JPWO2010110407A1 - 透明複合材料 - Google Patents

透明複合材料 Download PDF

Info

Publication number
JPWO2010110407A1
JPWO2010110407A1 JP2011506132A JP2011506132A JPWO2010110407A1 JP WO2010110407 A1 JPWO2010110407 A1 JP WO2010110407A1 JP 2011506132 A JP2011506132 A JP 2011506132A JP 2011506132 A JP2011506132 A JP 2011506132A JP WO2010110407 A1 JPWO2010110407 A1 JP WO2010110407A1
Authority
JP
Japan
Prior art keywords
meth
acrylate
transparent composite
composite material
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011506132A
Other languages
English (en)
Inventor
美代 向林
美代 向林
良二 樋田
良二 樋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2010110407A1 publication Critical patent/JPWO2010110407A1/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • C08F299/028Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight photopolymerisable compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理された数平均粒径が10〜300nmであり、アスペクト比が10〜300である合成スメクタイトを、ラクトン変性(メタ)アクリレート、酸無水物及びエポキシ樹脂から合成されるエポキシ(メタ)アクリレートを含む樹脂成分中に、10〜55質量%分散してなる樹脂組成物を硬化してなる線膨張係数の小さい透明性、可撓性、加工性に優れた透明複合材料、及びその材料からなる透明複合シートに関する。

Description

本発明は、透明複合材料に関する。さらに詳しく言えば、線膨張係数の小さい透明性、可撓性、加工性に優れた透明複合材料、その材料からなる透明複合シートとその製造方法、その材料を用いた表示装置、及び太陽電池用基板に関する。
従来、液晶表示素子や有機EL表示素子用の表示素子基板、カラーフィルター基板、太陽電池用基板等としては、ガラスが広く用いられている。しかしながらガラス基板は割れやすく、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年その代替としてプラスチック素材が検討されている。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリオレフィン、ポリエステルスルホンからなる基板が提案されている(例えば、特開2007−268711号公報;特許文献1)。
しかしながら、これら従来のガラス代替用プラスチック素材はガラスに比べ線膨張係数が大きく、これらの素材を用いてディスプレイ基板を製造すると、プラスチック基板とその上に設けた透明電極との線膨張係数の差から加熱/冷却時に反りや配線の断線等を生じるため、線膨張係数の小さいプラスチック基板が求められている。
一方、特表2002−512286号公報(WO99/54393)(特許文献2)には、層状の粘土鉱物を含むエポキシビニルエステル樹脂、不飽和ポリエステル樹脂が開示されているが、この発明は耐熱性、機械強度の改良を目的としたものである。さらに特許文献2の実施例として記載されている層状の粘土鉱物を低濃度(2〜6%)添加する場合には、樹脂自体の透明性を維持することはできるが、目的とする低線膨張係数を達成する成形体を得ることはできない。すなわち、特許文献2は透明性を備え、かつ線膨張係数の低い成形体を得ることができる組成物に関するものではない。
また、特開2008−4255号公報(US2009/207723)(特許文献3)には、カプロラクトン変性(メタ)アクリレート、酸無水物、エポキシ樹脂から合成されるエポキシアクリレートを含む光ディスク用紫外線(UV)硬化型組成物が開示されているが、この発明は透明性、耐久性に加え、ディスクの反りを抑制することが目的であり、加熱時の寸法変化を抑制することはできない。特開2003−105230号公報(特許文献4)及び特開2003−212956号公報(特許文献5)にもカプロラクトン変性(メタ)アクリレート、酸無水物、エポキシ樹脂から合成されるエポキシアクリレートを含む組成物が開示されているが、これらはいずれも塗料、コーティング剤、接着剤等基材の加工用途に使用されるものであり、それ自体を低線膨張係数の成形体として使用することを意図するものではない。
特開2007−268711号公報 特表2002−512286号公報 特開2008−4255号公報 特開2003−105230号公報 特開2003−212956号公報
本発明の課題は、液晶表示素子用、有機EL表示素子用プラスチック基板、電子ペーパー用基板等のディスプレイ用基板または太陽電池用基板に好適に使用することができる線膨張係数が小さく、透明性、柔軟性に優れ、スリッターなどで切断したときに切断面にバリが生じないなどの加工性に優れた透明複合材料を提供することにある。
本発明者らは、前記課題を解決すべく鋭意検討した結果、4級アンモニウム塩及び/または4級ホスホニウム塩にてカチオン交換された合成スメクタイトが分散している、ラクトン変性(メタ)アクリレート、酸無水物及びエポキシ樹脂から合成されるエポキシ(メタ)アクリレートを含む樹脂組成物から構成される透明複合材料により上記課題を解決できることを見出した。すなわち、本発明は以下の透明複合材料、その材料からなる透明複合シートとその製造方法、その材料を用いた表示装置、及び太陽電池用基板に関する。
[1] 4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理された数平均粒径が10〜300nmであり、アスペクト比が10〜300である合成スメクタイトを、ラクトン変性(メタ)アクリレート、酸無水物及びエポキシ樹脂から合成されるエポキシ(メタ)アクリレートを含む樹脂成分中に、10〜55質量%分散してなる樹脂組成物を硬化してなることを特徴とする透明複合材料。
[2] 前記ラクトン変性(メタ)アクリレートが以下の一般式(1)
Figure 2010110407
(式中、mは正の整数を表し、nは3〜7の整数を表す。)
で示される構造を側鎖に有するラクトン変性(メタ)アクリレートである前記[1]に記載の透明複合材料。
[3] 前記エポキシ樹脂が芳香族エポキシ樹脂である前記[1]に記載の透明複合材料。
[4] 前記芳香族エポキシ樹脂がビスフェノールA型エポキシ樹脂である前記[3]に記載の透明複合材料。
[5] 前記エポキシ樹脂が脂環式構造を有するエポキシ樹脂である前記[1]に記載の透明複合材料。
[6] 前記脂環式構造を有するエポキシ樹脂が水添ビスフェノールA型エポキシ樹脂である前記[5]に記載の透明複合材料。
[7] 前記酸無水物が、無水フタル酸、無水マレイン酸、無水コハク酸、ヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ドデセニル無水フタル酸、オクテニル無水コハク酸、及びオクテニル無水フタル酸から選択される1種以上である前記[1]〜[6]のいずれかに記載の透明複合材料。
[8] 前記樹脂組成物中にさらにエチレン性不飽和基を有する反応性化合物を含み、前記樹脂組成物中に含まれるエポキシ(メタ)アクリレート30〜99質量%に対して反応性化合物を1〜70質量%の割合で含む(エポキシ(メタ)アクリレートとエチレン性不飽和基を有する反応性化合物の総量を100質量%とする)前記[1]〜[7]のいずれかに記載の透明複合材料。
[9] 前記合成スメクタイトが、合成ヘクトライト、合成サポナイト、及び合成スティーブンサイトから選択される1種類以上である前記[1]に記載の透明複合材料。
[10] 前記合成スメクタイトを有機化処理するための4級アンモニウム塩が、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、及びN−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウム塩から選択される1種類以上である前記[1]または[9]に記載の透明複合材料。
[11] 前記合成スメクタイトの表面に存在する水酸基の少なくとも一部が、表面改質剤によって処理されたものである前記[1]、[9]または[10]に記載の透明複合材料。
[12] 前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、イソシアネート化合物、カルボン酸類、及びアルコール類から選択される1種類以上である前記[11]に記載の透明複合材料。
[13] 50〜250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である前記[1]〜[12]のいずれかに記載の透明複合材料からなる透明複合シート。
[14] 4級アンモニウム及び/または4級ホスホニウムによって有機化処理された合成スメクタイト、エポキシ(メタ)アクリレート、及び溶剤を含む樹脂組成物を、表面が平滑な平面上に塗布した後、溶剤を乾燥させ、表面が平滑なシートまたはフィルムで挟み、電子線(EB)照射、紫外線(UV)照射または加熱により硬化させることを特徴とする50〜250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である透明複合シートの製造方法。
[15] 前記樹脂組成物が、さらにエチレン性不飽和基を有する反応性化合物を含む前記[14]に記載の透明複合シートの製造方法。
[16] 前記[1]〜[12]のいずれかに記載の透明複合材料を基材とした表示装置。
[17] 表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである前記[16]に記載の表示装置。
[18] 前記[1]〜[12]のいずれかに記載の透明複合材料を基材とした太陽電池用基板。
従来のディスプレイ用プラスチック基板では、基板とその上に設けた透明電極との線膨張係数の差が大きいため、加熱または冷却時の反りや配線の断線等の問題があった。さらに線膨張係数の小さい基板は割れやすく、ハサミやスリッターで切断すると切断面にバリが生じてしまうため加工性が悪いことも問題となっていた。本発明の透明複合材料を用いたディスプレイ用基板は線膨張係数が極めて小さいため、耐久性の高いディスプレイを提供することができる。また柔軟性に優れており、割れることなく180°折り曲げることが可能で、かつバリを生じずにハサミやスリッターで切断することができるなど柔軟性及び加工性に優れているため、工業的に極めて有用である。また、本発明の透明複合材料は柔軟かつ線膨張係数の小さな透明シートを提供することができるため、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等のフレキシブルディスプレイ基板や太陽電池用基板などへの使用も可能である。
以下に本発明を詳しく説明する。
[透明複合材料]
従来、樹脂の透明性を維持したまま、機械特性及び熱特性を改善することができるフィラーとしては、ガラスクロスやナノシリカ等が知られている。しかし、ガラスクロスの場合には、樹脂とガラスクロスとの線膨張係数が大きく異なるために、加熱または冷却時のマイクロクラックにより白化し材料の透明性が失われる。また、ナノシリカを充填した場合には、少量の添加では透明性は維持できるものの、ディスプレイ基板や太陽電池用基板の用途に要求される低線膨張係数を達成するためにはナノシリカを高充填する必要があり、この場合には透明性を維持することはできない。また、ベントナイト等の天然クレイを充填する場合には、機械物性及び熱物性の向上を図ることが可能であるが、天然クレイ結晶内の酸化鉄やクオーツ等の不純物を完全に除去することは不可能であり、機械特性、熱特性及び透明性を同時に向上させることは困難である。
本発明の透明複合材料は、特定の性状を有する合成スメクタイトが分散しているラクトン変性(メタ)アクリレート、酸無水物及びエポキシ樹脂から合成されるエポキシ(メタ)アクリレートを含む樹脂組成物を硬化して得られるものであり、その50〜250℃での面方向の平均線膨張係数が30ppm/℃以下と小さく、かつ可撓性及び加工性に優れる。
本発明において、透明複合材料の透明性は全光線透過率で評価する。本発明の透明複合材料は、100μm厚当たりの全光線透過率が80%以上、ヘーズ値が5%以下のものをいう。全光線透過率は85%以上であることがより好ましい。ヘーズ値は3%以下であることがより好ましい。ヘーズ値が5%より大きいと透過光が歪み、鮮明さに欠ける。全光線透過率はJIS K−7361−1、ヘーズ値はJIS K−7136に準拠して測定された値である。
本発明の透明複合材料の形状は限定されないが、フィルム、シート、平板等の形状の成形物が特に好適である。厚みが10μm以上200μ以下のものをフィルム、厚みが200μmより大きく5000μm以下のものをシート、厚みが5000μmより大きいものを板と表現するが、本明細書では、フィルム、シート、板の厚みに関わらずシートと表現する。
[樹脂組成物]
本発明で使用する樹脂組成物は、樹脂成分であるエポキシ(メタ)アクリレートに、4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理された数平均粒径が10〜300nmであり、アスペクト比が10〜300である合成スメクタイトを分散させた組成物である。この樹脂成分には後述する反応性化合物を含んでいてもよい。なお、一般的に「樹脂」というと硬化する前のプレポリマー状態(オリゴマー、硬化剤、添加剤等を含む)を指す場合とその硬化物を指す場合とがあるが、本明細書中では硬化する前のプレポリマー状態のものを「樹脂組成物」とする。また、本明細書中、樹脂組成物の組成比は、硬化物における組成比であり、溶剤分を含まないものとする。
[エポキシ(メタ)アクリレート]
本発明におけるエポキシ(メタ)アクリレートとは、ビニルエステル樹脂とも呼ばれ、一般に(1)エポキシ樹脂に代表されるエポキシ化合物と、(メタ)アクリル酸等のラジカル重合性の炭素−炭素二重結合(エチレン性不飽和基)を有するカルボキシル化合物のカルボキシル基との開環反応により合成されるエチレン性不飽和基を有する樹脂、または(2)2−ヒドロキシエチル(メタ)アクリレートなどのヒドロキシ基含有(メタ)アクリレート、無水フタル酸などの酸無水物、エポキシ化合物とを反応させて得られる炭素−炭素二重結合(エチレン性不飽和基)を有する樹脂を指す。詳しくは「ポリエステル樹脂ハンドブック」、日刊工業新聞社、1988年発行、第336〜357頁などに記載されている。このエポキシ(メタ)アクリレートは公知の方法により製造することができる。
本発明の透明複合材料から製造される透明シートとしての透明性、低線膨張係数、優れた柔軟性、加工性を発現させることができるエポキシ(メタ)アクリレートは、ラクトン変性(メタ)アクリレート(A)、酸無水物(B)、及びエポキシ樹脂(C)から合成される。ここで、ラクトン変性(メタ)アクリレート(A)は5〜9員環(炭素数が4〜8)のラクトンを開環させた以下の一般式(1):
Figure 2010110407
(式中、mは正の整数を表し、nは3〜7の整数を表す。)
で示される構造を側鎖に有するものであることが好ましい。本発明の樹脂組成物として、中でも、n=5であるカプロラクトン変性(メタ)アクリレートと無水フタル酸、ビスフェノールA型エポキシ樹脂または水添ビスフェノールA型エポキシ樹脂から合成されるエポキシ(メタ)アクリレートが特に好ましい。
一般に合成スメクタイトの添加によって熱硬化性樹脂の低線膨張係数(30ppm/℃以下)を達成するためには、合成スメクタイトを熱硬化性樹脂に多量に(40質量%超)添加する必要がある。しかし、合成スメクタイト添加量が多いために樹脂本来の透明性、機械的強度を発現することができず、脆くて割れやすい材料になってしまう。一方、前記ラクトン変性(メタ)アクリレート(A)と無水フタル酸(B)、ビスフェノールA型エポキシ樹脂または水添ビスフェノールA型エポキシ樹脂(C)から合成されるエポキシ(メタ)アクリレートを使用した場合には、透明性、耐熱性、及び柔軟性の点からバランスが良く、さらに合成スメクタイト含有量を40質量%以下と低減しても低線膨張係数を達成することができる。また、このラクトン変性エポキシ(メタ)アクリレートに合成スメクタイトを多量に(50質量%)添加すると、樹脂本来の透明性、機械強度、柔軟性、及び加工性を損なうことなく、さらに線膨張係数を下げることができる(10ppm/℃以下)。合成スメクタイトの含有量が60質量%となるように添加すると柔軟性が低下し、はさみで切断したとき切断面からバリが生じてしまう。よって合成スメクタイトの含有量は55質量%以下とすることが好ましい。
ラクトン変性(メタ)アクリレート(A)の例としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、フェノキシヒドロキシプロピル(メタ)アクリレート等のアルキル基に置換基があってもよいヒドロキシアルキル(炭素数2〜12)(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレン(炭素数2〜6)グリコールモノ(メタ)アクリレート;グリセロールモノ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールメタクリレートアクリレート、2−(メタ)アクリロイルエチル−2−ヒドロキシエチルフタレート、ペンタエリスリトールトリ(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレートのラクトン変性化合物が挙げられる。ラクトン骨格を有することで低線膨張係数と柔軟性を両立することができ、カプロラクトン変性化合物が最も好適である。
ラクトン変性(メタ)アクリレート中の1分子当たりのラクトンユニット数mは特に限定されないが、ユニット数が多いと線膨張係数が高くなってしまう。エポキシ(メタ)アクリレートの低線膨張係数と柔軟性を両立するためには、1分子当たり1〜5ユニットが好ましく、特に1〜3ユニットが好ましい。
酸無水物(B)の例としては、無水フタル酸、無水マレイン酸、無水コハク酸、ヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ドデセニル無水フタル酸、オクテニル無水コハク酸、オクテニル無水フタル酸などの2価のカルボン酸の無水物が挙げられる。この中でも特に無水フタル酸が最も好適である。
エポキシ樹脂(C)は2官能以上のエポキシ樹脂であり、芳香族エポキシ樹脂、脂環式構造を有するエポキシ樹脂などが挙げられる。芳香族エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂が挙げられる。これらの中でも、ビスフェノールA型エポキシ樹脂が最も好適である。エポキシ樹脂1分子当たりのビスフェノールAユニット数は特に限定されないが、ユニット数が多いと線膨張係数が高くなる傾向にあり、また着色が強く透明性が低下してしまう。低線膨張係数と高い透明性を維持するためには1〜3ユニットが好ましく、特に1ユニットが好ましい。脂環式構造を有するエポキシ樹脂の例としては、水添ビスフェノールA型エポキシ樹脂などの水添ビスフェノール型エポキシ樹脂;3,4−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、3,4−エポキシ−シクロヘキシルメチル−3,4−エポキシ−シクロヘキサンカルボキシレートなどが挙げられる。これらの中でも、水添ビスフェノールA型エポキシ樹脂エポキシ樹脂が最も好適である。エポキシ樹脂1分子当たりの水添ビスフェノールAユニット数は特に限定されないが、ユニット数が多いと線膨張係数が高くなる傾向にある。低線膨張係数と高い透明性を維持するためには1〜3ユニットが好ましく、特に1ユニットが好ましい。
エポキシ(メタ)アクリレートの合成反応は、(1)ラクトン変性(メタ)アクリレートのヒドロキシ基と酸無水物からハーフエステル化合物を得る反応、(2)得られたハーフエステル化合物とエポキシ樹脂からエポキシ(メタ)アクリレートを得る反応の二つの反応によって製造することができる。エポキシ(メタ)アクリレート中の組成比については、ラクトン骨格を持つ(メタ)アクリレート(A)のヒドロキシ基と酸無水物(B)のモル比は0.9〜1.1が好ましく、等モルが最も好ましい。また、ハーフエステル化合物とエポキシ樹脂のエポキシ基のモル比は0.9〜1.1が好ましく、等モルが最も好ましい。
[反応性化合物]
樹脂組成物の樹脂成分には、硬化速度のコントロール、粘度調整(作業性の改善)、架橋密度の向上、機能付加等を目的として反応性化合物を加えることもできる。これらの反応性化合物としては特に制限はなく、種々のものが使用できるが、エポキシ(メタ)アクリレートと反応させるためにはビニル基、アリル基等のラジカル重合性の炭素−炭素二重結合(エチレン性不飽和基)を有する化合物が好ましい。このような化合物としては、1分子中に1個のエチレン性不飽和基を有する単官能モノマー、1分子中に2個以上のエチレン性不飽和基を有する多官能モノマー、及びこれらのオリゴマーが挙げられる。これら反応性化合物の好ましい具体例を以下に示す。
単官能モノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、4−t−ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニルオキシメチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の脂肪族(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、1−ナフチル(メタ)アクリレート、フルオロフェニル(メタ)アクリレート、クロロフェニル(メタ)アクリレート、シアノフェニル(メタ)アクリレート、メトキシフェニル(メタ)アクリレート及びビフェニル(メタ)アクリレート等の芳香族(メタ)アクリレート、フルオロメチル(メタ)アクリレート、クロロメチル(メタ)アクリレート等のハロアルキル(メタ)アクリレート;グリシジル(メタ)アクリレート、アルキルアミノ(メタ)アクリレート、シアノアクリル酸エステル等の(メタ)アクリレート化合物、アクリルアミド、N,N−ジ
メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニル−ε−カプロラクタム、N−ビニルピロリドン、1−ビニルイミダゾール、N−ビニルカルバゾール、N−ビニルモルホリン、N−ビニルピリジン、アクリロイルモルホリン等の含窒素モノマー、スチレン、α−メチルスチレン、クロロスチレン、スチレンスルホン酸、4−ヒドロキシスチレン及びビニルトルエン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等が挙げられる。
多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ポリブタジエンジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロイルオキシフェニル)プロパン及び2,2−ビス(4−(ω−(メタ)アクリロイロキシポリエトキシ)フェニル)プロパン、ビスフェノールAのエチレンオキサイド付加物のジ(メタ)アクリレート等のジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンのエチレンオキサイド付加物のトリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能の架橋性モノマー、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールのエチレンオキサイド付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の多官能アクリレート、フタル酸ジアリル、イソフタル酸ジアリル、イソフタル酸ジメタリル、テレフタル酸ジアリル、トリメリット酸トリアリル、2,6−ナフタレンジカルボン酸ジアリル、1,5−ナフタレンジカルボン酸ジアリル、1,4−キシレンジカルボン酸アリル及び4,4’−ジフェニルジカルボン酸ジアリル等の芳香族カルボン酸ジアリル類、シクロヘキサンジカルボン酸ジアリル、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、ジアリルクロレンデート等のアリル化合物が挙げられる。
また、反応性オリゴマーとしては、代表的にはウレタン(メタ)アクリレート、前記エポキシ(メタ)アクリレート以外のエポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル(メタ)アクリレート、不飽和ポリエステル、アリルエステル樹脂などのオリゴマーが挙げられる。
上記の反応性化合物は、1種単独で、または2種以上組み合わせて用いることができる。これらの反応性化合物を使用する場合、樹脂組成物中の合成スメクタイトの含有量が10〜55質量%を満たす範囲で前記エポキシ(メタ)アクリレートの一部が反応性化合物に置換される。すなわち、エポキシ(メタ)アクリレートをその70質量%以下の範囲で反応性化合物に置換することができる。好ましい使用量は、エポキシ(メタ)アクリレート30〜99質量%、反応性化合物1〜70質量%(エポキシ(メタ)アクリレートとエチレン性不飽和基を有する反応性化合物の総量を100質量%とする)であり、より好ましくはエポキシ(メタ)アクリレート50〜95質量%、反応性化合物5〜50質量%、さらに好ましくはエポキシ(メタ)アクリレート70〜90質量%、反応性化合物10〜30質量%である。反応性化合物の使用量が70質量%を超えるとビニルエステル樹脂の優れた透明性が発現されなかったり、エポキシ(メタ)アクリレート由来の機械的強度が低下する場合があり好ましくない。
[合成スメクタイト]
本発明に用いられる合成スメクタイトは、数平均粒径が10〜300nmであり、アスペクト比が10〜300である合成スメクタイトであれば特に限定されない。
本発明の透明複合材料をディスプレイ用基板等に使用する場合、平均粒径は可視光の波長より十分小さいものである必要がある。なお、ここでいう可視光とは、波長が380〜740nmの範囲の光をいう。従って、合成スメクタイトの数平均粒径は10〜300nmの範囲が好ましく、30〜200nmの範囲がさらに好ましい。数平均粒径が10nm未満の場合は透明シートの面方向の線膨張係数が十分小さくならない傾向があり、300nmを超える場合は可視光波長と重なる粒径のものも含まれるため、透明性の点で好ましくない。なお、ここでいう合成スメクタイトの数平均粒径とは、溶媒中に分散させながら動的光散乱法により求めた数平均粒径を指す。動的光散乱法による数平均粒径は、例えば「粒子径計測技術」(粉体工学会編,1994年)の第169〜179頁を参照することで求めることができ、具体的な測定装置としては、動的光散乱式粒径分布測定装置(例えば、(株)堀場製作所製,LB−550型)を挙げることができる。前記の動的光散乱法により求めた合成スメクタイトの数平均粒径は、本発明における樹脂中に分散された後の合成スメクタイトの数平均粒径とは実質的に同じと考えることができる。
合成スメクタイトのアスペクト比(Z)は、Z=L/aなる関係で示される。Lは、溶媒中、動的光散乱法により求めた前記の数平均粒径であり、aは、合成スメクタイトの単位厚みである。単位厚みaは、粉末X線回折法によって平板状無機物質の回折ピークを測定して算出することができる値である。本発明の合成スメクタイトは、アスペクト比が10〜300の範囲であり、30〜100の範囲がさらに好ましい。透明シートの面方向に配向しやすいという観点から、アスペクト比は10以上であることが好ましく、アスペクト比が10未満の合成スメクタイトの場合は、線膨張係数が所定の範囲(好ましくは30ppm/℃以下)とならないおそれがある。一方、アスペクト比が300を超える合成スメクタイトを使用すると、透明シートの全光線透過率が低下するおそれがある。
このような合成スメクタイトは、公知の方法(例えば、白水晴雄著「粘土鉱物学−粘土科学の基礎」朝倉書店、1988年、第98〜100頁)を使用して合成しても良いし、市販の合成スメクタイトを使用しても良い。市販されている合成スメクタイトの例としては、コープケミカル社製合成スメクタイトSWN(合成ヘクトライト)、ROCKWOOD社製合成珪酸塩LAPONITE(合成ヘクトライト)、クニミネ工業社製合成無機高分子スメクトンSA(合成サポナイト)、水澤工業社製合成ケイ酸マグネシウム塩イオナイト(合成スティーブンサイト)を挙げることができる。これらの中でより好ましいものは、透明性、カチオン交換容量、サイズ、分散性等の点からコープケミカル社製合成スメクタイトSWNである。
合成スメクタイトを樹脂中に均一に分散させるため、4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理する。有機化処理方法としては、合成スメクタイトの薄片状結晶層間に存在するナトリウムやカルシウム等の交換性金属カチオンを、カチオン性界面活性剤などのようなカチオン性を有する種々の物質と交換し、合成スメクタイトの結晶層間に挿入(インターカレート)することが挙げられる。前記有機化処理方法は、カチオン性界面活性剤によるカチオン交換法とも言われ、この方法は、本発明の透明複合材料の樹脂成分が低極性の場合に有効であり、合成スメクタイトと低極性樹脂との親和性を高め、合成スメクタイトを低極性樹脂中に均一に微分散させることができる。
この場合の合成スメクタイトのカチオン交換容量は特に限定されないが、好ましくは50〜1200ミリ当量/100gである。カチオン交換容量が50ミリ当量/100g未満の場合には、カチオン交換により合成スメクタイトの結晶層間にインターカレートされるカチオン性物質の量が少なくなるために、結晶層間が充分に非極性化(疎水化)されない場合がある。カチオン交換容量が1200ミリ当量/100gより大きい場合には、合成スメクタイトの結晶層間の結合力が強固になりすぎて、結晶薄片が剥離し難くなることがある。
ここで用いられるカチオン性界面活性剤としては特に限定されず、例えば、4級アンモニウム塩、4級ホスホニウム塩等が挙げられる。中でも、合成スメクタイトの結晶層間を充分に疎水化できることから、炭素数6以上のアルキルアンモニウムイオン塩、芳香族4級アンモニウムイオン塩または複素環4級アンモニウムイオン塩が好適に用いられる。
前記4級アンモニウム塩としては特に限定されず、例えば、トリメチルアルキルアンモニウム塩、トリエチルアルキルアンモニウム塩、トリブチルアルキルアンモニウム塩、ジメチルジアルキルアンモニウム塩、ジブチルジアルキルアンモニウム塩、メチルベンジルジアルキルアンモニウム塩、ジベンジルジアルキルアンモニウム塩、トリアルキルメチルアンモニウム塩、トリアルキルエチルアンモニウム塩、トリアルキルブチルアンモニウム塩;ベンジルメチル{2−[2−(p−1,1,3,3−テトラメチルブチルフェノオキシ)エトキシ]エチル}アンモニウムクロライド等の芳香環を有する4級アンモニウム塩;トリメチルフェニルアンモニウム等の芳香族アミン由来の4級アンモニウム塩;アルキルピリジニウム塩、イミダゾリウム塩等の複素環を有する4級アンモニウム塩;ポリエチレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリエチレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩等が挙げられる。中でも、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、N−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウム塩等が好適である。これらの4級アンモニウム塩は、単独で用いてもよく、2種以上を併用してもよい。
前記4級ホスホニウム塩としては特に限定されず、例えば、ドデシルトリフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、ラウリルトリメチルホスホニウム塩、ステアリルトリメチルホスホニウム塩、トリオクチルメチルホスホニウム塩、ジステアリルジメチルホスホニウム塩、ジステアリルジベンジルホスホニウム塩等が挙げられる。これらの4級ホスホニウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。
エポキシ(メタ)アクリレートを含む樹脂組成物に、4級アンモニウム塩及び/または4級ホスホニウム塩を用いて、合成スメクタイトの分散性を向上させるには、脂肪族系の4級アンモニウム塩及び/または4級ホスホニウム塩を用いるのが好ましく、特にトリアルキルメチルアンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキルアンモニウム塩がより好ましい。
また、本発明に用いられる合成スメクタイトは層間のみではなく、表面に存在する水酸基の少なくとも一部を表面改質剤によって処理しても構わない。合成スメクタイトの表面には、水酸基等の官能基があるため、水酸基に対して反応性を有する官能基を有する化合物で表面処理することができる。上記水酸基と化学結合し得る官能基を有する化合物としては特に限定されず、例えば、シラン化合物(シランカップリング剤)、チタネート化合物(チタネートカップリング剤)、グリシジル化合物、イソシアネート化合物、カルボン酸類、アルコール類等が挙げられる。これらの化合物は、単独で用いてもよく、2種以上を併用してもよい。
前記化合物の中ではシラン化合物が好ましく使用することができる。シラン化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルジメチルメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルジメチルエトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等が挙げられる。これらのシラン化合物は、単独で用いてもよく、2種以上を併用してもよい。
透明複合材料中の有機化処理された合成スメクタイトの含有量は、エポキシ(メタ)アクリレートを含む樹脂成分と合成スメクタイトの総量に対して、10〜55質量%の範囲が好ましく、20〜50質量%の範囲がより好ましい。有機化処理された合成スメクタイトの含有量が10質量%未満の場合は、透明複合材料の50〜250℃までの平均線膨張係数が大きくなり、30ppm/℃より大きくなる。また、有機化処理された合成スメクタイトの含有量が55質量%を超えると、合成スメクタイトを樹脂中に均一に分散させることが困難となり、また、透明複合材料の機械的強度が低下し脆くて割れやすくなる。
[硬化剤]
本発明のエポキシ(メタ)アクリレートを含む樹脂組成物は、電子線(EB)照射、紫外線(UV)照射または加熱により硬化させることができる。UV照射または加熱により硬化させる場合には、硬化剤を使用してもよい。使用できる硬化剤としては特に制限はなく、一般に重合性樹脂の硬化剤として用いられているものを用いることができる。中でも、(メタ)アクリロイルオキシ基の重合開始の点からラジカル重合開始剤を添加することが望ましい。ラジカル重合開始剤としては、光重合開始剤、有機過酸化物、アゾ系開始剤等が挙げられる。本発明のエポキシ(メタ)アクリレートを含む樹脂組成物をUV照射硬化させる点からは光重合開始剤が特に好ましい。
光重合開始剤としては、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン、2−メチル−1−(4−メチルチオフェニル)−2−モルホリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−オン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチルプロピオニル)ベンジル]フェニル}−2−メチルプロパン−1−オン、オキシフェニルアセチックアシッド2−[2−オキソ−2−フェニルアセトキシエトキシ]エチルエステル、オキシフェニルアセチックアシッド2−[2−ヒドロキシエトキシ]エチルエステル、フェニルグリオキシリックアシッドメチルエステル、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルホリン−4−イルフェニル)ブタン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、1,2−オクタンジオン,1−[4−(フェニルチオ)フェニル−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)、ヨードニウム,(4−メチルフェニル)[4−(2−メチルプロピル)フェニル]ヘキサフルオロホスフェート(1−)、エチル−4−ジメチルアミノベンゾエート、2−エチルヘキシル−4−ジメチルアミノベンゾエート、及び2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
有機過酸化物としては、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステル等の公知のものが使用可能であり、その具体例としては、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシネオヘプタノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、ジサッシニックアシッドパーオキサイド、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシー2−エチルヘキサノエート、ジ(4−メチルベンゾイル)パーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス[4,4−ジ(t−ブチルパーオキシ)シクロヘキシル]プロパン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ジ(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、n−ブチル−4,4−ジ(t−ブチルパーオキシ)バレレート、ジ(t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ(t−ヘキシル)パーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、p−メンタンハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキシド、t−ブチルハイドロパーオキサイド等が挙げられる。
アゾ系開始剤としては、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル、ジメチル−2,2’−アゾビス(2−メトキシプロピオネート)、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロへキサン−1−カルボニトリル)、2,2’−アゾビス[N−(2−プロペニル)−2−メチルプロピオンアミド]、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロへキシルー2−メチルプロピオンアミド)等が挙げられる。
これらのラジカル重合開始剤は1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。これらの硬化剤の配合量には特に制限はないが、エポキシ(メタ)アクリレートを含む樹脂組成物100質量部に対し、0.1〜10質量部配合することが好ましく、0.5〜5質量部配合することがより好ましい。硬化剤の配合量が0.1質量部より少ないと十分な硬化速度を得ることが困難であり、また配合量が10質量部を超えると、最終的な硬化物が脆くなり、機械的強度が低下する場合がある。
[添加剤]
本発明の透明複合材料用エポキシ(メタ)アクリレートを含む樹脂組成物には、硬度、強度、成形性、耐久性、耐水性を改良する目的で、酸化防止剤、滑剤、紫外線吸収剤などの添加剤を必要に応じて添加することができる。
酸化防止剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でもフェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが好ましく、フェノール系酸化防止剤が特に好ましい。フェノール系酸化防止剤としては、2,6−ジ−t−ブチル−p−クレゾール、4,4−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチルー4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコールビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4−チオビス(6−t−ブチル−3−メチルフェノール)、3,9−ビス[2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニロキシ]−1,1’−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン,チオジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオンアミド]等が挙げられる。アミン系酸化防止剤としては、アルキルジフェニルアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン、ジアルキルヒドロキシルアミン等が挙げられる。イオウ系酸化防止剤としては、ジラウリル−3,3’−チオジプロピオネート、ジトリデシル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)等が挙げられる。リン系酸化防止剤としては、トリス[2−[[2,4,8,10−テトラ−t−ブチルベンゾ[d,f][1,3,2]ジオキサホスフェフィン−6−イル]オキシ]エチル]アミン、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスフォナイト等が挙げられる。これら酸化防止剤は1種でもよく、2種以上を組み合わせて用いても良い。
滑剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、金属石鹸系滑剤、脂肪酸エステル系滑剤、脂肪族炭化水素系滑剤などが好ましく、金属石鹸系滑剤が特に好ましい。金属石鹸系滑剤としては、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム及びステアリン酸アルミニウム等が挙げられる。これらは複合体として用いても良い。
紫外線吸収剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤が好ましく、特に、ベンゾフェノン系紫外線吸収剤が好ましい。ベンゾフェノン系紫外線吸収剤としては、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−ブチルフェニル)ベンゾトリアゾール及び2−(2−ヒドロキシ−3’−tert−ブチルフェニル)ベンゾトリアゾールなどが挙げられる。
これらの添加剤は上述した具体例に制限されるものではなく、本発明の目的、または効果を阻害しない範囲で、消泡剤、レベリング剤、離型剤、撥水剤、難燃剤、低収縮剤、架橋助剤等を添加することができる。
[溶剤]
本発明において合成スメクタイトを効率的に層剥離させ、エポキシ(メタ)アクリレートを含む樹脂組成物中に分散させるために溶剤を使用することが好ましい。例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、n−プロピルベンゼン、イソプロピルベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類、メタノール、エタノール、(イソ)プロパノール、ブチルアルコール等のアルコール類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、N、N−ジメチルホルムアミド、N−メチルピロリドン、ピリジン、アセトニトリル等の含窒素系溶剤等が挙げられる。操作性の観点から、水、メタノール等のアルコール類、トルエン、キシレン、N−メチルピロリドンが好ましい。
溶剤の合成スメクタイトに対する比率は、溶剤の種類によるが、合成スメクタイト100質量部に対して100〜10,000質量部であり、より好ましくは200〜5,000質量部である。溶剤の比率が100質量部よりも少ないと混合物の組成液粘度が高くなり均一に混合することが困難になる。
[透明シートの製造方法]
本発明の透明シートは、4級アンモニウム及び/または4級ホスホニウムによって有機化処理された合成スメクタイト、エポキシ(メタ)アクリレート、所望により使用するエチレン性不飽和基を有する反応性化合物、及び溶剤の混合物を基材上に塗布し、電子線(EB)照射、紫外線(UV)または加熱により硬化させ、得られた透明シートを剥離して製造することができる。
エポキシ(メタ)アクリレート及び所望により使用するエチレン性不飽和基を有する反応性化合物(以下、「樹脂成分」という。)、合成スメクタイト、及び溶剤の混合は、例えば、(1)樹脂成分を溶剤に溶解させた後に、合成スメクタイトを溶剤に分散させた分散液を混合する方法、(2)合成スメクタイトを溶剤に分散させた分散液に樹脂成分を直接添加して溶解させる方法、(3)樹脂成分を溶剤に溶解させた後に合成スメクタイトを加えて分散させる方法、または(4)樹脂成分と合成スメクタイトを加熱混練して得られた混合物を溶媒に溶解させ分散させる方法により製造することができる。この中でも、合成スメクタイトの分散性の観点から、樹脂成分を溶剤に溶解させた後に、合成スメクタイトを溶剤に分散させた分散液を混合する方法が特に好ましい。分散方法は特に限定されないが、加熱処理、ミックスローター、マグネティックスターラー、ホモジナイザー、ヘンシェルミキサー、ビーズミル、超高圧微粒化装置、超音波照射等の公知の方法にて分散させることが可能である。
次に、合成スメクタイト、エポキシ(メタ)アクリレート、所望により使用するエチレン性不飽和基を有する反応性化合物、溶剤を含む混合物の分散液を減圧することにより脱気及び/または濃縮し、分散液の粘度を塗工に最適な粘度に調整する。分散液粘度は特に限定されないが、成形する方法に適した粘度であることが好ましい。例えば、ロールコーティング法及びドクターナイフ法の場合は25℃における粘度が0.01〜1,000Pa・sの範囲であることが好ましい。粘度が0.01Pa・sより低い、または1,000Pa・sより高いと作業性が悪くなり好ましくない。常温での粘度が高い場合は分散液の温度を上げて作業性を改善することができる。また、減圧時間が短い場合には、分散液中の気体が十分に除去することができず、塗布/乾燥/硬化時に気泡が発生し平滑な透明シートを作製することが困難となる。
塗布は、分散液を減圧することにより脱気及び/または濃縮し、粘度調整したものを塗布液として用い、ガラス、金属、プラスチックフィルム等の平滑な基材上にダイレクトグラビア法やリバースグラビア法及びマイクログラビア法、2本ロールビートコート法、ボトムフィード3本リバースコート法等のロールコーティング法、及びドクターナイフ法やダイコート法、ディップコート法、バーコーティング法やこれらを組み合わせたコーティング法等の通常工業的に用いられている方法により行うことができる。中でも、合成スメクタイトを面方向に配向させるように基材と平行方向に働く力(シェア)をかける方法であるロールコーティング法及びドクターナイフ法が好ましい。ここで、「面方向に配向」とは、合成スメクタイトの各層の大多数が基材表面に対して平行になるように配向していることを指す。合成スメクタイトが面方向に配向している場合には、透明シートの面方向の線膨張係数を効果的に低減させることができる。また、合成スメクタイトの各層が面方向に配向することにより、合成スメクタイト含有量が多い場合でも全光線透過率が高くなる。
揮発させることが可能な溶剤を合成スメクタイトの分散及び粘度調整に使用した場合には、合成スメクタイトをさらに面方向に配向させることが可能である。すなわち、合成スメクタイト、エポキシアクリレート樹脂組成物及び溶剤の混合物を基材上に塗布した後、溶剤だけを蒸発させれば塗工液の厚み方向にのみ収縮することになるので、結果的に樹脂の合成スメクタイトはさらに面方向に配向させることができる。反応性モノマーを使用する場合には、比較的揮発性の低い反応性モノマーを用い、揮発性の高い溶剤を併用し適切な条件(温度、圧力、時間等)で乾燥させることが好ましい。溶剤を揮発させることにより合成スメクタイトを面方向に配向させる方法は、上記ロールコーティング法またはドクターナイフ法と併用することは可能であるが、シェアをかけずに塗布する方法単独で実施することもできる。
溶剤を揮発させる温度は、0〜200℃が好ましい。0℃未満の場合には、揮発速度が著しく遅いため好ましくない。200℃より高い場合には、溶剤の急激な揮発や沸騰による発泡または樹脂のゲル化が発生し表面平滑性が低下しヘーズ値が上昇する可能性があり好ましくない。より好ましくは10〜100℃である。溶剤を揮発させる圧力は、10Pa〜1MPaが好ましい。1Pa未満の場合には、突沸が発生する恐れがあり表面平滑性が低下しヘーズ値が上昇する可能性があり好ましくない。より好ましくは10〜200Paである。溶剤を揮発させる時間は1〜120分が好ましい。1分未満の場合には、溶剤を十分に揮発させることができず硬化の際に気泡が発生する。120分より長い場合には、生産性が悪くなるため好ましくない。溶剤を揮発させる場合には、空気、窒素、アルゴン、二酸化炭素等の気体を使用してもよい。また、これらの気体は溶剤の揮発成分を含んでいてもよい。溶剤を揮発させる際の気体の流速は、0.01〜200m/sが好ましい。0.01m/sより遅い場合には、溶剤の揮発分が滞留してしまうため好ましくない。200m/sより速い場合には、塗布液が不均一となるため好ましくない。より好ましくは、0.1〜50m/sである。
最後に、ガラス、金属、プラスチックフィルム等の平滑な基材にて挟み、EB照射、UV照射または加熱により硬化させた後、基材から離型することによって透明シートを得ることができる。また、ガラス、金属、プラスチックフィルム等の平滑な基材にて挟まない場合には、不活性ガス(例えば、窒素、アルゴン、二酸化炭素等)雰囲気下、EB照射、UV照射または加熱により硬化させた後に基材から離型することによって透明シートを得ることができる。例えば、合成スメクタイトが分散され、かつ、溶剤を含む硬化前のエポキシ(メタ)アクリレートを含む樹脂組成物を、表面が平滑な平面上、例えば、二軸延伸ポリエチレンテレフタレートフィルムに上記方法にて塗布した後、溶剤を揮発させ、表面が平滑な二軸延伸ポリエチレンテレフタレートフィルムで挟み、EB照射、UV照射または加熱により硬化させる方法が挙げられる。
EB照射硬化によりエポキシ(メタ)アクリレートを含む樹脂組成物を硬化させる場合には、重合開始剤は必要ない。ただし、アフターキュア操作によって硬化を完全にする場合には、熱重合開始剤を併用してもよい。EB照射の時の電子線の加速電圧は30〜500kV、好ましくは50〜300kVである。また、電子線照射量は、1〜300kGy、好ましくは5〜200kGyである。電子線加速電圧が30kV未満の場合には、組成物の厚さが厚い場合に電子線の透過不足が生じる恐れがあり、500kVよりも大きい場合には、経済性が悪くなる。また、電子線照射量は300kGyを超えると基材を損傷する恐れがあるため好ましくない。
UV照射によりエポキシ(メタ)アクリレートを含む樹脂組成物を硬化させる場合には、硬化温度は0〜150℃、好ましくは10〜130℃である。また、UV照射時間は、0.01〜10時間、好ましくは0.05〜1時間、さらに好ましくは0.1〜0.5時間かけて硬化するのが良い。UV積算光量は10〜5000mJ/cm2である。10mJ/cm2未満であると硬化が不十分になり好ましくない。5000mJ/cm2より大きい場合には生産性が悪くなる。
加熱によりエポキシ(メタ)アクリレート樹脂組成物を硬化させる場合には、硬化温度は30〜160℃、好ましくは40〜130℃である。また、硬化時の収縮や歪の抑制を考慮すると、昇温しながらゆっくりと硬化する方法が好ましく、0.5〜100時間、好ましくは、3〜50時間である。
EB照射、UV照射または加熱による硬化後、エポキシ(メタ)アクリレートを含む樹脂硬化物の硬化が不十分な場合には、アフターキュアによって硬化を完全に進行させることができる。アフターキュアを行う場合には、透明シートをガラス、金属、プラスチックフィルム等の平滑な基材から剥離しても構わないし、剥離しなくてもよい。アフターキュアの温度は50〜300℃、好ましくは80〜250℃である。アフターキュアの時間は0.1〜10時間、好ましくは0.5〜5時間である。アフターキュアの圧力は1.0×10-7Pa〜1MPa、好ましくは1.0×10-6Pa〜0.5MPaである。アフターキュアの雰囲気は空気、窒素、アルゴン、二酸化炭素等の雰囲気下で行うことが可能であるが、着色低減の点からは窒素雰囲気下が好ましい。
2層以上からなる透明シートを製造する場合には、最初に1層を基材上に塗布(及び乾燥)後、その上に他の層を塗布(及び乾燥)することを繰り返し、EB照射、UV照射または加熱による硬化後、基材から剥離する方法、または、2枚以上のシートを製造し、該2枚以上のシートをラミネートする方法により製造することができる。なお、2枚以上のフィルムをラミネートする場合は、2枚の界面はコロナ処理やアンカーコート等の処理を施してもよい。
以下、実施例及び比較例を挙げ本発明を説明するが、本発明はこれらの記載により何らかの限定を受けるものではない。
[線膨張係数、ガラス転移温度(Tg)の測定]
線膨張係数は、エスアイアイ・ナノテクノロジー社製TMA/SS6100を使用し、引張モードで測定を行った。フィルム状試験片は、厚さ100μm×3mm×12mm(チャック間距離10mm)、張力:30mNとし、窒素を100mL/minの雰囲気下で昇温速度5℃/minで250℃まで温度を上げた後、昇温手段(加熱ヒータ)を切り、100mL/minでの窒素フローを継続した状態で50℃以下まで冷却し、再度、昇温速度5℃/minで50〜250℃までの間で、試験片の伸長率を測定した。50℃と250℃との伸長率差と温度差(200℃)とから50〜250℃の間の面方向の平均線膨張係数を計算した。また、伸長率の不連続点の温度をガラス転移温度(Tg)とした。
[全光線透過率]
全光線透過率は、東京電色社製全自動ヘーズメーターTC−H3DPKを使用し、JIS K−7361−1に準拠して測定した。
[ヘーズ]
ヘーズ値は、東京電色社製全自動ヘーズメーターTC−H3DPKを使用し、JIS K−7136に準拠して測定した。
[柔軟性]
作製したフィルムをある線にそって180°に折りたたんだ時、フィルムが割れなかった場合を○とし、割れた場合を×とした。
[加工性]
作製したフィルムをハサミで切断した時、切断面にバリが生じなかった場合を○とし、切断面の一部または全部にバリが生じたものを×とした。
合成例1:オリゴマー(1)
撹拌機、還流冷却管、気体導入管及び温度計のついた容量1Lの四つ口フラスコに、カプロラクトン変性2−ヒドロキシエチルアクリレート(ダイセル化学社製:プラクセルFA2D)を344g(1モル)、無水フタル酸を148g(1モル)、トリフェニルホスフィンを1.5g、p−メトキシフェノール0.15gを加え、空気をバブリングしながら撹拌し90℃に昇温して90分反応させ酸価が概ね109mgKOH/gとなったことを確認して一段目の反応を終了した。
次いで、ビスフェノールA型エポキシ樹脂(旭化成社製:AER−2603、エポキシ当量=185)を185g(0.5モル)、トリフェニルホスフィンを0.7g、p−メトキシフェノール0.07gを加え120℃に昇温して酸価が5mgKOH/g以下になるまで反応を行い、オリゴマー(1)を得た。
合成例2:オリゴマー(2)
無水フタル酸をヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドHH)154g(1モル)に変更し、酸価が略3mgKOH/gになるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(2)を得た。
合成例3:オリゴマー(3)
無水フタル酸を4−メチルヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドMH)を168g(1モル)に変更し、酸価が3mgKOH/g以下になるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(3)を得た。
合成例4:オリゴマー(4)
ビスフェノールA型エポキシ樹脂(旭化成社製:AER−2603、エポキシ当量=185)を水添ビスフェノールA型エポキシ樹脂(東都化成社製:ST−3000、エポキシ当量=231)231g(0.5モル)に変更し、酸価が4mgKOH/gになるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(4)を得た。
合成例5:オリゴマー(5)
ビスフェノールA型エポキシ樹脂を水添ビスフェノールA型エポキシ樹脂(東都化成社製:ST−3000、エポキシ当量=231)231g(0.5モル)に、無水フタル酸をヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドHH)に変更し、酸価が4mgKOH/gになるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(5)を得た。
合成例6:オリゴマー(6)
ビスフェノールA型エポキシ樹脂を水添ビスフェノールA型エポキシ樹脂(東都化成社製:ST−3000、エポキシ当量=231)231g(0.5モル)に、無水フタル酸を4−メチルヘキサヒドロ無水フタル酸(新日本理化社製:リカシッドMH)に変更し、酸価が5mgKOH/g以下になるまで反応を行った以外は合成例1と同様に合成し、オリゴマー(6)を得た。
合成例7:オリゴマー(7)
温度調節器、撹拌装置、ジムロート冷却管、空気導入管を付した四つ口フラスコに、東都化成社製水添ビスフェノールA型エポキシ樹脂 ST−4000D(商品名、エポキシ当量:725)276.3g、トルエン202.5g、重合禁止剤として4−メトキシフェノール(MEHQ:ハイドロキノンモノメチルエーテル)を0.19g仕込み、乾燥空気を吹き込み(20ml/min)ながら80℃に昇温し均一になるまで撹拌した。均一になったところでクラレ社製アクリル酸27.5g、触媒として北興化学工業社製塩化ベンジルトリフェニルホスホニウム(商品名TPP−ZC)を1.24g加え110℃で温度調整しながら7時間反応させ、酸価が7.8mgKOH/gのところで終了し、オリゴマー(7)(トルエン溶液)を得た。
合成例8:クレイ(1)
ヘクトライトの組成を有し、底面間隔が空気中で12.5Å、陽イオン交換容量が90ミリ当量/100gである合成スメクタイト20gを、水1000mlに分散させ、これにトリオクチルメチルアンモニウムクロライド9gを添加し、撹拌しながら室温で2時間反応させた。次いで、生成物をろ過し、水にて洗浄を行い、副生塩類を除去した。その後、乾燥、粉砕し有機変性スメクタイト:クレイ(1)を得た。
実施例1:
500ml容器にオリゴマー(1)78.4g、トルエン288g、クレイ(1)33.6g、UV開始剤1−ヒドロキシシクロヘキシルフェニル−ケトン(IRGACURE184,チバ・ジャパン社製)784mgを入れ、ミックスローターにて室温下、半日以上撹拌した。さらにビーズミル(ジルコニアビーズφ0.3mm)にて10分間処理を行い、分散液(1)を得た。さらにエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。
この分散液(1)をナイフコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが100μmの厚みになるように塗布した。80℃の熱風乾燥機で10分間乾燥させ、溶剤のトルエンを揮発させた。UV照射量1000mJ/cm2にて硬化させ、サンプルフィルム(1)を得た。このフィルムの線膨張係数は15ppm/℃、全光線透過率は89%、ヘーズは1.5%であった。
実施例2:
500ml容器にオリゴマー(2)72.8g、トルエン288g、クレイ(1)39.2g、UV開始剤IRGACURE184 728mgを入れ、ミックスローターにて室温下、半日以上撹拌した。さらにビーズミル(ジルコニアビーズφ0.3mm)にて10分間処理を行い、分散液(2)を得た。さらにエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。この分散液(2)から実施例1と同様の方法でサンプルフィルム(2)を得た。このフィルムの線膨張係数は26ppm/℃、全光線透過率は90%、ヘーズは2.1%であった。
実施例3:
オリゴマー(2)をオリゴマー(3)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(3)を得た。このフィルムの線膨張係数は23ppm/℃、全光線透過率は91%、ヘーズは1.4%であった。
実施例4:
オリゴマー(2)をオリゴマー(4)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(4)を得た。このフィルムの線膨張係数は22ppm/℃、全光線透過率は91%、ヘーズは1.7%であった。
実施例5:
オリゴマー(2)をオリゴマー(5)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(5)を得た。このフィルムの線膨張係数は24ppm/℃、全光線透過率は91%、ヘーズは1.7%であった。
実施例6:
オリゴマー(2)をオリゴマー(6)に変更した以外は、実施例2と同様の操作を行い、サンプルフィルム(6)を得た。このフィルムの線膨張係数は26ppm/℃、全光線透過率は91%、ヘーズは1.6%であった。
実施例7:
500ml容器にオリゴマー(6)60g、トルエン300g、クレイ(1)40g、UV開始剤フェニルグリオキシリックアシッドメチルエステル(DAROCUR MBF,チバ・ジャパン社製)600mg、IRGACURE184 300mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(7)を得た。このフィルムの線膨張係数は11ppm/℃、全光線透過率は91%、ヘーズは2.1%であった。
実施例8:
500ml容器にオリゴマー(6)42g、トルエン316g、クレイ(1)42g、UV開始剤DAROCUR MBF 420mg、IRGACURE184 210mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(8)を得た。このフィルムの線膨張係数は4ppm/℃、全光線透過率は91%、ヘーズは2.1%であった。
実施例9:
500ml容器にオリゴマー(6)55g、オリゴマー(7)(60%トルエン溶液)38g、トルエン266g、クレイ(1)42g、UV開始剤DAROCUR MBF 780mg、IRGACURE184 390mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(9)を得た。このフィルムの線膨張係数は9ppm/℃、全光線透過率は91%、ヘーズは1.7%であった。
比較例1:
オリゴマー(1)をオリゴマー(7)に変更した以外は、実施例1と同様の操作を行い、サンプルフィルム(10)を得た。このフィルムの線膨張係数は14ppm/℃、全光線透過率は91%、ヘーズは2.0%であった。
比較例2:
500ml容器にオリゴマー(6)27g、トルエン332g、クレイ(1)40g、UV開始剤DAROCUR MBF 272mg、IRGACURE184 136mgを入れ、ミックスローターにて室温下、半日以上撹拌した。この後実施例2と同様の操作を行い、サンプルフィルム(11)を得た。このフィルムの線膨張係数は2ppm/℃、全光線透過率は91%、ヘーズは1.9%であった。
表1に実施例1〜9及び比較例1〜2で得られた各フィルムの柔軟性及び加工性の評価結果を線膨張係数、全光線透過率及びヘーズの測定値とあわせてまとめて示す。実施例1〜9のフィルムは比較例1のフィルムと略同等の線膨張係数、全光線透過率及びヘーズであり、かつ比較例1及び2のフィルムに比べて柔軟性及び加工性が優れていた。
Figure 2010110407

Claims (18)

  1. 4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理された数平均粒径が10〜300nmであり、アスペクト比が10〜300である合成スメクタイトを、ラクトン変性(メタ)アクリレート、酸無水物及びエポキシ樹脂から合成されるエポキシ(メタ)アクリレートを含む樹脂成分中に、10〜55質量%分散してなる樹脂組成物を硬化してなることを特徴とする透明複合材料。
  2. 前記ラクトン変性(メタ)アクリレートが以下の一般式(1)
    Figure 2010110407
    (式中、mは正の整数を表し、nは3〜7の整数を表す。)
    で示される構造を側鎖に有するラクトン変性(メタ)アクリレートである請求項1に記載の透明複合材料。
  3. 前記エポキシ樹脂が芳香族エポキシ樹脂である請求項1に記載の透明複合材料。
  4. 前記芳香族エポキシ樹脂がビスフェノールA型エポキシ樹脂である請求項3に記載の透明複合材料。
  5. 前記エポキシ樹脂が脂環式構造を有するエポキシ樹脂である請求項1に記載の透明複合材料。
  6. 前記脂環式構造を有するエポキシ樹脂が水添ビスフェノールA型エポキシ樹脂である請求項5に記載の透明複合材料。
  7. 前記酸無水物が、無水フタル酸、無水マレイン酸、無水コハク酸、ヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ドデセニル無水フタル酸、オクテニル無水コハク酸、及びオクテニル無水フタル酸から選択される1種以上である請求項1〜6のいずれかに記載の透明複合材料。
  8. 前記エポキシ(メタ)アクリレートを含む樹脂成分中に、エチレン性不飽和基を有する反応性化合物を1〜70質量%含む請求項1〜7のいずれかに記載の透明複合材料。
  9. 前記合成スメクタイトが、合成ヘクトライト、合成サポナイト、及び合成スティーブンサイトから選択される1種類以上である請求項1に記載の透明複合材料。
  10. 前記合成スメクタイトを有機化処理するための4級アンモニウム塩が、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、及びN−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウム塩から選択される1種類以上である請求項1または9に記載の透明複合材料。
  11. 前記合成スメクタイトの表面に存在する水酸基の少なくとも一部が、表面改質剤によって処理されたものである請求項1、9または10に記載の透明複合材料。
  12. 前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、イソシアネート化合物、カルボン酸類、及びアルコール類から選択される1種類以上である請求項11に記載の透明複合材料。
  13. 50〜250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である請求項1〜12のいずれかに記載の透明複合材料からなる透明複合シート。
  14. 4級アンモニウム及び/または4級ホスホニウムによって有機化処理された合成スメクタイト、エポキシ(メタ)アクリレートを含む樹脂成分、及び溶剤を含む混合物を、表面が平滑な平面上に塗布した後、溶剤を乾燥させ、表面が平滑なシートまたはフィルムで挟み、電子線(EB)照射、紫外線(UV)照射または加熱により硬化させることを特徴とする50〜250℃での面方向の平均線膨張係数が30ppm/℃以下で、かつ100μm厚当たりでの全光線透過率が80%以上である透明複合シートの製造方法。
  15. 前記樹脂組成物が、さらにエチレン性不飽和基を有する反応性化合物を含む請求項14に記載の透明複合シートの製造方法。
  16. 請求項1〜12のいずれかに記載の透明複合材料を基材とした表示装置。
  17. 表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである請求項16に記載の表示装置。
  18. 請求項1〜12のいずれかに記載の透明複合材料を基材とした太陽電池用基板。
JP2011506132A 2009-03-27 2010-03-26 透明複合材料 Withdrawn JPWO2010110407A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009080033 2009-03-27
JP2009080033 2009-03-27
JP2009155032 2009-06-30
JP2009155032 2009-06-30
PCT/JP2010/055307 WO2010110407A1 (ja) 2009-03-27 2010-03-26 透明複合材料

Publications (1)

Publication Number Publication Date
JPWO2010110407A1 true JPWO2010110407A1 (ja) 2012-10-04

Family

ID=42781097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011506132A Withdrawn JPWO2010110407A1 (ja) 2009-03-27 2010-03-26 透明複合材料

Country Status (7)

Country Link
US (1) US20120034397A1 (ja)
EP (1) EP2412749A4 (ja)
JP (1) JPWO2010110407A1 (ja)
KR (1) KR20110110229A (ja)
CN (1) CN102365318A (ja)
TW (1) TW201105722A (ja)
WO (1) WO2010110407A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2964923T3 (es) * 2019-07-12 2024-04-10 Byk Chemie Gmbh Composición sinérgica
JP2022098704A (ja) * 2020-12-22 2022-07-04 Dic株式会社 活性エネルギー線硬化性樹脂組成物、硬化物及び物品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69614893T2 (de) * 1995-01-13 2002-04-25 Raytheon Co Plastikspiegel mit erhöhter thermischer Stabilität
US6287992B1 (en) 1998-04-20 2001-09-11 The Dow Chemical Company Polymer composite and a method for its preparation
JP4947331B2 (ja) 2001-09-28 2012-06-06 Dic株式会社 活性エネルギー線硬化型塗料用組成物
JP3978585B2 (ja) 2002-01-28 2007-09-19 ダイセル・サイテック株式会社 エポキシ(メタ)アクリレート、その製造方法、活性エネルギー線硬化型エポキシ(メタ)アクリレート組成物、硬化物及びその用途
JP2005133028A (ja) * 2003-10-31 2005-05-26 Sumitomo Bakelite Co Ltd プラスチック複合透明シート及びそれを使用した表示素子
JP2005290060A (ja) * 2004-03-31 2005-10-20 Sanyo Chem Ind Ltd 樹脂組成物
JP2007268711A (ja) 2006-03-30 2007-10-18 Teijin Dupont Films Japan Ltd フレキシブルディスプレイ基板用積層ポリエステルフィルム
JP4100453B2 (ja) 2006-05-24 2008-06-11 大日本インキ化学工業株式会社 光ディスク及び光ディスク用紫外線硬化型組成物
WO2007136003A1 (ja) * 2006-05-24 2007-11-29 Dic Corporation 光ディスク及び光ディスク用紫外線硬化型組成物
KR20100040274A (ko) * 2007-08-09 2010-04-19 쇼와 덴코 가부시키가이샤 유기화 점토 복합체, 그 제조 방법 및 유기화 점토 복합체를 함유하는 수지 복합체

Also Published As

Publication number Publication date
EP2412749A1 (en) 2012-02-01
KR20110110229A (ko) 2011-10-06
TW201105722A (en) 2011-02-16
US20120034397A1 (en) 2012-02-09
CN102365318A (zh) 2012-02-29
EP2412749A4 (en) 2012-12-26
WO2010110407A1 (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5186556B2 (ja) 硬化フィルム及びその製造方法
US8518524B2 (en) Transparent composite material
JP5075849B2 (ja) 透明複合材料
WO2010110406A1 (ja) 透明複合材料
JP2015044905A (ja) 樹脂組成物、透明フィルム、その製造方法及び用途
JP2008045121A (ja) 透明複合材料
JP5205785B2 (ja) 透明フィルム
JPWO2010110407A1 (ja) 透明複合材料
US8163842B2 (en) Transparent composite material and process for producing the same
JP2015056337A (ja) 透明導電性フィルム及びその製造方法
JP2013237734A (ja) 透明複合材料及び透明フィルムの製造方法
JP2011116054A (ja) 透明積層フィルム
JP2013049792A (ja) 透明複合材料及び透明フィルムの製造方法
JP2009129802A (ja) 透明導電性基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131030