乙烯中的一种。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述加样区的截面为等腰梯形结构,反应区、检测区的截面为圆形结构,废液区的截面为等腰三角形结构。
上述一种快速定量检测PLGF和sFLT-1的微流控芯片,其中,所述废液区的体积大于加样区、反应区、检测区的总体积之和。
实施例2
本实施例中详细阐述了定量检测PLGF的微流控芯片的制备方法;
芯片基板上设有第一微流控通道、第二微流控通道,其中第一微流控通道用于定量检测PLGF,具体包括如下步骤:
(1)将过滤垫固定于第一通道中靠近加样区的一侧;
(2)将荧光微球用0.05mol/L MES缓冲液(pH=7.2)洗涤,洗涤后,加入碳二亚胺和N-羟基琥珀酰亚胺,室温反应2h,得到荧光微球溶液,将PLGF抗体I溶于0.05mol/L的PBS缓冲液(pH=7.2),得到PLGF抗体I溶液,将荧光微球溶液加入PLGF抗体I溶液中,室温反应2h,离心过滤,用0.01mol/L的PBS缓冲液(pH=7.2)洗涤3-5次,得到荧光微球标记的PLGF抗体I,将荧光微球标记的PLGF抗体I滴涂于反应区;
(3)将PLGF抗体II固定包被于检测区。
本发明所有试剂均事先固定于芯片中,省却了传统试剂盒大量试管的使用,并省却反复取样操作,节省了人力物力;
检测时:将全血样本从加样孔中加进加样区,在离心力的驱动下,全血样本经过第一通道内的过滤点,去除红细胞、白细胞,随后进入反应区;样本中的抗原与荧光微球标记的PLGF抗体反应形成,形成抗原-PLGF抗体-荧光微球复合物,在离心力的驱动下,反应区中的抗原-PLGF抗体I-荧光微球复合物从第二通道的导流槽中进入检测区,抗原-PLGF抗体I-荧光微球复合物与检测区固定的PLGF抗体II发生特异性免疫反应,形成荧光微球-PLGF抗体I-抗原-PLGF抗体II的双抗体夹心复合物,并固定在检测区;在离心力的驱动下,没有固定的样本进入废液区,通过加样孔加入清洗液,清洗微流控通道,最后将微流控芯片通过荧光检测仪进行检测,检测荧光微球的发光强度,荧光强度与待测物浓度呈相关性。
实施例3
本实施例中详细阐述了定量检测sFLT-1的微流控芯片的制备方法;
芯片基板上设有第一微流控通道、第二微流控通道,其中第二微流控通道用于定量检测sFLT-1,具体包括如下步骤:
(1)将过滤垫固定于第一通道中靠近加样区的一侧;
(2)将荧光微球用0.05mol/L MES缓冲液(pH=7.2)洗涤,洗涤后,加入碳二亚胺和N-羟基琥珀酰亚胺,室温反应2h,得到荧光微球溶液,将sFLT-1抗体I溶于0.05mol/L的PBS缓冲液(pH=7.2),得到sFLT-1抗体I溶液,将荧光微球溶液加入sFLT-1抗体I溶液中,室温反应2h,离心过滤,用0.01mol/L的PBS缓冲液(pH=7.2)洗涤3-5次,得到荧光微球标记的sFLT-1抗体I,将荧光微球标记的sFLT-1抗体I滴涂于反应区;
(3)将sFLT-1抗体II固定包被于检测区。
检测时:将全血样本从加样孔中加进加样区,在离心力的驱动下,全血样本经过第一通道内的过滤点,去除红细胞、白细胞,随后进入反应区;样本中的抗原与荧光微球标记的sFLT-1抗体反应形成,形成抗原-sFLT-1抗体-荧光微球复合物,在离心力的驱动下,反应区中的抗原-sFLT-1抗体I-荧光微球复合物从第二通道的导流槽中进入检测区,抗原-sFLT-1抗体I-荧光微球复合物与检测区固定的sFLT-1抗体II发生特异性免疫反应,形成荧光微球-sFLT-1抗体I-抗原-sFLT-1抗体II的双抗体夹心复合物,并固定在检测区;在离心力的驱动下,没有固定的样本进入废液区,通过加样孔加入清洗液,清洗微流控通道,最后将微流控芯片通过荧光检测仪进行检测,检测荧光微球的发光强度,荧光强度与待测物浓度呈相关性。
将实施例3中通过荧光强度换算的sFLT-1浓度与实施2中通过荧光强度换算的PLGF浓度换算成sFLT-1/PLGF比值,sFLT-1/PLGF比值能够帮助临床更好地预测子痫前期患病风险,帮助医生对高危人群进行早期识别并干预,从而保障妊娠期母婴安全。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,包括芯片基板和芯片盖板,包括芯片基板与芯片盖板通过键合而成,芯片基板上设有对称设置的2个微流控通道,芯片基板上包括依次连通的加样区、反应区、检测区、废液区,芯片盖板上设有加样孔,加样孔的位置与加样区相对应,加样孔位于加样区上方,反应区包被有荧光微球标记的PLGF抗体I或荧光微球标记的sFLT-1抗体I,检测区内固定有不同表位的PLGF抗体II或sFLT-1抗体II。
2.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述芯片基板、芯片上盖的截面为圆形结构。
3.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述微流控通道沿芯片基板的半径方向设置,2个微流控通道到芯片基板的距离相等。
4.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述加样区靠近芯片基板的中心。
5.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述加样区与反应区通过第一通道相连通,第一通道内设有过滤垫,过滤垫为全血分离膜,所述反应区与检测区通过第二通道相连通,第二通道内设有限流柱,检测区与废液区通过第三通道相连通,第三通道内设有限位杆,限位杆靠近检测区,限位杆朝向废液区的一侧设有齿状凸起。
6.如权利要求5所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述限流柱包括一体设计的第一限流段、第二限流段、第三限流段,第二限流段位于第一限流段、第三限流段之间,第一限流段、第三限流段的截面为长条形结构,第二限流段的截面为s形结构,限流柱的数量为2条,2条限流柱平行设置,第二通道与限流柱之间形成导流槽。
7.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述芯片基板、芯片上盖选用聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚四氟乙烯中的一种。
8.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述加样区的截面为等腰梯形结构,反应区、检测区的截面为圆形结构,废液区的截面为等腰三角形结构。
9.如权利要求1所述的快速定量检测PLGF和sFLT-1的微流控芯片,其特征在于,所述废液区的体积大于加样区、反应区、检测区的总体积之和。
CN201810673732.5A 2018-06-26 2018-06-26 快速定量检测PLGF和sFLT-1的微流控芯片 Pending CN108686727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810673732.5A CN108686727A (zh) 2018-06-26 2018-06-26 快速定量检测PLGF和sFLT-1的微流控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810673732.5A CN108686727A (zh) 2018-06-26 2018-06-26 快速定量检测PLGF和sFLT-1的微流控芯片

