JP5186556B2 - 硬化フィルム及びその製造方法 - Google Patents

硬化フィルム及びその製造方法

Info

Publication number
JP5186556B2
JP5186556B2 JP2010508198A JP2010508198A JP5186556B2 JP 5186556 B2 JP5186556 B2 JP 5186556B2 JP 2010508198 A JP2010508198 A JP 2010508198A JP 2010508198 A JP2010508198 A JP 2010508198A JP 5186556 B2 JP5186556 B2 JP 5186556B2
Authority
JP
Japan
Prior art keywords
meth
curable resin
resin composition
acrylate
cured film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010508198A
Other languages
English (en)
Other versions
JPWO2009128415A1 (ja
Inventor
靖 門脇
良二 樋田
顕治 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010508198A priority Critical patent/JP5186556B2/ja
Publication of JPWO2009128415A1 publication Critical patent/JPWO2009128415A1/ja
Application granted granted Critical
Publication of JP5186556B2 publication Critical patent/JP5186556B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は硬化フィルム及びその製造方法に関する。さらに詳しくは成形時にそりなどの変形発生量が小さく、透明性に優れた硬化フィルム及びその製造方法に関する。
従来、液晶表示装置や有機EL表示装置用の表示素子基板、カラーフィルター基板、太陽電池用基板等としては、ガラスが広く用いられている。しかしながらガラス基板は割れやすく、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年その代替としてプラスチック素材が検討されている。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリオレフィン、ポリエーテルスルホン等の熱可塑性樹脂からなる基板が提案されている(例えば、特開2007−268711号公報;特許文献1)。
しかしながら、これら従来のガラス代替用プラスチック素材は、高温で保持したり、加熱処理した場合に熱変形してしまうことがあった。熱変形の抑制方法として樹脂フィルムの少なくとも片面に無機微粒子層を積層する方法が提案されている。(例えば、特開2006−347054号公報;特許文献2)。
特許文献2の実施例に記載されている熱変形は熱収縮/熱膨張を指しており、その温度範囲も100℃以下であり、それ以上の温度ではガラス転移温度に達するためにさらに膨張する可能性が高い。また、近年の表示基板用のフィルムに要求される温度は200℃以上と高くなっているため、従来の方法では熱収縮/熱膨張やそりなどの変形が発生してしまう。
一方、従来の硬化性樹脂フィルムの製造方法は基材フィルムに液状硬化性樹脂組成物を塗工し、溶剤を含む場合は加熱乾燥した後に、加熱及び/または光を照射させて硬化させる方法である。しかしながら、上記従来の方法では、硬化性樹脂組成物層の基材側と表面側とで加熱時の膨張/冷却時の収縮度合に微妙な違いが生じる。その違いにより、加熱/冷却時にそりなどの変形が発生する。
特開2007−268711号公報 特開2006−347054号公報
本発明の課題は、加熱/冷却時のそりなどの変形が小さく、透明性に優れた液晶表示装置用、有機EL表示装置用プラスチック基板、電子ペーパー用基板等のディスプレイ用基板または太陽電池用基板に好適に使用することができる硬化フィルム及びその製造方法を提供することにある。
本発明者らは、2つの基材に各々硬化性樹脂組成物を塗工し、各々の硬化性樹脂組成物層を貼り合わせ接着させて硬化させることにより前記課題を解決することができることを見出し、本発明を完成させた。
すなわち、本発明は、具体的には以下の[1]から[20]の実施態様を含む。
[1]第1及び第2の基材の表面に硬化性樹脂組成物を塗工し、硬化性樹脂組成物層を形成する第1の工程と、前記第1及び第2の基材の各表面に設けられた硬化性樹脂組成物層同士を貼り合わせ接着させる第2の工程と、前記第1及び第2の基材間の硬化性樹脂組成物層を硬化させる第3の工程とを有することを特徴とする硬化フィルムの製造方法。
[2]前記硬化性樹脂組成物が揮発性溶剤及び/または反応性モノマーを含む前記1に記載の硬化フィルムの製造方法。
[3]前記第1の工程と第2の工程との間に前記硬化性樹脂組成物層を乾燥する工程を有する前記1に記載の硬化フィルムの製造方法。
[4]前記第3の工程後に、前記硬化性樹脂組成物硬化層を前記第1及び第2の基材より剥離する第4の工程を有する前記1に記載の硬化フィルムの製造方法。
[5]前記硬化性樹脂組成物が、アリルエステル樹脂、(メタ)アクリル樹脂、及びビニルエステル樹脂よりなる群より選ばれる1種以上を含む前記1乃至4のいずれかに記載の硬化フィルムの製造方法。
[6]前記硬化性樹脂組成物が脂肪族鎖状構造及び/または脂肪族環状構造を有する硬化性樹脂を含む前記5に記載の硬化フィルムの製造方法。
[7]前記硬化性樹脂組成物が層状無機化合物を含む前記1乃至6のいずれかに記載の硬化フィルムの製造方法。
[8]前記層状無機化合物が合成スメクタイトである前記7に記載の硬化フィルムの製造方法。
[9]前記合成スメクタイトが、ラウリルトリメチルアンモニウムカチオン、ステアリルトリメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、ジステアリルジメチルアンモニウムカチオン、ジ水素化牛脂ジメチルアンモニウムカチオン、ジステアリルジベンジルアンモニウムカチオン、及びN−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウムカチオンの1種以上から選択されるカチオンを層間に含むものである前記8に記載の硬化フィルムの製造方法。
[10]前記合成スメクタイトの末端水酸基が、表面改質剤によって処理されたものである前記8または9に記載の硬化フィルムの製造方法。
[11]前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、イソシアネート化合物、カルボン酸類、及びアルコール類から選択されるものである前記10に記載の硬化フィルムの製造方法。
[12]前記硬化が電子線(EB)照射、紫外線(UV)照射、赤外線(IR)照射、及び加熱の少なくとも1つで行われる前記1に記載の硬化フィルムの製造方法。
[13]前記電子線(EB)、紫外線(UV)、赤外線(IR)を前記第1及び第2の基材間の硬化性樹脂組成物層に第1及び第2の基材側から略同等の光量で照射し硬化させる前記12に記載の硬化フィルムの製造方法。
[14]前記加熱による硬化が、前記第1及び第2の基材間の硬化性樹脂組成物層に第1及び第2の基材側から略同等の熱量を加えて行われる前記12に記載の硬化フィルムの製造方法。
[15]前記1乃至14のいずれかに記載の製造方法により製造された硬化フィルム。
[16]50〜250℃での面方向の平均線膨張係数が30ppm/℃以下であり、かつ100μm厚での全光線透過率が85%以上である前記15に記載の硬化フィルム。
[17]前記15または16に記載の硬化フィルムに透明導電膜が形成されている透明導電性フィルム。
[18]前記15または16に記載の硬化フィルムを基材とする表示装置。
[19]前記表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである前記18に記載の表示装置。
[20]前記15または16に記載の硬化フィルムを基材とする太陽電池用基板。
従来のプラスチックフィルムでは、加熱/冷却時の変形が大きいという問題があったが、本発明の硬化性樹脂フィルムの製造方法によれば熱変形の小さいフィルムを提供することができるため、フレキシブルなディスプレイや太陽電池用基板として好適である。
本願発明の硬化フィルムとは、硬化性樹脂を含む硬化性樹脂組成物を硬化して得られるフィルムを指し、硬化性樹脂組成物は他に、反応性モノマー、層状無機化合物、硬化剤、添加剤、溶剤を含むことができる。
本発明の硬化フィルムの製造方法は、第1及び第2の基材の表面に硬化性樹脂組成物を塗工する第1の工程と、前記第1及び第2の基材の各表面に設けられた硬化性樹脂組成物層同士を貼り合わせ接着させる第2の工程と、前記第1及び第2の基材間の硬化性樹脂組成物層を硬化させる第3の工程とを有することを特徴とする。
本発明において、硬化性樹脂フィルムの透明性は全光線透過率で評価する。本発明のフィルムは、100μm厚での全光線透過率が85%以上、ヘーズ値が5%以下のものをいう。ただし、全光線透過率は90%以上であることがより好ましく、ヘーズ値は3%以下であることがより好ましい。ヘーズ値が5%より大きいと透過光がゆがみ、鮮明さに欠ける。全光線透過率はJIS K−7361−1、ヘーズ値はJIS K−7136に準拠して測定された値である。
本発明におけるフィルムは、その形状は限定されないが、フィルム、フィルムの形状の成形物が特に好適である。厚みが10μm以上200μm以下のものをフィルム、厚みが200μmより大きく5000μm以下のものをシート、厚みが5000μmより大きいものを板と表現するが、本明細書では、以後、フィルム、フィルム厚みに拘らずフィルムと表現する。
[硬化性樹脂組成物]
本発明における硬化性樹脂組成物は、硬化性樹脂単独及び/または硬化性樹脂を主成分とした混合物を指す。以下に硬化性樹脂組成物の各成分について説明する。
[硬化性樹脂]
本発明において、硬化性樹脂とはエポキシ樹脂に代表される加熱や光線の照射により硬化する樹脂を指す。例えば、アリルエステル樹脂、(メタ)アクリル樹脂、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂などが挙げられる。硬化性樹脂は固体であっても液体であってもかまわない。固体の場合は融解させて塗工することもできるが基材に塗工するために溶剤や反応性希釈モノマーで溶解することによって液体状にできることが好ましい。
硬化性樹脂の中で特に透明性が高く着色の少ないアリルエステル樹脂、ビニルエステル樹脂、(メタ)アクリル樹脂が好ましい。
[アリルエステル樹脂]
アリルエステル樹脂は、アリル基またはメタリル基(以降、この両者をあわせて(メタ)アリル基と言う場合がある。)とエステル構造を有する化合物を含有する。
(メタ)アリル基とエステル構造を有する化合物は、(1)(メタ)アリル基及び水酸基を含む化合物(ここではアリルアルコールと総称する)とカルボキシル基を含む化合物とのエステル化反応、(2)(メタ)アリル基及びカルボキシル基を含む化合物と水酸基を含む化合物とのエステル化反応、または(3)アリルアルコールとジカルボン酸からなるエステル化合物と多価アルコールとのエステル交換反応により得ることができる。
上記(1)及び(2)中の「カルボキシル基を含む化合物」がジカルボン酸とジオールとのエステルオリゴマーである場合には、末端のみアリルアルコールとのエステルとすることもできる。また、(3)中の「アリルアルコールとジカルボン酸からなるエステル化合物」の具体例としては、下記一般式(1)
Figure 0005186556
(式中、R及びRは、それぞれ独立してアリル基またはメタリル基を表し、Aは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基を表す。)
で示される化合物の中から選ばれる少なくとも1種以上の化合物が挙げられる。この化合物は後述するアリルエステルオリゴマーの原料となるほか、反応性希釈剤(反応性モノマー)として本発明のアリルエステル樹脂組成物に含まれてもよい。一般式(1)中のAは後述の一般式(2)及び(3)におけるA、Aと同様のものが好ましい。
(メタ)アリル基とエステル構造を有する化合物としては、アリル基及び/またはメタリル基を末端基とし、多価アルコールとジカルボン酸とから形成されたエステル構造を有するアリルエステル化合物(以下、これを「アリルエステルオリゴマー」と記載することがある。)であることが好ましい。また、その他の成分として、後述する硬化剤、反応性モノマー、添加剤、その他ラジカル反応性の樹脂成分等を含有してもよい。
本発明のアリルエステルオリゴマーとしては、下記一般式(2)
Figure 0005186556
(式中、Rはアリル基またはメタリル基を表し、Aは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基を表す。)
で示される基を末端基として有し、かつ下記一般式(3)
Figure 0005186556
(式中、Aは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基を表し、Xは多価アルコールから誘導された一種以上の有機残基を表す。ただし、Xはエステル結合によって、さらに上記一般式(2)を末端基とし、上記一般式(3)を構成単位とする分岐構造を有することができる。)
で示される構造を構成単位として有する化合物が好ましい。
本発明のアリルエステルオリゴマーにおいて、前記一般式(2)で示される末端基の数は少なくとも2個以上であるが、前記一般式(3)においてXが分岐構造を有する場合には3個以上となる。この場合、各末端基のRも複数個存在することになるが、これらの各Rは必ずしも同じ種類でなくてもよく、ある末端はアリル基、他の末端はメタリル基という構造であっても構わない。また、全てのRがアリル基またはメタリル基でなければならないということはなく、硬化性を損なわない範囲で、その一部がメチル基またはエチル基等の非重合性基であってもよい。
で示される構造についても同様に、各末端基で異なっていてもよい。例えば、ある末端のAはベンゼン環、他方はシクロヘキサン環という構造であってもよい。一般式(2)におけるAは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基である。ジカルボン酸に由来する部分はAに隣接するカルボニル構造で示されている。従って、Aの部分はベンゼン骨格やシクロヘキサン骨格を示す。透明性の点からは、芳香族構造を有するカルボン酸よりも、脂環式構造または脂肪族鎖状構造を有するジカルボン酸がより好ましい。
構造を誘導するジカルボン酸としては特に制限はないが、テレフタル酸、イソフタル酸、フタル酸、1,4−シクロヘキサンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニル−m,m’−ジカルボン酸、ジフェニル−p,p’−ジカルボン酸、ベンゾフェノン−4,4’−ジカルボン酸、p−フェニレンジ酢酸、p−カルボキシフェニル酢酸、メチルテレフタル酸、テトラクロルフタル酸、マロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルコハク酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、無水エンディック酸などが挙げられる。これらジカルボン酸の中では、脂肪族鎖状構造または脂環式構造を有するジカルボン酸が好ましく、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルコハク酸、1,4−シクロヘキサンジカルボン酸が挙げられる。さらに脂環式構造を有するジカルボン酸がより好ましく、例えば、1,4−シクロヘキサンジカルボン酸が挙げられる。
なお、A構造を誘導するジカルボン酸としては、1,4−シクロヘキサンジカルボン酸のような脂環式構造のものを用いると柔軟な成形物が得られ、透明フィルム等に成形しやすくなる。また、平板上無機物質の樹脂の分散性も良好で、芳香族ジカルボン酸と比べ、透明性に優れ、着色の少ないフィルムが得られる。
前記一般式(3)で示される構造単位は、アリルエステルオリゴマー中に少なくとも1つは必要であるが、この構造をくり返してアリルエステルオリゴマー全体の分子量をある程度大きくした方が適切な粘度が得られるので作業性が向上し、また硬化物の靭性も向上するので好ましい。しかし、分子量が大きくなりすぎると硬化物の架橋点間分子量が大きくなりすぎるため、ガラス転移温度(Tg)が低下し、耐熱性が低下するおそれもある。用途に応じて適切な分子量に調整することが大切である。
本発明で用いるアリルエステル樹脂組成物は数平均粒径が10〜300nmであり、アスペクト比が10〜300である層状無機化合物を含有する。この層状無機化合物を含有することにより、樹脂組成物の透明性を維持したまま、ガラス転移温度(Tg)や線膨張率を向上させるが、アリルエステルオリゴマーの分子量が小さいと硬化物が脆くなる傾向にある。従って、本発明のアリルエステル樹脂組成物ではアリルエステルオリゴマーの分子量はやや高めに設定しておくことが望ましく、好ましい重量平均分子量は500〜100,000であり、さらに好ましくは1,000〜50,000である。
オリゴマーの骨格としては特に制限無く選択することができる。直鎖状で分子量の大きなオリゴマーを用いると比較的柔軟で靭性の高い樹脂が得られる傾向にあるし、分岐を有するオリゴマーを選択すれば硬度・耐熱性の高い樹脂を得ることが可能である。両方を混合して適度な柔軟性及び硬度を調整することも可能である。
また、一般式(3)におけるAは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基であり、その定義及び好ましい化合物の例は一般式(2)におけるAと同様である。一般式(3)中のXは、多価アルコールから誘導された一種以上の有機残基を表す。多価アルコールとは2個以上の水酸基を有する化合物であり、好ましくは2個の水酸基を有する化合物である。X自体は、多価アルコールの水酸基以外の骨格部分を示す。また、多価アルコール中の水酸基は少なくとも2個が結合していればよいため、原料となる多価アルコールが3価以上、すなわち、水酸基が3個以上のときは、未反応の水酸基が残っていてもよい。
多価アルコールの具体例としては、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、イソシアヌル酸のエチレンオキシド付加体、ペンタエリスリトール、トリシクロデカンジメタノール、グリセリン、トリメチロールプロパン、ペンタエリスリトールのエチレンオキシド付加体、D−ソルビトール及び水素化ビスフェノールA等が挙げられる。
アリルエステルオリゴマー中の一般式(3)で示される構造単位としては、同一の構造単位が繰り返されていてもよいが、異なる構造単位が含まれていてもよい。つまり、アリルエステルオリゴマーは共重合タイプであってもよい。この場合、一つのアリルエステルオリゴマーには数種類のXが存在することになる。例えば、Xの一つがプロピレングリコール由来の残基、もう一つのXがトリメチロールプロパン由来の残基であるというような構造でもよい。この場合、アリルエステルオリゴマーはトリメチロールプロパン残基の部分で枝分かれすることになる。Aも同様にいくつかの種類が存在してもよい。以下にRがアリル基、A,Aがイソフタル酸由来の残基、Xがプロピレングリコールとトリメチロールプロパンの場合の構造式の一例を示す。
Figure 0005186556
[ビニルエステル樹脂]
ビニルエステル樹脂は、エポキシ(メタ)アクリレートとも呼ばれ、一般に(1)エポキシ樹脂に代表されるエポキシ化合物と、(メタ)アクリル酸等のラジカル重合性の炭素−炭素二重結合(エチレン性不飽和基)を有するカルボキシル化合物のカルボキシル基との開環反応により合成されるエチレン性不飽和基を有する樹脂、または(2)カルボキシル基を持つ化合物と、グリシジル(メタ)アクリレート等の分子内にエポキシ基を持つ重合性不飽和化合物のエポキシ基との開環反応により合成される重合性不飽和基を有する樹脂を指す。詳しくは「ポリエステル樹脂ハンドブック」,日刊工業新聞社,1988年発行,第336〜357頁などに記載されている。このビニルエステル樹脂は公知の方法により製造することができる。
ビニルエステル樹脂は特に限定されないが、層状無機化合物を使用する場合は脂肪族エポキシ化合物から合成されるビニルエステル樹脂が好ましく、脂環式構造を有するエポキシ化合物から合成されるビニルエステル樹脂がより好ましい。前記脂環式エポキシ化合物の例としては、水素化ビスフェノールA型エポキシ樹脂、1,2−シクロへキサンジカルボン酸ジグリシジル、3,4−エポキシシクロへキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート等のシクロへキサン型、3−オキサトリシクロ[3.2.1.02,4]オクタン−6−カルボン酸,3−オキサトリシクロ[3.2.1.02,4]オクト−6−イルメチルエステル等のノルボルネン型、7−オキサビシクロ[4.1.0]ヘプタン−3−カルボン酸,トリシクロ[3.3.1.13,7]デカン−1,3−ジイルエステル等のアダマンタン型等が挙げられる。これらの中で透明性、靭性、耐熱性の点から水素化ビスフェノールA型エポキシ樹脂がより好ましい。また、分子量が800以上であれば、靭性をさらに向上することができる。原料のエポキシ樹脂の平均分子量が500未満の場合でも、コハク酸、アジピン酸、ドデカンジカルボン酸、1,4−シクロヘキサンジカルボン酸のようなジカルボン酸を一部用いて分子量を大きくしても構わない。
ビニルエステル樹脂の製造は、上記エポキシ化合物と、カルボキシル基を有するエチレン性不飽和化合物を反応器に仕込み、空気を吹き込みながら反応を行う。好ましい反応温度は70〜150℃であり、より好ましくは80〜140℃である。70℃より低い場合には、反応時間が長くなり経済的ではない。150℃より高い場合には、ゲル化する場合が多い。
反応触媒は加えても加えなくてもよいが、加えた方が反応時間は短くなり、経済的である。好ましい触媒としては三級アミン系化合物、ホスフィン化合物、オニウム塩等が挙げられる。三級アミン系化合物の具体例としては、ジメチルシクロヘキシルアミン、N,N−ジメチルピペラジン、ベンジルジメチルアミン等が挙げられ、ホスフィン系化合物としてはトリフェニルホスフィン、トリトリルホスフィン、トリシクロヘキシルホスフィン等が挙げられる。またオニウム塩としては、4級アンモニウム塩や4級ホスホニウム塩等が挙げられ、4級アンモニウム塩としては、テトラメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、デシルトリメチルアンモニウムクロライド等が挙げられ、4級ホスホニウム塩としては、テトラフェニルホスホニウムクロライド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、テトラメチルホスホニウムテトラフェニルボレート等を挙げることができる。これら触媒の添加量は、エポキシ樹脂とカルボキシル基を有するエチレン性不飽和化合物の総和100質量部に対し0.05〜3質量部が好ましく、より好ましくは0.1〜2質量部である。0.05質量部未満では反応の促進の効果が現れず、3質量部を超えると樹脂の着色が激しくなり、好ましくない。
[(メタ)アクリル樹脂]
本発明における(メタ)アクリル樹脂は、硬化性の多官能(メタ)アクリレートが好ましい。多官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ポリブタジエンジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロイルオキシフェニル)プロパン及び2,2−ビス(4−(ω−(メタ)アクリロイロキシポリエトキシ)フェニル)プロパン、ビスフェノールAのエチレンオキサイド付加物、ジ(メタ)アクリレート等のジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンのエチレンオキサイド付加物のトリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能の架橋性モノマー、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールのエチレンオキサイド付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の多官能アクリレートが挙げられる。その他、内部骨格にウレタン結合を有するウレタン(メタ)アクリレート、内部骨格にエステル結合を有するポリエステルポリオールの(メタ)アクリレートなどを、用いることができる。
[反応性モノマー]
本発明の硬化性樹脂組成物には、硬化速度のコントロール、粘度調整(作業性の改善)、架橋密度の向上、機能付加等を目的として反応性モノマー(「反応性希釈剤」ともいう。)を加えることもできる。これらの反応性モノマーとしては特に制限はなく、種々のものが使用できるが、硬化性樹脂組成物と反応させるためにはビニル基、アリル基等のラジカル重合性の炭素−炭素二重結合(エチレン性不飽和基)を有するモノマーが好ましい。このようなモノマーとして一分子中に一個のエチレン性不飽和基を有する単官能モノマー、一分子中に二個以上のエチレン性不飽和基を有する多官能モノマーが挙げられる。これら反応性モノマーの好ましい具体例を以下に示す。なお、「(メタ)アクリレート」はアクリレート及びメタクリレートを表す。
単官能モノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、4−t−ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシメチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の脂肪族(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、1−ナフチル(メタ)アクリレート、フルオロフェニル(メタ)アクリレート、クロロフェニル(メタ)アクリレート、シアノフェニル(メタ)アクリレート、メトキシフェニル(メタ)アクリレート及びビフェニル(メタ)アクリレート等の芳香族(メタ)アクリレート、フルオロメチル(メタ)アクリレート、クロロメチル(メタ)アクリレート等のハロアルキル(メタ)アクリレート;グリシジル(メタ)アクリレート、アルキルアミノ(メタ)アクリレート、シアノアクリル酸エステル等の(メタ)アクリレート化合物、アクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニル−ε−カプロラクタム、N−ビニルピロリドン、1−ビニルイミダゾール、N−ビニルカルバゾール、N−ビニルモルホリン、N−ビニルピリジン、アクリロイルモルホリン等の含窒素モノマー、スチレン、α−メチルスチレン、クロロスチレン、スチレンスルホン酸、4−ヒドロキシスチレン及びビニルトルエン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等が挙げられる。
多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ポリブタジエンジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロイルオキシフェニル)プロパン及び2,2−ビス(4−(ω−(メタ)アクリロイロキシポリエトキシ)フェニル)プロパン、ビスフェノールAのエチレンオキサイド付加物のジ(メタ)アクリレート等のジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンのエチレンオキサイド付加物のトリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能の架橋性モノマー、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールのエチレンオキサイド付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の多官能アクリレート、フタル酸ジアリル、イソフタル酸ジアリル、イソフタル酸ジメタリル、テレフタル酸ジアリル、トリメリット酸トリアリル、2,6−ナフタレンジカルボン酸ジアリル、1,5−ナフタレンジカルボン酸ジアリル、1,4−キシレンジカルボン酸アリル及び4,4’−ジフェニルジカルボン酸ジアリル等の芳香族カルボン酸ジアリル類、シクロヘキサンジカルボン酸ジアリル、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、ジアリルクロレンデート等のアリル化合物が挙げられる。
上記の反応性モノマーは、1種を単独で、または2種以上組み合わせて用いることができる。これらの反応性モノマーの樹脂成分の使用量には特に制限はないが、硬化性樹脂30〜100質量%、反応性モノマー0〜70質量%であることが好ましい。反応性モノマーの使用量が70質量%を超えると硬化性樹脂の優れた透明性が発現されなかったり、硬化性樹脂由来の機械的強度が低下する場合があり好ましくない。
[層状無機化合物]
本発明に用いられる層状無機化合物は、数平均粒径が10〜300nmであり、アスペクト比が10〜300であれば特に限定されない。着色の少なさから合成スメクタイトが好ましい。
本発明の硬化フィルムをディスプレイ用基板等に使用する場合、平均粒径は可視光の波長より十分小さいものである必要がある。なお、ここでいう可視光とは、波長が400〜800nmの範囲の光をいう。従って、合成スメクタイトの数平均粒径は10〜300nmの範囲が好ましく、30〜200nmの範囲がさらに好ましい。数平均粒径が10nm未満の場合は透明フィルムの面方向の線膨張係数が十分小さくならない傾向があり、300nmを超える場合は可視光波長と重なる粒径のものも含まれるため、透明性の点で好ましくない。なお、ここでいう合成スメクタイトの数平均粒径とは、溶媒中に分散させながら動的光散乱法により求めた数平均粒径を指す。動的光散乱法による数平均粒径は、例えば「粒子径計測技術」(粉体工学会編,1994年)の第169〜179頁を参照することにより求めることができる。具体的な測定装置としては、動的光散乱式粒径分布測定装置(例えば、堀場製作所社製,LB−550型)を挙げることができる。前記の動的光散乱法により求めた合成スメクタイトの数平均粒径は、本発明における樹脂中に分散された後の合成スメクタイトの数平均粒径と実質的に同じと考えることができる。
合成スメクタイトのアスペクト比(Z)は、Z=L/aなる関係で示される。Lは、溶媒中、動的光散乱法により求めた前記の数平均粒径であり、aは、合成スメクタイトの単位厚みである。単位厚みaは、粉末X線回折法によって層状無機物質の回折ピークを測定して算出することができる値である。本発明で使用される合成スメクタイトは、アスペクト比が10〜300の範囲であり、30〜100の範囲がさらに好ましい。透明フィルムの面方向に配向しやすいという観点から、アスペクト比は10以上であることが好ましい。アスペクト比が10未満の合成スメクタイトの場合は、線膨張係数が所定の範囲(好ましくは30ppm/℃以下)とならないおそれがある。一方、アスペクト比が300を超える合成スメクタイトを使用すると、透明フィルムの全光線透過率が低下するおそれがある。
このような合成スメクタイトは、公知の方法(例えば、白水晴雄著「粘土鉱物学−粘土科学の基礎」朝倉書店、1988年、第98〜100頁)を使用して合成してもよいし、市販の合成スメクタイトを使用してもよい。合成スメクタイトの例としては、合成ヘクトライト、合成サポナイト、合成スティーブンサイトが好適に使用でき、市販品としては例えばコープケミカル社製合成スメクタイトSWN(合成ヘクトライト)、クニミネ工業社製合成無機高分子スメクトンSA(合成サポナイト)、ロックウッド(ROCKWOOD)社製合成珪酸塩LAPONITE(合成ヘクトライト)、水澤工業社製合成ケイ酸マグネシウム塩イオナイト(合成スティーブンサイト)を挙げることができる。これらの中でより好ましいものとしては、透明性、カチオン交換容量、サイズの点でコープケミカル社製合成スメクタイトSWNである。
本発明では、合成スメクタイトは、4級アンモニウム塩及び/または4級ホスホニウム塩によって有機化処理し、樹脂中への分散性を向上させたものを使用する。このような有機化処理としては、合成スメクタイトの薄片状結晶層間に存在するナトリウムやカルシウム等の交換性金属カチオンを、カチオン性界面活性剤などのようなカチオン性を有する種々の物質と交換し、合成スメクタイトの結晶層間に挿入(インターカレート)することが挙げられる。
合成スメクタイトが層間に含むカチオンとしては、ラウリルトリメチルアンモニウムカチオン、ステアリルトリメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、ジステアリルジメチルアンモニウムカチオン、ジ水素化牛脂ジメチルアンモニウムカチオン、ジステアリルジベンジルアンモニウムカチオン、及びN−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウムカチオン等が挙げられる。
この場合の合成スメクタイトのカチオン交換容量は特に限定されないが、好ましくは50〜1200ミリ当量/100gである。カチオン交換容量が50ミリ当量/100g未満の場合には、カチオン交換により合成スメクタイトの結晶層間にインターカレートされるカチオン性物質の量が少なくなるために、結晶層間が充分に非極性化(疎水化)されない場合がある。カチオン交換容量が1200ミリ当量/100gより大きい場合には、合成スメクタイトの結晶層間の結合力が強固になりすぎて、結晶薄片が剥離し難くなることがある。
前記有機化処理方法は、カチオン性界面活性剤によるカチオン交換法とも言われ、特にフィルムの樹脂成分が低極性の場合に有効であり、合成スメクタイトと低極性樹脂との親和性を高め、合成スメクタイトを低極性樹脂中により均一に微分散させることができる。
ここで用いられるカチオン性界面活性剤としては特に限定されないが、中でも、合成スメクタイトの結晶層間を充分に疎水化できることから、炭素数6以上のアルキルアンモニウムイオン塩、芳香族4級アンモニウムイオン塩または複素環4級アンモニウムイオン塩が好適に用いられる。
前記4級有機アンモニウム塩としては特に限定されず、例えば、トリメチルアルキルアンモニウム塩、トリエチルアルキルアンモニウム塩、トリブチルアルキルアンモニウム塩、ジメチルジアルキルアンモニウム塩、ジブチルジアルキルアンモニウム塩、メチルベンジルジアルキルアンモニウム塩、ジベンジルジアルキルアンモニウム塩、トリアルキルメチルアンモニウム塩、トリアルキルエチルアンモニウム塩、トリアルキルブチルアンモニウム塩;ベンジルメチル{2−[2−(p−1,1,3,3−テトラメチルブチルフェノオキシ)エトキシ]エチル}アンモニウムクロライド等の芳香環を有する4級アンモニウム塩;トリメチルフェニルアンモニウム等の芳香族アミン由来の4級アンモニウム塩;アルキルピリジニウム塩、イミダゾリウム塩等の複素環を有する4級アンモニウム塩;ポリエチレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリエチレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩等が挙げられる。中でも、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ水素化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、N−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウム塩等が好適である。これらの4級有機アンモニウム塩は、単独で用いてもよく、2種以上を併用してもよい。市販品としては、例えばコープケミカル社製の新油性合成スメクタイトSPN、STN、SAN(SWNを4級アンモニウム塩で疎水化したもの)が挙げられる。
前記4級有機ホスホニウム塩としては特に限定されず、例えば、ドデシルトリフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、ラウリルトリメチルホスホニウム塩、ステアリルトリメチルホスホニウム塩、トリオクチルメチルホスホニウム塩、ジステアリルジメチルホスホニウム塩、ジステアリルジベンジルホスホニウム塩等が挙げられる。これらの4級有機ホスホニウム塩は、単独で用いてもよく、2種以上を併用してもよい。
硬化性樹脂組成物に4級有機アンモニウム塩及び/または4級有機ホスホニウム塩を用いて、合成スメクタイトの分散性を向上させるには、脂肪族系の4級アンモニウム塩及び/または4級ホスホニウム塩を用いるのが好ましく、特にトリアルキルメチルアンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩がより好ましい。
さらに、表面改質剤を用いることにより硬化性樹脂組成物中に合成スメクタイトを高度に分散させることができる。
また、本発明に用いられる合成スメクタイトは層間のみでなく、表面も有機処理をしても構わない。合成スメクタイトの表面は、水酸基等の官能基があるため、この末端水酸基に対して反応性を有する官能基を有する化合物で有機処理することができる。上記水酸基と化学結合し得る官能基を有する化合物(表面改質剤)としては特に限定されず、例えば、上記官能基を有する、シラン化合物(シランカップリング剤)、チタネート化合物(チタネートカップリング剤)、グリシジル化合物、イソシアネート化合物、カルボン酸類、アルコール類等が挙げられる。これらの化合物は、単独で用いてもよく、2種以上を併用してもよい。
前記化合物の中ではシラン化合物が好ましく使用することができる。シラン化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルジメチルメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルジメチルエトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等が挙げられる。これらのシラン化合物は、単独で用いてもよく、2種以上を併用してもよい。
フィルム中の合成スメクタイトの含有量は、10〜40質量%の範囲が好ましく、15〜30質量%の範囲がより好ましい。合成スメクタイトの含有量が10質量%未満の場合は、フィルムの50〜250℃までの平均線膨張係数が大きくなり、30ppm/℃より大きくなる。また、合成スメクタイトの含有量が40質量%を超えると、合成スメクタイトを樹脂中に均一に分散させることが困難となり、また、フィルムの機械強度が低下し脆くて割れやすくなる。
[硬化剤]
本発明の硬化性樹脂組成物の硬化は、紫外線(UV)照射による硬化が好ましいが、電子線(EB)照射、赤外線(IR)照射または加熱硬化することも可能である。UV、IRまたは熱硬化させる場合には、硬化剤を使用してもよい。使用できる硬化剤としては特に制限はなく、一般に重合性樹脂の硬化剤として用いられているものを用いることができる。中でも、(メタ)アクリロイルオキシ基の重合開始の点からラジカル重合開始剤を添加することが望ましい。ラジカル重合開始剤としては、光重合開始剤、有機過酸化物、アゾ化合物等が挙げられる。本発明のビニルエステル樹脂組成物をUV硬化させる点からは光重合開始剤が特に好ましい。
光重合開始剤としては、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン、2−メチル−1−(4−メチルチオフェニル)−2−モルホリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−オン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチルプロピオニル)ベンジル]フェニル}−2−メチルプロパン−1−オン、オキシフェニルアセチックアシッド2−[2−オキソ−2−フェニルアセトキシエトキシ]エチルエステル、オキシフェニルアセチックアシッド2−[2−ヒドロキシエトキシ]エチルエステル、フェニルグリオキシリックアシッドメチルエステル、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルホリン−4−イルフェニル)ブタン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、1,2−オクタンジオン,1−[4−(フェニルチオ)フェニル−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)、ヨードニウム,(4−メチルフェニル)[4−(2−メチルプロピル)フェニル]ヘキサフルオロホスフェート(1−)、エチル−4−ジメチルアミノベンゾエート、2−エチルヘキシル−4−ジメチルアミノベンゾエート、及び2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
また、有機過酸化物としては、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステル等の公知のものが使用可能である。その具体例としては、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシネオヘプタノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、ジ(3,5,5−トリメチルヘキサノイルパーオキサイド、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、ジサッシニックアシッドパーオキサイド、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ−2−エチルヘキサノエート、ジ(4−メチルベンゾイル)パーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス[4,4−ジ(t−ブチルパーオキシ)シクロヘキシル]プロパン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ジ(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、n−ブチル−4,4−ジ(t−ブチルパーオキシ)バレレート、ジ(t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ(t−ヘキシル)パーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、p−メンタンハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキシド、及びt−ブチルハイドロパーオキサイド等が挙げられる。
アゾ化合物としては、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス[N−(2−プロペニル)−2−メチルプロピオンアミド]、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)等が挙げられる。
これらのラジカル重合開始剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの硬化剤の配合量には特に制限はないが、硬化性樹脂組成物100質量部に対し、0.1〜10質量部配合することが好ましく、0.5〜5質量部配合することがより好ましい。硬化剤の配合量が0.1質量部より少ないと十分な硬化速度を得ることが困難であり、また配合量が10質量部を超えると、最終的な硬化物が脆くなり、機械的強度が低下する場合がある。
[添加剤]
本発明の硬化性樹脂組成物には、酸化防止剤、滑剤、紫外線吸収剤等の種々の添加剤を必要に応じて添加することができる。
酸化防止剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、フェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等が好ましく、ラジカル連鎖禁止剤であるフェノール系酸化防止剤やアミン系酸化防止剤がより好ましく、フェノール系酸化防止剤が特に好ましい。フェノール系酸化防止剤としては、2,6−ジ−t−ブチル−p−クレゾール、4,4−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト]メタン、トリエチレングリコールビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネ−ト]、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4−チオビス−(6−t−ブチル−3−メチルフェノール)、3,9−ビス[2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)]プロピオニルオキシ]−1,1’−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、チオジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオンアミド]等が挙げられる。アミン系酸化防止剤としては、アルキルジフェニルアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン、ジアルキルヒドロキシルアミン等が挙げられる。イオウ系酸化防止剤としては、ジラウリル−3,3’−チオジプロピオネート、ジトリデシル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネ−ト、ジステアリル−3,3’−チオジプロピオネ−ト、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネ−ト)等が挙げられる。リン系酸化防止剤としては、トリス[2−[[2,4,8,10−テトラ−t−ブチルベンゾ[d,f][1,3,2]ジオキサフォスフェフィン−6−イル]オキシ]エチル]アミン、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスフォナイト等が挙げられる。これらの酸化防止剤は1種でもよく、2種以上を組み合わせて用いてもよい。
滑剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、金属石鹸系滑剤、脂肪酸エステル系滑剤、脂肪族炭化水素系滑剤などが好ましく、金属石鹸系滑剤が特に好ましい。金属石鹸系滑剤としては、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム及びステアリン酸アルミニウム等が挙げられる。これらは複合体として用いてもよい。
紫外線吸収剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤が好ましく、特にベンゾフェノン系紫外線吸収剤が好ましい。ベンゾフェノン系紫外線吸収剤としては、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−ブチルフェニル)ベンゾトリアゾール及び2−(2−ヒドロキシ−3’−t−ブチルフェニル)ベンゾトリアゾールなどが挙げられる。
その他の添加剤として硬度、強度、成形性、耐久性、耐水性を改良する目的で、消泡剤、レベリング剤、離型剤、撥水剤、難燃剤、低収縮剤、架橋助剤なども本発明の目的、または効果を阻害しない範囲で必要に応じて使用することができる。
[溶剤]
本発明において、層状無機化合物(合成スメクタイト)を効率的に層剥離させ、硬化性樹脂組成物中に分散させるために溶剤を使用することが好ましい。溶剤としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、n−プロピルベンゼン、イソプロピルベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類、メタノール、エタノール、(イソ)プロパノール、ブチルアルコール等のアルコール類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、N,N−ジメチルホルムアミド、N−メチルピロリドン、ピリジン、アセトニトリル等の含窒素系溶剤等が挙げられる。好ましくは、操作性の観点から水、メタノール等のアルコール類、トルエン、キシレン、N−メチルピロリドンが挙げられる。
溶剤の合成スメクタイトに対する比率は、溶剤の種類によって大きく影響するが、合成スメクタイト100質量部に対して100〜10,000質量部であり、より好ましくは200〜5,000質量部である。溶剤の比率が100質量部よりも少ないと混合物の組成液粘度が高くなり均一に混合することが困難になる。
[硬化性樹脂組成物の混合方法]
合成スメクタイト、硬化性樹脂組成物、溶剤の混合は、例えば、(1)樹脂成分を溶剤に溶解させた溶液と合成スメクタイトを溶剤に分散させた分散液とを混合する方法、(2)合成スメクタイトを溶剤に分散させた分散液に樹脂成分を直接添加して溶解させる方法、(3)樹脂成分を溶剤に溶解させた後に合成スメクタイトを加えて分散させる方法、または(4)樹脂成分と合成スメクタイトを加熱混練して得られた混合物を溶媒に溶解させ分散させる方法により製造することができる。この中でも、合成スメクタイトの分散性の観点から、樹脂成分を溶剤に溶解させた溶液と合成スメクタイトを溶剤に分散させた分散液とを混合する方法が特に好ましい。分散方法は特に限定されないが、加熱処理、ミックスローター、マグネティックスターラー、ホモジナイザー、ヘンシェルミキサー、ビーズミル、超高圧微粒化装置、超音波照射等の公知の方法にて分散させることが可能である。
次に、合成スメクタイト、硬化性樹脂組成物、溶剤の分散液を減圧することにより脱気・濃縮し、分散液の粘度を塗工に最適な粘度に調整する。分散液粘度は特に限定されないが、成形する方法に適した粘度であることが好ましい。例えば、ロールコーティング法及びドクターナイフ法の場合は25℃における粘度が0.01〜1,000Pa・sの範囲であることが好ましい。粘度が0.01Pa・sより低い、または1,000Pa・sより高いと作業性が悪くなり好ましくない。常温での粘度が高い場合は分散液の温度を上げて作業性を改善することができる。また、減圧時間が短い場合には、分散液中の気体を十分に除去することができず、塗工、乾燥、硬化時に気泡が発生し平滑な透明フィルムを作成することが困難となる。
本発明における硬化性樹脂フィルムは、第1及び第2の基材の表面に硬化性樹脂組成物を塗布する第1の工程と、前記第1及び第2の基材の表面に設けられた硬化性樹脂組成物同士を貼り合わせ接着させる第2の工程と、前記第1及び第2の基材間の硬化性樹脂組成物層を硬化させる第3の工程によって製造することができる。
塗布する工程(第1工程)は、分散液を減圧濃縮することにより脱気及び粘度調整したものを塗工液として用い、ガラス、金属、プラスチックフィルム等の平滑な基材上にダイレクトグラビア法やリバースグラビア法及びマイクログラビア法、2本ロールビートコート法、ボトムフィード3本リバースコート法等のロールコーティング法、及びドクターナイフ法やダイコート法、ディップコート法、バーコーティング法やこれらを組み合わせたコーティング法等の通常工業的に用いられている方法により行うことができる。中でも、合成スメクタイトを面方向に配向させるように基材と平行方向に働く力(シェア)をかける方法であるロールコーティング法及びドクターナイフ法が好ましい。「面方向に配向」とは、合成スメクタイトの各層の大多数が基材表面に対して平行になるように配向していること意味する。合成スメクタイトが面方向に配向している場合には、透明フィルムの面方向の線膨張係数を効果的に低減させることができる。また、合成スメクタイトの各層が面方向に配向することにより、合成スメクタイト含有量が多い場合でも全光線透過率が高くなる。
揮発させることが可能な溶剤を合成スメクタイトの分散及び粘度調整に使用した場合には、合成スメクタイトをさらに面方向に配向させることが可能である。すなわち、合成スメクタイト、硬化性樹脂組成物及び溶剤の混合物を基材上に塗布した後、溶剤だけを蒸発させれば塗工液の厚み方向にのみ収縮することになるので、結果的に樹脂の合成スメクタイトはさらに面方向に配向させることができる。反応性モノマーを使用する場合には、比較的揮発性の低い反応性モノマーを用い、揮発性の高い溶剤を併用し、適切な条件(温度、圧力、時間等)で乾燥させることが好ましい。溶剤を揮発させることにより合成スメクタイトを面方向に配向させる方法は、上記ロールコーティング法及び/またはドクターナイフ法と併用することが可能であるが、シェアをかけずに塗布する方法単独で実施することもできる。
溶剤を揮発させる温度は、0〜200℃が好ましい。0℃未満の場合には、揮発速度が著しく遅いため好ましくない。200℃より高い場合には、溶剤の急激な揮発や沸騰による発泡または樹脂のゲル化が発生し表面平滑性が低下しヘーズ値が上昇する可能性があり好ましくない。より好ましくは10〜100℃である。溶剤を揮発させる圧力は、10Pa〜1MPaが好ましい。1Pa未満の場合には、突沸が発生する恐れがあり、表面平滑性が低下しヘーズ値が上昇する可能性があり好ましくない。より好ましくは10〜200Paである。溶剤を揮発させる時間は1〜120分が好ましい。1分未満の場合には、溶剤を十分に揮発させることができず、硬化の際に気泡が発生する。120分より長い場合には、生産性が悪くなるため好ましくない。溶剤を揮発させる場合には、空気、窒素、アルゴン、二酸化炭素等の気体を通気させながら乾燥してもよい。また、これらの気体は溶剤の揮発成分を含んでいてもよい。溶剤を揮発させる際の気体の流速は、0.01〜200m/sが好ましい。0.01m/sより遅い場合には、溶剤の揮発分が滞留してしまうため好ましくない。200m/sより速い場合には、塗布液が不均一となるため好ましくない。より好ましくは、0.1〜50m/sである。
貼り合わせ接着させる工程(第2工程)は、第1及び第2の基材の表面に設けられた硬化性樹脂組成物層同士をラミネータなどによって貼り合わせ接着させることが必須である。ラミネータの加熱ローラーの温度は0〜200℃が好ましい。塗工乾燥後の硬化性樹脂が固体の場合はその融点以上に加熱することが好ましい。基材フィルムにTgがある場合はTg以下で行う必要ある。ラミネート速度は0.01〜100m/分が好ましい。
第1及び第2の基材間の硬化性樹脂組成物層を硬化させる工程(第3工程)は、第2工程後の接合体をEB照射、UV照射、IR照射、加熱のいずれかにより硬化させる工程である。そして、硬化後基材から硬化性樹脂組成物層を剥離することによって透明フィルムを得ることができる。また、ガラス、金属、プラスチックフィルム等の平滑な基材にて挟まない場合には、不活性ガス(例えば、窒素、アルゴン、二酸化炭素等)雰囲気下、EB照射、UV照射、IR照射、加熱のいずれかにより硬化させた後に基材から離型することによって透明フィルムを得ることができる。例えば、合成スメクタイトが分散され、かつ溶剤を含む硬化前のビニルエステル樹脂組成物を、表面が平滑な平面上、例えば、二軸延伸ポリエチレンテレフタレートフィルムに上記方法にて塗布した後、溶剤を揮発させ、表面が平滑な二軸延伸ポリエチレンテレフタレートフィルムで挟み、EB照射、UV照射、IR照射、加熱のいずれかにより硬化させる方法が挙げられる。硬化方法としては、硬化速度、着色の点からEB硬化が好ましい。
EB照射により硬化性樹脂組成物を硬化させる場合には、重合開始剤は必要ない。ただし、アフターキュア操作によって硬化を完全にする場合には、熱重合開始剤を併用してもよい。EB照射の時の電子線の加速電圧は30〜500kV、好ましくは50〜300kVである。また、電子線照射量は、1〜300kGy、好ましくは5〜200kGyである。電子線加速電圧が30kV未満の場合には、組成物の厚さが厚い場合に電子線の透過不足が生じる恐れがあり、500kVよりも大きい場合には、経済性が悪くなる。また、電子線照射量は300kGyを超えると基材を損傷する恐れがあるため好ましくない。
UV照射により硬化性樹脂組成物を硬化させる場合には、硬化温度は0〜150℃、好ましくは10〜130℃である。また、UV照射時間は、0.01〜10時間、好ましくは0.05〜1時間、さらに好ましくは0.1〜0.5時間かけて硬化するのがよい。UV積算光量は10〜5000mJ/cmである。10mJ/cm未満であると硬化が不十分になり好ましくない。5000mJ/cmより大きい場合には生産性が悪くなる。
加熱により硬化性樹脂組成物を硬化させる方法としては、熱風による加熱、IR照射による加熱、もしくは熱風とIR照射を組み合わせた方法が挙げられる。加熱硬化温度は30〜200℃、好ましくは40〜180℃であり、硬化時間は0.05〜100時間、好ましくは0.1〜50時間である。
EB、UV、またはIRを照射する場合、第1及び第2の基材側から略同等の光量で両面に照射することが好ましい。より好ましくは同時に両面に照射することが好ましい。また、熱風による加熱の場合は、第1及び第2の基材側から同等の熱量を与えることが好ましい。
EB照射、UV照射、IR照射、加熱のいずれかにより硬化させた樹脂硬化物の硬化が不十分な場合には、アフターキュアによって硬化を完全に進行させることができる。アフターキュアを行う場合には、透明フィルムをガラス、金属、プラスチックフィルム等の平滑な基材から剥離しても構わないし、剥離しなくてもよい。アフターキュアの温度は50〜300℃、好ましくは80〜250℃である。アフターキュアの時間は0.1〜10時間、好ましくは0.5〜5時間である。アフターキュアの圧力は1.0×10−7Pa〜1MPaの減圧〜加圧雰囲気下で実施することができ、好ましくは1.0×10−6Pa〜0.5MPaである。アフターキュアの雰囲気は空気、窒素、アルゴン、二酸化炭素等の雰囲気下で行うことが可能であるが、着色低減の点からは窒素雰囲気下が好ましい。
以下、合成例、実施例及び比較例を挙げ本発明を説明するが、本発明はこれらの記載により何らかの限定を受けるものではない。
[熱膨張係数、Tgの測定]
熱膨張係数は、エスアイアイ・ナノテクノロジー社製TMA/SS6100を使用し、引張モードで測定を行った。フィルム状試験片は、厚さ100μm×3mm×12mm(チャック間距離10mm)、張力:0.001kgfとし、窒素を100mL/minの雰囲気下で昇温速度5℃/minで250℃まで温度を上げた後、50℃以下まで冷却し、再度、昇温速度5℃/minで50〜250℃までの間で、試験片の伸長率を測定した。50℃と250℃との伸長率差と温度差(200℃)とから50〜250℃の間の面方向の平均熱膨張係数を計算した。また、伸長率の不連続点の温度をガラス転移温度(Tg)とした。
[全光線透過率]
全光線透過率は、東京電色社製全自動ヘーズメーターTC−H3DPKを使用し、JIS K−7361−1に準拠して測定した。
[ヘーズ]
ヘーズ値は、東京電色社製全自動ヘーズメーターTC−H3DPKを使用し、JIS K−7136に準拠して測定した。
[そり]
大きさ10mm(短辺)×100mm(長辺)のフィルムを真空オーブン内に吊り下げ、0.1kPa以下の真空下200℃で1時間加熱した。冷却後、平坦な板の上にフィルムを置き、片側のフィルム短辺を押さえ、反対側のフィルム短辺の高さ(浮き)を測定した。5mm以上の高さ(浮き)があった場合を「そり発生」と判定した。
合成例1:オリゴマー(1)
温度調節器、撹拌装置、ジムロート冷却管、空気導入管を付した四つ口フラスコに、東都化成社製水添ビスフェノールA型エポキシ樹脂 ST−4000D(商品名、エポキシ当量:725)276.3部(質量部,以下同じ)、トルエン202.5部、重合禁止剤として4−メトキシフェノール(MEHQ:ハイドロキノンモノメチルエーテル)を0.19部仕込み、乾燥空気を吹き込み(20ml/min)ながら80℃に昇温し均一になるまで撹拌した。均一になったところでクラレ社製アクリル酸27.5部、触媒として塩化ベンジルトリフェニルホスホニウム(北興化学工業社製、商品名TPP−ZC)を1.24部加え110℃で温度調整しながら7時間反応させ、酸価が7.8mgKOH/gのところで終了し、オリゴマー(1)(トルエン溶液)を得た。
合成例2:オリゴマー(2)
蒸留装置のついた容量2リットルの三つ口フラスコに、1,4−シクロヘキサンジカルボン酸ジアリル1625g、プロピレングリコール327g、ジブチル錫オキサイド0.813gを仕込み、窒素気流下、180℃で生成してくるアルコールを留去しながら加熱した。留去したアルコールが約350gになったところで反応系内を徐々に(約4時間かけて)、6.6kPaまで減圧し、アリルアルコールの留出速度を速めた。留出液が殆ど出なくなったところで、反応系内を0.5kPaに減圧し、さらに1時間反応させた後、反応物を室温へと冷却した。以下、これにより得られた反応物をオリゴマー(2)とする。
実施例1:
100mlサンプル瓶にトルエン24gを入れ、そこにトリオクチルメチルアンモニウム塩でカチオン交換処理された親油性合成スメクタイト(コープケミカル社製合成スメクタイトSTN:数平均粒子径50nm、アスペクト比50、無機成分71%)3gをスターラーで撹拌しつつ少量ずつ加えた。さらにサンプル瓶にふたをし、ミックスローターにて室温下、1日間撹拌し、スメクタイト分散液を得た。このスメクタイト分散液にオリゴマー(1)のトルエン溶液(樹脂量換算7g)を加え、さらにUV硬化剤(チバ・スペシャルティ・ケミカルズ社製IRGACURE186)を0.35g加え十分撹拌し組成物(1)とした。組成物(1)をエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。
組成物(1)をバーコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが50μmになるように塗布した。80℃の熱風乾燥機で30分間乾燥させ、溶剤のトルエンを揮発させた後、同じように塗布乾燥したフィルムとを、組成物塗布面同士をラミネータにて貼り合わせた。ラミネータのゴムローラー温度は75℃、送り速度0.3m/分であった。貼り合わせたフィルムをUV照射量300mJ/cmを両面に照射しUV硬化し、両面のPETフィルムを剥離し、サンプルフィルム(1)を得た。このフィルムの線膨張係数は13ppm/℃であった。また、全光線透過率は92%であり、ヘーズは0.9%であった。サンプルフィルム(1)を100mm角に切り取り、真空オーブン内に吊り下げ、0.1kPa以下の減圧下で200℃で1時間加熱したところ、そりなどの変形が見られなかった。
実施例2:
実施例1と同様にスメクタイト分散液を得た。このスメクタイト分散液にオリゴマー(2)を1.8g、1,6−ヘキサンジオールジアクリレート(新中村化学社製)を1.2gを加え、さらにUV硬化剤(チバ・スペシャルティ・ケミカルズ社製IRGACURE651)を0.35g加え十分撹拌し組成物(2)とした。組成物(2)をエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。
組成物(2)をバーコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが50μmになるように塗布した。80℃の熱風乾燥機で30分間乾燥させ、溶剤のトルエンを揮発させた後、同じように塗布乾燥したフィルムとを、組成物塗布面同士をラミネータにて貼り合わせた。ラミネータのゴムローラー温度は75℃、送り速度0.3m/分であった。貼り合わせたフィルムをUV照射量600mJ/cmを両面に照射しUV硬化し、両面のPETフィルムを剥離し、サンプルフィルム(2)を得た。このフィルムの線膨張係数は15ppm/℃であり、Tgは観測されなかった。また、全光線透過率は92%であり、ヘーズは1.2%であった。得られたサンプルフィルム(2)を真空オーブン内に吊り下げ、0.1kPa以下の真空下で200℃で1時間加熱したところ、そりなどの変形は見られなかった。
実施例3:
組成物(1)をバーコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが50μmになるように塗布した。80℃の熱風乾燥機で30分間乾燥させ、溶剤のトルエンを揮発させた後、同じように塗布乾燥したフィルムを、基材と反対側同士をラミネータにて貼り合わせた。ラミネータのゴムローラー温度は75℃、送り速度0.3m/分であった。貼り合わせたフィルムをUV照射量600mJ/cmを片面に照射しUV硬化し、両面のPETフィルムを剥離し、サンプルフィルム(3)を得た。このフィルムの線膨張係数は13ppm/℃であり、Tgは観測されなかった。また、全光線透過率は92%であり、ヘーズは0.8%であった。また、得られたサンプルフィルム(3)を真空オーブン内に吊り下げ、0.1kPa以下の真空下で200℃で1時間加熱したところ、わずかにそり(4mm)が見られた。
比較例1:
組成物(1)をバーコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが100μmになるように塗布した。80℃の熱風乾燥機で30分間乾燥させ、溶剤のトルエンを揮発させた後、PETフィルムのみを組成物塗布面にラミネータにて貼り合わせた。ラミネータのゴムローラー温度は75℃、送り速度0.3m/分であった。貼り合わせたフィルムをUV照射量300mJ/cmに照射しUV硬化し、両面のPETフィルムを剥離し、サンプルフィルム(4)を得た。このフィルムの線膨張係数は13ppm/℃であり、Tgは観測されなかった。また、全光線透過率は92%であり、ヘーズは0.8%であった。また、得られたサンプルフィルム(4)を真空オーブン内に吊り下げ、0.1kPa以下の真空下で200℃で1時間加熱したところ、そりが発生し、全体がカールした。

Claims (10)

  1. 第1及び第2の基材の表面に硬化性樹脂組成物を塗工し、硬化性樹脂組成物層を形成する第1の工程と、前記第1及び第2の基材の各表面に設けられた硬化性樹脂組成物層同士を貼り合わせ接着させる第2の工程と、前記第1及び第2の基材間の硬化性樹脂組成物層を硬化させる第3の工程とを有することを特徴とする硬化フィルムの製造方法。
  2. 前記硬化性樹脂組成物が揮発性溶剤及び/または反応性モノマーを含む請求項1に記載の硬化フィルムの製造方法。
  3. 前記第1の工程と第2の工程との間に前記硬化性樹脂組成物層を乾燥する工程を有する請求項1に記載の硬化フィルムの製造方法。
  4. 前記第3の工程後に、前記硬化性樹脂組成物硬化層を前記第1及び第2の基材より剥離する第4の工程を有する請求項1に記載の硬化フィルムの製造方法。
  5. 前記硬化性樹脂組成物が、アリルエステル樹脂、(メタ)アクリル樹脂、及びビニルエステル樹脂よりなる群より選ばれる1種以上を含む請求項1乃至4のいずれかに記載の硬化フィルムの製造方法。
  6. 前記硬化性樹脂組成物が層状無機化合物を含む請求項1乃至5のいずれかに記載の硬化フィルムの製造方法。
  7. 前記層状無機化合物が合成スメクタイトである請求項6に記載の硬化フィルムの製造方法。
  8. 前記硬化が電子線(EB)照射、紫外線(UV)照射、赤外線(IR)照射、及び加熱の少なくとも1つで行われる請求項1に記載の硬化フィルムの製造方法。
  9. 前記電子線(EB)、紫外線(UV)、赤外線(IR)を前記第1及び第2の基材間の硬化性樹脂組成物層に第1及び第2の基材側から略同等の光量で照射し硬化させる請求項8に記載の硬化フィルムの製造方法。
  10. 前記加熱による硬化が、前記第1及び第2の基材間の硬化性樹脂組成物層に第1及び第2の基材側から略同等の熱量を加えて行われる請求項8に記載の硬化フィルムの製造方法。
JP2010508198A 2008-04-14 2009-04-13 硬化フィルム及びその製造方法 Expired - Fee Related JP5186556B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508198A JP5186556B2 (ja) 2008-04-14 2009-04-13 硬化フィルム及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008104781 2008-04-14
JP2008104781 2008-04-14
JP2010508198A JP5186556B2 (ja) 2008-04-14 2009-04-13 硬化フィルム及びその製造方法
PCT/JP2009/057428 WO2009128415A1 (ja) 2008-04-14 2009-04-13 硬化フィルム及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2009128415A1 JPWO2009128415A1 (ja) 2011-08-04
JP5186556B2 true JP5186556B2 (ja) 2013-04-17

Family

ID=41199107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010508198A Expired - Fee Related JP5186556B2 (ja) 2008-04-14 2009-04-13 硬化フィルム及びその製造方法

Country Status (7)

Country Link
US (1) US8460501B2 (ja)
EP (1) EP2269818A4 (ja)
JP (1) JP5186556B2 (ja)
KR (1) KR101514355B1 (ja)
CN (1) CN101980868B (ja)
TW (1) TWI464057B (ja)
WO (1) WO2009128415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045581B2 (en) 2005-03-03 2015-06-02 Rhino Linings Corporation Polyols derived from a vegetable oil using an oxidation process

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827475B2 (ja) * 2011-02-15 2015-12-02 グンゼ株式会社 光学フィルム用基材及び光学フィルムの製造方法
JP2012166480A (ja) * 2011-02-15 2012-09-06 Gunze Ltd 耐指紋性フィルム及びその製造方法
JP5679314B2 (ja) * 2011-03-29 2015-03-04 電気化学工業株式会社 分子遮断性を有するシート状接着剤
JP6175754B2 (ja) * 2011-11-07 2017-08-09 住友化学株式会社 硬化性樹脂組成物
JP5823277B2 (ja) * 2011-12-12 2015-11-25 富士フイルム株式会社 バリア性積層体、ガスバリアフィルムおよびこれらを用いたデバイス
JP6175338B2 (ja) * 2012-10-15 2017-08-02 昭和電工株式会社 光学積層体シートの製造方法
KR20160124256A (ko) 2013-11-06 2016-10-26 세키스이가가쿠 고교가부시키가이샤 경화물막의 제조 방법, 전자 부품의 제조 방법 및 전자 부품
KR101539222B1 (ko) * 2014-02-17 2015-07-27 주식회사 토비스 이중 격벽을 갖는 필름 액정 디스플레이
US20170341342A1 (en) * 2014-12-05 2017-11-30 Showa Denko K.K. Light control panel and optical imaging device
JP2017132091A (ja) * 2016-01-26 2017-08-03 株式会社リコー 像形成方法、像形成装置、及び積層硬化物
CN106113895A (zh) * 2016-07-28 2016-11-16 京东方科技集团股份有限公司 一种基板贴合方法、基板贴合装置、显示面板及制造方法
CN108519701B (zh) * 2018-04-19 2021-11-02 京东方科技集团股份有限公司 一种液晶移相器及其制作方法
CN109943021A (zh) * 2019-03-25 2019-06-28 电子科技大学 一种纳米无机填料改性环氧树脂复合材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213067A (ja) * 2002-01-28 2003-07-30 Sumitomo Bakelite Co Ltd 複合体組成物、及びこれを架橋させてなる成形硬化物
JP2005240028A (ja) * 2004-01-28 2005-09-08 Sumitomo Bakelite Co Ltd 透明複合シート及びそれを用いた表示素子基板
JP2008045121A (ja) * 2006-07-21 2008-02-28 Showa Denko Kk 透明複合材料
WO2008038414A1 (en) * 2006-09-28 2008-04-03 Shibaura Mechatronics Corporation Bonding method and bonding apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739571B2 (ja) * 1989-11-22 1995-05-01 信越化学工業株式会社 接着性オルガノポリシロキサン組成物
JP2608628B2 (ja) 1990-10-03 1997-05-07 早川ゴム株式会社 フィルムおよびシートの製造方法
WO1999047621A1 (en) 1998-03-17 1999-09-23 Ameritherm, Inc. Rf active compositions for use in adhesion, bonding and coating
AU2001284499A1 (en) * 2000-09-11 2002-03-26 Showa Denko K K Photosensitive composition, cured article thereof, and printed circuit board using the same
JP2006010748A (ja) * 2004-06-22 2006-01-12 Seiko Epson Corp 光学シート、電気光学装置、電子機器、光学シートの製造方法
JP4867211B2 (ja) 2005-06-17 2012-02-01 住友化学株式会社 樹脂フィルムの熱変形抑制方法
DE102005034746A1 (de) * 2005-07-21 2007-01-25 Tesa Ag Doppelseitiges Haftklebeband zur Herstellung von LC-Displays mit lichtreflektierenden und -absorbierenden Eigenschaften
JP2007057866A (ja) 2005-08-25 2007-03-08 Fujimori Kogyo Co Ltd 反射型巻取式スクリーン及びその製造方法
JP2007114270A (ja) 2005-10-18 2007-05-10 Nippon Oil Corp 光学フィルムの製造方法
US7955700B2 (en) * 2006-03-29 2011-06-07 Fujifilm Corporation Gas-barrier laminate film and method for producing same, and image display device
JP2007268711A (ja) 2006-03-30 2007-10-18 Teijin Dupont Films Japan Ltd フレキシブルディスプレイ基板用積層ポリエステルフィルム
JP5174331B2 (ja) 2006-07-06 2013-04-03 昭和電工株式会社 電子線硬化性組成物、電子線硬化樹脂およびその用途
EP2046685A1 (en) * 2006-07-21 2009-04-15 Showa Denko K.K. Transparent composite material
JP2008081737A (ja) 2006-08-31 2008-04-10 Sanyo Chem Ind Ltd 光学シート用活性エネルギー線硬化型樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213067A (ja) * 2002-01-28 2003-07-30 Sumitomo Bakelite Co Ltd 複合体組成物、及びこれを架橋させてなる成形硬化物
JP2005240028A (ja) * 2004-01-28 2005-09-08 Sumitomo Bakelite Co Ltd 透明複合シート及びそれを用いた表示素子基板
JP2008045121A (ja) * 2006-07-21 2008-02-28 Showa Denko Kk 透明複合材料
WO2008038414A1 (en) * 2006-09-28 2008-04-03 Shibaura Mechatronics Corporation Bonding method and bonding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045581B2 (en) 2005-03-03 2015-06-02 Rhino Linings Corporation Polyols derived from a vegetable oil using an oxidation process

Also Published As

Publication number Publication date
KR101514355B1 (ko) 2015-04-22
TW201004797A (en) 2010-02-01
EP2269818A4 (en) 2015-01-07
TWI464057B (zh) 2014-12-11
WO2009128415A1 (ja) 2009-10-22
CN101980868B (zh) 2013-08-28
JPWO2009128415A1 (ja) 2011-08-04
US20110039117A1 (en) 2011-02-17
CN101980868A (zh) 2011-02-23
KR20100133979A (ko) 2010-12-22
EP2269818A1 (en) 2011-01-05
US8460501B2 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
JP5186556B2 (ja) 硬化フィルム及びその製造方法
US8518524B2 (en) Transparent composite material
JP5075849B2 (ja) 透明複合材料
JPWO2010110406A1 (ja) 透明複合材料
JP2015044905A (ja) 樹脂組成物、透明フィルム、その製造方法及び用途
JP2008045121A (ja) 透明複合材料
US8163842B2 (en) Transparent composite material and process for producing the same
JP6435597B2 (ja) 透明導電性フィルム及びその製造方法
JPWO2010110407A1 (ja) 透明複合材料
JP2009129802A (ja) 透明導電性基板
JP2013049792A (ja) 透明複合材料及び透明フィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Ref document number: 5186556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees