WO2010113766A1 - 電動機ロータおよびこれを備えた圧縮機 - Google Patents

電動機ロータおよびこれを備えた圧縮機 Download PDF

Info

Publication number
WO2010113766A1
WO2010113766A1 PCT/JP2010/055251 JP2010055251W WO2010113766A1 WO 2010113766 A1 WO2010113766 A1 WO 2010113766A1 JP 2010055251 W JP2010055251 W JP 2010055251W WO 2010113766 A1 WO2010113766 A1 WO 2010113766A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
motor rotor
electric motor
positioning
Prior art date
Application number
PCT/JP2010/055251
Other languages
English (en)
French (fr)
Inventor
順也 田中
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN201080012638.7A priority Critical patent/CN102356237B/zh
Priority to EP10758539.0A priority patent/EP2416013A4/en
Priority to US13/257,539 priority patent/US8659195B2/en
Priority to AU2010231801A priority patent/AU2010231801B2/en
Publication of WO2010113766A1 publication Critical patent/WO2010113766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/04Balancing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/603Centering; Aligning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to an electric motor rotor and a compressor including the electric motor rotor, and more particularly to an electric motor rotor having a plurality of holes such as a refrigerant gas hole and a rivet hole, and a hermetic type such as a rotary compressor and a scroll compressor including the electric motor rotor.
  • the present invention relates to a rotary compressor.
  • FIG. 7 is a top view of a conventional 6-pole motor rotor.
  • the rotor 1 is provided with four elongated refrigerant gas holes 3 and two positioning holes 4 in the vicinity of the periphery of the shaft hole 2.
  • six rivet holes 5 are provided on the radially outer side of the rotor 1.
  • the positioning hole 4 also serves as the refrigerant gas hole 3.
  • the rivet hole 5 is for inserting a rivet for fixing a rotor core (rotor laminated steel plate), an end plate 6, a magnet (permanent magnet), a balance weight 7 and an oil separation plate, which are components of the rotor 1.
  • the refrigerant gas hole 3 is a through hole serving as a refrigerant gas passage, and is for improving oil separation efficiency.
  • the positioning hole 4 is for inserting a positioning pin for adjusting the rotational position of the rotor 1 to a predetermined position in the magnetizing process of the rotor 1.
  • the rotor In the manufacturing process of the rotary compressor, the rotor is magnetized after being fixed to the shaft extending from the compression portion in the casing by shrink fitting. Magnetization of the rotor needs to be performed by aligning the rotor and the magnetizing device at a predetermined position in the rotation direction, and by inserting a positioning pin into the positioning hole of the rotor and adjusting the position in the rotation direction of the rotor at the predetermined position. .
  • the positioning pin since the rotor is fixed to the shaft extending from the compression portion by shrink fitting, the positioning pin is inserted into the rotor from a positioning hole provided on the rotor end surface on the side of the non-compression portion far from the compression portion. Since the magnetic force for rotating the rotor acts when magnetized, the positioning pin also plays a role in preventing the rotor from rotating during alignment.
  • the refrigerant gas hole 3 has a long hole shape that is long in the circumferential direction of the rotor 1. If all of the refrigerant gas holes 3 have the same long hole shape, it becomes difficult to use the refrigerant gas holes 3 as positioning holes. Therefore, the refrigerant gas holes 3 (positioning holes 4) used for positioning are circular. In this case, there is a problem that the area of the refrigerant gas hole 3 is reduced and the oil separation efficiency is deteriorated. Conversely, if the area of the circle of the refrigerant gas hole 3 (positioning hole 4) used for positioning is increased, there is a problem that the magnetic path in the rotor 1 is narrowed and the motor efficiency is deteriorated.
  • the oil separation plate is provided on the end surface of the rotor on the side opposite to the compression portion, so that the oil separation plate can be provided with a positioning hole or a notch.
  • the oil separation plate is made of a thin plate to reduce costs, the strength will decrease, and the oil separation plate may be deformed by the rotational force during magnetization, and a positioning hole is provided in the rotor core. It is necessary to keep. In this case, it is necessary to provide a hole having a size larger than that of the positioning hole in the oil separation plate at a position corresponding to the positioning hole of the rotor core.
  • the positioning hole is provided separately from the refrigerant gas hole, it is necessary to provide the positioning hole at a location that does not adversely affect the magnetic path in the rotor, which increases design restrictions and may deteriorate motor efficiency. .
  • the present invention has been made in view of the above, and an object of the present invention is to provide an electric motor rotor capable of suppressing a decrease in oil separation efficiency and avoiding a decrease in motor efficiency, and a compressor including the same. To do.
  • an electric motor rotor according to claim 1 of the present invention is an electric motor rotor composed of a substantially cylindrical rotor laminated steel plate having a permanent magnet therein, and the rotor lamination
  • the steel plate is provided with a plurality of refrigerant gas holes penetrating in the axial direction and a plurality of circumferentially arranged rivet holes penetrating in the axial direction, and at least one rivet hole among the plurality of rivet holes, It is configured to be used as a positioning hole for inserting a positioning pin for positioning in the rotational direction when the rotor is magnetized.
  • An electric motor rotor according to a second aspect of the present invention is the motor rotor according to the first aspect, wherein an oil separation plate is coaxially provided on an end surface of the rotor laminated steel plate, and the oil separation plate is positioned at a position corresponding to the positioning hole.
  • a hole through which the positioning pin can be inserted is provided.
  • the motor rotor according to claim 3 of the present invention is the motor rotor according to claim 1 or 2, wherein the number of rotor poles is 6, and the rivet holes are provided at six equal intervals in the circumferential direction. Of these rivet holes, the three equally spaced rivet holes are used as dedicated rivet holes into which rivets are exclusively inserted, and the remaining rivet holes are used as the positioning holes.
  • a compressor according to claim 4 of the present invention is a compressor including the motor rotor according to any one of claims 1 to 3 described above.
  • the rotor laminated steel plate includes a plurality of refrigerant gas holes penetrating in the axial direction and a circumferential direction.
  • a plurality of rivet holes arranged in the axial direction are provided, and at least one rivet hole among the plurality of rivet holes is used as a positioning hole for inserting a positioning pin for positioning in the rotational direction when the rotor is magnetized. Since it is configured to be used, it is not necessary to change the shape of the refrigerant gas hole that affects the oil separation efficiency, and it is not necessary to provide a positioning hole separately from the rivet hole. For this reason, it is possible to avoid adversely affecting the magnetic path in the rotor. Therefore, it is possible to suppress the decrease in oil separation efficiency and avoid the decrease in motor efficiency.
  • FIG. 1 is a top view showing an embodiment of an electric motor rotor according to the present invention.
  • FIG. 2 is an upper perspective view of the motor rotor according to the present invention.
  • FIG. 3 is an exploded top perspective view of the motor rotor according to the present invention.
  • FIG. 4 is a top view of the oil separation plate of the motor rotor according to the present invention.
  • FIG. 5 is a bottom view showing an embodiment of an electric motor rotor according to the present invention.
  • FIG. 6 is a side sectional view of the compressor according to the present invention.
  • FIG. 7 is a top view showing an example of a conventional electric motor rotor.
  • the motor rotor 10 includes a cylindrical rotor laminated steel plate 14 having a shaft hole 12 and rotor end plates 16 a and 16 b, and a circle around the shaft hole 12.
  • Six refrigerant gas holes 18 having long holes in the circumferential direction and six rivet holes 20 provided at equal intervals in the circumferential direction outside the diameter are provided.
  • the refrigerant gas hole 18 and the rivet hole 20 are holes that penetrate the motor rotor 10 in the axial direction.
  • the rivet holes 20 are arranged rotationally symmetrically at positions avoiding the six magnets 21 (permanent magnets) arranged at rotationally symmetrical positions in the rotor laminated steel sheet 14. Since the rivets are preferably inserted and arranged at equal intervals in the circumferential direction in order to fix the rotor components, the rivets are inserted into three rivet holes 20a arranged at equal intervals in the circumference. Accordingly, no rivets are inserted into three of the six rivet holes 20.
  • the refrigerant gas hole 18 is provided at a rotationally symmetric position near the shaft hole 12, and is provided at a position where the magnetic path of the rotor 10 is narrowed and the motor efficiency is not deteriorated.
  • An oil separation plate 24 for improving the oil separation efficiency is provided on the end surface of the rotor 10 on the side opposite to the compression portion.
  • the oil separation plate 24 is formed of a thin plate so that it can be easily processed by a press.
  • the oil separating plate 24 is provided with a through hole 26 at a position corresponding to the positioning hole 20b of the rotor 10 so that a positioning pin can be inserted into the positioning hole 20b of the rotor 10.
  • a positioning pin can be inserted into the rotor 10 from the through hole 26.
  • the motor rotor 10 includes arc-shaped balance weights 22a and 22b on both end surfaces.
  • the upper and lower balance weights 22a and 22b are arranged at positions where the phases are different from each other by 180 °.
  • the upper balance weight 22a is fixed to the rotor laminated steel plate 14 via the rotor end plate 16a by rivets 28a and 28b passing through the rivet dedicated holes 20a at the two ends.
  • the lower balance weight 22b is fixed to the rotor laminated steel plate 14 via the rotor end plate 16b by a rivet 28c passing through one central rivet hole 20a, and a convex portion 30 formed at two end portions. And the recess 32 formed in the rotor end plate 16b are positioned by fitting.
  • FIG. 6 is a sectional side view of a rotary compressor provided with an electric motor rotor according to the present invention.
  • the motor rotor 10 When manufacturing the rotary compressor 100 as shown in FIG. 6, the motor rotor 10 is magnetized after the motor rotor 10 is fixed to the shaft 36 of the compression portion 34 by shrink fitting. Since the motor rotor 10 is fixed to the shaft 36 of the compression part 34, the positioning pin is inserted into the positioning hole 20b of the rotor end surface 10a on the side opposite to the compression part far from the compression part 34.
  • a positioning pin is inserted into the positioning hole 20 b of the motor rotor 10 through the through hole 26 of the oil separation plate 24.
  • a positioning pin is inserted into the electric motor rotor 10, whereby the position of the electric motor rotor 10 in the rotational direction is adjusted to a predetermined position, and magnetization is performed.
  • the positioning pin also plays a role of preventing rotation. After the completion of magnetization, the positioning pin is removed from the motor rotor 10 and the process proceeds to the next step.
  • a rivet is not inserted into at least one hole 20b among the plurality of rivet holes 20 provided in the motor rotor 10, it can be used as a positioning hole at the time of magnetizing the rotor.
  • the oil separation plate 24 has a small through hole as small as a rivet hole for insertion into the positioning hole 20b on the rotor laminated steel plate 14 side. Therefore, the decrease in oil separation efficiency can be minimized.
  • the motor rotor having six magnetic poles has been described.
  • the present invention is not limited to six magnetic poles, and four magnets (permanent magnets) are arranged in a rotationally symmetrical position in the rotor laminated steel sheet 14. It may be constituted by a four-pole motor rotor arranged in the above, or may be constituted by a multi-pole motor rotor other than four poles.
  • the rotor laminated steel plate has a plurality of refrigerant gas holes penetrating in the axial direction. And a plurality of rivet holes arranged in the circumferential direction and penetrating in the axial direction, and positioning pins for positioning at least one of the plurality of rivet holes in the rotational direction when the rotor is magnetized. Therefore, it is not necessary to change the shape of the refrigerant gas hole that affects oil separation efficiency, and it is not necessary to provide a positioning hole separately from the rivet hole. For this reason, it is possible to avoid adversely affecting the magnetic path in the rotor. Therefore, it is possible to suppress the decrease in oil separation efficiency and avoid the decrease in motor efficiency.
  • the electric motor rotor according to the present invention is useful for an electric motor rotor having a plurality of holes such as a refrigerant gas hole, a rivet hole, and a positioning hole, and in particular, a rotary compressor and a scroll used for a refrigeration apparatus and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 油分離効率の低下を抑制し、モータ効率の低下を回避することができる電動機ロータを備えた圧縮機を提供する。永久磁石を内部に備える略円柱状の回転子積層鋼板からなる電動機ロータ10において、回転子積層鋼板には、軸方向に貫通する複数の冷媒ガス孔18と、円周方向に複数配置され、軸方向に貫通したリベット孔20とを設ける。複数のリベット孔20のうち少なくとも1つのリベット孔を、ロータ着磁時に回転方向の位置決めをするための位置決めピンを挿入する位置決め孔20bとして用いるように構成した。

