WO2010110264A1 - 金属酸化膜の形成方法および金属酸化膜 - Google Patents

金属酸化膜の形成方法および金属酸化膜 Download PDF

Info

Publication number
WO2010110264A1
WO2010110264A1 PCT/JP2010/054982 JP2010054982W WO2010110264A1 WO 2010110264 A1 WO2010110264 A1 WO 2010110264A1 JP 2010054982 W JP2010054982 W JP 2010054982W WO 2010110264 A1 WO2010110264 A1 WO 2010110264A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide film
plasma
metal
forming
Prior art date
Application number
PCT/JP2010/054982
Other languages
English (en)
French (fr)
Inventor
智史 永縄
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020117016245A priority Critical patent/KR101589924B1/ko
Priority to EP10756060.9A priority patent/EP2412669B1/en
Priority to CN2010800049323A priority patent/CN102282099A/zh
Priority to JP2010529189A priority patent/JP4648504B2/ja
Priority to US13/258,323 priority patent/US8809201B2/en
Publication of WO2010110264A1 publication Critical patent/WO2010110264A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/27Oxides by oxidation of a coating previously applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/322Oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a method for forming a metal oxide film having surface irregularities and / or a predetermined pattern, and a metal oxide film obtained by such a method, and in particular, surface irregularities optimal as an electrode for electronic devices, etc.
  • the present invention relates to a method of forming a metal oxide film having metal and a metal oxide film.
  • a transparent electrode in which a thin film made of a metal oxide (hereinafter sometimes referred to as a metal oxide film) is formed on a glass substrate by a technique such as vapor deposition.
  • a plastic film is substituted for the glass substrate.
  • a vapor deposition method such as vacuum vapor deposition or sputtering of a metal or metal oxide material.
  • the vapor deposition method has a problem in that a high vacuum is required, resulting in an increase in manufacturing cost and a difficulty in mass production and economy.
  • the coating method has a problem that the conductivity of the obtained metal film or the like is inferior to that of the metal film or the like obtained by the vapor deposition method.
  • a sol-gel method using a metal alkoxide and a hydrolyzate thereof has been proposed for reasons such as homogeneity, transparency, and wide selection of materials.
  • a heat treatment (firing) step at a high temperature is required, which limits the continuous production, increases the production cost, and the base material is thermally deteriorated. There was a problem. And the problem that the kind selection of a base material was restrict
  • Patent Document 2 a method of performing plasma treatment after forming a metal oxide gel on a substrate when forming a metal oxide film by a sol-gel method. More specifically, after a metal oxide sol obtained using a metal alkoxide or a metal salt as a main raw material on a base material is changed into a metal oxide gel in advance, In this method, a metal oxide film is formed by performing plasma treatment.
  • a transparent electrode substrate for a solar cell provided with a texture layer having irregularities is disclosed in order to improve light conversion efficiency and the like (for example, see Patent Document 3). More specifically, it is a transparent electrode substrate for a solar cell having a resin film, a texture layer having irregularities, and a layer made of a metal oxide, and the texture layer having irregularities cures the photocurable composition.
  • This is a transparent electrode substrate for a solar cell.
  • FIGS. 27 (a) to 27 (f) this is a production method for obtaining a porous material. That is, as shown in FIG. 27A, anodized films (anodized film barrier layer 202 and anodized film porous layer 203) are formed on the surface by anodizing aluminum that becomes a matrix 201. Next, as shown in FIG.
  • this is used as a mother mold 201 having an anodized film, and a metal 205 ′ that is a negative type of a porous film is filled in the pores of the mother mold 201.
  • the matrix 201 is selectively dissolved, and further, as shown in FIG. 27 (d), the anodic oxide films 202 and 203 are removed, thereby forming the porous film.
  • a negative mold 205 is obtained.
  • the negative mold 205 is filled with another substance 206 ′, the negative mold 205 is selectively dissolved as shown in FIG. In this method, a porous material 206 having the same shape as the oxide film is obtained.
  • a conductive layer made of a metal or a metal oxide film must be further formed on the texture layer having a concavo-convex structure.
  • the problem that it was easy to peel from a layer was seen.
  • the method for producing a porous material disclosed in Patent Document 4 has a problem that it is difficult to produce a porous material with high accuracy and stability in addition to a large number of steps.
  • a conductive layer made of a patterned metal oxide film (ITO, IZO, etc.) has been widely used as a transparent electrode, usually, after passing through a metal oxide vapor deposition process on a substrate, as an etching solution
  • the predetermined pattern was formed by etching using strong acid.
  • the etching rates of ITO, IZO, etc. are inherently slow, and there has been a problem that the etching accuracy is remarkably lowered when trying to increase the etching rate.
  • corrosion problems due to the residue of the etching solution (strong acid) are likely to occur, and there are also manufacturing problems that require an etching solution neutralization process, a cleaning process and a rinsing process over a considerable period of time. .
  • the inventors of the present invention have made diligent efforts in view of the circumstances as described above. Then, after providing the predetermined pattern or one of them, a metal oxide film having a predetermined surface asperity and / or a predetermined pattern can be easily and stably obtained by performing thermal oxidation treatment or plasma oxidation treatment.
  • the present invention has been found and the present invention has been completed. That is, the object of the present invention is to have an excellent surface resistivity, transparency, etc., without changing from a metal oxide sol to a metal oxide gel in advance when a metal oxide film is formed, and a predetermined surface. It is an object of the present invention to provide a forming method in which a metal oxide film having unevenness and / or a predetermined pattern or one of them can be obtained easily and stably, and a metal oxide film obtained by such a forming method.
  • a method for forming a metal oxide film having a surface irregularity and a predetermined pattern, or a metal oxide film on a substrate comprising the following first to third steps.
  • a featured metal oxide film forming method is provided to solve the above-mentioned problems.
  • a liquid material containing a metal salt and / or metal complex (hereinafter sometimes referred to as a “metal salt-containing liquid material”) is applied to a substrate, and a coating film (hereinafter referred to as a metal salt) is applied.
  • the first step (2) forming the surface) may be referred to as a film.
  • the second step (3) forming the surface unevenness and the predetermined pattern, or any one of the coating film.
  • the coating film formed with either one is subjected to thermal oxidation treatment or plasma oxidation treatment in the presence of an oxygen source to form a metal oxide film having surface irregularities and a predetermined pattern, or one of the metal oxide films.
  • Step That is, in the first step, after applying a metal salt to the base material in advance, in the second step, a predetermined surface irregularity or a predetermined pattern is applied to the coating film without changing it to a metal oxide gel.
  • a predetermined oxidation treatment is performed in the third step, so that the metal oxide film having excellent surface resistivity and transparency and having a predetermined surface irregularity or a predetermined pattern can be stabilized. Can get to.
  • the same plasma apparatus is continuously used.
  • a metal oxide film having a predetermined surface irregularity or a predetermined pattern can be obtained more quickly and economically.
  • the metal salt-containing liquid material is pattern-printed on the base material, a predetermined pattern is obtained as it is, and therefore the first step and the second step are performed simultaneously. Finally, a metal oxide film having a predetermined pattern can be obtained more quickly and economically.
  • a liquid material containing a metal salt containing zinc or indium as a liquid material containing a metal salt and a metal complex or one of them.
  • a liquid containing a metal complex containing zinc or indium it is preferable to use a liquid containing a metal complex containing zinc or indium.
  • a metal oxide film having a higher light transmittance and a lower surface resistivity can be obtained.
  • a metal oxide film having a lower surface resistivity can be obtained by including a predetermined amount of dopant precursor in the liquid material.
  • corrugation whose centerline average roughness (Ra) is 30 nm or more is 30 nm or more with respect to a coating film in a 2nd process.
  • surface irregularities and a predetermined pattern are provided by a plasma etching process, and as a plasma generation gas of the plasma etching process, a rare gas and nitrogen, or Either one is preferably used.
  • a plasma generation gas of the plasma etching process a rare gas and nitrogen, or Either one is preferably used.
  • predetermined surface irregularities and predetermined patterns can be efficiently formed on the coating film, and as a result, a metal oxide film having predetermined surface irregularities and predetermined patterns can be obtained with higher accuracy. Can do.
  • the plasma processing temperature is set to a value in the range of 20 to 100 ° C.
  • the plasma pressure is set to a value in the range of 1 to 500 Pa. It is preferable to do. If implemented in this way, a metal oxide film having a predetermined surface irregularity and a predetermined pattern can be obtained more stably and economically.
  • a 2 ′ step is provided between the first step and the second step, and plasma oxidation treatment or thermal oxidation treatment is performed to partially coat the coating film. It is preferable to oxidize.
  • the etching rate of the partially oxidized coating film can be adjusted to a desired range when performing the plasma etching process.
  • the partially oxidized metal salt film can be used as a resist (etching rate adjusting member) for the base material.
  • the temperature of the thermal oxidation treatment is preferably set to a value in the range of 300 to 800 ° C.
  • oxygen is used as the plasma generation gas of the plasma oxidation process, and the plasma pressure is set to 1.0 ⁇ . It is preferable that the value is in the range of 10 ⁇ 3 to 1.0 ⁇ 10 2 Pa, the plasma time is in the range of 10 to 600 seconds, and the plasma temperature is in the range of 20 to 100 ° C.
  • the plasma processing temperature can be lowered to about 20 to 100 ° C., so that the thermal influence on the substrate can be eliminated.
  • a fourth step is provided after the third step, and a metal or metal oxide layer is further laminated on the metal oxide film.
  • a metal oxide film having a lower surface resistivity can be obtained.
  • another aspect of the present invention is a metal oxide film having a surface unevenness and a predetermined pattern obtained by any one of the above-described methods for forming a metal oxide film, or a metal oxide film having either one,
  • the metal oxide film is characterized in that the surface resistivity of the metal oxide film is set to a value in the range of 1 ⁇ 10 0 to 1 ⁇ 10 10 ⁇ / ⁇ . By comprising in this way, it can be set as the metal oxide film which has a predetermined surface unevenness
  • the metal oxide film is preferably an electronic device electrode.
  • the electrode for electronic devices can be provided using the metal oxide film which has the outstanding surface resistivity and transparency, and has a predetermined surface unevenness
  • FIG. 1 (a) to 1 (e) are diagrams for explaining the metal oxide formation method of the present invention (embodiment example 1).
  • 2 (a) to 2 (d) are views for explaining a laminate obtained by the metal oxide formation method of the present invention.
  • FIG. 3 is a photograph showing the surface state of the metal salt film (magnification: 30000 times).
  • FIG. 4 is a photograph showing the surface state of a metal salt film having surface irregularities (magnification: 30000 times).
  • FIG. 5 is a photograph showing the surface state of the metal oxide film having surface irregularities (magnification: 30000 times).
  • FIG. 6 is a photograph showing the surface state of another metal salt film (magnification: 30000 times).
  • FIGS. 7 is a photograph showing the surface state of a metal salt film having another surface irregularity (magnification: 30000 times).
  • FIG. 8 is a photograph showing the surface state of a metal oxide film having other surface irregularities (magnification: 30000 times).
  • FIGS. 9A to 9C are diagrams for explaining the influence of the plasma pressure in the second step on the center line average roughness (Ra), the surface resistivity, and the light transmittance in the metal oxide film. is there.
  • FIGS. 10A to 10E are views for explaining the metal oxide formation method of the present invention (embodiment example 2).
  • FIGS. 11 (a) to 11 (f) are views for explaining the metal oxide formation method of the present invention (embodiment example 3).
  • FIGS. 12 (a) to 12 (f) are diagrams for explaining the metal oxide formation method of the present invention (embodiment example 4).
  • FIGS. 13A to 13F are views for explaining the metal oxide formation method of the present invention (embodiment example 5).
  • FIGS. 14A to 14F are views for explaining the metal oxide formation method of the present invention (embodiment example 6).
  • FIGS. 15A to 15E are views for explaining the metal oxide forming method of the present invention (embodiment example 7).
  • FIGS. 16A to 16E are views for explaining the metal oxide forming method of the present invention (embodiment example 8).
  • FIGS. 17A to 17D are views for explaining the metal oxide formation method of the present invention (embodiment example 9).
  • FIGS. 18 (a) to 18 (d) are diagrams for explaining the metal oxide formation method of the present invention (embodiment example 10).
  • FIGS. 19A to 19E are views for explaining the metal oxide formation method of the present invention (embodiment example 11).
  • 20 (a) to 20 (e) are views for explaining the metal oxide formation method of the present invention (embodiment example 12).
  • FIGS. 21A to 21F are views for explaining the metal oxide formation method of the present invention (embodiment example 13).
  • 22 (a) to 22 (f) are views for explaining the metal oxide formation method of the present invention (embodiment example 14).
  • FIGS. 23A to 23F are views for explaining the metal oxide formation method of the present invention (embodiment example 15).
  • 24A to 24F are views for explaining the metal oxide forming method of the present invention (embodiment example 16).
  • 25 (a) to 25 (e) are views for explaining the metal oxide formation method of the present invention (embodiment example 17).
  • FIGS. 26 (a) to 26 (e) are views for explaining the metal oxide formation method of the present invention (embodiment example 18).
  • FIGS. 27A to 27F are views for explaining a conventional method for producing a porous material.
  • the first embodiment of the present invention is a metal oxide film forming method for forming a metal oxide film 14 having surface irregularities 14a on a substrate 10 as shown in FIGS. 1 (a) to 1 (e). Then, a first step of applying a liquid material containing a metal salt or metal complex to the base material 10 to form the metal salt film 12, and a second step of providing the surface irregularities 12a to the metal salt film 12 And a third step in which the metal salt film 12 having the surface irregularities 12a is subjected to thermal oxidation or plasma oxidation in the presence of an oxygen source (O 2 ) to form the metal oxide film 14 having the surface irregularities 14a.
  • O 2 oxygen source
  • the value of the centerline average roughness (Ra) representing the surface unevenness can be obtained by measurement using an atomic force microscope (manufactured by SII Nanotechnology, Inc., model number SPA300HV).
  • the centerline average roughness (Ra) used in the present invention is defined by the following formula (1).
  • Ra Centerline average roughness (nm)
  • S 0 Area when assumed to be ideally flat from the specified surface (nm 2 )
  • Z 0 Average value of Z data in the specified plane (nm)
  • FIG. 1A shows a step of preparing a predetermined base material 10
  • FIG. 1B shows a liquid material (metal salt) containing a metal salt or metal complex on the predetermined base material 10.
  • 1 (c) shows a step of applying a predetermined plasma treatment (plasma etching treatment) to the metal salt film 12 to form a surface irregularity.
  • 1D shows a step of forming 12a. Further, FIG. 1D shows that the metal salt film 12 having the surface irregularities 12a is subjected to a predetermined oxidation treatment (for example, plasma oxidation treatment). The process of forming the metal oxide film 14 having the surface irregularities 14a as shown is shown.
  • a predetermined oxidation treatment for example, plasma oxidation treatment
  • a resin film, glass, a ceramic, a metal etc. can be used.
  • Resin films include polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, and fat. Examples thereof include cyclic structure-containing polymers and aromatic polymers. Among these, a substrate made of polyester and polyamide is particularly preferable because of its high versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • polyamide examples include wholly aromatic polyamide, nylon 6, nylon 66, and nylon copolymer.
  • the coupling agent treatment, the oxidation flame treatment, the silicic acid flame treatment, the corona treatment It is preferable to perform at least one surface treatment such as plasma treatment, primer treatment, blast treatment, or acid treatment.
  • the wetting index (measured in accordance with JIS K 6768) on the substrate surface is preferably set to a value within the range of 20 to 80 dyn / cm, and within the range of 30 to 75 dyn / cm. More preferably, the value is more preferably in the range of 40 to 70 dyn / cm.
  • the thickness of the substrate is not particularly limited, but for example, in the case of a resin film, it is usually preferable to set a value within the range of 1 to 3000 ⁇ m.
  • the reason for this is that when the thickness of the base material is less than 1 ⁇ m, the mechanical strength and handleability are excessively lowered, and it is difficult to stably form a metal oxide film having a uniform thickness. This is because there are cases.
  • the thickness of the base material exceeds 3000 ⁇ m, the handleability is excessively lowered, the usage of the obtained metal oxide film is excessively limited, and further, it is economically disadvantageous. This is because there are cases.
  • the thickness of the base material is more preferably set to a value within the range of 5 to 1500 ⁇ m, and further preferably set to a value within the range of 10 to 1000 ⁇ m.
  • the metal oxide film 14 may be directly formed on the base material 10 or, as shown in FIG. Then, the metal oxide film 14 may be formed on the processing surface 18.
  • Examples of such surface treatment include primer treatment, corona treatment, flame treatment and the like, and primer treatment is particularly preferable. This is because the adhesion of the metal oxide film to the substrate can be further improved by using the substrate on which such a primer layer is formed.
  • cellulose esters for example, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose nitrate, and combinations thereof
  • polyacryl polyurethane
  • polyvinyl alcohol Polyvinyl ester
  • polyvinyl acetal polyvinyl ether
  • polyvinyl ketone polyvinyl carbazole
  • polyvinyl butyral and combinations thereof.
  • the thickness of the primer layer is not particularly limited, but is usually a value within a range of 0.05 ⁇ m to 10 ⁇ m.
  • the liquid substance used in the present invention usually contains a metal salt and / or a metal complex, or one of them and a predetermined amount of solvent. And since the surface resistivity can be remarkably lowered while maintaining good characteristics such as light transmittance in the metal oxide film, a predetermined amount of dopant precursor is blended with the metal complex etc. to the liquid material It is also preferable to do.
  • the metal salt is not particularly limited.
  • inorganic salts such as halides, nitrates and sulfates, and organic salts such as organic phosphates and carboxylates.
  • halides include chlorides and bromides, with chlorides being preferred.
  • carboxylate include salts of acrylic acid, methacrylic acid, acetic acid, salicylic acid, formic acid, oxalic acid, propionic acid, lactic acid, trifluoroacetic acid, fumaric acid, itaconic acid, maleic acid, and the like.
  • the metal species constituting the metal salt include platinum (Pt), gold (Au), silver (Ag), copper (Cu), zinc (Zn), indium (In), tin (Sn), and gallium (Ga). ), Titanium (Ti), nickel (Ni), germanium (Ge), cadmium (Cd), and the like. Accordingly, copper acetate, cadmium acetate, zinc acetate, mercury acetate, lead acetate, gallium acetate, indium acetate, thallium acetate, titanium acetate, manganese acetate, nickel acetate, molybdenum acetate, palladium acetate, silver acetate and the like can be mentioned.
  • a metal salt containing at least one of zinc (Zn), indium (In), and tin (Sn) is a preferable metal because a transparent metal oxide film can be obtained.
  • Zn zinc
  • In indium
  • Sn tin
  • a metal salt containing Zn or In is used as the metal species, a metal oxide film having a higher light transmittance and a lower surface resistivity can be obtained, which is a more preferable metal.
  • the metal salts may be used alone or in combination of two or more.
  • the term “transparency” as used herein means that at least visible light is transmitted, and more preferably has a visible light transmittance of 50% or more.
  • a metal complex is preferably a compound comprising a metal, a metal ion at the center of a molecule, and a compound called a ligand having an unshared electron pair surrounding it.
  • a metal complex is preferably a compound comprising a metal, a metal ion at the center of a molecule, and a compound called a ligand having an unshared electron pair surrounding it.
  • monodentate ligands such as pyridine, triphenylphosphine, nitrate ion, halide ion, ammonia
  • bidentate ligands such as ethylenediamine, biviridine, acetylacetonate, phenanthroline, terpyridine, ethylenediaminetetraacetic acid
  • a compound containing a tridentate ligand is preferably a compound comprising a metal, a metal ion at the center of a molecule, and a compound called a ligand having an unshare
  • species which comprises a metal complex iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), indium (In), titanium (Ti) etc. are mentioned. .
  • a metal complex containing zinc (Zn) or indium (In) is used, a metal oxide film having a higher light transmittance and a lower surface resistivity can be obtained, which is a more preferable metal species. .
  • preferred metal complexes include zinc acetylacetonate, indium (III) acetylacetonate, titanium oxide (IV) acetylacetonate, and more preferred metal complexes include zinc acetylacetonate, indium (III) acetylacetonate. Naruto.
  • a metal complex may be used individually by 1 type or in combination of 2 or more types.
  • the dopant is a compound containing a metal different from the metal salt or metal complex used, and is selected according to the type of metal or metal complex used.
  • the dopant include compounds containing metals such as gallium (Ga), aluminum (Al), silicon (Si), tin (Sn), scandium (Sc), and preferably gallium (III) acetylacetonate, aluminum
  • gallium (Ga) gallium
  • Al aluminum
  • Si silicon
  • Sc scandium
  • III gallium
  • III gallium acetylacetonate
  • aluminum One kind alone or a combination of two or more kinds such as acetylacetonate and tin (II) acetylacetonate can be mentioned.
  • the compounding amount of the dopant precursor is such that the total amount of the metal contained in the metal salt or metal complex and the metal contained in the dopant precursor is within the range of 1 to 10 mol% of the metal of the dopant precursor. It is preferable to do. This is because when the compounding amount of the dopant precursor is less than 1 mol%, the effect of addition may not be exhibited, or the surface resistivity of the metal oxide film obtained may vary. On the other hand, even if the compounding quantity of a dopant precursor exceeds 10 mol%, the improvement of the addition effect of a dopant precursor is not seen but it may fall conversely. Therefore, the compounding amount of the dopant precursor is more preferably in the range of 2 to 8 mol%, and further preferably 3 to 7 mol%.
  • solvent constituting the liquid examples include nitrile compounds such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, acetone, N, N-dimethylformamide, dimethyl sulfoxide, Water etc. are mentioned.
  • the concentration of metal salt or metal complex is preferably set to a value within the range of 0.01 to 15 mol / l.
  • concentration of the metal salt or metal complex is less than 0.01 mol / l, pinholes are likely to occur in the resulting coating film, and the surface resistivity of the resulting metal oxide film increases. Because there is.
  • the concentration of the metal salt or metal complex exceeds 15 mol / l, the metal salt or metal complex may precipitate in the liquid, and the resulting metal oxide film may not be homogeneous. is there.
  • the concentration of the metal salt or metal complex is more preferably set to a value within the range of 0.02 to 10 mol / l, and further preferably set to a value within the range of 0.03 to 5 mol / l.
  • the viscosity (measurement temperature: 25 ° C.) in the liquid substance containing the metal salt or metal complex is preferably set to a value within the range of 0.1 to 5000 mPa ⁇ sec. A value within the range of sec is more preferable. This is because when the viscosity of the liquid is within this range, it becomes easy to form a coating having a uniform thickness.
  • Coating method when apply
  • the thickness of the metal salt film is usually preferably 50 to 1000 nm. The reason for this is that when the thickness of the coating film is within this range, predetermined surface irregularities can be easily formed, and the strength, surface resistivity, light transmittance, etc. of the resulting metal oxide film are good. Because it becomes.
  • the second step is a step of providing predetermined surface irregularities 12a on the metal salt film 12 having a flat surface by a predetermined processing method as illustrated in FIG. 1C. That is, in order to provide the predetermined surface irregularities, any of various mechanical treatments and chemical treatments such as an imprint method and an etching method may be performed, but the predetermined surface irregularities can be provided stably and accurately. More preferably, the plasma treatment described below is performed.
  • Plasma generation gas When performing plasma processing, it is preferable to use rare gas and / or nitrogen as plasma generation gas of the plasma processing. The reason for this is that by using such a plasma-generating gas, it is possible to form surface irregularities with a predetermined shape and a predetermined height on the metal salt film, and as a result, surface irregularities with a predetermined shape and a predetermined height. This is because the metal oxide film can be obtained with higher accuracy.
  • the metal salt film is pre-oxidized and relatively easy to perform plasma etching, but by using a specific plasma generation gas, for example, krypton gas or nitrogen gas, the metal salt film shown in FIG.
  • a specific plasma generation gas for example, krypton gas or nitrogen gas
  • the metal salt film shown in FIG. 4 can be formed, and as a result, the metal oxide film having the brush-type surface irregularities as shown in FIG. 5 can be obtained with higher accuracy.
  • 3 to 5 have a flat metal salt film before the formation of surface irregularities by plasma treatment in Example 12 to be described later, a metal salt film having surface irregularities after the plasma treatment, and surface irregularities after oxidation treatment. It is a photograph showing the surface state of a metal oxide film.
  • the metal salt film as shown in FIG. 8 can be obtained with higher accuracy.
  • 6 to 8 have a flat metal salt film before the formation of surface irregularities by plasma treatment in Example 1, which will be described later, a metal salt film having surface irregularities after the plasma treatment, and surface irregularities after the oxidation treatment. It is a photograph showing the surface state of a metal oxide film.
  • the plasma treatment temperature is preferably set to a value in the range of 20 to 100 ° C. This is because when the plasma processing temperature is less than 20 ° C., it takes an excessively long time for the plasma processing, and it may be difficult to efficiently form surface irregularities on the metal salt film. is there. On the other hand, when the plasma treatment temperature exceeds 100 ° C., it is difficult to stably form surface irregularities in the metal salt film or the metal oxide film, the economic efficiency is lowered, and further, the base material is This is because heat deformation may occur.
  • the plasma treatment temperature in the second step is more preferably set to a value within the range of 25 to 90 ° C., and further preferably set to a value within the range of 30 to 80 ° C.
  • the plasma processing temperature can be defined as the temperature in the plasma chamber.
  • the plasma pressure is preferably set to a value within the range of 1 to 500 Pa. This is because when the plasma pressure is less than 1 Pa, it takes an excessive amount of time to form surface irregularities in the metal salt film, so that the surface irregularities of a predetermined shape in the metal salt film or metal oxide film are efficiently formed. This may be difficult. On the other hand, if the plasma pressure exceeds 500 Pa, it may be difficult to stably form surface irregularities of a predetermined shape on the metal salt film or the metal oxide film, and the economy may be reduced. It is. Therefore, the plasma pressure in the second step is more preferably set to a value within the range of 10 to 300 Pa, and further preferably set to a value within the range of 30 to 100 Pa. The plasma pressure can be defined as the pressure in the plasma chamber.
  • FIGS. 9A to 9C the influence of the plasma pressure in the second step on the centerline surface roughness (Ra), the surface resistivity, and the light transmittance in the metal oxide film, respectively.
  • the horizontal axis indicates the plasma pressure (Pa)
  • the vertical axis indicates the value (nm) of the centerline surface roughness (Ra) in the metal oxide film. .
  • the center line surface roughness (Ra) in the metal oxide film is a relatively low value of 50 nm or less, but when the plasma pressure is about 45 Pa, the metal The center line surface roughness (Ra) of the oxide film is about 90 nm, which is a relatively high value.
  • the centerline surface roughness (Ra) in the metal oxide film is slightly reduced to about 80 nm, and when the plasma pressure is about 90 Pa, the centerline surface roughness (in the metal oxide film) Ra) is reduced to about 60 nm. That is, it is understood that the center line surface roughness (Ra) in the metal oxide film can be adjusted to a value within a desired range with high accuracy by adjusting the plasma pressure.
  • the horizontal axis represents the plasma pressure (Pa), and the vertical axis represents the surface resistivity ( ⁇ / ⁇ ) of the metal oxide film.
  • the characteristic curve when the plasma pressure is about 30 Pa, the surface resistivity of the metal oxide film is a relatively low value of about 4 ⁇ 10 6 ⁇ / ⁇ , and when the plasma pressure is about 45 Pa, As the surface resistivity in the metal oxide film, a relatively high value of about 7 ⁇ 10 6 ⁇ / ⁇ is obtained.
  • the surface resistivity of the metal oxide film slightly decreases to about 6 ⁇ 10 6 ⁇ / ⁇ , and when the plasma pressure is about 90 Pa, the surface resistivity of the metal oxide film is 4 ⁇ 10 6 ⁇ / ⁇ That is, it is understood that the surface resistivity in the metal oxide film can be adjusted to a value within a desired range with high accuracy by adjusting the plasma pressure.
  • the horizontal axis indicates the plasma pressure (Pa), and the vertical axis indicates the light transmittance value (%) in the metal oxide film.
  • the characteristic curve when the plasma pressure is 30 Pa to 90 Pa, the light transmittance (visible light transmittance) in the metal oxide film is a high value of 91% or more, and even if the plasma pressure is changed, high light It is understood that the transmittance can be maintained. From these results, it is understood that by adjusting the plasma pressure, the center line surface roughness (Ra) and the surface resistivity in the metal oxide film can be adjusted to values within a desired range while maintaining high light transmittance.
  • the flow rate of the plasma generating gas is appropriately set according to the type of metal salt film, the type of plasma generating gas, the unevenness to be formed, and the like, but is about 5 ml / min to 500 ml / min.
  • the plasma treatment time is preferably set to a value within the range of 10 to 600 seconds. This is because when the plasma time is less than 10 seconds, it may be difficult to stably form surface irregularities of a predetermined shape. On the other hand, when the plasma time exceeds 600 seconds, the obtained surface irregularities having a predetermined shape may be damaged by the plasma and it may be difficult to obtain the desired surface irregularities. Therefore, the plasma time in the second step is more preferably set to a value within the range of 20 to 500 seconds, and further preferably set to a value within the range of 30 to 300 seconds.
  • a 2nd process provides surface unevenness
  • the surface irregularity value is preferably 30 nm or more as the centerline average roughness (Ra).
  • the reason for this is that if the center line average roughness (Ra) representing the surface irregularities is excessively large, the surface roughness (Ra) of the resulting metal oxide film also increases, causing irregular reflection of light from the outside, and the desired light This is because the transmittance may not be obtained.
  • the center line average roughness (Ra) on the surface of the metal salt film is more preferably set to a value within the range of 40 to 500 nm, and further preferably set to a value within the range of 45 to 300 nm.
  • the third step is a step of performing thermal oxidation treatment or plasma oxidation treatment in the presence of an oxygen source (O 2 ) as illustrated in FIG.
  • FIG. 1D shows a plasma device 16 having a surface irregularity 12a, but a non-conductive metal salt film 12 having a surface irregularity 14a and a metal oxide film 14 having conductivity and the like. An example of plasma oxidation treatment is shown.
  • the thermal oxidation treatment temperature is preferably set to a value within the range of 300 to 800 ° C.
  • the thermal oxidation treatment temperature is less than 300 ° C., depending on the type of metal salt or metal complex, it may be difficult to oxidize the metal salt or metal complex to form a metal oxide. Because there is.
  • the thermal oxidation treatment temperature exceeds 800 ° C., the surface irregularities may be deformed. Therefore, the thermal oxidation treatment temperature is more preferably set to a value within the range of 350 to 750 ° C., and further preferably set to a value within the range of 400 to 700 ° C.
  • the thermal oxidation treatment time is preferably set to a value within the range of 0.1 to 120 minutes.
  • the reason for this is that when the thermal oxidation treatment time is less than 0.1 minutes, depending on the type of metal salt or metal complex, it is difficult to oxidize the metal salt or metal complex to form a metal oxide. This is because there are cases.
  • the thermal oxidation treatment time exceeds 120 minutes, the surface irregularities may be deformed. Therefore, the thermal oxidation treatment time is more preferably set to a value within the range of 1 to 60 minutes, and further preferably set to a value within the range of 5 to 30 minutes.
  • Oxygen source Air, oxygen gas, or the like can be used as the oxygen source (O 2 ) when performing the thermal oxidation treatment.
  • thermal Oxidation apparatus is not particularly limited, and for example, a baking oven having an electric heating apparatus or an infrared heating apparatus can be used.
  • Plasma oxidation treatment (2) Plasma oxidation treatment
  • a plasma device 16 as illustrated in FIG. 1 (d) is used, and the plasma source includes hydrogen, nitrogen, oxygen, Argon, helium, fluorocarbon or the like is preferably used alone or in combination.
  • an oxygen source if it is a compound containing oxygen, such as air, oxygen, and water, it can use suitably.
  • the plasma device 16 illustrated in FIG. 1D is an example, and an ion source and the like are omitted, but at least the high-frequency power source 16a, the upper electrode 16b, the lower electrode 16c, and the ground 16d I have.
  • the plasma pressure is preferably set to a value within the range of 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 2 Pa. This is because, when the plasma pressure is less than 1.0 ⁇ 10 ⁇ 3 Pa, the plasma concentration is too low and it takes time to form a metal oxide film. On the other hand, even if the plasma pressure exceeds 1.0 ⁇ 10 2 Pa, collisions between the generated plasmas are likely to occur, so that almost no improvement in film forming speed is observed. Therefore, it is more preferable to set the plasma pressure during the plasma treatment to a value within the range of 1.0 ⁇ 10 ⁇ 2 to 5.0 ⁇ 10 1 Pa.
  • oxygen source any compound containing an oxygen atom such as air, oxygen, or water can be used as appropriate.
  • the plasma treatment temperature is preferably set to a value in the range of 20 to 100 ° C. This is because when the plasma processing temperature is lower than 20 ° C., it takes an excessively long time for the plasma processing and it may be difficult to sufficiently oxidize the metal salt film. On the other hand, if the plasma processing temperature exceeds 100 ° C., the surface irregularities of the obtained predetermined shape may be damaged by the plasma, the economic efficiency may be lowered, or the base material may be thermally deformed. Because there is. Accordingly, the plasma processing temperature in the third step is more preferably set to a value within the range of 25 to 90 ° C., and further preferably set to a value within the range of 30 to 80 ° C.
  • the plasma time is preferably set to a value within the range of 10 to 600 seconds.
  • the reason for this is that when the plasma time is less than 10 seconds, depending on the type of metal salt or metal complex, it may be difficult to oxidize the metal salt or metal complex to form a metal oxide. Because. On the other hand, if the plasma time exceeds 600 seconds, the surface irregularities of the obtained predetermined shape are damaged by the plasma, and it may be difficult to obtain the desired surface irregularities. Therefore, the plasma time in the third step is more preferably set to a value within the range of 20 to 500 seconds, and further preferably set to a value within the range of 30 to 300 seconds.
  • a multi-stage plasma oxidation treatment may be performed.
  • plasma oxidation treatment conditions can be changed at each stage, and plasma oxidation treatment can be performed a plurality of times under the same conditions.
  • a metal oxide film having predetermined surface irregularities is formed.
  • the surface roughness (Ra) of the metal oxide film is preferably 30 nm or more. The reason for this is that if the value of the center line average roughness (Ra) is such, it is possible to obtain a metal oxide film having excellent transparency and surface irregularities that can be used as an electrode for an electronic device. It is.
  • the surface roughness (Ra) is more preferably in the range of 40 to 500 nm, and still more preferably in the range of 45 to 300 nm.
  • the fourth step is an optional step, when the metal oxide film formed through the first step to the third step is used as the first conductive layer, it is adjacent to or adjacent to the first conductive layer.
  • This is a step of forming a second conductive layer containing a metal or metal oxide.
  • a metal which comprises a 2nd conductive layer platinum, gold
  • a metal oxide which comprises a 2nd conductive layer 1 type individual combinations, such as a tin dope indium oxide (ITO), zinc dope indium oxide (IZO), an indium oxide, a tin oxide, and a zinc oxide, are 2 types or more.
  • ITO tin dope indium oxide
  • IZO zinc dope indium oxide
  • a known formation method such as vacuum deposition, sputtering, ion plating, printing coating, or the like can be employed.
  • the neutralization process is performed by immersing the metal oxide film in an alkaline aqueous solution such as KOH or NaOH, for example.
  • the neutralization temperature is preferably 10 to 40 ° C. for 2 to 10 minutes.
  • Washing step In carrying out the washing step, for example, water, alcohol, an organic solvent, or a mixture thereof is used as a cleaning agent. Usually, the washing time is 1 to 10 minutes, and the washing temperature is 10 to 100. It is preferable to wash the obtained metal oxide film at a frequency of 1 to 10 times at a temperature.
  • Embodiment 1 First step Coating step Second step: Surface unevenness forming step by plasma etching treatment
  • Third step Oxidation treatment step by plasma oxidation treatment
  • the first to third steps are illustrated in FIGS. 1 (b) to 1 (d).
  • FIG. 1E it is possible to stably manufacture the metal oxide film 14 having the surface irregularities 14a and the predetermined conductivity.
  • FIGS. 1C to 1D it is possible to perform continuous plasma treatment in the second step to the third step using the same chamber, which is economical.
  • FIG. 1D since the plasma oxidation process is performed in the third step, it is possible to perform a low temperature process and effectively damage the substrate 10 and the like. Can be prevented.
  • Embodiment 2 First step: Coating step Second step: Surface unevenness forming step by plasma etching treatment
  • Third step Oxidation treatment step by thermal oxidation treatment
  • the first to third steps are exemplified in FIGS. 10 (b) to 10 (d).
  • FIG. 10E it is possible to stably manufacture the metal oxide film 14 having the surface irregularities 14a and having predetermined conductivity and the like.
  • FIG. 10 (d) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) becomes possible, and the economy is improved. Is.
  • Embodiment 3 First step: Application step 2 'step: Partial oxidation step by plasma oxidation treatment Second step: Surface irregularity formation step by plasma etching treatment Third step: Oxidation treatment step by plasma oxidation treatment
  • the first to third steps are: Illustrated in FIGS. 11 (b) to 11 (e), by carrying out in this way, as shown in FIG. 11 (f), a metal having a surface asperity 14a and a predetermined conductivity, etc.
  • the oxide film 14 can be manufactured stably.
  • FIGS. 11 (c) to (e) continuous plasma treatment in the same chamber can be performed following the 2 ′ step to the second step to the third step, and as a whole, it is extremely economical. .
  • FIG. 11 (c) to (e) continuous plasma treatment in the same chamber can be performed following the 2 ′ step to the second step to the third step, and as a whole, it is extremely economical. .
  • the plasma etching process speed in the second process. can be adjusted.
  • the plasma etching rate of the portion where the partially oxidized metal salt film is relatively thin becomes relatively high, and the partially oxidized metal salt film is relatively oxidized. It has been found that the plasma etching rate of the portion where the thickness of the metal salt film is relatively large is relatively slow (hereinafter, referred to as an etching rate adjusting effect).
  • a metal oxide having a relatively large surface unevenness for example, Ra is 10 nm or more
  • a metal oxide film having a fine surface unevenness for example, Ra is 5 nm or less.
  • the film can be formed stably and accurately.
  • FIG. 11 (e) since the plasma oxidation treatment is performed in the third step, it is possible to perform low-temperature treatment and effectively damage the substrate 10 and the like. Can be prevented.
  • the aspect of the partial oxidation performed in the 2 ′ step will be described in detail in the second embodiment.
  • Embodiment 4 coating step 2 ′ step: partial oxidation step by heat treatment second step: surface unevenness forming step by plasma etching treatment
  • Third step oxidation treatment step by plasma oxidation treatment
  • the first to third steps are shown in FIG. Illustrated in (b) to (e), by carrying out in this way, as shown in FIG. 12 (f), a metal oxide film having surface irregularities 14a and having a predetermined conductivity and the like. 14 can be manufactured stably.
  • FIGS. 12D to 12E continuous plasma processing in the same chamber can be performed following the second to third steps, which is economical as a whole.
  • FIG. 12D to 12E continuous plasma processing in the same chamber can be performed following the second to third steps, which is economical as a whole.
  • Embodiment 5 1st process: coating process 2 'process: partial oxidation process by plasma oxidation process 2nd process: surface unevenness forming process by plasma etching process 3rd process: oxidation process process by thermal oxidation process
  • the first to third processes are: Although illustrated in FIGS. 13B to 13E, by carrying out in this way, as shown in FIG. 13F, a metal having surface irregularities 14a and having a predetermined conductivity or the like. The oxide film 14 can be manufactured stably. Further, as shown in FIG. 13C, by providing a partial oxidation step by plasma oxidation treatment in the 2 ′ step, the above-described etching rate adjustment effect is exhibited, as shown in FIG. 13D.
  • the etching process speed can be adjusted.
  • continuous plasma treatment in the same chamber can be performed following the 2 ′ process to the second process, which is economical as a whole.
  • FIG. 13 (e) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) becomes possible, and the economy is improved. Is.
  • Embodiment 6 First step: coating step 2 ′ step: partial oxidation step by heat treatment second step: surface unevenness formation step by plasma etching treatment Third step: oxidation treatment step by thermal oxidation treatment
  • the first to third steps are shown in FIG.
  • a metal oxide film having a surface asperity 14a and having predetermined conductivity and the like. 14 can be manufactured stably.
  • FIG. 14 (c) by providing a partial oxidation step by heat treatment in the second 'step, the above-described etching rate adjustment effect is exhibited, and as shown in FIG.
  • the etching process speed can be adjusted. Furthermore, as shown in FIG. 14 (e), since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) is possible, which is economical. Is.
  • the second embodiment is a method for forming a metal oxide film related to the method for forming a metal oxide film of the first embodiment, and is patterned on a substrate 10 as illustrated in FIG.
  • a method of forming a metal oxide film for forming the metal oxide film 14 ' which includes the following first to third steps.
  • a predetermined pattern for the coating film 12 (3)
  • the coating film 12b on which the predetermined pattern is formed is subjected to thermal oxidation treatment or plasma oxidation treatment in the presence of an oxygen source to form a metal oxide film 14 'having the predetermined pattern. Steps Hereinafter, portions overlapping with those in the first embodiment will be omitted as appropriate, and description will be made centering on contents characteristic of the second embodiment.
  • a predetermined base 10 is prepared as illustrated in FIG. 15A, and a metal salt is formed on the predetermined base 10 as illustrated in FIG. 15B.
  • a metal complex, or a liquid containing either of them is a step of forming the coating film 12. Therefore, the contents of the first step described in the first embodiment can be basically the same.
  • a predetermined pattern can be obtained as it is, so that the first step and the second step are performed simultaneously.
  • a metal oxide film having a predetermined pattern and having a predetermined conductivity can be obtained more quickly and economically.
  • the pattern printing mode and the like will be described in detail in the second step.
  • a predetermined pattern is formed on the coating film 12 obtained in the first step, and a coating film 12b having the predetermined pattern is formed. It is a process.
  • the method for forming the predetermined pattern is not particularly limited as long as the predetermined pattern can be formed. For example, a plasma etching process, a pattern printing method, a lithography method, a mechanical pattern forming method, etc. One kind alone or a combination of two or more kinds may be mentioned.
  • various repeated patterns such as a line pattern, a line pattern, a ladder pattern, a circular pattern, an elliptical pattern, a triangular pattern, a polygonal pattern, a deformed pattern, etc. It can be a shape pattern.
  • Plasma etching process It is preferable to provide a predetermined pattern by a plasma etching process. That is, 1) Kind of plasma generating gas, 2) Plasma processing temperature, 3) Plasma pressure, 4) Flow rate of plasma generating gas, 5) Plasma processing time, etc. are appropriately changed to form coating film 12b having a predetermined pattern. Is preferred. More specifically, the plasma etching process conditions can be the same as the conditions of the second process in the first embodiment. Therefore, when performing the plasma etching process, it is preferable to use a rare gas and / or nitrogen as the plasma generation gas.
  • the plasma treatment temperature is preferably set to a value within the range of 20 to 100 ° C.
  • the plasma pressure is preferably set to a value within the range of 1 to 500 Pa.
  • the flow rate of the plasma generation gas is preferably about 5 ml / min to 500 ml / min.
  • the plasma treatment time is preferably set to a value within the range of 10 to 600 seconds.
  • Pattern printing method When pattern printing is performed, it is preferable to use an inkjet printing method, a silk screen printing method, a relief printing method (gravure printing method), an offset printing method, or the like.
  • the ink jet method is a method in which a metal salt-containing liquid material is ejected from a head (projecting hole) provided with a piezoelectric element and printed in a dot shape on a substrate.
  • the silk screen printing method is a method in which a metal salt-containing liquid material is extruded from a predetermined printing hole and printed as a predetermined pattern on a substrate.
  • the letterpress printing method is a method in which a letterpress printing plate such as a gravure roll is prepared, and a metal salt-containing liquid material is printed as a predetermined pattern on a base material in a state where the metal salt-containing liquid material is adhered to the convex part.
  • the offset printing method uses a printing roll having a hydrophilic portion and an oleophilic portion, and basically prints a metal salt-containing liquid material adhering to the hydrophilic portion as a predetermined pattern on the substrate. It is a method to do.
  • a metal mask or a ceramic mask having pores corresponding to a predetermined pattern is prepared, and a metal salt-containing liquid material is printed on the entire surface of the metal mask or ceramic mask through the metal mask or ceramic mask. By removing the mask, it is possible to print as a predetermined pattern.
  • Lithographic method In the lithographic method, a photoresist is used, laminated on a coating film, subjected to a predetermined exposure through a mask corresponding to a predetermined pattern, and further developed to obtain a predetermined resist.
  • This is an aspect in which holes corresponding to a predetermined pattern are formed in a portion, and a part of the coating film is removed using the holes.
  • an extremely fine pattern can be obtained with good reproducibility.
  • the metal salt-containing liquid is soluble in water and alcohol, these water and alcohol can be used alone or in combination as an etching solution. Therefore, an etching solution that is extremely economical and environmentally friendly can be obtained.
  • the mechanical pattern forming method forms a predetermined pattern by applying a blast material, a brush, a predetermined water pressure or the like to a predetermined place of a coating film made of a metal salt-containing liquid material. It is a forming method.
  • the 2 ′ step is an optional step between the first step and the second step, or an optional step between the second step and the third step. This is a step of partial oxidation.
  • the reason for this is that by partially oxidizing the coating film in this way, the plasma etching rate at a relatively thin film thickness is relatively high, and the plasma etching rate at a relatively thick film thickness is This is because it is relatively slow (hereinafter sometimes referred to as an etching rate adjustment effect). Therefore, by using a metal salt film exhibiting such an etching rate adjusting effect as a resist (etching rate adjusting member) and simultaneously performing plasma etching together with the base material, fine surface irregularities of nanometer order can be obtained. However, it can be stably and accurately formed on the substrate.
  • the change (rate of change) in the amount of elements detected by X-ray photoelectron spectroscopy (XPS) can be mentioned, and the degree of partial oxidation can be determined based on this. Can be adjusted. That is, by examining by XPS how much the specific element amount other than the metal and oxygen element derived from the metal salt in the metal salt film has changed before and after the 2 ′ step (partial oxidation step), It can be determined how much the metal salt film has been partially oxidized. For example, when zinc acetate is used as the metal salt, carbon is regarded as a unique element, and when the rate of change is large, it indicates that partial oxidation has progressed.
  • XPS X-ray photoelectron spectroscopy
  • the value of the rate of change is preferably set to a value within the range of 10 to 80%, preferably set to a value within the range of 15 to 70%. More preferably, the value is in the range of ⁇ 60%.
  • Partial oxidation by plasma treatment a predetermined plasma apparatus is used, and as the plasma source, oxygen, argon, helium, fluorocarbon or the like is preferably used alone or in combination.
  • oxygen source if it is a compound containing oxygen, such as air, oxygen, and water, it can use suitably.
  • a plasma apparatus it is preferable to include at least an ion source, a high-frequency power source, an upper electrode, a lower electrode, and a ground.
  • the plasma pressure when performing the partial oxidation treatment by the plasma treatment is set to a value within the range of 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 2 Pa. This is because, when the plasma pressure is less than 1.0 ⁇ 10 ⁇ 3 Pa, the plasma concentration is too low and it takes time to convert the metal oxide. On the other hand, even if the plasma pressure exceeds 1.0 ⁇ 10 2 Pa, collisions between the generated plasmas are likely to occur, so that almost no improvement in film forming speed is observed. Therefore, it is more preferable to set the plasma pressure during the plasma treatment to a value within the range of 1.0 ⁇ 10 ⁇ 2 to 5.0 ⁇ 10 1 Pa. Note that multi-stage plasma oxidation treatment may be performed. In that case, plasma oxidation treatment conditions can be changed at each stage, and plasma oxidation treatment can be performed a plurality of times under the same conditions.
  • the heat treatment temperature is preferably set to a value within the range of 120 to 300 ° C.
  • the thermal oxidation treatment temperature is less than 120 ° C., it depends on the type of metal salt or metal complex, but it is difficult to oxidize the metal salt or metal complex to form a conductive metal oxide. This is because there is a case of becoming.
  • the thermal oxidation treatment temperature exceeds 300 ° C., the surface irregularities may be thermally deformed or the substrate itself may be thermally deformed. Therefore, the thermal oxidation treatment temperature is more preferably set to a value within the range of 130 to 220 ° C., and further preferably set to a value within the range of 150 to 180 ° C.
  • the thermal oxidation treatment time is preferably set to a value within the range of 0.1 to 120 minutes.
  • the reason for this is that when the thermal oxidation treatment time is less than 0.1 minutes, depending on the type of metal salt or metal complex, the metal salt or metal complex is oxidized, and a metal oxide having a predetermined conductivity is obtained. This is because it may be difficult to do.
  • the thermal oxidation treatment time exceeds 120 minutes, the surface irregularities may be deformed. Therefore, the thermal oxidation treatment time is more preferably set to a value within the range of 1 to 60 minutes, and further preferably set to a value within the range of 5 to 30 minutes.
  • thermal oxidation treatment apparatus is not particularly limited, and for example, a baking oven having an electric heating apparatus or an infrared heating apparatus can be used.
  • 3rd process 3rd process has a predetermined pattern, for example, as shown in FIG.15 (d), with respect to the coating film which has a predetermined pattern, in the presence of an oxygen source, a thermal oxidation process or a plasma oxidation process is performed. At the same time, it is a step of forming a metal oxide film having predetermined conductivity. Therefore, in the second embodiment, the content can be basically the same as that of the third step (thermal oxidation treatment step) of the first embodiment.
  • FIG. 15D shows the case of plasma oxidation treatment.
  • the fourth step is an optional step. After the third step, the obtained metal oxide film is used as the first conductive layer. In addition, it is a step of forming a second conductive layer containing a metal or a metal oxide adjacently or laterally. Therefore, in the second embodiment, the content can be basically the same as the content of the fourth step described in the first embodiment.
  • Embodiment Examples Examples of the above-described second embodiment include the following examples.
  • the embodiment examples 7 to 12 will be specifically described with reference to FIG. 15 to FIG. 20.
  • the numbers of the embodiment examples are represented as serial numbers from the embodiment examples of the first embodiment. Further, (a) in FIG. 15 to FIG.
  • Embodiment 7 First step: Coating step Second step: Pattern forming step
  • Third step Oxidation treatment step by plasma oxidation treatment
  • the first step to the third step are exemplified in FIGS.
  • FIG. 15E By performing the above, as illustrated in FIG. 15E, it is possible to stably manufacture the metal oxide film 14 ′ having a predetermined pattern and having a predetermined conductivity and the like. Further, as shown in FIG. 15 (d), since the plasma oxidation process is performed in the third step, it is possible to perform a low temperature process, and it is effective to cause thermal damage to the base material 10 and the like. Can be prevented.
  • Embodiment 8 Coating step Second step: Pattern forming step
  • Third step Oxidation step by thermal oxidation treatment
  • the first step to the third step are exemplified in FIGS. 16B to 16D.
  • the metal oxide film 14 'having a predetermined pattern and having a predetermined conductivity can be stably manufactured as illustrated in FIG.
  • FIG. 16 (d) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) is possible, which is economical. Is.
  • FIGS. 17B to 17C The first / second process to the third process are exemplified in FIGS. 17B to 17C.
  • the metal oxide film 14 'having a predetermined pattern and having a predetermined conductivity and the like can be quickly and stably manufactured as illustrated in FIG.
  • FIG. 17 (b) since the first step and the second step can be performed simultaneously, it has a predetermined pattern and has a predetermined conductivity and the like more quickly and economically.
  • the metal oxide film 14 ′ can be manufactured quickly and stably.
  • FIG. 17 (c) since the plasma oxidation process is performed in the third step, it is possible to perform a low temperature process, and it is effective to cause thermal damage to the base material 10 and the like. Can be prevented.
  • Embodiment 10 First / Second Step: Pattern Application Step Third Step: Oxidation Step by Thermal Oxidation Step
  • FIGS. 18B to 18C The first / second step to the third step are exemplified in FIGS. 18B to 18C.
  • the metal oxide film 14 'having a predetermined pattern and having a predetermined conductivity and the like can be quickly and stably manufactured as illustrated in FIG. 18D.
  • FIG. 18B since the first step and the second step can be performed simultaneously, the metal oxide film 14 ′ having a predetermined pattern can be quickly and economically formed. It can be manufactured stably.
  • FIG. 18 (c) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) becomes possible. Is.
  • Step 2 ′ Partial oxidation step by plasma oxidation treatment
  • Step 2 Step of pattern formation
  • Step 3 Step of oxidation treatment by plasma oxidation treatment
  • FIGS. 19B to 19D Step of oxidation treatment by plasma oxidation treatment
  • a metal oxide film 14 ′ having a predetermined pattern and exhibiting conductivity etc. can be stably manufactured as illustrated in FIG. 19 (e).
  • FIG. 19B by providing a partial oxidation step in the second 'step, it becomes possible to adjust the processing speed when forming a pattern in the next step (second step).
  • FIG. 19 (d) since the plasma oxidation process is performed in the third step, it is possible to perform a low-temperature process and effectively damage the base material 10 and the like. Can be prevented.
  • Step 2 ' Partial oxidation step by plasma oxidation treatment
  • Step 2 Step of pattern formation
  • Step 3 Step of oxidation treatment by thermal oxidation treatment
  • FIGS. 20 (b) to 20 (d) are shown in FIGS. 20 (b) to 20 (d).
  • a metal oxide film 14 ′ having a predetermined pattern and having conductivity etc. can be stably manufactured as illustrated in FIG. .
  • FIG. 20B by providing a partial oxidation process in the 2 ′ process, it is possible to adjust the processing speed when forming a pattern in the next process (second process).
  • FIG. 20 (d) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) becomes possible. Is.
  • the third embodiment is a method for forming a metal oxide film, which is a combination of the method for forming a metal oxide film of the first embodiment and the second embodiment. However, a patterned metal oxide film is formed on a substrate.
  • Embodiment 13 First step: Coating step Second step-1: Pattern forming step Second step-2: Surface unevenness forming step by plasma etching treatment
  • Third step Oxidation treatment step by plasma oxidation treatment
  • the first to third steps are shown in FIG. 21 (b) to 21 (e), by carrying out in this way, as shown in FIG. 21 (f), the surface unevenness 14′a and the metal oxide film 14 ′ having a predetermined pattern are formed. It can be manufactured stably. Further, as shown in FIG. 21 (c), after performing the pattern forming process first, the surface unevenness forming process (plasma etching process) is executed as shown in FIG. Well, it can be patterned. Further, as shown in FIGS.
  • Embodiment 14 First step Coating step Second step-1: Surface unevenness forming step by plasma etching treatment
  • Third step Oxidation treatment step by plasma oxidation treatment
  • the first to third steps are shown in FIG. 22 (b) to 22 (e), the surface roughness 14'a and the metal oxide film 14 'having a predetermined pattern are stabilized as shown in FIG. 22 (f) by carrying out in this way. Can be manufactured automatically.
  • FIG. 22 (c) after the surface unevenness forming step (plasma etching process) is performed first, the pattern forming step is performed as shown in FIG. 22 (d). Surface irregularities can be formed with high accuracy.
  • FIG. 22 (e) since the plasma oxidation process is performed in the third step, it is possible to perform a low temperature process, and it is effective to cause thermal damage to the base material 10 and the like. Can be prevented.
  • Embodiment 15 coating step second step-1: pattern forming step second step-2: surface unevenness forming step by plasma etching treatment
  • Embodiment 16 First step: Coating step Second step-1: Surface unevenness forming step by plasma etching treatment Second step-2: Pattern forming step Third step: Oxidation treatment step by thermal oxidation treatment
  • the first to third steps are shown in FIG. 24 (b) to (e), the metal oxide film 14 'having the surface irregularities 14'a and the predetermined pattern is stabilized as shown in FIG. 24 (f) by performing in this way. Can be manufactured automatically.
  • FIG. 24C after the surface unevenness forming step (plasma etching process) is first performed, the pattern forming step is performed as shown in FIG. Surface irregularities can be formed with high accuracy.
  • FIG. 24 (e) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) is possible, which is economical. Is.
  • Embodiment 17 First / second step-1: pattern coating step second step-2: surface unevenness forming step by plasma etching treatment
  • Third step oxidation treatment step by plasma oxidation treatment
  • the first to third steps are shown in FIG.
  • FIG. 25E the surface unevenness 14′a and the metal oxide film 14 ′ having a predetermined pattern can be quickly and stably formed as shown in FIG. Can be manufactured automatically.
  • FIG. 25 (b) since the first step and the second step -1 can be performed at the same time, a metal oxide film having a predetermined pattern can be quickly and economically formed. It can be manufactured stably. Further, as shown in FIGS.
  • Embodiment 18 First / second step-1: pattern coating step second step-2: surface unevenness forming step by plasma etching treatment
  • Third step oxidation treatment step by thermal oxidation treatment
  • the first to third steps are shown in FIG. ) To (d), but by carrying out in this way, as shown in FIG. 26 (e), it has surface irregularities 14'a and a predetermined pattern, and has a predetermined conductivity, etc.
  • the metal oxide film 14 ' can be manufactured quickly and stably.
  • FIG. 26 (b) since the first step and the second step -1 can be carried out simultaneously, a metal oxide film having a predetermined pattern can be quickly and economically and quickly. It can be manufactured stably.
  • FIG. 26 (d) since the thermal oxidation process is performed in the third step, for example, a large-scale oxidation process using the heating furnace 17 (17a, 17b) becomes possible, and the economy is improved. Is.
  • the surface unevenness 14a obtained by any one of the metal oxide film forming methods according to the first to third embodiments is provided.
  • the metal oxide film has surface unevenness.
  • the surface roughness of the metal oxide film is preferably 30 nm or more, more preferably in the range of 40 to 500 nm, and even more preferably in the range of 45 to 300 nm.
  • the thickness of the metal oxide film of the present invention is preferably set to a value within the range of 50 to 1000 nm.
  • the reason for this is that when the thickness of the metal oxide film is less than 50 nm, the mechanical strength is lowered, the durability and adhesion are remarkably lowered, or the surface resistivity of the metal oxide film is excessively large. This is because there is a case.
  • the thickness of the metal oxide film exceeds 1000 nm, excessive time may be required for formation or the light transmittance may be significantly reduced. Therefore, the thickness of the metal oxide film is preferably set to a value within the range of 80 to 800 nm, and more preferably set to a value within the range of 100 to 600 nm.
  • the surface resistivity of the metal oxide film of the present invention is set to a value within the range of 1 ⁇ 10 0 to 1 ⁇ 10 10 ⁇ / ⁇ . Because this reason, the surface resistivity of such a metal oxide film, at a value greater than 1 ⁇ 10 10 ⁇ / ⁇ and conductivity significantly reduced, in some cases available applications is unduly limited is there. On the other hand, it is difficult to produce a metal oxide film having a surface resistivity of less than 1 ⁇ 10 0 ⁇ / ⁇ .
  • the surface resistivity of the metal oxide film is preferably set to a value within the range of 3 ⁇ 10 0 to 1 ⁇ 10 9 ⁇ / ⁇ , and a value within the range of 5 ⁇ 10 0 to 1 ⁇ 10 8 ⁇ / ⁇ More preferably.
  • the measuring method of the surface resistivity of a metal oxide film is explained in full detail in the Example mentioned later.
  • the visible light transmittance of the metal oxide film of the present invention is preferably 50% or more. The reason for this is that when the light transmittance of the metal oxide film is less than 50%, it becomes difficult to use as a transparent electrode, and usable applications may be excessively limited.
  • the upper limit of the visible light transmittance is about 95% although it depends on the metal oxide. Therefore, the visible light transmittance of the metal oxide film is preferably set to a value in the range of 60 to 95%, and more preferably set to a value in the range of 70 to 90%.
  • the visible light transmittance is the transmittance at a wavelength of 550 nm, and the measuring method will be described in detail in Examples described later.
  • a protective layer 20 can be formed on the metal oxide film 14.
  • the metal oxide film 14 includes the protective layer 20 as described above, the metal oxide film can be prevented from being damaged.
  • a material which comprises a protective layer a thermosetting resin, a photocurable resin, or a thermoplastic resin is mentioned, for example.
  • the metal oxide film 14 ′ thus patterned can be suitably used as a transparent electrode of a liquid crystal display device, a plasma display device, an organic electroluminescence device, or an inorganic electroluminescence device.
  • a resin layer 22 constituting an electrical insulating layer, a color filter, or the like is further formed on the patterned metal oxide film 14 ′.
  • the metal oxide film is preferably an electrode for an electronic device.
  • the metal oxide film of the present invention has a low surface resistivity and has predetermined surface irregularities, etc., so that when configured as an electrode for an electronic device, the electronic device can be driven efficiently. It is.
  • the contact area with an adjacent semiconductor layer increases, so that the conversion efficiency can be increased.
  • the metal oxide film of the present invention has high transparency, it can effectively transmit necessary light.
  • a liquid crystal display device an organic electroluminescent apparatus, an organic thin film solar cell, a dye-sensitized solar cell, an organic transistor, a plasma display etc. are mentioned.
  • Example 1 Formation of Metal Oxide Film (1) First Step After containing 0.2 g of zinc acetate (made by Aldrich, purity 99.99%) as a metal salt and 30 g of pure water in a container with a stirrer, It stirred until it became uniform, and it was set as the liquid substance (concentration: 41.7 mmol / l) containing a metal salt. Next, the liquid material containing the obtained metal salt was applied to the surface of a 700 ⁇ m thick glass substrate (Corning Corp., Eagle 2000) by spin coating (rotation speed: 1500 rpm), and 100 ° C. for 5 minutes. It dried on conditions, and obtained the zinc acetate film
  • the obtained glass substrate provided with the zinc acetate film having surface irregularities is heated in air at 500 ° C. for 30 minutes using a baking oven to heat the zinc acetate film.
  • Oxidation treatment was performed to obtain a metal oxide film (zinc oxide).
  • the glass substrate provided with such a metal oxide film was washed with water at 25 ° C. for 30 minutes to obtain a glass substrate provided with a metal oxide film having a centerline surface roughness (Ra) of 89.4 nm.
  • Centerline average roughness (Ra) was measured using an atomic force microscope (manufactured by SII Nanotechnology, Inc., model number SPA300HV). That is, based on the result of observing the surface (measurement range: 5 ⁇ m ⁇ 5 ⁇ m) at a scanning frequency of 0.3 Hz in the DFM mode (dynamic force mode) of the atomic force microscope, the center line average roughness is obtained from the above-described equation (1). The thickness (Ra) was calculated.
  • a metal oxide film is obtained under the following conditions by X-ray photoelectron spectroscopic analysis (XPS analysis, manufactured by ULVAC-PHI, using model number Quantera SXM). The composition ratio was measured, and the oxygen ratio was defined as the oxygen content (mol%) of the metal oxide film.
  • XPS analysis manufactured by ULVAC-PHI, using model number Quantera SXM.
  • the composition ratio was measured, and the oxygen ratio was defined as the oxygen content (mol%) of the metal oxide film.
  • Excitation X-ray Ar X-ray diameter 100 ⁇ m X-ray output 15kV, 25W Photoelectron escape angle 45 °
  • the visible light transmittance (wavelength 550 nm) of the metal oxide film was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corp., model number UV-3101PC) in a state including the base material.
  • the cross cut part is affected more than 15% but not more than 35%.
  • Classification 4 The membrane is partially or completely peeled along the edge of the cut, and / or some eyes are partially or completely peeled off.
  • the cross-cut part is affected by more than 35% but not more than 65%.
  • Category 5 The degree of peeling exceeds Category 4.
  • Example 2 In Example 2, a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 1 except that the plasma pressure during the plasma treatment in the second step was set to 30 Pa. The evaluation results are shown in Table 1.
  • Example 3 In Example 3, a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 1 except that the plasma pressure during the plasma treatment in the second step was set to 70 Pa. The evaluation results are shown in Table 1.
  • Example 4 In Example 4, a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 1 except that the plasma pressure during the plasma treatment in the second step was 90 Pa. The evaluation results are shown in Table 1.
  • Example 5 is the same as Example 1 except that zinc acetylacetonate (made by Aldrich, purity 99.99%), which is a metal complex, was used in place of the metal salt in the first step and dissolved in methanol. A metal oxide film (zinc oxide) was formed and evaluated. The evaluation results are shown in Table 1.
  • Example 6 gallium (III) acetylacetonate (manufactured by Aldrich, purity 99.99%) was used as a dopant precursor, and the concentration of the dopant precursor was changed to zinc of zinc acetylacetonate which is a metal complex.
  • a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 5 except that 96 mol was mixed so that gallium was 4 mol. The evaluation results are shown in Table 1.
  • Example 7 aluminum acetylacetonate (manufactured by Aldrich, purity 99%) is used as a dopant precursor, and the concentration of the dopant precursor is set to 96 moles of zinc of zinc acetylacetonate which is a metal complex.
  • a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 5 except that aluminum was mixed so as to be 4 mol. The evaluation results are shown in Table 1.
  • Example 8 In Example 8, a metal oxide film (indium oxide) was formed in the same manner as in Example 5 except that indium (III) acetylacetonate (manufactured by Aldrich, purity 99.99%) was used as the metal complex. ,evaluated. The evaluation results are shown in Table 1.
  • Example 9 In Example 9, tin (II) acetylacetonate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) was used as a dopant precursor, and the concentration of the dopant precursor was changed to indium of indium (III) acetylacetonate. A metal oxide film (ITO) was formed and evaluated in the same manner as in Example 8 except that 96 mol was mixed with 4 mol of tin. The evaluation results are shown in Table 1.
  • Example 10 a metal oxide film (titanium oxide) was formed in the same manner as in Example 5, except that titanium oxide (IV) acetylacetonate (manufactured by Aldrich, purity 99.9%) was used as the metal complex. And evaluated. The evaluation results are shown in Table 1.
  • Example 11 In Example 11, a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 1 except that helium was used as the plasma generation gas. The evaluation results are shown in Table 1.
  • Example 12 In Example 12, a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 1 except that krypton was used as the plasma generation gas. The evaluation results are shown in Table 1.
  • Example 13 In Example 13, a metal oxide film (zinc oxide) was formed and evaluated in the same manner as in Example 1 except that nitrogen was used as the plasma generation gas. The evaluation results are shown in Table 1.
  • Example 14 In Example 14, a metal oxide film was formed and evaluated according to Example 1 except that the following plasma oxidation treatment was used in place of the thermal oxidation treatment in the third step.
  • PET film A-4300, manufactured by Toyobo Co., Ltd. having a thickness of 180 ⁇ m is prepared, and polyvinyl alcohol (manufactured by Kanto Chemical Co., Ltd., weight average molecular weight: 86000) is spin coated on the surface. ) was applied to a thickness of 0.2 ⁇ m and then dried to obtain a PET substrate having a primer layer made of polyvinyl alcohol.
  • the mixture is stirred until uniform and contains a metal salt.
  • the liquid substance concentration: 41.7 mmol / l.
  • the liquid material containing the obtained metal salt was applied to the surface of the PET substrate by a spin coating method (rotation speed: 1500 rpm), dried at 100 ° C. for 5 minutes, and the film thickness was 500 nm. A zinc acetate film was obtained.
  • Example 15 In Example 15, instead of zinc acetate, a metal oxide film (oxidized oxide) (oxidized oxide) (oxidized oxide) was used in the same manner as in Example 14 except that indium (III) acetylacetonate (manufactured by Aldrich, purity 99.99%) was used as the metal complex. Indium) was formed and evaluated. The evaluation results are shown in Table 1.
  • Example 16 a metal oxide film (zinc oxide) was formed in the same manner as in Example 1 except that zinc chloride (ZnCl 2 , manufactured by Kanto Chemical Co., Ltd., special grade) was used as the metal salt and dissolved in acetonitrile. And evaluated. The evaluation results are shown in Table 1.
  • Example 17 On the metal oxide film obtained in Example 1, an ITO film having a thickness of 100 nm was laminated by a magnetron sputtering method using a sputtering apparatus (“ISP-4000S-C” manufactured by ULVAC, Inc.). The sputtering conditions are as follows. The evaluation results are shown in Table 1. RF power 500W Gas flow rate Ar (100 ml / min), oxygen (1 ml / min) Sputtering time 52 seconds Since the surface is an ITO film, measurement of the oxygen content was omitted.
  • ISP-4000S-C sputtering apparatus
  • Comparative Example 1 was evaluated by forming a metal oxide film (zinc oxide) in the same manner as in Example 1 except that the second step of providing surface irregularities was omitted from the metal salt film. The evaluation results are shown in Table 1.
  • Comparative Example 2 was evaluated in the same manner as Example 1 except that the third step, which was an oxidation treatment, was omitted for the metal salt film. The evaluation results are shown in Table 1. In Table 1,-indicates unmeasured.
  • the films obtained in Examples 1 to 17 had an uneven shape with a surface roughness (Ra) of 45.6 to 121.9 (nm) in a mountain shape or a brush shape. .
  • the obtained film had an oxygen content of 46.5 to 68.5 mol%, and it was confirmed that a metal oxide film was formed.
  • the metal oxide films of Examples 1 to 9 and 11 to 17 had low surface resistivity and high light transmittance.
  • Example 10 it was confirmed that a titanium oxide film having a high light transmittance but a high surface resistivity was obtained from the characteristics of titanium oxide. Furthermore, the metal oxide films of Examples 1 to 17 were excellent in adhesion.
  • Comparative Example 1 in which the second step of providing surface irregularities was omitted, a predetermined metal oxide film was obtained, but the center line average roughness (Ra) was higher than that of the metal oxide films of Examples 1 to 17. ) was remarkably small and could not be used as an electrode having irregularities. Furthermore, in Comparative Example 2, although a predetermined metal salt film was obtained, the surface resistivity was 1 ⁇ 10 10 or more and it could not be used as an electrode. In addition, since the strength of the coating film was insufficient, the adhesion could not be evaluated.
  • a patterning step line pattern, line width 200 ⁇ m, space width 200 ⁇ m
  • a zinc oxide film metal salt film
  • a patterning process circular dot pattern, diameter 200 ⁇ m, center-to-center distance 1000 ⁇ m
  • a zinc acetate film metal salt film
  • Example 20 In Example 20, as shown in FIG. 16, a zinc acetate film (metal salt film) formed on a predetermined glass substrate was patterned by a photolithographic method (circular dot pattern, diameter 100 ⁇ m, center distance 500 ⁇ m). Then, a thermal oxidation treatment (in air, 500 ° C., 30 minutes) was performed according to Example 1 to form a zinc oxide film (metal salt film) and evaluated (however, Evaluation of surface resistivity, light transmittance and adhesion was omitted.) As a result, it was confirmed that the zinc oxide film had a flat surface (Ra of 2 nm or less) and a dot-like pattern having an oxygen content in the range of 45 to 70 mol%.
  • Example 21 In Example 21, as shown in FIG. 18, a patterned zinc acetate film (circular dot pattern, diameter 100 ⁇ m, center-to-center distance 500 ⁇ m) is formed on a predetermined glass substrate by an ink jet method, A zinc oxide film (metal salt film) was formed and evaluated by carrying out thermal oxidation treatment (in air, 500 ° C., 30 minutes) according to Example 1 (however, surface resistivity, light transmittance and The evaluation of adhesion was omitted.) As a result, it was confirmed that the zinc oxide film had a flat surface (Ra of 2 nm or less) and a dot-like pattern having an oxygen content in the range of 45 to 70 mol%.
  • Example 22 In Example 22, as shown in FIG. 20, a zinc acetate film (metal salt film) formed on a predetermined glass substrate was subjected to plasma partial oxidation treatment under the following conditions, and then patterned by photolithography. By carrying out the steps (line pattern, line width 100 ⁇ m, space width 100 ⁇ m) and then performing thermal oxidation treatment (in air, 500 ° C., 30 minutes) according to Example 1, a zinc oxide film (metal (Salt film) was formed and evaluated (however, the evaluation of surface resistivity, light transmittance and adhesion was omitted based on the pattern shape of the metal salt film).
  • a metal oxide film of the present invention As described above in detail, according to the method for forming a metal oxide film of the present invention, it has excellent surface resistivity, transparency, etc., has predetermined surface irregularities, etc., and has predetermined conductivity, etc. A metal oxide film can be obtained stably. In addition, according to the metal oxide film of the present invention, since it has excellent surface resistivity, transparency, etc., and has predetermined surface irregularities, etc., it seems that an optimum metal oxide film for an electrode for electronic devices can be obtained. Became. Therefore, according to the present invention, a suitable laminate can be efficiently supplied as a transparent electrode or the like of a liquid crystal display device, a plasma display device, an organic electroluminescence device, an inorganic electroluminescence device, or the like.
  • Base material 12 Coating film of metal salt-containing liquid (metal salt film) 12a: surface irregularities in metal salt film 12b: patterned metal salt film 13: partially oxidized metal salt film 13b: patterned and partially oxidized metal salt film 14: metal oxide film 14 ': patterned metal oxide film 14a: Surface unevenness in metal oxide film 16: Plasma processing apparatus 16a: AC power supply 16b: Electrode (upper electrode) 16c: Electrode (lower electrode) 16d: Earth 17: Heating furnace 18: Primer layer 20: Protective film 22: Resin film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 表面凹凸および所定パターン、あるいはいずれか一方を有するとともに、表面抵抗率や光透過率等のばらつきが少ない金属酸化膜の形成方法およびそのような金属酸化膜を提供する。 基材上に、表面凹凸および所定パターン、あるいはいずれか一方を有する金属酸化膜の形成方法等であって、基材に対して、金属塩を含有する液状物を塗布して金属塩膜を形成する第1工程と、金属塩膜に対して、表面凹凸または所定パターンを設ける第2工程と、金属塩膜に対して、熱酸化処理またはプラズマ酸化処理を行い、金属酸化膜とする第3工程と、を含む。

Description

金属酸化膜の形成方法および金属酸化膜
 本発明は、表面凹凸および所定パターン、あるいはいずれか一方を有する金属酸化膜の形成方法、およびそのような形成方法によって得られる金属酸化膜に関し、特に、電子デバイス用電極等として最適な表面凹凸等を有する金属酸化膜の形成方法および金属酸化膜に関する。
 従来、ガラス基板の上に、金属酸化物からなる薄膜(以下、金属酸化膜と称する場合がある。)を、蒸着等の手法により形成した透明電極が知られている。
 しかしながら、軽量化や薄型化の観点から、ガラス基板にかわって、プラスチックフィルムが代用されている。
 このようなプラスチックフィルム上に、金属膜や金属酸化膜を形成する方法としては、以下の形成方法が知られている。
(1)金属または金属酸化物材料の真空蒸着あるいはスパッタリングなどの蒸着法。
(2)金属または金属酸化物粒子を有機バインダー中に分散させた溶液を塗布する塗布方法。
 しかしながら、(1)蒸着法においては、高真空を要するため製造コストが高くなり、量産性や経済性に難点があるという問題が見られた。
 また、(2)塗布方法では、得られる金属膜等における導電性が、蒸着法で得られる金属膜等と比較して、劣っているという問題が見られた。
 そこで、金属酸化膜の形成方法として、均質、透明性、材料の選択が広い等の理由により、金属アルコキシドおよびその加水分解物を用いるゾル-ゲル法が提案されている。
 また、最近では、機能をさらに付与することや物性を改良するために有機化合物を併用することで、無機ポリマーと有機ポリマーが均質化した有機・無機ハイブリット膜の研究も行われている。
 しかしながら、ゾル-ゲル法の場合、最終的に、高温での熱処理(焼成)工程が必要であって、それによって、連続生産が制限されて、生産コストが高くなったり、基材が熱劣化したりするという問題が見られた。そして、そのような熱劣化を防止するのに、基材の種類選択が過度に制限されたりするという問題も見られた。
 そのため、ゾル-ゲル法を用いて金属酸化膜を形成する際に、高温での熱処理工程を実施するかわりに、波長が360nm以下の紫外光を照射して、金属酸化物を結晶化する方法が提案されている(例えば、特許文献1参照)。
 また、ゾル-ゲル法により金属酸化膜を形成する際に、基材上に、金属酸化物ゲルを形成した後、プラズマ処理を施す方法が提案されている(例えば、特許文献2参照)。
 より具体的には、基材上に、金属アルコキシドまたは金属塩を主原料として得られる金属酸化物ゾルを、予め金属酸化物ゲルに変化させた後、当該金属酸化物ゲルに対して、所定のプラズマ処理を施すことによって、金属酸化膜を形成する方法である。
 一方、有機薄膜太陽電池等の技術分野においては、光変換効率等を向上させるべく、凹凸を有するテクスチャ層を備えた太陽電池用透明電極基板が開示されている(例えば、特許文献3参照)。
 より具体的には、樹脂フィルムと、凹凸を有するテクスチャ層と、金属酸化物よりなる層と、を有する太陽電池用透明電極基板であって、凹凸を有するテクスチャ層が光硬化性組成物を硬化してなることを特徴とする太陽電池用透明電極基板である。
 また、陽極酸化皮膜として、金属膜または金属酸化膜に直接的にナノ構造パターンを形成する方法も提案されており、電気化学的手法で自己規則的に細孔を有する多孔性材料を得る作製方法が提案されている(例えば、特許文献4参照)。
 より具体的には、図27(a)~図27(f)に示すように、多孔性材料を得る作製方法である。
 すなわち、図27(a)に示すように、母型201となるアルミニウムを陽極酸化することにより表面に、陽極酸化皮膜(陽極酸化皮膜バリア層202、陽極酸化皮膜ポーラス層203)を生成させる。
 次いで、図27(b)に示すように、それを陽極酸化皮膜を有する母型201とし、母型201の細孔内に多孔質皮膜のネガ型となる金属205´を充填する。
 次いで、図27(c)に示すように、母型201を選択的に溶解し、さらに、図27(d)に示すように、陽極酸化皮膜202、203を除去することによって、多孔質皮膜のネガ型205を得る。
 そして、図27(e)に示すように、このネガ型205に他の物質206´を充填した後、図27(f)に示すように、ネガ型205を選択的に溶解することによって、陽極酸化皮膜と同一形状の多孔性材料206を得る作製方法である。
特開平9-157855号公報(特許請求の範囲) 特開2000-327310号公報(特許請求の範囲) 特開2008-177549号公報(特許請求の範囲) 特開平2-254192号公報(特許請求の範囲)
 しかしながら、特許文献1に開示された形成方法では、紫外光の照射時間が長く、基材によってはダメージを受けやすいばかりか、照射露光装置の価格が高く、その上、大面積の金属酸化膜については、連続的に生産しにくいという問題が見られた。
 また、特許文献2に開示された形成方法では、プラズマ処理を施す前に、金属酸化物ゾルを、金属酸化物ゲルに予め変化させなければならず、工程数が多いという問題が見られた。
 さらに言えば、特許文献1や特許文献2に開示された形成方法においては、表面に対して、所定の表面凹凸を形成することについて、何ら記載も、示唆もなく、もちろん、そのような表面凹凸を安定的に形成する具体的手段についても、知られていなかった。
 また、特許文献3に開示された形成方法では、凹凸構造を有するテクスチャ層にさらに金属や金属酸化膜からなる導電層を形成しなければならず、その上、金属膜や金属酸化膜が、テクスチャ層から剥離しやすいという問題が見られた。
 さらに、特許文献4に開示された多孔性材料の作製方法では、工程数が多いばかりか、精度良くかつ安定的に多孔性材料を作製することが困難であるという問題が見られた。
 一方、従来、パターン化された金属酸化膜(ITOやIZO等)からなる導電層が、透明電極として多用されているものの、通常、基材に対する金属酸化物の蒸着工程を経たのち、エッチング液として、強酸を用いたエッチング処理によって、所定パターンが形成されていた。
 しかしながら、ITOやIZO等のエッチング速度は、本来遅いとともに、それを速くしようとすると、エッチング精度が著しく低下するという問題が見られた。
 また、エッチング液(強酸)の残さによる腐食問題が生じやすく、さらには、エッチング液の中和工程や、相当時間をかけた洗浄工程やリンス工程が必要であるという製造上の問題も見られた。
 そこで、本発明の発明者は、以上のような事情に鑑み鋭意努力したところ、金属塩および金属錯体のうち少なくともいずれか一方を含有する液状物を塗布した塗膜に対して、所定の表面凹凸および所定パターン、あるいはいずれか一方を設けた後に、熱酸化処理またはプラズマ酸化処理を行うことによって、所定の表面凹凸および所定パターン、あるいはいずれか一方を有する金属酸化膜が簡易かつ安定的に得られることを見出し、本発明を完成させたものである。
 すなわち、本発明の目的は、金属酸化膜を形成する際に、予め金属酸化物ゾルから金属酸化物ゲルに変化させることなく、優れた表面抵抗率や透明性等を有し、かつ所定の表面凹凸および所定パターン、あるいはいずれか一方を有する金属酸化膜が簡易かつ安定的に得られる形成方法、およびそのような形成方法によって得られる金属酸化膜を提供することである。
 本発明によれば、基材上に、表面凹凸および所定パターンを有する金属酸化膜、あるいはいずれか一方を形成する金属酸化膜の形成方法であって、下記第1~第3工程を含むことを特徴とする金属酸化膜の形成方法が提供され、上述した問題を解決することができる。
(1)基材に対して、金属塩および金属錯体、あるいはいずれか一方を含有する液状物(以下、「金属塩含有液状物」ということがある)を塗布して塗膜(以下、金属塩膜と称する場合がある。)を形成する第1工程
(2)塗膜に対して、表面凹凸および所定パターン、あるいはいずれか一方を形成する第2工程
(3)表面凹凸および所定パターン、あるいはいずれか一方を形成した塗膜に対して、酸素源の存在下、熱酸化処理またはプラズマ酸化処理を行い、表面凹凸および所定パターンを有する金属酸化膜、あるいはいずれか一方の金属酸化膜とする第3工程
 すなわち、第1工程において、金属塩を予め基材に塗布した後、それを金属酸化物ゲルに変化させることなく、第2工程において、塗膜に対して、所定の表面凹凸または所定パターンを設けた後、第3工程において所定の酸化処理を施すことによって、優れた表面抵抗率や透明性等を有し、かつ、所定の表面凹凸あるいは所定パターンを有する金属酸化膜を安定的に得ることができる。
 なお、第2工程で、表面凹凸または所定パターンを設けるのにプラズマ処理を行い、かつ、第3工程で、酸化処理のためにプラズマ酸化処理を行う場合、同一のプラズマ装置を連続的に使用することができ、その場合、所定の表面凹凸または所定パターンを有する金属酸化膜をさらに迅速かつ経済的に得ることができる。
 その他、第1工程において、金属塩含有液状物を基材上にパターン印刷した場合、それによって、所定パターンがそのまま得られることから、第1工程および第2工程を同時実施することになって、最終的に、所定パターンを有する金属酸化膜をさらに迅速かつ経済的に得ることができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第1工程において、金属塩および金属錯体、あるいはいずれか一方を含有する液状物として、亜鉛またはインジウムを含む金属塩を含有する液状物、あるいは亜鉛またはインジウムを含む金属錯体を含有する液状物を用いることが好ましい。
 このような金属種を含む金属塩または金属錯体を含有する液状物を用いることによって、光透過率の値がさらに高く、かつ表面抵抗率がさらに低い金属酸化膜を得ることができる。
 なお、液状物に対して、所定量のドーパント前駆体を含むことによって、さらに表面抵抗率の値が低い金属酸化膜を得ることができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第2工程において、塗膜に対して、中心線平均粗さ(Ra)が30nm以上である表面凹凸を形成することが好ましい。
 このような表面凹凸を設けることによって、良好な透明性および導電性を有する電子デバイス用電極等として使用可能な表面凹凸を有する金属酸化膜を得ることができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第2工程において、表面凹凸および所定パターンをプラズマエッチング処理によって設けるとともに、当該プラズマエッチング処理のプラズマ生成ガスとして、希ガスおよび窒素、あるいはいずれか一方を用いることが好ましい。
 このように実施すると、塗膜に対して、所定の表面凹凸や所定パターンをそれぞれ効率的に形成することができ、ひいては、所定の表面凹凸や所定パターンを有する金属酸化膜をさらに精度良く得ることができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第2工程において、プラズマ処理温度を20~100℃の範囲内の値とし、かつ、プラズマ圧力を1~500Paの範囲内の値とすることが好ましい。
 このように実施すると、所定の表面凹凸や所定パターンを有する金属酸化膜をさらに安定的かつ経済的に得ることができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第1工程と、2工程との間に、第2´工程を設けて、プラズマ酸化処理または熱酸化処理を行い、塗膜を部分酸化させることが好ましい。
 このように実施すると、プラズマエッチング処理をする際に、当該部分酸化された塗膜のエッチング速度を所望範囲に調整することができる。
 また、当該部分酸化された金属塩膜を、基材に対するレジスト(エッチング速度調整部材)としても使用することができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第3工程において、熱酸化処理を行う場合、当該熱酸化処理の温度を300~800℃の範囲内の値とすることが好ましい。
 このように実施すると、所定の表面凹凸や所定パターンを有する金属酸化物膜をさらに安定的かつ経済的に得ることができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第3工程において、プラズマ酸化処理を行う場合、当該プラズマ酸化処理のプラズマ生成ガスとして、酸素を用いるとともに、プラズマ圧力を1.0×10-3~1.0×10Paの範囲内の値とし、プラズマ時間を10~600秒の範囲内の値とし、プラズマ温度を20~100℃の範囲内の値とすることが好ましい。
 このように実施すると、所定の表面凹凸や所定パターンを有する金属酸化物膜をさらに安定的かつ経済的に得ることができる。
 また、このように実施すると、プラズマ処理温度を20~100℃程度の低温とすることができるため、基材に対する熱的影響を排除することができる。
 また、本発明の金属酸化膜の形成方法を実施するに際して、第3工程の後に、第4工程を設け、金属酸化膜上に、さらに金属あるいは金属酸化物の層を積層することが好ましい。
 このように金属あるいは金属酸化物の層をさらに積層することによって、表面抵抗率がさらに低い金属酸化膜を得ることができる。
 また、本発明の別の態様は、上述したいずれかの金属酸化膜の形成方法によって得られてなる表面凹凸および所定パターンを有する金属酸化膜、あるいはいずれか一方を有する金属酸化膜であって、当該金属酸化膜の表面抵抗率を1×100~1×1010Ω/□の範囲内の値とすることを特徴とする金属酸化膜である。
 このように構成することによって、表面抵抗率が低く、透明電極等に最適な、所定の表面凹凸を有する金属酸化膜とすることができる。
 また、本発明の金属酸化膜を構成するにあたり、金属酸化膜が、電子デバイス用電極であることが好ましい。
 このように構成することによって、優れた表面抵抗率や透明性を有し、かつ、所定の表面凹凸を有する金属酸化膜を用いて、電子デバイス用電極を提供することができる。
図1(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例1)。 図2(a)~(d)は、本発明の金属酸化物の形成方法により得られた積層体を説明するために供する図である。 図3は、金属塩膜の表面状態を示す写真である(倍率:30000倍)。 図4は、表面凹凸を有する金属塩膜の表面状態を示す写真である(倍率:30000倍)。 図5は、表面凹凸を有する金属酸化膜の表面状態を示す写真である(倍率:30000倍)。 図6は、別の金属塩膜の表面状態を示す写真である(倍率:30000倍)。 図7は、別の表面凹凸を有する金属塩膜の表面状態を示す写真である(倍率:30000倍)。 図8は、別の表面凹凸を有する金属酸化膜の表面状態を示す写真である(倍率:30000倍)。 図9(a)~(c)は、金属酸化膜における中心線平均粗さ(Ra)、表面抵抗率、および光透過率に対する第2工程でのプラズマ圧力の影響を説明するために供する図である。 図10(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例2)。 図11(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例3)。 図12(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例4)。 図13(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例5)。 図14(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例6)。 図15(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例7)。 図16(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例8)。 図17(a)~(d)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例9)。 図18(a)~(d)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例10)。 図19(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例11)。 図20(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例12)。 図21(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例13)。 図22(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例14)。 図23(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例15)。 図24(a)~(f)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例16)。 図25(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例17)。 図26(a)~(e)は、本発明の金属酸化物の形成方法を説明するために供する図である(実施態様例18)。 図27(a)~(f)は、従来の多孔性材料の製造方法を説明するために供する図である。
[第1の実施形態]
 本発明の第1の実施形態は、図1(a)~(e)に示すように、基材10上に、表面凹凸14aを有する金属酸化膜14を形成する金属酸化膜の形成方法であって、基材10に対して、金属塩または金属錯体を含有する液状物を塗布して金属塩膜12を形成する第1工程と、金属塩膜12に対して、表面凹凸12aを設ける第2工程と、表面凹凸12aを有する金属塩膜12に対して、酸素源(O2)の存在下、熱酸化処理またはプラズマ酸化処理を行い、表面凹凸14aを有する金属酸化膜14とする第3工程と、を含むことを特徴とする金属酸化膜の形成方法である。
 なお、表面凹凸を表す中心線平均粗さ(Ra)の値は、原子間力顕微鏡(エスアイアイ・ナノテクノロジー株式会社製、型番SPA300HV)を用いて測定して得ることができる。
 そして、本発明において用いられる中心線平均粗さ(Ra)は、下式(1)で定義される。
Figure JPOXMLDOC01-appb-M000001
 Ra     :中心線平均粗さ(nm)
 F(X、Y) :全測定データにより示される面((X,Y)座標におけるZの値)
 S     :指定面から理想的にフラットであると仮定したときの面積(nm2
 Z     :指定面内のZデータの平均値(nm)
 また、図1(a)は、所定の基材10を準備する工程を示し、図1(b)は、所定の基材10の上に、金属塩または金属錯体を含有する液状物(金属塩含有液状物)を塗布して、所定の金属塩膜12とする工程を示し、図1(c)は、金属塩膜12に対して、所定のプラズマ処理(プラズマエッチング処理)を施し、表面凹凸12aを形成する工程を示し、さらに、図1(d)は、表面凹凸12aを有する金属塩膜12に対して、所定の酸化処理(例えば、プラズマ酸化処理)を施し、図1(e)に示すような表面凹凸14aを有する金属酸化膜14とする工程を示している。
 以下、本発明の金属酸化膜の形成方法に関する実施形態を、図面を適宜参照して、具体的に説明する。
1.第1工程
(1)基材
 図1(a)に示す基材10の種類としては、特に制限されるものではなく、例えば、樹脂フィルム、ガラス、セラミック、金属などを使用することができる。
 また、樹脂フィルムとしては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、脂環式構造含有重合体、芳香族系重合体などが挙げられる。
 これらの中でも、汎用性が高いことから、ポリエステルおよびポリアミドからなる基材であることが特に好ましい。
 このようなポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレートなどが挙げられる。
 また、ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体が挙げられる。
 なお、形成する金属酸化膜との間の密着性や導電性を向上させるために、上述した基材表面に対して、予め、カップリング剤処理、酸化炎処理、ケイ酸化炎処理、コロナ処理、プラズマ処理、プライマー処理、ブラスト処理、酸処理等の少なくとも一つの表面処理を行うことが好ましい。
 そして、基材に対する表面処理の目安として、基材表面における濡れ指数(JIS K 6768準拠測定)を20~80dyn/cmの範囲内の値とすることが好ましく、30~75dyn/cmの範囲内の値とすることがより好ましく、40~70dyn/cmの範囲内の値とすることがさらに好ましい。
 また、基材の厚さとしては特に制約はないが、例えば、樹脂フィルムの場合、通常1~3000μmの範囲内の値とすることが好ましい。
 この理由は、かかる基材の厚さが1μm未満となると、機械的強度や取り扱い性が過度に低下したり、均一な厚さの金属酸化膜を安定的に形成することが困難となったりする場合があるためである。
 一方、かかる基材の厚さが3000μmを超えると、取り扱い性が過度に低下したり、得られる金属酸化膜の使用用途が過度に制限されたり、さらには、経済的に不利益となったりする場合があるためである。
 したがって、基材の厚さを5~1500μmの範囲内の値とすることがより好ましく、10~1000μmの範囲内の値とすることがさらに好ましい。
 また、図2(a)に示すように、金属酸化膜14は、基材10に直接形成してもよく、あるいは、図2(b)に示すように、基材10に対して、表面処理を施した後、その処理面18の上に金属酸化膜14を形成してもよい。
 このような表面処理としては、例えば、プライマー処理、コロナ処理、火炎処理などが挙げられるが、特に、プライマー処理であることが好ましい。
 この理由は、このようなプライマー層を形成した基材を用いることにより、基材に対する金属酸化膜の密着性をさらに向上させることができるためである。
 なお、このようなプライマー層を構成する材料としては、セルロースエステル(例えば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースニトレート、およびそれらの組み合わせ)、ポリアクリル、ポリウレタン、ポリビニルアルコール、ポリビニルエステル、ポリビニルアセタール、ポリビニルエーテル、ポリビニルケトン、ポリビニルカルバゾール、ポリビニルブチラール、およびそれらの組み合わせが挙げられる。
 また、プライマー層の厚さについても、特に限定されないが、通常0.05μm~10μmの範囲内の値である。
(2)金属塩または金属錯体を含有する液状物
 本発明で用いられる液状物には、通常、金属塩および金属錯体、あるいはいずれか一方と、所定量の溶剤と、が含まれる。
 そして、金属酸化膜における光透過率等の良好な特性を維持しながら、表面抵抗率を著しく低下させることができることから、液状物に対して、金属錯体等とともに、所定量のドーパント前駆体を配合することも好ましい。
(2)-1 金属塩
 ここで、金属塩としては、特に制限されるものではないが、例えば、ハロゲン化物、硝酸塩、硫酸塩等の無機塩、有機リン酸塩、カルボン酸塩等の有機塩が挙げられる。
 かかるハロゲン化物としては、塩化物や臭化物が挙げられるが、塩化物が好ましい。
 また、カルボン酸塩としては、アクリル酸、メタクリル酸、酢酸、サリチル酸、ぎ酸、シュウ酸、プロピオン酸、乳酸、トリフルオロ酢酸、フマル酸、イタコン酸、マレイン酸等の塩が挙げられる。
 そして、金属塩を構成する金属種としては、白金(Pt)、金(Au)、銀(Ag)、銅(Cu)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、ガリウム(Ga)、チタン(Ti)、ニッケル(Ni)、ゲルマニウム(Ge)、カドミウム(Cd)などが挙げられる。
 したがって、酢酸銅、酢酸カドミウム、酢酸亜鉛、酢酸水銀、酢酸鉛、酢酸ガリウム、酢酸インジウム、酢酸タリウム、酢酸チタン、酢酸マンガン、酢酸ニッケル、酢酸モリブテン、酢酸パラジウム、酢酸銀等が挙げられる。
 特に、亜鉛(Zn)、インジウム(In)、スズ(Sn)、の少なくとも一種を含む金属塩は、透明性のある金属酸化膜が得られることから好ましい金属である。
 そして、特に、金属種として、ZnまたはInを含む金属塩を用いると、光透過率の値がさらに高く、かつ表面抵抗率がさらに低い金属酸化膜を得ることができることからさらに好ましい金属である。金属塩は、一種単独または二種以上を併用して用いてもよい。
 なお、ここでいう透明性とは、可視光線が少なくとも透過することを意味し、より好ましくは、50%以上の可視光線透過率を有することである。
(2)-2 金属錯体
 また、金属錯体としては、分子の中心に金属、金属イオンが存在し、それを取り囲むように非共有電子対を持つ配位子と呼ばれるものからなる化合物であれば好適に用いることができる。
 より具体的には、ピリジン、トリフェニルフォスフィン、硝酸イオン、ハロゲン化物イオン、アンモニア等の単座配位子、エチレンジアミン、ビビリジン、アセチルアセトナート、フェナントロリン等の二座配位子、ターピリジン、エチレンジアミン四酢酸などの三座配位子を含む化合物が挙げられる。
 そして、金属錯体を構成する金属種としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、インジウム(In)、チタン(Ti)などが挙げられる。
特に、亜鉛(Zn)またはインジウム(In)を含む金属錯体を用いると、光透過率の値がさらに高く、かつ表面抵抗率がさらに低い金属酸化膜を得ることができることからさらに好ましい金属種である。
 したがって、好ましい金属錯体として、亜鉛アセチルアセトナート、インジウム(III)アセチルアセトナート、酸化チタン(IV)アセチルアセトナートなどが挙げられ、より好ましい金属錯体として、亜鉛アセチルアセトナート、インジウム(III)アセチルアセトナートが挙げられる。金属錯体は、一種単独または二種以上を併用してもちいてもよい。
(2)-3 ドーパント前駆体
 また、液状物において、ドーパントとなる所定量のドーパント前駆体を配合することが好ましい。
 この理由は、かかるドーパント前駆体を配合することによって、金属酸化膜における光透過率等の良好な特性を維持しながら、表面抵抗率を著しく低下させることができるためである。
 ドーパントは、用いられる金属塩または金属錯体とは種類の異なる金属を含む化合物であり、用いられる金属または金属錯体の種類に応じて選択される。ドーパントとしては、ガリウム(Ga)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、スカンジウム(Sc)などの金属を含む化合物が挙げられ、好ましくは、ガリウム(III)アセチルアセトナート、アルミニウムアセチルアセトナート、スズ(II)アセチルアセトナート、等の一種単独または二種以上の組み合わせが挙げられる。
 また、ドーパント前駆体の配合量は、金属塩または金属錯体に含まれる金属と、ドーパント前駆体に含まれる金属の合計量において、ドーパント前駆体の金属が1~10モル%の範囲内の値とすることが好ましい。
 この理由は、ドーパント前駆体の配合量が、1モル%未満となると、添加効果が発現しなかったり、得られる金属酸化膜の表面抵抗率の値がばらつく場合があるためである。
 一方、ドーパント前駆体の配合量が、10モル%を超えても、ドーパント前駆体の添加効果の向上はみられず、逆に低下する場合があるためである。
 したがって、ドーパント前駆体の配合量を、2~8モル%の範囲とすることがより好ましく、3~7モル%とすることがさらに好ましい。
(2)-4 溶剤
 また、液状物を構成する溶剤としては、例えば、アセトニトリルやプロピオニトリルなどのニトリル系化合物、メタノールやエタノールなどのアルコール類、アセトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、水などが挙げられる。
(2)-5 濃度
 また、金属塩または金属錯体を含有する液状物において、金属塩または金属錯体の濃度を0.01~15mol/lの範囲内の値とすることが好ましい。
 この理由は、金属塩または金属錯体の濃度が、0.01mol/l未満となると、得られる塗膜にピンホールが生じやすくなり、得られる金属酸化膜の表面抵抗率の値が大きくなることがあるためである。
 一方、金属塩または金属錯体の濃度が、15mol/lを超えると、金属塩または金属錯体が液状物中で析出することがあり、得られる金属酸化膜が均質なものにならないおそれがあるためである。
 したがって、金属塩または金属錯体の濃度を、0.02~10mol/lの範囲内の値とすることがより好ましく、0.03~5mol/lの範囲内の値とすることがさらに好ましい。
(2)-6 粘度
 また、金属塩または金属錯体を含有する液状物における粘度(測定温度:25℃)を0.1~5000mPa・secの範囲内の値とすることが好ましく、1~1000mPa・secの範囲内の値とすることがより好ましい。
 この理由は、かかる液状物の粘度がこの範囲内にあると、均一な厚さの塗膜を形成しやすくなるためである。
(3)塗布方法
 また、金属塩含有液状物を塗布するに際して、特に塗布方法について制限されるものでなく、公知の塗布方法を好適に使用することができる。
 より具体的には、ディッピング、スピンコート、ナイフコート、バーコート、ブレードコート、スクイズコート、リバースロールコート、グラビアロールコート、カーテンコート、スプレイコート、ダイコート、インクジェット等が挙げられる。
 例えば、金属塩含有液状物をより均一な厚さに塗布するには、スピンコートやグラビアロールコート等を用いることが好ましい。
 また、金属塩含有液状物は、通常、水性材料であることから、塗布しながら、所定パターンを精度良くかつ迅速に形成する際には、インクジェットを用いることがより好ましい。
 さらに、金属塩含有液状物を塗布した後は、必要に応じて加熱し、乾燥させてもよい。
 なお、金属塩膜の厚さは、通常、50~1000nmが好ましい。
 この理由は塗膜の厚さがこの範囲内にあると、所定の表面凹凸を容易に形成することができ、また得られる金属酸化膜の強度、表面抵抗率、光透過率等が良好なものとなるからである。
2.第2工程
 第2工程は、図1(c)に例示するように、所定処理方法によって、表面が平坦な金属塩膜12に対して、所定の表面凹凸12aを設ける工程である。
 すなわち、所定の表面凹凸を設けるべく、インプリント法、エッチング法など、各種機械的処理および化学的処理のいずれを行っても良いが、所定の表面凹凸を安定的かつ精度良く設けることができることから、以下に述べるプラズマ処理を実施することがより好ましい。
(1)プラズマ生成ガス
 プラズマ処理を実施するに際して、当該プラズマ処理のプラズマ生成ガスとして、希ガスおよび窒素、あるいはいずれか一方を用いることが好ましい。
 この理由は、このようなプラズマ生成ガスを用いることによって、金属塩膜に対して、所定形状かつ所定高さの表面凹凸を形成することができ、ひいては、所定形状かつ所定高さの表面凹凸を有する金属酸化膜をさらに精度良く得ることができるためである。
 すなわち、金属塩膜は、酸化前であって、比較的プラズマエッチングしやすいものの、特定のプラズマ生成ガス、例えば、クリプトンガスや窒素ガスを用いることによって、図3に示す金属塩膜に対して、図4に示すようなブラシ型の表面凹凸を形成することができ、ひいては、図5に示すようなブラシ型の表面凹凸を有する金属酸化膜をさらに精度良く得ることができるためである。
 なお、図3~図5は、後述する実施例12におけるプラズマ処理による表面凹凸形成前の平坦な金属塩膜、プラズマ処理後の表面凹凸を有する金属塩膜、および酸化処理後の表面凹凸を有する金属酸化膜の表面状態を表す写真である。
 また、プラズマ処理条件としてのプラズマ生成ガスの種類を変えて、例えば、アルゴンガスやヘリウムガスを用いることによって、図6に示すような金属塩膜に対して、図7に示すような山型の表面凹凸を形成することができ、ひいては、図8に示すような山型の表面凹凸を有する金属酸化膜をさらに精度良く得ることもできる。
 なお、図6~図8は、後述する実施例1におけるプラズマ処理による表面凹凸形成前の平坦な金属塩膜、プラズマ処理後の表面凹凸を有する金属塩膜、および酸化処理後の表面凹凸を有する金属酸化膜の表面状態を表す写真である。
(2)プラズマ処理温度
 また、第2工程において、プラズマ処理温度を20~100℃の範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ処理温度が、20℃未満となると、プラズマ処理に過度に時間がかかり、金属塩膜に対して、表面凹凸を効率的に形成することが困難となる場合があるためである。
 一方、かかるプラズマ処理温度が、100℃を超えると、金属塩膜や金属酸化膜における表面凹凸を安定的に形成することが困難となったり、経済性が低下したり、さらには、基材が熱変形したりする場合があるためである。
 したがって、第2工程におけるプラズマ処理温度を、25~90℃の範囲内の値とすることがより好ましく、30~80℃の範囲内の値とすることがさらに好ましい。
 なお、プラズマ処理温度は、プラズマチャンバー内の温度と、定義することができる。
(3)プラズマ圧力
 また、第2工程において、プラズマ圧力を1~500Paの範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ圧力が1Pa未満となると、金属塩膜における表面凹凸の形成に、過度に時間がかかることから、金属塩膜や金属酸化膜における所定形状の表面凹凸を効率的に形成することが困難となる場合があるためである。
 一方、かかるプラズマ圧力が、500Paを超えると、金属塩膜や金属酸化膜に対して、所定形状の表面凹凸を安定的に形成することが困難となったり、経済性が低下する場合があるためである。
 したがって、第2工程におけるプラズマ圧力を10~300Paの範囲内の値とすることがより好ましく、30~100Paの範囲内の値とすることがさらに好ましい。
 なお、プラズマ圧力は、プラズマチャンバー内の圧力と、定義することができる。
 ここで、図9(a)~(c)を参照しながら、第2工程におけるプラズマ圧力の、金属酸化膜における中心線表面粗さ(Ra)、表面抵抗率、および光透過率に対する影響をそれぞれ説明する。
 図9(a)において、横軸に、プラズマ圧力(Pa)を採って示しており、縦軸に、金属酸化膜における中心線表面粗さ(Ra)の値(nm)を採って示してある。
 そして、特性曲線が示すように、プラズマ圧力が30Pa程度の場合、金属酸化膜における中心線表面粗さ(Ra)は50nm以下の比較的低い値であるものの、プラズマ圧力が45Pa程度になると、金属酸化膜における中心線表面粗さ(Ra)は90nm程度と、比較的高い値が得られている。
 それが、プラズマ圧力が70Pa程度になると、金属酸化膜における中心線表面粗さ(Ra)が80nm程度と若干減少し、さらにプラズマ圧力が90Pa程度になると、金属酸化膜における中心線表面粗さ(Ra)が60nm程度まで減少している。
 すなわち、プラズマ圧力を調整することによって、金属酸化膜における中心線表面粗さ(Ra)を精度良く、所望範囲内の値に調整できることが理解される。
 また、図9(b)において、横軸に、プラズマ圧力(Pa)を採って示しており、縦軸に、金属酸化膜における表面抵抗率(Ω/□)の値を採って示してある。
 そして、特性曲線が示すように、プラズマ圧力が30Pa程度の場合、金属酸化膜における表面抵抗率は4×106Ω/□程度の比較的低い値であって、プラズマ圧力が45Pa程度になると、金属酸化膜における表面抵抗率としては、7×106Ω/□程度と、比較的高い値が得られている。
 それが、プラズマ圧力が70Pa程度になると、金属酸化膜における表面抵抗率が6×106Ω/□程度と若干減少し、さらにプラズマ圧力が90Pa程度になると、金属酸化膜における表面抵抗率が4×106Ω/□程度まで減少している。
 すなわち、プラズマ圧力を調整することによって、金属酸化膜における表面抵抗率を精度良く、所望範囲内の値に調整できることが理解される。
 また、図9(c)において、横軸に、プラズマ圧力(Pa)を採って示しており、縦軸に、金属酸化膜における光透過率の値(%)を採って示してある。
 そして、特性曲線が示すように、プラズマ圧力が30Pa~90Paの場合、それぞれ金属酸化膜における光透過率(可視光線透過率)は91%以上の高い値であり、プラズマ圧力を変えても高い光透過率を維持できることが理解される。
 これらの結果から、プラズマ圧力を調整することによって、高い光透過率を維持したまま、金属酸化膜における中心線表面粗さ(Ra)や表面抵抗率を所望範囲内の値に調整できることが理解される。
(4)プラズマ生成ガスの流量
 プラズマ生成ガスの流量は、金属塩膜の種類、プラズマ生成ガスの種類、形成される凹凸などによって適宜設定されるが、5ml/分~500ml/分程度である。
(5)プラズマ処理時間
 また、第2工程において、プラズマ処理時間を、10~600秒の範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ時間が、10秒未満となると、所定形状の表面凹凸を安定的に形成することが困難となる場合があるためである。
 一方、かかるプラズマ時間が、600秒を超えた値となると、得られた所定形状の表面凹凸がプラズマによってダメージを受けてしまい所望の表面凹凸を得るのが困難になる場合があるためである。
 したがって、第2工程におけるプラズマ時間を、20~500秒の範囲内の値とすることがより好ましく、30~300秒の範囲内の値とすることがさらに好ましい。
(6)表面凹凸
 また、第2工程は、金属塩膜に対して、表面凹凸を設けることを特徴とする。かかる表面凹凸の値は、中心線平均粗さ(Ra)として、30nm以上であることが好ましい。
 この理由は、表面凹凸を表す中心線平均粗さ(Ra)が過度に大きくなると、得られる金属酸化膜の表面粗さ(Ra)も大きくなり、外部からの光を乱反射して、所望の光透過率を得られない場合があるためである。また、中心線平均粗さ(Ra)が過度に大きい金属膜を太陽電池等の電極として用いた場合、電極に隣接する半導体層を均一に形成することが困難になることがある。
 したがって、金属塩膜の表面における中心線平均粗さ(Ra)を、40~500nmの範囲内の値とすることがより好ましく、45~300nmの範囲内の値とすることがさらに好ましい。
3.第3工程
 第3工程は、図1(d)に例示するように、酸素源(O2)の存在下、熱酸化処理またはプラズマ酸化処理を行う工程である。
 なお、図1(d)は、プラズマ装置16を用いて、表面凹凸12aを有するものの、非導電性の金属塩膜12を、表面凹凸14aを有するとともに、導電性等を有する金属酸化膜14とするプラズマ酸化処理の例を示している。
(1)熱酸化処理
(1)-1 熱酸化処理温度
 また、第3工程において、熱酸化処理を行う場合、その熱酸化処理温度を300~800℃の範囲内の値とすることが好ましい。
 この理由は、かかる熱酸化処理温度が300℃未満になると、金属塩や金属錯体の種類にもよるが、当該金属塩や金属錯体を酸化させ、金属酸化物とすることが困難となる場合があるためである。
 一方、かかる熱酸化処理温度が800℃を超えると、表面凹凸が変形する場合があるためである。
 したがって、熱酸化処理温度を350~750℃の範囲内の値とすることがより好ましく、400~700℃の範囲内の値とすることがさらに好ましい。
(1)-2 熱酸化処理時間
 また、熱酸化処理を行う場合、熱酸化処理時間を0.1~120分の範囲内の値とすることが好ましい。
 この理由は、かかる熱酸化処理時間が0.1分未満になると、金属塩や金属錯体の種類にもよるが、当該金属塩や金属錯体を酸化させ、金属酸化物とすることが困難となる場合があるためである。
 一方、かかる熱酸化処理時間が120分を超えると、表面凹凸が変形する場合があるためである。
 したがって、熱酸化処理時間を1~60分の範囲内の値とすることがより好ましく、5~30分の範囲内の値とすることがさらに好ましい。
(1)-3 酸素源
 また、熱酸化処理を行う場合の酸素源(O2)としては、空気、酸素ガス等を用いることができる。
(1)-4 熱酸化処理装置
 また、熱酸化処理装置の態様についても、特に制限されるものでなく、例えば、電熱装置や赤外加熱装置を有する焼成オーブンを用いることができる。
(2)プラズマ酸化処理
(2)-1 プラズマ源
 本発明のプラズマ酸化処理に際して、図1(d)に例示するようなプラズマ装置16を用いるとともに、そのプラズマ源としては、水素、窒素、酸素、アルゴン、ヘリウム、フルオロカーボンなどを単独または混合して用いることが好ましい。
 また、酸素源としては、空気、酸素、水等、酸素を含む化合物であれば、適宜使用することができる。
 なお、図1(d)に例示するプラズマ装置16は、一例であり、イオン源等は省略してあるが、少なくとも高周波電源16aと、上部電極16bと、下部電極16cと、アース16dと、を備えている。
(2)-2 プラズマ圧力
 また、プラズマ酸化処理を行うにあたり、プラズマ圧力を1.0×10-3~1.0×102Paの範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ圧力が、1.0×10-3Pa未満の値になると、プラズマ濃度が低すぎるため金属酸化物の製膜に時間がかかるためである。
 一方、かかるプラズマ圧力が、1.0×102Paを超えても、発生したプラズマ同士の衝突が起きやすくなるため製膜速度向上はほとんど見られないためである。
 したがって、プラズマ処理の際のプラズマ圧力を1.0×10-2~5.0×101Paの範囲内の値とすることがより好ましい。
(2)-3 酸素源
また、酸素源(O2)としては、空気、酸素、水等の酸素原子を含む化合物であれば、適宜使用することができる。
(2)-4 プラズマ処理温度
 また、プラズマ処理温度を20~100℃の範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ処理温度が、20℃未満となると、プラズマ処理に過度に時間がかかり、金属塩膜を十分に酸化させることが困難となる場合があるためである。
 一方、かかるプラズマ処理温度が、100℃を超えると、得られた所定形状の表面凹凸がプラズマによってダメージを受けたり、経済性が低下したり、さらには、基材が熱変形したりする場合があるためである。
 したがって、第3工程におけるプラズマ処理温度を、25~90℃の範囲内の値とすることがより好ましく、30~80℃の範囲内の値とすることがさらに好ましい。
(2)-5 プラズマ時間
 また、プラズマ時間を10~600秒の範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ時間が、10秒未満となると、金属塩や金属錯体の種類にもよるが、当該金属塩や金属錯体を酸化させ、金属酸化物とすることが困難となる場合があるためである。
 一方、かかるプラズマ時間が600秒を超えると、得られた所定形状の表面凹凸がプラズマによってダメージを受けてしまい、所望の表面凹凸を得るのが困難になる場合があるためである。
 したがって、第3工程におけるプラズマ時間を、20~500秒の範囲内の値とすることがより好ましく、30~300秒の範囲内の値とすることがさらに好ましい。
(2)-6 多段階プラズマ処理
 また、多段階プラズマ酸化処理を行っても良い。その場合、それぞれの段階でプラズマ酸化処理条件を変えることもできるし、同一条件で、プラズマ酸化処理を複数回行うこともできる。
 このような工程を経て、所定の表面凹凸を有する金属酸化膜が形成される。金属酸化膜の表面粗さ(Ra)は30nm以上が好ましい。この理由は、このような中心線平均粗さ(Ra)の値であれば、良好な透明性を有し、電子デバイス用電極として使用可能な表面凹凸を有する金属酸化膜とすることができるためである。表面粗さ(Ra)は、40~500nmの範囲内の値であることがより好ましく、45~300nmの範囲内の値であることがさらに好ましい。
4.第4工程
 第4工程は、任意工程ではあるものの、第1工程~第3工程を経て形成された金属酸化膜を第1の導電層とした場合に、その上、あるいは横に隣接させて、金属あるいは金属酸化物を含む第2の導電層を形成する工程である。
 第4工程を設け、このような第2の導電層を形成することによって、第1の導電層における表面抵抗率の値のばらつきを少なくしたり、半田等の電気接続部材との間の電気接続性を改良したり、補助電極としての機能を発揮させたり、さらには、第1の導電層の機械的強度や耐久性等を向上させたりすることができる。
 ここで、第2の導電層を構成する金属としては、白金、金、銀、銅、ニッケル、モリブテン、アルミニウム、タングステン、クロム、あるいはこれらの合金等の一種単独または二種以上の組み合わせが挙げられる。
 また、第2の導電層を構成する金属酸化物としては、スズドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)、酸化インジウム、酸化スズ、酸化亜鉛等の一種単独または二種以上の組み合わせが挙げられる。
 そして、このような金属あるいは金属酸化物を含む第2の導電層の形成について、公知の形成方法、例えば、真空蒸着、スパッタリング、イオンプレーティング、印刷塗布などを採用することができる。
5.その他の工程
 金属塩としてハロゲン化物を含有する液状物を用いた場合、プラズマ酸化処理によって、ハロゲン化水素が発生することがある。
 その場合、プラズマ処理を施した後に、中和工程および洗浄工程、あるいはいずれか一方の工程を設けることが好ましい。
(1)中和工程
 中和工程は、金属酸化膜を、例えば、KOHやNaOH等のアルカリ水溶液に浸漬させて行うが、このような中和工程を実施する場合、通常、中和時間を1秒~10分間として、中和温度を10~40℃の条件で行うことが好ましい。
(2)洗浄工程
 また、洗浄工程を実施するにあたり、例えば、洗浄剤として水、アルコール、有機溶剤、あるいはこれらの混合物を用い、通常、洗浄時間を1分~10分、洗浄温度を10~100℃、1~10回の頻度で、得られた金属酸化膜を洗浄することが好ましい。
6.実施態様例
 上述した第1の実施形態の実施態様例としては、以下のような例が挙げられる。以下、図1、および図10~図14を参照し、これらの実施態様例1~6を具体的に説明する。
 なお、図1、図10~図14における(a)は、それぞれ基材10を準備する工程を示す。
(1)実施態様例1
第1工程:塗布工程
第2工程:プラズマエッチング処理による表面凹凸形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図1(b)~(d)に例示されるが、このように実施することによって、図1(e)に例示されるように、表面凹凸14aを有するとともに、所定の導電性等を有する金属酸化膜14を安定的に製造することができる。
 また、図1(c)~(d)に示されるように、同一チャンバーを用いて、第2工程~第3工程の連続プラズマ処理可能が可能となり、経済的である。
 さらに、図1(d)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して熱損傷を与えることを有効に防止することができる。
(2)実施態様例2
第1工程:塗布工程
第2工程:プラズマエッチング処理による表面凹凸形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図10(b)~(d)に例示されるが、このように実施することによって、図10(e)に例示されるように、表面凹凸14aを有するとともに、所定の導電性等を有する金属酸化膜14を安定的に製造することができる。
 また、図10(d)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
(3)実施態様例3
第1工程:塗布工程
第2´工程:プラズマ酸化処理による部分酸化工程
第2工程:プラズマエッチング処理による表面凹凸形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図11(b)~(e)に例示されるが、このように実施することによって、図11(f)に例示されるように、表面凹凸14aを有するとともに、所定の導電性等を有する金属酸化膜14を安定的に製造することができる。
 また、図11(c)~(e)に示されるように、第2´工程~第2工程~第3工程と続く、同一チャンバーによる連続プラズマ処理が可能となり、全体として、極めて経済的である。
 また、図11(c)に示されるように、第2´工程のプラズマ酸化処理による部分酸化工程を設けることにより、図11(d)に示されるように、第2工程でのプラズマエッチング処理速度を調整することが可能である。
 すなわち、微細な表面凹凸を有するとともに、部分酸化した金属塩膜をプラズマエッチング処理する場合、部分酸化した金属塩膜の厚さが比較的薄い箇所のプラズマエッチング速度は相対的に速くなり、部分酸化した金属塩膜の厚さが比較的厚い箇所のプラズマエッチング速度は相対的に遅くなる現象が見出されている(以下、エッチング速度調整効果と称する場合がある。)。
 したがって、このようなエッチング速度調整効果を利用して、微細な表面凹凸(例えば、Raが5nm以下)を有する金属酸化膜から、比較的大きな表面凹凸(例えば、Raが10nm以上)を有する金属酸化膜を、安定的かつ精度良く形成することができる。
 その他、図11(e)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
 なお、第2´工程で行う部分酸化の態様については、第2の実施形態で詳細に説明する。
(4)実施態様例4
第1工程:塗布工程
第2´工程:熱処理による部分酸化工程
第2工程:プラズマエッチング処理による表面凹凸形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図12(b)~(e)に例示されるが、このように実施することによって、図12(f)に例示されるように、表面凹凸14aを有するとともに、所定の導電性等を有する金属酸化膜14を安定的に製造することができる。
 また、図12(d)~(e)に示されるように、第2工程~第3工程と続く、同一チャンバーによる連続プラズマ処理が可能となり、全体として、経済的である。
 また、図12(c)に示されるように、第2´工程において、熱処理による部分酸化工程を設けることにより、上述したエッチング速度調整効果が発揮され、図12(d)に示されるように、次工程(第2工程)でプラズマエッチング処理を実施した場合、エッチング処理速度を調整することが可能である。
 さらに、図12(e)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(5)実施態様例5
第1工程:塗布工程
第2´工程:プラズマ酸化処理による部分酸化工程
第2工程:プラズマエッチング処理による表面凹凸形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図13(b)~(e)に例示されるが、このように実施することによって、図13(f)に例示されるように、表面凹凸14aを有するとともに、所定の導電性等を有する金属酸化膜14を安定的に製造することができる。
 また、図13(c)に示されるように、第2´工程において、プラズマ酸化処理による部分酸化工程を設けることにより、上述したエッチング速度調整効果が発揮され、図13(d)に示されるように、次工程(第2工程)でプラズマエッチング処理を実施した場合、エッチング処理速度を調整することが可能である。
 また、図13(c)~(d)に示されるように、第2´工程~第2工程と続く、同一チャンバーによる連続プラズマ処理が可能となり、全体として、経済的である。
 さらに、図13(e)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
(6)実施態様例6
第1工程:塗布工程
第2´工程:熱処理による部分酸化工程
第2工程:プラズマエッチング処理による表面凹凸形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図14(b)~(e)に例示されるが、このように実施することによって、図14(f)に例示されるように、表面凹凸14aを有するとともに、所定の導電性等を有する金属酸化膜14を安定的に製造することができる。
 また、図14(c)に示されるように、第2´工程において、熱処理による部分酸化工程を設けることによって、上述したエッチング速度調整効果が発揮され、図14(d)に示されるように、次工程(第2工程)でプラズマエッチング処理を実施した場合、エッチング処理速度を調整することが可能である。
 さらに、図14(e)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
[第2の実施形態]
 第2の実施形態は、第1の実施形態の金属酸化膜の形成方法と関連する金属酸化膜の形成方法であるが、図15等に例示するように、基材10上に、パターン化された金属酸化膜14´を形成する金属酸化膜の形成方法であって、下記第1~第3工程を含むことを特徴とする金属酸化膜の形成方法である。
(1)基材10に対して、金属塩および金属錯体、あるいはいずれか一方を含有する液状物を塗布して塗膜12を形成する第1工程
(2)塗膜12に対して、所定パターンを形成する第2工程
(3)所定パターンを形成した塗膜12bに対して、酸素源の存在下、熱酸化処理またはプラズマ酸化処理を行い、所定パターンを有する金属酸化膜14´とする第3工程
 以下、第1の実施形態と重複する箇所は、適宜省略するものとして、第2の実施形態に特徴的な内容を中心に説明する。
1.第1工程
 第1工程は、図15(a)に例示するように、所定の基材10を準備し、図15(b)に例示するように、所定の基材10に対して、金属塩および金属錯体、あるいはいずれか一方を含有する液状物を塗布して塗膜12を形成する工程である。
 したがって、第1の実施形態で説明した第1工程の内容と、基本的に同様の内容とすることができる。
 但し、一部上述したように、第1工程において、金属塩含有液状物を基材上にパターン印刷した場合、それによって、所定パターンがそのまま得られることから、第1工程および第2工程を同時に行うことになり、最終的に、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜をさらに迅速かつ経済的に得ることができる。
 なお、パターン印刷の態様等については、第2工程において、詳述する。
2.第2工程
 次いで、第2工程は、図15(c)に例示するように、第1工程で得られた塗膜12に対して、所定パターンを形成し、所定パターンを有する塗膜12bとする工程である。
 ここで、所定パターンの形成方法としては、所定パターンが形成可能な方法であれば特に制限されるものではないが、例えば、プラズマエッチング処理、パターン印刷方法、リソグラフィ方法、機械的パターン形成方法等の一種単独または二種以上の組み合わせが挙げられる。
 そして、塗膜12bや金属酸化膜14´における所定パターンとしては、ライン状パターン、なみ線状パターン、はしご状パターン、円形パターン、楕円形パターン、三角形パターン、多角形パターン、異形パターン等、各種繰り返し形状パターンとすることができる。
(1)プラズマエッチング処理
 プラズマエッチング処理によって、所定パターンを設けることが好ましい。
 すなわち、1)プラズマ生成ガスの種類、2)プラズマ処理温度、3)プラズマ圧力、4)プラズマ生成ガスの流量、5)プラズマ処理時間等を適宜変えて、所定パターンを有する塗膜12bとすることが好ましい。
 より具体的に、プラズマエッチング処理条件については、第1実施形態における第2工程の各条件と同様の内容とすることができる。
 したがって、プラズマエッチング処理を行うに際して、プラズマ生成ガスとして、希ガスおよび窒素、あるいはいずれか一方を用いることが好ましい。
 また、プラズマ処理温度を20~100℃の範囲内の値とすることが好ましい。
 また、プラズマ圧力を1~500Paの範囲内の値とすることが好ましい。
 また、プラズマ生成ガスの流量を5ml/分~500ml/分程度とすることが好ましい。
 さらにまた、プラズマ処理時間を、10~600秒の範囲内の値とすることが好ましい。
(2)パターン印刷方法
 また、パターン印刷するに際して、インクジェット印刷法、シルクスクリーン印刷法、凸版印刷法(グラビア印刷法)、オフセット印刷法等を用いることが好ましい。
 例えば、インクジェット法は、金属塩含有液状物を、圧電素子を備えたヘッド(突出孔)から吐出させ、基材に対してドット状に印刷する方法である。
 また、シルクスクリーン印刷法は、金属塩含有液状物を、所定印刷孔から押し出し、基材に対して、所定パターンとして印刷する方法である。
 また、凸版印刷法は、グラビアロール等の凸版を準備し、金属塩含有液状物を、凸部に付着させた状態で、基材に対して、所定パターンとして印刷する方法である。
 また、オフセット印刷法は、親水性部分と、親油性部分とを備える印刷ロールを用い、基本的に、親水性部分に付着する金属塩含有液状物を、基材に対して、所定パターンとして印刷する方法である。
 さらに、所定パターンに対応した空孔を有する金属マスクやセラミックマスクを準備し、それを介して、金属塩含有液状物を、基材に対して、全面的に印刷し、さらに、金属マスクやセラミックマスクを除去することにより、所定パターンとして印刷することができる。
(3)リソグラフィ方法
 リソグラフィ方法は、光レジストを用い、それを塗膜の上に積層した後、所定パターンに対応したマスクを介して、所定露光を行い、さらに、現像を経て、光レジストの所定箇所に、所定パターンに対応した空孔をあけ、その空孔を利用して塗膜の一部を除去するという態様である。
 かかるリソグラフィによれば、極めて、微細なパターンを、再現性良く得ることができる。
 なお、金属塩含有液状物は、水やアルコールに可溶性であることから、エッチング液として、これらの水やアルコールを単独または組み合わせて使用することができる。よって、極めて経済的かつ環境面に配慮したエッチング液とすることができる。
(4)機械的パターン形成方法
 機械的パターン形成方法は、金属塩含有液状物からなる塗膜の所定場所に対して、ブラスト材料やブラシ、あるいは所定水圧等を付与することによって、所定パターン化する形成方法である。
3.第2´工程
 第2´工程は、第1工程および2工程の間の任意工程、あるいは、第2工程および3工程の間の任意工程ではあるが、プラズマ酸化処理または熱処理を行い、塗膜を部分酸化させる工程である。
 この理由は、このように塗膜を部分酸化させることによって、塗膜厚さが比較的薄い箇所のプラズマエッチング速度は相対的に速くなり、塗膜厚さが比較的厚い箇所のプラズマエッチング速度は相対的に遅くなる(以下、エッチング速度調整効果と称する場合がある。)ためである。
 したがって、このようなエッチング速度調整効果を発揮する金属塩膜をレジスト(エッチング速度調整部材)として用い、基材とともに、同時に、プラズマエッチング処理を行うことによって、ナノメーターオーダーの微細な表面凹凸であっても、基材上に、安定的かつ精度良く形成することができる。
 なお、金属塩膜が部分酸化されたか否かの目安として、例えば、X線光電子分光分析(XPS)で検出される元素量の変化(変化率)が挙げられ、それより部分酸化の程度を判別したり、調整したりすることができる。
 すなわち、金属塩膜中の金属塩等に由来した金属および酸素元素以外の特有の元素量が、第2´工程(部分酸化工程)の前後で、どれだけ変化したかをXPSで調べることにより、金属塩膜がどの程度部分酸化されたかを判断することができる。
 例えば、金属塩として、酢酸亜鉛を使用した場合、炭素を特有の元素ととらえて、その変化率の値が大きい場合には、部分酸化が進んだことを示しており、逆に、変化率の値が小さい場合には、部分酸化があまり進んでいないことを示している。
 より具体的には、実施例1等の場合、XPSで測定される部分酸化前の金属塩膜における炭素の元素量(A)と、部分酸化後の金属塩膜における炭素の元素量(B)とを測定し、炭素の変化率(=(A-B)/A×100)を算出して、その変化率の値から、金属塩膜の部分酸化状態を判別し、調整することができる。
 したがって、好適な部分酸化状態とするためには、かかる変化率の値を10~80%の範囲内の値とすることが好ましく、15~70%の範囲内の値とすることが好ましく、20~60%の範囲内の値とすることがさらに好ましい。
(1)プラズマ処理による部分酸化
 プラズマ処理による部分酸化処理に際して、所定のプラズマ装置を用いるとともに、そのプラズマ源としては、酸素、アルゴン、ヘリウム、フルオロカーボンなどを単独または混合して用いることが好ましい。
 また、酸素源としては、空気、酸素、水等、酸素を含む化合物であれば、適宜使用することができる。
 なお、プラズマ装置の一例であるが、少なくともイオン源と、高周波電源と、上部電極と、下部電極と、アースと、を備えていることが好ましい。
 また、プラズマ処理による部分酸化処理をする際のプラズマ圧力を1.0×10-3~1.0×102Paの範囲内の値とすることが好ましい。
 この理由は、かかるプラズマ圧力が、1.0×10-3Pa未満の値になると、プラズマ濃度が低すぎるため金属酸化物の転化に時間がかかるためである。
 一方、かかるプラズマ圧力が、1.0×102Paを超えても、発生したプラズマ同士の衝突が起きやすくなるため製膜速度向上はほとんど見られないためである。
 したがって、プラズマ処理の際のプラズマ圧力を1.0×10-2~5.0×101Paの範囲内の値とすることがより好ましい。
 なお、多段階プラズマ酸化処理を行っても良い。その場合、それぞれの段階でプラズマ酸化処理条件を変えることもできるし、同一条件で、プラズマ酸化処理を複数回行うこともできる。
(2)熱酸化処理による部分酸化
 また、第2´工程において、熱酸化処理による部分酸化を行う場合、熱処理温度を120~300℃の範囲内の値とすることが好ましい。
 この理由は、かかる熱酸化処理温度が120℃未満になると、金属塩や金属錯体の種類にもよるが、当該金属塩や金属錯体を酸化させ、導電性を有する金属酸化物とすることが困難となる場合があるためである。
 一方、かかる熱酸化処理温度が300℃を超えると、表面凹凸が熱変形したり、基材自身が熱変形したりする場合があるためである。
 したがって、熱酸化処理温度を130~220℃の範囲内の値とすることがより好ましく、150~180℃の範囲内の値とすることがさらに好ましい。
 また、熱酸化処理時間を0.1~120分の範囲内の値とすることが好ましい。
 この理由は、かかる熱酸化処理時間が0.1分未満になると、金属塩や金属錯体の種類にもよるが、当該金属塩や金属錯体を酸化させ、所定の導電性を有する金属酸化物とすることが困難となる場合があるためである。
 一方、かかる熱酸化処理時間が120分を超えると、表面凹凸が変形する場合があるためである。
 したがって、熱酸化処理時間を1~60分の範囲内の値とすることがより好ましく、5~30分の範囲内の値とすることがさらに好ましい。
 なお、酸素源としては、空気、酸素ガス等を用いることができる。そして、熱酸化処理装置の態様についても、特に制限されるものでなく、例えば、電熱装置や赤外加熱装置を有する焼成オーブンを用いることができる。
4.第3工程
 第3工程は、例えば、図15(d)に示すように、所定パターンを有する塗膜に対して、酸素源の存在下、熱酸化処理またはプラズマ酸化処理を行い、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜とする工程である。
 したがって、第2の実施形態において、第1の実施形態の第3工程(熱酸化処理工程)と、基本的に同様の内容とすることができる。
 なお、図15(d)は、プラズマ酸化処理の場合を示している。
5.第4工程
 第4工程は、第1の実施形態で説明したように、任意工程であって、第3工程を実施した後、得られた金属酸化膜を第1の導電層とした場合に、その上、あるいは横に隣接させて、金属あるいは金属酸化物を含む第2の導電層を形成する工程である。
 したがって、第2の実施形態においても、第1の実施形態で説明した第4工程の内容と、基本的に同様の内容とすることができる。
6.その他の工程
 第2の実施形態においても、第1の実施形態と同様に、プラズマ処理を施した後に、中和工程および洗浄工程、あるいはいずれか一方の工程を設けることが好ましい。
7.実施態様例
 上述した第2の実施形態の実施態様例としては、以下のような例が挙げられる。なお、図15~図20を参照し、これらの実施態様例7~12を具体的に説明するが、実施態様例の番号は、第1の実施形態の実施態様例からの連番として表わす。
 また、図15~20における(a)は、それぞれ基材10を準備する工程を示す。
(1)実施態様例7
第1工程:塗布工程
第2工程:パターン形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図15(b)~(d)に例示されるが、このように実施することにより、図15(e)に例示されるように、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜14´を安定的に製造することができる。
 また、図15(d)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(2)実施態様例8
第1工程:塗布工程
第2工程:パターン形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図16(b)~(d)に例示されるが、このように実施することにより、図16(e)に例示されるように、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜14´を安定的に製造することができる。
 また、図16(d)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
(3)実施態様例9
第1/第2工程:パターン塗布工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1/第2工程~第3工程は、図17(b)~(c)に例示されるが、このように実施することにより、図17(d)に例示されるように、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜14´を迅速かつ安定的に製造することができる。
 また、図17(b)に示されるように、第1工程と、第2工程とを同時実施することができることから、より迅速かつ経済的に、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜14´を迅速かつ安定的に製造することができる。
 さらに、図17(c)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(4)実施態様例10
第1/第2工程:パターン塗布工程
第3工程:熱酸化処理による酸化処理工程
 第1/第2工程~第3工程は、図18(b)~(c)に例示されるが、このように実施することにより、図18(d)に例示されるように、所定パターンを有するとともに、所定の導電性等を有する金属酸化膜14´を迅速かつ安定的に製造することができる。
 また、図18(b)に示されるように、第1工程と、第2工程とを同時実施することができることから、より迅速かつ経済的に、所定パターンを有する金属酸化膜14´を迅速かつ安定的に製造することができる。
 さらに、図18(c)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
(5)実施態様例11
第1工程:塗布工程(図示せず)
第2´工程:プラズマ酸化処理による部分酸化工程
第2工程:パターン形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第2´工程~第3工程は、図19(b)~(d)に例示されるが、このように実施することにより、図19(e)に例示されるように、所定パターンを有するとともに、導電性等を示す金属酸化膜14´を安定的に製造することができる。
 また、図19(b)に示されるように、第2´工程において、部分酸化工程を設けることにより、次工程(第2工程)でパターン形成する際の処理速度を調整することが可能となる。
 さらに、図19(d)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(6)実施態様例12
第1工程:塗布工程(図示せず)
第2´工程:プラズマ酸化処理による部分酸化工程
第2工程:パターン形成工程
第3工程:熱酸化処理による酸化処理工程
 第2´工程~第3工程は、図20(b)~(d)に例示されるが、このように実施することにより、図20(e)に例示されるように、所定パターンを有するとともに、導電性等を有する金属酸化膜14´を安定的に製造することができる。
 また、図20(b)に示されるように、第2´工程において、部分酸化工程を設けることにより、次工程(第2工程)でパターン形成する際の処理速度を調整することが可能となる。
 さらに、図20(d)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
[第3の実施形態]
 第3の実施形態は、第1の実施形態および第2の実施形態の金属酸化膜の形成方法を組み合わせた金属酸化膜の形成方法であるが、基材上に、パターン化された金属酸化膜を形成する金属酸化膜の形成方法であって、下記第1~第3工程を含むことを特徴とする金属酸化膜の形成方法である。
(1)基材に対して、金属塩および金属錯体、あるいはいずれか一方を含有する液状物を塗布して塗膜を形成する第1工程
(2)塗膜に対して、表面凹凸および所定パターンを形成する第2工程
(3)表面凹凸および所定パターンを形成した塗膜に対して、酸素源の存在下、熱酸化処理またはプラズマ酸化処理を行い、表面凹凸および所定パターンを有する金属酸化膜とする第3工程
 以下、図21~図26を参照し、これらの実施態様例13~18を具体的に説明するが、実施態様例の番号は、第1の実施形態および第2の実施形態の実施態様例からの連番として表わす。
 なお、図21~図26における(a)は、それぞれ基材10を準備する工程を示す。
(1)実施態様例13
第1工程:塗布工程
第2工程-1:パターン形成工程
第2工程-2:プラズマエッチング処理による表面凹凸形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図21(b)~(e)に例示されるが、このように実施することにより、図21(f)に例示されるように、表面凹凸14´aおよび所定パターンを有する金属酸化膜14´を安定的に製造することができる。
 また、図21(c)に示されるように、先にパターン形成工程を実施した後に、図21(d)に示されるように表面凹凸形成工程(プラズマエッチング処理)を実施することにより、より精度良く、パターニングすることができる。
 また、図21(d)~(e)に示されるように、第2工程-2~第3工程と続く、同一チャンバーによる連続プラズマ処理が可能となり、全体として、極めて経済的である。
 さらに、図21(e)に示されるように、第3工程において、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(2)実施態様例14
第1工程:塗布工程
第2工程-1:プラズマエッチング処理による表面凹凸形成工程
第2工程-2:パターン形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図22(b)~(e)に例示されるが、このように実施することにより図22(f)に例示されるように、表面凹凸14´aおよび所定パターンを有する金属酸化膜14´を安定的に製造することができる。
 また、図22(c)に示されるように、先に表面凹凸形成工程(プラズマエッチング処理)を実施した後、図22(d)に示されるように、パターン形成工程を実施することにより、より精度良く、表面凹凸を形成することができる。
 さらに、図22(e)に示されるように、第3工程において、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(3)実施態様例15
第1工程:塗布工程
第2工程-1:パターン形成工程
第2工程-2:プラズマエッチング処理による表面凹凸形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図23(b)~(e)に例示されるが、このように実施することにより、図23(f)に例示されるように、表面凹凸14´aおよび所定パターンを有する金属酸化膜14´を安定的に製造することができる。
 また、図23(c)に示されるように、先にパターン形成工程を実施した後に、図23(d)に示されるように表面凹凸形成工程(プラズマエッチング処理)を実施することにより、より精度良く、パターニングすることができる。
 さらに、図23(e)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
(4)実施態様例16
第1工程:塗布工程
第2工程-1:プラズマエッチング処理による表面凹凸形成工程
第2工程-2:パターン形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図24(b)~(e)に例示されるが、このように実施することにより図24(f)に例示されるように、表面凹凸14´aおよび所定パターンを有する金属酸化膜14´を安定的に製造することができる。
 また、図24(c)に示されるように、先に表面凹凸形成工程(プラズマエッチング処理)を実施した後、図24(d)に示されるように、パターン形成工程を実施することにより、より精度良く、表面凹凸を形成することができる。
 さらに、図24(e)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
(5)実施態様例17
第1/第2工程-1:パターン塗布工程
第2工程-2:プラズマエッチング処理による表面凹凸形成工程
第3工程:プラズマ酸化処理による酸化処理工程
 第1工程~第3工程は、図25(b)~(d)に例示されるが、このように実施することにより、図25(e)に例示されるように、表面凹凸14´aおよび所定パターンを有する金属酸化膜14´を迅速かつ安定的に製造することができる。
 また、図25(b)に示されるように、第1工程と、第2工程-1とを同時実施することができることから、より迅速かつ経済的に、所定パターンを有する金属酸化膜を迅速かつ安定的に製造することができる。
 また、図25(c)~(d)に示されるように、第2工程~第3工程と続く、同一チャンバーによる連続プラズマ処理が可能となり、全体として、極めて経済的である。
 さらに、図25(d)に示されるように、第3工程で、プラズマ酸化処理を実施することから、低温処理が可能となって、基材10等に対して、熱損傷を与えることを有効に防止することができる。
(6)実施態様例18
第1/第2工程-1:パターン塗布工程
第2工程-2:プラズマエッチング処理による表面凹凸形成工程
第3工程:熱酸化処理による酸化処理工程
 第1工程~第3工程は、図26(b)~(d)に例示されるが、このように実施することにより、図26(e)に例示されるように、表面凹凸14´aおよび所定パターンを有するとともに、所定の導電性等を有する金属酸化膜14´を迅速かつ安定的に製造することができる。
 また、図26(b)に示されるように、第1工程と、第2工程-1とを同時実施することができることから、より迅速かつ経済的に、所定パターンを有する金属酸化膜を迅速かつ安定的に製造することができる。
 さらに、図26(d)に示されるように、第3工程で、熱酸化処理を実施することから、例えば、加熱炉17(17a、17b)を用いた大量酸化処理が可能となって、経済的である。
[第4の実施形態]
 第4の実施形態は、図1(d)に例示されるように、第1の実施形態~第3の実施形態である金属酸化膜の形成方法のいずれかによって得られてなる表面凹凸14aを有する金属酸化膜14であって、当該金属酸化膜14の表面抵抗率を1×100~1×1010Ω/□の範囲内の値とすることを特徴とする金属酸化膜である。
1.表面凹凸
 金属酸化膜が、表面凹凸を有することを特徴とする。金属酸化膜の表面粗さは、前述のように、30nm以上が好ましく、40~500nmの範囲内であることがより好ましく、45~300nmの範囲内の値であることがさらに好ましい。
2.厚さ
 本発明の金属酸化膜の厚さを50~1000nmの範囲内の値とすることが好ましい。
 この理由は、かかる金属酸化膜の厚さが50nm未満の値になると、機械的強度が低下し、耐久性や密着性が著しく低下したり、あるいは、金属酸化膜の表面抵抗率が過度に大きくなる場合があるためである。
 一方、かかる金属酸化膜の厚さが1000nmを超えた値になると、形成するのに過度に時間を要したり、光透過率が著しく低下する場合があるためである。
 したがって、金属酸化膜の厚さを80~800nmの範囲内の値とすることが好ましく、100~600nmの範囲内の値とすることがさらに好ましい。
3.表面抵抗率
 また、本発明の金属酸化膜の表面抵抗率を1×100~1×1010Ω/□の範囲内の値とする。
 この理由は、かかる金属酸化膜の表面抵抗率が、1×1010Ω/□を超えた値になると、導電性が著しく低下し、使用可能な用途が過度に制限される場合があるためである。
 一方、表面抵抗率が1×100Ω/□未満の金属酸化膜を製造することは困難である。
 したがって、金属酸化膜の表面抵抗率3×100~1×109Ω/□の範囲内の値とすることが好ましく、5×100~1×108Ω/□の範囲内の値とすることがさらに好ましい。
なお、金属酸化膜の表面抵抗率の測定方法は、後述する実施例において、詳述する。
4.光透過率
 また、本発明の金属酸化膜の可視光線透過率を50%以上の値とすることが好ましい。
この理由は、かかる金属酸化膜の光透過率が、50%未満の値になると、透明電極としての使用が困難になり、使用可能な用途が過度に制限される場合があるためである。一方、可視光線透過率の上限は金属酸化物にもよるが95%程度である。したがって、金属酸化膜の可視光線透過率を60~95%の範囲内の値とすることが好ましく、70~90%の範囲内の値とすることがさらに好ましい。
 なお、可視光線透過率は、波長550nmにおける透過率であり、測定方法は、後述する実施例において、詳述する。
5.保護層
 また、図2(c)に示すように、金属酸化膜14の上に、保護層20を形成することもできる。
 例えば、このように保護層20を備えた金属酸化膜14であれば、金属酸化膜に傷がつくことを防止することができる。
 なお、保護層を構成する材料としては、例えば、熱硬化性樹脂や光硬化性樹脂、あるいは熱可塑性樹脂が挙げられる。
6.パターニング
 また、図2(d)に示すように、金属酸化膜14に対して、パターニングすることも好ましい。
 例えば、このようにパターニングした金属酸化膜14´であれば、液晶表示装置やプラズマ表示装置、あるいは有機エレクトロルミネッセンス装置や無機エレクトロルミネッセンス装置の透明電極として、好適に使用することができる。
 なお、図2(d)に示す例では、パターニングした金属酸化膜14´の上に、電気絶縁層やカラーフィルタ等を構成する樹脂層22がさらに形成してある例を示している。
7.用途
 また、金属酸化膜を構成するにあたり、当該金属酸化膜が、電子デバイス用電極であることが好ましい。
 この理由は、本発明の金属酸化膜は、表面抵抗率が低く、所定の表面凹凸等を有することから、電子デバイス用電極として構成した場合に、電子デバイスを効率的に駆動することができるためである。特に電子デバイスとして太陽電池用電極として用いた場合は、隣接する半導体層との接触面積が増えるので、変換効率を高めることができる。
 また、本発明の金属酸化膜は、高い透明性を有しているので、必要な光を効果的に透過させることができる。
 なお、電子デバイスの種類としては、液晶表示デバイス、有機エレクトロルミネッセンス装置、有機薄膜太陽電池、色素増感型太陽電池、有機トランジスタ、プラズマディスプレイ等が挙げられる。
[実施例1]
1.金属酸化膜の形成
(1)第1工程
 攪拌装置付きの容器内に、金属塩としての酢酸亜鉛(Aldrich社製、純度99.99%)0.2gと、純水30gとを収容した後、均一になるまで攪拌し、金属塩を含有する液状物(濃度:41.7mmol/l)とした。
 次いで、得られた金属塩を含有する液状物を、厚さ700μmのガラス基板(コーニング社製、イーグル2000)の表面に、スピンコート法(回転数1500rpm)によって塗布し、100℃、5分間の条件で乾燥して、膜厚が500nmの酢酸亜鉛膜(金属塩膜)を得た。
(2)第2工程
 次いで、プラズマ装置(ヤマトマテリアル株式会社製、PDC-210)を用いて、以下の条件で、塗布面にプラズマ処理を施し、酢酸亜鉛膜の表面に、中心線表面粗さ(Ra)が89.4nmである表面凹凸を形成した。
  RF電力(周波数13.56MHz)300W
  プラズマ生成ガス         Ar
  ガス流量             50ml/分
  プラズマ圧力           45Pa
  処理時間             3分
  プラズマ処理温度         55℃
(3)第3工程
 次いで、得られた表面凹凸を有する酢酸亜鉛膜を備えたガラス基板を、焼成オーブンを用いて、空気中、500℃、30分の条件で加熱し、酢酸亜鉛膜を熱酸化処理して、金属酸化膜(酸化亜鉛)とした。
 その後、かかる金属酸化膜を備えたガラス基板を、25℃の水で、30分間洗浄し、中心線表面粗さ(Ra)が89.4nmである金属酸化膜を備えたガラス基板とした。
2.金属酸化膜の評価
 得られた金属酸化膜の試料について、以下の測定を行った。結果を表1に示す。
(1)中心線平均粗さ(Ra)
 中心線平均粗さ(Ra)を、原子間力顕微鏡(エスアイアイ・ナノテクノロジー株式会社製、型番SPA300HV)を用いて、測定した。
 すなわち、原子間力顕微鏡のDFMモード(ダイナミックフォースモード)で、表面(測定範囲:5μm×5μm)を走査周波数0.3Hzで観察した結果を基に、上述した式(1)から中心線平均粗さ(Ra)を算出した。
(2)表面抵抗率
 低抵抗値測定器(三菱化学株式会社製、型番ロレスター・MCP-T6)を用いて、四端子法により、金属酸化膜の表面抵抗率(Ω/□)を測定した。
(3)表面凹凸形状の観察
 走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、型番S-4700)を用いて、表面形状の写真を撮り、それから表面凹凸形状を確認した。
(4)酸素含有量
 金属酸化膜ができていることを確認するために、X線光電子分光分析(XPS分析、アルバック・ファイ社製、型番Quantera SXMを使用)により、以下の条件で金属酸化膜の組成比を測定し、そのうち酸素比率を、金属酸化膜の酸素含有量(モル%)とした。
  励起X線             Ar
  X線径              100μm
  X線出力             15kV、25W
  光電子脱出角度          45°
(5)光透過率
 金属酸化膜の可視光線透過率(波長550nm)を、基材を含んだ状態で、紫外可視分光光度計(島津製作所製、型番UV-3101PC)を用いて測定した。
(6)密着性
 基材に対する金属酸化膜の密着性を、碁盤目試験(JIS K-5600-5-6)により評価した。
 なお、密着性の評価基準は、以下に示すように、JIS K-5600-5-6の試験結果の分類に従った。
分類0:どの格子の目にもはがれがない。
分類1:カットの交差点において膜の小さなはがれがある。
分類2:膜がカットの縁に沿って、および/又は交差点においてはがれており、クロスカット部分で影響をうけるのは5%を超えるが15%を上回ることはない。
分類3:膜がカットの縁に沿って、部分的または全面的に大はがれを生じており、および/又は目のいろいろな部分が、部分的または全面的にはがれている。クロスカット部分で影響をうけるのは15%を超えるが35%を上回ることはない。
分類4:膜がカットの縁に沿って、部分的または全面的に大はがれを生じており、および/又は数か所の目が部分的または全面的にはがれている。クロスカット部分で影響をうけるのは35%を超えるが65%を上回ることはない。
分類5:はがれの程度が分類4を越えている。
[実施例2]
 実施例2では、第2工程におけるプラズマ処理時のプラズマ圧力を30Paにした以外は、実施例1と同様にして金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例3]
 実施例3では、第2工程におけるプラズマ処理時のプラズマ圧力を70Paにした以外は、実施例1と同様に金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例4]
 実施例4では、第2工程におけるプラズマ処理時のプラズマ圧力を90Paにした以外は、実施例1と同様にして金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例5]
 実施例5では、第1工程における金属塩のかわりに、金属錯体である亜鉛アセチルアセトナート(Aldrich社製、純度99.99%)を用い、メタノールに溶解させた以外は、実施例1と同様にして金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例6]
 実施例6では、ドーパント前駆体として、ガリウム(III)アセチルアセトナート(Aldrich社製、純度99.99%)を用いるとともに、当該ドーパント前駆体の濃度を、金属錯体である亜鉛アセチルアセトナートの亜鉛96モルに対して、ガリウムが4モルとなるように混合した以外は、実施例5と同様にして金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例7]
 実施例7では、ドーパント前駆体として、アルミニウムアセチルアセトナート(Aldrich社製、純度99%)を用いるとともに、当該ドーパント前駆体の濃度を、金属錯体である亜鉛アセチルアセトナートの亜鉛96モルに対して、アルミニウムが4モルとなるように混合した以外は、実施例5と同様にして金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例8]
 実施例8では、金属錯体として、インジウム(III)アセチルアセトナート(Aldrich社製、純度99.99%)を用いた以外は、実施例5と同様に金属酸化膜(酸化インジウム)を形成して、評価した。評価の結果を表1に示す。
[実施例9]
 実施例9では、ドーパント前駆体として、スズ(II)アセチルアセトナート(和光純薬工業社製、純度99%)を用いるとともに、当該ドーパント前駆体の濃度を、インジウム(III)アセチルアセトナートのインジウム96モルに対して、スズが4モルとなるように混合した以外は、実施例8と同様にして金属酸化膜(ITO)を形成して、評価した。評価の結果を表1に示す。
[実施例10]
 実施例10では、金属錯体として、酸化チタン(IV)アセチルアセトナート(Aldrich社製、純度99.9%)を用いた以外は、実施例5と同様に金属酸化膜(酸化チタン)を形成して、評価した。評価の結果を表1に示す。
[実施例11]
 実施例11では、プラズマ生成ガスとして、ヘリウムを用いた以外は、実施例1と同様にして、金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例12]
 実施例12では、プラズマ生成ガスとして、クリプトンを用いた以外は、実施例1と同様にして、金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例13]
 実施例13では、プラズマ生成ガスとして、窒素を用いた以外は、実施例1と同様にして、金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例14]
 実施例14では、第3工程において、熱酸化処理のかわりに、以下のプラズマ酸化処理を用いたほかは、実施例1に準拠して、金属酸化膜を形成して、評価した。
(1)第1工程
 厚さ180μmのポリエチレンテレフタレート(PET)フィルム(東洋紡製、A-4300)を準備し、その表面に、スピンコート法によって、ポリビニルアルコール(関東化学社製、重量平均分子量:86000)を、厚さ0.2μmとなるように塗布した後、乾燥し、ポリビニルアルコールからなるプライマー層を有するPET基材とした。
 一方、攪拌装置付きの容器内に、0.2gの酢酸亜鉛(Aldrich社製、純度99.99%)と、純水30gとを収容した後、均一になるまで攪拌し、金属塩を含有する液状物(濃度:41.7mmol/l)とした。
 次いで、得られた金属塩を含有する液状物を、PET基材の表面に、スピンコート法(回転数1500rpm)によって塗布し、100℃、5分間の条件で乾燥して、膜厚が500nmの酢酸亜鉛膜を得た。
(2)第2工程
 次いで、プラズマ装置(ヤマトマテリアル社製、PDC-210)を用いて、以下の条件で、塗布面にプラズマ処理を施し、酢酸亜鉛膜の表面に、中心線表面粗さ(Ra)が85.8nmである表面凹凸を形成した。
  RF電力(周波数13.56MHz)300W
  プラズマ源            Ar
  ガス流量             50ml/分
  プラズマ圧力           45Pa
  処理時間             3分
  処理温度             55℃
(3)第3工程
 次いで、プラズマ装置内に置かれた表面凹凸を有する酢酸亜鉛膜に対し、以下の条件で、さらにプラズマ酸化処理を施し、中心線表面粗さ(Ra)が85.8nmである金属酸化膜(酸化亜鉛)を形成した。
  RF電力(周波数13.56MHz)300W
  プラズマ源            O2
  ガス流量             50ml/分
  プラズマ圧力           45Pa
  処理時間             3分
  処理温度             55℃
 その後、かかる金属酸化膜を備えたPET基材を、25℃の水で、30分間洗浄し、実施例13の金属酸化膜として、実施例1と同様に評価した。評価の結果を表1に示す。
[実施例15]
 実施例15では、酢酸亜鉛に代えて、金属錯体として、インジウム(III)アセチルアセトナート(Aldrich社製、純度99.99%)を用いた以外は、実施例14と同様に金属酸化膜(酸化インジウム)を形成して、評価した。評価の結果を表1に示す。
[実施例16]
 実施例16では、金属塩として、塩化亜鉛(ZnCl2、関東化学株式会社製、特級)を用い、アセトニトリルに溶解させた以外は、実施例1と同様に金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[実施例17]
 実施例1で得られた金属酸化膜上に、スパッタリング装置(株式会社アルバック製、「ISP-4000S-C」)を用いて、マグネトロンスパッタリング法により厚さ100nmのITO膜を積層した。スパッタ条件は以下の通りである。評価の結果を表1に示す。
  RF電力             500W
  ガス流量             Ar(100ml/分)、酸素(1ml/分)
  スパッタ時間           52秒
 なお、表面がITO膜であるので、酸素含有量の測定は省略した。
[比較例1]
 比較例1は、金属塩膜に対して、表面凹凸を設ける第2工程を省略した以外は、実施例1と同様に、金属酸化膜(酸化亜鉛)を形成して、評価した。評価の結果を表1に示す。
[比較例2]
 比較例2は、金属塩膜に対して、酸化処理である第3工程を省略した以外は、実施例1と同様に、評価した。評価の結果を表1に示す。
 なお、表1中の-は、未測定を示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示したように、実施例1~17で得られた膜は、山形あるいはブラシ型の表面粗さ(Ra)が45.6~121.9(nm)の凹凸形状を有していた。得られた膜の酸素含有率は46.5~68.5モル%であり、金属酸化膜が生成していることが確認された。
 また、実施例1~9、11~17の金属酸化膜は、表面抵抗率が低く、かつ光透過率が高いことが確認された。
 また、実施例10では、酸化チタンの特性から表面抵抗率は高いものの、光線透過率が高い酸化チタンの膜が得られることが確認できた。
 さらに、実施例1~17の金属酸化膜は、密着性に優れていた。
 それに対して、表面凹凸を設ける第2工程を省略した比較例1において、所定の金属酸化膜は得られたものの、実施例1~17の金属酸化膜に比べて、中心線平均粗さ(Ra)が著しく小さく、凹凸を有する電極として用いることはできなかった。
 さらに、比較例2においては、所定の金属塩膜は得られたものの、表面抵抗率は1×1010以上であって、電極として使用することはできない。なお、塗膜の強度が足りないため密着性の評価はできなかった。
[実施例18]
 実施例18では、図21に示すように、所定のプラズマエッチング処理前に、光フォトリソグラフィ法によるパターニング工程(ラインパターン、ライン幅200μm、スペース幅200μm)を実施したほかは、実施例14に準拠して、酸化亜鉛膜(金属塩膜)を形成し、評価した(但し、表面抵抗率、光透過率および密着性の評価は、省略した。)
 その結果、表面に山型形状の凹凸(Ra=89nm)を有するとともに、酸素量が58mol%であるライン状パターンを有する酸化亜鉛膜であることを確認した。
[実施例19]
 実施例19では、図26に示すように、所定のプラズマエッチング処理前に、インクジェット法によるパターニング工程(円形ドットパターン、直径200μm、中心間距離1000μm)を実施したほかは、実施例1に準拠して、酢酸亜鉛膜(金属塩膜)を形成し、評価した(但し、表面抵抗率、光透過率および密着性の評価は、省略した。)。
 その結果、表面に山型形状の凹凸(Ra=86nm)を有するとともに、酸素量が47mol%であるドット状パターンを有する酸化亜鉛膜であることを確認した。
[実施例20]
 実施例20では、図16に示すように、所定のガラス基材に形成した酢酸亜鉛膜(金属塩膜)に対して、光リソグラフィ法によるパターニング工程(円形ドットパターン、直径100μm、中心間距離500μm)を実施し、次いで、実施例1に準拠して熱酸化処理(空気中、500℃、30分)を実施することにより、酸化亜鉛膜(金属塩膜)を形成し、評価した(但し、表面抵抗率、光透過率および密着性の評価は、省略した。)。
 その結果、表面が平坦(Raが2nm以下)であって、酸素量が45~70mol%の範囲であるドット状パターンを有する酸化亜鉛膜であることを確認した。
[実施例21]
 実施例21では、図18に示すように、所定のガラス基材に対し、インクジェット法によって、パターニングされた酢酸亜鉛膜(円形ドットパターン、直径100μm、中心間距離500μm)を形成し、次いで、実施例1に準拠して熱酸化処理(空気中、500℃、30分)を実施することにより、酸化亜鉛膜(金属塩膜)を形成し、評価した(但し、表面抵抗率、光透過率および密着性の評価は、省略した。)。
 その結果、表面が平坦(Raが2nm以下)であって、酸素量が45~70mol%の範囲であるドット状パターンを有する酸化亜鉛膜であることを確認した。
[実施例22]
 実施例22では、図20に示すように、所定のガラス基材に形成した酢酸亜鉛膜(金属塩膜)に対して、下記条件で、プラズマ部分酸化処理を施した後、光リソグラフィ法によるパターニング工程(ラインパターン、ライン幅100μm、スペース幅100μm)を実施し、次いで、実施例1に準拠して熱酸化処理(空気中、500℃、30分)を実施することにより、酸化亜鉛膜(金属塩膜)を形成し、評価した(但し、表面抵抗率、光透過率および密着性の評価は、金属塩膜のパターン形状等から判断して、省略した。)。
  RF電力(周波数13.56MHz) :300W
  プラズマ生成ガス          :O2
  ガス流量              :50ml/分
  プラズマ圧力            :45Pa
  処理時間              :1分
  プラズマ処理温度          :45℃
 その結果、表面に所定の凹凸(Raが10nm以上)を有するとともに、酸素量が45~70mol%の範囲であるライン状パターンを有する酸化亜鉛膜であることを確認した。
 以上詳述したように、本発明の金属酸化膜の形成方法によれば、優れた表面抵抗率や透明性等を有し、かつ所定の表面凹凸等を有するとともに、所定の導電性等を有する金属酸化膜が安定的に得られるようになった。
 また、本発明の金属酸化膜によれば、優れた表面抵抗率や透明性等を有し、かつ所定の表面凹凸等を有することから、電子デバイス用電極に最適な金属酸化膜が得られるようになった。
 したがって、本発明によれば、液晶表示装置、プラズマ表示装置、有機エレクトロルミネッセンス装置、無機エレクトロルミネッセンス装置等の透明電極等として、好適な積層体を効率的に供給することができる。
10:基材
12:金属塩含有液状物の塗膜(金属塩膜)
12a:金属塩膜における表面凹凸
12b:パターニングされた金属塩膜
13:部分酸化された金属塩膜
13b:パターニングかつ部分酸化された金属塩膜
14:金属酸化膜
14´:パターニングされた金属酸化膜
14a:金属酸化膜における表面凹凸
16:プラズマ処理装置
16a:交流電源
16b:電極(上部電極)
16c:電極(下部電極)
16d:アース
17:加熱炉
18:プライマー層
20:保護膜
22:樹脂膜

Claims (11)

  1.  基材上に、表面凹凸および所定パターンを有する金属酸化膜、あるいはいずれか一方を形成する金属酸化膜の形成方法であって、下記第1~第3工程を含むことを特徴とする金属酸化膜の形成方法。
    (1)前記基材に対して、金属塩および金属錯体、あるいはいずれか一方を含有する液状物を塗布して塗膜を形成する第1工程
    (2)前記塗膜に対して、表面凹凸および所定パターン、あるいはいずれか一方を形成する第2工程
    (3)前記表面凹凸および所定パターン、あるいはいずれか一方を形成した塗膜に対して、酸素源の存在下、熱酸化処理またはプラズマ酸化処理を行い、表面凹凸および所定パターンを有する金属酸化膜、あるいはいずれか一方の金属酸化膜とする第3工程
  2.  前記第1工程において、前記金属塩および金属錯体、あるいはいずれか一方を含有する液状物として、亜鉛またはインジウムを含む金属塩を含有する液状物、あるいは亜鉛またはインジウムを含む金属錯体を含有する液状物を用いることを特徴とする請求項1に記載の金属酸化膜の形成方法。
  3.  前記第2工程において、塗膜に対して、中心線平均粗さ(Ra)が30nm以上である表面凹凸を形成することを特徴とする請求項1または2に記載の金属酸化膜の形成方法。
  4.  前記第2工程において、前記表面凹凸および所定パターンをプラズマエッチング処理によって設けるとともに、当該プラズマエッチング処理のプラズマ生成ガスとして、希ガスおよび窒素、あるいはいずれか一方を用いることを特徴とする請求項1~3のいずれか一項に記載の金属酸化膜の形成方法。
  5.  前記第2工程において、プラズマ処理温度を20~100℃の範囲内の値とし、かつ、プラズマ圧力を1~500Paの範囲内の値とすることを特徴とする請求項4に記載の金属酸化膜の形成方法。
  6.  前記第1工程と、前記2工程との間に、第2´工程を設けて、プラズマ酸化処理または熱酸化処理を行い、前記塗膜を部分酸化させることを特徴とする請求項1~5のいずれか一項に記載の金属酸化膜の形成方法。
  7.  前記第3工程において、熱酸化処理を行う場合、当該熱酸化処理の温度を300~800℃の範囲内の値とすることを特徴とする請求項1~6のいずれか一項に記載の金属酸化膜の形成方法。
  8.  前記第3工程において、プラズマ酸化処理を行う場合、当該プラズマ酸化処理のプラズマ生成ガスとして、酸素を用いるとともに、プラズマ圧力を1.0×10-3~1.0×102Paの範囲内の値とし、プラズマ時間を10~600秒の範囲内の値とし、プラズマ温度を20~100℃の範囲内の値とすることを特徴とする請求項1~7のいずれか一項に記載の金属酸化膜の形成方法。
  9.  前記第3工程の後に、第4工程を設け、前記金属酸化膜上に、さらに金属あるいは金属酸化物の層を積層することを特徴とする請求項1~8のいずれか一項に記載の金属酸化膜の形成方法。
  10.  請求項1~9のいずれか一項に記載の金属酸化膜の形成方法によって得られてなる表面凹凸および所定パターンを有する金属酸化膜、あるいはいずれか一方を有する金属酸化膜であって、当該金属酸化膜の表面抵抗率を1×100~1×1010Ω/□の範囲内の値とすることを特徴とする金属酸化膜。
  11.  前記金属酸化膜が、電子デバイス用電極であることを特徴とする請求項10に記載の金属酸化膜。
PCT/JP2010/054982 2009-03-26 2010-03-23 金属酸化膜の形成方法および金属酸化膜 WO2010110264A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117016245A KR101589924B1 (ko) 2009-03-26 2010-03-23 금속 산화막의 형성 방법 및 금속 산화막
EP10756060.9A EP2412669B1 (en) 2009-03-26 2010-03-23 Method of forming metal oxide film, and metal oxide film
CN2010800049323A CN102282099A (zh) 2009-03-26 2010-03-23 金属氧化膜的形成方法和金属氧化膜
JP2010529189A JP4648504B2 (ja) 2009-03-26 2010-03-23 金属酸化膜の形成方法および金属酸化膜
US13/258,323 US8809201B2 (en) 2009-03-26 2010-03-23 Method of forming metal oxide film and metal oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009077304 2009-03-26
JP2009-077304 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010110264A1 true WO2010110264A1 (ja) 2010-09-30

Family

ID=42780957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054982 WO2010110264A1 (ja) 2009-03-26 2010-03-23 金属酸化膜の形成方法および金属酸化膜

Country Status (6)

Country Link
US (1) US8809201B2 (ja)
EP (1) EP2412669B1 (ja)
JP (2) JP4648504B2 (ja)
KR (1) KR101589924B1 (ja)
CN (1) CN102282099A (ja)
WO (1) WO2010110264A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551893A1 (en) * 2010-03-23 2013-01-30 LINTEC Corporation Irregular-surface forming method using plasma-etching process, and electrode member
FR2979340A1 (fr) * 2011-08-30 2013-03-01 Saint Gobain Electrode supportee transparente

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807886B2 (ja) * 2012-03-13 2015-11-10 国立大学法人 名古屋工業大学 酸化亜鉛微細粒子及び/又は酸化亜鉛膜の製造方法
TWI518756B (zh) * 2013-08-16 2016-01-21 財團法人工業技術研究院 圖案化的導電薄膜及其製造方法與應用
JP6969156B2 (ja) * 2016-05-30 2021-11-24 Agc株式会社 印刷層付き板およびその製造方法、および表示装置
WO2018105473A1 (ja) * 2016-12-07 2018-06-14 パナソニック株式会社 鉄心及びモータ
WO2020157954A1 (ja) * 2019-02-01 2020-08-06 株式会社日立ハイテクノロジーズ エッチング方法およびプラズマ処理装置
CN113130334B (zh) * 2019-12-31 2024-06-18 盛合晶微半导体(江阴)有限公司 提高底部金属与焊垫辨识度的方法
CN112939060B (zh) * 2021-02-05 2022-02-15 中国人民解放军战略支援部队航天系统部装备部装备保障队 一种氧化锌纳米材料及其制备方法与应用
CN113013020B (zh) * 2021-02-23 2023-06-27 中国人民大学 一种基于厚度刻蚀的大面积超薄二维氮化物的生长方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254192A (ja) 1989-03-27 1990-10-12 Hideki Masuda 多孔性材料の作製方法
JP2000327310A (ja) 1999-05-24 2000-11-28 Konica Corp 金属酸化物、その薄膜及びこれを製造する方法
JP2001059175A (ja) * 1999-08-18 2001-03-06 Asahi Glass Co Ltd 酸化錫膜とその製造方法および酸化錫膜の製造装置
JP2001177127A (ja) * 1999-12-20 2001-06-29 Nippon Sheet Glass Co Ltd 光電変換装置用基板
JP2005310387A (ja) * 2004-04-16 2005-11-04 Ebara Corp 透明電極及びその製造方法
JP2008177549A (ja) 2006-12-22 2008-07-31 Nippon Synthetic Chem Ind Co Ltd:The 太陽電池用透明電極基板
JP2009054763A (ja) * 2007-08-27 2009-03-12 Konica Minolta Holdings Inc 金属酸化物半導体の製造方法及びこれを用い作製された酸化物半導体薄膜を用いた薄膜トランジスタ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257523A (ja) * 1989-03-30 1990-10-18 Japan Synthetic Rubber Co Ltd 無機質透明導電膜の製造方法
JPH02258604A (ja) * 1989-03-30 1990-10-19 Mitsubishi Electric Corp セラミックス膜の製造方法
JPH08274073A (ja) * 1995-03-31 1996-10-18 Sony Corp アルミニウム系金属膜のエッチング方法
JPH09157855A (ja) 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
KR20060115401A (ko) * 2000-04-19 2006-11-08 다이낑 고오교 가부시키가이샤 탈착성이 우수한 불소함유 엘라스토머 성형품 및 그제조방법
JP4857508B2 (ja) * 2001-09-21 2012-01-18 株式会社村田製作所 金属酸化物膜形成用塗布液
JP3982281B2 (ja) * 2002-02-27 2007-09-26 日本板硝子株式会社 ポジ型金属酸化物パターン薄膜の形成方法
CN101154569B (zh) * 2002-06-27 2014-05-14 东京毅力科创株式会社 等离子体处理方法
JP2007080455A (ja) * 2005-09-16 2007-03-29 Toshiba Corp インプリント材料およびそれを用いたパタン形成方法
US8129282B2 (en) * 2006-07-19 2012-03-06 Tokyo Electron Limited Plasma etching method and computer-readable storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254192A (ja) 1989-03-27 1990-10-12 Hideki Masuda 多孔性材料の作製方法
JP2000327310A (ja) 1999-05-24 2000-11-28 Konica Corp 金属酸化物、その薄膜及びこれを製造する方法
JP2001059175A (ja) * 1999-08-18 2001-03-06 Asahi Glass Co Ltd 酸化錫膜とその製造方法および酸化錫膜の製造装置
JP2001177127A (ja) * 1999-12-20 2001-06-29 Nippon Sheet Glass Co Ltd 光電変換装置用基板
JP2005310387A (ja) * 2004-04-16 2005-11-04 Ebara Corp 透明電極及びその製造方法
JP2008177549A (ja) 2006-12-22 2008-07-31 Nippon Synthetic Chem Ind Co Ltd:The 太陽電池用透明電極基板
JP2009054763A (ja) * 2007-08-27 2009-03-12 Konica Minolta Holdings Inc 金属酸化物半導体の製造方法及びこれを用い作製された酸化物半導体薄膜を用いた薄膜トランジスタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551893A1 (en) * 2010-03-23 2013-01-30 LINTEC Corporation Irregular-surface forming method using plasma-etching process, and electrode member
EP2551893A4 (en) * 2010-03-23 2014-05-21 Lintec Corp METHOD FOR FORMING IRREGULAR SURFACES BY MEANS OF A PLASMA RESPONSE PROCESS AND ELECTRODE ELEMENT THEREFOR
FR2979340A1 (fr) * 2011-08-30 2013-03-01 Saint Gobain Electrode supportee transparente
WO2013030506A1 (fr) * 2011-08-30 2013-03-07 Saint-Gobain Glass France Electrode supportee transparente

Also Published As

Publication number Publication date
KR101589924B1 (ko) 2016-01-29
US20120034423A1 (en) 2012-02-09
EP2412669B1 (en) 2017-12-20
JP4648504B2 (ja) 2011-03-09
JP5590724B2 (ja) 2014-09-17
JP2011079735A (ja) 2011-04-21
EP2412669A1 (en) 2012-02-01
EP2412669A4 (en) 2016-02-17
CN102282099A (zh) 2011-12-14
JPWO2010110264A1 (ja) 2012-09-27
US8809201B2 (en) 2014-08-19
KR20120011839A (ko) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4648504B2 (ja) 金属酸化膜の形成方法および金属酸化膜
JP6924789B2 (ja) パターン化された透明導電体の製造方法
TWI624357B (zh) 熔合金屬奈米結構網絡、具有還原劑之熔合溶液及形成金屬網絡的方法
JP6130882B2 (ja) 導電層をパターン化するための方法
WO2011081023A1 (ja) 導電積層体およびそれを用いてなるタッチパネル
JP4790877B1 (ja) プラズマエッチング処理を用いた表面凹凸形成方法および電極部材
KR20170038894A (ko) 반사 시트 및 그의 제조 방법
KR20150128004A (ko) 코팅형 발열 필름의 제조방법 및 이에 따라 제조된 코팅형 발열 필름
US10999934B2 (en) Metal oxide nanoparticle ink composition, method of producing same, and method of forming conductive layer pattern using same
TW201710564A (zh) 黑化鍍液、導電性基板
KR101823367B1 (ko) 그래핀층을 포함하는 투광성 기판의 제조방법 및 이를 통해 제조된 투광성 기판
TWI440734B (zh) A method for producing a metal foil having a resistive layer
TWI707255B (zh) 導電性基板
JP2010263067A (ja) パターン電極の製造方法及びパターン電極
EP3887463B1 (en) Composition for forming a patterned metal film on a substrate
JP2013243214A (ja) インクジェット法を用いた金属電極の製造方法および金属電極
KR20160143613A (ko) 코팅형 발열 필름의 제조방법 및 이에 따라 제조된 코팅형 발열 필름
JP2009221071A (ja) 金属酸化物の製膜方法
JP2010225469A (ja) 有機el用透明陽極基板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004932.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010529189

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016245

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258323

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010756060

Country of ref document: EP