Publications (1)

Publication Number Publication Date
CN108686727A true CN108686727A (zh) 2018-10-23

Family

ID=63849127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810673732.5A Pending CN108686727A (zh) 2018-06-26 2018-06-26 快速定量检测PLGF和sFLT-1的微流控芯片

Country Status (1)

Country Link
CN (1) CN108686727A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323599A (zh) * 2020-03-04 2020-06-23 南京亿科人群健康研究院有限公司 一种基于生物信息学分析的蛋白定量试剂盒
CN111537708A (zh) * 2020-06-11 2020-08-14 烟台芥子生物技术有限公司 微流控检测结构及其应用
CN113430106A (zh) * 2021-06-15 2021-09-24 皖南医学院 一种新型可视化病原体核酸快速检测芯片
CN114405568A (zh) * 2022-03-04 2022-04-29 南开大学 一种自驱式微流控芯片
CN117003878A (zh) * 2023-09-28 2023-11-07 南京佰抗生物科技有限公司 抗sFLT-1蛋白的单克隆抗体组合物及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535466A (zh) * 2006-07-19 2009-09-16 生物概念股份有限公司 用微通道设备检测或分离靶分子
WO2010113959A1 (ja) * 2009-03-31 2010-10-07 凸版印刷株式会社 試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法
WO2013077391A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
CN106807461A (zh) * 2017-01-10 2017-06-09 北京华科泰生物技术有限公司 一种用于荧光免疫检测的微流控芯片及其制备方法
CN106867881A (zh) * 2017-01-11 2017-06-20 江苏大学 一种用于作物病害孢子检测的集成微流控芯片系统
CN206920449U (zh) * 2017-06-26 2018-01-23 宁波奥丞生物科技有限公司 用于进行流体检测的微流体检测卡
CN207254328U (zh) * 2017-03-28 2018-04-20 北京协和洛克生物技术有限责任公司 组合式定量检测多生物标记物的微流控芯片及试剂盒
CN112858710A (zh) * 2021-02-23 2021-05-28 宁波奥丞生物科技有限公司 一种NT-proBNP定量检测试剂盒及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535466A (zh) * 2006-07-19 2009-09-16 生物概念股份有限公司 用微通道设备检测或分离靶分子
WO2010113959A1 (ja) * 2009-03-31 2010-10-07 凸版印刷株式会社 試料分析チップ、これを用いた試料分析装置及び試料分析方法並びに試料分析チップの製造方法
WO2013077391A1 (ja) * 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
CN106807461A (zh) * 2017-01-10 2017-06-09 北京华科泰生物技术有限公司 一种用于荧光免疫检测的微流控芯片及其制备方法
CN106867881A (zh) * 2017-01-11 2017-06-20 江苏大学 一种用于作物病害孢子检测的集成微流控芯片系统
CN207254328U (zh) * 2017-03-28 2018-04-20 北京协和洛克生物技术有限责任公司 组合式定量检测多生物标记物的微流控芯片及试剂盒
CN206920449U (zh) * 2017-06-26 2018-01-23 宁波奥丞生物科技有限公司 用于进行流体检测的微流体检测卡
CN112858710A (zh) * 2021-02-23 2021-05-28 宁波奥丞生物科技有限公司 一种NT-proBNP定量检测试剂盒及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323599A (zh) * 2020-03-04 2020-06-23 南京亿科人群健康研究院有限公司 一种基于生物信息学分析的蛋白定量试剂盒
CN111537708A (zh) * 2020-06-11 2020-08-14 烟台芥子生物技术有限公司 微流控检测结构及其应用
CN113430106A (zh) * 2021-06-15 2021-09-24 皖南医学院 一种新型可视化病原体核酸快速检测芯片
CN114405568A (zh) * 2022-03-04 2022-04-29 南开大学 一种自驱式微流控芯片
CN114405568B (zh) * 2022-03-04 2023-08-04 南开大学 一种自驱式微流控芯片
CN117003878A (zh) * 2023-09-28 2023-11-07 南京佰抗生物科技有限公司 抗sFLT-1蛋白的单克隆抗体组合物及应用
CN117003878B (zh) * 2023-09-28 2023-12-05 南京佰抗生物科技有限公司 抗sFLT-1蛋白的单克隆抗体及应用

Similar Documents

Publication Publication Date Title
CN108686727A (zh) 快速定量检测PLGF和sFLT-1的微流控芯片
CN108686721B (zh) 用于全血样品分离检测的微流控芯片及其检测方法
CN208526655U (zh) 一种化学发光微流控芯片及具有其的分析仪器
CN108704677A (zh) 一种微流控芯片及含其的分析仪器
CN109212201A (zh) 一种用于血清中乙肝病毒五项检测的离心式微流控芯片
CN102980998A (zh) 高通量微流控纸芯片即时快速检测多种人体肿瘤标志物
CN108519373A (zh) 一种化学发光微流控芯片及含其的分析仪器
US11904313B2 (en) Liquid quantifying device and application thereof
JP7399518B2 (ja) マイクロ流体制御血液型検出チップ
CN101796419B (zh) 用于检测流体中分析物的模块和具有该模块的芯片
CN208224274U (zh) 一种微流控芯片及具有该微流控芯片的分析仪器
CN110568200B (zh) 一种联合诊断纸基微流控芯片及检测方法
CN208894245U (zh) 快速定量检测PLGF和sFLT-1的微流控芯片
CN108761055A (zh) 一种微流控芯片及具有该微流控芯片的分析仪器
CN103801412A (zh) 一种用于酶催化产物荧光检测的集成化微流控芯片及其应用
CN106989970A (zh) 细胞分离制片染色一体装置和循环肿瘤细胞捕获方法
WO2007037530A1 (ja) 超高速で生体分子反応を測定する方法
CN111077325A (zh) 微孔膜截留集聚生化检测装置及其检测方法
CN209131768U (zh) 一种液体定量装置
CN207913802U (zh) 一种全血检测的微流控芯片及其检测装置
CN116493061A (zh) 一种血液检测微流控芯片及其检测方法
CN111141915A (zh) 一种Sflt-1的定量检测试剂盒
CN109939751B (zh) 一种全血检测的微流控芯片、检测装置及其检测方法
CN208399514U (zh) 一种微流控免疫检测装置
CN106841591A (zh) 一种毛细力驱动的测试卡

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination