TW201044279A - Radio frequency tag reader circuit - Google Patents

Radio frequency tag reader circuit Download PDF

Info

Publication number
TW201044279A
TW201044279A TW099105057A TW99105057A TW201044279A TW 201044279 A TW201044279 A TW 201044279A TW 099105057 A TW099105057 A TW 099105057A TW 99105057 A TW99105057 A TW 99105057A TW 201044279 A TW201044279 A TW 201044279A
Authority
TW
Taiwan
Prior art keywords
frequency
signal
output
pass filter
tag reader
Prior art date
Application number
TW099105057A
Other languages
Chinese (zh)
Other versions
TWI427537B (en
Inventor
Yuki Himori
Shinichiro Fukushima
Hiroyuki Hamada
Taizo Yamawaki
Takashi Oshima
Sanae Nakao
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of TW201044279A publication Critical patent/TW201044279A/en
Application granted granted Critical
Publication of TWI427537B publication Critical patent/TWI427537B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • H03J7/065Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers the counter or frequency divider being used in a phase locked loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

The subject is to provide a radio frequency (RF) tag reader (20) capable of improving the characteristics of receiving radio waves transmitted from an active tag (11). To solve the problem, the RF tag reader (20) of the present invention adjusts a frequency dividing ratio of a PLL 214 according to a non-modulated signal transmitted from the active tag (11), so that a base band signal frequency down-converted by a local signal outputted by the PLL 214 is a predetermined frequency, and then starts to receive data transmitted from the active tag (11).

