WO2017188401A1 - 反応容器及び生化学分析方法 - Google Patents

反応容器及び生化学分析方法 Download PDF

Info

Publication number
WO2017188401A1
WO2017188401A1 PCT/JP2017/016828 JP2017016828W WO2017188401A1 WO 2017188401 A1 WO2017188401 A1 WO 2017188401A1 JP 2017016828 W JP2017016828 W JP 2017016828W WO 2017188401 A1 WO2017188401 A1 WO 2017188401A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover member
reaction
light
biochemical analysis
analysis method
Prior art date
Application number
PCT/JP2017/016828
Other languages
English (en)
French (fr)
Inventor
昌洋 松川
牧野 洋一
星野 昭裕
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201780026053.2A priority Critical patent/CN109154555A/zh
Priority to EP17789682.6A priority patent/EP3450958A4/en
Priority to JP2018514713A priority patent/JP6958547B2/ja
Publication of WO2017188401A1 publication Critical patent/WO2017188401A1/ja
Priority to US16/171,630 priority patent/US11414697B2/en
Priority to JP2021165703A priority patent/JP7251591B2/ja
Priority to US17/809,916 priority patent/US20220333175A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3446Photometry, spectroscopy, laser technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0389Windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous
    • G01N2201/0686Cold filter; IR filter

Definitions

  • the present invention relates to a reaction vessel and a biochemical analysis method.
  • This application claims priority based on Japanese Patent Application No. 2016-089362 for which it applied to Japan on April 27, 2016, and uses the content here.
  • EGFR epidermal growth factor receptor
  • EGFR-TKI tyrosine kinase inhibitor
  • Digital PCR technology divides a mixture of a PCR reagent and a nucleic acid into a large number of microdroplets, and performs PCR amplification using the nucleic acid to be detected as a template from the nucleic acids in the mixture.
  • the signal such as fluorescence by PCR amplification from the microdroplet containing the template nucleic acid, and determining the ratio of the microdroplet in which the signal was detected out of the total number of microdroplets, the nucleic acid in the sample This is one of the digital analysis techniques for quantifying
  • Digital analysis technology requires a sealed container that seals the fluorescent beads that emit light in combination with the mixture and microdroplets so that they can be read by a microscope.
  • this sealed container in order to distinguish each fluorescent bead and droplet individually, the minute holes that fit the beads are evenly arranged on the bottom surface of the container, and pouring is performed so that the beads fit in each hole. Sealing is performed.
  • a mixture of a PCR reaction reagent and a nucleic acid is diluted so that the number of nucleic acids serving as a template present in one microdroplet is zero or one.
  • the volume of each microdroplet is preferably small.
  • Patent Document 1 discloses a microarray-like reaction vessel formed so that the volume of each well is 6 nl (nanoliter).
  • Patent Document 2 discloses that a microarray in which a number of wells having a depth of 3 ⁇ m and a diameter of 5 ⁇ m are formed in a flow channel flows the sample through the flow channel and introduces the sample into each well, and then surplus in the flow channel.
  • a method of introducing a sample into each well by extruding a reagent with a sealing liquid is disclosed.
  • a microarray reaction vessel having a flow path can be manufactured by welding a plurality of resin members.
  • a reaction state in a reaction container may be observed using visible light or fluorescence, and the reaction container may be required to have light transmittance.
  • a laser transmission welding method is known in which a resin member having light permeability and a resin member having light absorption properties are laser-welded.
  • the light transmittance as a whole is low, and bright field observation using visible light is performed. Another problem is that the field of view becomes dark.
  • the present invention has been made in view of the above-described circumstances, and a reaction container capable of obtaining sufficient brightness in bright field observation while a resin having optical transparency is welded with high accuracy and the same
  • An object of the present invention is to provide a biochemical analysis method using the above.
  • the reaction vessel according to the first aspect of the present invention includes a transparent base material having a plurality of recesses opening in the first surface, and the first surface inside the region including the plurality of recesses in the first surface.
  • An infrared-absorbing cover member that is welded to the base material outside the region so that a gap is left between the cover member and the cover member in a visible light wavelength range. At least a part of the range of light can be transmitted.
  • the cover member may have a light transmittance of 25% or more in a range of 480 nm to 570 nm in the visible light wavelength range.
  • the infrared absorption rate on the first surface side of the cover member may be highest in a direction perpendicular to the first surface.
  • reaction container of the aspect may further include a detection electrode disposed in the recess so as to be in contact with the liquid accommodated in the recess.
  • the reaction container according to the first aspect includes a plurality of the regions on the first surface, and the outer periphery of each of the plurality of regions is the cover member so that the plurality of regions become a plurality of reaction compartments independent of each other. It may be welded to.
  • the cover member may have a total light transmittance of 0.01 to 60%.
  • the biochemical analysis method according to the second aspect of the present invention is the biochemical analysis method using the reaction container according to the first aspect, wherein the sample diluted so that one detection target substance enters the concave portion A liquid feeding step for feeding liquid into the gap between the substrate and the cover member, a sealing step for feeding an oily sealing liquid into the gap and sealing a plurality of recesses individually, and the sealing After the stopping step, a first observation step of performing bright field observation on the sample in the recess using the partial range of light, and after the sealing step, the sample in the recess A second observation step of irradiating the excitation light through and observing fluorescence emitted from the sample in response to the excitation light.
  • the biochemical analysis method according to the second aspect may further include a reaction step of performing a signal amplification reaction in the recess after the sealing step and before the second observation step.
  • the signal amplification reaction may be an enzyme reaction.
  • the enzyme reaction may be an isothermal reaction.
  • the enzyme reaction may be an invader reaction.
  • the sample may contain DNA, RNA, miRNA, mRNA, or protein to be analyzed, and a specific labeling substance for the analyzed object.
  • the analyte may include a nucleic acid
  • the specific labeling substance includes at least one of a nucleic acid, enzyme, particle, antibody, and liposome different from the analyte.
  • the particles include polymer beads, magnetic beads, fluorescent beads, fluorescently labeled magnetic beads, silica beads, and metal colloids.
  • the sealing liquid may contain at least one of fluorine oil and silicon oil.
  • the light-transmitting resin is welded with high accuracy, and sufficient brightness in bright field observation can be obtained.
  • the biochemical analysis method according to the aspect of the present invention bright field observation and fluorescence observation can be performed using the reaction container.
  • Example 2 It is a photograph which shows the fluorescence observation result using the reaction container of the structure corresponding to the case where the cover member is light-impermeable in the experiment example regarding the light transmittance of the cover member in the reaction container which concerns on one Embodiment of this invention.
  • Example 2 it is a photograph which shows the result of having performed bright field observation and fluorescence observation with respect to the some reaction container which has a cover member from which the transmittance
  • FIG. 1 is an overview of the reaction vessel 1 of the present embodiment.
  • FIG. 2 is a cross-sectional view of the reaction vessel 1 of the present embodiment.
  • the reaction vessel 1 of this embodiment includes a base material 2 and a cover member 4.
  • the base material 2 is formed from a light transmissive resin.
  • the substrate 2 of the present embodiment is substantially transparent.
  • the substrate 2 has a plurality of recesses 3.
  • the concave portion 3 of the base material 2 is open to the surface of the base material 2 (first surface 2a).
  • the shape, size, and arrangement of the recess 3 are not particularly limited. In the present embodiment, a plurality of recesses 3 of the same shape and the same size that can accommodate a certain amount of sample used in biochemical analysis performed using the reaction vessel 1 are formed in the substrate 2.
  • the microbead When microbeads are used in the biochemical analysis performed using the reaction vessel 1, the microbead has a shape and size that can accommodate one microbead and accommodates a certain amount of sample including the microbead. A possible recess 3 of the same shape and size is formed in the substrate 2.
  • the recesses 3 that can accommodate microbeads having a diameter of 2 ⁇ m or more and a diameter of 5 ⁇ m or less and that have a volume of about 15 ⁇ l are triangular or tetragonal when viewed from a direction perpendicular to the first surface 2a Are formed on the base material 2 so as to be aligned.
  • the diameter of the recess 3 is, for example, 5 ⁇ m
  • the depth of the recess 3 is, for example, 3 ⁇ m.
  • the region including the plurality of recesses 3 is a region filled with one kind of sample to be analyzed in biochemical analysis. Inside this region, a gap (flow path) S is opened between the base material 2 and the cover member 4.
  • the cover member 4 is welded to the base material 2.
  • a spacer portion 5 for defining the size of the gap S inside the region of the base material 2 is disposed so as to surround this region.
  • the spacer part 5 is a part of the cover member 4, and is formed from resin.
  • the spacer portion 5 is provided so as to protrude from the outer peripheral edge portion on the lower surface of the cover member 4 toward the base material 2.
  • the spacer portion 5 is welded to the base material 2 by a laser transmission welding method.
  • An opening 4 a for injecting a sample or the like into the gap between the cover member 4 and the base material 2 is formed in the cover member 4. That is, the base material 2 and the cover member 4 are welded to each other via the spacer portion 5, and a region surrounded by the base material 2, the cover member 4, and the spacer portion 5 becomes a flow path (gap) S.
  • the cover member 4 has infrared absorptivity.
  • the cover member 4 is formed from a thermoplastic resin containing an additive for enhancing infrared absorption.
  • the cover member 4 can transmit light in at least a part of the visible light wavelength range.
  • the total light transmittance of the cover member 4 is lower than the total light transmittance of the substrate 2 and is high enough to ensure the brightness required for bright field observation.
  • the cover member 4 may have a transmittance in the infrared region lower than a transmittance in the visible light region.
  • the cover member 4 is opaque to infrared rays, and may have transparency that is substantially transparent with respect to visible light.
  • the surface which contacts the base material 2 among the cover members 4 has a low infrared reflectance.
  • the cover member 4 has a substantially uniform light transmittance throughout.
  • the cover member 4 is formed from a thermoplastic resin including a cycloolefin polymer (COP) or an acrylic resin.
  • the light transmittance in the cover member 4 may have a gradient in the thickness direction of the cover member 4.
  • the cover member 4 may have low light transmittance on the base material 2 side and high light transmittance on the side opposite to the base material 2.
  • the first surface 2 a side of the substrate 2 has the highest infrared absorption rate.
  • the total light transmittance of the cover member 4 is preferably 0.01 to 60%, more preferably 0.1 to 60%, and even more preferably 25 to 50%.
  • the total light transmittance of the cover member 4 is 0.01% or more, the light can be seen well from the opposite side of the cover member.
  • the total light transmittance of the cover member 4 is 0.1% or more, the exposure time can be reduced during observation with a microscope.
  • the total light transmittance of the cover member 4 is 60% or less, the mold does not collapse and good laser welding can be performed.
  • the total light transmittance of the cover member 4 is 25% or more, sufficient brightness in bright field observation can be obtained.
  • the total light transmittance of the cover member 4 is 50% or less, the autofluorescence of the cover member at the time of observation with a microscope can be reduced.
  • FIG. 1 For the production of the reaction vessel 1 of the present embodiment, a resin-made first plate-like member 2 ⁇ / b> A that becomes the material of the base material 2 and a resin-made second plate-like member 4 ⁇ / b> A that becomes the material of the cover member 4 are prepared. (See FIG. 1).
  • the first plate member 2A and the second plate member 4A are processed.
  • a plurality of recesses 3 are formed on one surface in the plate thickness direction.
  • minute holes having a diameter of 5 ⁇ m, for example, in a 10 mm square region are formed in a lattice pattern on one surface in the thickness direction of the resin plate 2b that is the material of the first plate-like member 2A.
  • the first plate-like member 2A is made of, for example, a substantially transparent thermoplastic resin formed with CYTOP (registered trademark), and can be considered practically transparent at least in the visible light and infrared light regions. It has the light transmittance of. Further, the first plate-like member may be integrally formed with resin. Examples of the material of the first plate member made of resin include cycloolefin polymer, cycloolefin copolymer, silicon, polypropylene, polycarbonate, polystyrene, polyethylene, polyvinyl acetate, fluororesin, and amorphous fluororesin. In addition, these materials shown as an example of a 1st plate-shaped member are an example to the last, and the material of a 1st plate-shaped member is not restricted to these.
  • the second plate-like member 4A is molded so as to have the spacer portion 5 on the surface directed to the first plate-like member 2A side during assembly.
  • the second plate-like member 4A is formed by molding a thermoplastic resin fluid mixed with additives so that the total light transmittance is 25% or more and 50% or less using a molding die. 5 is formed into a plate shape.
  • the second plate-like member 4A is formed with an opening 4a for injecting a sample or the like.
  • the surface directed to the first plate-like member 2A side is subjected to a surface treatment for improving water repellency.
  • a water-repellent coating agent is applied to the surface of the molded second plate-like member 4A that faces the first plate-like member 2A to form a coating agent layer.
  • the surface on the side where the recess 3 is opened in the first plate-like member 2A (this surface is the first surface 2a of the substrate 2 and The first plate-like member 2A and the second plate-like member 4A are overlapped so that the spacer portion 5 of the second plate-like member 4A comes into contact. Furthermore, in a state where the first plate-like member 2A and the second plate-like member 4A are overlapped as described above, a laser L (see FIG. 1) having a long wavelength (for example, a wavelength of 800 nm or more) of near infrared rays or more is used.
  • the first plate-like member 2A is transmitted and irradiated to the spacer portion 5 of the second plate-like member 4A.
  • a solid laser for example, YAG laser
  • a semiconductor laser laser diode
  • the usable laser wavelength may be, for example, in the range of 800 nm to 1000 nm.
  • the laser irradiated to the spacer portion 5 is hardly absorbed by the first plate-like member 2A and is absorbed by the spacer portion 5, so that the spacer portion 5 is heated.
  • the first plate-like member 2 ⁇ / b> A and the second plate-like member 4 ⁇ / b> A are welded at the spacer portion 5.
  • the first plate member 2 ⁇ / b> A serves as the base material 2 of the reaction vessel 1
  • the second plate member 4 ⁇ / b> A serves as the cover member 4 of the reaction vessel 1.
  • the base material 2 and the cover member 4 are welded by the laser transmission welding method, precise and reliable welding is possible, and between the base material 2 and the cover member 4 is possible.
  • the injected sample is difficult to leak.
  • the reaction vessel 1 of the present embodiment the reproducibility of biochemical analysis using the reaction vessel 1 is excellent.
  • the substrate 2 is substantially transparent and the total light transmittance of the cover member 4 is 25% or more, sufficient brightness in bright field observation can be obtained.
  • the resin having optical transparency is welded with high accuracy, and sufficient brightness in bright field observation can be obtained.
  • the total light transmittance (optical density) of the cover member 4 can be measured using a known measurement method. It is also possible to estimate the transmittance of light having a long wavelength equal to or greater than near infrared rays from the visible light transmittance. For example, when the cover member is formed by COP, if the visible light transmittance is 92%, the transmittance of light having a long wavelength equal to or greater than near infrared light is 90%.
  • the reaction container 1 of the present embodiment can be used for performing a signal amplification reaction on a sample, observing the signal, and measuring the concentration of the analyte in the sample.
  • a sample diluted so that one molecule of the detection target substance enters the recess 3 of the reaction vessel 1 is fed from the opening 4a of the cover member 4 to the gap between the base member 2 and the cover member 4 ( Liquid feeding step).
  • the sample to be fed in the liquid feeding step contains DNA, RNA, miRNA, mRNA, or protein to be analyzed.
  • the sample also contains a detection reagent for the analyte.
  • Detection reagents include enzymes and buffer substances.
  • the enzyme contained in the reagent corresponds to the content of the biochemical reaction in order to perform a biochemical reaction such as an enzymatic reaction with respect to the template nucleic acid related to the analysis target. Selected.
  • the biochemical reaction with respect to the template nucleic acid is, for example, a reaction in which signal amplification occurs under conditions where the template nucleic acid is present.
  • a reagent is selected according to the method which can detect a nucleic acid, for example. Specifically, reagents used in the Invader (registered trademark) method, the LAMP method (registered trademark), the TaqMan (registered trademark) method, the fluorescent probe method, and other methods are included in the reagent of this embodiment.
  • the sample fed into the gap between the substrate 2 and the cover member 4 in the liquid feeding process is accommodated in the plurality of recesses 3.
  • the oil-based sealing liquid is fed into the gap between the base member 2 and the cover member 4 from the opening 4a of the cover member 4 to individually seal the plurality of recesses 3 (sealing process).
  • the sealing liquid is one of fluorine-based oil and silicon-based oil, or a mixture thereof.
  • the sealing liquid replaces the sample that is not accommodated in the recess 3 among the samples that are fed into the gap between the base material 2 and the cover member 4 in the liquid feeding step. Thereby, the sealing liquid seals the plurality of recesses 3 individually, and the recesses 3 become independent reaction spaces.
  • a predetermined biochemical reaction is performed in the recess 3 (reaction process).
  • a signal amplification reaction is performed in the recess 3. That is, the signal is amplified by the reaction step to a level at which the signal can be observed so that the signal derived from the specific labeling substance is detected in the recess 3.
  • the signal include fluorescence, color development, potential change, pH change and the like.
  • a fluorescent signal is amplified.
  • the signal amplification reaction is, for example, an enzyme reaction.
  • the signal amplification reaction is an isothermal reaction in which the reaction vessel 1 is maintained for a predetermined time under a constant temperature condition in which a desired enzyme activity is obtained in a state where a sample containing an enzyme for signal amplification is accommodated in the recess 3. It is.
  • an invader reaction can be used as the signal amplification reaction.
  • the sample in the recess 3 contains an invader reaction reagent and a template nucleic acid.
  • the fluorescent substance is liberated from the quenching substance when both the analyte and the specific labeling substance are accommodated in the recess 3 by an enzymatic reaction by an isothermal reaction. To emit a predetermined fluorescence signal corresponding to the excitation light.
  • the signal amplified by the signal amplification reaction in the reaction step is observed.
  • first observation step in order to identify the recess 3 in which the specific labeling substance is accommodated, the presence or absence of microbeads in the recess 3 is observed.
  • first observation step bright field observation using white light irradiated in a direction perpendicular to the first surface 2a in the reaction vessel 1 is performed. Since the shadow of the microbead is observed if the microbead exists in the recess 3, it is possible to specify the bead in which the microbead is accommodated in the recess 3 formed on the substrate 2. .
  • the presence or absence of a signal amplified by the above reaction step when the specific labeling substance and the analyte are present in the recess 3 is observed (second observation step).
  • the second observation step for example, when the above-described invader reaction is performed, the excitation light corresponding to the fluorescent material is irradiated from the base material 2 side to the cover member 4 side, through the base material 2 and into the recess 3.
  • the fluorescence emitted from the fluorescent material contained in the sample is observed from the substrate 2 side. Since the substrate 2 is substantially transparent, fluorescence observation can be performed with the same sensitivity as that of the known reaction vessel 1 used for fluorescence observation.
  • the experimental reaction vessel 10 manufactured in this experimental example is substantially transparent as a whole.
  • observation was performed by attaching either a light-transmitting colored film or a light-impermeable black film to the experimental reaction vessel 10.
  • each of the above films was attached to a plate-like member corresponding to the cover member 4.
  • FIG. 3 is a photograph showing a bright field observation result using a reaction container having a configuration corresponding to the case where the cover member is transparent in the experimental example regarding the light transmittance of the cover member in the reaction container of the present invention.
  • FIG. 4 is a photograph showing a result of fluorescence observation using a reaction container having a configuration corresponding to a case where the cover member is transparent in an experimental example relating to light transmittance of the cover member in the reaction container of the present invention.
  • an image can be obtained by bright field observation, and an image can also be obtained by fluorescence observation. It was.
  • FIG. 5 is a result of bright field observation using a reaction container having a structure corresponding to the case where the cover member is colored so as to have light transmission in the experimental example relating to the light transmission of the cover member in the reaction container of the present invention. It is a photograph which shows.
  • FIG. 6 shows the result of fluorescence observation using a reaction container having a structure corresponding to the case where the cover member is colored with light transmission in an experimental example related to the light transmission of the cover member in the reaction container of the present invention. It is a photograph shown. As shown in FIGS. 5 and 6, even in the case of an experimental reaction vessel 10 with a light-transmitting colored film attached, an image can be obtained by bright field observation and an image can also be obtained by fluorescence observation. I was able to.
  • FIG. 7 is a photograph showing bright field observation results using a reaction container having a structure corresponding to the case where the cover member is light-impermeable in the experimental example regarding the light transmittance of the cover member in the reaction container of the present invention.
  • FIG. 8 is a photograph showing a fluorescence observation result using a reaction container having a configuration corresponding to the case where the cover member is non-light-transmitting in the experimental example regarding the light transmittance of the cover member in the reaction container of the present invention.
  • FIGS. 7 and 8 in the case of the experimental reaction vessel 10 to which a light-impermeable black film was attached, an image could not be obtained by bright field observation. On the other hand, in this case, an image could be obtained by fluorescence observation.
  • the reaction container of the above embodiment may further include a detection electrode (not shown) disposed in the recess so as to be able to contact the liquid accommodated in the recess.
  • This detection electrode can be connected to a measuring instrument through a wiring (not shown), and can be used for pH measurement and other electrochemical measurements.
  • the reaction vessel of the above embodiment may have a plurality of regions on the first surface including a plurality of recesses.
  • the plurality of regions become a plurality of reaction compartments independent of each other. That is, different samples can be supplied to a plurality of reaction compartments so that one type of sample corresponds to one region serving as one reaction compartment.
  • the plurality of regions are surrounded by the spacer portion, and the spacer portion is welded to the cover member, so that a biochemical analysis can be performed without mixing the sample.
  • analysis conditions temperature, reaction time, etc.
  • the cover member may have a light transmittance in a part of the visible light wavelength range higher than a light transmittance in another range of the visible light wavelength range.
  • the cover member may have a light transmittance of 25% or more in the range of 480 nm to 570 nm in the visible light wavelength range.
  • green fluorescence or the like can be observed well.
  • Example 1 of the present invention is shown below.
  • the laser transmission welding method after pressing a transmitting material that transmits a laser beam having a specific wavelength and an absorbing material that absorbs the laser light from both sides, the laser beam is transmitted from the transmitting material side.
  • the absorbent material is dissolved by being applied to the interface between the material and the absorbent material.
  • the absorbent material is dissolved, and heat is also transmitted from the absorbent material to the permeable material, and the permeable material is heated by exceeding the melting temperature of the permeable material, thereby dissolving the permeable material.
  • the cover member functioning as an absorbent when the reaction vessel is manufactured using the laser transmission welding method can be reliably welded to the substrate by the laser transmission welding method, and the biochemical reaction using the reaction vessel Shows a specific example for enabling fluorescence observation by fluorescence transmitted through the cover member.
  • the material of the base material in this example is cycloolefin polymer (COP) (thickness is 1 mm).
  • a cover member was prepared using polystyrene (black), PMMA (YL-500P-Y1 YAG (semi-transparent), manufactured by Sigma Kogyo Co., Ltd.) as a material for the cover member in this example.
  • These materials are materials with low absorptance of the YAG laser.
  • ML-2030B manufactured by Amada Miyachi Co., Ltd.
  • the both materials were sandwiched between the ends with a turn clip, and the base material side was placed on top. Then, it installed in the laser welding machine so that a laser might be perpendicularly applied from the base material side.
  • Laser welding was performed by combining the materials selected as the base material and the cover member.
  • the setting items for carrying out laser welding were an irradiation voltage of 400 V, an irradiation time of 1 ms, and an irradiation frequency of 10 times per second, and laser light was irradiated to three points separated from each other.
  • welding was possible when polystyrene (black) was used as a material for the cover member and when PMMA (YL-500P-Y1 YAG (translucent)) was used.
  • each material used as a cover member was allowed to pass white light with a green filter, and it was confirmed whether the light could be visually recognized from the opposite side of the cover member. As a result, light was visible with all materials other than polystyrene (black).
  • laser welding can be performed by using a combination of COP and PMMA (YL-500P-Y1 YAG (translucent)) as the material of the base material and the cover member, respectively, and the cover member side It was confirmed that a material structure capable of detecting light can be realized.
  • the base material may be a light transmissive resin other than COP.
  • Example 2 of the present invention is shown below.
  • the cover member functioning as an absorbent when the reaction vessel is manufactured using the laser transmission welding method can be reliably welded to the substrate by the laser transmission welding method, and the biochemical reaction using the reaction vessel Shows a specific example for enabling fluorescence observation by fluorescence transmitted through the cover member.
  • the material of the base material in this example is cycloolefin polymer (COP) (thickness is 0.3 mm to 1 mm).
  • COP cycloolefin polymer
  • a COP material added with carbon black: transmittance 0.01%, 0.1%, 0.8%, 6%, 24%, 47%) is used.
  • the carbon-added (carbon-containing) COP material can be prepared by selecting from commercially available carbon materials for coloring resin (plastic) and mixing them when creating the COP material.
  • a transparent COP material transmitmittance of 91% with respect to air
  • a COP material having a transmittance of 0% was used as a comparative example showing a cover member material that is not suitable for bright field observation.
  • the total light transmittance (optical density) is measured on an optical bench with a laser light source (2 wavelengths 532 nm, 632 nm, output 2 mmW), pinhole, mirror, sample holder, PD photodetector (OPTICAL POWER METER ML910B manufactured by Anritsu). ) was set up and the transmittance was measured.
  • the total light transmittance is a relative value with the air transmittance being 100%.
  • the laser welding machine in this example and the comparative example is a welding machine using a semiconductor laser (LD-HEATER) manufactured by Hamamatsu Photonics as a laser, and a wavelength of 940 nm was used.
  • LD-HEATER semiconductor laser
  • the air cylinder was pressurized and the base material and the cover member were pressed and adhered to the transparent glass plate.
  • laser welding was performed by scanning the laser head with a robot arm so that the laser was applied perpendicularly to the glass plate through a transparent glass plate.
  • ⁇ Laser welding was performed by combining the materials selected as the base material and the cover member.
  • Setting items for performing laser welding are, for example, laser power, scan speed, number of repetitions, and the like.
  • a light source and a filter may be used so as to emit light having a wavelength similar to the wavelength of light emitted from the analysis target.
  • the white light can be appropriately selected from an LED, a fluorescent lamp, and the like.
  • a light source that emits light having a wavelength similar to the wavelength of light emitted from the analysis target may be used. Table 1 shows the results of laser welding and visual recognition. In Table 1, in the column of welding, “ ⁇ ” indicates that welding was successful, and “x” indicates that welding was not possible. In Table 1, in the column of bead observation, “ ⁇ ” indicates that light was visually recognized, and “x” indicates that light was not visually recognized.
  • the base material and the cover member were able to be welded without collapsing when the transmittance of 0% to 47% was used as the cover member material.
  • the material having a transmittance of 91% could not be welded without melting.
  • the transmittance is 60% or less
  • the base material and the cover member can be welded without collapsing.
  • a material having a transmittance of 0.01% to 47% was used, light irradiated from the side opposite to the base material of the cover member could be visually recognized from the base material side.
  • a material having a transmittance of 0% was used, light could not be visually recognized from the opposite side of the cover member.
  • the cover member when the cover member is formed of a COP material, a material structure capable of performing good laser welding and detecting light from the cover member side when the transmittance is 0.01% to 47%. Can be realized.
  • the base material may be a light transmissive resin other than COP.
  • FIG. 9 is a photograph showing the results of performing bright field and fluorescence observation on the cover member having transmittance of 0%, 0.1%, 24%, 47%, 91%, and 100% while changing the exposure time. .
  • the transmittance was 0.1% or more, a clear bright field image could be obtained with an exposure time of 1 second or less.
  • the transmittance was lower than 0.1%, the exposure time required more than 1 second, and a longer photographing time was required to obtain a bright field image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Plant Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

反応容器は、第一表面に開口する複数の凹部を有する透明な基材と、前記第一表面のうち前記複数の凹部を含んだ領域の内側において前記第一表面との間に隙間が空いた状態となるように前記領域の外側において前記基材に対して溶着された赤外線吸収性のカバー部材と、を備え、前記カバー部材は、可視光の波長域のうち少なくとも一部の範囲の光を透過可能である。

Description

反応容器及び生化学分析方法
 本発明は、反応容器及び生化学分析方法に関する。
 本願は、2016年4月27日に日本に出願された特願2016-089362号に基づき優先権を主張し、その内容をここに援用する。
 従来、生体分子を解析することによって疾患や体質の診断を行うことが知られている。
 例えば、DNA内に記録されている一塩基多型(Single Nucleotide Polymorphism:SNP)解析による体質診断、体細胞変異解析による抗がん剤の投与判断、ウイルスのタンパク質の解析による感染症対策等が知られている。
 例えば、がんの治療薬では、EGFR-TKI(チロシンキナーゼ阻害薬)の投与前後でEGFR(上皮成長因子受容体)遺伝子変異の増幅量(コピー数)を定量することで、治療効果の指標とできることが示唆されている。従来、リアルタイムPCR(ポリメラーゼ連鎖反応)を用いた定量が行われていたが、検査に使用された核酸の総量が変化することが定量性に影響を与えることがわかっており、今日では核酸の総量が定量性に影響しないデジタルPCR技術が開発されている。
 デジタルPCR技術とは、PCR試薬と核酸との混合物を多数の微小液滴に分割し、これらの微小液滴に対して、混合物中の核酸のうち検出対象となる核酸を鋳型とするPCR増幅を行うことにより、鋳型核酸を含んだ微小液滴からPCR増幅による蛍光等のシグナルを検出し、微小液滴の全数のうちシグナルが検出された微小液滴の割合を求めることによって、試料中の核酸を定量するデジタル解析技術のひとつである。
 デジタル解析技術は、混合物および微小液滴と結びつき発光する蛍光ビーズを封止して、顕微鏡で読み取り可能にするための封入容器を必要とする。この封入した容器内では、各蛍光ビーズと液滴を個別に判別可能にするため、容器内の底面にビーズが収まる微小な穴を均等に配置し、ビーズがそれぞれの穴に収まるよう、流し込みと封止を行う。
 デジタルPCRでは、1つの微小液滴に存在する鋳型となる核酸が0個ないし1個になるように、PCR反応試薬と核酸との混合物は希釈されている。デジタルPCRでは、核酸増幅の感度を高めるために、また多数の微小液滴に対して同時に核酸増幅を行うために、各微小液滴の体積は小さい方が好ましい。例えば、特許文献1には、各ウェルの容積が6nl(ナノリットル)となるように形成されたマイクロアレイ状の反応容器が開示されている。また、特許文献2には、深さ3μm、直径5μmのウェルが流路内に多数形成されたマイクロアレイに対して流路に試料を流して各ウェルに試料を導入した後、流路内の余剰試薬を封止液で押し出すことによって、各ウェル内に試料を導入する方法が開示されている。
国際公開第2013/151135号 国際公開第2014/007190号
 流路を有するマイクロアレイ状の反応容器は、複数の樹脂部材を溶着することによって製造することができる。デジタルPCRなどのデジタル解析技術では、反応容器内における反応状態を可視光や蛍光を用いて観察することがあり、反応容器には光透過性が求められることがある。樹脂部材同士を高い精度で溶着する技術として、光透過性を有する樹脂部材と光吸収性を有する樹脂部材とをレーザー溶着するレーザー透過溶着法が知られている。しかしながら、レーザー透過溶着法によって溶着された複数の樹脂部材は、光吸収性を有する樹脂部材を有しているので、全体としての光透過性が低く、可視光を用いた明視野観察をする場合に、視野が暗くなってしまうという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、光透過性を有する樹脂が高い精度で溶着されているとともに、明視野観察における十分な明るさを得ることができる反応容器及びこれを用いた生化学分析方法を提供することを目的とする。
 本発明の第一態様に係る反応容器は、第一表面に開口する複数の凹部を有する透明な基材と、前記第一表面のうち前記複数の凹部を含んだ領域の内側において前記第一表面との間に隙間が空いた状態となるように前記領域の外側において前記基材に対して溶着された赤外線吸収性のカバー部材と、を備え、前記カバー部材は、可視光の波長域のうち少なくとも一部の範囲の光を透過可能である。
 上記第一態様において、前記カバー部材は、可視光の波長域のうち480nm以上570nm以下の範囲の光の透過率が25%以上であってもよい。
 上記第一態様において、前記第一表面に対して垂直な方向において、前記カバー部材における前記第一表面側の赤外線吸収率が最も高くてもよい。
 上記第一態様において、上記態様の反応容器は、前記凹部内に収容される液体に接触可能となるように前記凹部内に配された検出電極をさらに備えていてもよい。
 上記第一態様に係る反応容器は、前記領域を前記第一表面に複数有し、複数の前記領域が互いに独立した複数の反応区画となるように複数の前記領域のそれぞれの外周が前記カバー部材に溶着されていてもよい。
 上記第一態様において、前記カバー部材は、全光線透過率が0.01~60%であってもよい。
 本発明の第二態様に係る生化学分析方法は、上記第一態様の反応容器を用いた生化学分析方法であって、前記凹部に一つの検出対象物質が入るように希釈された試料を前記基材と前記カバー部材との間の前記隙間に送液する送液工程と、前記隙間に油性の封止液を送液して複数の凹部を個別に封止する封止工程と、前記封止工程の後、前記凹部内の試料に対して前記一部の範囲の光を用いて明視野観察を行う第一観察工程と、前記封止工程の後、前記凹部内の試料に前記基材を通じて励起光を照射するとともに前記励起光に対応して前記試料が発する蛍光を観察する第二観察工程と、を含む。
 上記第二態様に係る生化学分析方法は、前記封止工程の後、前記第二観察工程の前に、前記凹部内でシグナル増幅反応を行う反応工程をさらに含んでもよい。
 上記第二態様において、前記シグナル増幅反応は、酵素反応であってもよい。
 上記第二態様において、前記酵素反応は、等温反応であってもよい。
 上記第二態様において、前記酵素反応は、インベーダー反応であってもよい。
 上記第二態様において、前記試料は、分析対象物となるDNA,RNA,miRNA,mRNA,又はタンパク質と、前記分析対象物に対する特異的標識物質と、を含んでいてもよい。
 上記第二態様において、前記分析対象物は核酸を含んでいてもよく、前記特異的標識物質は、前記分析対象物とは異なる核酸,酵素,粒子,抗体,及びリポソームの少なくとも一つを含んでいてもよい。
 なお、粒子としては、ポリマービーズ、磁性ビーズ、蛍光ビーズ、蛍光標識磁性ビーズ、シリカビーズ、金属コロイドが挙げられる。
 上記第二態様において、前記封止液は、フッ素系オイルとシリコン系オイルとの少なくともいずれかを含んでいてもよい。
 本発明の上記態様に係る反応容器によれば、光透過性を有する樹脂が高い精度で溶着されているとともに、明視野観察における十分な明るさを得ることができる。
 本発明の上記態様に係る生化学分析方法によれば、上記の反応容器を用いて明視野観察及び蛍光観察をすることができる。
本発明の一実施形態に係る反応容器の概観図である。 本発明の一実施形態に係る反応容器の断面図である。 本発明の一実施形態に係る反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が透明である場合に対応する構成の反応容器を用いた明視野観察結果を示す写真である。 本発明の一実施形態に係る反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が透明である場合に対応する構成の反応容器を用いた蛍光観察結果を示す写真である。 本発明の一実施形態に係る反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光透過性を有して着色されている場合に対応する構成の反応容器を用いた明視野観察結果を示す写真である。 本発明の一実施形態に係る反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光透過性を有して着色されている場合に対応する構成の反応容器を用いた蛍光観察結果を示す写真である。 本発明の一実施形態に係る反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光不透過である場合に対応する構成の反応容器を用いた明視野観察結果を示す写真である。 本発明の一実施形態に係る反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光不透過である場合に対応する構成の反応容器を用いた蛍光観察結果を示す写真である。 実施例2において、光の透過率の異なるカバー部材を有する複数の反応容器に対して明視野観察及び蛍光観察を行った結果を示す写真である。
 本発明の一実施形態について説明する。
 図1は、本実施形態の反応容器1の概観図である。図2は、本実施形態の反応容器1の断面図である。
 図1及び図2に示すように、本実施形態の反応容器1は、基材2とカバー部材4とを備えている。
 基材2は、光透過性樹脂から形成される。本実施形態の基材2は、実質的に透明である。
 基材2は、複数の凹部3を有する。基材2の凹部3は、基材2の表面(第一表面2a)に開口している。凹部3の形状、寸法、および配置は特に限定されない。本実施形態では、反応容器1を用いて行われる生化学分析において使用される一定量の試料を収容可能な同形同大の複数の凹部3が基材2に形成されている。また、反応容器1を用いて行われる生化学分析においてマイクロビーズが使用される場合には、マイクロビーズを1つ収容可能な形状及び寸法を有し、マイクロビーズを含んだ一定量の試料を収容可能な同形同大の凹部3が基材2に形成されている。
 本実施形態では、例えば、直径2μm以上直径5μm以下のマイクロビーズを収容可能であり容積が約15μlの凹部3が、第一表面2aに垂直な方向から見たときに三角格子状又は正方格子状を形成するように整列して基材2に形成されている。たとえば、直径3μmのマイクロビーズを収容することを想定した場合、凹部3の直径は例えば5μm、凹部3の深さは例えば3μmである。
 基材2の第一表面2aのうち、複数の凹部3を含んだ領域は、生化学分析において分析対象となる1種類の試料が充填される領域となっている。この領域の内側では、基材2とカバー部材4との間に隙間(流路)Sが開けられている。
 カバー部材4は、基材2に対して溶着されている。カバー部材4には、基材2における上記の領域の内側における隙間Sの大きさを規定するためのスペーサ部5が、この領域を囲むように配されている。スペーサ部5は、カバー部材4の一部であり、樹脂から形成される。スペーサ部5は、カバー部材4の下面における外周縁部から基材2に向けて突出するように設けられている。スペーサ部5は、レーザー透過溶着法によって基材2に溶着されている。また、カバー部材4と基材2との間の隙間に試料等を注入するための開口4aがカバー部材4に形成されている。つまり、基材2とカバー部材4とはスペーサ部5を介して互いに溶着されており、基材2、カバー部材4、及びスペーサ部5によって囲まれた領域が流路(隙間)Sとなる。
 カバー部材4は、赤外線吸収性を有する。たとえば、カバー部材4は、赤外線の吸収を高めるための添加剤を含んだ熱可塑性樹脂から形成される。さらに、カバー部材4は、可視光の波長域のうち少なくとも一部の範囲の光を透過可能である。たとえば、カバー部材4の全光線透過率は、基材2の全光線透過率よりも低く、明視野観察において必要とする明るさを確保できる程度に高い。また、カバー部材4は、赤外領域における透過率が可視光領域における透過率よりも低くてもよい。たとえばカバー部材4は、赤外線不透過であるとともに、可視光については実質的に透明となる程度の透過性を有していてもよい。なお、カバー部材4のうち基材2に接する面は、赤外線の反射率が低いことが好ましい。
 カバー部材4は、全体に亘って略均一な光透過性を有している。たとえば、カバー部材4は、シクロオレフィンポリマー(COP)やアクリル樹脂を含む熱可塑性樹脂から形成される。なお、カバー部材4における光透過性が、カバー部材4の厚さ方向に勾配を有していてもよい。たとえば、カバー部材4は、基材2側における光透過性が低く、基材2と反対側における光透過性が高くてもよい。この場合、カバー部材4において基材2の第一表面2a側は最も赤外線吸収率が高い。
 本実施形態において、カバー部材4の全光線透過率は、0.01~60%であることが好ましく、0.1~60%であることが好ましく、25~50%であることがさらに好ましい。カバー部材4の全光線透過率が、0.01%以上である場合、カバー部材の反対側から光を良好に視認することができる。カバー部材4の全光線透過率が、0.1%以上である場合、顕微鏡による観察時に、露光時間を少なくすることができる。また、カバー部材4の全光線透過率が、60%以下である場合、型が崩れず良好なレーザー溶着を行うことができる。さらに、カバー部材4の全光線透過率が25%以上である場合、明視野観察における十分な明るさを得ることができる。また、カバー部材4の全光線透過率が、50%以下である場合、顕微鏡による観察時のカバー部材の自家蛍光を軽減することができる。
 本実施形態の反応容器1の作用について、反応容器1の製造工程とともに説明する。
 本実施形態の反応容器1の製造には、基材2の材料となる樹脂製の第一板状部材2Aと、カバー部材4の材料となる樹脂製の第二板状部材4Aとを用意する(図1参照)。
 続いて、第一板状部材2A及び第二板状部材4Aを加工する。
 第一板状部材2Aに対しては、板厚方向の一方の面に複数の凹部3が形成される。一例として、図1に示すように、第一板状部材2Aの材料となる樹脂板2bにおける板厚方向の一方の面に、10mm四方の領域内に例えば5μmの直径の微小な孔が格子状に整列して開口するCYTOP(登録商標)(旭硝子)の層2cを形成する。即ち、第一板状部材2Aは樹脂板2bとCYTOPの層2cとを有する。CYTOP(登録商標)に形成された微小な孔が凹部3となる。第一板状部材2Aは、例えば実質的に透明な熱可塑性樹脂にCYTOP(登録商標)が形成されたものであり、少なくとも可視光及び赤外光の領域において実用上は透明と見做せる程度の光透過性を有している。また、第一板状部材は樹脂で一体成型されていてもよい。
 樹脂からなる第一板状部材の材質の例としては、シクロオレフィンポリマーや、シクロオレフィンコポリマー、シリコン、ポリプロピレン、ポリカーボネート、ポリスチレン、ポリエチレン、ポリ酢酸ビニル、フッ素樹脂、アモルファスフッ素樹脂などが挙げられる。なお、第一板状部材の例として示されたこれらの材質はあくまでも例であり、第一板状部材の材質はこれらには限られない。
 第二板状部材4Aは、組立時に第一板状部材2A側に向けられる面にスペーサ部5を有するように成形される。たとえば、第二板状部材4Aは、全光線透過率が25%以上50%以下となるように添加剤が混合された熱可塑性樹脂の流動体を成形型を用いて成形することで、スペーサ部5を有する板状に成形される。また、第二板状部材4Aには、試料等を注入するための開口4aが形成される。成形された第二板状部材4Aにおいて第一板状部材2A側に向けられる面は、撥水性を高めるための表面処理が行われる。たとえば、成形された第二板状部材4Aにおいて第一板状部材2A側に向けられる面に、撥水性のコーティング剤を塗布してコーティング剤の層を形成する。
 第一板状部材2A及び第二板状部材4Aが上記のように成形されたら、第一板状部材2Aにおいて凹部3が開口する側の面(この面が基材2の第一表面2aとなる)に第二板状部材4Aのスペーサ部5が接するように、第一板状部材2Aと第二板状部材4Aとが重ねられる。さらに、第一板状部材2Aと第二板状部材4Aとが上記のように重ねられた状態で、近赤外線以上の長波長(例えば波長が800nm以上)のレーザーL(図1参照)を、第一板状部材2Aを透過させて第二板状部材4Aのスペーサ部5に照射する。スペーサ部5に照射するレーザーとして、固体レーザー(例えばYAGレーザー)や、半導体レーザー(レーザーダイオード)を使用することができる。使用可能なレーザーの波長は、例えば、800nm以上1000nm以下の範囲であってもよい。
 スペーサ部5に照射されるレーザーは、第一板状部材2Aにはほとんど吸収されず、スペーサ部5に吸収されるので、スペーサ部5を加熱する。これにより、スペーサ部5のうちレーザーが照射された部位が溶融し、さらに、第一板状部材2Aのうちスペーサ部5と接している部分が、スペーサ部5から伝わる熱によって溶融する。スペーサ部5に対するレーザーの照射が終了すると、スペーサ部5および第一板状部材2Aにおける溶融部分の温度が低下することで溶融部分が一体的に硬化する。その結果、第一板状部材2Aと第二板状部材4Aとがスペーサ部5において溶着される。第一板状部材2Aは反応容器1の基材2となり、第二板状部材4Aは反応容器1のカバー部材4となる。
 本実施形態の反応容器1において、レーザー透過溶着法によって基材2とカバー部材4とが溶着されているので、精密且つ確実な溶着が可能であり、基材2とカバー部材4との間に注入された試料等が漏れにくい。その結果、本実施形態の反応容器1によれば、反応容器1を用いた生化学分析の再現性に優れる。
 特に本実施形態では、基材2が実質的に透明であり、カバー部材4の全光線透過率が25%以上であるので、明視野観察における十分な明るさを得ることができる。
 このように、本実施形態の反応容器1によれば、光透過性を有する樹脂が高い精度で溶着されているとともに、明視野観察における十分な明るさを得ることができる。カバー部材4の全光線透過率(光学濃度)は、公知の測定方法を用いて測定することができる。なお、可視光透過率から近赤外線以上の長波長の光の透過率を推測することも可能である。例えば、COPでカバー部材を形成する場合、可視光の透過率が92%であると、近赤外線以上の長波長の光の透過率が90%になる。
 本実施形態の反応容器1を用いた生化学分析の一例を示す。
 本実施形態の反応容器1は、試料に対してシグナル増幅反応を行ってシグナルを観察し、試料中の分析対象物の濃度を測定するために利用可能である。
 まず、反応容器1の凹部3に一分子の検出対象物質が入るように希釈された試料を、カバー部材4の開口4aから、基材2とカバー部材4との間の隙間に送液する(送液工程)。送液工程において送液される試料は、分析対象物となるDNA,RNA,miRNA,mRNA,又はタンパク質を含む。また試料は、分析対象物に対する検出試薬を含む。検出試薬は酵素や緩衝物質などを含む。試薬に含まれる酵素は、例えば解析対象物が核酸である場合には、解析対象物に関連する鋳型核酸に対する酵素反応などの生化学的反応を行うために、生化学的反応の内容に対応して選択される。鋳型核酸に対する生化学的反応は、例えば、鋳型核酸が存在する条件下でシグナル増幅が起こるような反応である。試薬は、例えば核酸を検出可能な方法に応じて選択される。具体的には、インベーダー(登録商標)法や、LAMP法(商標登録)、TaqMan(登録商標)法、又は蛍光プローブ法やその他の方法に使用される試薬が本実施形態の試薬に含まれる。
 送液工程において基材2とカバー部材4との間の隙間に送液された試料は、複数の凹部3の内部に収容される。
 続いて、カバー部材4の開口4aから、基材2とカバー部材4との隙間に、油性の封止液を送液して複数の凹部3を個別に封止する(封止工程)。封止液は、フッ素系オイルとシリコン系オイルとのいずれか一方、またはその混合物等である。
 封止工程において、封止液は、上記の送液工程において基材2とカバー部材4との隙間に送液された試料のうち、凹部3に収容されていない試料を置換する。これにより、封止液が複数の凹部3を個別に封止し、凹部3は独立した反応空間となる。
 続いて、凹部3内で所定の生化学反応を行う(反応工程)。本実施形態の反応工程では、凹部3内でシグナル増幅反応を行う。すなわち、凹部3内に特異的標識物質由来のシグナルが検出されるように、シグナルを観察可能なレベルまで、シグナルを反応工程により増幅させる。シグナルは、蛍光,発色,電位変化,pH変化などが挙げられる。本実施形態では、例えば、反応工程におけるシグナル増幅反応として、凹部3に分析対象物及び特異的標識物質がともに収容されている場合には、蛍光シグナルが増幅される。シグナル増幅反応は、例えば酵素反応である。一例として、シグナル増幅反応は、シグナル増幅のための酵素を含んだ試料が凹部3内に収容された状態で反応容器1を、所望の酵素活性が得られる一定温度条件で所定時間維持する等温反応である。具体例として、シグナル増幅反応として、インベーダー反応を用いることが可能である。この際、凹部3内の試料には、インベーダー反応試薬及び鋳型核酸が含まれている。反応工程における生化学反応がインベーダー反応である場合、等温反応による酵素反応によって、凹部3に分析対象物及び特異的標識物質がともに収容されている場合には、蛍光物質が消光物質から遊離することによって、励起光に対応して所定の蛍光シグナルを発する。
 反応工程の後、反応工程におけるシグナル増幅反応によって増幅されたシグナルを観察する。
 まず、特異的標識物質が収容された凹部3を特定するために、凹部3内におけるマイクロビーズの有無を観察する(第一観察工程)。
 第一観察工程では、反応容器1における第一表面2aに対して垂直な方向に照射する白色光を用いた明視野観察を行う。凹部3内にマイクロビーズが存在していればマイクロビーズの影が観察されるので、これによって、基材2上に形成された凹部3のうちマイクロビーズが収容されたビーズを特定することができる。
 第一観察工程では、複数の凹部3を含む領域のすべて、もしくは一部の区画を撮影し、画像として保存した上で、コンピューターシステムによる画像処理を実施する。
 次に、特異的標識物質と分析対象物とが凹部3内に共存している場合に上記の反応工程によって増幅するシグナルの有無を観察する(第二観察工程)。
 第二観察工程では、たとえば上記のインベーダー反応が行われた場合には、蛍光物質に対応する励起光を、基材2側からカバー部材4側へ、基材2を通じて凹部3内へ照射し、試料に含まれる蛍光物質が発する蛍光を基材2側から観察する。基材2は実質的に透明であるので、蛍光観察に使用される公知の反応容器1と同等の感度で蛍光観察をすることができる。
 第二観察工程では、複数の凹部3を含む領域のすべて、もしくは一部の区画を撮影し、画像として保存した上で、コンピューターシステムによる画像処理を実施する。
 このように、本実施形態の反応容器1を用いた生化学分析方法によれば、明視野観察及び蛍光観察を行うことができる。
 (実験例)
 カバー部材4の光透過性の程度が明視野観察及び蛍光観察に及ぼす影響について明らかにした実験例を以下に示す。以下に示す実験例において、本実施形態の反応容器1に相当する構成要素には、対応する符号が付されている。
 本実験例では、実験用の反応容器10を製造するために、2枚の透明な樹脂製の板状部材を使用した。2枚の板状部材のうちの一方の板状部材から基材2を形成した。他方の板状部材に対して両面テープによってスペーサ部5を形成し、基材2に接着して上記のカバー部材4の代用とした。
 2枚の板状部材の間に、蛍光標識マイクロビーズが分散された液体を注入し、さらに封止液によって複数の凹部3を個別に封止した。凹部3内に蛍光標識マイクロビーズが収容された状態を、蛍光顕微鏡(Olympus社製BX-51)を用いて観察(明視野観察及び蛍光観察)した。
 本実験例において製造された実験用の反応容器10は、全体として実質的に透明である。本実験例では、この実験用の反応容器10に、光透過性を有する着色フィルムと光不透過の黒色のフィルムとのいずれか一方を貼り付けて観察を行った。本実験例では、カバー部材4に相当する板状部材に上記の各フィルムを貼り付けた。
 図3は、本発明の反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が透明である場合に対応する構成の反応容器を用いた明視野観察結果を示す写真である。図4は、本発明の反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が透明である場合に対応する構成の反応容器を用いた蛍光観察結果を示す写真である。
 図3及び図4に示すように、どちらのフィルムも貼り付けていない実験用の反応容器10の場合には、明視野観察により画像を得ることができ、蛍光観察によっても画像を得ることができた。
 図5は、本発明の反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光透過性を有して着色されている場合に対応する構成の反応容器を用いた明視野観察結果を示す写真である。図6は、本発明の反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光透過性を有して着色されている場合に対応する構成の反応容器を用いた蛍光観察結果を示す写真である。
 図5及び図6に示すように、光透過性を有する着色フィルムを貼り付けた実験用の反応容器10の場合でも、明視野観察により画像を得ることができ、蛍光観察によっても画像を得ることができた。
 図7は、本発明の反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光不透過である場合に対応する構成の反応容器を用いた明視野観察結果を示す写真である。図8は、本発明の反応容器におけるカバー部材の光透過性に関する実験例において、カバー部材が光不透過である場合に対応する構成の反応容器を用いた蛍光観察結果を示す写真である。
 図7及び図8に示すように、光不透過の黒色のフィルムを貼り付けた実験用の反応容器10の場合では、明視野観察により画像を得ることはできなかった。一方、この場合では、蛍光観察によって画像を得ることができた。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上記実施形態の反応容器は、凹部内に収容される液体に接触可能となるように凹部内に配された検出電極(不図示)をさらに備えていてもよい。この検出電極は、不図示の配線を通じて測定器に接続可能であり、pH測定その他の電気化学的な測定に使用可能である。
 また、上記実施形態の反応容器は、複数の凹部を含む領域を第一表面に複数有していてもよい。この場合の複数の領域は、互いに独立した複数の反応区画となる。すなわち、1つの反応区画となる1つの領域に対して1種類の試料が対応するように、複数の反応区画に互いに異なる試料を供給することができる。これらの複数の領域は、スペーサ部によって外周を囲まれており、スペーサ部がカバー部材に溶着されていることによって、試料が混ざることなく生化学分析をすることができる領域となっている。このように複数の反応区画が基材に設定されることにより、複数の試料に対する分析条件(温度や反応時間等)を揃えることができる。
 また、カバー部材は、可視光の波長域の一部の範囲の光の透過率が可視光の波長域における他の範囲の光の透過率よりも高くてもよい。たとえば、カバー部材は、可視光の波長域のうち480nm以上570nm以下の範囲の光の透過率が25%以上であってもよい。たとえば、カバー部材は、可視光の波長域のうち480nm以上570nm以下の範囲の光の透過率が25%以上であれば、緑色の蛍光等を良好に観察することができる。
 [実施例1]
 本発明の実施例1を以下に示す。
 レーザー透過溶着法では、特定の波長を持つレーザー光を透過する透過材と、このレーザー光を吸収する吸収材をあわせて双方から加圧した後、上記のレーザー光を、透過材側から、透過材と吸収材との境界面にあてることによって、吸収材を溶解させる。これにより、吸収材が溶解するとともに、吸収材から透過材へも熱が伝わり、透過材の溶融温度を超えて透過材が加熱されることによって、透過材も溶解する。その結果、レーザー透過溶着法では、照射するレーザー光の波長に対する吸収率の低い透過材を溶着することができる。
 本実施例では、レーザー透過溶着法を用いて反応容器を製造する際に吸収材として機能するカバー部材について、レーザー透過溶着法により基材に確実に溶着できるとともに、反応容器を用いた生化学反応においてカバー部材を透過する蛍光による蛍光観察ができるようにするための具体例を示す。
 本実施例における基材の材質は、シクロオレフィンポリマー(COP)(厚みは1mm)である。
 本実施例におけるカバー部材の材料として、ポリスチレン(黒色)、PMMA(YL-500P-Y1 YAG(半透明)、シグマ光機製)を用いてカバー部材を作製した。
 また、レーザー透過溶着法に適していないカバー部材の材料を示す比較例として、ポリスチレン(透明)、PMMA製(YL-500P-LD(半透明))、PMMA(YL-500P-Y2 アルゴン(半透明))についても示す。これらの材料は、YAGレーザーの吸収率が低い材料である。
 本実施例及び比較例におけるレーザー溶着機として、YAGレーザー溶着機であるML-2030B(株アマダミヤチ製)を使用した。
 本実施例では、基材とカバー部材を密着させた後、ターンクリップで両素材を端で挟み込み、基材側を上になるように配置した。その後、基材側から垂直にレーザーを当てるように、レーザー溶着機に設置した。
 前述の基材、カバー部材として選んだ材料をそれぞれ組み合わせてレーザー溶着を実施した。レーザー溶着を実施するための設定項目は、照射電圧400V、照射時間1ms、照射回数を1秒で10回とし、互いに離間する三箇所にレーザー光を照射した。
 結果として、溶着できたのは、カバー部材の材料として、ポリスチレン(黒色)を使用した場合、及び、PMMA(YL-500P-Y1 YAG(半透明))を使用した場合であった。
 次に、カバー部材となるそれぞれの材料に対して、緑色のフィルタをかけた白色光を通過させ、カバー部材の反対側から光を視認することができるかどうか確認した。
 結果として、ポリスチレン(黒色)以外のすべての材料で光を視認することができた。
 以上のことから、基材とカバー部材との材料としてそれぞれCOPとPMMA(YL-500P-Y1 YAG(半透明))の組み合わせを使うことで、レーザー溶着を行うことができ、また、カバー部材側から光を検知できる材料構成を実現することができることが確認できた。
 なお、基材の材質は、COP以外の光透過性樹脂であってもよい。
 [実施例2]
 本発明の実施例2を以下に示す。
 本実施例では、レーザー透過溶着法を用いて反応容器を製造する際に吸収材として機能するカバー部材について、レーザー透過溶着法により基材に確実に溶着できるとともに、反応容器を用いた生化学反応においてカバー部材を透過する蛍光による蛍光観察ができるようにするための具体例を示す。
 本実施例における基材の材質は、シクロオレフィンポリマー(COP)(厚みは0.3mm~1mm)である。本実施例におけるカバー部材の材質として、カーボンを添加したCOP材(黒色:透過率0.01%、0.1%、0.8%、6%、24%、47%)を用いてカバー部材を作製した。カーボン添加(カーボン含有)COP材は、市販の樹脂(プラスチック)着色用のカーボン材料から選定して、COP材作成時に混ぜ込むことで作製することができる。また、レーザー透過溶着法に適していないカバー部材の材料を示す比較例として、着色用カーボンを添加していない透明なCOP材(空気に対して、透過率91%)を使用した。また、明視野観察に適していないカバー部材の材料を示す比較例として、透過率0%のCOP材を使用した。
<透過率の測定>
 全光線透過率(光学濃度)の測定は、光学ベンチ上に、レーザー光源(2波長 532nm、632nm、出力 2mmW程度)、ピンホール、ミラー、サンプルホルダー、PD光検出器(アンリツ製OPTICAL POWER METER ML910B)をセットアップして透過率の測定を行った。なお、全光線透過率は、空気の透過率を100%とする相対値である。
 本実施例及び比較例におけるレーザー溶着機として、浜松ホトニクス製半導体レーザー(LD-HEATER)をレーザーに用いた溶着機で、波長は940nmを使用した。本実施例では、溶着用のエアーシリンダーに載せた金属ステージに基材とカバー部材を重ね密着させた後、エアーシリンダーを加圧して基材とカバー部材を透明なガラス板に押し当て密着させた。その後、透明なガラス板を通して、ガラス板に垂直にレーザーを当てるように、ロボットアームでレーザーヘッドをスキャンしレーザー溶着を実施した。
 前述の基材、カバー部材として選んだ材料をそれぞれ組み合わせてレーザー溶着を実施した。レーザー溶着を実施するための設定項目は、例えば、レーザーパワー、スキャンスピード、繰り返し数等である。 
 次に、基材となるそれぞれの材料に対して、緑色のフィルタをかけた白色光を通過させ、カバー部材の反対側から光を視認することができるかどうか確認した。光源及びフィルタとして、分析対象が発する光の波長と同様の波長を有する光を発するように光源及びフィルタを用いてもよい。白色光は、LED、蛍光ランプ等から適宜選択できる。光源として、分析対象が発する光の波長と同様の波長を有する光を発する光源を用いてもよい。レーザー溶着及び視認の結果を表1に示す。表1中、溶着の欄において、「〇」は良好に溶着できたこと、「×」は溶着できなかったことを示す。また、表1中、ビーズの観察の欄において、「〇」は光を視認することができたこと、「×」は光を視認することができなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、レーザー溶着の結果、基材やカバー部材の型が崩れず溶着できたのは、カバー部材の材料として、透過率0%~47%を使用した場合であった。一方で、透過率91%の材料は、溶けずに溶着することができなかった。また、透過率60%以下においては基材やカバー部材の型が崩れずに溶着できることを確認している。
 また、透過率0.01%~47%の材料を使用した場合では、カバー部材の基材と反対側から照射した光を基材側から視認することができた。一方で、透過率0%の材料を使用した場合では、カバー部材の反対側から光を視認することができなかった。
 以上のことから、カバー部材をCOP材で形成する場合、透過率を0.01%~47%にすると、良好なレーザー溶着を行うことができ、また、カバー部材側から光を検知できる材料構成を実現することができる。なお、基材の材質は、COP以外の光透過性樹脂であってもよい。
 また、各透過率において、露光時間を変えて撮影を行ない、透過率が撮影時間に与える影響を確認した。図9は、透過率0%、0.1%、24%、47%、91%、100%のカバー部材に対して露光時間を変えて明視野及び蛍光観察を行った結果を示す写真である。この結果、透過率0.1%以上であれば、1秒以内の露光時間で鮮明な明視野画像を得ることができた。一方、透過率が0.1%より低い場合には、露光時間が1秒超必要であり、明視野画像を得るためにより長い撮影時間を要した。
 1 反応容器
 2 基材
 2A 第一板状部材
 3 凹部
 4 カバー部材
 4A 第二板状部材
 5 スペーサ部
 10 実験用の反応容器

Claims (14)

  1.  第一表面に開口する複数の凹部を有する透明な基材と、
     前記第一表面のうち前記複数の凹部を含んだ領域の内側において前記第一表面との間に隙間が空いた状態となるように前記領域の外側において前記基材に対して溶着された赤外線吸収性のカバー部材と、
     を備え、
     前記カバー部材は、可視光の波長域のうち少なくとも一部の範囲の光を透過可能である反応容器。
  2.  前記カバー部材は、可視光の波長域のうち480nm以上570nm以下の範囲の光の透過率が25%以上である、請求項1に記載の反応容器。
  3.  前記第一表面に対して垂直な方向において、前記カバー部材における前記第一表面側の赤外線吸収率が最も高い、請求項1に記載の反応容器。
  4.  前記凹部内に収容される液体に接触可能となるように前記凹部内に配された検出電極をさらに備える、請求項1に記載の反応容器。
  5.  前記領域を前記第一表面に複数有し、
     複数の前記領域が互いに独立した複数の反応区画となるように複数の前記領域のそれぞれの外周が前記カバー部材に溶着されている、
     請求項1に記載の反応容器。
  6.  前記カバー部材は、全光線透過率が0.01~60%である、請求項1に記載の反応容器。
  7.  請求項1から請求項6までのいずれか一項に記載の反応容器を用いた生化学分析方法であって、
     前記凹部に一つの検出対象物質が入るように希釈された試料を前記基材と前記カバー部材との間の前記隙間に送液する送液工程と、
     前記隙間に油性の封止液を送液して複数の凹部を個別に封止する封止工程と、
     前記封止工程の後、前記凹部内の試料に対して前記一部の範囲の光を用いて明視野観察を行う第一観察工程と、
     前記封止工程の後、前記凹部内の試料に前記基材を通じて励起光を照射するとともに前記励起光に対応して前記試料が発する蛍光を観察する第二観察工程と、
     を含む、
     生化学分析方法。
  8.  前記封止工程の後、前記第二観察工程の前に、前記凹部内でシグナル増幅反応を行う反応工程をさらに含む、請求項7に記載の生化学分析方法。
  9.  前記シグナル増幅反応が酵素反応である、請求項8に記載の生化学分析方法。
  10.  前記酵素反応が等温反応である、請求項9に記載の生化学分析方法。
  11.  前記酵素反応がインベーダー反応である、請求項9に記載の生化学分析方法。
  12.  前記試料は、分析対象物となるDNA,RNA,miRNA,mRNA,又はタンパク質と、前記分析対象物に対する特異的標識物質と、を含む、請求項7から請求項11のいずれか一項に記載の生化学分析方法。
  13.  前記分析対象物は核酸を含み、
     前記特異的標識物質は、前記分析対象物とは異なる核酸,酵素,粒子,抗体,及びリポソームの少なくとも一つを含む、
     請求項12に記載の生化学分析方法。
  14.  前記封止液は、フッ素系オイルとシリコン系オイルとの少なくともいずれかを含む、請求項7に記載の生化学分析方法。
     
PCT/JP2017/016828 2016-04-27 2017-04-27 反応容器及び生化学分析方法 WO2017188401A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780026053.2A CN109154555A (zh) 2016-04-27 2017-04-27 反应容器及生物化学分析方法
EP17789682.6A EP3450958A4 (en) 2016-04-27 2017-04-27 REACTION TANK AND BIOCHEMICAL ANALYSIS PROCESS
JP2018514713A JP6958547B2 (ja) 2016-04-27 2017-04-27 反応容器及び生化学分析方法
US16/171,630 US11414697B2 (en) 2016-04-27 2018-10-26 Reaction container and biochemical analysis method
JP2021165703A JP7251591B2 (ja) 2016-04-27 2021-10-07 生化学分析方法
US17/809,916 US20220333175A1 (en) 2016-04-27 2022-06-30 Reaction container and biochemical analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016089362 2016-04-27
JP2016-089362 2016-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/171,630 Continuation US11414697B2 (en) 2016-04-27 2018-10-26 Reaction container and biochemical analysis method

Publications (1)

Publication Number Publication Date
WO2017188401A1 true WO2017188401A1 (ja) 2017-11-02

Family

ID=60159831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016828 WO2017188401A1 (ja) 2016-04-27 2017-04-27 反応容器及び生化学分析方法

Country Status (5)

Country Link
US (2) US11414697B2 (ja)
EP (1) EP3450958A4 (ja)
JP (2) JP6958547B2 (ja)
CN (1) CN109154555A (ja)
WO (1) WO2017188401A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187582A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp バイオチップ、バイオセンサ、及び検査システム
JP2008216121A (ja) * 2007-03-06 2008-09-18 Konica Minolta Opto Inc マイクロチップの製造方法
US20100267576A1 (en) * 2007-05-02 2010-10-21 University Of Utah Research Foundation Compositions And Methods For Identifying And Treating Subjects At Risk Of Developing Type 2 Diabetes
JP2012132935A (ja) * 2009-03-31 2012-07-12 Toppan Printing Co Ltd 試料分析チップ、これを用いた試料分析装置、試料分析方法及び遺伝子解析方法、並びに試料分析チップの製造方法
WO2015115635A1 (ja) * 2014-01-31 2015-08-06 凸版印刷株式会社 生体分子解析キット及び生体分子解析方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101820A (ja) * 1996-09-30 1998-04-21 Fuji Electric Co Ltd ポリスチレン製部材の表面改質方法および該方法が適用されたポリスチレン製部材
JP3883951B2 (ja) * 2002-10-24 2007-02-21 富士フイルムホールディングス株式会社 生化学解析用ユニットを利用したアッセイ法および生化学解析装置
EP1626278A3 (en) * 2004-08-03 2006-06-21 OnChip Cellomics Consortium Cellomics system
US20070048859A1 (en) * 2005-08-25 2007-03-01 Sunsource Industries Closed system bioreactor apparatus
JP2009516162A (ja) * 2005-11-11 2009-04-16 モレキュラー・ビジョン・リミテッド マイクロ流体装置
JP2007307483A (ja) * 2006-05-18 2007-11-29 Dna Chip Research Inc 蓋部材及び容器キット
AU2008209561A1 (en) * 2007-01-22 2008-07-31 Wafergen, Inc. Apparatus for high throughput chemical reactions
EP2175998A1 (en) * 2007-06-15 2010-04-21 Eppendorf Ag Optically accessible cover
US8216828B2 (en) * 2008-05-30 2012-07-10 Corning Incorporated Assembly of cell culture vessels
GB2469138B (en) * 2009-04-04 2014-04-30 Dyson Technology Ltd Constant-power electric system
US20130099143A1 (en) 2010-06-30 2013-04-25 Tosoh Corporation Structure for particle immobilization and apparatus for particle analysis
CA2827040A1 (en) * 2011-02-18 2012-08-23 NVS Technologies, Inc. Quantitative, highly multiplexed detection of nucleic acids
KR20130037468A (ko) * 2011-10-06 2013-04-16 영남대학교 산학협력단 초소형 세포 융합장치
JP6179724B2 (ja) 2012-04-04 2017-08-16 三菱ケミカル株式会社 マイクロアレイ処理装置、マイクロアレイ処理装置用ウェルプレート、マイクロアレイホルダ、及び、マイクロアレイの洗浄方法
JP6218185B2 (ja) 2012-07-03 2017-10-25 コニカミノルタ株式会社 細胞展開用デバイスおよび希少細胞の検出方法
JP6226363B2 (ja) * 2013-08-20 2017-11-08 国立大学法人愛媛大学 ビス−ボロンジピロメテン系色素
JP6281395B2 (ja) * 2013-11-26 2018-02-21 ソニー株式会社 撮像素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187582A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp バイオチップ、バイオセンサ、及び検査システム
JP2008216121A (ja) * 2007-03-06 2008-09-18 Konica Minolta Opto Inc マイクロチップの製造方法
US20100267576A1 (en) * 2007-05-02 2010-10-21 University Of Utah Research Foundation Compositions And Methods For Identifying And Treating Subjects At Risk Of Developing Type 2 Diabetes
JP2012132935A (ja) * 2009-03-31 2012-07-12 Toppan Printing Co Ltd 試料分析チップ、これを用いた試料分析装置、試料分析方法及び遺伝子解析方法、並びに試料分析チップの製造方法
WO2015115635A1 (ja) * 2014-01-31 2015-08-06 凸版印刷株式会社 生体分子解析キット及び生体分子解析方法

Also Published As

Publication number Publication date
JP6958547B2 (ja) 2021-11-02
US11414697B2 (en) 2022-08-16
JPWO2017188401A1 (ja) 2019-03-07
EP3450958A1 (en) 2019-03-06
JP7251591B2 (ja) 2023-04-04
EP3450958A4 (en) 2019-11-20
CN109154555A (zh) 2019-01-04
JP2022008967A (ja) 2022-01-14
US20220333175A1 (en) 2022-10-20
US20190062821A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP7392749B2 (ja) 解析方法
US9995684B2 (en) Thermophoresis measurements in nanoliterdroplets
JP7009993B2 (ja) 生体物質検出方法および生体物質導入方法
JPWO2004036194A1 (ja) 分析チップおよび分析装置
US20090155125A1 (en) Microchip
KR20010052741A (ko) 분석 장치
CN103502795B (zh) 选择性功能化的纳米流体生物传感器中的生物分子的快速定量及其方法
JPWO2006054689A1 (ja) マイクロチップ
JP2009128229A (ja) マイクロチップ
WO2013118461A1 (en) Microchip under vacuum
JP2014020832A (ja) 生体物質分析用フローセルと生体物質分析装置
JP5157629B2 (ja) 流路基板
JP5137007B2 (ja) マイクロチップ
JP2006078414A (ja) 検査用プレート
JP2011080769A (ja) 円盤型分析チップおよびそれを用いた測定システム
WO2017188401A1 (ja) 反応容器及び生化学分析方法
US20090291025A1 (en) Microchip And Method Of Using The Same
JP4483608B2 (ja) 蛍光分析装置
JP2017049151A (ja) 生体物質検出方法
JP5196132B2 (ja) マイクロチップ
JP2009250710A (ja) マイクロチップ
WO2019131592A1 (ja) 標的分子の検出における偽陰性判定の発生を抑制する方法および検出デバイス
JP2006308447A (ja) 生体サンプル分析用プレート及び生体サンプル分析方法
EP3021968B1 (en) Method and device for bioassays
JP2017053650A (ja) 試料分析チップ、試料分析方法及び試料分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514713

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789682

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017789682

Country of ref document: EP

Effective date: 20181127