Description

電動機ロータおよびこれを備えた圧縮機
 本発明は、電動機ロータおよびこれを備えた圧縮機に関し、特に、冷媒ガス孔、リベット孔などの複数の孔を有する電動機ロータおよびこの電動機ロータを備えたロータリ圧縮機やスクロール圧縮機などの密閉型回転式圧縮機に関するものである。
 従来、ロータリ圧縮機やスクロール圧縮機などの密閉型回転式圧縮機に備わる電動機のロータが知られている(例えば、特許文献1および2参照)。図7は、従来の6極電動機ロータの上面図である。図7に示すように、ロータ1には、軸孔2の周囲近傍に4箇所の長孔形状の冷媒ガス孔3と2箇所の位置決め孔4が設けてある。また、ロータ1の径方向外側に6箇所のリベット孔5が設けてある。位置決め孔4は冷媒ガス孔3を兼ねている。
 リベット孔5は、ロータ1の構成部品であるロータコア(回転子積層鋼板)、端板6、マグネット(永久磁石)、バランスウェイト7および油分離板を固定するリベットを挿通するためのものである。冷媒ガス孔3は、冷媒ガスの通路となる貫通孔であり、油分離効率向上のためのものである。位置決め孔4は、ロータ1の着磁工程において、ロータ1の回転位置を所定の位置に合わせる位置決めピンを挿入するためのものである。
 ロータリ圧縮機の製造工程においては、ロータをケーシング内の圧縮部から延びるシャフトに焼嵌めにより固定した後に、ロータの着磁を行う。ロータの着磁は、ロータと着磁装置とを回転方向の所定位置に合わせて行う必要があり、ロータの位置決め孔に位置決めピンを挿入し、ロータの回転方向の位置を所定位置に合わせて行う。この場合、ロータは圧縮部から延びるシャフトに焼嵌めにより固定されているため、位置決めピンは、圧縮部から遠い反圧縮部側のロータ端面に設けた位置決め孔からロータに挿入する。着磁時にはロータを回転させようとする磁力が作用するため、位置決めピンは、位置合わせ時のロータ回転防止の役割も担っている。
特開2005-143299号公報 特開2008-14320号公報
 ところで、上記の従来の図7に示すロータ1では、6箇所の冷媒ガス孔3のうち、2箇所を位置決め孔4として使用している。油分離効率の向上には、冷媒ガス孔面積の拡大が有効であるため、冷媒ガス孔3をロータ1の周方向に長い長孔形状としている。冷媒ガス孔3をすべて同じ長孔形状にすると位置決め孔として使用することが難しくなるため、位置決めに使用する冷媒ガス孔3(位置決め孔4)は円形状としている。この場合、冷媒ガス孔3の面積が小さくなり油分離効率が悪化するという問題がある。逆に、位置決めに使用する冷媒ガス孔3(位置決め孔4)の円の面積を大きくすると、ロータ1内の磁路を狭めることとなりモータ効率が悪化するという問題がある。
 一方、ロータに油分離板を取り付けた構造の場合には、油分離板は、ロータの反圧縮部側の端面に設けるため、油分離板に位置決め孔または切欠きを設けることができる。ただし、低コスト化を図るために油分離板を薄板で形成した場合には強度が低下することから、着磁時の回転力によって油分離板が変形するおそれがあり、ロータコアに位置決め孔を設けておく必要がある。この場合、油分離板にもロータコアの位置決め孔に対応する位置に、この位置決め孔以上の大きさの孔を設けておく必要がある。油分離効率を向上させるため、位置決め孔として使用する冷媒ガス孔を大きくした場合には、油分離板にも大きな孔を設ける必要が生じる。しかしながら、油分離板に大きな孔がある場合には、油分離板による油分離効果を十分に発揮できないおそれがある。
 他方、冷媒ガス孔とは別個に位置決め孔を設ける場合は、ロータ内の磁路に悪影響を及ぼさない箇所に設ける必要があり、設計上の制約が多くなるとともに、モータ効率を悪化させるおそれもある。
 本発明は、上記に鑑みてなされたものであって、油分離効率の低下を抑制し、モータ効率の低下を回避することができる電動機ロータおよびこれを備えた圧縮機を提供することを目的とする。
 上記した課題を解決し、目的を達成するために、本発明の請求項1に係る電動機ロータは、永久磁石を内部に備える略円柱状の回転子積層鋼板からなる電動機ロータにおいて、前記回転子積層鋼板には、軸方向に貫通する複数の冷媒ガス孔と、円周方向に複数配置され、軸方向に貫通したリベット孔とが設けられ、前記複数のリベット孔のうち少なくとも1つのリベット孔を、ロータ着磁時に回転方向の位置決めをするための位置決めピンを挿入する位置決め孔として用いるように構成したことを特徴とする。
 また、本発明の請求項2に係る電動機ロータは、上述した請求項1において、前記回転子積層鋼板の端面に油分離板を同軸に設け、この油分離板の前記位置決め孔に対応した位置に、位置決めピンを挿通可能な孔を設けたことを特徴とする。
 また、本発明の請求項3に係る電動機ロータは、上述した請求項1または2において、ロータ極数が6極の電動機ロータであって、前記リベット孔は円周方向等間隔に6箇所設けられ、これらリベット孔のうち円周等配に配置された3箇所はリベットが専ら挿入されるリベット専用孔として、残りのリベット孔は前記位置決め孔として用いるように構成したことを特徴とする。
 また、本発明の請求項4に係る圧縮機は、上述した請求項1~3のいずれか一つに記載の電動機ロータを備えた圧縮機である。
 本発明によれば、永久磁石を内部に備える略円柱状の回転子積層鋼板からなる電動機ロータにおいて、前記回転子積層鋼板には、軸方向に貫通する複数の冷媒ガス孔と、円周方向に複数配置され、軸方向に貫通したリベット孔とが設けられ、前記複数のリベット孔のうち少なくとも1つのリベット孔を、ロータ着磁時に回転方向の位置決めをするための位置決めピンを挿入する位置決め孔として用いるように構成したので、油分離効率を左右する冷媒ガス孔の形状を変える必要がなく、また、リベット孔とは別個に位置決め孔を設ける必要もない。このため、ロータ内の磁路に悪影響を及ぼすことを回避することができる。したがって、油分離効率の低下を抑制し、モータ効率の低下を回避することができるという効果を奏する。
図1は、本発明に係る電動機ロータの実施例を示す上面図である。 図2は、本発明に係る電動機ロータの上方斜視図である。 図3は、本発明に係る電動機ロータの分解上方斜視図である。 図4は、本発明に係る電動機ロータの油分離板の上面図である。 図5は、本発明に係る電動機ロータの実施例を示す下面図である。 図6は、本発明に係る圧縮機の側断面図である。 図7は、従来の電動機ロータの一例を示す上面図である。
 以下に、本発明に係る電動機ロータおよびこれを備えた圧縮機の実施例を、ロータ極数が6極の電動機ロータを例にとり図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 図1および図2に示すように、本発明に係る電動機ロータ10は、軸孔12を有する円柱状の回転子積層鋼板14と回転子端板16a、16bとからなり、軸孔12周囲の円周方向に長い長孔形状の6箇所の冷媒ガス孔18と、これよりも径外側の円周方向等間隔に設けた6箇所のリベット孔20とを備える。冷媒ガス孔18とリベット孔20は、それぞれ電動機ロータ10を軸方向に貫通する孔である。
 リベット孔20は、図3に示すように、回転子積層鋼板14内の回転対称位置に配置してある6個のマグネット21(永久磁石)を回避する位置に回転対称に配置してある。リベットは、ロータ構成部品を固定するため円周方向均等間隔に挿入配置するのが望ましいので、円周等配に配置した3箇所のリベット専用孔20aに挿入してある。したがって、6箇所のリベット孔20のうち3箇所にはリベットを挿入していない。
 リベットを挿入していない3箇所のうち、バランスウェイト22aに隠れていない2箇所を、ロータ着磁時の位置決めピンを挿入するための位置決め孔20bとして用いる。なお、残りの1箇所はバランスウェイト22aの下に隠れて見えないようになっている。
 冷媒ガス孔18は、軸孔12近傍の回転対称位置に設けてあり、ロータ10の磁路を狭めてモータ効率を悪化させない位置に設けてある。
 ロータ10の反圧縮部側の端面には、油分離効率の向上のための油分離板24が設けてある。油分離板24は、プレスにて容易に加工できるように薄板で形成してある。図3および図4に示すように、油分離板24には、ロータ10の位置決め孔20bに位置決めピンを挿入できるように、ロータ10の位置決め孔20bに対応した位置に貫通孔26を設け、この貫通孔26から位置決めピンをロータ10に挿入できるようにしてある。
 図3および図5に示すように、電動機ロータ10は、円弧板状のバランスウェイト22a、22bを両端面に備える。上下のバランスウェイト22a、22bは、互いに位相が180°異なる位置に配置してある。上側のバランスウェイト22aは、端部2箇所のリベット専用孔20aを通るリベット28a、28bにより回転子端板16aを介して回転子積層鋼板14に固定してある。
 下側のバランスウェイト22bは、中央1箇所のリベット専用孔20aを通るリベット28cにより回転子端板16bを介して回転子積層鋼板14に固定してあり、端部2箇所に形成した凸部30と回転子端板16bに形成した凹部32とが嵌合することで位置決めされている。
 次に、本発明に係る電動機ロータを備えた圧縮機の実施の形態についてロータリ圧縮機を例にとり説明する。図6は、本発明に係る電動機ロータを備えたロータリ圧縮機の側断面図である。
 図6に示すようなロータリ圧縮機100を製造する場合には、電動機ロータ10を圧縮部34のシャフト36に焼嵌めにより固定した後に、電動機ロータ10の着磁を行う。電動機ロータ10は、圧縮部34のシャフト36に固定されているため、位置決めピンは圧縮部34から遠い反圧縮部側のロータ端面10aの位置決め孔20bに対して挿入する。
 電動機ロータ10の反圧縮部側には油分離板24が設けられているため、油分離板24の貫通孔26を介して、電動機ロータ10の位置決め孔20bに位置決めピンを挿入する。位置決めピンを電動機ロータ10に挿入し、これによって電動機ロータ10の回転方向の位置を所定位置に合わせ、着磁を行う。このとき、ロータ10を回転させようとする磁力が作用するため、位置決めピンは回転防止の役割も果たしている。着磁完了後は電動機ロータ10から位置決めピンを抜き、次工程に移行することになる。
 このように、電動機ロータ10に設けてある複数のリベット孔20のうち少なくとも1箇所の孔20bにはリベットを挿入せずに、ロータ着磁時の位置決め用の孔として使用すれば、油分離効率を左右する冷媒ガス孔18の形状を変える必要もないし、別個に位置決め孔を設ける必要もない。このため、孔を新設することでロータ10内の磁路を狭めてモータ効率の悪化を招くことはない。冷媒ガス孔18を位置決め孔として兼用しないので、冷媒ガス孔18の大きさを十分確保することができ、油分離効率の悪化を招くこともない。したがって、モータ効率を低下させることもなく、吐油量の少ない圧縮機100を得ることができる。
 さらに、電動機ロータ10が、薄板で形成した油分離板24を有する構造であっても、回転子積層鋼板14側の位置決め孔20bに挿入するために油分離板24にリベット孔程度の小さい貫通孔26を設ければよいので、油分離効率の低下を最小限に抑制することができる。
 上記の実施の形態において、ロータ磁極が6極の電動機ロータについて説明したが、本発明は6極に限るものではなく、回転子積層鋼板14内に4個のマグネット(永久磁石)を回転対称位置に配置した4極の電動機ロータで構成してもよいし、4極以外の複数極の電動機ロータで構成してもよい。
 以上説明したように、本発明によれば、永久磁石を内部に備える略円柱状の回転子積層鋼板からなる電動機ロータにおいて、前記回転子積層鋼板には、軸方向に貫通する複数の冷媒ガス孔と、円周方向に複数配置され、軸方向に貫通したリベット孔とが設けられ、前記複数のリベット孔のうち少なくとも1つのリベット孔を、ロータ着磁時に回転方向の位置決めをするための位置決めピンを挿入する位置決め孔として用いるように構成したので、油分離効率を左右する冷媒ガス孔の形状を変える必要がなく、また、リベット孔とは別個に位置決め孔を設ける必要もない。このため、ロータ内の磁路に悪影響を及ぼすことを回避することができる。したがって、油分離効率の低下を抑制し、モータ効率の低下を回避することができるという効果を奏する。
 以上のように、本発明に係る電動機ロータは、冷媒ガス孔、リベット孔や位置決め孔などの複数の孔を有する電動機ロータに有用であり、特に、冷凍装置等に使用されるロータリ圧縮機やスクロール圧縮機などの密閉型回転式圧縮機に備わる電動機ロータに適している。
 10 電動機ロータ
 10a ロータ端面
 12 軸孔
 14 回転子積層鋼板
 16a,16b 回転子端板
 18 冷媒ガス孔
 20 リベット孔
 21 マグネット(永久磁石)
 20a リベット専用孔
 20b 位置決め孔
 22a,22b バランスウェイト
 24 油分離板
 26 貫通孔
 28a,28b,28c リベット
 30 凸部
 32 凹部
 34 圧縮部
 36 シャフト
 100 ロータリ圧縮機(圧縮機)

Claims (4)

  1.  永久磁石を内部に備える略円柱状の回転子積層鋼板からなる電動機ロータにおいて、
     前記回転子積層鋼板には、軸方向に貫通する複数の冷媒ガス孔と、
     円周方向に複数配置され、軸方向に貫通したリベット孔とが設けられ、
     前記複数のリベット孔のうち少なくとも1つのリベット孔を、ロータ着磁時に回転方向の位置決めをするための位置決めピンを挿入する位置決め孔として用いるように構成したことを特徴とする電動機ロータ。
  2.  前記回転子積層鋼板の端面に油分離板を同軸に設け、この油分離板の前記位置決め孔に対応した位置に、位置決めピンを挿通可能な孔を設けたことを特徴とする請求項1に記載の電動機ロータ。
  3.  ロータ極数が6極の電動機ロータであって、前記リベット孔は円周方向等間隔に6箇所設けられ、これらリベット孔のうち円周等配に配置された3箇所はリベットが専ら挿入されるリベット専用孔として、残りのリベット孔は前記位置決め孔として用いるように構成したことを特徴とする請求項1または2に記載の電動機ロータ。
  4.  請求項1~3のいずれか一つに記載の電動機ロータを備えた圧縮機。
PCT/JP2010/055251 2009-03-31 2010-03-25 電動機ロータおよびこれを備えた圧縮機 WO2010113766A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080012638.7A CN102356237B (zh) 2009-03-31 2010-03-25 电动机转子及具备此电动机转子的压缩机
EP10758539.0A EP2416013A4 (en) 2009-03-31 2010-03-25 Electric motor rotor and compressor provided with the same
US13/257,539 US8659195B2 (en) 2009-03-31 2010-03-25 Motor rotor and compressor provided with the same
AU2010231801A AU2010231801B2 (en) 2009-03-31 2010-03-25 Electric motor rotor and compressor provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009086486A JP4687810B2 (ja) 2009-03-31 2009-03-31 電動機ロータ
JP2009-086486 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113766A1 true WO2010113766A1 (ja) 2010-10-07

Family

ID=42828059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055251 WO2010113766A1 (ja) 2009-03-31 2010-03-25 電動機ロータおよびこれを備えた圧縮機

Country Status (6)

Country Link
US (1) US8659195B2 (ja)
EP (1) EP2416013A4 (ja)
JP (1) JP4687810B2 (ja)
CN (1) CN102356237B (ja)
AU (1) AU2010231801B2 (ja)
WO (1) WO2010113766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098359A1 (en) * 2009-03-31 2012-04-26 Naoya Morozumi Rotor of compressor motor

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286937B2 (ja) * 2008-05-27 2013-09-11 株式会社富士通ゼネラル ロータリ圧縮機
CN102270891B (zh) * 2010-06-03 2013-05-22 珠海格力电器股份有限公司 自起动永磁同步电机转子及使用该转子的压缩机
JP2012202252A (ja) 2011-03-24 2012-10-22 Sanyo Electric Co Ltd スクロール圧縮装置
WO2012127754A1 (ja) 2011-03-24 2012-09-27 三洋電機株式会社 スクロール圧縮装置
CN102237747B (zh) * 2011-03-24 2016-08-10 卧龙电气章丘海尔电机有限公司 平衡块
WO2012127752A1 (ja) 2011-03-24 2012-09-27 三洋電機株式会社 リング体把持治具及びスクロール圧縮装置
GB2507230B (en) * 2011-08-26 2017-11-15 Gen Electric Permanent magnet rotor having a combined laminated stack and method of assembly
JP2013126281A (ja) * 2011-12-14 2013-06-24 Daikin Ind Ltd 界磁子の製造方法及び界磁子用の端板
JP2014036554A (ja) 2012-08-10 2014-02-24 Aisin Seiki Co Ltd ロータヨークおよび該ロータヨークを用いたモータ
WO2014039155A2 (en) * 2012-09-06 2014-03-13 Carrier Corporation Motor rotor and air gap cooling
JP6119962B2 (ja) * 2012-11-15 2017-04-26 株式会社豊田自動織機 電動圧縮機
US10497747B2 (en) * 2012-11-28 2019-12-03 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing
FR3012268B1 (fr) * 2013-10-21 2017-04-21 Valeo Equip Electr Moteur Procede d'assemblage par rivetage d'un rotor de machine electrique tournante, rotor et compresseur correspondants
JP5858076B2 (ja) * 2014-03-20 2016-02-10 株式会社富士通ゼネラル 圧縮機用電動機の回転子
CN105422456A (zh) * 2014-09-22 2016-03-23 上海日立电器有限公司 转子式压缩机的挡油平衡结构及挡油板的安装方法
CN104753278B (zh) * 2015-03-13 2018-09-11 广东威灵电机制造有限公司 用于鼠笼式电机的转子和具有其的鼠笼式电机
CN104753277B (zh) * 2015-03-13 2018-06-15 广东威灵电机制造有限公司 用于鼠笼式电机的转子和具有其的鼠笼式电机
DE102015110267A1 (de) * 2015-06-25 2016-12-29 C. & E. Fein Gmbh Rotor für einen elektronisch kommutierten Elektromotor und Verfahren zur Herstellung eines solchen
US20180195512A1 (en) * 2015-09-24 2018-07-12 Guangdong Meizi Compressor Co., Ltd. Rotary compressor
WO2018035732A1 (zh) * 2016-08-24 2018-03-01 广东美芝制冷设备有限公司 用于压缩机的电机转子、用于压缩机的电机及压缩机
CN106712351A (zh) * 2017-02-17 2017-05-24 安徽美芝制冷设备有限公司 压缩机的转子组件、压缩机的电机组件及压缩机
DE102017123085A1 (de) * 2017-10-05 2019-04-11 Vorwerk & Co. Interholding Gmbh Außenläufermotor
JP6720995B2 (ja) * 2018-03-15 2020-07-08 株式会社富士通ゼネラル 圧縮機
JP6648774B2 (ja) * 2018-03-22 2020-02-14 株式会社富士通ゼネラル 圧縮機
DE102018127501A1 (de) * 2018-11-05 2020-05-07 C. & E. Fein Gmbh EC-Motor für ein elektrisches Handwerkzeug sowie Verfahren zur Herstellung eines Rotors für einen EC-Motor
DE102019111333A1 (de) * 2019-05-02 2020-11-05 Festool Gmbh Antriebsmotor mit einer Wuchtpartie am Rotor
KR20230142070A (ko) * 2022-03-31 2023-10-11 한온시스템 주식회사 전동 압축기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638474A (ja) * 1992-07-10 1994-02-10 Toshiba Corp ブラシレスモータの回転子の着磁方法と着磁治具
JP2000324770A (ja) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp 永久磁石型電動機とその着磁方法
JP2001197693A (ja) * 2000-01-14 2001-07-19 Toshiba Tec Corp ブラシレスモータ用回転子及びブラシレスモータ
JP2003018803A (ja) * 2002-04-26 2003-01-17 Sanyo Electric Co Ltd 密閉型回転圧縮機
JP2005143299A (ja) 2001-03-30 2005-06-02 Sanyo Electric Co Ltd 誘導同期電動機
JP2008014320A (ja) 1998-02-26 2008-01-24 Denso Corp 電動圧縮機
JP2008263663A (ja) * 2007-04-10 2008-10-30 Aichi Elec Co 永久磁石埋め込み形回転子の製造方法と、その製造方法を用いた永久磁石埋め込み形回転子
JP2008283823A (ja) * 2007-05-11 2008-11-20 Toyota Motor Corp 回転電機のロータおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388756A (en) * 1978-10-25 1983-06-21 General Electric Company Methods of making improved rotor assembly
US5666015A (en) * 1993-04-30 1997-09-09 Sanyo Electric Co., Ltd. Electric motor for a compressor with a rotor with combined balance weights and oil separation disk
TW564285B (en) * 1999-06-29 2003-12-01 Sanyo Electric Co Sealed rotary compressor
JP4153131B2 (ja) * 1999-09-14 2008-09-17 サンデン株式会社 電動圧縮機
AU753411B2 (en) * 1999-10-19 2002-10-17 Lg Electronics Inc. Structure of driving unit in drum type washing machine
JP2001342954A (ja) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd 電動圧縮機及びそれを用いた冷却装置
US6849981B2 (en) * 2002-03-20 2005-02-01 Daikin Industries, Ltd. Permanent magnet type motor and compressor comprising it
JP4232830B2 (ja) * 2007-02-15 2009-03-04 ダイキン工業株式会社 モータ回転子およびそれを備えた圧縮機
JP2008206358A (ja) * 2007-02-22 2008-09-04 Daikin Ind Ltd モータおよび圧縮機
CN101334018A (zh) * 2007-06-29 2008-12-31 上海汉钟精机股份有限公司 压缩机中轴承座对于滑块的支撑导槽
JP5286937B2 (ja) * 2008-05-27 2013-09-11 株式会社富士通ゼネラル ロータリ圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638474A (ja) * 1992-07-10 1994-02-10 Toshiba Corp ブラシレスモータの回転子の着磁方法と着磁治具
JP2008014320A (ja) 1998-02-26 2008-01-24 Denso Corp 電動圧縮機
JP2000324770A (ja) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp 永久磁石型電動機とその着磁方法
JP2001197693A (ja) * 2000-01-14 2001-07-19 Toshiba Tec Corp ブラシレスモータ用回転子及びブラシレスモータ
JP2005143299A (ja) 2001-03-30 2005-06-02 Sanyo Electric Co Ltd 誘導同期電動機
JP2003018803A (ja) * 2002-04-26 2003-01-17 Sanyo Electric Co Ltd 密閉型回転圧縮機
JP2008263663A (ja) * 2007-04-10 2008-10-30 Aichi Elec Co 永久磁石埋め込み形回転子の製造方法と、その製造方法を用いた永久磁石埋め込み形回転子
JP2008283823A (ja) * 2007-05-11 2008-11-20 Toyota Motor Corp 回転電機のロータおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416013A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098359A1 (en) * 2009-03-31 2012-04-26 Naoya Morozumi Rotor of compressor motor
US9385573B2 (en) * 2009-03-31 2016-07-05 Fujitsu General Limited Rotor of compressor motor having a balance weight stably positioned

