WO2010110407A1 - 透明複合材料 - Google Patents
透明複合材料 Download PDFInfo
- Publication number
- WO2010110407A1 WO2010110407A1 PCT/JP2010/055307 JP2010055307W WO2010110407A1 WO 2010110407 A1 WO2010110407 A1 WO 2010110407A1 JP 2010055307 W JP2010055307 W JP 2010055307W WO 2010110407 A1 WO2010110407 A1 WO 2010110407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- transparent composite
- composite material
- material according
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/026—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
- C08F299/028—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight photopolymerisable compositions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
- C08L63/10—Epoxy resins modified by unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/281—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2463/10—Epoxy resins modified by unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/06—Substrate layer characterised by chemical composition
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133305—Flexible substrates, e.g. plastics, organic film
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
Definitions
- the present invention relates to a transparent composite material. More specifically, a transparent composite material having a small linear expansion coefficient, transparency, flexibility, and excellent workability, a transparent composite sheet made of the material, a manufacturing method thereof, a display device using the material, and a solar cell Regarding the substrate.
- glass has been widely used as a display element substrate for a liquid crystal display element or an organic EL display element, a color filter substrate, a solar cell substrate, and the like.
- plastic materials have been studied as an alternative to glass substrates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.
- a substrate made of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyolefin, and polyester sulfone has been proposed (for example, JP 2007-268711 A; Patent Document 1).
- these conventional plastic materials for glass replacement have a larger coefficient of linear expansion than glass, and when these substrates are used to manufacture display substrates, the difference in coefficient of linear expansion between the plastic substrate and the transparent electrode provided thereon is significant.
- a plastic substrate having a small coefficient of linear expansion is required to cause warping or disconnection of wiring during heating / cooling.
- Patent Document 2 JP-T-2002-512286 (WO99 / 54393) discloses an epoxy vinyl ester resin and an unsaturated polyester resin containing a layered clay mineral. The purpose is to improve the mechanical strength. Furthermore, when the layered clay mineral described as an example in Patent Document 2 is added at a low concentration (2 to 6%), the transparency of the resin itself can be maintained, but the intended low linear expansion is achieved. A molded body that achieves the coefficient cannot be obtained. That is, Patent Document 2 does not relate to a composition that can provide a molded article having transparency and a low linear expansion coefficient.
- JP 2008-4255 A (US2009 / 207723) (Patent Document 3) discloses ultraviolet (UV) curing for optical discs containing caprolactone-modified (meth) acrylate, acid anhydride, and epoxy acrylate synthesized from epoxy resin. Although a mold composition is disclosed, the present invention aims to suppress disc warpage in addition to transparency and durability, and cannot suppress a dimensional change during heating.
- Japanese Patent Application Laid-Open No. 2003-105230 Patent Document 4
- Japanese Patent Application Laid-Open No. 2003-212956 Patent Document 5 also contain a caprolactone-modified (meth) acrylate, an acid anhydride, and an epoxy acrylate synthesized from an epoxy resin. However, these are all used for processing base materials such as paints, coating agents, and adhesives, and are intended to be used as molded articles having a low linear expansion coefficient. is not.
- the problem of the present invention is that a liquid crystal display element, a plastic substrate for an organic EL display element, a substrate for display such as a substrate for electronic paper or a substrate for solar cell has a small linear expansion coefficient, transparency,
- An object of the present invention is to provide a transparent composite material that is excellent in flexibility and excellent in workability such as no burrs are formed on the cut surface when cut with a slitter or the like.
- the present inventors have dispersed a lactone-modified (meth) acrylate, an acid, in which a synthetic smectite cation-exchanged with a quaternary ammonium salt and / or a quaternary phosphonium salt is dispersed.
- a transparent composite material composed of a resin composition containing an epoxy (meth) acrylate synthesized from an anhydride and an epoxy resin. That is, this invention relates to the following transparent composite material, the transparent composite sheet which consists of the material, its manufacturing method, the display apparatus using the material, and the board
- the lactone-modified (meth) acrylate is represented by the following general formula (1): (In the formula, m represents a positive integer, and n represents an integer of 3 to 7.)
- the transparent composite material according to [5], wherein the epoxy resin having an alicyclic structure is a hydrogenated bisphenol A type epoxy resin.
- the acid anhydride is phthalic anhydride, maleic anhydride, succinic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, dodecenyl succinic anhydride, dodecenyl phthalic anhydride,
- the resin composition further includes a reactive compound having an ethylenically unsaturated group, and the reactive compound is added in an amount of 1 to 3 with respect to 30 to 99% by mass of the epoxy (meth) acrylate contained in the resin composition.
- the transparent composite material according to [1] wherein the synthetic smectite is at least one selected from synthetic hectorite, synthetic saponite, and synthetic stevensite.
- the quaternary ammonium salt for organically treating the synthetic smectite is lauryltrimethylammonium salt, stearyltrimethylammonium salt, trioctylmethylammonium salt, distearyldimethylammonium salt, di-cured tallow dimethylammonium salt, distearyl.
- Conventional display plastic substrates have problems such as warpage during heating or cooling and disconnection of wiring because the difference in coefficient of linear expansion between the substrate and the transparent electrode provided thereon is large. Further, a substrate having a small linear expansion coefficient is easily broken, and when cut with scissors or a slitter, burrs are generated on the cut surface. Since the display substrate using the transparent composite material of the present invention has a very small linear expansion coefficient, a display with high durability can be provided. It also has excellent flexibility, can be bent 180 ° without cracking, and can be cut with scissors or slitter without causing burrs. Useful. In addition, since the transparent composite material of the present invention can provide a transparent sheet having a flexible and low linear expansion coefficient, it can be used for flexible display substrates such as liquid crystal displays, organic EL displays, and electronic paper, and substrates for solar cells. Is possible.
- the transparent composite material of the present invention cures a resin composition containing a lactone-modified (meth) acrylate in which a synthetic smectite having a specific property is dispersed, an acid anhydride and an epoxy (meth) acrylate synthesized from an epoxy resin.
- the average linear expansion coefficient in the plane direction at 50 to 250 ° C. is as small as 30 ppm / ° C. or less, and is excellent in flexibility and workability.
- the transparency of the transparent composite material is evaluated by the total light transmittance.
- the transparent composite material of the present invention refers to a material having a total light transmittance of 80% or more and a haze value of 5% or less per 100 ⁇ m thickness.
- the total light transmittance is more preferably 85% or more.
- the haze value is more preferably 3% or less. If the haze value is greater than 5%, the transmitted light is distorted and lacks clarity.
- the total light transmittance is a value measured according to JIS K-7361-1, and the haze value is a value measured according to JIS K-7136.
- the shape of the transparent composite material of the present invention is not limited, but a molded product such as a film, a sheet, or a flat plate is particularly suitable.
- a film having a thickness of 10 ⁇ m or more and 200 ⁇ m or less is represented as a film
- a sheet having a thickness of greater than 200 ⁇ m and 5000 ⁇ m or less is represented as a sheet
- a sheet having a thickness of greater than 5000 ⁇ m is represented as a plate. It is expressed as a sheet.
- the resin composition used in the present invention has a number average particle diameter of 10 to 300 nm obtained by organically treating an epoxy (meth) acrylate as a resin component with a quaternary ammonium salt and / or a quaternary phosphonium salt.
- This resin component may contain a reactive compound described later.
- “resin” may refer to the prepolymer state before curing (including oligomers, curing agents, additives, etc.) and to the cured product. The prepolymer state before being used is referred to as “resin composition”.
- the composition ratio of a resin composition is a composition ratio in hardened
- the epoxy (meth) acrylate in the present invention is also called a vinyl ester resin.
- an epoxy compound represented by an epoxy resin and a radical polymerizable carbon-carbon double bond such as (meth) acrylic acid
- hydroxy group-containing (meta) such as 2-hydroxyethyl (meth) acrylate
- a resin having a carbon-carbon double bond (ethylenically unsaturated group) obtained by reacting an acid anhydride such as acrylate or phthalic anhydride or an epoxy compound. Details are described in “Polyester Resin Handbook”, published by Nikkan Kogyo Shimbun, 1988, pages 336 to 357. This epoxy (meth) acrylate can be produced by a known method.
- the epoxy (meth) acrylate capable of exhibiting transparency, a low linear expansion coefficient, excellent flexibility and workability as a transparent sheet produced from the transparent composite material of the present invention is a lactone-modified (meth) acrylate (A ), Acid anhydride (B), and epoxy resin (C).
- the lactone-modified (meth) acrylate (A) is obtained by opening a lactone having a 5- to 9-membered ring (having 4 to 8 carbon atoms): (In the formula, m represents a positive integer, and n represents an integer of 3 to 7.) It is preferable that it has a structure shown by the side chain.
- epoxy (meth) acrylate synthesized from caprolactone-modified (meth) acrylate in which n 5 and phthalic anhydride, bisphenol A type epoxy resin or hydrogenated bisphenol A type epoxy resin is particularly used. preferable.
- thermosetting resin in order to achieve a low linear expansion coefficient (30 ppm / ° C. or less) of a thermosetting resin by adding synthetic smectite, it is necessary to add a large amount (over 40% by mass) of synthetic smectite to the thermosetting resin.
- the amount of synthetic smectite added is large, the transparency and mechanical strength inherent in the resin cannot be expressed, and the material becomes brittle and easily cracked.
- an epoxy (meth) acrylate synthesized from the lactone-modified (meth) acrylate (A) and phthalic anhydride (B) bisphenol A type epoxy resin or hydrogenated bisphenol A type epoxy resin (C) is used.
- the synthetic smectite content is reduced to 40% by mass or less, a low linear expansion coefficient can be achieved.
- a large amount (50% by mass) of synthetic smectite is added to this lactone-modified epoxy (meth) acrylate, the linear expansion coefficient is further lowered without impairing the original transparency, mechanical strength, flexibility, and processability of the resin. (10 ppm / ° C. or less).
- the content of the synthetic smectite is preferably 55% by mass or less.
- lactone-modified (meth) acrylate (A) examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Hydroxyalkyl (2 to 12 carbon atoms) (meth) acrylate that may have a substituent on the alkyl group such as phenoxyhydroxypropyl (meth) acrylate; polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
- the number of lactone units m per molecule in the lactone-modified (meth) acrylate is not particularly limited, but if the number of units is large, the linear expansion coefficient is increased. In order to achieve both a low linear expansion coefficient and flexibility of epoxy (meth) acrylate, 1 to 5 units are preferable per molecule, and 1 to 3 units are particularly preferable.
- Examples of the acid anhydride (B) include phthalic anhydride, maleic anhydride, succinic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, dodecenyl succinic anhydride, dodecenyl phthalic anhydride And divalent carboxylic acid anhydrides such as acid, octenyl succinic anhydride, and octenyl phthalic anhydride. Of these, phthalic anhydride is particularly preferred.
- the epoxy resin (C) is a bifunctional or higher functional epoxy resin, and examples thereof include aromatic epoxy resins and epoxy resins having an alicyclic structure.
- aromatic epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins and other bisphenol type epoxy resins; phenol novolak type epoxy resins, cresol novolak type epoxy resins and other novolak type epoxy resins.
- a biphenyl type epoxy resin is mentioned. Among these, bisphenol A type epoxy resin is most preferable.
- the number of bisphenol A units per molecule of epoxy resin is not particularly limited, but if the number of units is large, the coefficient of linear expansion tends to be high, and coloring is strong and transparency is lowered.
- epoxy resins having an alicyclic structure include hydrogenated bisphenol type epoxy resins such as hydrogenated bisphenol A type epoxy resins; 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methyl Examples include cyclohexanecarboxylate and 3,4-epoxy-cyclohexylmethyl-3,4-epoxy-cyclohexanecarboxylate. Among these, hydrogenated bisphenol A type epoxy resin epoxy resin is most preferable.
- the number of hydrogenated bisphenol A units per molecule of epoxy resin is not particularly limited, but when the number of units is large, the linear expansion coefficient tends to increase. In order to maintain a low linear expansion coefficient and high transparency, 1 to 3 units are preferable, and 1 unit is particularly preferable.
- the synthesis reaction of epoxy (meth) acrylate includes (1) reaction to obtain a half ester compound from hydroxy group and acid anhydride of lactone-modified (meth) acrylate, and (2) epoxy (meta) from the obtained half ester compound and epoxy resin. ) It can be produced by two reactions of the reaction to obtain an acrylate.
- the molar ratio of the hydroxy group of the (meth) acrylate (A) having a lactone skeleton to the acid anhydride (B) is preferably 0.9 to 1.1, and equimolar Most preferred.
- the molar ratio of the half ester compound to the epoxy group of the epoxy resin is preferably 0.9 to 1.1, and most preferably equimolar.
- a reactive compound can also be added to the resin component of the resin composition for the purpose of controlling the curing rate, adjusting the viscosity (improving workability), improving the crosslinking density, and adding functions.
- these reactive compounds there are no particular limitations on these reactive compounds, and various compounds can be used. However, in order to react with epoxy (meth) acrylate, radically polymerizable carbon-carbon double bonds (ethylene, etc.) such as vinyl groups and allyl groups are used.
- a compound having a polymerizable unsaturated group) is preferred.
- Such compounds include monofunctional monomers having one ethylenically unsaturated group in one molecule, polyfunctional monomers having two or more ethylenically unsaturated groups in one molecule, and oligomers thereof. It is done. Preferred specific examples of these reactive compounds are shown below.
- Examples of monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) Acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, Dicyclopentenyloxymethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxydiethylene
- Haloalkyl (meth) acrylates such as acrylate, fluoromethyl (meth) acrylate, chloromethyl (meth) acrylate; glycidyl (meth) acrylate, alkylamino (Meth) acrylate, (meth) acrylate compounds such as cyanoacrylate, acrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N-vinylformamide, N-vinylacetamide, N-vinyl- ⁇ -caprolactam N-vinylpyrrolidone, 1-vinylimidazole, N-vinylcarbazole, N-vinylmorpholine, N-vinylpyridine, acryloylmorpholine and other nitrogen-containing monomers, styrene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid, 4- Examples include hydroxystyrene and vinyl toluene, vinyl
- Polyfunctional monomers include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (Meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5 -Pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate 1,10-decanediol di (meth) acrylate, dimethyloltri
- the reactive oligomer typically, urethane (meth) acrylate, epoxy (meth) acrylate other than the above epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, acrylic (meth) acrylate , Oligomers such as unsaturated polyesters and allyl ester resins.
- the above reactive compounds can be used singly or in combination of two or more.
- a part of the epoxy (meth) acrylate is substituted with the reactive compound in a range where the content of the synthetic smectite in the resin composition satisfies 10 to 55% by mass. That is, the epoxy (meth) acrylate can be substituted with a reactive compound in the range of 70% by mass or less.
- the preferred amount used is 30 to 99% by mass of epoxy (meth) acrylate, 1 to 70% by mass of reactive compound (the total amount of epoxy (meth) acrylate and reactive compound having an ethylenically unsaturated group is 100% by mass).
- the epoxy (meth) acrylate is 50 to 95% by mass
- the reactive compound is 5 to 50% by mass
- the epoxy (meth) acrylate is 70 to 90% by mass
- the reactive compound is 10 to 30% by mass.
- the usage-amount of a reactive compound exceeds 70 mass%, the outstanding transparency of vinyl ester resin may not be expressed, or the mechanical strength derived from an epoxy (meth) acrylate may fall, and it is not preferable.
- the synthetic smectite used in the present invention is not particularly limited as long as it is a synthetic smectite having a number average particle diameter of 10 to 300 nm and an aspect ratio of 10 to 300.
- the average particle size needs to be sufficiently smaller than the wavelength of visible light.
- visible light means light having a wavelength in the range of 380 to 740 nm. Therefore, the number average particle diameter of the synthetic smectite is preferably in the range of 10 to 300 nm, and more preferably in the range of 30 to 200 nm.
- the number average particle size is less than 10 nm, the linear expansion coefficient in the surface direction of the transparent sheet tends not to be sufficiently small, and when it exceeds 300 nm, those having a particle size overlapping with the visible light wavelength are included. It is not preferable.
- the number average particle diameter of synthetic smectite here refers to the number average particle diameter obtained by the dynamic light scattering method while being dispersed in a solvent.
- the number average particle diameter by the dynamic light scattering method can be determined by referring to, for example, pages 169 to 179 of “Particle Diameter Measurement Technology” (Edition of Powder Engineering, 1994). Examples thereof include a dynamic light scattering type particle size distribution measuring apparatus (for example, LB-550, manufactured by Horiba, Ltd.).
- the number average particle diameter of the synthetic smectite obtained by the dynamic light scattering method can be considered to be substantially the same as the number average particle diameter of the synthetic smectite after being dispersed in the resin in the present invention.
- L is the number average particle diameter determined by the dynamic light scattering method in a solvent
- a is the unit thickness of the synthetic smectite.
- the unit thickness a is a value that can be calculated by measuring a diffraction peak of a tabular inorganic substance by a powder X-ray diffraction method.
- the synthetic smectite of the present invention has an aspect ratio in the range of 10 to 300, more preferably in the range of 30 to 100. In terms of easy orientation in the plane direction of the transparent sheet, the aspect ratio is preferably 10 or more.
- the linear expansion coefficient is within a predetermined range (preferably 30 ppm / ° C. or less). ) May not occur.
- synthetic smectite having an aspect ratio exceeding 300 the total light transmittance of the transparent sheet may be lowered.
- Such a synthetic smectite may be synthesized using a known method (for example, Haruo Shiramizu, “Clay Mineralogy-Fundamentals of Clay Science” Asakura Shoten, 1988, pages 98 to 100) or commercially available. Synthetic smectite may be used. Examples of commercially available synthetic smectites include synthetic smectite SWN (synthetic hectorite) manufactured by Corp Chemical, synthetic silicate LAPONITE (synthetic hectorite) manufactured by ROCKWOOD, and synthetic inorganic polymer smecton SA (synthetic saponite) manufactured by Kunimine Industries.