Description

201044279 六、發明說明: 【發明所屬之技術領域】 本發明係關於接收由所謂的標籤所被送訊的資料(訊 號)的技術。其中尤其係關於藉由Low-IF方式來接收由主 動標籤所被傳送的訊號的射頻(RF )標籤讀取器的收訊電 路。 〇 【先前技術】 近年來,以記憶各種資訊的手段而言,已廣泛使用RF 型電子標籤(以下稱爲RF標籤)°RF標籤係有被動標籤 (passive tag)與主動標籤(active tag)。被動標籤並不 需要電池,藉由背向散射(backscatter)方式來進行通訊 。在背向散射方式中,RF標籤係根據由RF標籤讀取器所 被送訊的無調變訊號來接受電力的供給,使無調變訊號的 反射量改變,而藉此將所保持的資料送訊至RF標籤讀取器 ® 。主動標籤雖然獨自需要電源及振盪器,但是與被動標籤 相比較,可進行長距離的通訊。 此外’ RF標籤讀取器在與被動標籤的通訊中,必須— 面傳送無調變波,一面接收資料。因此,在與被動標籤的 通訊中’很多情形係採用可利用與送訊至被動標籤的無調 變波爲相同的頻率作爲本局訊號頻率的直接轉換方式。另 一方面’在與主動標籤的通訊中,由於不需要同時進行收 送訊,因此很多情形係採用收訊性能高的L 〇 w -1F方式。例 如’在下述非專利文獻1中係揭示—種採用L 〇 w -1F方式的 201044279 RFIC的構成。 [先前技術文獻] [非專利文獻] [非專利文獻 1]J. Crols,et al.,”Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated Receivers",IEEE Transactions on Circuits and Systems II,V ο 1.4 5 , N o . 3 , pp.269-282, March 1 998. 【發明內容】 (發明所欲解決之課題) 但是,被動標籤係藉由反射來自RF標籤讀取器的無調 變波,來傳送將資料保持在內部的資料,因此不會有由RF 標籤讀取器所被送訊的無調變波的頻率偏移的情形。但是 ,主動標籤係與RF標籤讀取器獨立而另外具有振盪器’因 此由主動標籤所被送訊的訊號的頻率會有與RF標籤讀取器 假想收訊的訊號的頻率偏移的情形。若兩頻率偏移’會造 成RF標籤讀取器中的收訊特性劣化。 本發明係鑑於上述情形而硏創者’本發明之目的係在 由主動標籤所被送訊的電波收訊中改善收訊特性。 (解決課題之手段) 爲了解決上述課題,在本發明中係根據來自主動標籤 的無調變訊號,來調節RF標籤讀取器之本局訊號頻率或帶 201044279 通爐波器的中心頻率。 例如,本發明之第一態樣係一種射頻標籤讀取器電路 ,係藉由Low-IF方式來接收由主動標籤所被送訊的訊號的 射頻(RF )標籤讀取器的收訊電路,其特徵爲具備有: 對由基準振盪器所被輸出的訊號,輸出所被設定之分 頻比的本局訊號的可程式化PLL ; 將由主動標籤所被送訊的無調變訊號,使用由前述可 Ο 程式化PLL所被輸出的本局訊號進行下轉換(down-converting)的混頻器; 由來自前述混頻器的輸出訊號之中,使預先訂定的頻 帶的訊號通過的帶通濾波器; 將帶通濾波器的輸出訊號加以放大的放大器; 在將前述放大器的輸出轉換成數位資料之後進行解調 的解調部; 計算出表示來自前述帶通濾波器之輸出訊號的頻率、 〇 與預先訂定的基準頻率的差分的頻率差的頻率差計算部; 及 計算出與藉由前述頻率差計算部所計算出的差分相對 應的分頻比,將所計算出的分頻比設定在前述可程式化 P L L的分頻比控制部。 此外,本發明之第二態樣係一種射頻標籤讀取器電路 ,係藉由Low-IF方式來接收由主動標籤所被送訊的訊號的 射頻(RF)標籤讀取器的收訊電路,其特徵爲具備有: 輸出預先訂定的頻率的本局訊號的本局訊號生成部; 201044279 將由主動標籤所被送訊的無調變訊號’使用由前述本 局訊號生成部所被輸出的本局訊號進行下轉換(downconverting) 的混 頻器; 在與所被輸入的控制訊號相對應的中心頻率中’由來 自前述混頻器的輸出訊號之中’使預先訂定的頻帶寬的訊 號通過的帶通濾波器; 將帶通濾波器的輸出訊號放大的放大器; 在將前述放大器的輸出轉換成數位資料之後進行解調 的解調部; 計算出來自前述帶通濾波器之輸出訊號的頻率、與預 先訂定的基準頻率的差分的頻率差計算部;及 按照藉由前述頻率差計算部所計算出的差分,生成用 以控制前述帶通濾波器之頻帶的中心頻率的控制訊號而供 給至前述帶通濾波器的帶通濾波器控制部。 (發明之效果) 藉由本發明之RF標籤讀取器電路,在由主動標籤所被 送訊的電波的收訊中,可改善收訊特性。 【實施方式】 首先針對本發明之第1實施形態加以說明。 第1圖係顯示本發明之一實施形態之r F〗D系統1 〇之— 例的系統構成圖。RFID系統1 〇係具備有:主動標籤丨丨 '資 料處理裝置12、及RF標籤讀取器20。 201044279 在本實施形態中,主動標籤1 1係當接收到來自RF標籤 讀取器2〇的Wake UP訊息時,例如第2圖所示,傳送包含無 調變波(CW) 30、引導音(pilot tone) 31、前序訊號( preamble) 32、及資料33的訊息。 在RF標籤讀取器20設有開關13,使用者在接收來自主 動標籤1 1的資料時,即按下該開關1 3。若開關1 3被按下時 ,本實施形態之RF標籤讀取器20係傳送Wake UP訊息,之 Ο 後根據由主動標籤11所被送訊的無調變波,來調節由主動 標籤11所被送訊的電波解調所使用的本局訊號的頻率。接 著,RF標籤讀取器20係將繼無調變波之後所被送訊的引導 音、前序訊號、及資料進行解調,且將解調後的資料傳送 至資料處理裝置1 2。 第3圖係顯示第1實施形態中之RF標籤讀取器20之功能 構成之一例的方塊圖。RF標籤讀取器20係具有:天線200 、LNA( Low Noise Amplifier,低雜訊放大器)201、混頻 Ο 器 202、混頻器 203、BPF ( Band Pass Filter,帶通瀘波器. )204、BPF205、AGC ( Automatic Gain Control,自動增 益控制)放大器206、AGC放大器207、ADC ( Analog to Digital converter,類比至數位轉換器)208、ADC209、 LPF (Low Pass Filter,低通據波器)210、LPF211、解調 器 212、移相器 213、PLL( Phase Locked Loop,鎖相迴路 )2 1 4、分頻比控制部2 1 5、△ f計算部2 1 6、及控制部2 1 7 PLL2 14係由水晶振動子等的基準訊號源,生成藉由分 201044279 頻比控制部215或控制部217所被設定的分頻比的本局訊號 ,將所生成的本局訊號供給至混頻器202,並且透過移相 器213而供給至混頻器203。在本實施形態中,RF標籤讀取 器20由於以Low-IF方式來接收來自主動標籤11的訊號’因 此PLL214所生成的本局訊號係由應由主動標籤11所被送訊 的訊號的頻率偏移預先訂定的頻率份(例如1 00kHz )。 LNA201係透過天線200,將由主動標籤1 1所接收到的 訊號予以放大而供給至混頻器202及混頻器203。混頻器 2 02係藉由乘算由PLL2 14所被供給的本局訊號,將由 LNA201所被供給的訊號進行下轉換(down-converting) 而將收訊訊號的I成分供給至BPF204。混頻器202係將藉由 移相器213偏移7Γ / 2的本局訊號作乘算,藉此將由 LNA2 0 1所被供給的訊號進行下轉換而將收訊訊號的Q成分 供給至B P F 2 0 5。 BPF204係由從混頻器2〇2所被供給的訊號之中,使預 先訂定的頻帶的頻率成分通過。BPF2〇5係由從混頻器2〇3 所被供給的訊號之中,使預先訂定的頻帶的頻率成分通過 〇 由BPF204所被輸出的I成分的收訊訊號係藉由AGC放 大器206予以放大,藉由ADC208被轉換成數位訊號,在藉 由L P F 2 1 0而被去除諧波之後,被供給至解調器2 1 2。由 BPF205所被輸出的Q成分的收訊訊號係藉由AGC放大器207 予以放大,藉由ADC209被轉換成數位訊號’在藉由 LPF2 1 1而被去除諧波之後,被供給至解調器2 1 2。解調器 -10- 201044279 2 12係根據I成分及Q成分的收訊訊號將資料位元進行解調 ,且將經解調的資料位元供給至資料處逵裝置1 2。 △ f計算部2 1 6係當由控制部2 1 7被指示時,計算出收 訊訊號的頻率與預先訂定的頻率的頻率差Af,將所計算 出的△ f的値供給至分頻比控制部2 1 5。在本實施形態中, △ f計算部2 1 6係監視收訊訊號的Q成分,在預先訂定的時 間間隔Tc中,將收訊訊號之1波長的反覆次數α進行計數 〇 。接著,Af計算部216係根據與在預先訂定的頻率的訊號 中所應被計數的1波長的反覆次數的差分,計算出(α-召)+Tc作爲△ f。 其中,在本實施形態中,△ f計算部2 1 6係根據收訊訊 號的Q成分來計算出A f的値,但是亦可根據收訊訊號的I 成分來計算出△ f的値。此外,△ f計算部2 1 6係亦可例如第 4圖所示,在預先訂定的時間間隔T c中,將收訊訊號之峰 値數設爲1波長的反覆次數《而進行計數。 Ο 其中,以其他形態而言,△ f計算部2 1 6亦可使用收訊 訊號的I成分與Q成分’藉由類比PLL或數位PLL來計算出 頻率差Af。第5圖係顯示藉由數位PLL來構成Af計算部 2 1 6時之例。 第5圖中,在相位比較器40中,係在由LPF210所被輸 出的I成分的收訊訊號藉由乘算器41將Cosine波作乘算,在 由LPF21 1所被輸出的Q成分的收訊訊號藉由乘算器42將 Sine波作乘算而藉由反相器44予以反轉,乘算器41的輸出 與反相器44的輸出係利用加算器43進行加算且予以輸出。 -11 - 201044279 由相位比較器40所被輸出的訊號係在通過迴路濾波器 45之後,作爲頻率差△ f而被輸出至分頻比控制部2 1 5 °此 外,來自迴路爐波器45的輸出係在NCO( numeric controlled oscillator,數控振邊器)4ό中’藉由加算器47 加算表示預先訂定的頻率的基準値,藉由積分器48予以積 分且被反饋至相位比較器40。其中’所謂基準値係表示根 據假設由主動標籤11所被送訊的訊號的頻率、與RF標籤讀 取器20所假想的收訊訊號的頻率不具差異時的混頻器202 及混頻器2 0 3所被輸出的訊號的中間頻率的數位値。 在此,若將由LPF210或LPF211所被輸出的訊號頻率 設爲ω5/2ττ、預先訂定的中間頻率設爲ωΙΡ/2ττ時’可 藉由下述計算式(1),計算出頻率差 π ) ° [數1] sin0ttcos<aIFt - cosastsinaIFt ⑴201044279 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a technique for receiving data (signal) transmitted by a so-called tag. In particular, it relates to a receiving circuit of a radio frequency (RF) tag reader that receives a signal transmitted by an active tag by a Low-IF method. 〇 [Prior Art] In recent years, RF type electronic tags (hereinafter referred to as RF tags) have been widely used to memorize various information. The RF tags are passive tags and active tags. Passive tags do not require a battery and communicate by backscatter. In the backscattering mode, the RF tag receives the supply of power according to the unmodulated signal sent by the RF tag reader, so that the amount of reflection of the unmodulated signal is changed, thereby maintaining the retained data. Send to the RF Tag Reader®. Active tags, although they require a power supply and an oscillator alone, can communicate over long distances compared to passive tags. In addition, in the communication with the passive tag, the RF tag reader must transmit the unmodulated wave while receiving the data. Therefore, in the communication with passive tags, many cases use the same frequency as the unmodulated wave sent to the passive tag as the direct conversion mode of the local signal frequency. On the other hand, in the communication with the active tag, since there is no need to transmit and receive at the same time, in many cases, the L 〇 w -1F method with high reception performance is adopted. For example, the configuration of the 201044279 RFIC using the L 〇 w -1F method is disclosed in Non-Patent Document 1 below. [Prior Art Document] [Non-Patent Document] [Non-Patent Document 1] J. Crols, et al., "Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated Receivers", IEEE Transactions on Circuits and Systems II, V ο 1.4 5 , N o . 3 , pp. 269-282, March 1 998. [Summary of the Invention] However, the passive tag is reflected by the unmodulated from the RF tag reader. Wave, to transmit data that keeps the data inside, so there is no frequency shift of the untuned wave transmitted by the RF tag reader. However, the active tag is independent of the RF tag reader. In addition, there is an oscillator. Therefore, the frequency of the signal sent by the active tag may be offset from the frequency of the signal that the RF tag reader imaginarily receives. If the two frequencies are offset, the RF tag will be read. The present invention is based on the above circumstances, and the object of the present invention is to improve the reception characteristics in the radio wave reception transmitted by the active tag. (Means for solving the problem) The above lesson In the present invention, the local signal frequency of the RF tag reader or the center frequency of the inverter device with the 201044279 is adjusted according to the unmodulated signal from the active tag. For example, the first aspect of the present invention is a The radio frequency tag reader circuit is a receiving circuit of a radio frequency (RF) tag reader that receives a signal transmitted by an active tag by a Low-IF method, and is characterized by: The outputted signal outputs a programmable PLL of the local signal of the set frequency division ratio; the unmodulated signal sent by the active tag uses the local signal outputted by the aforementioned programmable PLL a mixer for down-converting; a band pass filter for passing a signal of a predetermined frequency band among output signals from the mixer; amplifying an output signal of the band pass filter A demodulation unit that performs demodulation after converting the output of the aforementioned amplifier into digital data; calculates a frequency, 〇 and a predetermined setting indicating an output signal from the band pass filter a frequency difference calculation unit that calculates a frequency difference of the reference frequency; and calculates a frequency division ratio corresponding to the difference calculated by the frequency difference calculation unit, and sets the calculated frequency division ratio to the programmable The frequency division ratio control unit of the PLL. In addition, the second aspect of the present invention is a radio frequency tag reader circuit for receiving a radio frequency (RF) tag of a signal transmitted by an active tag by a Low-IF method. The receiving circuit of the reader is characterized in that: the local signal generating unit that outputs the local signal of the preset frequency; 201044279 uses the unmodulated signal sent by the active tag to use the signal generating unit of the local office a mixer that is downconverted by the output of the local signal; in a center frequency corresponding to the input control signal, 'from the output signal from the aforementioned mixer' to make a predetermined frequency a bandpass filter through which the bandwidth signal passes; an amplifier that amplifies the output signal of the bandpass filter; demodulates after converting the output of the aforementioned amplifier into digital data a demodulation unit; a frequency difference calculation unit that calculates a difference between a frequency of an output signal from the band pass filter and a predetermined reference frequency; and a difference calculated by the frequency difference calculation unit The control signal for controlling the center frequency of the band of the band pass filter is supplied to the band pass filter control unit of the band pass filter. (Effect of the Invention) With the RF tag reader circuit of the present invention, the reception characteristics can be improved in the reception of radio waves transmitted by the active tag. [Embodiment] First, a first embodiment of the present invention will be described. Fig. 1 is a system configuration diagram showing an example of the r F D system 1 according to an embodiment of the present invention. The RFID system 1 is provided with an active tag 丨丨 'material processing device 12 and an RF tag reader 20. 201044279 In the present embodiment, when the active tag 11 receives the Wake UP message from the RF tag reader 2, for example, as shown in FIG. 2, the transmission includes the unmodulated wave (CW) 30 and the pilot tone ( Pilot tone) 31. Preamble 32, and information 33. A switch 13 is provided in the RF tag reader 20, and when the user receives the material from the active tag 11, the switch 13 is pressed. When the switch 13 is pressed, the RF tag reader 20 of the present embodiment transmits a Wake UP message, and then adjusts the active tag 11 based on the unmodulated wave transmitted by the active tag 11. The frequency of the local signal used by the transmitted wave demodulation. Next, the RF tag reader 20 demodulates the pilot tone, preamble signal, and data transmitted after the unmodulated wave, and transmits the demodulated data to the data processing device 12. Fig. 3 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the first embodiment. The RF tag reader 20 has an antenna 200, an LNA (Low Noise Amplifier) 201, a mixer 202, a mixer 203, and a BPF (Band Pass Filter). , BPF205, AGC (Automatic Gain Control) amplifier 206, AGC amplifier 207, ADC (Analog to Digital Converter) 208, ADC209, LPF (Low Pass Filter) 210 , LPF 211, demodulator 212, phase shifter 213, PLL (Phase Locked Loop) 2 1 4, frequency division ratio control unit 2 1 5, Δf calculation unit 2 1 6 , and control unit 2 1 7 The PLL 2 14 generates a local signal of a frequency division ratio set by the frequency ratio control unit 215 or the control unit 217 by a reference signal source such as a crystal vibrator, and supplies the generated local signal to the mixer 202. And supplied to the mixer 203 through the phase shifter 213. In the present embodiment, the RF tag reader 20 receives the signal from the active tag 11 in the Low-IF mode. Therefore, the local signal generated by the PLL 214 is biased by the frequency of the signal to be transmitted by the active tag 11. Move a predetermined frequency share (for example, 1 00 kHz). The LNA 201 amplifies the signal received by the active tag 1 through the antenna 200, and supplies it to the mixer 202 and the mixer 203. The mixer 228 supplies the I component of the received signal to the BPF 204 by down-converting the signal supplied from the LNA 201 by multiplying the local signal supplied from the PLL 2 14 . The mixer 202 multiplies the local signal shifted by 7 Γ / 2 by the phase shifter 213, thereby down-converting the signal supplied by the LNA 207 to supply the Q component of the received signal to the BPF 2 0 5. The BPF 204 passes the frequency components of the pre-defined frequency band among the signals supplied from the mixer 2〇2. The BPF2〇5 is configured to pass the frequency component of the predetermined frequency band from the signal supplied from the mixer 2〇3 to the received signal of the I component outputted by the BPF 204 by the AGC amplifier 206. The amplification is converted into a digital signal by the ADC 208, and after being removed by the LPF 2 10, the harmonics are supplied to the demodulator 2 1 2 . The received signal of the Q component outputted by the BPF 205 is amplified by the AGC amplifier 207, and converted into a digital signal by the ADC 209. After being removed by the LPF2 1 1 , the signal is supplied to the demodulator 2 1 2. Demodulator -10- 201044279 2 12 Demodulates the data bit according to the received signal of the I component and the Q component, and supplies the demodulated data bit to the data processing device 12. The Δf calculating unit 2 1 6 calculates the frequency difference Af between the frequency of the received signal and the predetermined frequency when the control unit 2 17 is instructed, and supplies the calculated △ f 値 to the frequency division. The ratio control unit 2 15 . In the present embodiment, the Δf calculating unit 2 16 monitors the Q component of the received signal, and counts the number of times of repetition of the first wavelength of the received signal 〇 in the predetermined time interval Tc. Next, the Af calculating unit 216 calculates (α-call) + Tc as Δ f based on the difference between the number of times of repetition of one wavelength to be counted in the signal of the frequency set in advance. In the present embodiment, the Δf calculating unit 2 16 calculates the A of A f based on the Q component of the received signal, but may calculate the △ of Δ f based on the I component of the received signal. Further, the Δf calculating unit 2 16 can also count the number of times the peak number of the received signal is set to the number of times of the first wavelength in the predetermined time interval T c , for example, as shown in Fig. 4 . In other cases, the Δf calculating unit 2 16 can calculate the frequency difference Af by the analog PLL or the digital PLL using the I component and the Q component of the received signal. Fig. 5 shows an example in which the Af calculating unit 2 16 is constructed by a digital PLL. In Fig. 5, in the phase comparator 40, the Cosine wave is multiplied by the multiplier 41 of the I component output signal outputted by the LPF 210, and the Q component output by the LPF 21 1 is used. The received signal is multiplied by the multiplier 42 and inverted by the inverter 44. The output of the multiplier 41 and the output of the inverter 44 are added by the adder 43 and output. -11 - 201044279 The signal outputted by the phase comparator 40 is output to the frequency division ratio control unit 2 as a frequency difference Δ f after passing through the loop filter 45. Further, the circuit from the circuit breaker 45 The output is in the NCO (numeric controlled oscillator) 4', and the reference 表示 indicating the predetermined frequency is added by the adder 47, integrated by the integrator 48, and fed back to the phase comparator 40. The term "the so-called reference system" means the mixer 202 and the mixer 2 when the frequency of the signal transmitted by the active tag 11 is not different from the frequency of the imaginary received signal of the RF tag reader 20. 0 3 The digit of the intermediate frequency of the signal being output 値. Here, when the signal frequency output by the LPF 210 or the LPF 211 is ω5/2ττ and the predetermined intermediate frequency is ωΙΡ/2ττ, the frequency difference π can be calculated by the following calculation formula (1). ° [Number 1] sin0ttcos<aIFt - cosastsinaIFt (1)