Also Published As

Publication number Publication date
JP2010236453A (ja) 2010-10-21
JP4687810B2 (ja) 2011-05-25
CN102356237A (zh) 2012-02-15
EP2416013A1 (en) 2012-02-08
US20120007455A1 (en) 2012-01-12
EP2416013A4 (en) 2017-04-12
AU2010231801B2 (en) 2012-12-13
US8659195B2 (en) 2014-02-25
CN102356237B (zh) 2015-01-28
AU2010231801A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2010113766A1 (ja) 電動機ロータおよびこれを備えた圧縮機
KR100624381B1 (ko) 영구자석 매립형 전동기의 회전자와 그 제조방법
JP4485225B2 (ja) 永久磁石型モータ及び密閉型圧縮機及びファンモータ
EP1734639A2 (en) Flux barrier type synchronous reluctance motor and rotor thereof
US8410655B2 (en) Stator, motor, and compressor
JP5971114B2 (ja) 永久磁石埋設型回転電機
AU2007298344A1 (en) Motor and compressor
JP2012120326A (ja) 磁石埋め込み型回転子、電動機及び電動機の組立方法
JP6062233B2 (ja) 電動機、及び、電動機一体型圧縮機
JP5511921B2 (ja) 電動機及び送風機及び圧縮機
WO2018163319A1 (ja) ロータ及びそのロータを備えた回転電動機
JP2013027157A (ja) インナーロータ型回転電機及び圧縮機
KR101083699B1 (ko) 이탈방지용 고정장치를 구비한 모터의 로터 및 그 모터의 제조방법
JP4464584B2 (ja) 圧縮機
JP2018074715A (ja) 電動ロータ及び電動圧縮機
KR20190031763A (ko) 모터
JP2013211989A (ja) 永久磁石埋め込み型モータ、及び、それを備えた電動コンプレッサ
WO2019073579A1 (ja) 永久磁石型モータ、永久磁石型モータの製造方法および圧縮機
JP2008029055A (ja) アキシャルギャップ型モータ、及び圧縮機
JP2012139045A (ja) ロータ、モータおよび圧縮機
JP2010041875A (ja) ロータ、モータおよび圧縮機
KR101448649B1 (ko) 모터
JP2000116041A (ja) 永久磁石形モータ及びその製造方法
KR20030050707A (ko) 매립형 영구자석 전동기
JP2008005591A (ja) Dcブラシレスモータおよび密閉型電動圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012638.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010758539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13257539

Country of ref document: US

Ref document number: 2010231801

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010231801

Country of ref document: AU

Date of ref document: 20100325

Kind code of ref document: A