- Synthetic magnesium silicate ionite (synthetic stevensite) manufactured by Mizusawa Corporation.
- synthetic smectite SWN manufactured by Coop Chemical Co. is more preferable from the viewpoint of transparency, cation exchange capacity, size, dispersibility and the like.
- the synthetic smectite In order to disperse the synthetic smectite uniformly in the resin, it is organically treated with a quaternary ammonium salt and / or a quaternary phosphonium salt.
- a quaternary ammonium salt and / or a quaternary phosphonium salt As an organic treatment method, the exchangeable metal cations such as sodium and calcium existing between the flaky crystal layers of the synthetic smectite are exchanged with various cationic substances such as a cationic surfactant, and the synthetic smectite is exchanged. Insertion (intercalation) between these crystal layers.
- the organic treatment method is also referred to as a cation exchange method using a cationic surfactant, and this method is effective when the resin component of the transparent composite material of the present invention has a low polarity, and a synthetic smectite and a low polarity resin are used.
- the synthetic smectite can be uniformly finely dispersed in the low polarity resin.
- the cation exchange capacity of the synthetic smectite in this case is not particularly limited, but is preferably 50 to 1200 meq / 100 g.
- the cation exchange capacity is less than 50 meq / 100 g, the amount of the cationic substance intercalated between the crystal layers of the synthetic smectite is reduced by the cation exchange. May not be).
- the cation exchange capacity is larger than 1200 meq / 100 g, the bonding force between the crystal layers of the synthetic smectite becomes too strong, and the crystal flakes may be difficult to peel off.
- the cationic surfactant used here is not particularly limited, and examples thereof include quaternary ammonium salts and quaternary phosphonium salts. Among them, an alkylammonium ion salt, an aromatic quaternary ammonium ion salt or a heterocyclic quaternary ammonium ion salt having 6 or more carbon atoms is preferably used since the synthetic smectite crystal layer can be sufficiently hydrophobized.
- the quaternary ammonium salt is not particularly limited, and examples thereof include trimethylalkylammonium salt, triethylalkylammonium salt, tributylalkylammonium salt, dimethyldialkylammonium salt, dibutyldialkylammonium salt, methylbenzyldialkylammonium salt, dibenzyldialkylammonium salt.
- a quaternary ammonium salt having an aromatic ring such as trimethylphenylammonium
- a quaternary ammonium salt derived from an aromatic amine such as trimethylphenylammonium
- an alkylpyridinium salt imidazo Quaternary ammonium salts having a heterocycle such as um salt
- lauryl trimethyl ammonium salt stearyl trimethyl ammonium salt, trioctyl methyl ammonium salt, distearyl dimethyl ammonium salt, di-cured tallow dimethyl ammonium salt, distearyl dibenzyl ammonium salt, N-polyoxyethylene-N-lauryl-N, N-dimethylammonium salt and the like are preferred.
- These quaternary ammonium salts may be used alone or in combination of two or more.
- the quaternary phosphonium salt is not particularly limited. For example, dodecyltriphenylphosphonium salt, methyltriphenylphosphonium salt, lauryltrimethylphosphonium salt, stearyltrimethylphosphonium salt, trioctylmethylphosphonium salt, distearyldimethylphosphonium salt, distearyl And dibenzylphosphonium salts. These quaternary phosphonium salts may be used alone or in combination of two or more.
- an aliphatic quaternary ammonium salt and / or 4 A tertiary phosphonium salt is preferably used, and a trialkylammonium salt and a trialkylammonium salt having one polypropylene glycol chain are particularly preferred.
- the synthetic smectite used in the present invention may be treated not only with the interlayer but also with at least a part of the hydroxyl groups present on the surface with the surface modifier. Since the surface of the synthetic smectite has a functional group such as a hydroxyl group, it can be surface-treated with a compound having a functional group reactive to the hydroxyl group.
- the compound having a functional group that can be chemically bonded to the hydroxyl group is not particularly limited.
- a silane compound silane coupling agent
- a titanate compound titanium oxide
- glycidyl compound an isocyanate compound
- carboxylic acid an alcohol. Etc.
- silane compounds can be preferably used.
- the silane compound include vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyldimethylmethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -aminopropyldimethylethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane
- the content of the organically treated synthetic smectite in the transparent composite material is preferably in the range of 10 to 55% by mass, and 20 to 50% by mass with respect to the total amount of the resin component containing epoxy (meth) acrylate and the synthetic smectite.
- the range of is more preferable.
- the content of the organically treated synthetic smectite is less than 10% by mass, the average linear expansion coefficient from 50 to 250 ° C. of the transparent composite material increases, and exceeds 30 ppm / ° C.
- the content of the organically treated synthetic smectite exceeds 55% by mass, it will be difficult to uniformly disperse the synthetic smectite in the resin, and the mechanical strength of the transparent composite material will be reduced and it will be brittle and cracked. It becomes easy.
- the resin composition containing the epoxy (meth) acrylate of the present invention can be cured by electron beam (EB) irradiation, ultraviolet (UV) irradiation or heating.
- EB electron beam
- UV ultraviolet
- a curing agent may be used.
- curing agent which can be used, What is generally used as a hardening
- radical polymerization initiator examples include a photopolymerization initiator, an organic peroxide, and an azo initiator.
- a photopolymerization initiator is particularly preferable from the viewpoint of UV-curing the resin composition containing the epoxy (meth) acrylate of the present invention.
- Photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, benzophenone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- ( 2-hydroxyethoxy) -phenyl] -2-hydroxy-2-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl ⁇ -2-methylpropane-1 -One, oxyphenylacetic acid 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, oxyph Nylacetic acid 2- [2-hydroxyethoxy] ethyl ester, phenylglyoxylic
- organic peroxide known ones such as dialkyl peroxide, acyl peroxide, hydroperoxide, ketone peroxide, and peroxyester can be used. Specific examples thereof include diisobutyryl peroxide, cumyl peroxide.
- Oxyneodecanoate di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, Di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxy Neoheptanoate t-hexylperoxypivalate, t-butylperoxypivalate, di (3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy- 2-ethylhexanoate, dissuccinic acid peroxide, 2,5-d
- azo initiator 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile, dimethyl-2,2′-azobis ( 2-methoxypropionate), 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis [N- ( 2-propenyl) -2-methylpropionamide], 1-[(1-cyano-1-methylethyl) azo] formamide, 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2 '-Azobis (N-cyclohexyl-2-methylpropionamide) and the like.
- the blending amount of these curing agents is not particularly limited, but is preferably 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the resin composition containing epoxy (meth) acrylate. It is more preferable to blend partly.
- the blending amount of the curing agent is less than 0.1 parts by mass, it is difficult to obtain a sufficient curing rate, and when the blending amount exceeds 10 parts by mass, the final cured product becomes brittle and the mechanical strength is low. May decrease.
- the antioxidant is not particularly limited, and those generally used can be used. Of these, phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants and the like are preferable, and phenol-based antioxidants are particularly preferable.
- phenolic antioxidants examples include 2,6-di-t-butyl-p-cresol, 4,4-butylidenebis- (6-t-butyl-3-methylphenol), 2,2′-methylenebis- (4 -Methyl-6-t-butylphenol), 2,2'-methylenebis- (4-ethyl-6-t-butylphenol), 2,6-di-t-butyl-4-ethylphenol, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate] methane, triethylene glycol bis [3- (3-t-butyl-4-hydroxy-5-methylpheny ) Propionate], tris (3,5-di-tert-
- amine antioxidants examples include alkyldiphenylamine, N, N′-di-sec-butyl-p-phenylenediamine, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine, and dialkylhydroxylamine. Is mentioned.
- Sulfur-based antioxidants include dilauryl-3,3′-thiodipropionate, ditridecyl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3 Examples include '-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate), and the like.
- Phosphorus antioxidants include tris [2-[[2,4,8,10-tetra-t-butylbenzo [d, f] [1,3,2] dioxaphosphine-6-yl] oxy. ] Ethyl] amine, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, tetrakis (2,4-di-t-butylphenyl) [1,1- Biphenyl] -4,4′-diylbisphonite and the like. These antioxidants may be used alone or in combination of two or more.
- the lubricant is not particularly limited, and a commonly used lubricant can be used. Among these, metal soap lubricants, fatty acid ester lubricants, aliphatic hydrocarbon lubricants and the like are preferable, and metal soap lubricants are particularly preferable. Examples of the metal soap lubricant include barium stearate, calcium stearate, zinc stearate, magnesium stearate and aluminum stearate. These may be used as a composite.
- benzophenone ultraviolet absorbers there is no restriction
- benzophenone ultraviolet absorbers benzotriazole ultraviolet absorbers, and cyanoacrylate ultraviolet absorbers are preferable, and benzophenone ultraviolet absorbers are particularly preferable.
- benzophenone ultraviolet absorbers include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-butylphenyl) benzotriazole, and 2- (2-hydroxy-3 And '-tert-butylphenyl) benzotriazole.
- additives are not limited to the specific examples described above, and defoamers, leveling agents, mold release agents, water repellents, flame retardants, low shrinkage as long as they do not impair the purpose or effect of the present invention.
- An agent, a crosslinking aid and the like can be added.
- solvent in order to efficiently delaminate the synthetic smectite and disperse it in the resin composition containing epoxy (meth) acrylate.
- aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, n-propylbenzene, isopropylbenzene, acetate esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl Ketones such as ketones, ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane, alcohols such as methanol, ethanol, (iso) propanol and butyl alcohol, halogenated hydrocarbons such as chloroform and methylene chloride, N
- the ratio of the solvent to the synthetic smectite depends on the type of the solvent, but is 100 to 10,000 parts by mass, more preferably 200 to 5,000 parts by mass with respect to 100 parts by mass of the synthetic smectite.
- the ratio of the solvent is less than 100 parts by mass, the composition liquid viscosity of the mixture becomes high and it becomes difficult to mix uniformly.
- the transparent sheet of the present invention is a mixture of a synthetic smectite treated with quaternary ammonium and / or quaternary phosphonium, an epoxy (meth) acrylate, a reactive compound having an ethylenically unsaturated group, if necessary, and a solvent.
- a synthetic smectite treated with quaternary ammonium and / or quaternary phosphonium an epoxy (meth) acrylate
- a reactive compound having an ethylenically unsaturated group if necessary
- a solvent a solvent.
- EB electron beam
- UV ultraviolet
- resin component a reactive compound having an ethylenically unsaturated group
- solvent component a reactive compound having an ethylenically unsaturated group
- (1) using a resin component as a solvent A method of mixing a dispersion in which synthetic smectite is dispersed in a solvent after dissolution, (2) a method in which a resin component is directly added to a dispersion in which synthetic smectite is dispersed in a solvent, and (3) a resin component.
- a method in which the resin component is dissolved in a solvent and then a dispersion in which the synthetic smectite is dispersed in the solvent is mixed.
- the dispersion method is not particularly limited, it can be dispersed by a known method such as heat treatment, a mix rotor, a magnetic stirrer, a homogenizer, a Henschel mixer, a bead mill, an ultra-high pressure atomizer, or ultrasonic irradiation.
- the dispersion viscosity is not particularly limited, but is preferably a viscosity suitable for the molding method.
- the viscosity at 25 ° C. is preferably in the range of 0.01 to 1,000 Pa ⁇ s.
- Coating is performed by degassing and / or concentrating the dispersion liquid under reduced pressure and adjusting the viscosity as a coating liquid.
- a smooth substrate such as glass, metal or plastic film
- direct gravure method or reverse gravure method and Ordinary industries such as microgravure method, two roll beat coat method, roll coating method such as bottom feed three reverse coat method, doctor knife method, die coating method, dip coating method, bar coating method and coating method combining these It can be carried out by a commonly used method.
- the roll coating method and the doctor knife method which are methods for applying a force (share) acting in a direction parallel to the substrate so as to orient the synthetic smectite in the plane direction, are preferable.
- orientation in the plane direction means that the majority of each layer of the synthetic smectite is oriented so as to be parallel to the substrate surface.
- the linear expansion coefficient in the plane direction of the transparent sheet can be effectively reduced.
- the total light transmittance is increased even when the synthetic smectite content is high.
- the synthetic smectite can be further oriented in the plane direction. That is, after applying a mixture of synthetic smectite, epoxy acrylate resin composition and solvent on a substrate, if only the solvent is evaporated, it will shrink only in the thickness direction of the coating liquid, resulting in the resin
- the synthetic smectite can be further oriented in the plane direction.
- a reactive monomer it is preferable to use a reactive monomer having relatively low volatility and use a solvent having high volatility in combination and dry it under appropriate conditions (temperature, pressure, time, etc.).
- the method of orienting the synthetic smectite in the plane direction by volatilizing the solvent can be used in combination with the roll coating method or the doctor knife method, but can also be carried out by a method of coating without applying a share. .
- the temperature for volatilizing the solvent is preferably 0 to 200 ° C. A temperature lower than 0 ° C. is not preferable because the volatilization rate is extremely slow. When the temperature is higher than 200 ° C., foaming due to rapid volatilization or boiling of the solvent or gelation of the resin may occur, which may reduce the surface smoothness and increase the haze value. More preferably, it is 10 to 100 ° C.
- the pressure for volatilizing the solvent is preferably 10 Pa to 1 MPa. If it is less than 1 Pa, bumping may occur, surface smoothness may decrease, and haze value may increase. More preferably, it is 10 to 200 Pa.
- the time for evaporating the solvent is preferably 1 to 120 minutes.
- the solvent In the case of less than 1 minute, the solvent cannot be sufficiently volatilized and bubbles are generated during curing. When it is longer than 120 minutes, productivity is deteriorated, which is not preferable.
- a gas such as air, nitrogen, argon, carbon dioxide or the like may be used. These gases may contain a volatile component of the solvent.
- the gas flow rate when the solvent is volatilized is preferably 0.01 to 200 m / s. If it is slower than 0.01 m / s, the volatile component of the solvent will remain, which is not preferable. When the speed is higher than 200 m / s, the coating solution is not uniform, which is not preferable. More preferably, it is 0.1 to 50 m / s.
- a transparent sheet can be obtained by sandwiching between smooth substrates such as glass, metal, plastic film, etc., curing by EB irradiation, UV irradiation or heating and then releasing from the substrate.
- smooth substrates such as glass, metal, plastic film, etc.
- an inert gas eg, nitrogen, argon, carbon dioxide, etc.
- a synthetic smectite-dispersed resin composition containing an uncured epoxy (meth) acrylate containing a solvent is applied to a flat surface, for example, a biaxially stretched polyethylene terephthalate film by the above method. Thereafter, a method of volatilizing the solvent, sandwiching it with a biaxially stretched polyethylene terephthalate film having a smooth surface, and curing by EB irradiation, UV irradiation or heating can be mentioned.
- a polymerization initiator When a resin composition containing epoxy (meth) acrylate is cured by EB irradiation curing, a polymerization initiator is not necessary. However, when curing is completed by an after-curing operation, a thermal polymerization initiator may be used in combination.
- the acceleration voltage of the electron beam during EB irradiation is 30 to 500 kV, preferably 50 to 300 kV.
- the electron beam irradiation dose is 1 to 300 kGy, preferably 5 to 200 kGy.
- the electron beam accelerating voltage is less than 30 kV, there is a risk of insufficient transmission of the electron beam when the composition is thick, and when it is greater than 500 kV, the economy is poor.
- a base material since there exists a possibility that a base material may be damaged when electron beam irradiation amount exceeds 300 kGy, it is unpreferable.
- the curing temperature is 0 to 150 ° C., preferably 10 to 130 ° C.
- the UV irradiation time is preferably 0.01 to 10 hours, preferably 0.05 to 1 hour, more preferably 0.1 to 0.5 hours.
- the UV integrated light quantity is 10 to 5000 mJ / cm 2 . If it is less than 10 mJ / cm 2 , curing becomes insufficient, which is not preferable. When it is larger than 5000 mJ / cm 2 , productivity is deteriorated.
- the curing temperature is 30 to 160 ° C., preferably 40 to 130 ° C.
- a method of slowly curing while raising the temperature is preferable, and it is 0.5 to 100 hours, preferably 3 to 50 hours.
- the curing can proceed completely by after-curing.
- the transparent sheet may or may not be peeled off from a smooth substrate such as glass, metal or plastic film.
- the temperature of the after cure is 50 to 300 ° C., preferably 80 to 250 ° C.
- the after-curing time is 0.1 to 10 hours, preferably 0.5 to 5 hours.
- the pressure of the after cure is 1.0 ⁇ 10 ⁇ 7 Pa to 1 MPa, preferably 1.0 ⁇ 10 ⁇ 6 Pa to 0.5 MPa.
- the after-cure atmosphere can be performed in an atmosphere of air, nitrogen, argon, carbon dioxide, or the like, but a nitrogen atmosphere is preferable from the viewpoint of color reduction.
- a transparent sheet consisting of two or more layers
- the interface between the two sheets may be subjected to a treatment such as a corona treatment or an anchor coat.
- the linear expansion coefficient was measured in a tensile mode using TMA / SS6100 manufactured by SII Nanotechnology.
- the film-shaped test piece has a thickness of 100 ⁇ m ⁇ 3 mm ⁇ 12 mm (distance between chucks: 10 mm), tension: 30 mN, and after raising the temperature to 250 ° C. at a temperature rising rate of 5 ° C./min in an atmosphere of 100 mL / min.
- Total light transmittance The total light transmittance was measured according to JIS K-7361-1 using a fully automatic haze meter TC-H3DPK manufactured by Tokyo Denshoku.
- Synthesis Example 2 Oligomer (2) Synthesis was performed in the same manner as in Synthesis Example 1 except that phthalic anhydride was changed to 154 g (1 mol) of hexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd .: Guatemalacid HH) and the reaction was carried out until the acid value became approximately 3 mg KOH / g. As a result, oligomer (2) was obtained.
- Synthesis Example 3 Oligomer (3) Synthesis example except that 4-methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd .: Guatemalacid MH) was changed to 168 g (1 mol) and the reaction was continued until the acid value was 3 mgKOH / g or less.
- the oligomer (4) was obtained by synthesizing in the same manner as in Synthesis Example 1 except that the reaction was carried out until the acid value reached 4 mgKOH / g.
- Synthesis Example 5 Oligomer (5)
- the oligomer (5) was obtained in the same manner as in Synthesis Example 1 except that the reaction was carried out until the acid value reached 4 mgKOH / g.
- Synthesis Example 7 Oligomer (7) To a four-necked flask equipped with a temperature controller, a stirrer, a Dimroth condenser, and an air introduction tube, 276.3 g of hydrogenated bisphenol A type epoxy resin ST-4000D (trade name, epoxy equivalent: 725) manufactured by Tohto Kasei Co., Ltd. 202.5 g of toluene and 0.19 g of 4-methoxyphenol (MEHQ: hydroquinone monomethyl ether) as a polymerization inhibitor were charged, and the mixture was heated to 80 ° C. while blowing dry air (20 ml / min) and stirred until uniform. When it became homogeneous, 27.5 g of acrylic acid manufactured by Kuraray Co., Ltd.
- MEHQ 4-methoxyphenol
- benzyltriphenylphosphonium chloride (trade name TPP-ZC) manufactured by Hokuko Chemical Co., Ltd. as a catalyst were added and reacted for 7 hours while adjusting the temperature at 110 ° C.
- the acid value was 7.8 mgKOH / g, the reaction was terminated to obtain oligomer (7) (toluene solution).
- Synthesis Example 8 Clay (1) 20 g of synthetic smectite having a hectorite composition, with a bottom spacing of 12.5 mm in the air and a cation exchange capacity of 90 meq / 100 g, is dispersed in 1000 ml of water, and 9 g of trioctylmethylammonium chloride is dispersed therein. The mixture was added and reacted at room temperature for 2 hours with stirring. The product was then filtered and washed with water to remove by-product salts. Then, it dried and grind
- Example 1 A 500 ml container is charged with 78.4 g of oligomer (1), 288 g of toluene, 33.6 g of clay (1), and 784 mg of UV initiator 1-hydroxycyclohexylphenyl-ketone (IRGACURE184, manufactured by Ciba Japan) at room temperature using a mix rotor. Under stirring for more than half a day. Furthermore, it processed for 10 minutes with the bead mill (zirconia bead (phi) 0.3mm), and obtained the dispersion liquid (1). Furthermore, it attached to the evaporator and stirred for 10 minutes at 20 kPa under room temperature, viscosity adjustment and the gas component in a composition were removed.
- UV initiator 1-hydroxycyclohexylphenyl-ketone UV initiator 1-hydroxycyclohexylphenyl-ketone
- This dispersion (1) was applied onto a PET film (thickness 50 ⁇ m) with a knife coater so that the thickness after drying was 100 ⁇ m. It was dried for 10 minutes with an 80 ° C. hot air dryer, and the solvent toluene was volatilized. Curing was performed at a UV irradiation amount of 1000 mJ / cm 2 to obtain a sample film (1).
- This film had a linear expansion coefficient of 15 ppm / ° C., a total light transmittance of 89%, and a haze of 1.5%.
- Example 2 In a 500 ml container, 72.8 g of oligomer (2), 288 g of toluene, 39.2 g of clay (1), and 728 mg of UV initiator IRGACURE184 were placed, and stirred at room temperature for more than half a day with a mix rotor. Furthermore, it processed for 10 minutes with the bead mill (zirconia bead ⁇ 0.3mm), and obtained the dispersion liquid (2). Furthermore, it attached to the evaporator and stirred for 10 minutes at 20 kPa under room temperature, viscosity adjustment and the gas component in a composition were removed. A sample film (2) was obtained from this dispersion (2) in the same manner as in Example 1. This film had a linear expansion coefficient of 26 ppm / ° C., a total light transmittance of 90%, and a haze of 2.1%.
- Example 3 A sample film (3) was obtained in the same manner as in Example 2 except that the oligomer (2) was changed to the oligomer (3). This film had a linear expansion coefficient of 23 ppm / ° C., a total light transmittance of 91%, and a haze of 1.4%.
- Example 4 A sample film (4) was obtained in the same manner as in Example 2 except that the oligomer (2) was changed to the oligomer (4). This film had a linear expansion coefficient of 22 ppm / ° C., a total light transmittance of 91%, and a haze of 1.7%.
- Example 5 A sample film (5) was obtained by performing the same operation as in Example 2 except that the oligomer (2) was changed to the oligomer (5). This film had a linear expansion coefficient of 24 ppm / ° C., a total light transmittance of 91%, and a haze of 1.7%.
- Example 6 A sample film (6) was obtained in the same manner as in Example 2 except that the oligomer (2) was changed to the oligomer (6). This film had a linear expansion coefficient of 26 ppm / ° C., a total light transmittance of 91%, and a haze of 1.6%.
- Example 7 In a 500 ml container, 60 g of oligomer (6), 300 g of toluene, 40 g of clay (1), UV initiator phenylglyoxylic acid methyl ester (DAROCUR MBF, manufactured by Ciba Japan Co., Ltd.) 600 mg, IRGACURE 184 300 mg are placed at room temperature with a mix rotor. Under stirring for more than half a day. Thereafter, the same operation as in Example 2 was performed to obtain a sample film (7). This film had a linear expansion coefficient of 11 ppm / ° C., a total light transmittance of 91%, and a haze of 2.1%.
- DAROCUR MBF UV initiator phenylglyoxylic acid methyl ester
- Example 8 A 500 ml container was charged with 42 g of oligomer (6), 316 g of toluene, 42 g of clay (1), 420 mg of UV initiator DAROCUR MBF, and 210 mg of IRGACURE 184, and stirred at room temperature for more than half a day in a mix rotor. Thereafter, the same operation as in Example 2 was performed to obtain a sample film (8). This film had a linear expansion coefficient of 4 ppm / ° C., a total light transmittance of 91%, and a haze of 2.1%.
- Example 9 In a 500 ml container, 55 g of oligomer (6), 38 g of oligomer (7) (60% toluene solution), 266 g of toluene, 42 g of clay (1), 780 mg of UV initiator DAROCUR MBF, 390 mg of IRGACURE 184, and 390 mg of IRGACURE 184 at room temperature for half a day Stir above. Thereafter, the same operation as in Example 2 was performed to obtain a sample film (9). This film had a linear expansion coefficient of 9 ppm / ° C., a total light transmittance of 91%, and a haze of 1.7%.
- Comparative Example 1 A sample film (10) was obtained in the same manner as in Example 1 except that the oligomer (1) was changed to the oligomer (7). This film had a linear expansion coefficient of 14 ppm / ° C., a total light transmittance of 91%, and a haze of 2.0%.
- Comparative Example 2 In a 500 ml container, 27 g of oligomer (6), 332 g of toluene, 40 g of clay (1), 272 mg of UV initiator DAROCUR MBF, and 136 mg of IRGACURE 184 were placed, and stirred at room temperature for more than half a day with a mix rotor. Thereafter, the same operation as in Example 2 was performed to obtain a sample film (11). This film had a linear expansion coefficient of 2 ppm / ° C., a total light transmittance of 91%, and a haze of 1.9%.
- Table 1 summarizes the evaluation results of the flexibility and processability of the films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, together with the measured values of the linear expansion coefficient, total light transmittance, and haze.
- the films of Examples 1 to 9 had substantially the same linear expansion coefficient, total light transmittance, and haze as the film of Comparative Example 1, and were excellent in flexibility and workability as compared with the films of Comparative Examples 1 and 2. .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Polymerisation Methods In General (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
[2] 前記ラクトン変性(メタ)アクリレートが以下の一般式(1)
で示される構造を側鎖に有するラクトン変性(メタ)アクリレートである前記[1]に記載の透明複合材料。
[3] 前記エポキシ樹脂が芳香族エポキシ樹脂である前記[1]に記載の透明複合材料。
[4] 前記芳香族エポキシ樹脂がビスフェノールA型エポキシ樹脂である前記[3]に記載の透明複合材料。
[5] 前記エポキシ樹脂が脂環式構造を有するエポキシ樹脂である前記[1]に記載の透明複合材料。
[6] 前記脂環式構造を有するエポキシ樹脂が水添ビスフェノールA型エポキシ樹脂である前記[5]に記載の透明複合材料。
[7] 前記酸無水物が、無水フタル酸、無水マレイン酸、無水コハク酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ドデセニル無水フタル酸、オクテニル無水コハク酸、及びオクテニル無水フタル酸から選択される1種以上である前記[1]~[6]のいずれかに記載の透明複合材料。
[8] 前記樹脂組成物中にさらにエチレン性不飽和基を有する反応性化合物を含み、前記樹脂組成物中に含まれるエポキシ(メタ)アクリレート30~99質量%に対して反応性化合物を1~70質量%の割合で含む(エポキシ(メタ)アクリレートとエチレン性不飽和基を有する反応性化合物の総量を100質量%とする)前記[1]~[7]のいずれかに記載の透明複合材料。
[9] 前記合成スメクタイトが、合成ヘクトライト、合成サポナイト、及び合成スティーブンサイトから選択される1種類以上である前記[1]に記載の透明複合材料。
[10] 前記合成スメクタイトを有機化処理するための4級アンモニウム塩が、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、及びN-ポリオキシエチレン-N-ラウリル-N,N-ジメチルアンモニウム塩から選択される1種類以上である前記[1]または[9]に記載の透明複合材料。
[11] 前記合成スメクタイトの表面に存在する水酸基の少なくとも一部が、表面改質剤によって処理されたものである前記[1]、[9]または[10]に記載の透明複合材料。
[12] 前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、イソシアネート化合物、カルボン酸類、及びアルコール類から選択される1種類以上である前記[11]に記載の透明複合材料。
[13] 50~250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である前記[1]~[12]のいずれかに記載の透明複合材料からなる透明複合シート。
[14] 4級アンモニウム及び/または4級ホスホニウムによって有機化処理された合成スメクタイト、エポキシ(メタ)アクリレート、及び溶剤を含む樹脂組成物を、表面が平滑な平面上に塗布した後、溶剤を乾燥させ、表面が平滑なシートまたはフィルムで挟み、電子線(EB)照射、紫外線(UV)照射または加熱により硬化させることを特徴とする50~250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である透明複合シートの製造方法。
[15] 前記樹脂組成物が、さらにエチレン性不飽和基を有する反応性化合物を含む前記[14]に記載の透明複合シートの製造方法。
[16] 前記[1]~[12]のいずれかに記載の透明複合材料を基材とした表示装置。
[17] 表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである前記[16]に記載の表示装置。
[18] 前記[1]~[12]のいずれかに記載の透明複合材料を基材とした太陽電池用基板。
[透明複合材料]
従来、樹脂の透明性を維持したまま、機械特性及び熱特性を改善することができるフィラーとしては、ガラスクロスやナノシリカ等が知られている。しかし、ガラスクロスの場合には、樹脂とガラスクロスとの線膨張係数が大きく異なるために、加熱または冷却時のマイクロクラックにより白化し材料の透明性が失われる。また、ナノシリカを充填した場合には、少量の添加では透明性は維持できるものの、ディスプレイ基板や太陽電池用基板の用途に要求される低線膨張係数を達成するためにはナノシリカを高充填する必要があり、この場合には透明性を維持することはできない。また、ベントナイト等の天然クレイを充填する場合には、機械物性及び熱物性の向上を図ることが可能であるが、天然クレイ結晶内の酸化鉄やクオーツ等の不純物を完全に除去することは不可能であり、機械特性、熱特性及び透明性を同時に向上させることは困難である。
本発明で使用する樹脂組成物は、樹脂成分であるエポキシ(メタ)アクリレートに、4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理された数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを分散させた組成物である。この樹脂成分には後述する反応性化合物を含んでいてもよい。なお、一般的に「樹脂」というと硬化する前のプレポリマー状態(オリゴマー、硬化剤、添加剤等を含む)を指す場合とその硬化物を指す場合とがあるが、本明細書中では硬化する前のプレポリマー状態のものを「樹脂組成物」とする。また、本明細書中、樹脂組成物の組成比は、硬化物における組成比であり、溶剤分を含まないものとする。
本発明におけるエポキシ(メタ)アクリレートとは、ビニルエステル樹脂とも呼ばれ、一般に(1)エポキシ樹脂に代表されるエポキシ化合物と、(メタ)アクリル酸等のラジカル重合性の炭素-炭素二重結合(エチレン性不飽和基)を有するカルボキシル化合物のカルボキシル基との開環反応により合成されるエチレン性不飽和基を有する樹脂、または(2)2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシ基含有(メタ)アクリレート、無水フタル酸などの酸無水物、エポキシ化合物とを反応させて得られる炭素-炭素二重結合(エチレン性不飽和基)を有する樹脂を指す。詳しくは「ポリエステル樹脂ハンドブック」、日刊工業新聞社、1988年発行、第336~357頁などに記載されている。このエポキシ(メタ)アクリレートは公知の方法により製造することができる。
で示される構造を側鎖に有するものであることが好ましい。本発明の樹脂組成物として、中でも、n=5であるカプロラクトン変性(メタ)アクリレートと無水フタル酸、ビスフェノールA型エポキシ樹脂または水添ビスフェノールA型エポキシ樹脂から合成されるエポキシ(メタ)アクリレートが特に好ましい。
樹脂組成物の樹脂成分には、硬化速度のコントロール、粘度調整(作業性の改善)、架橋密度の向上、機能付加等を目的として反応性化合物を加えることもできる。これらの反応性化合物としては特に制限はなく、種々のものが使用できるが、エポキシ(メタ)アクリレートと反応させるためにはビニル基、アリル基等のラジカル重合性の炭素-炭素二重結合(エチレン性不飽和基)を有する化合物が好ましい。このような化合物としては、1分子中に1個のエチレン性不飽和基を有する単官能モノマー、1分子中に2個以上のエチレン性不飽和基を有する多官能モノマー、及びこれらのオリゴマーが挙げられる。これら反応性化合物の好ましい具体例を以下に示す。
メチルアクリルアミド、N,N-ジエチルアクリルアミド、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-ε-カプロラクタム、N-ビニルピロリドン、1-ビニルイミダゾール、N-ビニルカルバゾール、N-ビニルモルホリン、N-ビニルピリジン、アクリロイルモルホリン等の含窒素モノマー、スチレン、α-メチルスチレン、クロロスチレン、スチレンスルホン酸、4-ヒドロキシスチレン及びビニルトルエン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等が挙げられる。
本発明に用いられる合成スメクタイトは、数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトであれば特に限定されない。
本発明のエポキシ(メタ)アクリレートを含む樹脂組成物は、電子線(EB)照射、紫外線(UV)照射または加熱により硬化させることができる。UV照射または加熱により硬化させる場合には、硬化剤を使用してもよい。使用できる硬化剤としては特に制限はなく、一般に重合性樹脂の硬化剤として用いられているものを用いることができる。中でも、(メタ)アクリロイルオキシ基の重合開始の点からラジカル重合開始剤を添加することが望ましい。ラジカル重合開始剤としては、光重合開始剤、有機過酸化物、アゾ系開始剤等が挙げられる。本発明のエポキシ(メタ)アクリレートを含む樹脂組成物をUV照射硬化させる点からは光重合開始剤が特に好ましい。
本発明の透明複合材料用エポキシ(メタ)アクリレートを含む樹脂組成物には、硬度、強度、成形性、耐久性、耐水性を改良する目的で、酸化防止剤、滑剤、紫外線吸収剤などの添加剤を必要に応じて添加することができる。
本発明において合成スメクタイトを効率的に層剥離させ、エポキシ(メタ)アクリレートを含む樹脂組成物中に分散させるために溶剤を使用することが好ましい。例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、n-プロピルベンゼン、イソプロピルベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、メタノール、エタノール、(イソ)プロパノール、ブチルアルコール等のアルコール類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、N、N-ジメチルホルムアミド、N-メチルピロリドン、ピリジン、アセトニトリル等の含窒素系溶剤等が挙げられる。操作性の観点から、水、メタノール等のアルコール類、トルエン、キシレン、N-メチルピロリドンが好ましい。
本発明の透明シートは、4級アンモニウム及び/または4級ホスホニウムによって有機化処理された合成スメクタイト、エポキシ(メタ)アクリレート、所望により使用するエチレン性不飽和基を有する反応性化合物、及び溶剤の混合物を基材上に塗布し、電子線(EB)照射、紫外線(UV)または加熱により硬化させ、得られた透明シートを剥離して製造することができる。
線膨張係数は、エスアイアイ・ナノテクノロジー社製TMA/SS6100を使用し、引張モードで測定を行った。フィルム状試験片は、厚さ100μm×3mm×12mm(チャック間距離10mm)、張力:30mNとし、窒素を100mL/minの雰囲気下で昇温速度5℃/minで250℃まで温度を上げた後、昇温手段(加熱ヒータ)を切り、100mL/minでの窒素フローを継続した状態で50℃以下まで冷却し、再度、昇温速度5℃/minで50~250℃までの間で、試験片の伸長率を測定した。50℃と250℃との伸長率差と温度差(200℃)とから50~250℃の間の面方向の平均線膨張係数を計算した。また、伸長率の不連続点の温度をガラス転移温度(Tg)とした。
全光線透過率は、東京電色社製全自動ヘーズメーターTC-H3DPKを使用し、JIS K-7361-1に準拠して測定した。
ヘーズ値は、東京電色社製全自動ヘーズメーターTC-H3DPKを使用し、JIS K-7136に準拠して測定した。
作製したフィルムをある線にそって180°に折りたたんだ時、フィルムが割れなかった場合を○とし、割れた場合を×とした。
作製したフィルムをハサミで切断した時、切断面にバリが生じなかった場合を○とし、切断面の一部または全部にバリが生じたものを×とした。
撹拌機、還流冷却管、気体導入管及び温度計のついた容量1Lの四つ口フラスコに、カプロラクトン変性2-ヒドロキシエチルアクリレート(ダイセル化学社製:プラクセルFA2D)を344g(1モル)、無水フタル酸を148g(1モル)、トリフェニルホスフィンを1.5g、p-メトキシフェノール0.15gを加え、空気をバブリングしながら撹拌し90℃に昇温して90分反応させ酸価が概ね109mgKOH/gとなったことを確認して一段目の反応を終了した。
次いで、ビスフェノールA型エポキシ樹脂(旭化成社製:AER-2603、エポキシ当量=185)を185g(0.5モル)、トリフェニルホスフィンを0.7g、p-メトキシフェノール0.07gを加え120℃に昇温して酸価が5mgKOH/g以下になるまで反応を行い、オリゴマー(1)を得た。
無水フタル酸をヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドHH)154g(1モル)に変更し、酸価が略3mgKOH/gになるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(2)を得た。
無水フタル酸を4-メチルヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドMH)を168g(1モル)に変更し、酸価が3mgKOH/g以下になるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(3)を得た。
ビスフェノールA型エポキシ樹脂(旭化成社製:AER-2603、エポキシ当量=185)を水添ビスフェノールA型エポキシ樹脂(東都化成社製:ST-3000、エポキシ当量=231)231g(0.5モル)に変更し、酸価が4mgKOH/gになるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(4)を得た。
ビスフェノールA型エポキシ樹脂を水添ビスフェノールA型エポキシ樹脂(東都化成社製:ST-3000、エポキシ当量=231)231g(0.5モル)に、無水フタル酸をヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドHH)に変更し、酸価が4mgKOH/gになるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(5)を得た。
ビスフェノールA型エポキシ樹脂を水添ビスフェノールA型エポキシ樹脂(東都化成社製:ST-3000、エポキシ当量=231)231g(0.5モル)に、無水フタル酸を4-メチルヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドMH)に変更し、酸価が5mgKOH/g以下になるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(6)を得た。
温度調節器、撹拌装置、ジムロート冷却管、空気導入管を付した四つ口フラスコに、東都化成社製水添ビスフェノールA型エポキシ樹脂 ST-4000D(商品名、エポキシ当量:725)276.3g、トルエン202.5g、重合禁止剤として4-メトキシフェノール(MEHQ:ハイドロキノンモノメチルエーテル)を0.19g仕込み、乾燥空気を吹き込み(20ml/min)ながら80℃に昇温し均一になるまで撹拌した。均一になったところでクラレ社製アクリル酸27.5g、触媒として北興化学工業社製塩化ベンジルトリフェニルホスホニウム(商品名TPP-ZC)を1.24g加え110℃で温度調整しながら7時間反応させ、酸価が7.8mgKOH/gのところで終了し、オリゴマー(7)(トルエン溶液)を得た。
ヘクトライトの組成を有し、底面間隔が空気中で12.5Å、陽イオン交換容量が90ミリ当量/100gである合成スメクタイト20gを、水1000mlに分散させ、これにトリオクチルメチルアンモニウムクロライド9gを添加し、撹拌しながら室温で2時間反応させた。次いで、生成物をろ過し、水にて洗浄を行い、副生塩類を除去した。その後、乾燥、粉砕し有機変性スメクタイト:クレイ(1)を得た。
500ml容器にオリゴマー(1)78.4g、トルエン288g、クレイ(1)33.6g、UV開始剤1-ヒドロキシシクロヘキシルフェニル-ケトン(IRGACURE184,チバ・ジャパン社製)784mgを入れ、ミックスローターにて室温下、半日以上撹拌した。さらにビーズミル(ジルコニアビーズφ0.3mm)にて10分間処理を行い、分散液(1)を得た。さらにエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。
この分散液(1)をナイフコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが100μmの厚みになるように塗布した。80℃の熱風乾燥機で10分間乾燥させ、溶剤のトルエンを揮発させた。UV照射量1000mJ/cm2にて硬化させ、サンプルフィルム(1)を得た。このフィルムの線膨張係数は15ppm/℃、全光線透過率は89%、ヘーズは1.5%であった。
500ml容器にオリゴマー(2)72.8g、トルエン288g、クレイ(1)39.2g、UV開始剤IRGACURE184 728mgを入れ、ミックスローターにて室温下、半日以上撹拌した。さらにビーズミル(ジルコニアビーズφ0.3mm)にて10分間処理を行い、分散液(2)を得た。さらにエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。この分散液(2)から実施例1と同様の方法でサンプルフィルム(2)を得た。このフィルムの線膨張係数は26ppm/℃、全光線透過率は90%、ヘーズは2.1%であった。
オリゴマー(2)をオリゴマー(3)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(3)を得た。このフィルムの線膨張係数は23ppm/℃、全光線透過率は91%、ヘーズは1.4%であった。
オリゴマー(2)をオリゴマー(4)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(4)を得た。このフィルムの線膨張係数は22ppm/℃、全光線透過率は91%、ヘーズは1.7%であった。
オリゴマー(2)をオリゴマー(5)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(5)を得た。このフィルムの線膨張係数は24ppm/℃、全光線透過率は91%、ヘーズは1.7%であった。
オリゴマー(2)をオリゴマー(6)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(6)を得た。このフィルムの線膨張係数は26ppm/℃、全光線透過率は91%、ヘーズは1.6%であった。
500ml容器にオリゴマー(6)60g、トルエン300g、クレイ(1)40g、UV開始剤フェニルグリオキシリックアシッドメチルエステル(DAROCUR MBF,チバ・ジャパン社製)600mg、IRGACURE184 300mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(7)を得た。このフィルムの線膨張係数は11ppm/℃、全光線透過率は91%、ヘーズは2.1%であった。
500ml容器にオリゴマー(6)42g、トルエン316g、クレイ(1)42g、UV開始剤DAROCUR MBF 420mg、IRGACURE184 210mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(8)を得た。このフィルムの線膨張係数は4ppm/℃、全光線透過率は91%、ヘーズは2.1%であった。
500ml容器にオリゴマー(6)55g、オリゴマー(7)(60%トルエン溶液)38g、トルエン266g、クレイ(1)42g、UV開始剤DAROCUR MBF 780mg、IRGACURE184 390mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(9)を得た。このフィルムの線膨張係数は9ppm/℃、全光線透過率は91%、ヘーズは1.7%であった。
オリゴマー(1)をオリゴマー(7)に変更した以外は、実施例1と同様の操作を行い、サンプルフィルム(10)を得た。このフィルムの線膨張係数は14ppm/℃、全光線透過率は91%、ヘーズは2.0%であった。
500ml容器にオリゴマー(6)27g、トルエン332g、クレイ(1)40g、UV開始剤DAROCUR MBF 272mg、IRGACURE184 136mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(11)を得た。このフィルムの線膨張係数は2ppm/℃、全光線透過率は91%、ヘーズは1.9%であった。
Claims (18)
- 4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理された数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを、ラクトン変性(メタ)アクリレート、酸無水物及びエポキシ樹脂から合成されるエポキシ(メタ)アクリレートを含む樹脂成分中に、10~55質量%分散してなる樹脂組成物を硬化してなることを特徴とする透明複合材料。
- 前記エポキシ樹脂が芳香族エポキシ樹脂である請求項1に記載の透明複合材料。
- 前記芳香族エポキシ樹脂がビスフェノールA型エポキシ樹脂である請求項3に記載の透明複合材料。
- 前記エポキシ樹脂が脂環式構造を有するエポキシ樹脂である請求項1に記載の透明複合材料。
- 前記脂環式構造を有するエポキシ樹脂が水添ビスフェノールA型エポキシ樹脂である請求項5に記載の透明複合材料。
- 前記酸無水物が、無水フタル酸、無水マレイン酸、無水コハク酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ドデセニル無水フタル酸、オクテニル無水コハク酸、及びオクテニル無水フタル酸から選択される1種以上である請求項1~6のいずれかに記載の透明複合材料。
- 前記エポキシ(メタ)アクリレートを含む樹脂成分中に、エチレン性不飽和基を有する反応性化合物を1~70質量%含む請求項1~7のいずれかに記載の透明複合材料。
- 前記合成スメクタイトが、合成ヘクトライト、合成サポナイト、及び合成スティーブンサイトから選択される1種類以上である請求項1に記載の透明複合材料。
- 前記合成スメクタイトを有機化処理するための4級アンモニウム塩が、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、及びN-ポリオキシエチレン-N-ラウリル-N,N-ジメチルアンモニウム塩から選択される1種類以上である請求項1または9に記載の透明複合材料。
- 前記合成スメクタイトの表面に存在する水酸基の少なくとも一部が、表面改質剤によって処理されたものである請求項1、9または10に記載の透明複合材料。
- 前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、イソシアネート化合物、カルボン酸類、及びアルコール類から選択される1種類以上である請求項11に記載の透明複合材料。
- 50~250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である請求項1~12のいずれかに記載の透明複合材料からなる透明複合シート。
- 4級アンモニウム及び/または4級ホスホニウムによって有機化処理された合成スメクタイト、エポキシ(メタ)アクリレートを含む樹脂成分、及び溶剤を含む混合物を、表面が平滑な平面上に塗布した後、溶剤を乾燥させ、表面が平滑なシートまたはフィルムで挟み、電子線(EB)照射、紫外線(UV)照射または加熱により硬化させることを特徴とする50~250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である透明複合シートの製造方法。
- 前記樹脂組成物が、さらにエチレン性不飽和基を有する反応性化合物を含む請求項14に記載の透明複合シートの製造方法。
- 請求項1~12のいずれかに記載の透明複合材料を基材とした表示装置。
- 表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである請求項16に記載の表示装置。
- 請求項1~12のいずれかに記載の透明複合材料を基材とした太陽電池用基板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/260,716 US20120034397A1 (en) | 2009-03-27 | 2010-03-26 | Transparent composite material |
EP10756203A EP2412749A4 (en) | 2009-03-27 | 2010-03-26 | TRANSPARENT COMPOSITE |
CN2010800148992A CN102365318A (zh) | 2009-03-27 | 2010-03-26 | 透明复合材料 |
JP2011506132A JPWO2010110407A1 (ja) | 2009-03-27 | 2010-03-26 | 透明複合材料 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080033 | 2009-03-27 | ||
JP2009-080033 | 2009-03-27 | ||
JP2009155032 | 2009-06-30 | ||
JP2009-155032 | 2009-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110407A1 true WO2010110407A1 (ja) | 2010-09-30 |
Family
ID=42781097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055307 WO2010110407A1 (ja) | 2009-03-27 | 2010-03-26 | 透明複合材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120034397A1 (ja) |
EP (1) | EP2412749A4 (ja) |
JP (1) | JPWO2010110407A1 (ja) |
KR (1) | KR20110110229A (ja) |
CN (1) | CN102365318A (ja) |
TW (1) | TW201105722A (ja) |
WO (1) | WO2010110407A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022541166A (ja) * | 2019-07-12 | 2022-09-22 | ビック-ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング | 相乗効果組成物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022098704A (ja) * | 2020-12-22 | 2022-07-04 | Dic株式会社 | 活性エネルギー線硬化性樹脂組成物、硬化物及び物品 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999054393A1 (en) | 1998-04-20 | 1999-10-28 | The Dow Chemical Company | Polymer composite and a method for its preparation |
JP2003105230A (ja) | 2001-09-28 | 2003-04-09 | Dainippon Ink & Chem Inc | 活性エネルギー線硬化型塗料用組成物 |
JP2003212956A (ja) | 2002-01-28 | 2003-07-30 | Daicel Ucb Co Ltd | エポキシ(メタ)アクリレート、その製造方法、活性エネルギー線硬化型エポキシ(メタ)アクリレート組成物、硬化物及びその用途 |
JP2005133028A (ja) * | 2003-10-31 | 2005-05-26 | Sumitomo Bakelite Co Ltd | プラスチック複合透明シート及びそれを使用した表示素子 |
JP2007268711A (ja) | 2006-03-30 | 2007-10-18 | Teijin Dupont Films Japan Ltd | フレキシブルディスプレイ基板用積層ポリエステルフィルム |
WO2007136003A1 (ja) * | 2006-05-24 | 2007-11-29 | Dic Corporation | 光ディスク及び光ディスク用紫外線硬化型組成物 |
JP2008004255A (ja) | 2006-05-24 | 2008-01-10 | Dainippon Ink & Chem Inc | 光ディスク及び光ディスク用紫外線硬化型組成物 |
WO2009020107A1 (ja) * | 2007-08-09 | 2009-02-12 | Showa Denko K. K. | 有機化粘土複合体、その製造方法、及び有機化粘土複合体を含む樹脂複合体 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69614893T2 (de) * | 1995-01-13 | 2002-04-25 | Raytheon Co | Plastikspiegel mit erhöhter thermischer Stabilität |
JP2005290060A (ja) * | 2004-03-31 | 2005-10-20 | Sanyo Chem Ind Ltd | 樹脂組成物 |
-
2010
- 2010-03-26 EP EP10756203A patent/EP2412749A4/en not_active Withdrawn
- 2010-03-26 TW TW099109177A patent/TW201105722A/zh unknown
- 2010-03-26 US US13/260,716 patent/US20120034397A1/en not_active Abandoned
- 2010-03-26 KR KR1020117017414A patent/KR20110110229A/ko active IP Right Grant
- 2010-03-26 CN CN2010800148992A patent/CN102365318A/zh active Pending
- 2010-03-26 JP JP2011506132A patent/JPWO2010110407A1/ja not_active Withdrawn
- 2010-03-26 WO PCT/JP2010/055307 patent/WO2010110407A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999054393A1 (en) | 1998-04-20 | 1999-10-28 | The Dow Chemical Company | Polymer composite and a method for its preparation |
JP2002512286A (ja) | 1998-04-20 | 2002-04-23 | ザ ダウ ケミカル カンパニー | ポリマー複合材およびその製造方法 |
JP2003105230A (ja) | 2001-09-28 | 2003-04-09 | Dainippon Ink & Chem Inc | 活性エネルギー線硬化型塗料用組成物 |
JP2003212956A (ja) | 2002-01-28 | 2003-07-30 | Daicel Ucb Co Ltd | エポキシ(メタ)アクリレート、その製造方法、活性エネルギー線硬化型エポキシ(メタ)アクリレート組成物、硬化物及びその用途 |
JP2005133028A (ja) * | 2003-10-31 | 2005-05-26 | Sumitomo Bakelite Co Ltd | プラスチック複合透明シート及びそれを使用した表示素子 |
JP2007268711A (ja) | 2006-03-30 | 2007-10-18 | Teijin Dupont Films Japan Ltd | フレキシブルディスプレイ基板用積層ポリエステルフィルム |
WO2007136003A1 (ja) * | 2006-05-24 | 2007-11-29 | Dic Corporation | 光ディスク及び光ディスク用紫外線硬化型組成物 |
JP2008004255A (ja) | 2006-05-24 | 2008-01-10 | Dainippon Ink & Chem Inc | 光ディスク及び光ディスク用紫外線硬化型組成物 |
US20090207723A1 (en) | 2006-05-24 | 2009-08-20 | Dic Corporation | Optical disc and ultraviolet-curable composition for optical disc |
WO2009020107A1 (ja) * | 2007-08-09 | 2009-02-12 | Showa Denko K. K. | 有機化粘土複合体、その製造方法、及び有機化粘土複合体を含む樹脂複合体 |
Non-Patent Citations (4)
Title |
---|
"Polyester Resin Handbook", 1988, THE NIKKAN KOGYO SHIMBUN LTD, pages: 336 - 357 |
"Ryushi-kei Keisoku Gijutsu", 1994, pages: 169 - 179 |
HARUO SHIROZU: "Nendokobutsu-gaku, Nendo Kagaku no Kiso", 1988, ASAKURA PUBLISHING CO., LTD., pages: 98 - 100 |
See also references of EP2412749A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022541166A (ja) * | 2019-07-12 | 2022-09-22 | ビック-ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング | 相乗効果組成物 |
JP7312310B2 (ja) | 2019-07-12 | 2023-07-20 | ビック-ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング | 相乗効果組成物 |
Also Published As
Publication number | Publication date |
---|---|
KR20110110229A (ko) | 2011-10-06 |
JPWO2010110407A1 (ja) | 2012-10-04 |
CN102365318A (zh) | 2012-02-29 |
US20120034397A1 (en) | 2012-02-09 |
TW201105722A (en) | 2011-02-16 |
EP2412749A1 (en) | 2012-02-01 |
EP2412749A4 (en) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5186556B2 (ja) | 硬化フィルム及びその製造方法 | |
US8518524B2 (en) | Transparent composite material | |
WO2010110406A1 (ja) | 透明複合材料 | |
JP5075849B2 (ja) | 透明複合材料 | |
JP5439717B2 (ja) | 透明導電性フィルム | |
JP2015044905A (ja) | 樹脂組成物、透明フィルム、その製造方法及び用途 | |
JP2008045121A (ja) | 透明複合材料 | |
JP5205785B2 (ja) | 透明フィルム | |
WO2010110407A1 (ja) | 透明複合材料 | |
JP6435597B2 (ja) | 透明導電性フィルム及びその製造方法 | |
US8163842B2 (en) | Transparent composite material and process for producing the same | |
JP2011116054A (ja) | 透明積層フィルム | |
JP2013049792A (ja) | 透明複合材料及び透明フィルムの製造方法 | |
JP2009129802A (ja) | 透明導電性基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014899.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10756203 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011506132 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117017414 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13260716 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010756203 Country of ref document: EP |