= ^in{ps ^alF)t+sin(0s+aiF)t~sin{ms -o^t) = sir^os PLL2 14係例如第6圖所示,具有:相位比較器60、充 電栗 61、迴路濾波器 62、VCO ( voltage controlled oscillator,壓控振盪器)63、及可變分頻器64。可變分頻 器64係在將VC063的輸出訊號的頻率設爲fvco、可變分頻 器64的輸出訊號的頻率設爲“^時,根據屬於由分頻比控 制部2 1 5所被供給的分頻比的設定値的參數A、參數B、及 參數N,輸出按照下述計算式(2)的頻率fOUT的訊號。 -12- 201044279 [數2] yjjt/r=Οχ …⑵ 相位比較器60係輸出與來自基準訊號源的基準訊號和 來自可變分頻器64的f0UT的相位差相對應的訊號,充電泵 61係將來自相位比較器60的訊號轉換成電壓。迴路濾波器 62係將充電栗61的輸出電壓平均化,VC063係將與迴路濾 波器62的輸出電壓相對應的頻率的訊號進行輸出。其中, ^ 在本實施形態中,係以整數分頻器作爲可變分頻器64爲例 加以說明,但是PLL21 4亦可構成爲使用分頻器作爲可變分 頻器 64的分數型 PLL ( fractional PLL )。 分頻比控制部2 1 5係例如第7圖所示具有分頻比表格5 0 及分頻比設定部5 1。在分頻比表格50係例如第8圖所示, 與頻率差500產生對應而預先儲存有應設定在PLL2 14之各 參數的値501。分頻比表格50內的各參數的値501當藉由 △ f計算部2 1 6計算出相對應的頻率差時,爲了生成將該頻 ® 率差設爲〇的本局訊號頻率而應設定在PLL2 14的値,藉由 製造者等利用實驗預先進行測定且予以儲存。 分頻比設定部5 1係當由△ f計算部2 1 6接收到表示頻率 差△ f的訊號時,由分頻比表格50抽出與所接收到的頻率 差Δ f相對應的分頻比的各參數,且將所抽出的各參數設 定在PLL214的可變分頻器64。 在此,藉由主動標籤Η內的基準訊號、與RF標籤讀取 器20內的基準訊號的偏移,若由主動標籤1 1所被送訊的訊 號的頻率、與RF標籤讀取器2〇所假想的收訊訊號的頻率偏 -13- 201044279 移預先訂定的頻率份以上,或者頻率的偏移量未達預先訂 定的頻率時,以藉由Low-IF方式所爲之收訊,會有藉由混 頻器202及混頻器203予以下轉換的訊號的頻率分別由 BPF204及BPF205的通頻帶脫離的情形。 由BPF204及BPF205的通頻帶脫離的訊號並未被供給 至AGC放大器206及AGC放大器207以後,因此解調器212 無法直接將來自主動標籤11的訊號正確地進行解調。 相對於此,分頻比控制部2 1 5係按照藉由△ f計算部 2 16所被計算出的頻率差△ f,將藉由 PLL2 14所得之本局 訊號的頻率,以成爲由主動標籤11的訊號頻率偏移預先訂 定的頻率份的頻率的方式進行設定。藉此,藉由混頻器 2 02及混頻器203予以下轉換的訊號的頻率不會分別由 BPF204及BPF205的通頻帶脫離,而被供給至AGC放大器 206及AGC放大器207以後。 因此,本實施形態之RF標籤讀取器2 0即使在主動標籤 1 1內的基準訊號、與RF標籤讀取器20內的基準訊號發生偏 移的情形下,亦可將來自主動標籤1 1的訊號正確地進行解 調。 接著,一面參照第9圖之流程圖,一面說明控制部2 1 7 之動作。第9圖係顯示第1實施形態中之RF標籤讀取器20之 動作之一例的流程圖。當透過被設在R F標籤讀取器2 0的開 關1 3,由使用者被指示來自主動標籤1 1之資料的收訊時, R F標籤讀取器2 0即開始本流程圖所示動作。 首先’控制部2 1 7係在P L L 2 1 4 定分頻比的初始値( -14 - 201044279 5100) ,藉由未圖示的送訊機,傳送Wake UP訊息。接著 ’控制部2 1 7進行判定是否由LpF2 1 1被輸出無調變訊號( 5101) 。無調變訊號未被輸出時(S101:N〇),控制部 217係反覆步驟S101至無調變訊號被輸出爲止。 當無調變訊號被輸出時(s 1 0 1 ·· Y e s ),控制部2 1 7係 使分頻比控制部2 1 5及△ f計算部2 1 6起動(S 1 02 ),至藉 由△ f計算部2 1 6所爲之頻率差△ f的計算、藉由分頻比控制 Ο 部215所爲之分頻比的設定、及藉由PLL21 4所爲之本局訊 號頻率的切換結束爲止的期間,待機預定時間(例如數十 β秒)。 △ f計算部216係進行計算收訊訊號的頻率與預先訂定 的頻率的頻率差△ f,將所計算出的△ f値供給至分頻比控 制部2 1 5。P L L2 1 4係由分頻比表格5 0中抽出與由△ f計算部 2 1 6所接收到的頻率差△ f相對應的分頻比的各參數,且將 所抽出的各參數設定在PLL214的可變分頻器64 ( S103)。 Ο 接著,控制部2 1 7係使分頻比控制部2 1 5及△ f計算部 216停止(3104)。接著,?1^214係以在步驟5103中藉由 分頻比控制部2 1 5所被設定的分頻比繼續進行動作,解調 器2 1 2係將由主動標籤1 1繼無調變波所被送訊的資料進行 解調(S105 ) ,RF標籤讀取器20係結束本流程圖所示之動 作。 以上針對本發明之第1實施形態加以說明。 由上述說明可知,藉由本實施形態之RF標籤讀取器2 0 ’在由主動標籤1 1所傳送的電波的收訊中,可改善收訊特 -15- 201044279 性。 接著,針對本發明之第2實施形態加以說明。 第1 0圖係顯示第2實施形態中之R F標籤讀取器2 0之功 能構成之一例的方塊圖。本實施形態之RF標籤讀取器20係 具有:天線200、LNA201、混頻器202、混頻器203、 BPF204 ' BPF205 > AGC 放大器 206、AGC 放大器 207、 ADC208 ' ADC209、LPF210、LPF211、解調器 212、移相 器2 1 3、P LL2 1 4、分頻比控制部2 1 5、△ f計算部2 1 6、控制 部217、開關220、開關221、 LPF222、及 LPF223。 本實施形態中之RF標籤讀取器20具有開關220、開關 22 1、LPF2 22、及LPF223,此點與使用第3圖所說明的第1 實施形態中之RF標籤讀取器20不同。其中,除了以下說明 的內容以外,在第1〇圖中,標註與第3圖相同元件符號的 構件係具有與第3圖中的構件爲相同或同樣的功能,故省 略說明。 開關220係按照來自控制部21 7的指示,將混頻器202 的輸出訊號傳送至LPF222或BPF204。開關221係按照來自 控制部217的指示,將混頻器203的輸出訊號傳送至LPF223 或 BPF205。 LPF222係由透過開關220所被提供的訊號之中,抽出 預定頻率以下之頻帶的訊號且供給至AGC放大器206。 LPF223係由透過開關221所被提供的訊號之中,將預定頻 率以下的頻帶的訊號抽出而供給至AGC放大器207。 接著,一面參照第1 1圖之流裎圖,一面說明本實施形 -16- 201044279 態中之控制部2 1 7之動作。第1 1圖係顯示第2實施形態中之 RF標籤讀取器20之動作之一例的流程圖。在本實施形態中 ’被設在RF標籤讀取器2 〇的開關1 3係可對RF標籤讀取器 20指示主動標籤的收訊或被動標籤的收訊的任一者。RF標 籤讀取器20係當開關1 3被操作時,即開始本流程圖所示動 作。 首先,控制部2 1 7係判定使用者透過開關1 3所爲的操 〇 作是否爲指示主動標籤之收訊者(S200 )。若由使用者被 指示主動標籤的收訊時(S200 : Yes ),控制部21 7係以將 混頻器202的輸出訊號送至BPF204的方式將開關220作切換 ’並且以將混頻器203的輸出訊號送至BPF205的方式將開 關221作切換(S201)。 接著,控制部21 7係將用以生成Low-IF方式之收訊中 的本局訊號頻率的分頻比的初始値設定在PLL214 ( S202) ’藉由未圖示的送訊機,傳送Wake UP訊息。接著,控制 ^ 部217係判定是否由LPF21 1被輸出有無調變訊號(S203 ) 。若無調變訊號未被輸出時(S203: No),控制部217係 反覆步驟S203至無調變訊號被輸出爲止。 若無調變訊號被輸出時(S2 03 : Yes),控制部21 7係 使分頻比控制部215及Af計算部216起動(S204),至藉 由△ f計算部2 1 6所爲之頻率差△ f的計算、藉由分頻比控制 部215所爲之分頻比的設定、及藉由PLL214所爲之本局訊 號頻率的切換結束爲止的期間,待機預定時間(例如數十 #秒)。 -17- 201044279 Δ f計算部2 1 6係計算出收訊訊號的頻率與預先訂定的 頻率的頻率差△ f,且將計算出的△ f値供給至分頻比控制 部215。分頻比控制部215係由分頻比表格50抽出與由 計算部2 1 6所接收到的頻率差△ f相對應的分頻比的各參數 ,將所抽出的各參數設定在PLL2 14的可變分頻器64 ( S2 05 )。 接著,控制部2 1 7係使分頻比控制部2 1 5及△ f計算部 216停止(S206)。接著,PLL214係以在步驟S205中藉由 分頻比控制部2 1 5所被設定的分頻比繼續進行動作,解調 器212係將由主動標籤11繼無調變波所被送訊的資料進行 解調(S207 ) ,RF標籤讀取器20即結束本流程圖所示動作 〇 在步驟S200中,藉由使用者所爲之開關1 3的操作爲指 示被動標籤之收訊者時(S 200 : No )’控制部21 7係以將 混頻器202的輸出訊號傳送至LPF222的方式將開關220作切 換,並且以將混頻器203的輸出訊號傳送至LPF223的方式 將開關221作切換(S208 )。 接著,控制部2 1 7係將用以生成直接轉換方式之收訊 中的本局訊號頻率的分頻比初始値設定在PLL214 ( s2〇9 ) 。接著,控制部21 7係進行載波感測(carrier sense ) ’判 定是否另外存在有通訊中的RF標籤(S210) °若另外存在 有通訊中的RF標籤時(S210: Yes),控制部217係反覆步 驟S210,至變得未另外存在有通訊中的1117標籤爲止。 若未另外存在有通訊中的RF標籤時(S210:N〇) ’ -18- 201044279 控制部2 1 7係使未圖示的送訊機開始對被動標籤傳送電波 (S21 1 ),解調器212係將由被動標籤所被送訊的資料進 行解調(S2 12 ),RF標籤讀取器20即結束本流程圖所示之 動作。 以上針對本發明之第2實施形態加以說明。 由上述說明可知,藉由本實施形態之RF標籤讀取器20 ,可在由主動標籤11所被送訊的電波收訊中改善收訊特性 〇 ,並且可將來自主動標籤的資料與來自被動標籤的資料, 以1台RF標籤讀取器20作切換來進行收訊。 接著針對本發明之第3實施形態加以說明。 第12圖係顯示第3實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。本實施形態之RF標籤讀取器20係 具有:天線200、LNA201、混頻器202、混頻器203、AGC 放大器 206、AGC放大器 207、ADC208、ADC209、LPF210 、LPF211、解調器212、移相器213、PLL214、分頻比控 〇 ^ 制部2 1 5、△ f計算部2 1 6、控制部2 1 7、及濾波器電路23 0 〇 本實施形態中之RF標籤讀取器20具有濾波器電路230 來取代BPF204及BPF20 5,在這方面,與使用第3圖所說明 之第1實施形態中之RF標籤讀取器20不同。其中,除了以 下說明的內容以外,在第1 0圖中,標註與第3圖相同元件 符號的構件係具有與第3圖中的構件爲相同或同樣的功能 ,故省略說明。 濾波器電路230係藉由來自控制部21 7的指示,作爲 -19 - 201044279 BPF或LPF的任一者來進行動作。濾波器電路23 0爲例如第 13圖所示之構成,在開關231〜236全部關斷(OFF)的情 形下作爲LPF進行動作,在開關231〜23 6全部導通(ON ) 的情形則係作爲複數濾波器的BPF進行動作。控制部2 1 7係 在被動標籤收訊時,將開關2 3 1〜2 3 6全部控制成關斷,在 主動標籤收訊時,將開關231〜23 6全部控制成導通。 以上針對本發明之第3實施形態加以說明。 由上述說明可知,藉由本實施形態之RF標籤讀取器20 ,可在由主動標籤1 1所被送訊的電波收訊中改善收訊特性 ’並且可使在將來自主動標籤的資料與來自被動標籤的資 料,以1台RF標籤讀取器20作切換來進行收訊時之電路構 成小型化。 接著針對本發明之第4實施形態加以說明。 第1 4圖係顯示第4實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。本實施形態之RF標籤讀取器2 0係 具有··天線200、LNA201、混頻器202、混頻器203 ' AGC 放大器 206、AGC 放大器 207' ADC208、ADC209、LPF210 、LPF211、解調器212、移相器213、PLL214、Af計算部 216、控制部217、可變BPF240、可變BPF241、及BPF控制 部 242。 本實施形態中之RF標籤讀取器2〇具有可變BPF240、 可變BPF241、及BPF控制部242來取代BPF204、BPF205、 及分頻比控制部2 1 5,在這方面’與使用第3圖所說明之第 1實施形態中之RF標籤讀取器20不同。其中,除了以下說 -20 - 201044279 明的內容以外,在第1 4圖中,標註與第3圖相同元件符號 的構件係具有與第3圖中的構件爲相同或同樣的功能’故 省略說明。 可變BPF2 40係按照來自BPF控制部242的控制訊號’ 在維持通頻帶之頻帶寬度的情形下直接使通頻帶的中心頻 率產生變化。可變BPF240係例如第15圖所示之電路構成。 BPF控制部242係可藉由使可變電阻243-1及可變電阻243-2 〇 的電阻値產生變化,而使可變BPF240之通頻帶的中心頻率 產生變化。 在此,各自的可變電阻243係可構成爲例如第1 6圖所 示。BPF控制部242係可藉由將各自的開關244進行導通或 關斷,而使可變電阻243全體的電阻値改變。其中,BPF控 制部242亦可取代可變電阻243之電阻値的變化’或者連同 可變電阻243之電阻値的變化一起使可變BPF240內之電容 器的電容改變。此外,在第16圖之例中,可變BPF240係藉 〇 由電阻與電容器所構成’但是以其他形態而言,可變 BPF240亦可藉由線圈與電容器所構成。可變BPF241亦與 可變BPF240爲相同的構成,故省略說明。 例如第17圖所示,BPF控制部242係具有控制訊號表格 70及控制訊號供給部71。在控制訊號表格7〇係例如第18圖 所示,與頻率差700產生對應而預先儲存有表示可變 BPF240及可變BPF241內之各開關之控制的控制訊號701。 控制訊號表格7 0內的控制訊號7 0 1係當藉由△ f計算部2 1 6 計算出相對應的頻率差時’爲了將該頻率差分、可變 -21 - 201044279 BPF240及可變BPF241之通頻帶的中心頻率作挪移而應供 給至可變BPF24〇及可變BPF241的値,藉由製造者等利用 實驗預先進行測定且予以儲存。 控制訊號供給部7 1係在由△ f計算部2 1 6接收到表示頻 率差△ f的訊號時,由控制訊號表格70抽出與所接收到的 頻率差△ f相對應的控制訊號,將所抽出的控制訊號供給 至可變BPF240及可變BPF241。 在此,藉由主動標籤11內的基準訊號、與RF標籤讀取 器20內的基準訊號的偏移,若由主動標籤11所被送訊的訊 號的頻率、與RF標籤讀取器20所假想的收訊訊號的頻率偏 移預先訂定的頻率份以上,或者頻率的偏移量未達預先訂 定的頻率時,以藉由Low-IF方式所爲之收訊,會有藉由混 頻器202及混頻器203予以下轉換的訊號的頻率分別由可變 BPF240及可變BPF241的通頻帶脫離的情形。 由可變BPF240及可變BPF241的通頻帶脫離的訊號並 未被供給至AGC放大器206及AGC放大器2〇7以後’因此解 調器2 1 2無法直接將來自主動標籤1 1的訊號正確地進行解 調。= ^in{ps ^alF)t+sin(0s+aiF)t~sin{ms -o^t) = sir^os PLL2 14 is shown in Fig. 6, for example: phase comparator 60, charging pump 61 A loop filter 62, a VCO (voltage controlled oscillator) 63, and a variable frequency divider 64. The variable frequency divider 64 is supplied by the frequency division ratio control unit 2 1 5 when the frequency of the output signal of the VC 063 is fvco and the frequency of the output signal of the variable frequency divider 64 is set to "^". The frequency division ratio setting parameter A, parameter B, and parameter N output the signal of the frequency fOUT according to the following formula (2). -12- 201044279 [number 2] yjjt/r=Οχ (2) phase comparison The processor 60 outputs a signal corresponding to the phase difference from the reference signal source and the f0UT from the variable frequency divider 64, and the charge pump 61 converts the signal from the phase comparator 60 into a voltage. The output voltage of the charging pump 61 is averaged, and the VC063 outputs a signal of a frequency corresponding to the output voltage of the loop filter 62. Wherein, ^ In the present embodiment, the integer frequency divider is used as the variable The frequency converter 64 is described as an example, but the PLL 21 4 may be configured as a fractional PLL using a frequency divider as the variable frequency divider 64. The frequency division ratio control unit 2 1 5 is, for example, shown in FIG. There is a frequency division ratio table 50 and a frequency division ratio setting unit 51. The frequency ratio table 50 is, for example, shown in Fig. 8, and stores 値501 of each parameter to be set in the PLL 2 14 in association with the frequency difference 500. The parameter 値501 of each parameter in the frequency division ratio table 50 is used by Δ. When the f calculation unit 2 1 6 calculates the corresponding frequency difference, the PLL 2 14 should be set in order to generate the local signal frequency with the frequency ratio difference set to 〇, and the measurement is performed in advance by the manufacturer or the like using an experiment. The frequency division ratio setting unit 5 1 extracts a signal indicating the frequency difference Δ f from the Δf calculating unit 2 16 , and extracts the frequency difference Δ f corresponding to the received frequency difference Δ f by the frequency division ratio table 50 . Each parameter of the frequency division ratio is set to the variable frequency divider 64 of the PLL 214. Here, the reference signal in the active tag and the reference signal in the RF tag reader 20 are used. Offset, if the frequency of the signal sent by the active tag 1 1 and the frequency of the imaginary received signal of the RF tag reader 2 - 1394444279 are shifted by a predetermined frequency, or frequency When the offset is less than the pre-defined frequency, by the Low-IF method For the reception, there is a case where the frequency of the signal down-converted by the mixer 202 and the mixer 203 is separated from the passband of the BPF 204 and the BPF 205. The signal from the passband of the BPF 204 and the BPF 205 is not separated. After being supplied to the AGC amplifier 206 and the AGC amplifier 207, the demodulator 212 cannot directly demodulate the signal from the active tag 11. In contrast, the frequency division ratio control unit 2 1 5 is based on Δ f The frequency difference Δ f calculated by the calculation unit 2 16 sets the frequency of the local signal obtained by the PLL 2 14 so as to be a frequency of a frequency portion predetermined by the signal frequency of the active tag 11 . Thereby, the frequency of the signal down-converted by the mixer 022 and the mixer 203 is not separated from the pass band of the BPF 204 and the BPF 205, respectively, and is supplied to the AGC amplifier 206 and the AGC amplifier 207. Therefore, the RF tag reader 20 of the present embodiment can be derived from the active tag 1 1 even if the reference signal in the active tag 1 1 is offset from the reference signal in the RF tag reader 20 . The signal is correctly demodulated. Next, the operation of the control unit 2 1 7 will be described with reference to the flowchart of Fig. 9. Fig. 9 is a flow chart showing an example of the operation of the RF tag reader 20 in the first embodiment. When the user is instructed to receive the data from the active tag 11 through the switch 13 provided at the R F tag reader 20, the R F tag reader 20 starts the operation shown in this flowchart. First, the control unit 2 17 is an initial 値 ( -14 - 201044279 5100) of the frequency division ratio of P L L 2 1 4, and transmits a Wake UP message by a transmitter (not shown). Next, the control unit 2 17 determines whether or not the unmodulated signal is output from the LpF2 1 1 (5101). When the no-modulation signal is not output (S101: N〇), the control unit 217 repeats the step S101 until the unmodulated signal is output. When the unmodulated signal is output (s 1 0 1 ·· Y es ), the control unit 2 17 starts the frequency division ratio control unit 2 1 5 and the Δ f calculation unit 2 16 (S 1 02 ) to The calculation of the frequency difference Δf by the Δf calculating unit 2 16 , the setting of the frequency dividing ratio by the frequency dividing ratio control unit 215, and the switching of the local signal frequency by the PLL 21 4 During the period until the end, the predetermined time (for example, tens of β seconds) is standby. The Δf calculating unit 216 performs a frequency difference Δ f between the frequency at which the received signal is calculated and a predetermined frequency, and supplies the calculated Δ f 値 to the frequency dividing ratio control unit 2 15 . PL L2 1 4 extracts each parameter of the frequency division ratio corresponding to the frequency difference Δ f received by the Δf calculating unit 2 16 from the frequency division ratio table 50, and sets the extracted parameters in The variable frequency divider 64 of the PLL 214 (S103). Next, the control unit 2 17 stops the frequency division ratio control unit 2 1 5 and the Δf calculation unit 216 (3104). then,? 1^214 continues to operate by the frequency division ratio set by the frequency division ratio control unit 2 15 in step 5103, and the demodulator 2 1 2 is sent by the active tag 1 1 without the modulated wave. The data is demodulated (S105), and the RF tag reader 20 ends the operation shown in this flowchart. The first embodiment of the present invention has been described above. As apparent from the above description, the RF tag reader 20' of the present embodiment can improve the reception characteristics of the radio waves transmitted by the active tag 1 1 . Next, a second embodiment of the present invention will be described. Fig. 10 is a block diagram showing an example of the functional configuration of the R F-tag reader 20 in the second embodiment. The RF tag reader 20 of the present embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, a BPF 204' BPF 205 > an AGC amplifier 206, an AGC amplifier 207, an ADC 208 'ADC 209, an LPF 210, an LPF 211, and a solution. The modulator 212, the phase shifter 2 1 3, the P LL2 1 4, the frequency division ratio control unit 2 1 5, the Δf calculation unit 2 16 , the control unit 217, the switch 220, the switch 221, the LPF 222, and the LPF 223. The RF tag reader 20 of the present embodiment has a switch 220, a switch 22 1 , an LPF 22 , and an LPF 223. This point is different from the RF tag reader 20 of the first embodiment described with reference to Fig. 3 . In the first embodiment, the components having the same reference numerals as those in the third embodiment have the same or similar functions as those of the members in the third embodiment, and therefore will not be described. The switch 220 transmits the output signal of the mixer 202 to the LPF 222 or the BPF 204 in accordance with an instruction from the control unit 217. The switch 221 transmits the output signal of the mixer 203 to the LPF 223 or the BPF 205 in accordance with an instruction from the control unit 217. The LPF 222 extracts a signal of a frequency band below a predetermined frequency from among signals supplied from the switch 220 and supplies it to the AGC amplifier 206. The LPF 223 extracts a signal of a frequency band equal to or lower than a predetermined frequency from the signal supplied through the switch 221, and supplies it to the AGC amplifier 207. Next, the operation of the control unit 2 1 7 in the state of the present invention -16-201044279 will be described with reference to the flow chart of Fig. 1 . Fig. 1 is a flow chart showing an example of the operation of the RF tag reader 20 in the second embodiment. In the present embodiment, the switch 13 provided in the RF tag reader 2 can instruct the RF tag reader 20 to receive the reception of the active tag or the reception of the passive tag. The RF tag reader 20 is activated when the switch 13 is operated. First, the control unit 2 17 determines whether or not the user's operation by the switch 13 is a receiver indicating the active tag (S200). When the user is instructed to receive the reception of the active tag (S200: Yes), the control unit 21 7 switches the switch 220 by sending the output signal of the mixer 202 to the BPF 204 and uses the mixer 203. The output signal is sent to the BPF 205 to switch the switch 221 (S201). Next, the control unit 21 7 sets the initial value of the frequency division ratio of the local signal frequency in the reception of the Low-IF mode to the PLL 214 (S202)', and transmits the Wake UP by a transmitter (not shown). message. Next, the control unit 217 determines whether or not the modulated signal is output by the LPF 21 1 (S203). When the no-modulation signal is not output (S203: No), the control unit 217 repeats the step S203 until the no-modulation signal is output. When the no-modulation signal is output (S2 03 : Yes), the control unit 21 7 activates the frequency division ratio control unit 215 and the Af calculation unit 216 (S204), and the Δf calculation unit 2 16 The calculation of the frequency difference Δf, the setting of the frequency division ratio by the frequency division ratio control unit 215, and the period until the switching of the local signal frequency by the PLL 214 is completed, and the predetermined time (for example, tens of seconds) ). -17- 201044279 The Δf calculating unit 2 1 6 calculates the frequency difference Δ f between the frequency of the received signal and the predetermined frequency, and supplies the calculated Δ f 値 to the frequency dividing ratio control unit 215. The frequency division ratio control unit 215 extracts each parameter of the frequency division ratio corresponding to the frequency difference Δ f received by the calculation unit 2 16 from the frequency division ratio table 50, and sets the extracted parameters to the PLL 2 14 . Variable divider 64 (S2 05). Next, the control unit 2 17 stops the frequency division ratio control unit 2 1 5 and the Δf calculation unit 216 (S206). Next, the PLL 214 continues to operate by the frequency division ratio set by the frequency division ratio control unit 2 15 in step S205, and the demodulator 212 is a data to be transmitted by the active tag 11 without the modulated wave. Demodulation is performed (S207), and the RF tag reader 20 ends the operation shown in this flowchart. In step S200, when the operation of the switch 13 by the user is the receiver indicating the passive tag (S 200: No) The control unit 21 7 switches the switch 220 by transmitting the output signal of the mixer 202 to the LPF 222, and switches the switch 221 by transmitting the output signal of the mixer 203 to the LPF 223. (S208). Next, the control unit 271 sets the frequency division ratio initial value of the local signal frequency in the reception for generating the direct conversion method to the PLL 214 (s2〇9). Next, the control unit 21 7 performs carrier sensing 'determination' whether or not there is another RF tag in communication (S210). If there is another RF tag in communication (S210: Yes), the control unit 217 Step S210 is repeated until it becomes no further 1117 tags in communication. If there is no RF tag in communication (S210: N〇) ' -18- 201044279 Control unit 2 1 7 causes the transmitter (not shown) to start transmitting radio waves to the passive tag (S21 1 ), the demodulator The 212 system demodulates the data transmitted by the passive tag (S2 12), and the RF tag reader 20 ends the operation shown in this flowchart. The second embodiment of the present invention has been described above. As can be seen from the above description, the RF tag reader 20 of the present embodiment can improve the reception characteristics 电 in the radio wave reception transmitted by the active tag 11, and can extract the data from the active tag with the passive tag. The data is switched by one RF tag reader 20 for receiving. Next, a third embodiment of the present invention will be described. Fig. 12 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the third embodiment. The RF tag reader 20 of the present embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, a demodulator 212, and a shifter. Phaser 213, PLL 214, frequency division ratio control unit 2 1 5, Δf calculation unit 2 16 , control unit 2 1 7 , and filter circuit 23 0 RF tag reader 20 in the present embodiment The filter circuit 230 is provided instead of the BPF 204 and the BPF 20 5, and is different from the RF tag reader 20 of the first embodiment described with reference to Fig. 3 in this respect. In the drawings, the components having the same reference numerals as those in the third embodiment have the same or similar functions as those of the members in the third embodiment, and therefore the description thereof will be omitted. The filter circuit 230 operates as any of -19 - 201044279 BPF or LPF by an instruction from the control unit 21 7 . The filter circuit 230 is configured as shown in FIG. 13, for example, when all of the switches 231 to 236 are turned off (OFF), the operation is performed as an LPF, and when all of the switches 231 to 23 6 are turned on (ON), The BPF of the complex filter operates. The control unit 2 1 7 controls all of the switches 2 3 1 to 2 3 6 to be turned off during passive tag reception, and controls all of the switches 231 to 23 6 to be turned on when the active tag is received. The third embodiment of the present invention has been described above. As apparent from the above description, the RF tag reader 20 of the present embodiment can improve the reception characteristics in the radio wave reception transmitted by the active tag 1 1 and can cause the data from the active tag to come from The data of the passive tag is miniaturized when the one RF tag reader 20 is switched to perform reception. Next, a fourth embodiment of the present invention will be described. Fig. 14 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the fourth embodiment. The RF tag reader 20 of the present embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203', an AGC amplifier 206, an AGC amplifier 207', an ADC 208, an ADC 209, an LPF 210, an LPF 211, and a demodulator 212. The phase shifter 213, the PLL 214, the Af calculation unit 216, the control unit 217, the variable BPF 240, the variable BPF 241, and the BPF control unit 242. The RF tag reader 2A of the present embodiment has a variable BPF 240, a variable BPF 241, and a BPF control unit 242 instead of the BPF 204, the BPF 205, and the division ratio control unit 2 1 5, and in this respect The RF tag reader 20 in the first embodiment described above is different. In the above, in the fourth embodiment, the components having the same reference numerals as in the third embodiment have the same or the same functions as those of the components in the third embodiment, and therefore the description is omitted. . The variable BPF 2 40 directly changes the center frequency of the pass band in accordance with the control signal from the BPF control unit 242 while maintaining the bandwidth of the pass band. The variable BPF 240 is configured, for example, as shown in Fig. 15. The BPF control unit 242 can change the center frequency of the pass band of the variable BPF 240 by changing the resistance 値 of the variable resistor 243-1 and the variable resistor 243-2 〇. Here, the respective variable resistors 243 can be configured, for example, as shown in Fig. 16. The BPF control unit 242 can change the resistance 全体 of the entire variable resistor 243 by turning on or off the respective switches 244. Here, the BPF control unit 242 may also change the capacitance of the capacitor in the variable BPF 240 in place of the change in the resistance ’ of the variable resistor 243 or together with the change in the resistance 値 of the variable resistor 243. Further, in the example of Fig. 16, the variable BPF 240 is constituted by a resistor and a capacitor. However, in other forms, the variable BPF 240 may be constituted by a coil and a capacitor. Since the variable BPF 241 has the same configuration as that of the variable BPF 240, the description thereof will be omitted. For example, as shown in Fig. 17, the BPF control unit 242 has a control signal table 70 and a control signal supply unit 71. In the control signal table 7, for example, as shown in Fig. 18, a control signal 701 indicating the control of each of the switches in the variable BPF 240 and the variable BPF 241 is stored in advance in correspondence with the frequency difference 700. The control signal 7 0 1 in the control signal table 70 is when the corresponding frequency difference is calculated by the Δf calculating unit 2 1 6 'in order to differentiate the frequency, the variable -21 - 201044279 BPF240 and the variable BPF 241 The center frequency of the passband is supplied to the variable BPF 24A and the variable BPF 241 by the shift, and is measured and stored in advance by the manufacturer or the like using an experiment. When the control signal supply unit 7 1 receives the signal indicating the frequency difference Δ f by the Δf calculating unit 2 1 6 , the control signal table 70 extracts a control signal corresponding to the received frequency difference Δ f from the control signal table 70. The extracted control signal is supplied to the variable BPF 240 and the variable BPF 241. Here, by the offset between the reference signal in the active tag 11 and the reference signal in the RF tag reader 20, if the frequency of the signal transmitted by the active tag 11 is the same as that of the RF tag reader 20 If the frequency of the imaginary received signal is shifted by more than the predetermined frequency, or if the offset of the frequency does not reach the predetermined frequency, the reception by the Low-IF method may be mixed. The frequency of the down-converted signal by the frequency converter 202 and the mixer 203 is separated from the passband of the variable BPF 240 and the variable BPF 241, respectively. The signal from the passband of the variable BPF 240 and the variable BPF 241 is not supplied to the AGC amplifier 206 and the AGC amplifier 2〇7. Therefore, the demodulator 2 1 2 cannot directly perform the signal from the active tag 11 directly. demodulation.

相對於此,8??控制部242係按照藉由^【計算部216所 被計算出的頻率差Δί,將可變BPF240及可變BPF241之通 頻帶的中心頻率,將用以偏移該頻率差△ f份的控制訊號 分別供給至可變BPF240及可變BPF241。藉此’藉由混頻 器202及混頻器203予以下轉換的訊號的頻率係不會由可變 BPF240及可變BPF241的通頻帶脫離,而分別供給至AGC -22- 201044279 放大器206及AGC放大器207以後。因此’本實施形態之RF 標籤讀取器2 0係可將來自主動標籤1 1的訊號正確地進行解 調。 接著,一面參照第1 9圖的流程圖’一面說明本實施形 態中之控制部2 1 7之動作。第1 9圖係顯示第4實施形態中之 RF標籤讀取器20之動作之一例的流程圖。透過被設在RF 標籤讀取器20的開關13,由使用者被指示來自主動標籤11 之資料的收訊時,RF標籤讀取器20係開始本流程圖所示之 動作。其中,除了以下說明的內容以外,在第19圖中’標 註與第9圖相同元件符號的處理係與第9圖中的處理相同, 故省略說明。 在步驟S101中,當由LPF211被輸出無調變訊號時( 8101:¥^),控制部217係使^『計算部216及8??控制部 242起動(S1 10 ),在至藉由△ f計算部216所爲之頻率差 △ f的計算、及藉由B P F控制部2 4 2所爲之控制訊號的供給 ^ 結束爲止的期間,待機預定時間(例如數十//秒)。 △ f計算部2 1 6係計算出收訊訊號的頻率與預先訂定的 頻率的頻率差△ f,將計算出的△ f的値供給至BPF控制部 2G。BPF控制部242係由控制訊號表格7〇抽出與由△ f計算 部2 1 6所接收到的頻率差△ f相對應的控制訊號,且將所抽 出的控制訊號分別供給至可變BPF240及可變BPF241 ( Sill) ° 接著,控制部217係使A f計算部216及BPF控制部242 停止(S 1 1 2 )。接著,解調器2 1 2係將由主動標籤1 1繼無 -23- 201044279 調變波所被送訊的資料進行解調(s 1 05 ) ,RF標籤讀取器 2 〇係結束本流程圖所示之動作。 以上針對本發明之第4實施形態加以說明。 由上述說明可知,在本實施形態之RF標籤讀取器2〇中 ,亦可在由主動標籤11所被送訊的電波的收訊中改善收訊 特性。 接著針對本發明之第5實施形態加以說明。 第20圖係顯示第5實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。本實施形態之RF標籤讀取器20係 具有:天線200、LNA201、混頻器202、混頻器203、AGC 放大器 206、AGC 放大器 207、ADC208、ADC209、LPF210 、LPF21 1、解調器212、移相器213、PLL214、△ f計算部 2 16'控芾(J部217、可變BPF240、可變BPF241、BPF控制部 242、開關250、開關251、 LPF252、及LPF253。 本實施形態中之RF標籤讀取器20具有開關250、開關 251、LPF252、及LPF253,在這方面,與使用第14圖所說 明之第4實施形態中之RF標籤讀取器20不同。其中,除了 以下說明的內容以外,在第20圖中,標註與第14圖相同元 件符號的構件係具有與第1 4圖中的構件爲相同或同樣的功 能,故省略說明。 開關2 5 0係按照來自控制部2 1 7的指示,將混頻器2 02 的輸出訊號傳送至LPF252或可變BPF240。開關251係按照 來自控制部2 1 7的指示’將混頻器2〇3的輸出訊號傳送至 LPF2 5 3 或可變 BPF241。 -24- 201044279 LPF252係由透過開關25 0所被提供之訊號之中,抽出 預定頻率以下之頻帶的訊號且供給至AGC放大器206。 LPF25 3係由透過開關所被提供之訊號之中,抽出預定 頻率以下之頻帶的訊號且供給至AGC放大器207。 接著,一面參照第2 1圖之流程圖,一面說明本實施形 態中之控制部21 7之動作。第21圖係顯示第5實施形態中之 RF標籤讀取器20之動作之一例的流程圖。 Ο 在本實施形態中,被設在RF標籤讀取器20的開關13係 可對RF標籤讀取器20指示主動標籤的收訊或被動標籤的收 訊的任一者。RF標籤讀取器20係在開關13被操作時,即開 始本流程圖所示之動作。其中,除了以下說明之內容,在 第21圖中,標註與第11圖相同元件符號的處理係與第11圖 中的處理相同,故省略說明。 在步驟S203中,當由LPF211被輸出無調變訊號時( 3 2 03:丫以),控制部217係使^『計算部216及3??控制部 Ο 242起動(S220),至藉由Af計算部216所爲之頻率差Af 的計算、及藉由BP F控制部242所爲之控制訊號的供給結束 爲止的期間,待機預定時間(例如數十#秒)。 △ f計算部216係計算出收訊訊號的頻率與預先訂定的 頻率的頻率差Δί·,將所計算出的Δί的値供給至BPF控制 部242。由控制訊號表格70抽出與由A f計算部21 6所接收 到的頻率差△ f相對應的控制訊號,將所抽出的控制訊號 分別供給至可變BPF240及可變BPF241 (S221)。 接著,控制部217係使△ f計算部216及BPF控制部242 -25- 201044279 停止(S222 )。接著,解調器21 2係將由主動標籤1 1繼無 調變波所被送訊的資料進行解調(S2 07 )’ RF標籤讀取器 2 〇係結束本流程圖所示之動作。 以上針對本發明之第5實施形態加以說明。 由上述說明可知,在本實施形態之RF標籤讀取器20中 ,亦可在由主動標籤1 1所被送訊的電波的收訊中改善收訊 特性,並且可將來自主動標籤的資料、與來自被動標籤的 資料,以1台RF標籤讀取器20作切換而進行收訊。 接著,針對本發明之第6實施形態加以說明。 第22圖係顯示第6實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。本實施形態之RF標籤讀取器2 0係 具有:天線200、LNA201、混頻器202、混頻器203、AGC 放大器 206、AGC放大器 207、ADC208、ADC209、LPF210 、LPF211、解調器212、移相器213、PLL214、Af計算部 216 '控制部217、BPF控制部242、及濾波器電路260。 本實施形態中之RF標籤讀取器2 0係具有濾波器電路 260來取代可變BPF240及可變B.PF241,在這方面,與使用 第I4圖所說明之第4實施形態中之RF標籤讀取器20不同。 其中’除了以下說明的內容以外,在第22圖中,標註與第 1 4圖相同元件符號的構件係具有與第1 4圖中的構件爲相同 或同樣的功能,故省略說明。 濾波器電路2 6 0係藉由來自控制部2 1 7的指示,作爲 B P F或LP F的任一者來進行動作。濾波器電路2 6 〇係例如第 2 3圖所示之構成,當開關2 6〗〜2 6 6全部關斷時,係作爲 -26- 201044279 LPF進行動作’當開關261〜266全部導通時,則係作爲複 數濾波器的BPF進行動作。控制部217係在被動標籤收訊時 ,將開關26 1〜266全部控制成關斷,在主動標籤收訊時, 將開關261〜266全部控制成導通。 此外,BPF控制部242係開關261〜266全部變爲導通, 且作爲複數濾波器的BPF進行動作時,對連接於開關261〜 266之各個的可變電阻供給與藉由△ f計算部216所計算出 Ο 的頻率差△ f相對應的控制訊號,藉此將作爲BPF而進行動 作的濾波器電路260的通頻帶的中心頻率,偏移藉由△ f計 算部2 1 6所計算出的頻率差△ f份。 以上針對本發明之第6實施形態加以說明。 由上述說明可知,在本實施形態之RF標籤讀取器20中 ,亦可在由主動標籤1 1所被送訊的電波的收訊中改善收訊 特性,並且可使在將來自主動標籤的資料、與來自被動標 籤的資料,以1台RF標籤讀取器20作切換而進行收訊時之 Ο 電路構成小型化。 其中,本發明並非限定於上述實施形態,在其要旨範 圍內可爲各種變形。 例如,在上述第3實施形態中之濾波器電路23 0及第6 實施形態中之濾波器電路260中,將I成分及Q成分的LPF別 以單端(single end )以3次實際濾波器爲例加以說明,但 是本發明並非侷限於此。以其他形態而言,濾波器電路的 I成分及Q成分的LPF亦可分別以差動所構成,亦可以未達3 次或3次以上之次數的實際濾波器所構成。 -27- 201044279 此外,濾波器電路之1成分及Q成分的lpf如日本特開 2 0 0 8 - 2 0 5 9 6 2之揭示,亦可分別以差動利用5次的實際濾波 器來構成。其中’當使用日本特開2008-205962所揭示之 濾波器電路作爲第6實施形態中之濾波器電路2 6 0時,若將 被插入在I成分的LPF與Q成分的LPF之間的電阻,形成爲 藉由控制部2 1 7的控制而使電阻値發生變化的可變電阻即 可。 【圖式簡單說明】 第1圖係顯示本發明之一實施形態之RFID系統10之一 例的系統構成圖。 第2圖係顯示由主動標籤1 1所被送訊之訊號之規格之 一例圖。 第3圖係顯示第1實施形態中之RF標籤讀取器20之功能 構成之一例的方塊圖。 第4圖係用以說明頻率差△ f之計算方法的槪念圖。 第5圖係顯示△ f計算部2 1 6之其他例的方塊圖。 第6圖係顯示PLL214之功能構成之一例的方塊圖。 第7圖係顯示分頻比控制部2 1 5之功能構成之一例的方 塊圖。 第8圖係顯示儲放在分頻比表格5 0之資料之構造之一 例圖。 第9圖係顯示第1實施形態中之RF標籤讀取器20之動作 之一例的流程圖。 -28- 201044279 第10圖係顯示第2實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。 第1 1圖係顯示第2實施形態中之RF標籤讀取器20之動 作之一例的流程圖。 第12圖係顯示第3實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。 第13圖係顯示濾波器電路23 0之電路構成之一例的電 〇 路圖。 第14圖係顯示第4實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。 第15圖係顯示可變BPF 240之電路構成之一例的電路圖 〇 第1 6圖係顯示可變電阻之電路構成之一例的電路圖。 第17圖係顯示BPF控制部242之功能構成之一例的方塊 圖。 〇 第1 8圖係顯示儲放在控制訊號表格7 0之資料之構造之 一例圖。 第19圖係顯示第4實施形態中之RF標籤讀取器20之動 作之一例的流程圖。 第20圖係顯示第5實施形態中之RF標籤讀取器20之功 能構成之一例的方塊圖。 第21圖係顯示第5實施形態中之RF標籤讀取器2〇之動 作之一例的流程圖。 第22圖係顯示第6實施形態中之RF標籤讀取器20之功 -29- 201044279 能構成之一例的方塊圖。 第23圖係顯示濾波器電路260之電路構成之一例的電 路圖。 【主要元件符號說明】 1 0 : R F ID 系統 1 1 :主動標籤 1 2 :資料處理裝置 1 3 :開關 20 : RF標籤讀取器On the other hand, the control unit 242 shifts the center frequency of the pass band of the variable BPF 240 and the variable BPF 241 according to the frequency difference Δί calculated by the calculation unit 216 to offset the frequency. The control signals of the difference Δf are supplied to the variable BPF 240 and the variable BPF 241, respectively. Therefore, the frequency of the signal down-converted by the mixer 202 and the mixer 203 is not separated from the passband of the variable BPF 240 and the variable BPF 241, and is supplied to the AGC-22-201044279 amplifier 206 and the AGC, respectively. Amplifier 207 later. Therefore, the RF tag reader 20 of the present embodiment can correctly demodulate the signal from the active tag 11. Next, the operation of the control unit 211 in the present embodiment will be described with reference to the flowchart of Fig. 19. Fig. 19 is a flow chart showing an example of the operation of the RF tag reader 20 in the fourth embodiment. When the user is instructed to receive the data from the active tag 11 via the switch 13 provided in the RF tag reader 20, the RF tag reader 20 starts the operation shown in this flowchart. In the above, the processing of the same reference numerals as in the ninth drawing is the same as the processing in the ninth drawing except for the contents described in the ninth drawing, and the description thereof is omitted. In step S101, when the LPF 211 is outputted with the no-modulation signal (8101: ¥^), the control unit 217 activates the "calculation unit 216 and the control unit 242" (S1 10), and The calculation of the frequency difference Δf by the f calculation unit 216 and the period until the supply of the control signal by the BPF control unit 242 ends, waits for a predetermined time (for example, tens of/sec). The Δf calculating unit 2 16 calculates the frequency difference Δ f between the frequency of the received signal and the predetermined frequency, and supplies the calculated Δ f 値 to the BPF control unit 2G. The BPF control unit 242 extracts the control signal corresponding to the frequency difference Δ f received by the Δf calculating unit 2 16 from the control signal table 7 , and supplies the extracted control signals to the variable BPF 240 and respectively. Change BPF 241 (Sill) ° Next, the control unit 217 stops the A f calculation unit 216 and the BPF control unit 242 (S 1 1 2 ). Next, the demodulator 2 1 2 demodulates the data sent by the active tag 1 1 without the -23-201044279 modulated wave, and the RF tag reader 2 ends the flow chart. The action shown. The fourth embodiment of the present invention has been described above. As apparent from the above description, in the RF tag reader 2 of the present embodiment, the reception characteristics can be improved in the reception of radio waves transmitted by the active tag 11. Next, a fifth embodiment of the present invention will be described. Fig. 20 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the fifth embodiment. The RF tag reader 20 of the present embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 21 1, and a demodulator 212. The phase shifter 213, the PLL 214, and the Δf calculating unit 2 16' control unit (J unit 217, variable BPF 240, variable BPF 241, BPF control unit 242, switch 250, switch 251, LPF 252, and LPF 253). The RF tag reader 20 has a switch 250, a switch 251, an LPF 252, and an LPF 253. In this respect, it is different from the RF tag reader 20 in the fourth embodiment described with reference to Fig. 14. In the 20th drawing, the components having the same reference numerals as those in Fig. 14 have the same or similar functions as those of the members in Fig. 14, and therefore the description thereof will be omitted. The switch 2 5 0 is based on the control unit 2 The instruction of 1 7 transmits the output signal of the mixer 2 02 to the LPF 252 or the variable BPF 240. The switch 251 transmits the output signal of the mixer 2 〇 3 to the LPF 2 5 3 according to the instruction from the control unit 2 17 . Or variable BPF241. -24- 201044279 LPF252 is made through Among the signals supplied from the switch 25 0, a signal of a frequency band below a predetermined frequency is extracted and supplied to the AGC amplifier 206. The LPF 25 3 extracts a signal of a frequency band below a predetermined frequency from a signal supplied from the transmission switch and supplies it. The AGC amplifier 207. Next, the operation of the control unit 217 in the present embodiment will be described with reference to the flowchart of Fig. 2. Fig. 21 shows the operation of the RF tag reader 20 in the fifth embodiment. A flowchart of an example. In the present embodiment, the switch 13 provided in the RF tag reader 20 can instruct the RF tag reader 20 to indicate the reception of the active tag or the reception of the passive tag. The RF tag reader 20 starts the operation shown in this flowchart when the switch 13 is operated. In addition to the following description, in FIG. 21, the processing system of the same component symbol as that of FIG. 11 is attached. The description of the processing in Fig. 11 is omitted, and the description is omitted. In step S203, when the unmodulated signal is output from the LPF 211 (3 2 03: 丫), the control unit 217 causes the "computing units 216 and 3". ? Control unit 242 242 starts (S220) The calculation is performed by the calculation of the frequency difference Af by the Af calculation unit 216 and the period until the supply of the control signal by the BP F control unit 242 is completed, and the predetermined time (for example, tens of seconds) is waited for. The unit 216 calculates the frequency difference Δί· of the frequency of the received signal and the predetermined frequency, and supplies the calculated Δί to the BPF control unit 242. The control signal corresponding to the frequency difference Δf received by the A f calculating unit 216 is extracted from the control signal table 70, and the extracted control signals are supplied to the variable BPF 240 and the variable BPF 241, respectively (S221). Next, the control unit 217 stops the Δf calculating unit 216 and the BPF control units 242 - 25 - 201044279 (S222). Next, the demodulator 21 2 demodulates the data transmitted by the active tag 1 1 without the modulated wave (S2 07). The RF tag reader 2 terminates the operation shown in this flowchart. The fifth embodiment of the present invention has been described above. As can be seen from the above description, in the RF tag reader 20 of the present embodiment, the reception characteristics can be improved in the reception of the radio waves transmitted by the active tag 1 1 , and the data from the active tag can be The data from the passive tag is switched by one RF tag reader 20 for receiving. Next, a sixth embodiment of the present invention will be described. Fig. 22 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the sixth embodiment. The RF tag reader 20 of the present embodiment includes an antenna 200, an LNA 201, a mixer 202, a mixer 203, an AGC amplifier 206, an AGC amplifier 207, an ADC 208, an ADC 209, an LPF 210, an LPF 211, and a demodulator 212. The phase shifter 213, the PLL 214, the Af calculation unit 216' control unit 217, the BPF control unit 242, and the filter circuit 260. The RF tag reader 20 in the present embodiment has a filter circuit 260 instead of the variable BPF 240 and the variable B.PF 241. In this regard, the RF tag in the fourth embodiment described in Fig. 4 is used. The reader 20 is different. In the drawings, the same components as those in the fourth embodiment are denoted by the same or similar functions as those of the members in the fourth embodiment, and the description thereof will be omitted. The filter circuit 260 operates as either B P F or LP F by an instruction from the control unit 2 17 . The filter circuit 26 is configured as shown in FIG. 2, for example, when the switches 26 to 26 are all turned off, the operation is performed as the -26-201044279 LPF' when all of the switches 261 to 266 are turned on, It operates as a BPF of a complex filter. The control unit 217 controls all of the switches 26 1 to 266 to be turned off during passive tag reception, and controls all of the switches 261 to 266 to be turned on when the active tag is received. Further, when all of the switches 261 to 266 are turned on and the BPF as the complex filter operates, the BPF control unit 242 supplies the variable resistors connected to the switches 261 to 266 and the Δf calculating unit 216. The control signal corresponding to the frequency difference Δf of Ο is calculated, whereby the center frequency of the passband of the filter circuit 260 operating as the BPF is shifted by the frequency calculated by the Δf calculating unit 2 16 The difference is Δ f parts. The sixth embodiment of the present invention has been described above. As apparent from the above description, in the RF tag reader 20 of the present embodiment, the reception characteristics can be improved in the reception of the radio waves transmitted by the active tag 1 1 and can be obtained from the active tag. The data and the data from the passive tag are miniaturized when the one RF tag reader 20 is switched and received. However, the present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention. For example, in the filter circuit 23 0 of the third embodiment and the filter circuit 260 of the sixth embodiment, the LPF of the I component and the Q component are triple-actual filters with a single end. This will be described by way of example, but the invention is not limited thereto. In other aspects, the I component of the filter circuit and the LPF of the Q component may be formed by differential, or may be formed by an actual filter that is not three or more times. -27- 201044279 In addition, the lpf of the 1 component and the Q component of the filter circuit can be constructed by using an actual filter that is differentially used 5 times, as disclosed in Japanese Patent Publication No. 2 0 0 8 - 2 0 5 9 6 2 . . In the case where the filter circuit disclosed in Japanese Laid-Open Patent Publication No. 2008-205962 is used as the filter circuit 260 in the sixth embodiment, the resistance between the LPF of the I component and the LPF of the Q component is inserted. The variable resistor that changes the resistance 藉 by the control of the control unit 2 17 may be formed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a system configuration diagram showing an example of an RFID system 10 according to an embodiment of the present invention. Fig. 2 is a view showing an example of the specifications of the signal transmitted by the active tag 11. Fig. 3 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the first embodiment. Fig. 4 is a diagram for explaining the calculation method of the frequency difference Δf. Fig. 5 is a block diagram showing another example of the Δf calculating unit 2 16 . Fig. 6 is a block diagram showing an example of the functional configuration of the PLL 214. Fig. 7 is a block diagram showing an example of the functional configuration of the frequency division ratio control unit 215. Fig. 8 is a diagram showing an example of the construction of the data stored in the frequency division ratio table 50. Fig. 9 is a flow chart showing an example of the operation of the RF tag reader 20 in the first embodiment. -28- 201044279 Fig. 10 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the second embodiment. Fig. 1 is a flow chart showing an example of the operation of the RF tag reader 20 in the second embodiment. Fig. 12 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the third embodiment. Fig. 13 is a circuit diagram showing an example of the circuit configuration of the filter circuit 230. Fig. 14 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the fourth embodiment. Fig. 15 is a circuit diagram showing an example of a circuit configuration of the variable BPF 240. Fig. 16 is a circuit diagram showing an example of a circuit configuration of a variable resistor. Fig. 17 is a block diagram showing an example of the functional configuration of the BPF control unit 242. 〇 Figure 18 shows an example of the structure of the data stored in the control signal table 70. Fig. 19 is a flow chart showing an example of the operation of the RF tag reader 20 in the fourth embodiment. Fig. 20 is a block diagram showing an example of the functional configuration of the RF tag reader 20 in the fifth embodiment. Fig. 21 is a flow chart showing an example of the operation of the RF tag reader 2 in the fifth embodiment. Fig. 22 is a block diagram showing an example of the configuration of the RF tag reader 20 in the sixth embodiment. Fig. 23 is a circuit diagram showing an example of the circuit configuration of the filter circuit 260. [Main component symbol description] 1 0 : R F ID system 1 1 : Active tag 1 2 : Data processing device 1 3 : Switch 20 : RF tag reader

30 : CW 31 :引導音 3 2 :前序訊號 3 3 :資料 41 :乘算器 42 :乘算器 4 3 :加算器 44 :反相器 4 5 :迴路瀘波器30 : CW 31 : Guide tone 3 2 : Preamble signal 3 3 : Data 41 : Multiplier 42 : Multiplier 4 3 : Adder 44 : Inverter 4 5 : Circuit chopper

46 : NCO 47 :加算器 48 :積分器 5 0 :分頻比表格 5 1 :分頻比設定部 -30- 201044279 60 :相位比較器 61 :充電泵 62 :迴路濾波器46 : NCO 47 : Adder 48 : Integrator 5 0 : Divider table 5 1 : Divider setting section -30- 201044279 60 : Phase comparator 61 : Charge pump 62 : Loop filter

63 : VCO 64 :可變分頻器 70 :控制訊號表格 7 1 :控制訊號供給部 Ο 200 :天線63 : VCO 64 : Variable frequency divider 70 : Control signal table 7 1 : Control signal supply unit Ο 200 : Antenna

20 1 ·· LNA 202 :混頻器 203 :混頻器20 1 ·· LNA 202 : Mixer 203 : Mixer

204 : BPF204 : BPF

205 : BPF 206 : AGC放大器 207 : AGC放大器205 : BPF 206 : AGC Amplifier 207 : AGC Amplifier

Ο 20 8 : ADCΟ 20 8 : ADC

209 : ADC209 : ADC

210: LPF 211: LPF 2 1 2 :解調器 2 1 3 :移相器 214 : PLL 2 1 5 :分頻比控制部 2 1 6 : △ f計算部 -31 - 201044279 2 1 7 :控制部 220 :開關 2 2 1 :開關210: LPF 211: LPF 2 1 2 : demodulator 2 1 3 : phase shifter 214 : PLL 2 1 5 : frequency division ratio control unit 2 1 6 : Δ f calculation unit - 31 - 201044279 2 1 7 : control unit 220: switch 2 2 1 : switch

222 : LPF222 : LPF

223 : LPF 2 3 0 :濾波器電路 23 1 - 23 6 :開關 2 4 0 :可變 BPF 2 4 1 :可變 BPF 242 : B P F控芾!J部 2 4 3 :可變電阻 2 4 4 :開關 2 5 0 :開關 2 5 1 :開關223 : LPF 2 3 0 : Filter circuit 23 1 - 23 6 : Switch 2 4 0 : Variable BPF 2 4 1 : Variable BPF 242 : BPF control! J part 2 4 3 : Variable resistance 2 4 4 : Switch 2 5 0 : Switch 2 5 1 : Switch

252 : LPF252 : LPF

253 : LPF 2 6 0 :濾波器電路 5 00 :頻率差 5 0 1 :參數的値 700 :頻率差 7 〇 1 :控制訊號 -32253 : LPF 2 6 0 : Filter circuit 5 00 : Frequency difference 5 0 1 : Parameter 値 700 : Frequency difference 7 〇 1 : Control signal -32

Claims (1)

201044279 七、申請專利範圍: 1 種射頻標籤讀取器電路’係藉由Low-IF方式來接 收由主動標籤所被送訊的訊號的射頻(RF )標籤讀取器的 收訊電路,其特徵爲具備有: 對由基準振盪器所被輸出的訊號,輸出所被設定之分 頻比的本局訊號的可程式化PLL ; 將由主動標籤所被送訊的無調變訊號,使用由前述可 Ο 程式化PLL所被輸出的本局訊號進行下轉換的混頻器; 由來自前述混頻器的輸出訊號之中,使預先訂定的頻 帶的訊號通過的帶通濾波器; 將帶通濾波器的輸出訊號加以放大的放大器: 在將前述放大器的輸出轉換成數位資料之後進行解調 的解調部; 計算出表示來自前述帶通濾波器之輸出訊號的頻率' 與預先訂定的基準頻率的差分的頻率差的頻率差計算部; ❹及 計算出與藉由前述頻率差計算部所計算出的差分相對 應的分頻比,將所計算出的分頻比設定在前述可程式化 PLL的分頻比控制部。 2.如申請專利範圍第1項之射頻標籤讀取器電路,其 中,前述分頻比控制部係具有: 按每個不同頻率差的値,當該頻率差由前述頻率差計 算部被輸出時,預先儲放有應設定在前述可程式化PLL之 分頻比之參數値的分頻比表格;及 -33- 201044279 當由前述頻率差計算部被輸出有頻率差時,由前述分 頻比表格抽出與該頻率差相對應的分頻比的參數,將所抽 出的分頻比的參數設定在前述可程式化PLL的分頻比設定 部。 3·如申請專利範圍第1項或第2項之射頻標籤讀取器電 路,其中,另外具備有: 由來自前述混頻器的輸出訊號之中,使預先訂定的頻 率以下的頻帶的訊號通過而供給至前述放大器的低通濾波 器; 按照所被供給的切換訊號,將前述混頻器的輸出訊號 供給至前述帶通濾波器或前述低通濾波器之任一者的開關 •,及 當由使用者被指示被動標籤的收訊時,以將預先訂定 的載波的頻率輸出至前述可程式化PLL的方式設定分頻比 ’以前述混頻器的輸出訊號被供給至前述低通濾波器的方 式將切換訊號供給至前述開關,使前述頻率差輸出部及前 述分頻比控制部之動作停止, 當由使用者被指示主動標籤的收訊時,以輸出由前述 載波的頻率偏移預先訂定的頻率份的頻率的方式在前述可 程式化PLL設定分頻比,以前述混頻器的輸出訊號被供給 至前述帶通濾波器的方式將切換訊號供給至前述開關’使 前述頻率差輸出部及前述分頻比控制部之動作開始的收訊 方式切換部。 4 ·—種射頻標籤讀取器電路,係藉由Low-IF方式來接 -34- 201044279 收由主動標籤所被送訊的訊號的射頻(RF)標籤讀取器的 收訊電路,其特徵爲具備有: 輸出預先訂定的頻率的本局訊號的本局訊號生成部: 將由主動標籤所被送訊的無調變訊號,使用由前述本 局訊號生成部所被輸出的本局訊號進行下轉換的混頻器; 在與所被輸入的控制訊號相對應的中心頻率中,由來 自前述混頻器的輸出訊號之中,使預先訂定的頻帶的訊號 〇 通過的帶通濾波器; 將帶通濾波器的輸出訊號放大的放大器; 在將前述放大器的輸出轉換成數位資料之後進行解調 的解調部; 計算出來自前述帶通濾波器之輸出訊號的頻率、與預 先訂定的基準頻率的差分的頻率差計算部;及 按照藉由前述頻率差計算部所計算出的差分,生成用 以控制前述帶通瀘波器之頻帶的中心頻率的控制訊號而供 〇 給至前述帶通濾波器的帶通濾波器控制部。 5 ·如申請專利範圍第4項之射頻標籤讀取器電路,其 中,前述帶通濾波器係按照所被輸入的控制訊號,使構成 該帶通濾波器之元件之一部分常數產生變化,藉此使通頻 帶的中心頻率產生變化, 前述帶通濾波器控制部係具有: 按每個不同頻率差的値,當該頻率差由前述頻率差計 算部被輸出時,預先儲放有應供給至前述帶通濾波器之控 制訊號之値的控制訊號表格;及 -35- 201044279 當由前述頻率差計算部被輸出有頻率差時,由前述控 制訊號表格抽出與該頻率差相對應的控制訊號的値,將所 抽出的控制訊號輸入至前述帶通濾波器的控制訊號供給部 〇 6.如申請專利範圍第4項或第5項之射頻標籤讀取器電 路’其中,前述本局訊號生成部係對由基準振盪器所被輸 出的訊號’將所被設定的分頻比的本局訊號進行輸出的可 程式化PLL, 前述RF標籤讀取器電路係另外具備有: 由來自前述混頻器的輸出訊號之中,使預先訂定的頻 率以下的頻帶的訊號通過而供給至前述放大器的低通濾波 器; 按照所被供給的切換訊號,將前述混頻器的輸出訊號 供給至前述帶通濾波器或前述低通濾波器之任一者的開關 ,·及 當由使用者被指示被動標籤的收訊時,以將預先訂定 的載波的頻率輸出至前述可程式化PLL的方式設定分頻比 ,以前述混頻器的輸出訊號被供給至前述低通濾波器的方 式將切換訊號供給至前述開關,使前述頻率差輸出部及前 述帶通濾波器控制部之動作停止, 當由使用者被指示主動標籤的收訊時,以將由前述載 波的頻率偏移預先訂定的頻率的頻率輸出至前述可程式化 P LL的方式設定分頻比,以前述混頻器的輸出訊號被供給 至前述帶通濾波器的方式將切換訊號供給至前述開關,而 -36- 201044279 開始前述頻率差輸出部及前述帶通濾波器控制部之動作的 收訊方式切換部。 7 ·如申請專利範囿第1 J旨# & < 1 J駆圍弟1項至弟6項中任一項之射頻標籤 讀取器電路,苴Φ,U 4 一 _、中則述頻率差計算部係從預先訂定的時 j門15门中則述帶通濾波器所被輸出之無調變訊號之1波 長的反覆:人 M J卓該時間間隔中之前述基準頻率之訊號 之1波長的反覆次邮 Λ 數所得的差分’除以該時間間隔,藉此 〇 計算出頻率差。 G -37-201044279 VII. Patent application scope: 1 RF tag reader circuit' is the receiving circuit of the radio frequency (RF) tag reader that receives the signal transmitted by the active tag by the Low-IF method. In order to have: a programmable PLL that outputs a frequency division ratio of the signal to be output by the reference oscillator; and the unmodulated signal to be transmitted by the active tag is used as described above. a mixer for down-converting the local signal outputted by the stylized PLL; a band pass filter for passing a signal of a predetermined frequency band among the output signals from the mixer; a band pass filter An amplifier that amplifies an output signal: a demodulation unit that demodulates an output of the amplifier after converting the output of the amplifier; calculates a difference between a frequency indicating an output signal from the band-pass filter and a predetermined reference frequency a frequency difference calculation unit for the frequency difference; and calculating a frequency division ratio corresponding to the difference calculated by the frequency difference calculation unit, and dividing the calculated frequency Set in the programmable frequency dividing ratio of the PLL control unit. 2. The radio frequency tag reader circuit according to claim 1, wherein the frequency division ratio control unit has: 値 for each frequency difference, when the frequency difference is output by the frequency difference calculation unit a frequency division ratio table in which a parameter 应 of the frequency division ratio of the programmable PLL is set in advance; and -33- 201044279 when the frequency difference is outputted by the frequency difference calculation unit, the frequency division ratio is The table extracts a parameter of the frequency division ratio corresponding to the frequency difference, and sets the parameter of the extracted frequency division ratio to the frequency division ratio setting unit of the programmable PLL. 3. The radio frequency tag reader circuit of claim 1 or 2, further comprising: a signal of a frequency band below a predetermined frequency from among output signals from said mixer a low pass filter supplied to the amplifier; a switch for supplying the output signal of the mixer to any one of the band pass filter or the low pass filter according to the supplied switching signal, and When the user is instructed to receive the passive tag, the frequency division ratio is set by outputting the frequency of the predetermined carrier to the programmable PLL. The output signal of the mixer is supplied to the aforementioned low pass. In the filter mode, the switching signal is supplied to the switch, and the operation of the frequency difference output unit and the frequency division ratio control unit is stopped. When the user is instructed to receive the active tag, the frequency offset of the carrier is output. The manner of shifting the frequency of the predetermined frequency component is set in the aforementioned programmable PLL, and the output signal of the aforementioned mixer is supplied to the side of the band pass filter. A mode switching unit that supplies a switching signal to the switch' to start the operation of the frequency difference output unit and the frequency division ratio control unit. 4 · - RF tag reader circuit, connected by Low-IF mode -34- 201044279 Receiving signal of radio frequency (RF) tag reader of signal transmitted by active tag, its characteristics In order to have: a local signal generating unit that outputs a local signal of a predetermined frequency: the unmodulated signal transmitted by the active tag is down-converted using the local signal outputted by the local signal generating unit. a bandpass filter that passes a signal of a predetermined frequency band through an output signal from the mixer in a center frequency corresponding to the input control signal; bandpass filtering An amplifier for amplifying the output signal of the device; a demodulation unit that performs demodulation after converting the output of the amplifier into digital data; calculating a frequency of an output signal from the band pass filter and a difference from a predetermined reference frequency a frequency difference calculation unit; and generating, based on the difference calculated by the frequency difference calculation unit, a control for controlling a center frequency of a band of the band pass chopper The signal is supplied to the band pass filter control unit of the band pass filter. 5. The radio frequency tag reader circuit of claim 4, wherein the band pass filter changes a part of a constant of an element constituting the band pass filter according to the input control signal, thereby The center frequency of the passband is changed, and the band pass filter control unit has: 値 for each frequency difference, when the frequency difference is output by the frequency difference calculation unit, the pre-stored supply should be supplied to the aforementioned a control signal table of the control signal of the band pass filter; and -35- 201044279, when the frequency difference calculation unit outputs a frequency difference, the control signal table corresponding to the frequency difference is extracted by the control signal table. And inputting the extracted control signal to the control signal supply unit of the band pass filter 〇 6. The RF tag reader circuit of claim 4 or 5, wherein the foregoing signal generation unit is A programmable PLL that outputs a signal of the frequency division of the set frequency division by the signal output by the reference oscillator, and the RF tag reader is electrically Further, the present invention further includes: a low-pass filter that supplies a signal of a frequency band equal to or lower than a predetermined frequency to the amplifier by an output signal from the mixer; and according to the supplied switching signal, The output signal of the mixer is supplied to the switch of any one of the aforementioned band pass filter or the low pass filter, and when the user is instructed to receive the passive tag, the frequency of the predetermined carrier is to be determined. And outputting the frequency division ratio to the programmable PLL, and supplying the switching signal to the switch in such a manner that the output signal of the mixer is supplied to the low-pass filter, and the frequency difference output unit and the band pass The operation of the filter control unit is stopped. When the user instructs the reception of the active tag, the frequency division ratio is set by outputting the frequency of the frequency preset by the frequency offset of the carrier to the programmable P LL. Supplying a switching signal to the switch in such a manner that the output signal of the mixer is supplied to the band pass filter, and before -36- 201044279 A reception mode switching unit that operates the frequency difference output unit and the band pass filter control unit. 7 ·If you apply for a patent, Fan Yi, 1 J, # &< 1 J駆駆1, 1 to 6 of the RF tag reader circuit, 苴Φ, U 4 _, 中中The frequency difference calculation unit repeats the 1 wavelength of the unmodulated signal outputted by the band pass filter from the pre-defined time gate 15: the signal of the reference frequency in the time interval of the human MJ The difference 'different from the number of repeated sub-mails of 1 wavelength' is divided by the time interval, whereby the frequency difference is calculated. G -37-
TW099105057A 2009-03-23 2010-02-22 RF tag reader circuit TWI427537B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069362A JP5172752B2 (en) 2009-03-23 2009-03-23 RF tag reader circuit

Publications (2)

Publication Number Publication Date
TW201044279A true TW201044279A (en) 2010-12-16
TWI427537B TWI427537B (en) 2014-02-21

Family

ID=42780674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099105057A TWI427537B (en) 2009-03-23 2010-02-22 RF tag reader circuit

Country Status (3)

Country Link
JP (1) JP5172752B2 (en)
TW (1) TWI427537B (en)
WO (1) WO2010109978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490519B (en) * 2013-05-22 2015-07-01 Univ Nat Cheng Kung Harmonic radar radio frequency tag

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013028B (en) * 2010-12-16 2013-01-02 上海龙晶微电子有限公司 Ultrahigh frequency radio frequency identification reader-writer
SG10201509261UA (en) 2015-11-09 2017-06-29 Huawei Int Pte Ltd Apparatus and method for direct radio frequency (rf) sampling in near field communication (nfc) devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264106B1 (en) * 1999-12-27 2001-07-24 Symbol Technologies, Inc. Combination bar code scanner/RFID circuit
JP3908201B2 (en) * 2003-06-26 2007-04-25 富士通株式会社 Active target detection system and method
US7124942B2 (en) * 2003-12-05 2006-10-24 Hid Corporation Low voltage signal stripping circuit for an RFID reader
JP2006134249A (en) * 2004-11-09 2006-05-25 Fujitsu Ltd Rfid tag
TW200622914A (en) * 2004-12-20 2006-07-01 Wha Yu Ind Co Ltd Radio frequency identification (RFID) tag suitable for metal environment
JP2006268090A (en) * 2005-03-22 2006-10-05 Fujitsu Ltd Rfid tag
JP4750450B2 (en) * 2005-04-05 2011-08-17 富士通株式会社 RFID tag
JP2008072226A (en) * 2006-09-12 2008-03-27 Fujitsu Ltd Rf tag reader and method
JP4984774B2 (en) * 2006-09-15 2012-07-25 富士通株式会社 RF tag reader and retransmission control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490519B (en) * 2013-05-22 2015-07-01 Univ Nat Cheng Kung Harmonic radar radio frequency tag

Also Published As

Publication number Publication date
TWI427537B (en) 2014-02-21
JP2010226272A (en) 2010-10-07
JP5172752B2 (en) 2013-03-27
WO2010109978A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US6195400B1 (en) Two-mode demodulating apparatus
JP2001016285A (en) Afc circuit
TWI401898B (en) Signal strength detecting device and related method
JP2007088657A (en) Fm transmitter
JP5345858B2 (en) Device for receiving and / or transmitting radio frequency signals with noise reduction
TWI449345B (en) Fsk modulation signal receiver with high sensitivity in low rate mode
TW201044279A (en) Radio frequency tag reader circuit
RU2325758C2 (en) New architecture for inexpensive/low power analogue transceiver
JP5905843B2 (en) Radio receiving apparatus and radio receiving method
JPH11289273A (en) Radio transceiver
CN102986140A (en) Clocking scheme for a wireless communication device
JP3898839B2 (en) Transmitter
JP2009060476A (en) Frequency synthesizer, control method of frequency synthesizer, multi-band telecommunication device
GB2363267A (en) Circuit and method for signal phase control in a radio transceiver
KR101679427B1 (en) Modem
JP3708234B2 (en) Wireless device
JP2006173727A (en) Phase demodulator and mobile phone
US9219554B2 (en) Power detection method and related communication device
JP3801493B2 (en) Transceiver using local oscillator
Breed Design issues for direct-conversion wireless radios
JP2002208870A (en) Multimode radio communication equipment
JP2005354242A (en) Wireless communication apparatus
JP2002009653A (en) Integrated circuit for wireless unit, and wireless phone with the integrated circuit mounted thereon
JPH11103262A (en) Frequency converter for superheterodyne receiver
WO2005065423A2 (en) Multiprotocol rfid reader

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees