WO2010103761A1 - 方向性電磁鋼板及びその製造方法 - Google Patents

方向性電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2010103761A1
WO2010103761A1 PCT/JP2010/001516 JP2010001516W WO2010103761A1 WO 2010103761 A1 WO2010103761 A1 WO 2010103761A1 JP 2010001516 W JP2010001516 W JP 2010001516W WO 2010103761 A1 WO2010103761 A1 WO 2010103761A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
sheet according
Prior art date
Application number
PCT/JP2010/001516
Other languages
English (en)
French (fr)
Inventor
坂井辰彦
安宅誠
林申也
山崎幸司
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to RU2011137067/02A priority Critical patent/RU2483124C2/ru
Priority to EP21156531.2A priority patent/EP3851547A1/en
Priority to CN201080010504.1A priority patent/CN102341511B/zh
Priority to BRPI1008994-2A priority patent/BRPI1008994B1/pt
Priority to JP2010525156A priority patent/JP4772924B2/ja
Priority to US13/138,533 priority patent/US20120028069A1/en
Priority to PL10750519T priority patent/PL2412832T3/pl
Priority to BR122018010657-3A priority patent/BR122018010657B1/pt
Priority to KR1020117020888A priority patent/KR101364310B1/ko
Priority to EP10750519.0A priority patent/EP2412832B1/en
Publication of WO2010103761A1 publication Critical patent/WO2010103761A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]

Definitions

  • the present invention relates to a method of manufacturing a grain-oriented electrical steel sheet that prevents side distortion of a coil end portion in contact with a coil cradle in a finish annealing step.
  • the cold-rolled steel sheet is wound in a coil shape after decarburization annealing, and is subjected to finish annealing for the purpose of secondary recrystallization at a high temperature of 1000 ° C. or higher.
  • finish annealing as shown in FIG. 1, the coil 5 is installed on the coil cradle 8 in the annealing furnace cover 9 so that the winding axis 5 a of the coil 5 is in the vertical direction.
  • the lower end portion 5z of the coil 5 in contact with the coil cradle 8 has its own weight and thermal expansion with the coil cradle 8 as shown in FIG. 2A.
  • this side distortion is observed as the wave height h when the steel sheet unwound from the coil is placed on a flat surface plate.
  • the side strained portion 5e is made of a steel plate that satisfies the condition that the wave height h is greater than 2 mm or the condition that the steepness s indicated by the following formula (1) is greater than 1.5% (greater than 0.015).
  • l is the width of the side distortion portion.
  • the generation mechanism of side strain during finish annealing is explained by grain boundary sliding at high temperatures. That is, at a high temperature of 900 ° C. or higher, deformation due to grain boundary sliding becomes significant, so that side distortion is likely to occur in the crystal grain boundary portion.
  • the lower end portion of the coil in contact with the coil cradle has a late secondary recrystallization growth time as compared with the coil center portion. Therefore, the crystal grain size becomes small at the lower end of the coil, and it is easy to form a refined part.
  • Patent Document 1 discloses a method in which a fine graining agent is applied to a belt-shaped portion having a certain width from a lower end surface of a coil in contact with a coil cradle before final annealing, and the belt-shaped portion is refined during finish annealing. Has been.
  • Patent Document 2 before finish annealing, a work deformation distortion is imparted by a roll or the like with a protrusion provided on a belt-like portion having a certain width from the lower end of the coil in contact with the coil cradle.
  • a method for making a fine grain is disclosed.
  • the trimming width Since the width of the laterally deformed portion that is deformed the most is used as the trimming width, if the width of the laterally strained portion is large even at one place, the trimming width increases and the yield decreases.
  • the crystal at the lower end of the coil is made finer starting from distortion caused by machining such as a roll.
  • the finely divided area can be controlled relatively well.
  • the applied processing deformation strain rolling rate
  • the grain-oriented electrical steel sheet is a hard material containing a large amount of Si, so that the roll wears heavily and the roll needs to be frequently replaced.
  • Patent Literature 3 in order to suppress side distortion, a method of promoting secondary recrystallization of a band-shaped portion having a constant width from the lower end of the coil, increasing the crystal grain size at an early stage of finish annealing, and improving high temperature strength is disclosed in Patent Literature 3, 4, 5, and 6.
  • Patent Documents 3 and 4 disclose a method of heating a strip at the end of a steel plate by plasma heating or induction heating before finish annealing.
  • Patent Documents 3, 5, and 6 disclose methods for introducing machining distortion by shot blasting, rolls, tooth profile rolls, and the like.
  • Plasma heating and induction heating are suitable for heating the band-like range because they are heating methods with a relatively wide heating range.
  • plasma heating and induction heating have a problem that it is difficult to control the heating position and the heating temperature.
  • region wider than a predetermined range will be heated by heat conduction. For this reason, the width of the region in which the crystal grain size is increased by secondary recrystallization cannot be controlled to be constant, and thus there is a problem that nonuniformity tends to occur in the side strain suppression effect.
  • the method of machining a roll or the like has a problem that the effect of imparting strain (amount of strain) decreases with time due to wear of the roll.
  • the speed of secondary recrystallization changes sensitively depending on the amount of strain, so even if the amount of strain due to roll wear is small, the desired crystal grain size cannot be obtained, and a stable side strain suppression effect. There is a problem that cannot be obtained.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and suppress side distortion of a coil lower end portion in contact with a coil cradle in a finish annealing furnace caused by high temperature slip in a finish annealing step.
  • the present invention provides a method for producing a grain-oriented electrical steel sheet capable of stably and efficiently suppressing side strain and limiting the width of the side strain portion within a predetermined range. For the purpose.
  • the present inventors diligently studied a method for solving the above problem.
  • the easily deformable portion is formed on one or both sides of one end region (first end portion) of the steel plate before finish annealing so as to have a certain distance from the end surface of the steel plate, the width of the side strained portion is reduced. It has been found that it can be limited within a predetermined range.
  • an easily deformable part is not formed in the other edge part area
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • a method for producing a grain-oriented electrical steel sheet wherein an easily deformable part is formed in an end region of the steel sheet so as to be parallel to a rolling direction of the steel sheet; After arrange
  • the easily deformable portion may be formed continuously.
  • the easily deformable portion may be formed discontinuously.
  • the easily deformable part may be formed over the entire length of the steel sheet.
  • the easily deformable part may be formed in a part of the steel sheet in the rolling direction.
  • the easily deformable portion may be formed at a distance of 5 mm to 100 mm from an end surface of the end region.
  • the direction of the winding axis of the steel sheet after being wound into the coil shape is perpendicular to the coil cradle.
  • the steel plate may be placed so that
  • the easily deformable portion may be formed before applying an annealing separator to the steel sheet.
  • the easily deformable portion may be formed by laser beam irradiation.
  • a groove may be formed in the easily deformable portion.
  • the groove may be formed on one side of the steel sheet.
  • the groove may be formed on both surfaces of the steel sheet.
  • the groove may have a width of 0.03 mm or more and 10 mm or less.
  • the depth d of the groove and the thickness t of the steel sheet may satisfy 0.05 ⁇ d / t ⁇ 0.7. .
  • the easily deformable portion may be a grain boundary sliding deformable portion.
  • the grain boundary sliding deformation portion after the finish annealing may be one linear crystal grain boundary.
  • the grain boundary slip deformed portion after the finish annealing may be a slip band including crystal grains.
  • the width of the slip band may be 0.02 mm or more and 20 mm or less.
  • a high temperature deformation part is formed in the end region of the steel sheet so as to be parallel to the rolling direction of the steel sheet.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be formed continuously.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be formed discontinuously.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be formed over the entire length of the steel sheet.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be formed in a part of the steel sheet in the rolling direction.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be formed at a distance of 5 mm to 100 mm from an end surface of the end region.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be a groove.
  • the groove of the grain-oriented electrical steel sheet according to (25) may be formed on one side of the steel sheet.
  • the groove of the grain-oriented electrical steel sheet according to (25) may be formed on both surfaces of the steel sheet.
  • the groove width of the grain-oriented electrical steel sheet according to (25) may be 0.03 mm or more and 10 mm or less.
  • the groove depth d and the steel sheet thickness t of the grain-oriented electrical steel sheet according to the above (25) may satisfy 0.05 ⁇ d / t ⁇ 0.7.
  • the high-temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be a single linear crystal grain boundary.
  • the high temperature deformation portion of the grain-oriented electrical steel sheet according to (19) may be a slip band including crystal grains.
  • the width of the slip band of the grain-oriented electrical steel sheet according to (31) may be 0.02 mm or more and 20 mm or less.
  • the easily deformable portion formed at the coil lower end portion is preferentially deformed, and the side proceeding from the coil lower end surface so that the width of the side strain portion becomes a substantially constant value. Since distortion is limited by the easily deformable portion, the trimming width in the subsequent process can be reduced as much as possible, and the yield is improved.
  • an easily deformable portion such as a groove or a grain boundary sliding deformable portion can be easily formed with a high-speed and free pattern.
  • the laser beam can be used for processing without contact with the steel plate, there is no problem due to wear (deterioration with time) unlike a processing device such as a roll used in the machining method. That is, since the processing amount does not change with time, it is not necessary to replace the processing apparatus.
  • the irradiation energy density and beam diameter of the laser beam it is possible to stably form an optimal easily deformable portion for suppressing side distortion in the production line for grain-oriented electrical steel sheets.
  • FIG. 1 It is a figure which shows an example of a finish annealing apparatus.
  • the schematic of the growth process of the side distortion when not forming an easily deformable part is shown.
  • An example of the side distortion evaluation method of the present invention will be described. It is explanatory drawing which shows the position of a deformation
  • the schematic of the growth process of the side distortion at the time of finish annealing at the time of forming an easily deformable part is shown.
  • the easily deformable portion 5f having a low mechanical strength is formed.
  • the easily deformable portion 5f is first buckled or slid, and the load applied to the portion above the easily deformable portion 5f is distributed to the side. Suppresses the expansion and fluctuation of the width of the distortion part.
  • the side strained portion is a steel plate that satisfies the condition that the wave height h is greater than 2 mm or the condition that the steepness s indicated by the above formula (1) is greater than 1.5% (greater than 0.015). It is a deformation
  • FIGS. 2A and 3B are schematic diagram of the growth process of the side strained portion 5e during finish annealing when the easily deformable portion 5f is not formed
  • FIG. 3B is a side during finish annealing when the easily deformable portion 5f of the present invention is formed.
  • the schematic of the growth process of the distortion part 5e is shown.
  • the solid line is an enlarged schematic view of the lower end of the coil at the time of finish annealing
  • the dotted line is an enlarged schematic view of the lower end of the coil after the finish annealing
  • the broken line is before the finish annealing.
  • the schematic which expanded the coil lower end is shown.
  • FIG. 2A when the easily deformable portion 5f is not formed in the coil 5, the annealing time has elapsed (the position of the upper end of the side strained portion 5e in the solid line is compared with the position of the upper end of the side strained portion 5e in the dotted line. ) And the side distortion portion 5e proceed upward from the lower end surface of the coil 5.
  • the width (length in the vertical direction) of the side strained portion 5e is increased according to the annealing time, and the longitudinal direction of the coil 5 (rolling direction) due to the non-uniformity of the strength of the coil 5 at high temperature (secondary recrystallization). ).
  • the easily deformable portion 5f when the easily deformable portion 5f is formed in the coil 5, the easily deformable portion 5f is preferentially deformed. Therefore, even if the annealing time has elapsed (the position of the upper end of the side strained portion 5e in the solid line is compared with the position of the upper end of the side strained portion 5e in the dotted line), the side strained portion 5e does not advance above the easily deformable portion 5f. . Therefore, the width of the side strained portion 5e does not depend on the annealing time and is determined by the position of the easily deformable portion 5f. Furthermore, even if non-uniformity occurs in the strength of the coil 5 at a high temperature (secondary recrystallization), the width of the side strain portion 5e does not change in the longitudinal direction (rolling direction) of the coil 5.
  • the width of the side strain portion is limited, and the direction The yield of the electrical steel sheet can be improved.
  • the easily deformable portion is, for example, a groove portion having a groove as described later or a grain boundary sliding deformable portion.
  • the easily deformable portion is a groove portion, stress concentrates on the groove portion when the strength of the coil is reduced at a high temperature, and the groove portion is preferentially deformed.
  • the grain boundary slip deformed portion preferentially causes high temperature slip (deformation).
  • the easily deformable portions need to be formed accurately and in a predetermined narrow range so as to be parallel to the end face of the steel plate. Therefore, it is preferable to use, for example, a laser apparatus as a processing apparatus that can converge a processing section (for example, a laser irradiation section) for forming the easily deformable section.
  • a laser apparatus as a processing apparatus that can converge a processing section (for example, a laser irradiation section) for forming the easily deformable section.
  • the width of the easily deformable portion can be controlled within a predetermined narrow range by adjusting the condensing diameter of the laser beam.
  • the condensing shape of the laser beam is an ellipse having a diameter dc in the plate width direction (C direction) and a diameter dL in the rolling direction (L direction).
  • the laser irradiation part needs to be separated from the end surface of the steel sheet so as to satisfy at least the following formula (2). a> dc / 2 (2)
  • the kind of laser should just be a laser which can form the easily deformable part of a required shape on the steel plate surface, and is not limited to a specific laser.
  • a CO 2 laser, a YAG laser, a semiconductor laser, a fiber laser, or the like can be used.
  • the easily deformable portion formed by the processing apparatus may be formed continuously or over the entire length in the rolling direction of the steel sheet.
  • the easily deformable portion may be formed discontinuously or may be formed in a part of the rolling direction of the steel plate.
  • a continuous wave laser beam is used, an easily deformable portion continuous in the rolling direction is formed.
  • a pulse laser is used, a discontinuous easily deformable part (for example, a dotted line easily deformable part) is formed.
  • a plurality of the easily deformable portions may be formed so that they are parallel to each other.
  • the laser beam 3 output from the laser device 2 and condensed by the condenser lens 2a is separated from the end face in the width direction of the steel plate 1 (directional electromagnetic steel plate) by a distance a. Irradiate the target position. Irradiation with the laser beam 3 melts or evaporates the steel plate at the irradiated portion. Further, a high-pressure assist gas 7 is sprayed from the nozzle 6 to this irradiated portion, and the residual melt is blown away to form a groove portion 4a having a groove.
  • the groove 4a is formed along the rolling direction of the steel plate. After the groove 4 a is formed on the steel plate 1, an annealing separator is applied to the surface of the steel plate 1, and the steel plate 1 is wound up as a coil 5.
  • the coil 5 performs finish annealing on the steel plate 1 so that the end (end region) of the coiled steel plate 1 in which the groove 4 a is formed is downward.
  • the coiled steel plate 1 is preferably placed so that the direction of the winding axis 5a of the coiled steel plate 1 (coil 5) is perpendicular to the coil cradle 8 in the annealing device 9. .
  • the position (groove part or processing position) where the laser beam is irradiated that is, the distance a from the end face of the steel sheet forming the groove part is the end face of the steel sheet (end face of the end region).
  • the groove is more preferably formed at a distance of 30 mm or less from the end surface of the end region of the steel plate.
  • the distance a may be determined according to the coil weight.
  • the groove portion is formed at a position within 100 mm from the end surface of the steel plate, the expansion and fluctuation of the width of the side strain portion can be suppressed. confirmed.
  • a groove part is formed in the distance of 5 mm or more from the end surface of the edge part area
  • the groove portion is more preferably formed at a distance of 10 mm or more from the end surface of the end region of the steel plate.
  • FIG. 6A and 6B schematically show a cross section of a groove formed in the present invention.
  • a groove having a groove width W and a groove depth d is formed on one surface of a steel sheet having a thickness t.
  • a single processing device such as the laser device 2 in FIG.
  • FIG. 6B when grooves having a predetermined shape are formed at substantially opposite positions on both surfaces of the steel plate, the mechanical strength of the groove portion is further reduced, so that a more remarkable side distortion suppressing effect is obtained.
  • the groove shape of the groove portion having low mechanical strength is designed in consideration of the plate thickness of the steel plate. Specifically, a groove formed so that the ratio d / t between the groove depth d and the plate thickness t satisfies the following expression (4) is preferable. 0.05 ⁇ d / t ⁇ 0.7 (4)
  • the groove depths on the front and back surfaces are d1 and d2, respectively, and the total groove depth (d1 + d2) is d.
  • d / t is preferably 0.05 or more in order to reliably obtain the side distortion suppressing effect. More preferably, d / t is 0.1 or more.
  • d / t is preferably 0.7 or less. More preferably, d / t is 0.5 or less.
  • the lower limit of the groove depth d is preferably 0.005 mm, more preferably 0.01 mm. preferable.
  • the upper limit of the groove depth d is preferably 0.35 mm, and more preferably 0.25 mm.
  • the groove width W of the groove is preferably 0.03 mm or more and 10 mm or less.
  • the groove width W is less than 0.03 mm, the mechanical strength in the groove portion is not sufficiently lowered, and the side distortion suppressing effect cannot be obtained.
  • the groove width W is larger than 10 mm, the mechanical strength of the groove portion is extremely lowered, and winding becomes difficult.
  • the groove width can be controlled by adjusting the condensing diameter of the laser beam.
  • the groove depth can be controlled by adjusting the laser power in accordance with the conveying speed of the steel plate. Therefore, in the present invention, when a laser beam is used, it is suitable for suppressing side distortion on one side or both sides of one end region (first end) of a steel plate (directional electromagnetic steel plate) before finish annealing. A groove having a simple shape can be easily formed.
  • the inventors examined the optimum range of the energy density Ed of the laser device when the groove was formed using the laser device.
  • the energy density Ed input to the groove by the laser device is defined by the above-described equation (3).
  • the energy density Ed is adjusted so as to satisfy the above formula (5) by appropriately setting the laser power P, the diameter dc in the plate width direction (C direction) of the laser beam, and the conveyance speed VL of the steel plate.
  • an assist gas 7 as shown in FIG. 5 is used to remove the melted material and the scattered matter by the laser irradiation. Therefore, it is possible to prevent a problem that the strength of the groove portion increases due to work hardening accompanying deformation. Further, since the processing device (for example, the laser device 2 and the condensing lens 2a and the nozzle 6 in FIG. 5) does not come into contact with the steel plate, it is possible to prevent problems associated with deterioration of the processing device over time.
  • the laser apparatus 2 is used as an example of a processing apparatus for forming grooves.
  • any processing apparatus that can form a groove having a required shape at high speed may be used.
  • a groove having a required shape may be formed by using a cutting device such as a water jet (injection device for high-pressure water flow having a small diameter) or a reduction device such as a roll as the processing device.
  • a processing apparatus that does not come into contact with a steel plate during processing and does not deteriorate with time such as a laser apparatus, is preferable. Therefore, in the first embodiment shown in FIG. 5, non-contact high-speed machining with excellent power density can be performed, and laser beam machining with excellent controllability is used.
  • the easily deformable part is a grain boundary sliding deformed part (a part that causes high temperature grain boundary sliding by secondary recrystallization during finish annealing) will be described in detail below.
  • the grain boundary of secondary recrystallization is formed in this heating part during finish annealing. It was found that it is likely to occur. In this grain boundary part, grain boundary sliding deformation is likely to occur at a high temperature, and the mechanical strength at a high temperature is lowered.
  • this grain boundary sliding deformation part is a linear area
  • the grain boundary sliding deformation part (high temperature sliding part) after finish annealing may be one grain boundary as shown in FIG. 8A. Furthermore, the grain boundary sliding deformation part (high temperature sliding part) after finish annealing may be a slip band including crystal grains as shown in FIG. 8B.
  • the crystal grains may be elongated crystal grains or fine grains.
  • FIG. 7 schematically shows an example of the second embodiment of the present invention for forming the grain boundary sliding deformation portion.
  • the laser beam 3 output from the laser device 2 is condensed by the condenser lens 2 a and irradiated to a position a distance a away from the end surface in the width direction of the steel plate 1 (directional electromagnetic steel plate). Is done.
  • a grain boundary sliding deformation portion (linear region) 4z heated by laser irradiation is formed along the rolling direction of the steel plate.
  • an annealing separator is applied to the surface of the steel plate 1, and the steel plate 1 is wound as the coil 5.
  • the coil 5 is coil-received so that the end region (first end) including the laser irradiation portion is below the steel plate with the winding axis direction vertical as shown in FIG. It is placed on the table 8 and finish annealing is performed.
  • the end region (second end) not including the laser irradiation unit is placed on the coil cradle 8 so as to be above the steel plate.
  • Finish annealing is performed on the steel plate 1 so that the end region (first end) of the coiled steel plate 1 on which the grain boundary sliding deformation portion 4z is formed is downward.
  • the coiled steel plate 1 is preferably placed so that the direction of the winding axis 5a of the coiled steel plate 1 (coil 5) is perpendicular to the coil cradle 8 in the annealing device 9. .
  • the grain boundary sliding deformation part is separated from the end face of the end region of the steel plate so that the strain energy of the side strain part is sufficiently absorbed by the deformation of the grain boundary sliding deformation part. It is preferably formed at a distance of 5 mm or more. In order to ensure the effect of the grain boundary sliding deformation portion, it is more preferable that the grain boundary sliding deformation portion is formed at a distance of 10 mm or more from the end surface of the end region of the steel sheet. Moreover, in order to improve the yield of a grain-oriented electrical steel sheet, it is preferable that the distance a from the end surface of a steel plate to a grain boundary sliding deformation part is 100 mm or less. In order to further improve the yield, the groove is more preferably formed at a distance of 30 mm or less from the end surface of the end region of the steel plate. In order to optimize the yield, the distance a may be determined according to the coil weight.
  • the width of the slip band is preferably 20 mm or less.
  • a slip band having a width greater than 20 mm does not act as an easily deformable part (grain boundary slip deformed part) during finish annealing because the mechanical strength is high.
  • the crystal grain before finish annealing is about 0.02 mm
  • the lower limit of the width of the slip band may be 0.02 mm.
  • the width of this slip band is obtained by averaging the width of the slip band at each position of the slip band in the rolling direction.
  • a slip band is defined as a linear portion including crystal grains.
  • the grain boundary sliding deformation portion 4z In order to form the grain boundary sliding deformation portion 4z, it is necessary to use a heating device that can converge the heating portion, such as the laser device 2, as a processing device.
  • the inventors examined the optimum range of the energy density Ed of the laser device when the grain boundary sliding deformation portion was formed using the laser device.
  • the energy density Ed input to the grain boundary sliding deformation portion 4z by the laser device 2 is defined by the above-described equation (3).
  • the energy density Ed As for the energy density Ed, if the Ed is 0.5 J / mm 2 or more as a result of the previous experiments, a linear grain boundary is generated at the time of finish annealing, and a sufficiently high temperature slip is caused at the grain boundary sliding deformation part. did it. However, when Ed is less than 0.5 J / mm 2 , sufficient linear grain boundaries required for high-temperature slip cannot be generated during finish annealing. On the other hand, when Ed exceeds 5.0 J / mm 2 , the steel sheet is significantly melted by laser irradiation, and the steel sheet is greatly deformed during re-solidification. Therefore, the problem that the steel sheet cannot be wound around the coil occurred. Therefore, a preferable range of Ed is a range represented by the formula (6).
  • the energy density Ed is adjusted so as to satisfy the above formula (6) by appropriately setting the laser power P, the diameter dc in the plate width direction (C direction) of the laser beam, and the conveyance speed VL of the steel plate.
  • the grain boundary sliding deformation portion is preferably formed over the entire plate thickness. Therefore, in addition to the energy density Ed, the diameter dL in the rolling direction (L direction) may be adjusted according to the conveying speed VL of the steel sheet so that a predetermined heating time is maintained.
  • the processing apparatus for forming the grain boundary sliding deformation part 4z may be a heating apparatus that can converge the heating part.
  • a grain boundary sliding deformation portion for example, a linear grain boundary at the time of finish annealing
  • a laser beam excellent in controllability of the heating position and heating speed.
  • a groove or a grain boundary sliding deformation portion is formed on the steel plate as the easily deformable portion.
  • both the groove and the slip deformation may be formed as the easily deformable portion.
  • the step of forming the easily deformable portion on the steel plate is naturally performed after the cold rolling step.
  • the step of forming the easily deformable portion on the steel sheet is preferably performed before the step of applying the annealing separator.
  • a high-temperature deformation part (an easily deformable part after finish annealing) is formed in the end region of the steel sheet so as to be parallel to the rolling direction of the steel sheet.
  • This high temperature deformation portion may be formed continuously or discontinuously.
  • the high temperature deformation portion is formed at a distance of 5 mm or more and 100 mm or less from the end surface of the end region.
  • normal secondary recrystallized grains having easy magnetization axes aligned in the rolling direction exist on both sides of the high temperature deformation portion.
  • the above-mentioned high temperature deformation part may be a groove.
  • This groove may be formed on one side of the steel plate, or may be formed on both sides.
  • channel is 0.03 mm or more and 10 mm or less.
  • the depth d of the groove and the thickness t of the steel plate satisfy the above-described formula (4).
  • the above-described high-temperature deformation portion may be a single linear crystal grain boundary or a slip band containing crystal grains.
  • the width of the slip band is preferably 0.02 mm or more and 20 mm or less.
  • the above-mentioned grain-oriented electrical steel sheet is used by cutting off the deformation region in the vicinity of the high-temperature deformation portion when the final product is manufactured.
  • a CO 2 laser device was used as the laser device 2 in FIG.
  • the laser power P was controlled by electric input so as to be 1500 W, and the condensing shape of the laser was a circular shape of 0.2 mm ⁇ .
  • a steel plate (oriented electromagnetic steel plate) 1 after decarburization annealing having a width of 1000 mm and a thickness t of 0.23 mm was conveyed in the L direction at a speed VL of 1000 mm / s.
  • the cross-sectional shape of the formed groove portion was about 0.2 mm in width W and about 0.02 mm in depth d. In this case, the energy density Ed of the laser beam was 9.5 J / mm 2 .
  • MgO as an annealing separator was applied to the surface of the steel plate, and the steel plate 1 was coiled. Thereafter, the coiled steel plate (coil) was subjected to finish annealing at about 1200 ° C. for about 20 hours using the annealing apparatus shown in FIG. 1 (Example 1). Further, as a comparative example, the same finish annealing as described above was applied to a coil (untreated coil) in which no groove was formed. The width of the side strain portion of the steel plate after the finish annealing was visually examined over the entire length of the coil.
  • a steel plate that satisfies the condition that the wave height h is more than 2 mm or the condition that the steepness s shown in the above formula (1) is more than 1.5% (more than 0.015) is satisfied.
  • the width of the deformation area at the end was measured.
  • Example 1 in which the groove portion is formed at a distance a from the end face of the coil according to the first embodiment of the present invention, a relatively remarkable bending deformation (buckling deformation) at a position of 20 mm corresponding to the distance a. There has occurred. Therefore, the side distortion from the coil end face can be remarkably limited at the position of the distance a.
  • the variation in the width of the side strain portion can be reduced to 6 mm ( ⁇ 3 mm) as compared with the comparative example, and the yield can be greatly improved.
  • a semiconductor laser device was used as the laser device 2 in FIG.
  • the laser power P can be changed up to a maximum of 2 kW. Further, the laser power P can be arbitrarily set by a laser power control device (not shown).
  • the laser power P was 1000 W, and the condensing shape was an elliptical shape with a dc of 1.2 mm and a dL of 12 mm.
  • the steel plate 1 after decarburization annealing having a width of 1000 mm and a thickness t of 0.23 mm was conveyed in the L direction at a speed VL of 400 mm / s.
  • the energy density Ed of the laser beam was 2.7 J / mm 2 .
  • the annealing separator MgO was applied to the surface of the steel plate 1, and the steel plate 1 was wound into a coil shape. Thereafter, the coiled steel sheet (coil) was subjected to finish annealing at about 1200 ° C. for about 20 hours using the annealing apparatus shown in FIG. 1 (Example 2).
  • the same finish annealing as described above was performed on a coil that was not irradiated with laser (untreated coil). The width of the side strain portion of the steel plate after the finish annealing was visually examined over the entire length of the coil.
  • a steel plate that satisfies the condition that the wave height h is more than 2 mm or the condition that the steepness s shown in the above formula (1) is more than 1.5% (more than 0.015) is satisfied.
  • the width of the deformation area at the end was measured.
  • Example 2 in which the grain boundary slip deformed portion was formed at a distance a from the end face of the coil by laser irradiation according to the second embodiment of the present invention, high temperature slip occurred at a position of 20 mm corresponding to the distance a. did. Therefore, the side distortion from the coil end face can be remarkably limited at the position of the distance a.
  • the variation in the width of the side distortion portion could be as small as 8 mm ( ⁇ 4 mm).
  • the maximum strain width was 28 mm, and the yield was greatly improved as compared with the comparative example (maximum strain width 60 mm).
  • FIG. 8A, 8B and 8C show the results of examining the crystal structure of the steel sheet by pickling the steel sheet surface after finish annealing to remove the film.
  • FIG. 8A is an image of a structure in the vicinity of a grain boundary sliding deformed portion irradiated with laser according to the second embodiment of the present invention.
  • FIG. 8C is an image of a tissue that is not subjected to laser irradiation as in the comparative example.
  • FIG. 8B is a modification in which laser irradiation is performed under the same conditions as in the second embodiment, and the finish annealing time is shorter than in the second embodiment.
  • the slip band 12 including crystal grains is formed. In this modification, the crystal grains in the slip band were elongated crystal grains.
  • the grain boundary slip deformation part after finish annealing is the linear crystal grain boundary 10 or the slip band 12 containing crystal grains.
  • the slip band 12 including crystal grains is likely to occur when, for example, the energy density of the laser beam is low or the annealing time is short as compared with the conditions formed by the linear crystal grain boundaries 10.
  • the conditions for generating the linear crystal grain boundaries 10 and the conditions for generating the slip band 12 including the crystal grains include, in addition to the laser conditions such as the energy density of the laser beam, the components of the steel sheet, the temperature of the finish annealing, the finish annealing.
  • the details are unclear.
  • the linear crystal grain boundary 10 In the linear crystal grain boundary 10 according to the second embodiment, grain boundary sliding is likely to occur at a high temperature of 900 ° C. or higher during finish annealing, and the mechanical strength is low compared to other parts. Therefore, when a load is applied to the coil while the coil is in contact with the coil cradle, the linear crystal grain boundary 10 is first slid and deformed, and the load applied to the portion above the crystal grain boundary 10 is dispersed. It is considered that the expansion and fluctuation of the width of the side distortion portion are suppressed.
  • the mechanism of the slip deformation at the time of annealing described above is based on a linear crystal grain boundary formed in the grain boundary slip deformation portion.
  • the slip deformation mechanism may be, for example, high-temperature slip by a slip band formed along the rolling direction and including crystal grains.
  • the crystal grains may be fine crystal grains or may be elongated crystal grains.
  • the grain boundaries of the crystal grains (elongate crystal grains) in the slip band 12 are slip-deformed in the same manner as the linear crystal grain boundaries 10 described above, and the width of the side strain portion is reduced. Suppress expansion and fluctuation.
  • the inventors investigated a suitable range of the energy density Ed of laser irradiation in the second embodiment. That is, the present inventors examined the relationship between the degree of atomization of the laser irradiation portion and the energy density Ed under the condition that the distance a is 20 mm.
  • the conveyance speed VL was set to 1000 mm / s
  • the diameter dc in the C direction of the laser beam was set to a constant value of 1.2 mm.
  • Ed represented by the above formula (3) was changed, and the crystal state (structure) of the steel sheet after the secondary recrystallization was examined.
  • Examples 1 to 3 described above are some examples adopted to confirm the feasibility and effects of the present invention.
  • the present invention is not limited to Examples 1 to 3.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the width of the side distortion portion becomes a substantially constant value, the trimming width in the subsequent process can be reduced as much as possible, and the yield is improved. Therefore, the present invention has great applicability in the electrical steel sheet manufacturing industry.
  • SYMBOLS 1 Directional electrical steel sheet 2 Laser apparatus 2a Condensing lens 3 Laser beam 4a Groove part (deformable part) 4z Grain boundary sliding deformation part (linear region, easy deformation part) 5 Coil 5a Winding shaft 5e Side distortion part 5f Deformable part 5z Lower end part (end part region, first end part) 6 Nozzle 7 Assist gas 8 Coil pedestal 9 Annealing furnace cover 10 Linear crystal grain boundary (linear crystal grain boundary, grain boundary) 11 Secondary recrystallized grains 12 Slip band

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 この方向性電磁鋼板の製造方法は、鋼板の圧延方向と平行になるように前記鋼板の端部領域に変形容易部を形成し;前記鋼板をコイル状に巻き締め;前記鋼板の前記端部領域が前記鋼板の下方になるように配置した後、前記鋼板に仕上げ焼鈍を行う。

Description

[規則37.2に基づきISAが決定した発明の名称] 方向性電磁鋼板及びその製造方法
 本発明は、仕上げ焼鈍工程において、コイル受台と接するコイル端部の側歪みを防止する方向性電磁鋼板の製造方法に関する。
 本願は、2009年3月11日に、日本に出願された特願2009-058500号と2009年11月18日に、日本に出願された特願2009-263216号とに基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板の製造方法において、冷延された鋼板は、脱炭焼鈍後、コイル状に巻き取られ、1000℃以上の高温で二次再結晶を目的とした仕上げ焼鈍を施される。仕上げ焼鈍の際、図1に示すように、コイル5は、コイル5の巻軸5aが鉛直方向となるように焼鈍炉カバー9内のコイル受台8上に設置される。
 このように載置されたコイル5が高温で焼鈍されると、図2Aに示すように、コイル受台8と接するコイル5の下端部5zは、自重、及び、コイル受台8との熱膨張の違いなどを原因として側歪みと呼ばれる座屈変形を引き起こす。この側歪みは、図2Bに示すように、コイルから巻き解かれた鋼板を平らな定盤上に置いたときに波の高さhとして観測される。通常、側歪み部5eは、波の高さhが2mm超の条件または下記(1)式で示される急峻度sが1.5%超(0.015超)の条件を満たすような鋼板の端部の変形領域である。この側歪み部5eは、商品として使用できないため、仕上げ焼鈍後にコイルを巻き解く際に、丸歯などによってトリミングされる。したがって、側歪み部5eが増加すると、トリミング幅の増加によって歩留まりが低下するという問題がある。
 s=h/l ・・・(1)
 ここで、lは、側歪み部の幅である。
 仕上げ焼鈍時の側歪みの発生機構は、高温時の粒界すべりによって説明される。即ち、900℃以上の高温では、粒界すべりによる変形が顕著となるため、結晶粒界部において、側歪みを生じ易い。コイル受台と接するコイル下端部は、コイル中心部に比べて、二次再結晶の成長時期が遅い。そのため、コイル下端部では、結晶粒径が小さくなり、細粒化部を形成し易い。
 この細粒化部には、結晶粒界が多く存在するため、前記の粒界すべりが起こり易くなり、側歪みが発生すると推測されている。したがって、従来技術では、コイル下端部の結晶粒成長を制御することにより、機械的変形を抑制する様々な方法が提案されている。
 特許文献1には、仕上げ焼鈍前に、コイル受台と接するコイル下端面から一定幅の帯状部に細粒化剤を塗布して、仕上げ焼鈍中にこの帯状部を細粒化させる方法が開示されている。また、特許文献2には、仕上げ焼鈍前に、コイル受台と接するコイル下端から一定幅の帯状部に突起物を付けたロール等により加工変形歪みを付与して、仕上げ焼鈍中にこの帯状部を細粒化させる方法が開示されている。
 このように、特許文献1及び特許文献2に開示された方法では、側歪みを抑制するために、意図的にコイル下端部の結晶を細粒化させ、コイル下端部の機械的強度を変化させている。
 しかし、特許文献1の細粒化剤を塗布する方法では、細粒化剤が液状であるため、塗布領域の正確な制御が困難である。また、細粒化剤が、鋼板端部から鋼板中央部に向かって拡散する場合もある。その結果、細粒化域の幅を一定に制御できないため、側歪み部の幅が、コイルの長手方向で大きく変化する。
 最も大きく変形した側歪み部の幅をトリミング幅とするので、一箇所でも側歪み部の幅が大きいと、トリミング幅が増加し、歩留まりが低下する。
 また、特許文献2の加工変形歪みを付与する方法では、ロール等の機械加工による歪みを起点にコイル下端部の結晶を細粒化させている。この方法では、細粒化域を比較的良好に制御できる。しかしながら、長時間の連続加工によってロールが摩耗するため、与えられる加工変形歪み(圧下率)が経時的に低下して、細粒化効果が低下するという問題がある。特に、方向性電磁鋼板は、Siを多く含む硬い素材であるため、ロールの摩耗が激しく、ロールを頻繁に交換する必要がある。
 一方、側歪みを抑制するために、コイル下端から一定幅の帯状部の二次再結晶を促進して、仕上げ焼鈍の早い時期に結晶粒径を大きくし、高温強度を向上させる方法が特許文献3、4、5、及び、6に開示されている。
 結晶粒径を大きくする手段として、特許文献3及び4には、仕上げ焼鈍前に、プラズマ加熱や誘導加熱によって鋼板端部の帯状部を加熱する方法が開示されている。また、特許文献3、5、及び、6には、ショットブラスト、ロール、歯形ロール等で機械加工歪みを導入する方法が開示されている。
 プラズマ加熱や誘導加熱は、比較的加熱範囲が広い加熱方式であるため、帯状範囲を加熱するのには適している。しかしながら、プラズマ加熱や誘導加熱は、加熱位置や加熱温度を制御しにくいという問題がある。また、熱伝導によって、所定の範囲よりも広い領域が加熱されてしまうという問題がある。そのため、二次再結晶により結晶粒径を大きくする領域の幅を一定に制御できないため、側歪み抑制効果に不均一が生じ易いという問題がある。
 ロール等の機械加工による方法では、先に述べたように、ロールの摩耗のために歪み付与効果(歪み量)が経時的に低下するという問題がある。特に、二次再結晶の速度は、歪み量に応じて敏感に変化するため、ロールの摩耗による歪み量が僅かであっても、所望の結晶粒径が得られず、安定した側歪み抑制効果が得られないという問題がある。
特開昭63-100131号公報 特開昭64-042530号公報 特開平02-097622号公報 特開平03-177518号公報 特開2000-038616号公報 特開2001-323322号公報
 上述したように、従来技術では、結晶粒径の制御(範囲及び大きさ)を正確に行うことが困難であるため、十分な側歪み抑制効果が得られないという問題があった。
 本発明では、上記従来技術の問題を解決し、仕上げ焼鈍工程において、高温すべりに起因する仕上げ焼鈍炉内のコイル受台と接するコイル下端部の側歪みを抑制することを目的とする。
 すなわち、本発明では、側歪みの抑制を安定的に、かつ、効率良く行うことができ、側歪み部の幅を所定の範囲内に制限することができる方向性電磁鋼板の製造方法を提供することを目的とする。
 本発明者らは、上記問題を解決する方法について鋭意検討した。その結果、鋼板の端面から一定の距離を有するように仕上げ焼鈍前の鋼板の片方の端部領域(第一の端部)の片面又は両面に変形容易部を形成すると、側歪み部の幅を所定の範囲内に制限できることが判明した。なお、鋼板の他方の端部領域(第二の端部)には、変形容易部を形成しない。
 本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。
 (1)方向性電磁鋼板の製造方法であって、鋼板の圧延方向と平行になるように前記鋼板の端部領域に変形容易部を形成し; 前記鋼板をコイル状に巻き締め; 前記鋼板の前記端部領域が前記鋼板の下方になるように配置した後、前記鋼板に仕上げ焼鈍を行う。
 (2)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部は、連続的に形成されてもよい。
 (3)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部は、不連続に形成されてもよい。
 (4)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部を、前記鋼板全長にわたって形成してもよい。
 (5)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部を、前記鋼板の前記圧延方向における一部に形成してもよい。
 (6)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部を、前記端部領域の端面から5mm以上100mm以下の距離に形成してもよい。
 (7)上記(1)に記載の方向性電磁鋼板の製造方法では、前記仕上げ焼鈍を行う際に、前記コイル状に巻き締められた後の前記鋼板の巻軸の方向がコイル受台に垂直になるように前記鋼板を載置してもよい。
 (8)上記(1)に記載の方向性電磁鋼板の製造方法では、前記鋼板に焼鈍分離剤を塗布する前に、前記変形容易部を形成してもよい。
 (9)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部を、レーザビームの照射により形成してもよい。
 (10)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部に、溝を形成してもよい。
 (11)上記(10)に記載の方向性電磁鋼板の製造方法では、前記溝を、前記鋼板の片面に形成してもよい。
 (12)上記(10)に記載の方向性電磁鋼板の製造方法では、前記溝を、前記鋼板の両面に形成してもよい。
 (13)上記(10)に記載の方向性電磁鋼板の製造方法では、前記溝の幅は、0.03mm以上10mm以下であってもよい。
 (14)上記(10)に記載の方向性電磁鋼板の製造方法では、前記溝の深さd及び前記鋼板の板厚tは、0.05≦d/t≦0.7を満たしてもよい。
 (15)上記(1)に記載の方向性電磁鋼板の製造方法では、前記変形容易部は、粒界すべり変形部であってもよい。
 (16)上記(15)に記載の方向性電磁鋼板の製造方法では、前記仕上げ焼鈍後の前記粒界すべり変形部は、1本の線状結晶粒界であってもよい。
 (17)上記(15)に記載の方向性電磁鋼板の製造方法では、前記仕上げ焼鈍後の前記粒界すべり変形部は、結晶粒を含むすべり帯であってもよい。
 (18)上記(17)に記載の方向性電磁鋼板の製造方法では、前記すべり帯の幅は、0.02mm以上20mm以下であってもよい。
 (19)方向性電磁鋼板は、鋼板の圧延方向と平行になるように前記鋼板の端部領域に高温変形部が形成されている。
 (20)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、連続的に形成されていてもよい。
 (21)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、不連続に形成されていてもよい。
 (22)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、前記鋼板全長にわたって形成されていてもよい。
 (23)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、前記鋼板の前記圧延方向における一部に形成されていてもよい。
 (24)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、前記端部領域の端面から5mm以上100mm以下の距離に形成されていてもよい。
 (25)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、溝であってもよい。
 (26)上記(25)に記載の方向性電磁鋼板の前記溝は、前記鋼板の片面に形成されていてもよい。
 (27)上記(25)に記載の方向性電磁鋼板の前記溝は、前記鋼板の両面に形成されていてもよい。
 (28)上記(25)に記載の方向性電磁鋼板の前記溝の幅は、0.03mm以上10mm以下であってもよい。
 (29)上記(25)に記載の方向性電磁鋼板の前記溝の深さd及び前記鋼板の板厚tは、0.05≦d/t≦0.7を満たしてもよい。
 (30)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、1本の線状結晶粒界であってもよい。
 (31)上記(19)に記載の方向性電磁鋼板の前記高温変形部は、結晶粒を含むすべり帯であってもよい。
 (32)上記(31)に記載の方向性電磁鋼板の前記すべり帯の幅は、0.02mm以上20mm以下であってもよい。
 また、本発明によれば、仕上げ焼鈍中に、コイル下端部に形成された変形容易部が優先的に変形し、側歪み部の幅がほぼ一定値となるようにコイル下端面から進行する側歪みが変形容易部により制限されるので、後工程におけるトリミング幅を極力減らすことができ、歩留まりが向上する。
 さらに、本発明によれば、レーザビームを利用することにより、高速かつ自由なパターンで溝もしくは粒界すべり変形部のような変形容易部を容易に形成することができる。加えて、レーザビームを利用することにより、鋼板と接触することなく加工することができるため、機械加工法で用いるロール等の加工装置のように摩耗(経時劣化)に起因する問題が生じない。すなわち、加工量が時間の経過とともに変化しないため、加工装置の交換を行う必要がない。さらに、レーザビームの照射エネルギー密度及びビーム径を制御することによって、方向性電磁鋼板の生産ラインにおいて、側歪みを抑制するための最適な変形容易部を安定して形成することができる。
仕上げ焼鈍装置の一例を示す図である。 変形容易部を形成しない場合の側歪みの成長過程の概略図を示す。 本発明の側歪みの評価方法の一例を示す。 変形容易部の位置を示す説明図である。 変形容易部を形成した場合の仕上げ焼鈍時の側歪みの成長過程の概略図を示す。 レーザビームの集光形状を示す図である。 本発明の第一の実施形態の一例を模式的に示す図である。 鋼板の端部領域の片面に形成された溝の断面形状を模式的に示す図である。 鋼板の端部領域の両面に形成された溝の断面形状を模式的に示す図である。 本発明の第二の実施形態の一例を模式的に示す図である。 第二の実施形態にしたがってレーザ照射を行った粒界すべり変形部近傍の組織の画像である。 第二の実施形態の変形例にしたがってレーザ照射を行った粒界すべり変形部近傍の組織の画像である。 レーザ照射を実施していない組織の画像である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 本発明では、図3Aに示すように、コイル5とコイル受台8との接触位置から所定の距離離れたコイル上の位置に、コイル5の圧延方向(鋼板の圧延方向)に沿って、機械的強度の弱い変形容易部5fを形成する。高温の焼鈍炉内でコイル5に荷重がかかった場合に、この変形容易部5fが最初に座屈変形またはすべり変形し、変形容易部5fよりも上の部分へかかる荷重を分散して、側歪み部の幅の拡大及び変動を抑制する。なお、側歪み部は、波の高さhが2mm超の条件または上述した(1)式で示される急峻度sが1.5%超(0.015超)の条件を満たすような鋼板の端部の変形領域である。
 次に、図2A及び図3Bを用いて、本発明の方向性電磁鋼板の製造方法における変形容易部5fの効果についてより詳細に説明する。図2Aは、変形容易部5fを形成しない場合の仕上げ焼鈍時の側歪み部5eの成長過程の概略図を、図3Bは、本発明の変形容易部5fを形成した場合の仕上げ焼鈍時の側歪み部5eの成長過程の概略図を示す。また、図2A及び図3Bにおいて、実線は、仕上げ焼鈍時のコイル下端部を拡大した概略図を、点線は、仕上げ焼鈍後のコイル下端部を拡大した概略図を、破線は、仕上げ焼鈍前のコイル下端を拡大した概略図を示している。図2Aに示すように、コイル5に変形容易部5fを形成しない場合には、焼鈍時間の経過(実線における側歪み部5eの上端の位置と点線における側歪み部5eの上端の位置とを比較)とともに、側歪み部5eは、コイル5の下端面から上方に向けて進行する。この側歪み部5eの幅(鉛直方向の長さ)は、焼鈍時間に応じて拡大し、高温(二次再結晶)時のコイル5の強度の不均一性によってコイル5の長手方向(圧延方向)の位置で変化する。
 しかしながら、図3Bに示すように、コイル5に変形容易部5fを形成すると、変形容易部5fが優先的に変形する。そのため、焼鈍時間が経過(実線における側歪み部5eの上端の位置と点線における側歪み部5eの上端の位置とを比較)しても、側歪み部5eが変形容易部5fより上方に進行しない。そのため、この側歪み部5eの幅は、焼鈍時間に依存せず、変形容易部5fの位置により決定される。さらに、高温(二次再結晶)時にコイル5の強度に不均一性を生じても、側歪み部5eの幅は、コイル5の長手方向(圧延方向)で変化しない。
 以上のように、本発明では、鋼板の圧延方向と平行になるように前記鋼板の端部領域(コイル下端部)に変形容易部を形成することにより、側歪み部の幅を制限し、方向性電磁鋼板の歩留まりを向上することができる。
 さらに、本発明の変形容易部の具体例について説明する。変形容易部が上記効果を発揮するためには、仕上げ焼鈍時の変形容易部の機械的強度を十分に小さくする必要がある。本発明において、この変形容易部は、例えば、後述するような溝を有する溝部または粒界すべり変形部である。変形容易部が溝部である場合には、高温におけるコイルの強度の低下時に溝部に応力が集中し、溝部が優先的に変形する。また、変形容易部が粒界すべり変形部である場合には、粒界すべり変形部が優先的に高温すべり(変形)を起こす。
 これらの変形容易部が、優先的に変形するためには、鋼板の端面と平行になるように、変形容易部が正確かつ所定の狭い範囲に形成される必要がある。したがって、上記変形容易部を形成するための加工部(例えば、レーザ照射部)が収束可能な加工装置として、例えば、レーザ装置を使用することが好ましい。レーザ装置を用いて変形容易部を形成する場合には、変形容易部の幅は、レーザビームの集光径を調整することで所定の狭い範囲に制御することが可能である。図4に示すように、レーザビームの集光形状は、板幅方向(C方向)の直径dcと圧延方向(L方向)の直径dLとを有する楕円状である。
 ここで、レーザ照射部は、少なくとも下記(2)式を満たすように鋼板の端面から離れている必要がある。
a>dc/2 ・・・(2)
 また、レーザ装置によって変形容易部に投入されるエネルギー密度Edは、レーザパワーP(W)、レーザビームの板幅方向(C方向)の直径dc(mm)及び鋼板の搬送速度VL(mm/s)を用いて(3)式で定義される。
Ed=(4/π)×P/(dc×VL) ・・・・・(3)
 このエネルギー密度Edは、後述するように、変形容易部の種類や形状に応じて調節される。
 なお、レーザの種類は、鋼板表面に、所要形状の変形容易部を形成することができるレーザであればよく、特定のレーザに限定されない。例えば、COレーザ、YAGレーザ、半導体レーザ、ファイバレーザ等を使用することが可能である。
 さらに、加工装置により形成される変形容易部は、連続的に形成されても良く、鋼板の圧延方向の全長にわたって形成されても良い。しかしながら、エネルギー削減のために、変形容易部は、不連続に形成されても良く、鋼板の圧延方向の一部に形成されても良い。例えば、連続波レーザビームを用いると、圧延方向に連続した変形容易部が形成される。また、例えば、パルスレーザを用いると、不連続な変形容易部(例えば、点線状の変形容易部)が形成される。この変形容易部は、それぞれが平行するように、複数形成されても良い。
 まず、以下に、変形容易部が溝部である場合について詳細に説明する。図5に、溝部を形成するための本発明の第一の実施形態の一例を模式的に示す。
 図5に示す第一の実施形態においては、レーザ装置2から出力され、集光レンズ2aによって集光されたレーザビーム3を、鋼板1(方向性電磁鋼板)の幅方向の端面から距離a離れた位置に照射する。このレーザビーム3の照射により、照射部分の鋼板が溶融または蒸発する。さらに、この照射部分に対して、ノズル6から高圧のアシストガス7を噴射して、残留溶融物を吹き飛ばし、溝を有する溝部4aを形成する。
 鋼板1は、L方向(圧延方向)に速度VLで搬送されているので、鋼板の圧延方向に沿って、溝部4aが形成される。溝部4aが鋼板1に形成された後、焼鈍分離剤が鋼板1の表面に塗布されて、鋼板1は、コイル5として巻き取られる。
 コイル5は、図1に示すように、溝部4aを形成したコイル状の鋼板1の端部(端部領域)が下方になるように鋼板1に仕上げ焼鈍を行う。この仕上げ焼鈍では、コイル状の鋼板1は、コイル状の鋼板1(コイル5)の巻軸5aの方向が焼鈍装置9内のコイル受台8に垂直になるように載置されることが好ましい。
 方向性電磁鋼板の歩留まりを向上させるために、レーザビームを照射する位置(溝部または加工位置)、即ち、溝部を形成する鋼板の端面からの距離aは、鋼板の端面(端部領域の端面)から100mm以下であることが好ましい。さらなる歩留まりの向上のために、溝部は、鋼板の端部領域の端面から30mm以下の距離に形成されることがより好ましい。歩留まりを最適化するために、コイル重量に応じて上記距離aを決定してもよい。本発明者らは、最大板幅の大型コイルであっても、鋼板の端面から100mm以内の位置に溝部を形成しておけば、側歪み部の幅の拡大及び変動を抑制できることを実操業において確認した。
 また、溝部とコイル受台とが接触することなく溝部の効果を発揮するために、溝部は、鋼板の端部領域の端面から5mm以上の距離に形成されることが好ましい。溝部の効果をより確実にするために、溝部は、鋼板の端部領域の端面から10mm以上の距離に形成されることがより好ましい。
 図6A及び6Bに、本発明で形成する溝の断面を模式的に示す。図6Aでは、板厚tの鋼板の片面に、溝幅W、溝深さdの溝を形成している。図6Bでは、板厚tの鋼板の両面に、溝幅W1、溝深さd1の溝と、溝幅W2、溝深さd2(W1≒W2、d=d1+d2)の溝を形成している。
 図6Aに示すような鋼板の片面に所定形状の溝を形成する方法では、図5のレーザ装置2のような加工装置が一台で良い。また、図6Bに示すように、鋼板の両面のほぼ相対する位置に所定形状の溝を形成すると、溝部の機械的強度がより低下するので、より顕著な側歪み抑制効果が得られる。
 機械的強度の低い溝部の溝の形状は、鋼板の板厚を考慮して設計する。具体的には、溝深さdと板厚tとの比率d/tが、下記(4)式を満たすように形成された溝が好適である。
0.05≦d/t≦0.7 ・・・(4)
 ここで、両面に溝を形成する場合は、図6Bに示すように、表面及び裏面の溝深さをそれぞれd1及びd2として、それらの合計の溝深さ(d1+d2)をdとする。
 本発明においては、鋼板の表面に形成される溝の溝深さが比較的浅くても、高温かつ長時間の焼鈍工程では、鋼板の溝部の機械的強度に大きな影響を与える。しかしながら、d/tが0.05未満であると、高温かつ長時間の焼鈍であっても、溝部の機械的強度が顕著に低下しないため、側歪み抑制効果が得られない。したがって、側歪み抑制効果を確実に得るため、d/tは、0.05以上が好ましい。より好ましくは、d/tは、0.1以上である。
 一方、d/tが0.7を超えると、溝部の機械的強度が極端に低下する。そのため、鋼板をコイル状に巻き取る際、巻取り張力により鋼板が大きく変形して、巻き取りが困難となる。場合によっては、鋼板が切断するという問題が発生する。したがって、d/tは、0.7以下が好ましい。より好ましくは、d/tは、0.5以下である。
 具体的には、板厚tが0.1mm以上0.5mm以下の鋼板を使用する場合に、溝深さdの下限は、0.005mmであることが好ましく、0.01mmであることがより好ましい。また、溝深さdの上限は、0.35mmであることが好ましく、0.25mmであることがさらに好ましい。
 また、溝部の溝幅Wは、0.03mm以上10mm以下であることが好ましい。溝幅Wが0.03mm未満である場合には、溝部における機械的強度が十分に低下せず、側歪み抑制効果が得られない。一方、溝幅Wが10mmより大きい場合には、溝部の機械的強度が極端に低下し、巻き取りが困難になる。
 レーザビームの照射で溝を形成する場合、溝幅は、レーザビームの集光径を調整することで制御することが可能である。
 また、溝深さは、鋼板の搬送速度に併せてレーザパワーを調整することで制御することが可能である。したがって、本発明において、レーザビームを用いると、仕上げ焼鈍前の鋼板(方向性電磁鋼板)の片方の端部領域(第一の端部)の片面又は両面に、側歪みを抑制するのに好適な形状の溝を容易に形成することができる。
 さらに、発明者らは、レーザ装置を用いて溝部を形成した場合のレーザ装置のエネルギー密度Edの最適範囲について検討した。ここで、このレーザ装置によって溝部に投入されるエネルギー密度Edは、上述した(3)式で定義される。
 このエネルギー密度Edについて、これまでの実験の結果、Edが0.5J/mm以上では、レーザ照射部が溶融し、十分な溝深さの溝部を形成することができた。しかしながら、Edが0.5J/mm未満では、仕上げ焼鈍時に、優先的に変形する溝部を形成することができなかった。一方、Edが5.0J/mmを超える場合には、レーザ照射によって鋼板が切断したり、エネルギー効率が極端に低下したりする。従って、Edの好適な範囲は、(5)式で示される範囲である。
0.5J/mm≦Ed≦5.0J/mm ・・・(5)
 エネルギー密度Edは、レーザパワーP、レーザビームの板幅方向(C方向)の直径dc及び鋼板の搬送速度VLを適宜設定して、上記(5)式を満たすように調節される。
 また、溝の形成には、図5に示すようなアシストガス7を用いて、レーザ照射による溶融物及び飛散物を除去している。そのため、変形に伴う加工硬化により溝部の強度が増加してしまう問題を防止することができる。また、加工装置(例えば、図5におけるレーザ装置2及び集光レンズ2a、ノズル6)が鋼板と接触しないため、加工装置の経時劣化に伴う問題を防止することができる。
 なお、上述の図5に示す第一の実施形態では、溝を形成する加工装置の一例として、レーザ装置2を利用した。しかしながら、所要形状の溝を高速に形成できるような加工装置であればよい。例えば、加工装置として、ウォータージェット(径が細い高圧水流の噴射装置)等の切削装置やロール等の圧下装置を用いて所要形状の溝を形成しても良い。しかしながら、例えば、レーザ装置のように加工時に鋼板と接触せず、経時劣化しない加工装置であることが好ましい。したがって、図5に示す第一の実施形態では、パワー密度に優れた非接触の高速加工ができ、制御性に優れたレーザビーム加工を利用している。
 次に、以下に、変形容易部が粒界すべり変形部(仕上げ焼鈍時の二次再結晶によって高温粒界すべりを生じさせる部分)である場合について詳細に説明する。
 本発明者らは、例えば集光レーザビームの照射によって、仕上げ焼鈍前の鋼板に非常に狭い範囲の局所的な加熱部を形成すると、この加熱部では仕上げ焼鈍時に二次再結晶の粒界が発生し易いことを見出した。この粒界部では、高温時に粒界すべり変形が発生しやすく、高温下での機械的強度が低下する。
 そこで、本発明者らは、コイルとコイル受台との接触位置から所定の距離離れたコイル上の位置にコイルの圧延方向(鋼板の圧延方向)に沿って機械的強度の弱い粒界すべり変形部を形成することによって、粒界すべり変形部の変形によりコイル下端部からの側歪み(歪みエネルギー)を吸収し、粒界すべり変形部より上への側歪みの拡大を抑制するという発想に至った。なお、この粒界すべり変形部は、仕上げ焼鈍時に粒界のような高温すべり部を形成する直線状の領域である。したがって、この直線状の領域は、必ずしも仕上げ焼鈍前に粒界を含む必要はない。すなわち、粒界すべり変形部には、少なくとも仕上げ焼鈍後に、粒界のような高温すべり部が形成されている。仕上げ焼鈍後の粒界すべり変形部(高温すべり部)は、図8Aに示すように、1本の粒界であってもよい。さらに、仕上げ焼鈍後の粒界すべり変形部(高温すべり部)は、図8Bに示すように、結晶粒を含むすべり帯であってもよい。なお、この結晶粒は、細長い結晶粒であっても、微細粒であってもよい。
 図7に、粒界すべり変形部を形成するための本発明の第二の実施形態の一例を模式的に示す。図7に示されるように、レーザ装置2から出力されたレーザビーム3は、集光レンズ2aによって集光され、鋼板1(方向性電磁鋼板)の幅方向の端面から距離a離れた位置に照射される。
 鋼板1は、L方向(圧延方向)に速度VLで搬送されているので、鋼板の圧延方向に沿って、レーザ照射によって加熱された粒界すべり変形部(線状領域)4zが形成される。粒界すべり変形部4zが鋼板1に形成された後、焼鈍分離剤が鋼板1の表面に塗布されて、鋼板1は、コイル5として巻き取られる。コイルに巻き取った後、コイル5は、図1に示すように、巻き軸方向を鉛直にしてレーザ照射部を含む端部領域(第一の端部)が鋼板の下方になるようにコイル受台8に置かれ、仕上げ焼鈍を行う。このとき、レーザ照射部を含まない端部領域(第二の端部)は、鋼板の上方になるようにコイル受台8に置かれる。粒界すべり変形部4zを形成したコイル状の鋼板1の端部領域(第一の端部)が下方になるように鋼板1に仕上げ焼鈍を行う。この仕上げ焼鈍では、コイル状の鋼板1は、コイル状の鋼板1(コイル5)の巻軸5aの方向が焼鈍装置9内のコイル受台8に垂直になるように載置されることが好ましい。
 ここで、粒界すべり変形部の位置について、粒界すべり変形部の変形によって側歪み部の歪みエネルギーが十分に吸収されるように、粒界すべり変形部は、鋼板の端部領域の端面から5mm以上の距離に形成されることが好ましい。粒界すべり変形部の効果をより確実にするために、粒界すべり変形部は、鋼板の端部領域の端面から10mm以上の距離に形成されることがより好ましい。
 また、方向性電磁鋼板の歩留まりを向上させるために、鋼板の端面から粒界すべり変形部までの距離aは、100mm以下であることが好ましい。さらなる歩留まりの向上のために、溝部は、鋼板の端部領域の端面から30mm以下の距離に形成されることがより好ましい。歩留まりを最適化するために、コイル重量に応じて上記距離aを決定してもよい。
 また、粒界すべり変形部が、図8Bに示す結晶粒(細長い結晶粒もしくは微細粒)を含むすべり帯である場合には、すべり帯の幅は、20mm以下であることが好ましい。すべり帯の幅が20mmより大きいすべり帯は、機械的強度が高いため、仕上げ焼鈍時に変形容易部(粒界すべり変形部)として作用しない。すべり帯の幅の下限は、特に、規定しない。しかしながら、仕上げ焼鈍前の結晶粒が約0.02mmであるため、すべり帯の幅の下限は、0.02mmであってもよい。このすべり帯の幅は、圧延方向のすべり帯の各位置におけるすべり帯の幅を平均することによって求める。ここでは、結晶粒を含む線状の部分としてすべり帯を定義する。
 上記粒界すべり変形部4zを形成するためには、加工装置として、例えば、レーザ装置2のように加熱部を収束可能な加熱装置を使用する必要がある。
 発明者らは、レーザ装置を用いて粒界すべり変形部を形成した場合のレーザ装置のエネルギー密度Edの最適範囲について検討した。ここで、このレーザ装置2によって粒界すべり変形部4zに投入されるエネルギー密度Edは、上述した(3)式で定義される。
 このエネルギー密度Edについて、これまでの実験の結果、Edが0.5J/mm以上では、仕上げ焼鈍時に線状の粒界を発生させ、粒界すべり変形部に十分な高温すべりを起こすことができた。しかしながら、Edが0.5J/mm未満では、仕上げ焼鈍時に、高温すべりに必要とされる十分な線状粒界を発生させることができなかった。一方、Edが5.0J/mmを超える場合には、レーザ照射によって鋼板の溶融が顕著となり、再凝固時に鋼板が大きく変形する。そのため、鋼板がコイルに巻き取れない問題が発生した。従って、Edの好適な範囲は、(6)式で示される範囲である。
0.5J/mm≦Ed≦5.0J/mm ・・・(6)
 エネルギー密度Edは、レーザパワーP、レーザビームの板幅方向(C方向)の直径dc及び鋼板の搬送速度VLを適宜設定して、上記(6)式を満たすように調節される。粒界すべり変形部は、全板厚にわたって形成されることが好ましい。そのため、エネルギー密度Edに加え、所定の加熱時間が維持されるように、鋼板の搬送速度VLに応じて圧延方向(L方向)の直径dLを調節してもよい。
 また、粒界すべり変形部4zを形成するための加工装置は、加熱部を収束可能な加熱装置であればよい。図7に示す第二の実施形態では、鋼板の端部領域の端面から所定の距離に正確かつ狭い範囲で粒界すべり変形部(例えば、仕上げ焼鈍時における線状粒界)を形成するために、加熱位置及び加熱速度の制御性に優れたレーザビームを使用することが好ましい。
 上記第一の実施形態及び上記第二の実施形態では、変形容易部として、鋼板上に溝または粒界すべり変形部を形成した。しかしながら、変形容易部として、溝とすべり変形とを両方形成してもよい。
 上述したように、本発明の方向性電磁鋼板の製造方法では、鋼板の圧延方向と平行になるように鋼板の端部領域に変形容易部を形成する工程と、鋼板をコイル状に巻き締める工程と、コイル状の鋼板の端部領域が鋼板の下方になるように鋼板に仕上げ焼鈍を行う工程とを順番に行う。また、鋼板に変形容易部を形成する工程は、当然ながら、冷延工程よりも後に行う。加えて、焼鈍分離剤の損失を防ぐために、鋼板に変形容易部を形成する工程は、焼鈍分離剤を塗布する工程よりも前に行うことが好ましい。
 したがって、本発明の方向性電磁鋼板は、鋼板の圧延方向と平行になるように鋼板の端部領域に高温変形部(仕上げ焼鈍後の変形容易部)が形成されている。この高温変形部は、連続的に形成されていても、不連続に形成されていてもよい。また、高温変形部は、鋼板の全長にわたって形成されていても、鋼板の圧延方向における一部に形成されていてもよい。さらに、高温変形部は、端部領域の端面から5mm以上100mm以下の距離に形成されていることが好ましい。加えて、この高温変形部の両側には、圧延方向に磁化容易軸がそろった正常な二次再結晶粒が存在する。
 上述の高温変形部は、溝であってもよい。この溝は、鋼板の片面に形成されていてもよく、両面に形成されていてもよい。また、溝の幅は、0.03mm以上10mm以下であることが好ましい。さらに、溝の深さd及び鋼板の板厚tは、上述した(4)式を満たすことが好ましい。
 上述の高温変形部は、1本の線状結晶粒界であってもよく、結晶粒を含むすべり帯であってもよい。このすべり帯の幅は、0.02mm以上20mm以下であることが好ましい。
 上述した方向性電磁鋼板は、最終製品を製造する際に、高温変形部近傍で変形領域を切り落として使用される。
 以下、実施例を用いて本発明の第一の実施形態及び第二の実施形態をより詳細に説明する。
 本発明の第一の実施形態の実施例について説明する。
 図5におけるレーザ装置2としてCOレーザ装置を使用した。レーザパワーPは、1500Wになるように電気入力により制御され、レーザの集光形状は、0.2mmφの円形状とした。幅が1000mm、厚みtが0.23mmの脱炭焼鈍後の鋼板(方向性電磁鋼板)1を、L方向に1000mm/sの速度VLで搬送した。
 レーザビーム照射位置である鋼板の端面からの距離aを20mmとし、コイルの全長(L方向の全長)にわたり、鋼板の片方の表面にレーザビームを照射し、溝を形成した。アシストガスとして、圧力0.5MPaの乾燥空気を用いた。形成された溝部の断面形状は、幅Wが約0.2mm、深さdが約0.02mmであった。この場合、レーザビームのエネルギー密度Edは、9.5J/mmであった。
 鋼板の端部領域(第一の端部)の表面(片面)に溝を形成した後、鋼板の表面に焼鈍分離剤のMgOを塗布し、鋼板1をコイル状に巻き取った。その後、このコイル状の鋼板(コイル)に対して、図1に示す焼鈍装置にて、約1200℃で約20時間の仕上げ焼鈍を施した(実施例1)。また、比較例として、溝を形成していないコイル(未処理コイル)に対しても、上記と同様の仕上げ焼鈍を施した。これらの仕上げ焼鈍後の鋼板の側歪み部の幅を、コイルの全長にわたって、目視により調査した。なお、側歪み部として、波の高さhが2mm超の条件または上述した(1)式で示される急峻度sが1.5%超(0.015超)の条件を満たすような鋼板の端部の変形領域の幅を測定した。
 その結果を表1に示す。表1に示すように、溝を形成していない比較例では、側歪み部の幅が広いのに加え、側歪み部の幅の変動が40mm(±20mm)と大きかった。特に、最大で60mm程度の幅の側歪みが発生しており、歩留まりが大きく低下した。一方、本発明の第一の実施形態に従ってコイルの端面から距離aの位置に溝部を形成した実施例1では、この距離aに相当する20mmの位置で比較的顕著な折れ変形(座屈変形)が発生した。そのため、ほぼ距離aの位置で、コイル端面からの側歪みを顕著に制限することができた。また、比較例に比べ側歪み部の幅の変動も6mm(±3mm)と小さくすることができ、歩留まりを大きく改善することができた。
Figure JPOXMLDOC01-appb-T000001
 本発明の第二の実施形態の実施例について説明する。
 図7におけるレーザ装置2として半導体レーザ装置を使用した。この半導体レーザ装置では、レーザパワーPは、最大2kWまで変更可能である。また、レーザパワー制御装置(図示しない)で任意にレーザパワーPを設定することができる。
 このレーザパワーPを1000W、集光形状をdcが1.2mm、dLが12mmの楕円形状とした。幅が1000mm、厚みtが0.23mmの脱炭焼鈍後の鋼板1を、L方向に400mm/sの速度VLで搬送した。
 レーザビーム照射位置である鋼板の端面からの距離aを20mmとし、コイルの全長(L方向の全長)にわたり、鋼板の片方の表面にレーザビームを照射した。この場合、レーザビームのエネルギー密度Edは、2.7J/mmであった。
 レーザ照射後、鋼板1の表面に焼鈍分離剤のMgOを塗布し、鋼板1をコイル状に巻き取った。その後、このコイル状の鋼板(コイル)に対して、図1に示す焼鈍装置にて、約1200℃で約20時間の仕上げ焼鈍を行った(実施例2)。また、比較例として、レーザ照射を行っていないコイル(未処理コイル)に対しても、上記と同様の仕上げ焼鈍を行った。これらの仕上げ焼鈍後の鋼板の側歪み部の幅を、コイルの全長にわたって、目視により調査した。なお、側歪み部として、波の高さhが2mm超の条件または上述した(1)式で示される急峻度sが1.5%超(0.015超)の条件を満たすような鋼板の端部の変形領域の幅を測定した。
 その結果を表2に示す。表2に示すように、レーザ照射を行っていない比較例では、側歪み部の幅が広いのに加え、側歪み部の幅の変動が40mm(±20mm)と大きかった。特に、最大で60mm程度の幅の側歪みが発生しており、歩留まりが大きく低下した。一方、本発明の第二の実施形態に従ってレーザ照射によりコイルの端面から距離aの位置に粒界すべり変形部を形成した実施例2では、この距離aに相当する20mmの位置で高温すべりが発生した。そのため、ほぼ距離aの位置で、コイル端面からの側歪みを顕著に制限することができた。また、比較例に比べ、側歪み部の幅の変動も8mm(±4mm)と小さくすることができた。加えて、実施例2では、最大歪み幅は、28mmであり、比較例(最大歪み幅60mm)に比べ、歩留まりを大きく改善することができた。
Figure JPOXMLDOC01-appb-T000002
 図8A、8B及び8Cは、仕上げ焼鈍後の鋼板表面を酸洗して皮膜を除去し、鋼板の結晶構造を調べた結果である。図8Aは、本発明の第二の実施形態にしたがってレーザ照射を行った粒界すべり変形部近傍の組織の画像である。また、図8Cは、比較例のようにレーザ照射を実施していない組織の画像である。
 第二の実施形態のレーザ照射を行った場合は、仕上げ焼鈍後にレーザ照射部周辺(粒界すべり変形部)に線状の結晶粒界10が形成されていた。この線状粒界10の両側には、方向性電磁鋼板に要求される圧延方向に磁化容易軸がそろった正常な二次再結晶粒11が得られていた。また、図8Bは、第二の実施形態と同様の条件でレーザ照射を行い、第二の実施形態よりも仕上げ焼鈍時間を短くした変形例である。この図8Bに示す第二の実施形態の変形例では、結晶粒を含むすべり帯12が形成された。この変形例では、すべり帯中の結晶粒は、細長い結晶粒であった。このように、仕上げ焼鈍後の粒界すべり変形部は、線状の結晶粒界10もしくは結晶粒を含むすべり帯12である。結晶粒を含むすべり帯12は、線状の結晶粒界10が形成する条件と比べて、例えば、レーザビームのエネルギー密度が低い、もしくは焼鈍時間が短い場合に生じやすい。しかしながら、線状の結晶粒界10が生じる条件及び結晶粒を含むすべり帯12が生じる条件は、レーザビームのエネルギー密度のようなレーザ条件に加えて、鋼板の成分、仕上げ焼鈍の温度、仕上げ焼鈍の時間、仕上げ焼鈍の雰囲気によっても変化するため、詳細については不明である。
 第二の実施形態における線状の結晶粒界10では、仕上げ焼鈍時の900℃以上の高温下で粒界すべりが発生し易く、機械的強度が他の部分に比べて低い。従って、コイルがコイル受台に接した状態でコイルに荷重がかかった場合、線状の結晶粒界10が最初にすべり変形し、結晶粒界10よりも上の部分へかかる荷重を分散して、側歪み部の幅の拡大及び変動を抑制すると考えられる。
 なお、上述した焼鈍時のすべり変形の機構は、粒界すべり変形部に形成される線状の結晶粒界によっている。しかしながら、第二の実施形態の変形例のように、すべり変形の機構は、例えば、圧延方向に沿って形成され、結晶粒を含むすべり帯による高温すべりであってもよい。この結晶粒は、微細な結晶粒であってもよく、細長い結晶粒であってもよい。例えば、第二の実施形態の変形例では、すべり帯12中の結晶粒(細長い結晶粒)の粒界が上述した線状の結晶粒界10と同様にすべり変形し、側歪み部の幅の拡大及び変動を抑制する。
 次に、発明者らは、第二の実施形態におけるレーザ照射のエネルギー密度Edの好適な範囲について調査した。すなわち、本発明者らは、距離aが20mmの条件でレーザ照射部の細粒化度とエネルギー密度Edとの関係を調べた。ここで、搬送速度VLは、1000mm/s、レーザビームのC方向の直径dcは、1.2mmの一定値とした。レーザパワーPを200~5000Wの範囲で変えることにより、上述した(3)式で示されるEdを変更し、二次再結晶後の鋼板の結晶状態(組織)を調べた。
 その結果、エネルギー密度Edが0.5J/mm以上では、仕上げ焼鈍時に所定の結晶組織(線状の粒界)を発生させることができた。しかしながら、Edが0.5J/mm未満では、仕上げ焼鈍時に所定の結晶組織(線状の粒界)を発生させることができなかった。一方、Edが5.0J/mmを超える場合には、レーザ照射によって鋼板の溶融が顕著となり、再凝固時に鋼板が大きく変形する。そのため、この場合には、コイルに巻き取れない問題が発生した。従って、Edの好適な範囲は、(6)式で示される範囲であった。
 上述した実施例1~3の条件は、本発明の実施可能性及び効果を確認するために採用した一部の例である。しかしながら、本発明は、実施例1~3に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 本発明によれば、側歪み部の幅がほぼ一定値となり、後工程におけるトリミング幅を極力減らすことができ、歩留まりが向上する。したがって、本発明は、電磁鋼板製造産業において利用可能性が大きい。
 1  方向性電磁鋼板
 2  レーザ装置
 2a  集光レンズ
 3  レーザビーム
 4a  溝部(変形容易部)
 4z  粒界すべり変形部(線状領域、変形容易部)
 5  コイル
 5a  巻軸
 5e  側歪み部
 5f  変形容易部
 5z  下端部(端部領域、第一の端部)
 6  ノズル
 7  アシストガス
 8  コイル受台
 9  焼鈍炉カバー
 10  線状の結晶粒界(線状結晶粒界、粒界)
 11  二次再結晶粒
 12  すべり帯

Claims (32)

  1.  鋼板の圧延方向と平行になるように前記鋼板の端部領域に変形容易部を形成し; 
     前記鋼板をコイル状に巻き締め;
     前記鋼板の前記端部領域が前記鋼板の下方になるように配置した後、前記鋼板に仕上げ焼鈍を行う;
    ことを特徴とする方向性電磁鋼板の製造方法。
  2.  前記変形容易部は、連続的に形成されることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3.  前記変形容易部は、不連続に形成されることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  4.  前記変形容易部を、前記鋼板全長にわたって形成することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  5.  前記変形容易部を、前記鋼板の前記圧延方向における一部に形成することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  6.  前記変形容易部を、前記端部領域の端面から5mm以上100mm以下の距離に形成することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  7.  前記仕上げ焼鈍を行う際に、前記コイル状に巻き締められた後の前記鋼板の巻軸の方向がコイル受台に垂直になるように前記鋼板を載置することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  8.  前記鋼板に焼鈍分離剤を塗布する前に、前記変形容易部を形成することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  9.  前記変形容易部を、レーザビームの照射により形成することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  10.  前記変形容易部に、溝を形成することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  11.  前記溝を、前記鋼板の片面に形成することを特徴とする請求項10に記載の方向性電磁鋼板の製造方法。
  12.  前記溝を、前記鋼板の両面に形成することを特徴とする請求項10に記載の方向性電磁鋼板の製造方法。
  13.  前記溝の幅は、0.03mm以上10mm以下であることを特徴とする請求項10に記載の方向性電磁鋼板の製造方法。
  14.  前記溝の深さd及び前記鋼板の板厚tは、0.05≦d/t≦0.7を満たすことを特徴とする請求項10に記載の方向性電磁鋼板の製造方法。
  15.  前記変形容易部は、粒界すべり変形部であることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  16.  前記仕上げ焼鈍後の前記粒界すべり変形部は、1本の線状結晶粒界であることを特徴とする請求項15に記載の方向性電磁鋼板の製造方法。
  17.  前記仕上げ焼鈍後の前記粒界すべり変形部は、結晶粒を含むすべり帯であることを特徴とする請求項15に記載の方向性電磁鋼板の製造方法。
  18.  前記すべり帯の幅は、0.02mm以上20mm以下であることを特徴とする請求項17に記載の方向性電磁鋼板の製造方法。
  19.  鋼板の圧延方向と平行になるように前記鋼板の端部領域に高温変形部が形成された方向性電磁鋼板。
  20.  前記高温変形部は、連続的に形成されていることを特徴とする請求項19に記載の方向性電磁鋼板。
  21.  前記高温変形部は、不連続に形成されていることを特徴とする請求項19に記載の方向性電磁鋼板。
  22.  前記高温変形部は、前記鋼板全長にわたって形成されていることを特徴とする請求項19に記載の方向性電磁鋼板。
  23.  前記高温変形部は、前記鋼板の前記圧延方向における一部に形成されていることを特徴とする請求項19に記載の方向性電磁鋼板。
  24.  前記高温変形部は、前記端部領域の端面から5mm以上100mm以下の距離に形成されていることを特徴とする請求項19に記載の方向性電磁鋼板。
  25.  前記高温変形部は、溝であることを特徴とする請求項19に記載の方向性電磁鋼板。
  26.  前記溝は、前記鋼板の片面に形成されていることを特徴とする請求項25に記載の方向性電磁鋼板。
  27.  前記溝は、前記鋼板の両面に形成されていることを特徴とする請求項25に記載の方向性電磁鋼板。
  28.  前記溝の幅は、0.03mm以上10mm以下であることを特徴とする請求項25に記載の方向性電磁鋼板。
  29.  前記溝の深さd及び前記鋼板の板厚tは、0.05≦d/t≦0.7を満たすことを特徴とする請求項25に記載の方向性電磁鋼板。
  30.  前記高温変形部は、1本の線状結晶粒界であることを特徴とする請求項19に記載の方向性電磁鋼板。
  31.  前記高温変形部は、結晶粒を含むすべり帯であることを特徴とする請求項19に記載の方向性電磁鋼板。
  32.  前記すべり帯の幅は、0.02mm以上20mm以下であることを特徴とする請求項31に記載の方向性電磁鋼板。
PCT/JP2010/001516 2009-03-11 2010-03-04 方向性電磁鋼板及びその製造方法 WO2010103761A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2011137067/02A RU2483124C2 (ru) 2009-03-11 2010-03-04 Электротехнический стальной лист с ориентированной зеренной структурой и способ его производства
EP21156531.2A EP3851547A1 (en) 2009-03-11 2010-03-04 Grain-oriented electrical steel sheet and producing method therefor
CN201080010504.1A CN102341511B (zh) 2009-03-11 2010-03-04 方向性电磁钢板及其制造方法
BRPI1008994-2A BRPI1008994B1 (pt) 2009-03-11 2010-03-04 método para produção de chapa de aço elétrica com grão orientado
JP2010525156A JP4772924B2 (ja) 2009-03-11 2010-03-04 方向性電磁鋼板及びその製造方法
US13/138,533 US20120028069A1 (en) 2009-03-11 2010-03-04 Grain-oriented electrical steel sheet and producing method therefor
PL10750519T PL2412832T3 (pl) 2009-03-11 2010-03-04 Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych oraz sposób jej wytwarzania
BR122018010657-3A BR122018010657B1 (pt) 2009-03-11 2010-03-04 chapa de aço elétrico com grão orientado
KR1020117020888A KR101364310B1 (ko) 2009-03-11 2010-03-04 방향성 전자기 강판 및 그 제조 방법
EP10750519.0A EP2412832B1 (en) 2009-03-11 2010-03-04 Grain-oriented electrical steel sheet and producing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009058500 2009-03-11
JP2009-058500 2009-03-11
JP2009-263216 2009-11-18
JP2009263216 2009-11-18

Publications (1)

Publication Number Publication Date
WO2010103761A1 true WO2010103761A1 (ja) 2010-09-16

Family

ID=42728057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001516 WO2010103761A1 (ja) 2009-03-11 2010-03-04 方向性電磁鋼板及びその製造方法

Country Status (9)

Country Link
US (1) US20120028069A1 (ja)
EP (2) EP3851547A1 (ja)
JP (1) JP4772924B2 (ja)
KR (1) KR101364310B1 (ja)
CN (1) CN102341511B (ja)
BR (2) BR122018010657B1 (ja)
PL (1) PL2412832T3 (ja)
RU (1) RU2483124C2 (ja)
WO (1) WO2010103761A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165393A1 (ja) 2011-05-27 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
WO2014080763A1 (ja) 2012-11-26 2014-05-30 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
CN104039988A (zh) * 2011-12-29 2014-09-10 Posco公司 电工钢及其制造方法
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382645B1 (ko) * 2012-05-16 2014-04-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101395800B1 (ko) * 2012-11-30 2014-05-20 주식회사 포스코 전기강판의 자구 미세화 방법 및 이에 의해 제조되는 방향성 전기강판
EP3085465B9 (en) * 2013-12-18 2021-01-06 Posco Apparatus for side trimming a steel plate
JP6455593B2 (ja) 2015-04-20 2019-01-23 新日鐵住金株式会社 方向性電磁鋼板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100131A (ja) 1986-10-17 1988-05-02 Nippon Steel Corp 珪素鋼板の仕上焼鈍方法
JPS6442530A (en) 1987-08-07 1989-02-14 Nippon Steel Corp Box annealing method for strip coil
JPH0297622A (ja) 1988-09-30 1990-04-10 Nippon Steel Corp 方向性珪素鋼板の仕上焼鈍方法
JPH03177518A (ja) 1989-12-05 1991-08-01 Nippon Steel Corp 方向性珪素鋼板の縁部座屈防止用誘導加熱装置
JP2000038616A (ja) 1998-07-24 2000-02-08 Kawasaki Steel Corp 側歪の少ない方向性けい素鋼板の製造方法
JP2001323322A (ja) 2000-05-12 2001-11-22 Kawasaki Steel Corp 方向性珪素鋼帯の最終仕上げ焼鈍方法
JP4103350B2 (ja) * 2001-07-02 2008-06-18 Jfeスチール株式会社 金属帯の歪導入装置
JP2009058500A (ja) 2007-08-06 2009-03-19 Genome Soyaku Kenkyusho:Kk 血糖値を降下させる物質の評価方法、スクリーニング方法及び製造方法
JP2009263216A (ja) 2008-03-29 2009-11-12 Mitsubishi Materials Corp 二酸化ウラン焼結体とその製造方法。

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423647B2 (ja) * 1974-04-25 1979-08-15
US4363677A (en) * 1980-01-25 1982-12-14 Nippon Steel Corporation Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
IT1182608B (it) * 1984-10-15 1987-10-05 Nippon Steel Corp Lamiera di acciaio elettrico a grana orientata avente una bassa perdita di potenza e metodo per la sua fabbricazione
SU1647030A1 (ru) * 1988-07-22 1991-05-07 Институт физики металлов Уральского отделения АН СССР Способ производства полосы анизотропной электротехнической стали
US5089062A (en) * 1988-10-14 1992-02-18 Abb Power T&D Company, Inc. Drilling of steel sheet
JPH0723511B2 (ja) * 1989-12-07 1995-03-15 新日本製鐵株式会社 一方向性電磁鋼帯の処理装置
JP3470475B2 (ja) * 1995-11-27 2003-11-25 Jfeスチール株式会社 極めて鉄損の低い方向性電磁鋼板とその製造方法
JP4319715B2 (ja) * 1998-10-06 2009-08-26 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板とその製造方法
KR100359622B1 (ko) * 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 고자장 철손 특성이 우수한 고자속밀도 일방향성 전자 강판 및 그의 제조방법
RU2345148C2 (ru) * 2006-07-13 2009-01-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный аэрокосмический университет им. академика С.П. Королева Способ лазерной термической обработки материалов
WO2012165393A1 (ja) * 2011-05-27 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100131A (ja) 1986-10-17 1988-05-02 Nippon Steel Corp 珪素鋼板の仕上焼鈍方法
JPS6442530A (en) 1987-08-07 1989-02-14 Nippon Steel Corp Box annealing method for strip coil
JPH0297622A (ja) 1988-09-30 1990-04-10 Nippon Steel Corp 方向性珪素鋼板の仕上焼鈍方法
JPH03177518A (ja) 1989-12-05 1991-08-01 Nippon Steel Corp 方向性珪素鋼板の縁部座屈防止用誘導加熱装置
JP2000038616A (ja) 1998-07-24 2000-02-08 Kawasaki Steel Corp 側歪の少ない方向性けい素鋼板の製造方法
JP2001323322A (ja) 2000-05-12 2001-11-22 Kawasaki Steel Corp 方向性珪素鋼帯の最終仕上げ焼鈍方法
JP4029543B2 (ja) * 2000-05-12 2008-01-09 Jfeスチール株式会社 方向性珪素鋼帯の最終仕上げ焼鈍方法
JP4103350B2 (ja) * 2001-07-02 2008-06-18 Jfeスチール株式会社 金属帯の歪導入装置
JP2009058500A (ja) 2007-08-06 2009-03-19 Genome Soyaku Kenkyusho:Kk 血糖値を降下させる物質の評価方法、スクリーニング方法及び製造方法
JP2009263216A (ja) 2008-03-29 2009-11-12 Mitsubishi Materials Corp 二酸化ウラン焼結体とその製造方法。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412832A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229432B1 (ja) * 2011-05-27 2013-07-03 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
KR101368578B1 (ko) * 2011-05-27 2014-02-28 신닛테츠스미킨 카부시키카이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
CN103717761A (zh) * 2011-05-27 2014-04-09 新日铁住金株式会社 取向性电磁钢板及取向性电磁钢板的制造方法
WO2012165393A1 (ja) 2011-05-27 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
US8900688B2 (en) 2011-05-27 2014-12-02 Nippon Steel & Sumitomo Metal Corporation Grain oriented electrical steel sheet and method of producing grain oriented electrical steel sheet
EP2716772A4 (en) * 2011-05-27 2015-01-14 Nippon Steel & Sumitomo Metal Corp CORNORATED ELECTROMAGNETIC STEEL PLATE AND METHOD FOR THE PRODUCTION OF CORNORIENTED ELECTROMAGNETIC STEEL PLATE
EP2799560A4 (en) * 2011-12-29 2016-03-16 Posco ELECTRIC MATTRESS AND METHOD FOR MANUFACTURING THE SAME
CN104039988A (zh) * 2011-12-29 2014-09-10 Posco公司 电工钢及其制造方法
JP2015510543A (ja) * 2011-12-29 2015-04-09 ポスコ 電気鋼板およびその製造方法
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
WO2014080763A1 (ja) 2012-11-26 2014-05-30 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
JP5928607B2 (ja) * 2012-11-26 2016-06-01 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
EP2949767A4 (en) * 2012-11-26 2016-11-09 Nippon Steel & Sumitomo Metal Corp DIRECTIONAL ELECTROMAGNETIC SHEET AND METHOD FOR MANUFACTURING DIRECTIONAL ELECTROMAGNETIC SHEET
RU2604550C1 (ru) * 2012-11-26 2016-12-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Лист текстурованной электротехнической стали и способ изготовления листа текстурованной электротехнической стали
KR101709877B1 (ko) * 2012-11-26 2017-02-23 신닛테츠스미킨 카부시키카이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
US10297375B2 (en) 2012-11-26 2019-05-21 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
KR20150064219A (ko) 2012-11-26 2015-06-10 신닛테츠스미킨 카부시키카이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법

Also Published As

Publication number Publication date
CN102341511B (zh) 2014-08-06
EP2412832B1 (en) 2021-05-05
RU2483124C2 (ru) 2013-05-27
EP3851547A1 (en) 2021-07-21
RU2011137067A (ru) 2013-04-20
EP2412832A4 (en) 2017-09-13
KR101364310B1 (ko) 2014-02-18
JP4772924B2 (ja) 2011-09-14
CN102341511A (zh) 2012-02-01
BR122018010657B1 (pt) 2020-11-24
US20120028069A1 (en) 2012-02-02
BRPI1008994A2 (pt) 2016-10-25
JPWO2010103761A1 (ja) 2012-09-13
EP2412832A1 (en) 2012-02-01
KR20110124292A (ko) 2011-11-16
BRPI1008994B1 (pt) 2020-12-22
PL2412832T3 (pl) 2021-11-02

Similar Documents

Publication Publication Date Title
JP4772924B2 (ja) 方向性電磁鋼板及びその製造方法
JP5771620B2 (ja) 低鉄損高磁束密度の方向性電磁鋼板
US10744600B2 (en) Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP5229432B1 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
RU2548544C2 (ru) Способ быстрого нанесения насечек с помощью лазера
JP6252833B2 (ja) マルテンサイト系ステンレス鋼鋼帯の製造方法
JP5928607B2 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
JP6948565B2 (ja) マルテンサイト系ステンレス鋼帯の製造方法
KR102675615B1 (ko) 선상 홈 형성 방법 및 선상 홈 형성 장치 그리고 방향성 전기 강판의 제조 방법
JP7255287B2 (ja) 炭素工具鋼鋼帯の製造方法
JP7375728B2 (ja) 積鉄心形変圧器用鉄心部材の製造方法と製造装置
JP4635456B2 (ja) 鋼板の連続焼鈍方法
JP4333299B2 (ja) 高炭素鋼板の製造方法
JP2001300632A (ja) 溶接管製造用シームガイドロールおよび溶接管の製造方法
JPS6233722A (ja) 冷間圧延鋼板の製造法
JPH07188750A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010504.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010525156

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6489/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117020888

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010750519

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011137067

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13138533

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008994

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1008994

Country of ref document: BR

Free format text: ESCLARECA A OMISSAO DE YAMASAKI, KOJI DO QUADRO DE INVENTORES, UMA VEZ QUE O MESMO CONSTA NA PUBLICACAO WO/2010/103761 DE 16/09/2010.

ENP Entry into the national phase

Ref document number: PI1008994

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110908