WO2010109978A1 - Rfタグリーダ回路 - Google Patents

Rfタグリーダ回路 Download PDF

Info

Publication number
WO2010109978A1
WO2010109978A1 PCT/JP2010/052214 JP2010052214W WO2010109978A1 WO 2010109978 A1 WO2010109978 A1 WO 2010109978A1 JP 2010052214 W JP2010052214 W JP 2010052214W WO 2010109978 A1 WO2010109978 A1 WO 2010109978A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
output
tag reader
division ratio
Prior art date
Application number
PCT/JP2010/052214
Other languages
English (en)
French (fr)
Inventor
由樹 日森
真一郎 福島
紘幸 濱田
大造 山脇
俊 大島
早苗 中尾
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2010109978A1 publication Critical patent/WO2010109978A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • H03J7/065Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers the counter or frequency divider being used in a phase locked loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Definitions

  • the present invention relates to a technique for receiving data (signal) transmitted from a so-called tag.
  • the present invention relates to a receiving circuit of an RF tag reader that receives a signal transmitted from an active tag by the Low-IF method.
  • RF tags include passive tags and active tags. Passive tags do not require batteries and communicate using a backscatter method. In the backscatter method, the RF tag receives power supply from an unmodulated signal transmitted from the RF tag reader, and transmits the retained data to the RF tag reader by changing the reflection amount of the unmodulated signal.
  • An active tag requires a power source and an oscillator independently, but communication over a long distance is possible as compared with a passive tag.
  • Non-Patent Document 1 discloses an RFIC configuration using the Low-IF method.
  • the passive tag transmits data holding data internally by reflecting the unmodulated wave from the RF tag reader, the frequency of the unmodulated wave transmitted from the RF tag reader does not shift.
  • the active tag since the active tag has an oscillator independent of the RF tag reader, the frequency of the signal transmitted from the active tag may deviate from the frequency of the signal that the RF tag reader is supposed to receive. If both frequencies are shifted, reception characteristics of the RF tag reader are deteriorated.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to improve reception characteristics in receiving a radio wave transmitted from an active tag.
  • the local frequency of the RF tag reader or the center frequency of the bandpass filter is adjusted based on the unmodulated signal from the active tag.
  • a first aspect of the present invention is a receiving circuit of an RF tag reader that receives a signal transmitted from an active tag by the Low-IF method, A programmable PLL for outputting a local oscillation signal having a set division ratio with respect to a signal output from the reference oscillator; A mixer for down-converting an unmodulated signal transmitted from an active tag using a local oscillation signal output from the programmable PLL; A band-pass filter that passes a signal in a predetermined band from the output signal from the mixer; An amplifier for amplifying the output signal of the bandpass filter; A demodulator that demodulates the output of the amplifier after converting it to digital data; A frequency difference calculating unit that calculates a frequency difference indicating a difference between a frequency of an output signal from the bandpass filter and a predetermined reference frequency; Provided is an RF tag reader circuit comprising: a frequency division ratio according to a difference calculated by the frequency difference calculation unit; and a frequency division ratio control unit that sets the calculated frequency division ratio in the programmable
  • a second aspect of the present invention is a receiving circuit for an RF tag reader that receives a signal transmitted from an active tag by the Low-IF method, A local oscillation signal generator that outputs a local oscillation signal having a predetermined frequency; A mixer that down-converts the non-modulated signal transmitted from the active tag using the local signal output from the local signal generator; A bandpass filter that passes a signal of a predetermined bandwidth from the output signal from the mixer at a center frequency corresponding to the input control signal; An amplifier for amplifying the output signal of the bandpass filter; A demodulator that demodulates the output of the amplifier after converting it to digital data; A frequency difference calculating unit that calculates a difference between a frequency of an output signal from the bandpass filter and a predetermined reference frequency; A bandpass filter control unit that generates a control signal for controlling a center frequency of a band of the bandpass filter according to the difference calculated by the frequency difference calculation unit and supplies the control signal to the bandpass filter.
  • An RF tag reader circuit is provided.
  • the RF tag reader circuit of the present invention it is possible to improve reception characteristics in receiving radio waves transmitted from an active tag.
  • FIG. 1 is a system configuration diagram illustrating an example of an RFID system 10 according to an embodiment of the present invention. It is a figure which shows an example of the format of the signal transmitted from the active tag 11. It is a block diagram which shows an example of a function structure of RF tag reader 20 in 1st Embodiment. It is a conceptual diagram for demonstrating the calculation method of frequency difference (DELTA) f.
  • FIG. 10 is a block diagram illustrating another example of the ⁇ f calculation unit 216.
  • 3 is a block diagram illustrating an example of a functional configuration of a PLL 214.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of a frequency division ratio control unit 215.
  • FIG. 6 is a diagram illustrating an example of a structure of data stored in a division ratio table 50.
  • FIG. It is a flowchart which shows an example of operation
  • It is a block diagram which shows an example of a function structure of RF tag reader 20 in 2nd Embodiment.
  • 3 is a circuit diagram illustrating an example of a circuit configuration of a filter circuit 230.
  • FIG. 3 is a circuit diagram illustrating an example of a circuit configuration of a variable BPF 240.
  • FIG. It is a circuit diagram which shows an example of the circuit structure of a variable resistance.
  • 3 is a block diagram illustrating an example of a functional configuration of a BPF control unit 242.
  • FIG. 4 is a diagram illustrating an example of a structure of data stored in a control signal table 70.
  • FIG. It is a flowchart which shows an example of operation
  • FIG. 1 It is a flowchart which shows an example of operation
  • 3 is a circuit diagram illustrating an example of a circuit configuration of a filter circuit 260.
  • FIG. 1 is a system configuration diagram showing an example of an RFID system 10 according to an embodiment of the present invention.
  • the RFID system 10 includes an active tag 11, a data processing device 12, and an RF tag reader 20.
  • the active tag 11 when the active tag 11 receives a Wake UP message from the RF tag reader 20, for example, as shown in FIG. 2, the unmodulated wave (CW) 30, the pilot tone 31, the preamble 32, and the data 33 Send a message containing
  • the RF tag reader 20 is provided with a switch 13, and the user presses the switch 13 when receiving data from the active tag 11.
  • the RF tag reader 20 of the present embodiment transmits a Wake UP message, and then demodulates the radio wave transmitted from the active tag 11 based on the unmodulated wave transmitted from the active tag 11. Adjust the frequency of the local oscillator signal used for. Then, the RF tag reader 20 demodulates the pilot tone, preamble, and data transmitted following the unmodulated wave, and sends the demodulated data to the data processing device 12.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the RF tag reader 20 according to the first embodiment.
  • the RF tag reader 20 includes an antenna 200, an LNA (Low Noise Amplifier) 201, a mixer 202, a mixer 203, a BPF (Band Pass Filter) 204, a BPF 205, an AGC (Automatic Gain Control) amplifier 206, an AGC amplifier 207, and an ADC (Analog Noise Digital).
  • LNA Low Noise Amplifier
  • BPF Band Pass Filter
  • AGC Automatic Gain Control
  • ADC Analog Noise Digital
  • the PLL 214 generates a local oscillation signal having a frequency division ratio set by the frequency division ratio control unit 215 or the control unit 217 from a reference signal source such as a crystal resonator, and supplies the generated local oscillation signal to the mixer 202. At the same time, it is supplied to the mixer 203 via the phase shifter 213.
  • the local oscillation signal generated by the PLL 214 is determined in advance from the frequency of the signal to be transmitted from the active tag 11. Is shifted by the specified frequency (for example, 100 kHz).
  • the LNA 201 amplifies the signal received from the active tag 11 via the antenna 200 and supplies the amplified signal to the mixer 202 and the mixer 203.
  • the mixer 202 multiplies the local oscillation signal supplied from the PLL 214 to down-convert the signal supplied from the LNA 201 and supplies the I component of the received signal to the BPF 204.
  • the mixer 202 multiplies the local oscillation signal shifted by ⁇ / 2 by the phase shifter 213, down-converts the signal supplied from the LNA 201, and supplies the Q component of the received signal to the BPF 205.
  • the BPF 204 passes a frequency component in a predetermined band from the signal supplied from the mixer 202.
  • the BPF 205 passes a frequency component in a predetermined band from the signal supplied from the mixer 203.
  • the I component received signal output from the BPF 204 is amplified by the AGC amplifier 206, converted into a digital signal by the ADC 208, harmonics are removed by the LPF 210, and then supplied to the demodulator 212.
  • the Q component received signal output from the BPF 205 is amplified by the AGC amplifier 207, converted into a digital signal by the ADC 209, the harmonics are removed by the LPF 211, and then supplied to the demodulator 212.
  • the demodulator 212 demodulates the data bits based on the received signals of the I component and the Q component, and supplies the demodulated data bits to the data processing device 12.
  • the ⁇ f calculation unit 216 calculates a frequency difference ⁇ f between the frequency of the reception signal and a predetermined frequency, and supplies the calculated ⁇ f value to the frequency division ratio control unit 215. .
  • the ⁇ f calculation unit 216 monitors the Q component of the received signal and counts the number of repetitions ⁇ of one wavelength of the received signal at a predetermined time interval Tc. Then, ⁇ f calculation section 216 calculates ( ⁇ ) ⁇ Tc as ⁇ f based on the difference from the number of repetitions ⁇ of one wavelength to be counted in a signal of a predetermined frequency.
  • the ⁇ f calculation unit 216 calculates the value of ⁇ f from the Q component of the received signal, but may calculate the value of ⁇ f from the I component of the received signal. Further, for example, as illustrated in FIG. 4, the ⁇ f calculation unit 216 may count the number of received signal peaks as the number of repetitions ⁇ of one wavelength in a predetermined time interval Tc.
  • the ⁇ f calculation unit 216 may calculate the frequency difference ⁇ f by an analog PLL or a digital PLL using the I component and the Q component of the received signal.
  • FIG. 5 shows an example in which the ⁇ f calculation unit 216 is configured by a digital PLL.
  • the I component received signal output from the LPF 210 is multiplied by the Cosine wave by the multiplier 41, and the Q component received signal output from the LPF 211 is multiplied by the Sine wave by the multiplier 42.
  • the output of the multiplier 41 and the output of the inverter 44 are added by the adder 43 and output.
  • the signal output from the phase comparator 40 passes through the loop filter 45 and is then output to the frequency division ratio control unit 215 as the frequency difference ⁇ f.
  • the output from the loop filter 45 is added with a reference value indicating a predetermined frequency by an adder 47 in an NCO (numericnucontrolled oscillator) 46, integrated by an integrator 48, and fed back to the phase comparator 40.
  • the reference value is a signal output from the mixer 202 and the mixer 203 on the assumption that there is no difference between the frequency of the signal transmitted from the active tag 11 and the frequency of the reception signal assumed by the RF tag reader 20. Is a digital value of an intermediate frequency indicating
  • the frequency difference ⁇ f ( ⁇ S ⁇ ⁇ ⁇ IF ) / 2 ⁇ ) can be calculated.
  • the PLL 214 includes a phase comparator 60, a charge pump 61, a loop filter 62, a VCO (voltage controlled oscillator) 63, and a variable frequency divider 64.
  • the variable frequency divider 64 is the setting value of the frequency division ratio supplied from the frequency division ratio control unit 215. Based on parameter A, parameter B, and parameter N, a signal having a frequency f OUT according to the following calculation formula (2) is output.
  • the phase comparator 60 outputs a signal corresponding to the phase difference between the reference signal from the reference signal source and f OUT from the variable frequency divider 64, and the charge pump 61 converts the signal from the phase comparator 60 into a voltage. To do.
  • the loop filter 62 averages the output voltage of the charge pump 61, and the VCO 63 outputs a signal having a frequency corresponding to the output voltage of the loop filter 62.
  • an integer frequency divider has been described as an example of the variable frequency divider 64.
  • the PLL 214 may be configured as a fractional PLL using a frequency divider as the variable frequency divider 64.
  • the frequency division ratio control unit 215 includes a frequency division ratio table 50 and a frequency division ratio setting unit 51 as shown in FIG.
  • the frequency division ratio table 50 for example, as shown in FIG. 8, values 501 of parameters to be set in the PLL 214 are stored in advance in association with the frequency difference 500.
  • the value 501 of each parameter in the frequency division ratio table 50 is set in the PLL 214 in order to generate a local oscillation frequency that makes the frequency difference zero when the corresponding frequency difference is calculated by the ⁇ f calculation unit 216. It is a power value and is measured in advance by an experiment by a manufacturer or the like and stored.
  • the frequency division ratio setting unit 51 When the frequency division ratio setting unit 51 receives a signal indicating the frequency difference ⁇ f from the ⁇ f calculation unit 216, the frequency division ratio setting unit 51 extracts each parameter of the frequency division ratio corresponding to the received frequency difference ⁇ f from the frequency division ratio table 50. Each parameter thus set is set in the variable frequency divider 64 of the PLL 214.
  • the frequency of the signal transmitted from the active tag 11 and the frequency of the reception signal assumed by the RF tag reader 20 are determined in advance.
  • the frequency of the signal down-converted by the mixer 202 and the mixer 203 is Each may deviate from the passbands of BPF 204 and BPF 205.
  • the demodulator 212 cannot correctly demodulate the signal from the active tag 11 as it is.
  • the frequency division ratio control unit 215 shifts the frequency of the local signal generated by the PLL 214 by a predetermined frequency from the signal frequency of the active tag 11 in accordance with the frequency difference ⁇ f calculated by the ⁇ f calculation unit 216. Set to the same frequency.
  • the frequencies of the signals down-converted by the mixer 202 and the mixer 203 are supplied to the AGC amplifier 206 and the AGC amplifier 207 and the subsequent parts without deviating from the passbands of the BPF 204 and BPF 205, respectively.
  • the RF tag reader 20 of the present embodiment can correctly demodulate the signal from the active tag 11 even when the reference signal in the active tag 11 and the reference signal in the RF tag reader 20 are shifted. it can.
  • FIG. 9 is a flowchart showing an example of the operation of the RF tag reader 20 in the first embodiment.
  • control unit 217 sets an initial value of the frequency division ratio in the PLL 214 (S100), and transmits a Wake UP message by a transmitter (not shown). Then, the control unit 217 determines whether an unmodulated signal is output from the LPF 211 (S101). When the unmodulated signal is not output (S101: No), the control unit 217 repeats Step S101 until the unmodulated signal is output.
  • the control unit 217 activates the frequency division ratio control unit 215 and the ⁇ f calculation unit 216 (S102), and the ⁇ f calculation unit 216 calculates and divides the frequency difference ⁇ f. It waits for a predetermined time (for example, several tens of microseconds) until the setting of the frequency division ratio by the ratio control unit 215 and the switching of the local oscillation frequency by the PLL 214 are completed.
  • a predetermined time for example, several tens of microseconds
  • the ⁇ f calculation unit 216 calculates a frequency difference ⁇ f between the frequency of the reception signal and a predetermined frequency, and supplies the calculated ⁇ f value to the frequency division ratio control unit 215.
  • the PLL 214 extracts each parameter of the frequency division ratio corresponding to the frequency difference ⁇ f received from the ⁇ f calculation unit 216 from the frequency division ratio table 50, and sets each extracted parameter in the variable frequency divider 64 of the PLL 214 (S103). .
  • control unit 217 stops the frequency division ratio control unit 215 and the ⁇ f calculation unit 216 (S104).
  • the PLL 214 continues to operate at the frequency division ratio set by the frequency division ratio control unit 215 in step S103, and the demodulator 212 demodulates the data transmitted from the active tag 11 following the unmodulated wave (S105). )
  • the RF tag reader 20 ends the operation shown in this flowchart.
  • the RF tag reader 20 of the present embodiment it is possible to improve reception characteristics in receiving radio waves transmitted from the active tag 11.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the RF tag reader 20 according to the second embodiment.
  • the RF tag reader 20 of this embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, a BPF 204, a BPF 205, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, a demodulator 212, a phase shifter 213, and a PLL 214.
  • the RF tag reader 20 in this embodiment is different from the RF tag reader 20 in the first embodiment described with reference to FIG. 3 in that the switch 220, the switch 221, the LPF 222, and the LPF 223 are included. Except for the points described below, in FIG. 10, members denoted by the same reference numerals as those in FIG. 3 have the same or similar functions as the members in FIG.
  • the switch 220 sends the output signal of the mixer 202 to the LPF 222 or the BPF 204 in accordance with an instruction from the control unit 217.
  • the switch 221 sends the output signal of the mixer 203 to the LPF 223 or the BPF 205 in accordance with an instruction from the control unit 217.
  • the LPF 222 extracts a signal having a band below a predetermined frequency from the signals provided via the switch 220 and supplies the extracted signal to the AGC amplifier 206.
  • the LPF 223 extracts a signal in a band of a predetermined frequency or less from the signals provided via the switch 221 and supplies the extracted signal to the AGC amplifier 207.
  • FIG. 11 is a flowchart showing an example of the operation of the RF tag reader 20 in the second embodiment.
  • the switch 13 provided in the RF tag reader 20 can instruct the RF tag reader 20 to receive either an active tag or a passive tag.
  • the RF tag reader 20 starts the operation shown in this flowchart when the switch 13 is operated.
  • the control unit 217 determines whether or not the user's operation via the switch 13 is an instruction to receive an active tag (S200).
  • the control unit 217 switches the switch 220 to send the output signal of the mixer 202 to the BPF 204, and sends the output signal of the mixer 203 to the BPF 205.
  • the switch 221 is switched (S201).
  • control unit 217 sets the initial value of the frequency division ratio for generating the local oscillation frequency in the reception of the Low-IF scheme in the PLL 214 (S202), and transmits a Wake UP message by a transmitter (not shown). . Then, the control unit 217 determines whether an unmodulated signal is output from the LPF 211 (S203). When the unmodulated signal is not output (S203: No), the control unit 217 repeats Step S203 until the unmodulated signal is output.
  • the control unit 217 activates the frequency division ratio control unit 215 and the ⁇ f calculation unit 216 (S204), and the ⁇ f calculation unit 216 calculates and divides the frequency difference ⁇ f. It waits for a predetermined time (for example, several tens of microseconds) until the setting of the frequency division ratio by the ratio control unit 215 and the switching of the local oscillation frequency by the PLL 214 are completed.
  • a predetermined time for example, several tens of microseconds
  • the ⁇ f calculation unit 216 calculates a frequency difference ⁇ f between the frequency of the reception signal and a predetermined frequency, and supplies the calculated ⁇ f value to the frequency division ratio control unit 215.
  • the frequency division ratio control unit 215 extracts each parameter of the frequency division ratio corresponding to the frequency difference ⁇ f received from the ⁇ f calculation unit 216 from the frequency division ratio table 50, and supplies the extracted parameters to the variable frequency divider 64 of the PLL 214.
  • control unit 217 stops the frequency division ratio control unit 215 and the ⁇ f calculation unit 216 (S206).
  • the PLL 214 continues to operate at the frequency division ratio set by the frequency division ratio control unit 215 in step S205, and the demodulator 212 demodulates the data transmitted from the active tag 11 following the unmodulated wave (S207). )
  • the RF tag reader 20 ends the operation shown in this flowchart.
  • step S200 when the operation of the switch 13 by the user instructs reception of the passive tag (S200: No), the control unit 217 switches the switch 220 so as to send the output signal of the mixer 202 to the LPF 222.
  • the switch 221 is switched so as to send the output signal of the mixer 203 to the LPF 223 (S208).
  • control unit 217 sets an initial value of the frequency division ratio in the PLL 214 for generating a local oscillation frequency in reception of the direct conversion method (S209). Then, the control unit 217 performs carrier sense and determines whether there is any other RF tag in communication (S210). When there is another RF tag in communication (S210: Yes), the control unit 217 repeats Step S210 until there is no other RF tag in communication.
  • control unit 217 When there is no other RF tag in communication (S210: No), the control unit 217 causes a transmitter (not shown) to start transmitting radio waves to the passive tag (S211), and the demodulator 212 is transmitted from the passive tag. The received data is demodulated (S212), and the RF tag reader 20 ends the operation shown in this flowchart.
  • the RF tag reader 20 of the present embodiment it is possible to improve reception characteristics in reception of radio waves transmitted from the active tag 11, and from the data from the active tag and the passive tag. Can be switched and received by one RF tag reader 20.
  • FIG. 12 is a block diagram illustrating an example of a functional configuration of the RF tag reader 20 according to the third embodiment.
  • the RF tag reader 20 of this embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, a demodulator 212, a phase shifter 213, a PLL 214, and a frequency division ratio.
  • a control unit 215, a ⁇ f calculation unit 216, a control unit 217, and a filter circuit 230 are included.
  • the RF tag reader 20 in the present embodiment is different from the RF tag reader 20 in the first embodiment described with reference to FIG. 3 in that it has a filter circuit 230 instead of the BPF 204 and the BPF 205. Except for the points described below, in FIG. 10, members denoted by the same reference numerals as those in FIG. 3 have the same or similar functions as the members in FIG.
  • the filter circuit 230 operates as either a BPF or an LPF according to an instruction from the control unit 217.
  • the filter circuit 230 is configured as shown in FIG. 13, for example, and operates as an LPF when the switches 231 to 236 are all off, and operates as a BPF of a complex filter when the switches 231 to 236 are all on. .
  • the control unit 217 controls all the switches 231 to 236 to be turned off when the passive tag is received, and controls all the switches 231 to 236 to be turned on when the active tag is received.
  • the RF tag reader 20 of the present embodiment it is possible to improve reception characteristics in reception of radio waves transmitted from the active tag 11, as well as data from the active tag and data from the passive tag.
  • the circuit configuration when data is switched and received by one RF tag reader 20 can be reduced in size.
  • FIG. 14 is a block diagram illustrating an example of a functional configuration of the RF tag reader 20 according to the fourth embodiment.
  • the RF tag reader 20 of this embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, a demodulator 212, a phase shifter 213, a PLL 214, and a ⁇ f calculation unit. 216, a control unit 217, a variable BPF 240, a variable BPF 241, and a BPF control unit 242.
  • the RF tag reader 20 includes a variable BPF 240, a variable BPF 241, and a BPF control unit 242 instead of the BPF 204, the BPF 205, and the frequency division ratio control unit 215, as described with reference to FIG. Different from the RF tag reader 20 in the embodiment. Except for the points described below, in FIG. 14, members denoted by the same reference numerals as those in FIG. 3 have the same or similar functions as the members in FIG.
  • the variable BPF 240 changes the center frequency of the pass band while maintaining the bandwidth of the pass band in accordance with a control signal from the BPF control unit 242.
  • the variable BPF 240 has a circuit configuration as shown in FIG. 15, for example.
  • the BPF control unit 242 can change the center frequency of the pass band of the variable BPF 240 by changing the resistance values of the variable resistor 243-1 and the variable resistor 243-2.
  • each variable resistor 243 can be configured as shown in FIG. 16, for example.
  • the BPF control unit 242 can change the resistance value of the entire variable resistor 243 by turning each switch 244 on or off.
  • the BPF control unit 242 may change the capacitance of the capacitor in the variable BPF 240 instead of changing the resistance value of the variable resistor 243 or together with changing the resistance value of the variable resistor 243.
  • the variable BPF 240 is configured by a resistor and a capacitor.
  • the variable BPF 240 may be configured by a coil and a capacitor. Since the variable BPF 241 has the same configuration as the variable BPF 240, the description thereof is omitted.
  • the BPF control unit 242 includes a control signal table 70 and a control signal supply unit 71 as shown in FIG.
  • a control signal 701 indicating control of each switch in the variable BPF 240 and the variable BPF 241 is stored in advance in association with the frequency difference 700.
  • the control signal 701 in the control signal table 70 includes the variable BPF 240 and the variable BPF 240 to shift the center frequency of the pass band of the frequency difference, the variable BPF 240, and the variable BPF 241. This value is to be supplied to the BPF 241 and is measured in advance by an experiment by a manufacturer or the like and stored.
  • control signal supply unit 71 When the control signal supply unit 71 receives a signal indicating the frequency difference ⁇ f from the ⁇ f calculation unit 216, the control signal supply unit 71 extracts a control signal corresponding to the received frequency difference ⁇ f from the control signal table 70, and extracts the extracted control signal from the variable BPF 240. And supplied to the variable BPF 241.
  • the frequency of the signal transmitted from the active tag 11 and the frequency of the reception signal assumed by the RF tag reader 20 are determined in advance.
  • the frequency of the signal down-converted by the mixer 202 and the mixer 203 is In some cases, the variable BPF 240 and the variable BPF 241 may be out of the passband.
  • the demodulator 212 cannot correctly demodulate the signal from the active tag 11 as it is.
  • the BPF control unit 242 varies the control signal for shifting the center frequencies of the passbands of the variable BPF 240 and the variable BPF 241 by the frequency difference ⁇ f according to the frequency difference ⁇ f calculated by the ⁇ f calculation unit 216. Supplied to the BPF 240 and the variable BPF 241 respectively.
  • the frequencies of the signals down-converted by the mixer 202 and the mixer 203 are supplied to the AGC amplifier 206 and the AGC amplifier 207 and thereafter without departing from the passbands of the variable BPF 240 and the variable BPF 241, respectively. Therefore, the RF tag reader 20 of this embodiment can correctly demodulate the signal from the active tag 11.
  • FIG. 19 is a flowchart illustrating an example of the operation of the RF tag reader 20 according to the fourth embodiment.
  • the RF tag reader 20 starts the operation shown in this flowchart. Except for the points described below, in FIG. 19, the processes denoted by the same reference numerals as those in FIG. 9 are the same as the processes in FIG.
  • step S101 when an unmodulated signal is output from the LPF 211 (S101: Yes), the control unit 217 activates the ⁇ f calculation unit 216 and the BPF control unit 242 (S110), and the frequency difference ⁇ f by the ⁇ f calculation unit 216 is calculated. It waits for a predetermined time (for example, several tens of microseconds) until the calculation and the supply of the control signal by the BPF control unit 242 are completed.
  • a predetermined time for example, several tens of microseconds
  • the ⁇ f calculation unit 216 calculates a frequency difference ⁇ f between the frequency of the received signal and a predetermined frequency, and supplies the calculated ⁇ f value to the BPF control unit 242.
  • the BPF control unit 242 extracts a control signal corresponding to the frequency difference ⁇ f received from the ⁇ f calculation unit 216 from the control signal table 70, and supplies the extracted control signal to the variable BPF 240 and the variable BPF 241 (S111).
  • control unit 217 stops the ⁇ f calculation unit 216 and the BPF control unit 242 (S112). Then, the demodulator 212 demodulates data transmitted from the active tag 11 following the unmodulated wave (S105), and the RF tag reader 20 ends the operation shown in this flowchart.
  • the RF tag reader 20 of the present embodiment can also improve the reception characteristics in receiving radio waves transmitted from the active tag 11.
  • FIG. 20 is a block diagram illustrating an example of a functional configuration of the RF tag reader 20 according to the fifth embodiment.
  • the RF tag reader 20 of this embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, a demodulator 212, a phase shifter 213, a PLL 214, and a ⁇ f calculation unit. 216, a control unit 217, a variable BPF 240, a variable BPF 241, a BPF control unit 242, a switch 250, a switch 251, an LPF 252, and an LPF 253.
  • the RF tag reader 20 in the present embodiment is different from the RF tag reader 20 in the fourth embodiment described with reference to FIG. 14 in that the switch 250, the switch 251, the LPF 252, and the LPF 253 are included. Except for the points described below, in FIG. 20, members denoted by the same reference numerals as those in FIG. 14 have the same or similar functions as the members in FIG.
  • the switch 250 sends the output signal of the mixer 202 to the LPF 252 or the variable BPF 240 in accordance with an instruction from the control unit 217.
  • the switch 251 sends the output signal of the mixer 203 to the LPF 253 or the variable BPF 241 in response to an instruction from the control unit 217.
  • the LPF 252 extracts a signal in a band below a predetermined frequency from the signals provided via the switch 250 and supplies the extracted signal to the AGC amplifier 206.
  • the LPF 253 extracts a signal in a band equal to or lower than a predetermined frequency from the signals provided via the switch 251 and supplies the extracted signal to the AGC amplifier 207.
  • FIG. 21 is a flowchart showing an example of the operation of the RF tag reader 20 in the fifth embodiment.
  • the switch 13 provided in the RF tag reader 20 can instruct the RF tag reader 20 to receive either an active tag or a passive tag.
  • the RF tag reader 20 starts the operation shown in this flowchart when the switch 13 is operated. Except for the points described below, in FIG. 21, the processes denoted by the same reference numerals as those in FIG. 11 are the same as the processes in FIG.
  • step S203 If an unmodulated signal is output from the LPF 211 in step S203 (S203: Yes), the control unit 217 activates the ⁇ f calculation unit 216 and the BPF control unit 242 (S220), and the frequency difference ⁇ f by the ⁇ f calculation unit 216 is calculated. It waits for a predetermined time (for example, several tens of microseconds) until the calculation and the supply of the control signal by the BPF control unit 242 are completed.
  • a predetermined time for example, several tens of microseconds
  • the ⁇ f calculation unit 216 calculates a frequency difference ⁇ f between the frequency of the received signal and a predetermined frequency, and supplies the calculated ⁇ f value to the BPF control unit 242.
  • a control signal corresponding to the frequency difference ⁇ f received from the ⁇ f calculation unit 216 is extracted from the control signal table 70, and the extracted control signals are supplied to the variable BPF 240 and the variable BPF 241 respectively (S221).
  • control unit 217 stops the ⁇ f calculation unit 216 and the BPF control unit 242 (S222). Then, the demodulator 212 demodulates the data transmitted from the active tag 11 following the unmodulated wave (S207), and the RF tag reader 20 ends the operation shown in this flowchart.
  • the RF tag reader 20 of the present embodiment can also improve the reception characteristics in the reception of radio waves transmitted from the active tag 11, and the data from the active tag and the passive tag Data can be switched and received by one RF tag reader 20.
  • FIG. 22 is a block diagram illustrating an example of a functional configuration of the RF tag reader 20 according to the sixth embodiment.
  • the RF tag reader 20 of this embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, a demodulator 212, a phase shifter 213, a PLL 214, and a ⁇ f calculation unit. 216, a control unit 217, a BPF control unit 242, and a filter circuit 260.
  • the RF tag reader 20 in this embodiment is different from the RF tag reader 20 in the fourth embodiment described with reference to FIG. 14 in that a filter circuit 260 is provided instead of the variable BPF 240 and the variable BPF 241. Except for the points described below, in FIG. 22, members denoted by the same reference numerals as those in FIG. 14 have the same or similar functions as the members in FIG.
  • the filter circuit 260 operates as either a BPF or an LPF according to an instruction from the control unit 217.
  • the filter circuit 260 is configured as shown in FIG. 23, for example, and operates as an LPF when the switches 261 to 266 are all off, and operates as a BPF of a complex filter when the switches 261 to 266 are all on. .
  • the control unit 217 controls all the switches 261 to 266 to be turned off when receiving the passive tag, and controls all the switches 261 to 266 to be turned on when receiving the active tag.
  • the BPF control unit 242 calculates the variable resistance connected to each of the switches 261 to 266 by the ⁇ f calculation unit 216 when the switches 261 to 266 are all turned on and operates as the BPF of the complex filter.
  • the center frequency of the pass band of the filter circuit 260 operating as a BPF is shifted by the frequency difference ⁇ f calculated by the ⁇ f calculation unit 216.
  • the RF tag reader 20 of the present embodiment can also improve reception characteristics in receiving radio waves transmitted from the active tag 11, and can also receive data from the active tag and data from the passive tag. Can be reduced in size when a single RF tag reader 20 is used for switching.
  • the LPFs of the I component and the Q component have been described by taking a single-ended third-order real filter as an example.
  • the present invention is not limited to this.
  • the LPFs of the I component and the Q component of the filter circuit may each be configured with a differential, or may be configured with an actual filter of the order of less than the third order or the order of the third order or more.
  • the LPF of the I component and the Q component of the filter circuit may be configured by a differential fifth-order real filter, as disclosed in Japanese Patent Laid-Open No. 2008-205962.
  • the resistance inserted between the LPF of the I component and the LPF of the Q component is designated as a control unit.
  • a variable resistor whose resistance value changes under the control of 217 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

アクティブタグ(11)から送信された電波の受信において受信特性を改善することができるRFタグリーダ(20)を提供する。 本発明のRFタグリーダ(20)は、アクティブタグ(11)からの無変調信号に基づいて、PLL(214)から出力された局発信号によってダウンコンバートされたベースバンド信号の周波数が予め定められた周波数になるように、PLL(214)の分周比を調節した後に、アクティブタグ(11)から送信されたデータの受信を開始する。

Description

RFタグリーダ回路
 本発明は、いわゆるタグから送信されるデータ(信号)を受信する技術に関する。その中でも特に、アクティブタグから送信される信号をLow-IF方式により受信するRFタグリーダの受信回路に関する。
 近年、種々の情報を記憶させる手段としてRF型電子タグ(以下、RFタグと呼ぶ)が広く用いられている。RFタグにはパッシブタグとアクティブタグがある。パッシブタグは電池を必要とせず、バックスキャッタ方式により通信を行う。バックスキャッタ方式では、RFタグはRFタグリーダから送信される無変調信号から電力の供給を受け、無変調信号の反射量を変化させることで保持しているデータをRFタグリーダへ送信する。アクティブタグは、独自に電源および発振器を必要とするが、パッシブタグと比較して長距離の通信が可能となる。
 また、RFタグリーダは、パッシブタグとの通信において、無変調波を送信しながらデータを受信する必要がある。そのため、パッシブタグとの通信では、パッシブタグへ送信する無変調波と同一の周波数を局発として利用できるダイレクト・コンバージョン方式が用いられる場合が多い。一方、アクティブタグとの通信においては、送受信を同時に行なう必要がないことから、受信性能の高いLow-IF方式が用いられる場合が多い。例えば、下記の非特許文献1には、Low-IF方式を用いたRFICの構成が開示されている。
J.Crols, et al., "Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated Receivers", IEEE Transactions on Circuits and Systems II, Vol.45, No.3, pp.269-282, March 1998.
 ところで、パッシブタグは、RFタグリーダからの無変調波を反射することによりデータを内部に保持しているデータを送信するため、RFタグリーダから送信された無変調波の周波数がずれることはない。しかし、アクティブタグは、RFタグリーダとは独立して発振器を有するため、アクティブタグから送信される信号の周波数が、RFタグリーダが受信を想定している信号の周波数とずれる場合がある。両周波数がずれると、RFタグリーダにおける受信特性の劣化につながる。
 本発明は上記事情を鑑みてなされたものであり、本発明の目的は、アクティブタグから送信された電波の受信において受信特性を改善することにある。
 上記課題を解決するために本発明では、アクティブタグからの無変調信号に基づいて、RFタグリーダの局発周波数またはバンドパスフィルタの中心周波数を調節する。
 例えば、本発明の第一の態様は、アクティブタグから送信される信号をLow-IF方式により受信するRFタグリーダの受信回路であって、
 基準発振器から出力される信号に対して、設定された分周比の局発信号を出力するプログラマブルPLLと、
 アクティブタグから送信された無変調信号を、前記プログラマブルPLLから出力された局発信号を用いてダウンコンバートするミキサと、
 前記ミキサからの出力信号の中から、予め定められた帯域の信号を通過させるバンドパスフィルタと、
 バンドパスフィルタの出力信号を増幅する増幅器と、
 前記増幅器の出力をディジタルデータに変換した後に復調する復調部と、
 前記バンドパスフィルタからの出力信号の周波数と、予め定められた基準周波数との差分を示す周波数差を算出する周波数差算出部と、
 前記周波数差算出部によって算出された差分に応じた分周比を算出し、算出した分周比を前記プログラマブルPLLに設定する分周比制御部と
を備えることを特徴とするRFタグリーダ回路を提供する。
 また、本発明の第二の態様は、アクティブタグから送信される信号をLow-IF方式により受信するRFタグリーダの受信回路であって、
 予め定められた周波数の局発信号を出力する局発信号生成部と、
 アクティブタグから送信された無変調信号を、前記局発信号生成部から出力された局発信号を用いてダウンコンバートするミキサと、
 入力された制御信号に応じた中心周波数において、前記ミキサからの出力信号の中から、予め定められた帯域幅の信号を通過させるバンドパスフィルタと、
 バンドパスフィルタの出力信号を増幅する増幅器と、
 前記増幅器の出力をディジタルデータに変換した後に復調する復調部と、
 前記バンドパスフィルタからの出力信号の周波数と、予め定められた基準周波数との差分を算出する周波数差算出部と、
 前記周波数差算出部によって算出された差分に応じて、前記バンドパスフィルタの帯域の中心周波数を制御するための制御信号を生成して前記バンドパスフィルタに供給するバンドパスフィルタ制御部と
を備えることを特徴とするRFタグリーダ回路を提供する。
 本発明のRFタグリーダ回路によれば、アクティブタグから送信された電波の受信において受信特性を改善することができる。
本発明の一実施形態に係るRFIDシステム10の一例を示すシステム構成図である。 アクティブタグ11から送信される信号のフォーマットの一例を示す図である。 第1の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。 周波数差Δfの算出方法を説明するための概念図である。 Δf算出部216の他の例を示すブロック図である。 PLL214の機能構成の一例を示すブロック図である。 分周比制御部215の機能構成の一例を示すブロック図である。 分周比テーブル50に格納されるデータの構造の一例を示す図である。 第1の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。 第2の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。 第2の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。 第3の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。 フィルタ回路230の回路構成の一例を示す回路図である。 第4の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。 可変BPF240の回路構成の一例を示す回路図である。 可変抵抗の回路構成の一例を示す回路図である。 BPF制御部242の機能構成の一例を示すブロック図である。 制御信号テーブル70に格納されるデータの構造の一例を示す図である。 第4の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。 第5の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。 第5の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。 第6の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。 フィルタ回路260の回路構成の一例を示す回路図である。
 まず、本発明の第1の実施形態について説明する。
 図1は、本発明の一実施形態に係るRFIDシステム10の一例を示すシステム構成図である。RFIDシステム10は、アクティブタグ11、データ処理装置12、およびRFタグリーダ20を備える。
 本実施形態において、アクティブタグ11は、RFタグリーダ20からのWake UPメッセージを受信した場合に、例えば図2に示すように、無変調波(CW)30、パイロットトーン31、プリアンブル32、およびデータ33を含むメッセージを送信する。
 RFタグリーダ20にはスイッチ13が設けられており、ユーザは、アクティブタグ11からのデータを受信する場合に、当該スイッチ13を押下する。スイッチ13が押下された場合、本実施形態のRFタグリーダ20は、Wake UPメッセージを送信し、その後にアクティブタグ11から送信された無変調波に基づいて、アクティブタグ11から送信された電波の復調に用いる局発信号の周波数を調節する。そして、RFタグリーダ20は、無変調波に引き続いて送信されるパイロットトーン、プリアンブル、およびデータを復調し、復調したデータをデータ処理装置12へ送る。
 図3は、第1の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。RFタグリーダ20は、アンテナ200、LNA(Low Noise Amplifier)201、ミキサ202、ミキサ203、BPF(Band Pass Filter)204、BPF205、AGC(Automatic Gain Control)アンプ206、AGCアンプ207、ADC(Analog to Digital converter)208、ADC209、LPF(Low Pass Filter)210、LPF211、復調器212、移相器213、PLL(Phase Locked Loop)214、分周比制御部215、Δf算出部216、および制御部217を有する。
 PLL214は、水晶振動子等の基準信号源から、分周比制御部215または制御部217によって設定された分周比の局発信号を生成し、生成した局発信号を、ミキサ202に供給すると共に、移相器213を介してミキサ203に供給する。本実施形態において、RFタグリーダ20は、Low-IF方式でアクティブタグ11からの信号を受信するため、PLL214が生成する局発信号は、アクティブタグ11から送信されるべき信号の周波数から、予め定められた周波数分(例えば100kHz)ずれている。
 LNA201は、アンテナ200を介してアクティブタグ11から受信した信号を増幅してミキサ202およびミキサ203に供給する。ミキサ202は、PLL214から供給された局発信号を乗算することにより、LNA201から供給された信号をダウンコンバートして受信信号のI成分をBPF204に供給する。ミキサ202は、移相器213によってπ/2ずらされた局発信号を乗算することにより、LNA201から供給された信号をダウンコンバートして受信信号のQ成分をBPF205に供給する。
 BPF204は、ミキサ202から供給された信号の中から、予め定められた帯域の周波数成分を通過させる。BPF205は、ミキサ203から供給された信号の中から、予め定められた帯域の周波数成分を通過さる。
 BPF204から出力されたI成分の受信信号は、AGCアンプ206によって増幅され、ADC208によってディジタル信号に変換され、LPF210によって高調波を取り除かれた後に、復調器212に供給される。BPF205から出力されたQ成分の受信信号は、AGCアンプ207によって増幅され、ADC209によってディジタル信号に変換され、LPF211によって高調波を取り除かれた後に、復調器212に供給される。復調器212は、I成分およびQ成分の受信信号に基づいてデータビットを復調し、復調したデータビットをデータ処理装置12に供給する。
 Δf算出部216は、制御部217から指示された場合に、受信信号の周波数と予め定められた周波数との周波数差Δfを算出し、算出したΔfの値を分周比制御部215に供給する。本実施形態において、Δf算出部216は、受信信号のQ成分をモニターし、予め定められた時間間隔Tcにおいて、受信信号の1波長の繰返し回数αをカウントする。そして、Δf算出部216は、予め定められた周波数の信号においてカウントされるべき1波長の繰返し回数βとの差分に基づいて、(α-β)÷TcをΔfとして算出する。
 なお、本実施形態において、Δf算出部216は、受信信号のQ成分からΔfの値を算出するが、受信信号のI成分からΔfの値を算出してもよい。また、Δf算出部216は、例えば図4に示すように、予め定められた時間間隔Tcにおいて、受信信号のピークの数を1波長の繰返し回数αとしてカウントするようにしてもよい。
 なお、他の形態として、Δf算出部216は、受信信号のI成分とQ成分とを用いて、アナログPLLまたはディジタルPLLにより周波数差Δfを算出するようにしてもよい。図5は、Δf算出部216をディジタルPLLにより構成する場合の例を示す。
 図5において、位相比較器40では、LPF210から出力されたI成分の受信信号にCosine波が乗算器41によって乗算され、LPF211から出力されたQ成分の受信信号にSine波が乗算器42によって乗算されてインバータ44によって反転され、乗算器41の出力とインバータ44の出力とが、加算器43で加算されて出力される。
 位相比較器40から出力された信号は、ループフィルタ45を通った後、周波数差Δfとして分周比制御部215へ出力される。また、ループフィルタ45からの出力は、NCO(numeric controlled oscillator)46において、加算器47によって予め定められた周波数を示す基準値を加算され、積分器48によって積分されて位相比較器40へフィードバックされる。なお、基準値とは、アクティブタグ11から送信される信号の周波数とRFタグリーダ20が想定している受信信号の周波数との差がないと仮定した場合のミキサ202およびミキサ203から出力される信号を示す中間周波数のディジタル値である。
 ここで、LPF210またはLPF211から出力される信号の周波数をω/2π、予め定められた中間周波数をωIF/2πとすると、下記の算出式(1)により周波数差Δf(=(ω-ωIF)/2π)を算出することができる。
Figure JPOXMLDOC01-appb-M000001
 PLL214は、例えば図6に示すように、位相比較器60、チャージポンプ61、ループフィルタ62、VCO(voltage controlled oscillator)63、および可変分周器64を有する。可変分周器64は、VCO63の出力信号の周波数をfVCO、可変分周器64の出力信号の周波数をfOUTとした場合、分周比制御部215から供給された分周比の設定値であるパラメータA、パラメータB、およびパラメータNに基づいて、下記の算出式(2)に従った周波数fOUTの信号を出力する。
Figure JPOXMLDOC01-appb-M000002
 位相比較器60は、基準信号源からの基準信号と可変分周器64からのfOUTとの位相差に応じた信号を出力し、チャージポンプ61は位相比較器60からの信号を電圧に変換する。ループフィルタ62は、チャージポンプ61の出力電圧を平均化し、VCO63は、ループフィルタ62の出力電圧に応じた周波数の信号を出力する。なお、本実施形態では、可変分周器64として整数分周器を例に説明したが、PLL214は、可変分周器64として分周分周器を用いたフラクショナルPLLとして構成されてもよい。
 分周比制御部215は、例えば図7に示すように、分周比テーブル50および分周比設定部51を有する。分周比テーブル50には、例えば図8に示すように、周波数差500に対応付けて、PLL214に設定すべき各パラメータの値501が予め格納されている。分周比テーブル50内の各パラメータの値501は、対応する周波数差がΔf算出部216によって算出された場合に、当該周波数差を0にする局発周波数を生成するためにPLL214に設定されるべき値であり、製造者等により実験で予め測定されて格納される。
 分周比設定部51は、Δf算出部216から周波数差Δfを示す信号を受信した場合に、受信した周波数差Δfに対応する分周比の各パラメータを分周比テーブル50から抽出し、抽出した各パラメータをPLL214の可変分周器64に設定する。
 ここで、アクティブタグ11内の基準信号と、RFタグリーダ20内の基準信号とのずれにより、アクティブタグ11から送信された信号の周波数と、RFタグリーダ20が想定する受信信号の周波数とが、予め定められた周波数分以上ずれている、または、周波数のずれ量が予め定められた周波数に満たない場合、Low-IF方式による受信では、ミキサ202およびミキサ203によってダウンコンバートされた信号の周波数が、それぞれ、BPF204およびBPF205の通過帯域から外れる場合がある。
 BPF204およびBPF205の通過帯域から外れた信号は、AGCアンプ206およびAGCアンプ207以降に供給されないため、復調器212は、このままではアクティブタグ11からの信号を正しく復調することができない。
 これに対し、分周比制御部215は、Δf算出部216によって算出された周波数差Δfに応じて、PLL214による局発信号の周波数を、アクティブタグ11の信号周波数から予め定められた周波数分ずれた周波数となるように設定する。これにより、ミキサ202およびミキサ203によってダウンコンバートされた信号の周波数は、それぞれ、BPF204およびBPF205の通過帯域から外れることなく、AGCアンプ206およびAGCアンプ207以降に供給される。
 従って、本実施形態のRFタグリーダ20は、アクティブタグ11内の基準信号と、RFタグリーダ20内の基準信号とがずれている場合であっても、アクティブタグ11からの信号を正しく復調することができる。
 次に、制御部217の動作を、図9のフローチャートを参照しながら説明する。図9は、第1の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。RFタグリーダ20に設けられたスイッチ13を介して、アクティブタグ11からのデータの受信をユーザから指示された場合に、RFタグリーダ20は、本フローチャートに示す動作を開始する。
 まず、制御部217は、PLL214に分周比の初期値を設定し(S100)、図示しない送信機により、Wake UPメッセージを送信する。そして、制御部217は、LPF211から無変調信号が出力されたか否かを判定する(S101)。無変調信号が出力されていない場合(S101:No)、制御部217は、無変調信号が出力されるまでステップS101を繰り返す。
 無変調信号が出力された場合(S101:Yes)、制御部217は、分周比制御部215およびΔf算出部216を起動させ(S102)、Δf算出部216による周波数差Δfの算出、分周比制御部215による分周比の設定、およびPLL214による局発周波数の切り替えが終了するまでの間、所定時間(例えば数十μ秒)待機する。
 Δf算出部216は、受信信号の周波数と予め定められた周波数との周波数差Δfを算出し、算出したΔfの値を分周比制御部215に供給する。PLL214は、Δf算出部216から受信した周波数差Δfに対応する分周比の各パラメータを分周比テーブル50から抽出し、抽出した各パラメータをPLL214の可変分周器64に設定する(S103)。
 次に、制御部217は、分周比制御部215およびΔf算出部216を停止させる(S104)。そして、PLL214は、ステップS103において分周比制御部215によって設定された分周比で動作を続け、復調器212は、アクティブタグ11から無変調波に続いて送信されたデータを復調し(S105)、RFタグリーダ20は、本フローチャートに示した動作を終了する。
 以上、本発明の第1の実施形態について説明した。
 上記説明から明らかなように、本実施形態のRFタグリーダ20によれば、アクティブタグ11から送信された電波の受信において受信特性を改善することができる。
 次に、本発明の第2の実施形態について説明する。
 図10は、第2の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。本実施形態のRFタグリーダ20は、アンテナ200、LNA201、ミキサ202、ミキサ203、BPF204、BPF205、AGCアンプ206、AGCアンプ207、ADC208、ADC209、LPF210、LPF211、復調器212、移相器213、PLL214、分周比制御部215、Δf算出部216、制御部217、スイッチ220、スイッチ221、LPF222、およびLPF223を有する。
 本実施形態におけるRFタグリーダ20は、スイッチ220、スイッチ221、LPF222、およびLPF223を有する点が、図3を用いて説明した第1の実施形態におけるRFタグリーダ20とは異なる。なお、以下に説明する点を除き、図10において、図3と同じ符号を付した部材は、図3における部材と同一または同様の機能を有するため説明を省略する。
 スイッチ220は、制御部217からの指示に応じて、ミキサ202の出力信号を、LPF222またはBPF204へ送る。スイッチ221は、制御部217からの指示に応じて、ミキサ203の出力信号を、LPF223またはBPF205へ送る。
 LPF222は、スイッチ220を介して提供された信号の中から、所定の周波数以下の帯域の信号を抽出してAGCアンプ206に供給する。LPF223は、スイッチ221を介して提供された信号の中から、所定の周波数以下の帯域の信号を抽出してAGCアンプ207に供給する。
 次に、本実施形態における制御部217の動作を、図11のフローチャートを参照しながら説明する。図11は、第2の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。本実施形態において、RFタグリーダ20に設けられたスイッチ13は、アクティブタグの受信またはパッシブタグの受信のいずれかをRFタグリーダ20に指示することができる。RFタグリーダ20は、スイッチ13が操作された場合に、本フローチャートに示す動作を開始する。
 まず、制御部217は、スイッチ13を介したユーザの操作がアクティブタグの受信を指示するものであったか否かを判定する(S200)。アクティブタグの受信をユーザから指示された場合(S200:Yes)、制御部217は、ミキサ202の出力信号をBPF204へ送るようにスイッチ220を切り替えると共に、ミキサ203の出力信号をBPF205へ送るようにスイッチ221を切り替える(S201)。
 次に、制御部217は、Low-IF方式の受信における局発周波数を生成するための分周比の初期値をPLL214に設定し(S202)、図示しない送信機により、Wake UPメッセージを送信する。そして、制御部217は、LPF211から無変調信号が出力されたか否かを判定する(S203)。無変調信号が出力されていない場合(S203:No)、制御部217は、無変調信号が出力されるまでステップS203を繰り返す。
 無変調信号が出力された場合(S203:Yes)、制御部217は、分周比制御部215およびΔf算出部216を起動させ(S204)、Δf算出部216による周波数差Δfの算出、分周比制御部215による分周比の設定、およびPLL214による局発周波数の切り替えが終了するまでの間、所定時間(例えば数十μ秒)待機する。
 Δf算出部216は、受信信号の周波数と予め定められた周波数との周波数差Δfを算出し、算出したΔfの値を分周比制御部215に供給する。分周比制御部215は、Δf算出部216から受信した周波数差Δfに対応する分周比の各パラメータを分周比テーブル50から抽出し、抽出した各パラメータをPLL214の可変分周器64に設定する(S205)。
 次に、制御部217は、分周比制御部215およびΔf算出部216を停止させる(S206)。そして、PLL214は、ステップS205において分周比制御部215によって設定された分周比で動作を続け、復調器212は、アクティブタグ11から無変調波に続いて送信されたデータを復調し(S207)、RFタグリーダ20は、本フローチャートに示した動作を終了する。
 ステップS200において、ユーザによるスイッチ13の操作がパッシブタグの受信を指示するものであった場合(S200:No)、制御部217は、ミキサ202の出力信号をLPF222へ送るようにスイッチ220を切り替えると共に、ミキサ203の出力信号をLPF223へ送るようにスイッチ221を切り替える(S208)。
 次に、制御部217は、ダイレクト・コンバージョン方式の受信における局発周波数を生成するための分周比の初期値をPLL214に設定する(S209)。そして、制御部217は、キャリアセンスを行ない、他に通信中のRFタグが存在しないか否かを判定する(S210)。他に通信中のRFタグが存在する場合(S210:Yes)、制御部217は、他に通信中のRFタグが存在しなくなるまでステップS210を繰り返す。
 他に通信中のRFタグが存在しない場合(S210:No)、制御部217は、図示しない送信機にパッシブタグへ電波の送信を開始させ(S211)、復調器212は、パッシブタグから送信されたデータを復調し(S212)、RFタグリーダ20は、本フローチャートに示した動作を終了する。
 以上、本発明の第2の実施形態について説明した。
 上記説明から明らかなように、本実施形態のRFタグリーダ20によれば、アクティブタグ11から送信された電波の受信において受信特性を改善することができると共に、アクティブタグからのデータと、パッシブタグからのデータとを、1台のRFタグリーダ20で切り替えて受信することができる。
 次に、本発明の第3の実施形態について説明する。
 図12は、第3の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。本実施形態のRFタグリーダ20は、アンテナ200、LNA201、ミキサ202、ミキサ203、AGCアンプ206、AGCアンプ207、ADC208、ADC209、LPF210、LPF211、復調器212、移相器213、PLL214、分周比制御部215、Δf算出部216、制御部217、およびフィルタ回路230を有する。
 本実施形態におけるRFタグリーダ20は、BPF204およびBPF205に代えて、フィルタ回路230を有する点が、図3を用いて説明した第1の実施形態におけるRFタグリーダ20とは異なる。なお、以下に説明する点を除き、図10において、図3と同じ符号を付した部材は、図3における部材と同一または同様の機能を有するため説明を省略する。
 フィルタ回路230は、制御部217からの指示により、BPFまたはLPFのいずれかとして動作する。フィルタ回路230は、例えば図13に示すような構成であり、スイッチ231~236が全てオフの場合にはLPFとして動作し、スイッチ231~236が全てオンの場合には複素フィルタのBPFとして動作する。制御部217は、パッシブタグの受信時にスイッチ231~236を全てオフに制御し、アクティブタグの受信時にスイッチ231~236を全てオンに制御する。
 以上、本発明の第3の実施形態について説明した。
 上記説明から明らかなように、本実施形態のRFタグリーダ20によれば、アクティブタグ11から送信された電波の受信において受信特性を改善することができると共に、アクティブタグからのデータとパッシブタグからのデータとを1台のRFタグリーダ20で切り替えて受信する際の回路構成を小型化することができる。
 次に、本発明の第4の実施形態について説明する。
 図14は、第4の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。本実施形態のRFタグリーダ20は、アンテナ200、LNA201、ミキサ202、ミキサ203、AGCアンプ206、AGCアンプ207、ADC208、ADC209、LPF210、LPF211、復調器212、移相器213、PLL214、Δf算出部216、制御部217、可変BPF240、可変BPF241、およびBPF制御部242を有する。
 本実施形態におけるRFタグリーダ20は、BPF204、BPF205、および分周比制御部215に代えて、可変BPF240、可変BPF241、およびBPF制御部242を有する点が、図3を用いて説明した第1の実施形態におけるRFタグリーダ20とは異なる。なお、以下に説明する点を除き、図14において、図3と同じ符号を付した部材は、図3における部材と同一または同様の機能を有するため説明を省略する。
 可変BPF240は、BPF制御部242からの制御信号に応じて、通過帯域の帯域幅を維持したまま、通過帯域の中心周波数が変化する。可変BPF240は、例えば図15に示すような回路構成である。BPF制御部242は、可変抵抗243-1および可変抵抗243-2の抵抗値を変化させることにより、可変BPF240の通過帯域の中心周波数が変化させることができる。
 ここで、それぞれの可変抵抗243は、例えば図16に示すように構成することができる。BPF制御部242は、それぞれのスイッチ244をオンまたはオフにすることにより、可変抵抗243全体の抵抗値を変化させることができる。なお、BPF制御部242は、可変抵抗243の抵抗値の変化に代えて、または、可変抵抗243の抵抗値の変化と共に、可変BPF240内のコンデンサの容量を変化させるようにしてもよい。また、図16の例では、可変BPF240は、抵抗とコンデンサにより構成されるが、他の形態として、可変BPF240は、コイルとコンデンサにより構成されてもよい。可変BPF241も可変BPF240と同様の構成であるため、説明を省略する。
 BPF制御部242は、例えば図17に示すように、制御信号テーブル70および制御信号供給部71を有する。制御信号テーブル70には、例えば図18に示すように、周波数差700に対応付けて、可変BPF240および可変BPF241内の各スイッチの制御を示す制御信号701が予め格納されている。制御信号テーブル70内の制御信号701は、対応する周波数差がΔf算出部216によって算出された場合に、当該周波数差分、可変BPF240および可変BPF241の通過帯域の中心周波数をずらすために可変BPF240および可変BPF241に供給されるべき値であり、製造者等により実験で予め測定されて格納される。
 制御信号供給部71は、Δf算出部216から周波数差Δfを示す信号を受信した場合に、受信した周波数差Δfに対応する制御信号を制御信号テーブル70から抽出し、抽出した制御信号を可変BPF240および可変BPF241に供給する。
 ここで、アクティブタグ11内の基準信号と、RFタグリーダ20内の基準信号とのずれにより、アクティブタグ11から送信された信号の周波数と、RFタグリーダ20が想定する受信信号の周波数とが、予め定められた周波数分以上ずれている、または、周波数のずれ量が予め定められた周波数に満たない場合、Low-IF方式による受信では、ミキサ202およびミキサ203によってダウンコンバートされた信号の周波数が、それぞれ、可変BPF240および可変BPF241の通過帯域から外れる場合がある。
 可変BPF240および可変BPF241の通過帯域から外れた信号は、AGCアンプ206およびAGCアンプ207以降に供給されないため、復調器212は、このままではアクティブタグ11からの信号を正しく復調することができない。
 これに対し、BPF制御部242は、Δf算出部216によって算出された周波数差Δfに応じて、可変BPF240および可変BPF241の通過帯域の中心周波数を、当該周波数差Δf分ずらすための制御信号を可変BPF240および可変BPF241にそれぞれ供給する。これにより、ミキサ202およびミキサ203によってダウンコンバートされた信号の周波数は、それぞれ、可変BPF240および可変BPF241の通過帯域から外れることなく、AGCアンプ206およびAGCアンプ207以降に供給される。従って、本実施形態のRFタグリーダ20は、アクティブタグ11からの信号を正しく復調することができる。
 次に、本実施形態における制御部217の動作を、図19のフローチャートを参照しながら説明する。図19は、第4の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。RFタグリーダ20に設けられたスイッチ13を介して、アクティブタグ11からのデータの受信をユーザから指示された場合に、RFタグリーダ20は、本フローチャートに示す動作を開始する。なお、以下に説明する点を除き、図19において、図9と同じ符号を付した処理は、図9における処理と同様であるため説明を省略する。
 ステップS101において、LPF211から無変調信号が出力された場合(S101:Yes)、制御部217は、Δf算出部216およびBPF制御部242を起動させ(S110)、Δf算出部216による周波数差Δfの算出、および、BPF制御部242による制御信号の供給が終了するまでの間、所定時間(例えば数十μ秒)待機する。
 Δf算出部216は、受信信号の周波数と予め定められた周波数との周波数差Δfを算出し、算出したΔfの値をBPF制御部242に供給する。BPF制御部242は、Δf算出部216から受信した周波数差Δfに対応する制御信号を制御信号テーブル70から抽出し、抽出した制御信号を可変BPF240および可変BPF241にそれぞれ供給する(S111)。
 次に、制御部217は、Δf算出部216およびBPF制御部242を停止させる(S112)。そして、復調器212は、アクティブタグ11から無変調波に続いて送信されたデータを復調し(S105)、RFタグリーダ20は、本フローチャートに示した動作を終了する。
 以上、本発明の第4の実施形態について説明した。
 上記説明から明らかなように、本実施形態のRFタグリーダ20においても、アクティブタグ11から送信された電波の受信において受信特性を改善することができる。
 次に、本発明の第5の実施形態について説明する。
 図20は、第5の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。本実施形態のRFタグリーダ20は、アンテナ200、LNA201、ミキサ202、ミキサ203、AGCアンプ206、AGCアンプ207、ADC208、ADC209、LPF210、LPF211、復調器212、移相器213、PLL214、Δf算出部216、制御部217、可変BPF240、可変BPF241、BPF制御部242、スイッチ250、スイッチ251、LPF252、およびLPF253を有する。
 本実施形態におけるRFタグリーダ20は、スイッチ250、スイッチ251、LPF252、およびLPF253を有する点が、図14を用いて説明した第4の実施形態におけるRFタグリーダ20とは異なる。なお、以下に説明する点を除き、図20において、図14と同じ符号を付した部材は、図14における部材と同一または同様の機能を有するため説明を省略する。
 スイッチ250は、制御部217からの指示に応じて、ミキサ202の出力信号を、LPF252または可変BPF240へ送る。スイッチ251は、制御部217からの指示に応じて、ミキサ203の出力信号を、LPF253または可変BPF241へ送る。
 LPF252は、スイッチ250を介して提供された信号の中から、所定の周波数以下の帯域の信号を抽出してAGCアンプ206に供給する。LPF253は、スイッチ251を介して提供された信号の中から、所定の周波数以下の帯域の信号を抽出してAGCアンプ207に供給する。
 次に、本実施形態における制御部217の動作を、図21のフローチャートを参照しながら説明する。図21は、第5の実施形態におけるRFタグリーダ20の動作の一例を示すフローチャートである。
 本実施形態において、RFタグリーダ20に設けられたスイッチ13は、アクティブタグの受信またはパッシブタグの受信のいずれかをRFタグリーダ20に指示することができる。RFタグリーダ20は、スイッチ13が操作された場合に、本フローチャートに示す動作を開始する。なお、以下に説明する点を除き、図21において、図11と同じ符号を付した処理は、図11における処理と同様であるため説明を省略する。
 ステップS203において、LPF211から無変調信号が出力された場合(S203:Yes)、制御部217は、Δf算出部216およびBPF制御部242を起動させ(S220)、Δf算出部216による周波数差Δfの算出、および、BPF制御部242による制御信号の供給が終了するまでの間、所定時間(例えば数十μ秒)待機する。
 Δf算出部216は、受信信号の周波数と予め定められた周波数との周波数差Δfを算出し、算出したΔfの値をBPF制御部242に供給する。Δf算出部216から受信した周波数差Δfに対応する制御信号を制御信号テーブル70から抽出し、抽出した制御信号を可変BPF240および可変BPF241にそれぞれ供給する(S221)。
 次に、制御部217は、Δf算出部216およびBPF制御部242を停止させる(S222)。そして、復調器212は、アクティブタグ11から無変調波に続いて送信されたデータを復調し(S207)、RFタグリーダ20は、本フローチャートに示した動作を終了する。
 以上、本発明の第5の実施形態について説明した。
 上記説明から明らかなように、本実施形態のRFタグリーダ20においても、アクティブタグ11から送信された電波の受信において受信特性を改善することができると共に、アクティブタグからのデータと、パッシブタグからのデータとを、1台のRFタグリーダ20で切り替えて受信することができる。
 次に、本発明の第6の実施形態について説明する。
 図22は、第6の実施形態におけるRFタグリーダ20の機能構成の一例を示すブロック図である。本実施形態のRFタグリーダ20は、アンテナ200、LNA201、ミキサ202、ミキサ203、AGCアンプ206、AGCアンプ207、ADC208、ADC209、LPF210、LPF211、復調器212、移相器213、PLL214、Δf算出部216、制御部217、BPF制御部242、およびフィルタ回路260を有する。
 本実施形態におけるRFタグリーダ20は、可変BPF240および可変BPF241に代えて、フィルタ回路260を有する点が、図14を用いて説明した第4の実施形態におけるRFタグリーダ20とは異なる。なお、以下に説明する点を除き、図22において、図14と同じ符号を付した部材は、図14における部材と同一または同様の機能を有するため説明を省略する。
 フィルタ回路260は、制御部217からの指示により、BPFまたはLPFのいずれかとして動作する。フィルタ回路260は、例えば図23に示すような構成であり、スイッチ261~266が全てオフの場合にはLPFとして動作し、スイッチ261~266が全てオンの場合には複素フィルタのBPFとして動作する。制御部217は、パッシブタグの受信時にスイッチ261~266を全てオフに制御し、アクティブタグの受信時にスイッチ261~266を全てオンに制御する。
 また、BPF制御部242は、スイッチ261~266が全てオンとなり、複素フィルタのBPFとして動作する場合に、スイッチ261~266のそれぞれに接続されている可変抵抗に、Δf算出部216によって算出された周波数差Δfに対応する制御信号を供給することにより、BPFとして動作するフィルタ回路260の通過帯域の中心周波数を、Δf算出部216によって算出された周波数差Δf分ずらす。
 以上、本発明の第6の実施形態について説明した。
 上記説明から明らかなように、本実施形態のRFタグリーダ20においても、アクティブタグ11から送信された電波の受信において受信特性を改善することができると共に、アクティブタグからのデータとパッシブタグからのデータとを1台のRFタグリーダ20で切り替えて受信する際の回路構成を小型化することができる。
 なお、本発明は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 例えば、上記した第3の実施形態におけるフィルタ回路230および第6の実施形態におけるフィルタ回路260において、I成分およびQ成分のLPFを、それぞれ、シングルエンドで3次の実フィルタを例に説明したが、本発明はこれに限られない。他の形態として、フィルタ回路のI成分およびQ成分のLPFは、それぞれ、差動で構成されてもよく、3次未満または3次以上の次数の実フィルタで構成されてもよい。
 また、フィルタ回路のI成分およびQ成分のLPFは、特開2008-205962に開示されているように、それぞれ、差動で5次の実フィルタで構成されるようにしてもよい。なお、第6の実施形態におけるフィルタ回路260として特開2008-205962に開示されているフィルタ回路を用いる場合、I成分のLPFとQ成分のLPFとの間に挿入されている抵抗を、制御部217の制御により抵抗値が変化する可変抵抗とすればよい。
10・・・RFIDシステム、11・・・アクティブタグ、12・・・データ処理装置、13・・・スイッチ、20・・・RFタグリーダ、200・・・アンテナ、201・・・LNA、202・・・ミキサ、203・・・ミキサ、204・・・BPF、205・・・BPF、206・・・AGCアンプ、207・・・AGCアンプ、208・・・ADC、209・・・ADC、210・・・LPF、211・・・LPF、212・・・復調器、213・・・移相器、214・・・PLL、215・・・分周比制御部、216・・・Δf算出部、217・・・制御部、220・・・スイッチ、221・・・スイッチ、222・・・LPF、223・・・LPF、230・・・フィルタ回路、240・・・可変BPF、241・・・可変BPF、242・・・BPF制御部、243・・・可変抵抗、244・・・スイッチ、250・・・スイッチ、251・・・スイッチ、252・・・LPF、253・・・LPF、260・・・フィルタ回路、30・・・CW、31・・・パイロットトーン、32・・・プリアンブル、33・・・データ、50・・・分周比テーブル、51・・・分周比設定部、70・・・制御信号テーブル、71・・・制御信号供給部

Claims (7)

  1.  アクティブタグから送信される信号をLow-IF方式により受信するRFタグリーダの受信回路であって、
     基準発振器から出力される信号に対して、設定された分周比の局発信号を出力するプログラマブルPLLと、
     アクティブタグから送信された無変調信号を、前記プログラマブルPLLから出力された局発信号を用いてダウンコンバートするミキサと、
     前記ミキサからの出力信号の中から、予め定められた帯域の信号を通過させるバンドパスフィルタと、
     バンドパスフィルタの出力信号を増幅する増幅器と、
     前記増幅器の出力をディジタルデータに変換した後に復調する復調部と、
     前記バンドパスフィルタからの出力信号の周波数と、予め定められた基準周波数との差分を示す周波数差を算出する周波数差算出部と、
     前記周波数差算出部によって算出された差分に応じた分周比を算出し、算出した分周比を前記プログラマブルPLLに設定する分周比制御部と
    を備えることを特徴とするRFタグリーダ回路。
  2.  請求項1に記載のRFタグリーダ回路であって、
     前記分周比制御部は、
     異なる周波数差の値毎に、当該周波数差が前記周波数差算出部から出力された場合に、前記プログラマブルPLLに設定すべき分周比のパラメータの値を予め格納している分周比テーブルと、
     前記周波数差算出部から周波数差が出力された場合に、当該周波数差に対応する分周比のパラメータを前記分周比テーブルから抽出し、抽出した分周比のパラメータを前記プログラマブルPLLに設定する分周比設定部と
    を有することを特徴とするRFタグリーダ回路。
  3.  請求項1または2に記載のRFタグリーダ回路であって、
     前記ミキサからの出力信号の中から、予め定められた周波数以下の帯域の信号を通過させて前記増幅器に供給するローパスフィルタと、
     供給される切替信号に応じて、前記ミキサの出力信号を、前記バンドパスフィルタまたは前記ローパスフィルタのいずれかに供給するスイッチと、
     ユーザからパッシブタグの受信を指示された場合に、前記プログラマブルPLLに予め定められた搬送波の周波数を出力するように分周比を設定し、前記ミキサの出力信号が前記ローパスフィルタに供給されるように前記スイッチに切替信号を供給し、前記周波数差出力部および前記分周比制御部の動作を停止させ、
     ユーザからアクティブタグの受信を指示された場合に、前記搬送波の周波数から予め定められた周波数分オフセットした周波数を出力するように前記プログラマブルPLLに分周比を設定し、前記ミキサの出力信号が前記バンドパスフィルタに供給されるように前記スイッチに切替信号を供給し、前記周波数差出力部および前記分周比制御部の動作を開始させる受信方式切替部と
    をさらに備えることを特徴とするRFタグリーダ回路。
  4.  アクティブタグから送信される信号をLow-IF方式により受信するRFタグリーダの受信回路であって、
     予め定められた周波数の局発信号を出力する局発信号生成部と、
     アクティブタグから送信された無変調信号を、前記局発信号生成部から出力された局発信号を用いてダウンコンバートするミキサと、
     入力された制御信号に応じた中心周波数において、前記ミキサからの出力信号の中から、予め定められた帯域の信号を通過させるバンドパスフィルタと、
     バンドパスフィルタの出力信号を増幅する増幅器と、
     前記増幅器の出力をディジタルデータに変換した後に復調する復調部と、
     前記バンドパスフィルタからの出力信号の周波数と、予め定められた基準周波数との差分を算出する周波数差算出部と、
     前記周波数差算出部によって算出された差分に応じて、前記バンドパスフィルタの帯域の中心周波数を制御するための制御信号を生成して前記バンドパスフィルタに供給するバンドパスフィルタ制御部と
    を備えることを特徴とするRFタグリーダ回路。
  5.  請求項4に記載のRFタグリーダ回路であって、
     前記バンドパスフィルタは、
     入力された制御信号に応じて、当該バンドパスフィルタを構成する素子の一部の定数を変化させることにより、通過帯域の中心周波数を変化させ、
     前記バンドパスフィルタ制御部は、
     異なる周波数差の値毎に、当該周波数差が前記周波数差算出部から出力された場合に、前記バンドパスフィルタに供給すべき制御信号の値を予め格納している制御信号テーブルと、
     前記周波数差算出部から周波数差が出力された場合に、当該周波数差に対応する制御信号の値を前記制御信号テーブルから抽出し、抽出した制御信号を前記バンドパスフィルタに入力する制御信号供給部と
    を有することを特徴とするRFタグリーダ回路。
  6.  請求項4または5に記載のRFタグリーダ回路であって、
     前記局発信号生成部は、
     基準発振器から出力される信号に対して、設定された分周比の局発信号を出力するプログラマブルPLLであり、
     前記RFタグリーダ回路は、
     前記ミキサからの出力信号の中から、予め定められた周波数以下の帯域の信号を通過させて前記増幅器に供給するローパスフィルタと、
     供給される切替信号に応じて、前記ミキサの出力信号を、前記バンドパスフィルタまたは前記ローパスフィルタのいずれかに供給するスイッチと、
     ユーザからパッシブタグの受信を指示された場合に、前記プログラマブルPLLに予め定められた搬送波の周波数を出力するように分周比を設定し、前記ミキサの出力信号が前記ローパスフィルタに供給されるように前記スイッチに切替信号を供給し、前記周波数差出力部および前記バンドパスフィルタ制御部の動作を停止させ、
     ユーザからアクティブタグの受信を指示された場合に、前記プログラマブルPLLに前記搬送波の周波数から予め定められた周波数だけオフセットした周波数を出力するように分周比を設定し、前記ミキサの出力信号が前記バンドパスフィルタに供給されるように前記スイッチに切替信号を供給し、前記周波数差出力部および前記バンドパスフィルタ制御部の動作を開始させる受信方式切替部と
    をさらに備えることを特徴とするRFタグリーダ回路。
  7.  請求項1から6のいずれか一項に記載のRFタグリーダ回路であって、
     前記周波数差算出部は、
     予め定められた時間間隔における、前記バンドパスフィルタから出力された無変調信号の1波長の繰返し回数から、当該時間間隔における前記基準周波数の信号の1波長の繰返し回数を引いた差分を、当該時間間隔で割ることにより、周波数差を算出することを特徴とするRFタグリーダ回路。
PCT/JP2010/052214 2009-03-23 2010-02-15 Rfタグリーダ回路 WO2010109978A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009069362A JP5172752B2 (ja) 2009-03-23 2009-03-23 Rfタグリーダ回路
JP2009-069362 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010109978A1 true WO2010109978A1 (ja) 2010-09-30

Family

ID=42780674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052214 WO2010109978A1 (ja) 2009-03-23 2010-02-15 Rfタグリーダ回路

Country Status (3)

Country Link
JP (1) JP5172752B2 (ja)
TW (1) TWI427537B (ja)
WO (1) WO2010109978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013028A (zh) * 2010-12-16 2011-04-13 上海龙晶微电子有限公司 超高频电子标签读写器
JP2018509665A (ja) * 2015-11-09 2018-04-05 ファーウェイ インターナショナル プライベート リミテッドHuawei International Pte. Ltd. 近距離通信(nfc)デバイスにおける直接無線周波数(rf)サンプリングのための装置及び方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490519B (zh) * 2013-05-22 2015-07-01 Univ Nat Cheng Kung 諧波雷達射頻標籤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017112A (ja) * 2003-06-26 2005-01-20 Fujitsu Ltd アクティブターゲット検出システムおよび方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264106B1 (en) * 1999-12-27 2001-07-24 Symbol Technologies, Inc. Combination bar code scanner/RFID circuit
US7124942B2 (en) * 2003-12-05 2006-10-24 Hid Corporation Low voltage signal stripping circuit for an RFID reader
JP2006134249A (ja) * 2004-11-09 2006-05-25 Fujitsu Ltd Rfidタグ
TW200622914A (en) * 2004-12-20 2006-07-01 Wha Yu Ind Co Ltd Radio frequency identification (RFID) tag suitable for metal environment
JP2006268090A (ja) * 2005-03-22 2006-10-05 Fujitsu Ltd Rfidタグ
JP4750450B2 (ja) * 2005-04-05 2011-08-17 富士通株式会社 Rfidタグ
JP2008072226A (ja) * 2006-09-12 2008-03-27 Fujitsu Ltd Rfタグリーダ及び方法
JP4984774B2 (ja) * 2006-09-15 2012-07-25 富士通株式会社 Rfタグリーダ及び再送制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017112A (ja) * 2003-06-26 2005-01-20 Fujitsu Ltd アクティブターゲット検出システムおよび方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013028A (zh) * 2010-12-16 2011-04-13 上海龙晶微电子有限公司 超高频电子标签读写器
JP2018509665A (ja) * 2015-11-09 2018-04-05 ファーウェイ インターナショナル プライベート リミテッドHuawei International Pte. Ltd. 近距離通信(nfc)デバイスにおける直接無線周波数(rf)サンプリングのための装置及び方法
US10187100B2 (en) 2015-11-09 2019-01-22 Huawei International Pte. Ltd. Apparatus and method for direct radio frequency (RF) sampling in near field communication (NFC) devices

Also Published As

Publication number Publication date
TWI427537B (zh) 2014-02-21
JP2010226272A (ja) 2010-10-07
TW201044279A (en) 2010-12-16
JP5172752B2 (ja) 2013-03-27

Similar Documents

Publication Publication Date Title
US6195400B1 (en) Two-mode demodulating apparatus
EP0948128A1 (en) DC offset cancellation in a quadrature receiver
WO2006118056A1 (ja) 2点変調型位相変調装置、ポーラ変調送信装置、無線送信装置及び無線通信装置
CN102045079A (zh) 适应性接收器
US8258826B2 (en) Automatic frequency control circuit
EP0999645A1 (en) Data converter
JP5345858B2 (ja) ノイズリダクションを持つ無線周波数信号の受信及び/又は送信用の装置
JP5172752B2 (ja) Rfタグリーダ回路
JP3672189B2 (ja) 無線信号受信装置及び復調処理回路
KR100881790B1 (ko) 수신기 및 무선 통신 장치
JP2010246123A (ja) 低転送速度モードにおける感度が高いfsk変調信号受信機
WO2016174805A1 (ja) 無線アクセスシステム及びその制御方法
WO2018034026A1 (ja) 発振装置、rfフロントエンド回路及び携帯型無線通信端末装置
JP3825540B2 (ja) 受信機および送受信機
JP3898839B2 (ja) 送信機
JP2010050780A (ja) 無線通信端末および無線通信制御方法
US7439799B2 (en) Frequency shift keying demodulator robust for frequency offset
JPH10112669A (ja) 周波数シンセサイザ、受信機および周波数変調器
JP2005086441A (ja) 無線通信装置
JP3708234B2 (ja) 無線装置
JP3698543B2 (ja) 無線受信機、無線送受信機及び無線受信機用回路
JP4459469B2 (ja) 自動周波数制御装置
JP2005033234A (ja) 無線機
JP4068548B2 (ja) 送信装置および送信回路
JP3801493B2 (ja) 局部発振器を用いた送受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755779

Country of ref document: EP

Kind code of ref document: A1