WO2014080763A1 - 方向性電磁鋼板及び方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板及び方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2014080763A1
WO2014080763A1 PCT/JP2013/080001 JP2013080001W WO2014080763A1 WO 2014080763 A1 WO2014080763 A1 WO 2014080763A1 JP 2013080001 W JP2013080001 W JP 2013080001W WO 2014080763 A1 WO2014080763 A1 WO 2014080763A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
steel plate
laser
grain
laser processing
Prior art date
Application number
PCT/JP2013/080001
Other languages
English (en)
French (fr)
Inventor
弘二 平野
吉男 中村
翔二 長野
誠一郎 長
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020157013093A priority Critical patent/KR101709877B1/ko
Priority to BR112015010560A priority patent/BR112015010560B1/pt
Priority to US14/442,530 priority patent/US10297375B2/en
Priority to JP2014548508A priority patent/JP5928607B2/ja
Priority to EP13857398.5A priority patent/EP2949767B1/en
Priority to RU2015119255/02A priority patent/RU2604550C1/ru
Priority to IN2464DEN2015 priority patent/IN2015DN02464A/en
Priority to PL13857398T priority patent/PL2949767T3/pl
Priority to CN201380060271.XA priority patent/CN104884643B/zh
Publication of WO2014080763A1 publication Critical patent/WO2014080763A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet in which a laser treatment is performed on one end region in the width direction of the steel sheet and a method for producing the grain-oriented electrical steel sheet.
  • the above-mentioned grain-oriented electrical steel sheet is made of, for example, a silicon steel slab, and a hot rolling process ⁇ annealing process ⁇ cold rolling process ⁇ decarburizing annealing process ⁇ finish annealing process ⁇ flattening annealing process ⁇ insulating film forming process, etc. Manufactured in a procedure.
  • a SiO 2 film mainly composed of silica (SiO 2 ) is formed on the surface of the steel sheet.
  • the finish annealing step the steel sheet is placed in a batch furnace in a state of being wound in a coil shape, and heat treatment is performed. Therefore, in order to prevent the steel sheet from seizing in the finish annealing step, an annealing separator mainly composed of magnesia (MgO) is applied to the surface of the steel plate before the finish annealing step.
  • MgO magnesia
  • a glass film is formed on the surface of the steel sheet by reacting the SiO 2 film with an annealing separator mainly composed of magnesia.
  • the coil cradle 8 in the annealing furnace cover 9 is arranged so that the coil 5 obtained by winding the steel plate coincides with the winding axis 5a of the coil 5 and the vertical direction. Installed on top.
  • the side distortion portion 5e has a wave height h formed by the end of the steel plate from the surface of the platen when the steel plate unwound from the coil 5 is placed on a flat surface plate.
  • the side strained portion 5e is made of a steel plate that satisfies the condition that the wave height h is greater than 2 mm or the condition that the steepness s indicated by the following formula (1) is greater than 1.5% (greater than 0.015). It is a deformation
  • region of an edge part. s h / Wg (1)
  • Wg is the width of the side distortion portion 5e.
  • the generation mechanism of side strain deformation during finish annealing is explained by grain boundary sliding at high temperatures. That is, at a high temperature of 900 ° C. or higher, deformation due to grain boundary sliding becomes significant, so that side strain deformation is likely to occur at the crystal grain boundary portion.
  • the lower end portion 5z of the coil 5 in contact with the coil cradle 8 is later in the secondary recrystallization growth time than the center portion of the coil 5. Therefore, at the lower end portion 5z of the coil 5, the crystal grain size becomes small, and a finer portion is easily formed.
  • Patent Document 1 discloses a method in which a fine graining agent is applied to a belt-shaped portion having a certain width from the lower end surface of a coil in contact with a coil cradle before final annealing, and the belt-shaped portion is refined during finish annealing. It is disclosed.
  • Patent Document 2 before final annealing, work deformation distortion is imparted by a roll or the like with a protrusion provided on a belt-like portion having a certain width from the lower end surface of the coil in contact with the coil cradle.
  • a method for refining the belt-like portion is disclosed.
  • the crystal at the lower end of the coil is made finer starting from distortion caused by machining such as a roll.
  • machining such as a roll.
  • the applied processing deformation strain rolling rate
  • the grain-oriented electrical steel sheet is a hard material containing a large amount of Si, so that the roll wears heavily and the roll needs to be frequently replaced.
  • machining gives strain over a wide range, there is a limit to the range of suppression of side strain deformation.
  • Patent Documents 3 to 6 listed below in order to suppress side distortion deformation, secondary recrystallization of a band-shaped portion having a constant width from the lower end of the coil is promoted to increase the crystal grain size at an early stage of finish annealing.
  • a method for improving the high-temperature strength is disclosed.
  • Patent Documents 3 and 4 disclose a method of heating a strip at the end of a steel plate by plasma heating or induction heating as a means for increasing the crystal grain size before finish annealing.
  • Patent Documents 3, 5, and 6 disclose methods for introducing machining distortion by shot blasting, rolls, tooth profile rolls, and the like.
  • Plasma heating and induction heating are heating methods that have a relatively wide heating range, and are therefore suitable for heating a band-shaped range.
  • plasma heating and induction heating have a problem that it is difficult to control the heating position and the heating temperature.
  • region wider than a predetermined range will be heated by heat conduction. For this reason, since the width of the region where the crystal grain size is increased by secondary recrystallization cannot be controlled to be constant, there is a problem that non-uniformity tends to occur in the side strain deformation suppression effect.
  • the method of machining a roll or the like has a problem that the effect of imparting strain (amount of strain) decreases with time due to wear of the roll.
  • amount of strain the effect of imparting strain
  • the speed of secondary recrystallization changes sensitively depending on the amount of strain
  • even if the amount of strain due to wear of the roll is small the desired crystal grain size cannot be obtained and stable side strain deformation occurs.
  • the suppression effect cannot be obtained.
  • machining gives strain over a wide range, there is a limit to the range of suppression of side strain deformation.
  • Patent Document 7 proposes a technique for forming an easily deformable portion or a groove portion extending in parallel with the rolling direction in the width direction one end region of the steel plate by laser beam irradiation, water jet, or the like. .
  • the development of the side strain is prevented by the easily deformable portion or the groove portion formed in the one end side region in the width direction of the steel plate, and the width of the side strain portion can be reduced.
  • the easily deformable portion is formed in the ground iron portion itself of the steel plate.
  • This easily deformable portion is a linear region including a grain boundary formed in the base iron portion of the steel plate during finish annealing, or a slip band including crystal grains formed in the base iron portion of the steel plate.
  • This easily deformable portion is formed in a portion (heat affected portion) that is irradiated with a laser beam from the surface of the steel plate before finish annealing and has a thermal effect on the base iron portion.
  • the heat-affected zone is a portion that is re-solidified after being melted by the heat of the laser beam (melt re-solidified portion), and the melt re-solidified portion is formed over the entire plate thickness.
  • melt re-solidified portion Due to this thermal influence, in the easily deformable portion that occurs during finish annealing, a high proportion of abnormal crystal grains in which the direction of the easy magnetization axis deviates from the rolling direction of the steel sheet is generated. For this reason, the magnetic characteristics are deteriorated in the ground iron portion in the region where the easily deformable portion is formed.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a grain-oriented electrical steel sheet having excellent magnetic properties while suppressing side distortion deformation to a minimum, and a manufacturing method thereof. .
  • the present invention employs the following means in order to solve the above problems and achieve the object. That is, (1)
  • the grain-oriented electrical steel sheet according to an aspect of the present invention is the steel sheet after the laser beam is irradiated along the rolling direction of the steel sheet with respect to the width direction one end region of the steel sheet after the cold rolling process.
  • an angle deviation ⁇ a between the direction of the easy axis of each crystal grain and the rolling direction is defined, and the angle deviation ⁇ a is defined as a crystal located under the laser irradiation mark.
  • the average value R of the angle deviation ⁇ a obtained by averaging with grains is more than 20 ° and 40 ° or less.
  • a distance WL from one end in the width direction of the steel sheet to the center in the width direction of the laser irradiation trace may be 5 mm or more and 35 mm or less.
  • the laser irradiation trace is an end in the rolling direction of the steel sheet located on the outermost periphery when the steel sheet is wound in a coil shape. As a starting point, it may be formed in an area of 20% or more and 100% or less of the entire length of the steel sheet in the rolling direction.
  • a width d of the laser irradiation trace may be 0.05 mm or more and 5.0 mm or less.
  • a method of manufacturing a grain-oriented electrical steel sheet according to an aspect of the present invention includes a laser beam irradiation to a width direction one end region of a steel sheet after a cold rolling process along a rolling direction of the steel sheet.
  • the laser processing step By irradiation with the laser beam, a melted and resolidified portion having a depth of more than 0% and not more than 80% of the thickness of the steel plate is formed at a position corresponding to the laser processing portion.
  • a distance WL from one end in the width direction of the steel sheet to the center in the width direction of the laser processing unit may be 5 mm or more and 35 mm or less.
  • the steel plate in the laser processing step, is positioned on an outermost periphery when the steel plate is wound in a coil shape in the finish annealing step.
  • the laser processing section may be formed in an area of 20% or more and 100% or less of the total length of the steel sheet in the rolling direction, starting from one end of the steel sheet in the rolling direction.
  • a width d of the laser processing unit may be 0.05 mm or greater and 5.0 mm or less.
  • the melted and resolidified portion having a depth of more than 0% and not more than 80% of the thickness of the steel sheet is formed on the steel sheet.
  • the melt resolidified part is altered, and the direction of the easy axis of magnetization of the crystal grains of the melt resolidified part and the rolling direction
  • the average value R of the angle shift amount ⁇ a is more than 20 ° and not more than 40 °. Therefore, the grain-oriented electrical steel sheet in which the average value R of the angle deviation ⁇ a of crystal grains located below the laser irradiation trace is 20 ° or more and 40 ° or less can be suitably manufactured by the manufacturing method.
  • the side distortion deformation which arises in a finishing annealing process can be suppressed by irradiating the laser beam to the side edge part of the grain-oriented electrical steel sheet after a cold rolling process and before a finishing annealing process.
  • an average value R of an angle deviation ⁇ a between the direction of the easy axis of crystal grains and the rolling direction is 20 below the laser irradiation trace corresponding to the melt resolidified portion formed inside the steel sheet by laser beam irradiation. It is in the range of more than 40 ° and less than 40 °. Therefore, the magnetic characteristics in the laser-treated part are improved, and in some cases, the part can also be used as a material such as a transformer, thereby improving the yield. That is, according to the said aspect, the grain-oriented electrical steel sheet which has the outstanding magnetic characteristic, while the side distortion deformation is suppressed to minimum, and its manufacturing method can be provided.
  • a first melt resolidified portion 22a having a depth D1 is formed from one surface of the steel plate 11, and a second melt resolidified portion 22b having a depth D2 is formed from the other surface of the steel plate 11. It is a schematic diagram which shows the case where the laser beam is irradiated to both surfaces of the steel plate 11.
  • the method for manufacturing the grain-oriented electrical steel sheet 10 includes a casting step S01, a hot rolling step S02, an annealing step S03, a cold rolling step S04, It has a carbon annealing step S05, a laser processing step S06, an annealing separator coating step S07, a finish annealing step S08, a planarization annealing step S09, and an insulating film forming step S10.
  • molten steel prepared to have a predetermined composition is supplied to a continuous casting machine, and an ingot is continuously produced.
  • a composition of molten steel the iron alloy containing Si generally used as a raw material of the grain-oriented electrical steel sheet 10 is mentioned.
  • molten steel having the following composition is used.
  • Si 2.5 mass% or more and 4.0 mass% or less C; 0.02 mass% or more and 0.10 mass% or less Mn; 0.05 mass% or more and 0.20 mass% or less Acid-soluble Al; 0.020 mass % Or more and 0.040 mass% or less N; 0.002 mass% or more and 0.012 mass% or less S; 0.001 mass% or more and 0.010 mass% or less P; 0.01 mass% or more and 0.04 mass% or less Remainder; Fe and impurities
  • the ingot obtained from the casting step S01 is heated to a predetermined temperature (for example, 1150 to 1400 ° C.) to perform hot rolling. Thereby, for example, a hot rolled material having a thickness of 1.8 to 3.5 mm is produced.
  • a predetermined temperature for example, 1150 to 1400 ° C.
  • the hot-rolled material obtained in the hot rolling step S02 is subjected to heat treatment, for example, under conditions of annealing temperature: 750 to 1200 ° C. and annealing time: 30 seconds to 10 minutes.
  • the cold rolling step S04 the surface of the hot rolled material after the annealing step S03 is pickled, and then cold rolling is performed. Thereby, for example, a steel plate 11 having a thickness of 0.15 to 0.35 mm is produced.
  • the steel plate 11 obtained from the cold rolling step S04 is subjected to heat treatment, for example, under conditions of annealing temperature: 700 to 900 ° C. and annealing time: 1 to 3 minutes.
  • the heat treatment is performed by passing the steel plate 11 through the decarburization annealing furnace 31 while traveling.
  • a SiO 2 film mainly composed of silica (SiO 2 ) is formed on the surface of the steel plate 11.
  • a laser beam along the rolling direction is applied to the one end side region in the width direction of the steel plate 11 on which the SiO 2 coating 12a is formed, under the laser irradiation conditions described in detail below.
  • This laser processing part 20 is confirmed on the surface of the steel plate 11 as a laser irradiation mark 14 after the finish annealing step S08. Note that the laser processing unit 20 may be formed on both surfaces of the steel plate 11 by irradiating both surfaces of the steel plate 11 with laser beams.
  • the laser processing step S06 is performed by a laser processing apparatus 33 disposed on the rear stage side of the decarburization annealing furnace 31, as shown in FIG.
  • the cooling device 32 which cools the steel plate 11 after the decarburization annealing process S05 may be arrange
  • the temperature T of the steel plate 11 conveyed to the laser processing device 33 can be set within a range of, for example, more than 0 ° C. and 300 ° C. or less.
  • the laser processing step may be provided between the cold rolling step S04 and the decarburizing annealing step S05, or between the annealing separating agent application step S07 and the finish annealing step S08.
  • a laser processing step S06 is provided between the decarburization annealing step S05 and the annealing separating agent application step S07 will be described.
  • the laser processing apparatus 33 includes a laser oscillator 33a, a condenser lens 33b, and a gas nozzle 33c that injects assist gas in the vicinity of the laser irradiation point. Air or nitrogen can be used as the assist gas.
  • the light source and type of the laser are not particularly limited.
  • the laser beam irradiation conditions are set so that the depth D of the melted and resolidified portion 22 that is manifested as a thermal effect on the steel plate 11 is greater than 0% and 80% or less of the plate thickness t of the steel plate 11. Is done.
  • FIG. 10 the schematic diagram of the structure
  • the melted and resolidified portion 22 is a portion that is resolidified after the steel plate 11 is melted by the heat of the laser beam.
  • the structure of the steel plate 11 is coarsened due to the thermal effect of the laser beam irradiation.
  • the depth D of the melted and resolidified portion 22 is the depth in the plate thickness direction of the region where the coarsened structure exists as compared to the portion not affected by heat. The laser beam irradiation conditions will be described in detail later.
  • the laser beam irradiation conditions are set so that the depth D of the melted and resolidified portion 22 is greater than 0% and not more than 80% of the plate thickness t.
  • the width Wg hereinafter referred to as the side strain width Wg
  • the value R is in the range of more than 20 ° and not more than 40 °.
  • the laser beam irradiation conditions are set so that q is greater than 0 and equal to or less than 0.8.
  • laser irradiation conditions such as (mm / sec), a plate thickness t (mm) of a steel plate, and a flow rate Gf (L / min) of an assist gas are given.
  • the laser power P (W) is gradually increased from zero, and the threshold of the laser power P at which melting occurs on the surface of the steel plate 11 is P0 (W), Further, when the laser power P is increased, the power P at which q becomes 0.8 is defined as P0 ′ (W).
  • P0 ′ the power P at which q becomes 0.8
  • the melt resolidification part 22 can be formed in the base metal part directly under the laser irradiation position of the steel plate 11 by laser beam irradiation, and the ratio q of the depth D of the melt resolidification part 22 to the plate thickness t is 0. It can be made to be super 0.8 or less. That is, it is possible to form the melted and resolidified portion 22 having a depth D of more than 0% and not more than 80% of the thickness t of the steel plate 11.
  • melt resolidification part depth D the depth D of the melt resolidification part 22
  • t resolidification part depth D the depth D of the melt resolidification part 22
  • the laser beam diameter dc (mm) along the width direction of the steel plate 11 and the laser beam diameter dL (mm) along the plate passing direction of the steel plate 11 are adjusted so as to satisfy the following expressions (1) and (2). .
  • P1 and P2 in the formula (1) are as the following formulas (3) to (5).
  • the definition of dc and dL is shown in FIG.
  • the irradiation position of the laser beam in the steel plate width direction is adjusted, and the irradiation position (width direction of the laser processing portion 20 from the width direction one end of the steel plate 11) is adjusted.
  • the distance WL to the center (corresponding to “the distance WL from one end in the width direction of the steel plate 11 to the center in the width direction of the laser irradiation mark 14” shown in FIG. 5) is adjusted to be within a range of 5 mm to 35 mm. It is desirable to do.
  • the length Lz in the rolling direction of the laser processing unit 20 (corresponding to “the length Lz in the rolling direction of the laser irradiation mark 14” shown in FIG.
  • the width d of the laser processing unit 20 (laser irradiation mark 14) corresponding to the beam diameter dc in the width direction of the steel plate of the laser beam be in the range of 0.05 mm or more and 5.0 mm or less.
  • the influence of the width d of the laser processing unit 20 on the degree of progress of the side distortion deformation is not so great.
  • the width d of the laser processing unit 20 is less than 0.05 mm, there is a problem that thermal diffusion to the steel plate 11 during laser irradiation is increased and energy efficiency is lowered.
  • the width d of the laser processing unit 20 exceeds 5 mm, there is a problem that the required laser output becomes too large.
  • an annealing separation agent mainly composed of magnesia (MgO) is applied on the SiO 2 film 12a and dried by heating.
  • an annealing separator coating device 34 is disposed on the rear stage side of the laser processing device 33, and the surface of the steel plate 11 on which the laser processing step S ⁇ b> 06 has been performed. The annealing separator is applied continuously.
  • the steel plate 11 which passed the annealing separator coating apparatus 34 is wound up in coil shape, and the coil 5 is obtained.
  • the outermost peripheral end of the coil 5 is the rear end of the steel plate 11 that passes through the decarburization annealing furnace 31, the laser processing device 33, and the annealing separator coating device 34. Therefore, in this embodiment, the laser processing unit 20 is formed in at least the rear end region of the steel plate 11 in the laser processing step S06.
  • the coil 5 obtained by winding the steel plate 11 coated with the annealing separator is coiled so that the winding axis 5a faces the vertical direction. It mounts on the table
  • the heat treatment conditions in the finish annealing step S08 are set, for example, to an annealing temperature: 1100 to 1300 ° C. and an annealing time: 20 to 24 hours.
  • one end portion in the width direction (the lower end side in the axial direction of the coil 5) where the laser processing unit 20 is formed is the coil cradle 8 in the coil 5 (steel plate 11).
  • the coil 5 is placed on the coil cradle 8 so as to come into contact with the coil 5.
  • the laser processing unit 20 is preferentially deformed.
  • the side distortion portion 5e progresses from the contact position between the coil 5 and the coil cradle 8 (one end side in the width direction of the coil 5) toward the other end side in the width direction.
  • the development of the side distortion part 5e is suppressed. Therefore, the width of the side strained portion 5e (side strain width Wg) is reduced, and even when the side strained portion 5e is removed, the trimming width can be reduced, and the production yield of the grain-oriented electrical steel sheet 10 can be reduced. Can be improved.
  • the SiO 2 film 12a mainly composed of silica reacts with the annealing separator mainly composed of magnesia, and the glass film 12 made of forsterite (Mg 2 SiO 4 ) is formed on the surface of the steel plate 11. (See FIG. 4) is formed.
  • the melted and resolidified portion 22 is formed in the steel plate 11 by irradiation with a laser beam.
  • the laser beam is irradiated at a relatively low intensity (the laser power P) such that the ratio q to t is more than 0 and less than 0.8 (more than 0% and less than 80%). Due to the formation of this limited heat-affected zone (melt re-solidified zone 22), the mechanical strength of the laser processing zone 20 is lower than that of the other zone, and it becomes easy to deform. As a result, it is presumed that in the finish annealing process, the progress of the side distortion portion 5e is suppressed by the local deformation of the laser processing portion 20.
  • the steel plate 11 wound in a coil shape is rewound, and is applied with tension at an annealing temperature of about 800 ° C., and is conveyed in a plate shape. Release deformation and flatten.
  • an insulating film 13 is formed by applying and baking an insulating material on the glass film 12 formed on both surfaces of the steel plate 11.
  • the glass film 12 and the insulating film 13 are formed on the surface of the steel plate 11, and the grain-oriented electrical steel plate 10 according to the present embodiment is manufactured (see FIG. 4).
  • a laser beam is condensed and irradiated toward the single side
  • the magnetic domain control may be performed by providing
  • the side strain width Wg and the warp of the side strain portion 5e can be sufficiently suppressed. Accordingly, even if the manufactured grain-oriented electrical steel sheet 10 has the side distortion portion 5e, the side distortion portion 5e may not be trimmed if the customer's required quality is satisfied. In this case, the production yield of the grain-oriented electrical steel sheet 10 can be further improved.
  • the ratio q of the depth D of the melt resolidified portion 22 formed by laser beam irradiation to the plate thickness t is more than 0% and less than 80% (more than 0 and less than 0.8). It becomes.
  • the grain-oriented electrical steel sheet 10 can be used as a product with excellent magnetic properties as it is depending on the application, so the quality and product yield of the grain-oriented electrical steel sheet 10 can be used. Both can be improved.
  • the crystal orientation of the ground iron portion inside the laser irradiation mark 14 is more oriented than before. And is stable and can be used as the grain-oriented electrical steel sheet 10 depending on the application.
  • the power P of the laser beam in the laser processing step S06 can be kept low, a large-sized and high-power laser device is not necessary, and the grain-oriented electrical steel sheet 10 can be manufactured efficiently.
  • the grain-oriented electrical steel sheet 10 includes a steel sheet 11, a glass film 12 formed on the surface of the steel sheet 11, an insulating film 13 formed on the glass film 12, It has.
  • the steel plate 11 is comprised with the iron alloy containing Si generally used as a raw material of the grain-oriented electrical steel plate 10.
  • the steel plate 11 according to the present embodiment has the following composition, for example.
  • Si 2.5 mass% or more and 4.0 mass% or less C; 0.02 mass% or more and 0.10 mass% or less Mn; 0.05 mass% or more and 0.20 mass% or less Acid-soluble Al; 0.020 mass % Or more and 0.040 mass% or less N; 0.002 mass% or more and 0.012 mass% or less S; 0.001 mass% or more and 0.010 mass% or less P; 0.01 mass% or more and 0.04 mass% or less Remainder; Fe and impurities
  • the thickness of the steel plate 11 is generally 0.15 mm or more and 0.35 mm or less, but may be outside this range.
  • the glass film 12 is made of a composite oxide such as forsterite (Mg 2 SiO 4 ), spinel (MgAl 2 O 4 ), and cordierite (Mg 2 Al 4 Si 5 O 16 ).
  • the thickness of the glass coating 12 is, for example, 0.5 ⁇ m to 3 ⁇ m at portions other than the laser irradiation mark 14 corresponding to the laser processing unit 20, and particularly around 1 ⁇ m. It is not limited to the example.
  • the insulating film 13 is, for example, a coating solution mainly composed of colloidal silica and phosphate (magnesium phosphate, aluminum phosphate, etc.) (for example, Japanese Patent Laid-Open No. 48-39338 and Japanese Patent Publication No. 53-28375). Or a coating liquid in which alumina sol and boric acid are mixed (for example, see Japanese Patent Application Laid-Open Nos. 6-65754 and 6-65555).
  • the insulating film 13 is made of aluminum phosphate, colloidal silica, chromic anhydride (see, for example, Japanese Patent Publication No. 53-28375), and the like.
  • the thickness of this insulating film 13 is generally around 2 ⁇ m, for example, it is not limited to this example.
  • the laser irradiation mark 14 is formed in the region where the laser processing unit 20 is formed in the laser processing step S06. This laser irradiation mark 14 is formed on one side surface or both side surfaces of the grain-oriented electrical steel sheet 10.
  • This laser irradiation mark 14 can be confirmed as a part having a color different from other parts by visual observation of the surface of the grain-oriented electrical steel sheet 10. This is presumably because the composition ratio of elements such as Mg and Fe in the glass coating 12 and the thickness of the glass coating 12 are different. For this reason, it is also possible to identify the laser irradiation mark 14 by elemental analysis of the glass coating 12. For example, according to EPMA (Electron-Probe-Micro-Analyser) analysis of the glass coating 12, it is possible to confirm changes in the laser irradiation mark 14 such that the characteristic X-ray intensity of Mg decreases or the characteristic X-ray intensity of Fe increases. .
  • EPMA Electro-Probe-Micro-Analyser
  • This laser irradiation mark 14 is caused by the alteration of the laser processing unit 20 formed by the laser irradiation method described above in the finish annealing step S08.
  • This laser irradiation mark 14 is linearly formed along the rolling direction (longitudinal direction of the steel plate 11) inward from the one end in the width direction of the directional electromagnetic steel plate 10 by a predetermined distance WL.
  • the laser irradiation mark 14 is formed in a continuous linear shape along the rolling direction.
  • the present invention is not limited to this example, and the laser irradiation mark 14 may be formed in a discontinuous linear shape, for example, a broken line shape that is periodically broken along the rolling direction.
  • the laser irradiation trace 14 may be partially formed in a part of the longitudinal direction (rolling direction) of the steel plate 11.
  • the laser irradiation mark 14 is preferably formed in a region of 20% or more and 100% or less of the entire length in the longitudinal direction of the steel plate 11 starting from the outermost periphery of the coil 5 obtained by winding the steel plate 11.
  • the longitudinal length Lz of the laser irradiation mark 14 from the longitudinal tip of the directional electromagnetic steel sheet 10 is 20% or more (Lz ⁇ 0.2 ⁇ Lc) with respect to the total length Lc of the directional electromagnetic steel sheet 10.
  • the laser irradiation mark 14 is formed in an area of 20% or more of the entire length Lc of the coil 5 starting from the outermost peripheral portion of the coil 5.
  • the laser irradiation trace 14 having a sufficient length is not formed on the outer peripheral side portion of the coil 5. The effect of suppressing the side distortion deformation at the outer peripheral side portion of the steel sheet will be reduced.
  • the laser irradiation mark 14 is formed at a position where the distance WL from one end in the width direction of the grain-oriented electrical steel sheet 10 to the center in the width direction of the laser irradiation mark 14 is 5 mm or more and 35 mm or less (5 mm ⁇ WL ⁇ 35 mm). Furthermore, the width d of the laser irradiation mark 14 is preferably 0.05 mm or more and 5.0 mm or less (0.05 mm ⁇ d ⁇ 5.0 mm).
  • the laser irradiation mark 14 by forming the laser irradiation mark 14 at a position satisfying the condition of 5 mm ⁇ WL ⁇ 35 mm, the laser irradiation mark 14 that is easily deformed in the finish annealing step S08 can be suppressed as a result of side distortion deformation. Since it can be formed at a position, the side strain width Wg of the side strain portion 5e can be reliably reduced.
  • difference amount (theta) a of the direction of the easy axis of a crystal grain and a rolling direction. Is more than 20 ° and not more than 40 °, preferably more than 20 ° and not more than 30 °.
  • the average value R of the angle deviation amount ⁇ a is related to crystal grains located under the laser irradiation mark 14 formed on the surface of the steel plate 11 (that is, crystal grains in the region of the melted and resolidified portion 22).
  • An angle deviation amount ⁇ a between the direction of the easy axis of grain and the rolling direction of the steel plate 11 is defined, and the angle deviation amount ⁇ a of each crystal grain is obtained by averaging the crystal grains located under the laser irradiation mark 14. It is done.
  • the amount of angle deviation ⁇ a between the direction of the easy axis of crystal grains and the rolling direction in the present embodiment is defined as follows. That is, the direction of the axis of easy magnetization of the target crystal grains is an angle ⁇ t rotating about the width direction axis of the steel plate 11 from the rolling direction in the steel plate surface serving as a reference, and an axis perpendicular to the steel plate surface.
  • the larger ⁇ a means that the easy magnetization axis is a crystal grain greatly deviating from the rolling direction of the steel plate 11. If the easy axis of crystal grains deviates greatly from the rolling direction, the magnetization direction of the part tends to be greatly different from the rolling direction, and the magnetic field lines are hardly transmitted in the rolling direction. As a result, the magnetic properties with respect to the rolling direction of the steel plate 11 deteriorate.
  • the average value R of the angle deviation ⁇ a is defined by the following equation (6) for the crystal grains generated in the corresponding part).
  • i is a crystal grain number.
  • there are six crystal grains (i 1 to 6) below the laser irradiation mark 14.
  • Li is a distance where the laser irradiation mark 14 and the i-th crystal grain overlap or contact when the steel plate 11 is looked down from the surface side as shown in FIG. .theta.a i relates i th grain, a rotation angle .theta.a defined above.
  • w i is set to "1".
  • w i is set to "0.5".
  • the mean value R of the angle deviation amount ⁇ a falls within the range of more than 20 ° and not more than 40 °, and as a result, the grain-oriented electrical steel sheet 10 in which deterioration of the magnetic properties is suppressed (that is, the directionality having excellent magnetic properties) An electromagnetic steel sheet 10) is obtained.
  • the side strain width Wg of the side strain portion 5e is small, and it may not be necessary to remove the side strain portion 5e.
  • the average value R of the angle deviation ⁇ a is more than 20 ° and 40 ° or less in a portion (ground iron) located below the laser irradiation mark 14 in the steel plate 11.
  • the crystal orientation of the width direction side edge part of the steel plate 11 including the lower part of the laser irradiation mark 14 is more stable and stable than before, and depending on the application, the side edge part is trimmed. It becomes possible to utilize as the grain-oriented electrical steel sheet 10 without doing.
  • the grain-oriented electrical steel sheet 10 and the method for manufacturing the grain-oriented electrical steel sheet 10 according to the embodiment of the present invention have been described, but the present invention is not limited thereto. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
  • the composition of the steel plate 11 is not limited to that described in the above embodiment, and may be another composition.
  • the laser processing process S06 was provided in the said embodiment between the decarburization annealing process S05 and the annealing separation agent application
  • the laser irradiation trace 14 demonstrated the example formed in a continuous linear form along a rolling direction, it is not limited to this.
  • the laser irradiation mark 14 may be formed in a discontinuous broken line shape.
  • the laser irradiation mark 14 has a period along the rolling direction. It may be formed automatically. In this case, an effect of reducing the average power of the laser can be obtained.
  • the ratio r of the laser processing unit 20 per cycle is not particularly limited as long as the effect of suppressing side distortion deformation is obtained, but it is desirable to set r> 50%, for example. .
  • the melted and resolidified portion 22 having a depth D of more than 0% and not more than 80% of the thickness t of the steel plate 11 is formed at a position corresponding to the laser processing portion 20.
  • the case where a laser beam was irradiated along the rolling direction of the steel plate 11 was illustrated.
  • the melted and resolidified portion 22 having a depth D of more than 16% and not more than 80% of the plate thickness t of the steel plate 11 is formed at a position corresponding to the laser processing portion 20. It is more preferable to irradiate the laser beam along the rolling direction of the steel plate 11.
  • the average value R of the angle shift amount ⁇ a is more than 25 ° and not more than 40 °.
  • the laser irradiation trace 14 may be formed on both surfaces of the directional electromagnetic steel sheet 10 by irradiating both surfaces of the steel sheet 11 with laser beams. That is, when the steel plate 11 is viewed in plan, both surfaces of the steel plate 11 are overlapped so that the laser irradiation mark 14 formed on one surface of the steel plate 11 and the laser irradiation mark 14 formed on the other surface of the steel plate 11 overlap. May be irradiated with a laser beam. In this case, for example, as shown in FIG.
  • a first melt-resolidified portion 22a having a depth D1 from one surface of the steel plate 11 is formed, and a second having a depth D2 from the other surface of the steel plate 11 is formed.
  • the irradiation condition of the laser beam is set so that the melted and re-solidified portion 22b is formed.
  • the laser irradiation mark 14 formed on one surface of the steel plate 11 and the laser irradiation mark 14 formed on the other surface of the steel plate 11 do not overlap. You may irradiate a laser beam to both surfaces.
  • the depth D1 of the first melt resolidification part 22a formed by laser irradiation on one surface of the steel plate 11 and the second melt resolidification part formed by laser irradiation on the other surface of the steel plate 11 At least one of the depth D2 of 22b may be more than 0% and 80% or less (more preferably more than 16% and 80% or less) of the thickness t of the steel plate 11.
  • Si 3.0% by mass
  • C 0.05% by mass
  • Mn 0.1% by mass
  • acid-soluble Al 0.02% by mass
  • N 0.01% by mass
  • S 0.01% by mass %
  • P 0.02 mass%
  • a slab having a composition of Fe and impurities as the balance was cast (casting step S01).
  • This hot slab was hot rolled at 1280 ° C. to produce a hot rolled material having a thickness of 2.3 mm (hot rolling step S02).
  • the hot-rolled material was heat-treated at 1000 ° C. for 1 minute to anneal the hot-rolled material (annealing step S03).
  • the hot-rolled material after the annealing step is subjected to pickling treatment and then cold-rolled to produce cold-rolled materials having a thickness of 0.23 mm and 0.35 mm (cold-rolling step) S04).
  • the cold-rolled material was subjected to decarburization annealing under conditions of 800 ° C. ⁇ 2 minutes (decarburization annealing step S05).
  • This decarburization annealing step, SiO 2 film 12a are formed on both surfaces of the steel sheet 11 is a cold rolled material.
  • a laser processing unit 20 was formed by irradiating the surface of the steel plate 11 having the SiO 2 coating 12a formed thereon with a laser processing apparatus (laser processing step S06).
  • an annealing separator mainly composed of magnesia was applied to both surfaces of the steel plate 11 on which the laser processing unit 20 was formed on the SiO 2 film 12a (annealing separator coating step S07).
  • the conditions for forming the laser processing unit 20 in the laser processing step S06 are variously changed, and these conditions, the side strain width Wg after finish annealing, and the laser irradiation trace 14 of the steel plate 11 are changed.
  • the relationship between the average value R of the angle deviation ⁇ a between the direction of the easy axis of each crystal grain and the rolling direction in the lower portion was evaluated.
  • a semiconductor laser was used as the laser device.
  • Table 1 summarizes the laser beam conditions and evaluation result data.
  • Table 1 shows the value of (P ⁇ P1) / (P2 ⁇ P1) calculated using the above equations (3) to (5) and the optical microscope after polishing the cross section of the steel sheet 11 immediately after the laser treatment.
  • the side strain width Wg shown in Table 1 is the maximum value with respect to the entire coil length.
  • the side distortion width Wg when the laser treatment was not performed was 45 mm.
  • Table 1 also shows that the easy axis direction of crystal grains in the steel core 11 in the base metal part located in the laser processing unit 20 is measured using X-ray diffraction, and the angle deviation in the easy axis direction relative to the rolling direction is measured. The value which calculated
  • the result of having evaluated the iron loss of W17 / 50 by the SST (Single sheet tester) test is also shown.
  • a test piece for SST measurement a square cut out from a region 100 mm wide from one end (edge) of the steel plate 11 (a region including the laser irradiation mark 14) with a length of 100 mm in the steel plate width direction and a length of 500 mm in the steel plate rolling direction. A piece was used.
  • the iron loss deterioration rate (%) was defined on the basis of the iron loss of the portion not subjected to laser treatment in the steel plate 11 having the same coil.
  • FIG. 15 shows the relationship between the ratio q shown in Table 1, the lateral distortion width Wg, and the average value R of the angular deviation amounts ⁇ a.
  • the lateral strain width Wg can be reduced by 20 mm or more, and the average value R of the angular deviation amount ⁇ a can be kept within the range of more than 20 ° and 40 ° or less.
  • the iron loss deterioration rate can be suppressed to less than 10% if the average value R of the angle deviation amount ⁇ a is 40 ° or less. Reducing the side strain width Wg by 20 mm means that the yield is improved by about 2% in the manufacture of the grain-oriented electrical steel sheet having a coil width of about 1000 mm.
  • the yield of the grain-oriented electrical steel sheet 10 when the yield is less than 2%, the cost of laser processing calculated as the cost for operating and maintaining the laser irradiation equipment exceeds the margin for reducing the manufacturing cost due to the yield improvement. Is improved by 2% or more, a merit is brought about by the introduction of laser irradiation equipment, and the effects of the present invention can be enjoyed. Furthermore, in the grain-oriented electrical steel sheet 10 manufactured by the method of the present invention, the iron loss deterioration rate of the side strained portion 5e is suppressed to less than 10% and the side strain width Wg is small, so that the side strain deformation itself. Is suppressed. Therefore, even if the side distortion portion 5e is provided, if it is allowed, the side distortion portion 5e can be used without being trimmed. In this case, the yield of the grain-oriented electrical steel sheet 10 can be further improved.
  • the average value R of the angle deviation amount ⁇ a and the iron loss deterioration rate increase. If the average value R of the angle deviation ⁇ a is 40 ° or less, the deterioration rate of the iron loss is less than 10%, and if the average value R of the angle deviation amount ⁇ a is 30 ° or less, the deterioration rate of the iron loss is 6%. It is suppressed to the following. If the deterioration rate of the iron loss is less than 10%, it means that there is a possibility that the grade deterioration can be suppressed within one grade in the product grade of the grain-oriented electrical steel sheet 10.
  • the inner side of the directional electromagnetic steel sheet 10 may be trimmed without trimming the end in the width direction of the directional electromagnetic steel sheet 10 including the laser irradiation mark 14 formed by laser processing depending on the application.
  • the product can be used as a product of the same grade together with the portion, and the yield of the grain-oriented electrical steel sheet 10 can be improved.
  • Comparative Example 1 since the laser power P is excessive with respect to the plate passing speed VL and the ratio q exceeds 0.8, the average value R of the angle deviation amount ⁇ a exceeds 40 °, and the iron loss is deteriorated. This is an example in which the rate is 10% or more.
  • Comparative Example 2 since the laser power P is insufficient with respect to the laser beam diameter dc and the ratio q is 0, the lateral strain width Wg is as large as 29 mm, and the reduction amount of the lateral strain width Wg is less than 20 mm. This is an example.
  • the range of the ratio q should be 0 ⁇ q ⁇ 0.8 in order to reduce the lateral strain width Wg by 20 mm or more and to suppress the deterioration rate of the iron loss to less than 10%.
  • the average value R of the angle deviation ⁇ a between the direction of the easy axis of the crystal grains of the steel plate 11 and the rolling direction is set to 40 ° or less, whereby iron It turns out that the deterioration rate of loss can be suppressed to less than 10%.
  • the average value R of the angle deviation amount ⁇ a is more than 20 °, in particular, 21 ° or more, so that the side compared with the case where the laser treatment is not performed. It can be seen that the strain width Wg can be reduced by 20 mm or more.
  • the angle deviation amount ⁇ a at the position corresponding to the laser irradiation mark 14 of the directional electromagnetic steel sheet 10 is reduced. It can be seen that the range of the average value R may be 20 ° ⁇ R ⁇ 40 °.
  • the penetration depth that is, the ratio q of the melted and resolidified portion depth D to the thickness t of the steel plate 11
  • the penetration depth can be in the range of 0 ⁇ q ⁇ 0.8.
  • FIG. 16 shows the relationship between the distance WL from one side end of the steel plate 11 in the width direction to the center in the width direction of the laser processing unit 20 (laser irradiation mark 14) and the side strain width Wg. Note that.
  • the laser conditions were set to the conditions corresponding to the above-described Invention Example 5.
  • the distance WL when the distance WL is 40 mm or more, the lateral strain width Wg becomes larger than 25 mm, and the reduction amount of the lateral strain width Wg is less than 20 mm, so that the effect of suppressing the lateral strain width Wg is reduced. It was confirmed.
  • the side strain width Wg when the distance WL is 5 mm or more and 35 mm or less, the side strain width Wg is 25 mm or less, and it can be seen that the side strain width Wg can be appropriately suppressed.
  • the distance WL when the distance WL is less than 5.0 mm, the side strain width Wg tends to increase slightly, so the distance WL is preferably 5 mm or more. From the above, the distance WL from one side end of the steel plate 11 to the center in the width direction of the laser processing unit 20 (laser irradiation mark 14) is preferably 5.0 mm or more and 35 mm or less.
  • the rolling direction length Lz and the side when the rolling direction length Lz of the laser processing unit 20 (laser irradiation mark 14) starting from the outermost peripheral portion of the coil 5 is changed.
  • the relationship with the strain width Wg is shown in FIG.
  • the starting point of the length Lz in the rolling direction of the laser processing unit 20 is the outermost peripheral portion of the coil 5.
  • the laser conditions were set to the conditions corresponding to the above-described Invention Example 5.
  • the distance WL was set to 20 mm.
  • the side strain width Wg shown in FIG. 17 is the maximum value with respect to the entire coil length.
  • the lateral strain width Wg becomes larger than 25 mm, and the lateral strain width Since the reduction amount of Wg is less than 20 mm, the effect of suppressing the side strain width Wg is reduced.
  • the length Lz in the rolling direction of the laser processing unit 20 is 2000 m or more, that is, 20% or more of the total length Lc of the steel sheet
  • the side strain width Wg is less than 25 mm, and the reduction amount of the side strain width Wg is 20 mm. Therefore, the side strain width Wg can be suitably suppressed. For this reason, it is preferable to form the laser processing unit 20 in an area of 20% or more of the total length Lc in the rolling direction of the steel plate 11 from the outer periphery of the coil 5 where the side distortion is significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

方向性電磁鋼板の製造方法は、冷延工程後の鋼板の幅方向一端側領域に対し、前記鋼板の圧延方向に沿ってレーザビームを照射して、レーザ処理部を形成するレーザ処理工程と;前記レーザ処理部が形成された前記鋼板をコイル状に巻き、前記コイル状の前記鋼板を仕上げ焼鈍する仕上げ焼鈍工程と;を含む。前記レーザ処理工程では、前記レーザビームの照射により、前記鋼板の板厚の0%超80%以下の深さの溶融再凝固部を、前記レーザ処理部に対応する位置に形成する。

Description

方向性電磁鋼板及び方向性電磁鋼板の製造方法
本発明は、鋼板の幅方向一端側領域にレーザ処理が施された方向性電磁鋼板及び方向性電磁鋼板の製造方法に関する。
本願は、2012年11月26日に、日本に出願された特願2012-257875号に基づき優先権を主張し、その内容をここに援用する。
上述の方向性電磁鋼板は、例えば、素材をケイ素鋼スラブとし、熱間圧延工程→焼鈍工程→冷間圧延工程→脱炭焼鈍工程→仕上げ焼鈍工程→平坦化焼鈍工程→絶縁皮膜形成工程、といった手順で製造される。
ここで、仕上げ焼鈍工程前の脱炭焼鈍工程において、鋼板の表面にはシリカ(SiO)を主体とするSiO皮膜が形成される。また、仕上げ焼鈍工程では、鋼板がコイル状に巻き取られた状態でバッチ式炉内に装入されて、熱処理が実施される。そこで、仕上げ焼鈍工程における鋼板の焼き付きを防止するために、仕上げ焼鈍工程の前に、鋼板の表面にマグネシア(MgO)を主体とする焼鈍分離剤が塗布される。仕上げ焼鈍工程においては、上記SiO皮膜と、マグネシアを主体とする焼鈍分離剤とが反応することにより、鋼板の表面にグラス皮膜が形成される。
以下、仕上げ焼鈍工程について詳述する。仕上げ焼鈍工程では、図1に示すように、鋼板が巻き取られて得られるコイル5が、コイル5の巻軸5aと鉛直方向とが一致するように、焼鈍炉カバー9内のコイル受台8上に設置される。
このように設置されたコイル5が高温で焼鈍されると、図2に示すように、コイル受台8と接するコイル5の下端部5zは、自重、及び、コイル受台8とコイル5との熱膨張係数の差などに起因して、塑性変形を起こす。この塑性変形は、一般的に側歪み変形と呼ばれ、後の平坦化焼鈍工程でも完全に取り除くことができない。このように側歪み変形が生じている部分(側歪み部5e)が顧客の要求仕様を満足しない場合、この側歪み部5eはトリミングされる。
したがって、側歪み部5eが増加すると、トリミング幅の増加によって歩留まりが低下するという問題がある。側歪み部5eは、図3に示すように、コイル5から板状に巻き戻された鋼板を平らな定盤上に置いたときに定盤面から鋼板の端部が形成する波の高さhとして観測される。通常、側歪み部5eは、波の高さhが2mm超の条件または下記(1)式で示される急峻度sが1.5%超(0.015超)の条件を満たすような鋼板の端部の変形領域である。

 s=h/Wg ・・・(1)
 ここで、Wgは、側歪み部5eの幅である。
仕上げ焼鈍時の側歪み変形の発生機構は、高温時の粒界すべりによって説明される。すなわち、900℃以上の高温では、粒界すべりによる変形が顕著となるため、結晶粒界部において、側歪み変形が生じ易い。コイル受台8と接するコイル5の下端部5zは、コイル5の中心部に比べて、二次再結晶の成長時期が遅い。そのため、コイル5の下端部5zでは、結晶粒径が小さくなり、細粒化部が形成され易い。
この細粒化部には、結晶粒界が多く存在するため、上記のような粒界すべりが起こり易くなり、側歪み変形が発生すると推測される。したがって、従来技術では、コイル5の下端部5zの結晶粒成長を制御することにより、機械的変形を抑制する様々な方法が提案されている。
下記特許文献1には、仕上げ焼鈍前に、コイル受台と接するコイル下端面から一定幅の帯状部に細粒化剤を塗布して、仕上げ焼鈍中にこの帯状部を細粒化させる方法が開示されている。また、下記特許文献2には、仕上げ焼鈍前に、コイル受台と接するコイル下端面から一定幅の帯状部に突起物を付けたロール等により加工変形歪みを付与して、仕上げ焼鈍中にこの帯状部を細粒化させる方法が開示されている。
このように、特許文献1及び特許文献2に開示された方法では、側歪み変形を抑制するために、意図的にコイル下端部の結晶を細粒化させ、コイル下端部の機械的強度を変化させている。
しかし、特許文献1に開示された方法では、細粒化剤が液状であるため、塗布領域の正確な制御が困難である。また、細粒化剤が、鋼板端部から鋼板中央部に向かって拡散する場合もある。その結果、細粒化域の幅を一定に制御できないため、側歪み部の幅が、コイルの長手方向で大きく変化する。最も大きく変形した側歪み部の幅をトリミング幅として設定するので、一箇所でも側歪み部の幅が大きい場合、トリミング幅が増加し、歩留まりが低下する。
また、特許文献2に開示された方法では、ロール等の機械加工による歪みを起点にコイル下端部の結晶を細粒化させている。しかしながら、長時間の連続加工によってロールが摩耗するため、与えられる加工変形歪み(圧下率)が経時的に低下して、細粒化効果が低下するという問題がある。特に、方向性電磁鋼板は、Siを多く含む硬い素材であるため、ロールの摩耗が激しく、ロールを頻繁に交換する必要がある。また、機械加工は広範囲に歪みを与えてしまうため、側歪み変形の抑制範囲には限界がある。
一方、下記特許文献3~6には、側歪み変形を抑制するために、コイル下端から一定幅の帯状部の二次再結晶を促進して、仕上げ焼鈍の早い時期に結晶粒径を大きくし、高温強度を向上させる方法が開示されている。
特許文献3及び4には、結晶粒径を大きくする手段として、仕上げ焼鈍前に、プラズマ加熱や誘導加熱によって鋼板端部の帯状部を加熱する方法が開示されている。また、特許文献3、5及び6には、ショットブラスト、ロール、歯形ロール等で機械加工歪みを導入する方法が開示されている。
プラズマ加熱や誘導加熱は、比較的加熱範囲が広い加熱方式であるため、帯状範囲を加熱するのに適している。しかしながら、プラズマ加熱や誘導加熱は、加熱位置や加熱温度を制御しにくいという問題がある。また、熱伝導によって、所定の範囲よりも広い領域が加熱されてしまうという問題がある。そのため、二次再結晶により結晶粒径を大きくする領域の幅を一定に制御できないため、側歪み変形の抑制効果に不均一が生じ易いという問題がある。
ロール等の機械加工による方法では、先に述べたように、ロールの摩耗のために歪み付与効果(歪み量)が経時的に低下するという問題がある。特に、二次再結晶の速度は、歪み量に応じて敏感に変化するため、ロールの摩耗による歪み量が僅かであっても、所望の結晶粒径が得られず、安定した側歪み変形の抑制効果が得られないという問題がある。また、機械加工は広範囲に歪みを与えてしまうため、側歪み変形の抑制範囲には限界がある。
上述のように、特許文献1~6に開示された方法では、結晶粒径の制御(範囲及び大きさ)を正確に行うことが困難なため、十分な側歪み変形の抑制効果が得られないという問題があった。
そこで、下記特許文献7には、レーザビームの照射やウォータジェット等によって、鋼板の幅方向一端側領域に、圧延方向に平行に延在する変形容易部または溝部を形成する技術が提案されている。この場合、鋼板の幅方向一端側領域に形成された変形容易部または溝部によって側歪みの進展が防止され、側歪み部の幅を低減することが可能となる。
日本国特開昭63-100131号公報 日本国特開昭64-042530号公報 日本国特開平02-097622号公報 日本国特開平03-177518号公報 日本国特開2000-038616号公報 日本国特開2001-323322号公報 国際公開第2010/103761号パンフレット
ところで、特許文献7に開示された粒界すべり変形部を形成する方法では、鋼板の地鉄部自体に変形容易部が形成される。この変形容易部は、仕上げ焼鈍時に鋼板の地鉄部に形成される粒界を含む直線状の領域、もしくは、鋼板の地鉄部に形成される結晶粒を含むすべり帯である。この変形容易部は、仕上げ焼鈍前に鋼板表面からレーザビームを照射し、地鉄部に熱影響を与えた部分(熱影響部)に形成される。特許文献7に開示された方法では、この熱影響部は、レーザビームの熱により溶融した後に再凝固する部分(溶融再凝固部)であり、この溶融再凝固部は板厚全体にわたり形成される。この熱影響のために、仕上げ焼鈍時に生ずる変形容易部では、磁化容易軸の方向が鋼板の圧延方向からずれた異常結晶粒が高い割合で発生する。このため、変形容易部が形成された領域の地鉄部においては、磁気特性が劣化することになる。
ここで、上述のように側歪み部の幅が小さく抑えられ、顧客の要求品質を満足する時には、側歪み部のトリミングを実施しなくてもよい場合がある。しかしながら、特許文献7に記載された発明においては、側歪み部が許容される場合であっても、変形容易部や溝部が形成された部分について磁気特性が劣化していることから、方向性電磁鋼板の品質が低下してしまうといった問題があった。
さらに、鋼板に変形容易部及び溝部を形成するためには、大きなエネルギーを鋼板に対して付与する必要がある。よって、仕上げ焼鈍前の前処理に多くの時間が掛かり、あるいは大型、大出力なレーザ装置が必要になり、方向性電磁鋼板を効率良く製造することができないといった問題があった。
本発明は、上述した事情に鑑みてなされたものであり、側歪み変形が最小限に抑えられながらも優れた磁気特性を有する方向性電磁鋼板、及びその製造方法を提供することを目的とする。
本発明は、上記課題を解決して係る目的を達成するために、以下の手段を採用する。すなわち、
(1)本発明の一態様に係る方向性電磁鋼板は、冷延工程後の鋼板の幅方向一端側領域に対して、前記鋼板の圧延方向に沿ってレーザビームが照射された後に、前記鋼板がコイル状に巻かれた状態で仕上げ焼鈍されることにより製造された方向性電磁鋼板であって、前記鋼板の地鉄部のうち、前記レーザビームの照射により前記鋼板の表面に形成されたレーザ照射痕の下部に位置する結晶粒に関して、各結晶粒の磁化容易軸の方向と前記圧延方向との角度ずれ量θaを定義し、前記角度ずれ量θaを前記レーザ照射痕の下部に位置する結晶粒で平均化して得られる前記角度ずれ量θaの平均値Rが、20°超40°以下である。
(2)上記(1)に記載の方向性電磁鋼板において、前記鋼板の幅方向一端から前記レーザ照射痕の幅方向中心までの距離WLが、5mm以上35mm以下であってもよい。
(3)上記(1)または(2)に記載の方向性電磁鋼板において、前記レーザ照射痕が、前記鋼板がコイル状に巻かれたときに最外周に位置する前記鋼板の圧延方向の一端を起点として前記鋼板の圧延方向の全長の20%以上100%以下の領域に形成されていてもよい。
(4)上記(1)~(3)のいずれか一つに記載の方向性電磁鋼板において、前記レーザ照射痕の幅dが、0.05mm以上5.0mm以下であってもよい。
また、
(5)本発明の一態様に係る方向性電磁鋼板の製造方法は、冷延工程後の鋼板の幅方向一端側領域に対し、前記鋼板の圧延方向に沿ってレーザビームを照射して、レーザ処理部を形成するレーザ処理工程と;前記レーザ処理部が形成された前記鋼板をコイル状に巻き、前記コイル状の前記鋼板を仕上げ焼鈍する仕上げ焼鈍工程と;を含み、前記レーザ処理工程では、前記レーザビームの照射により、前記鋼板の板厚の0%超80%以下の深さの溶融再凝固部を、前記レーザ処理部に対応する位置に形成する。
(6)上記(5)に記載の方向性電磁鋼板の製造方法において、前記鋼板の幅方向一端から、前記レーザ処理部の幅方向中心までの距離WLが、5mm以上35mm以下であってもよい。
(7)上記(5)または(6)に記載の方向性電磁鋼板の製造方法において、前記レーザ処理工程では、前記仕上げ焼鈍工程にて前記鋼板がコイル状に巻かれたときに最外周に位置する前記鋼板の圧延方向の一端を起点として前記鋼板の圧延方向の全長の20%以上100%以下の領域に、前記レーザ処理部を形成してもよい。
(8)上記(5)~(7)のいずれか一つに記載の方向性電磁鋼板の製造方法において、前記レーザ処理部の幅dが、0.05mm以上5.0mm以下であってもよい。
上記のような方向性電磁鋼板の製造方法によれば、前記レーザ処理工程において、前記鋼板の板厚の0%超80%以下の深さの前記溶融再凝固部が前記鋼板に形成される。これにより、前記仕上げ焼鈍工程において前記コイル状の鋼板が仕上げ焼鈍されたときに、前記溶融再凝固部が変質し、前記溶融再凝固部の結晶粒の磁化容易軸の方向と前記圧延方向との角度ずれ量θaの平均値Rが20°超40°以下になる。従って、前記製造方法により、前記レーザ照射痕の下部に位置する結晶粒の角度ずれ量θaの平均値Rが20°超40°以下である方向性電磁鋼板を好適に製造可能である。
上記態様によれば、冷延工程後、仕上げ焼鈍工程前の方向性電磁鋼板の側端部にレーザビームを照射することによって、仕上げ焼鈍工程で生ずる側歪み変形を抑制できる。また、レーザビームの照射によって鋼板内部に形成される溶融再凝固部に対応するレーザ照射痕の下部において、結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rが20°超40°以下の範囲となる。従って、レーザ処理した部位における磁気特性が改善され、場合によっては当該部位をもトランス等の材料として使用することが可能となり、歩留まりの向上が実現される。
すなわち、上記態様によれば、側歪み変形が最小限に抑えられながらも優れた磁気特性を有する方向性電磁鋼板、及びその製造方法を提供することができる。

仕上げ焼鈍装置の一例を示す説明図である。 側歪み変形を抑制する手段を講じていない従来のコイルにおける側歪みの成長過程を示す概略図である。 側歪み変形の評価方法の一例を示す説明図である。 本発明の一実施形態に係る方向性電磁鋼板の断面図である。 本発明の一実施形態に係る方向性電磁鋼板を示す説明図である。 本発明の一実施形態に係る方向性電磁鋼板の製造方法を示すフロー図である。 脱炭焼鈍工程、レーザ処理工程、焼鈍分離剤塗布工程、を実施する設備の概略説明図である。 レーザ処理工程を実施するレーザ処理装置の概略説明図である。 レーザ処理工程を実施した鋼板の概略説明図である。 鋼板幅方向の断面における結晶粒の状態を示す模式図である。 本発明の一実施形態に係る方向性電磁鋼板がコイル状に巻き取られた状態を示す説明図である。 本発明の一実施形態に係る方向性電磁鋼板における側歪み変形の成長過程を示す概略図である。 本発明の他の実施形態に係る方向性電磁鋼板を示す説明図である。 鋼板の地鉄部表面におけるレーザ照射痕の周辺に生じる結晶粒を示す説明図である。 結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rと、パラメータqと、側歪み幅Wgとの関係を示すグラフである。 鋼板幅方向の端部からレーザ処理部までの距離WLと側歪み幅Wgとの関係を示すグラフである。 レーザ処理部の圧延方向長さLzと側歪み幅Wgとの関係を示すグラフである。 鋼板11の一方の表面から深さD1を有する第1の溶融再凝固部22aが形成され、鋼板11の他方の表面から深さD2を有する第2の溶融再凝固部22bが形成されるように、鋼板11の両面にレーザビームを照射した場合を示す模式図である。
以下に、添付図面を参照しながら、本発明の一実施形態に係る方向性電磁鋼板及び方向性電磁鋼板の製造方法について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。なお、本発明は、以下の実施形態に限定されるものではない。
 まず、本実施形態に係る方向性電磁鋼板10の製造方法について説明する。
 本実施形態に係る方向性電磁鋼板10の製造方法は、図6のフロー図に示すように、鋳造工程S01と、熱間圧延工程S02と、焼鈍工程S03と、冷間圧延工程S04と、脱炭焼鈍工程S05と、レーザ処理工程S06と、焼鈍分離剤塗布工程S07と、仕上げ焼鈍工程S08と、平坦化焼鈍工程S09と、絶縁皮膜形成工程S10と、を有している。
 鋳造工程S01では、所定の組成に調製された溶鋼を連続鋳造機に供給し、鋳塊を連続的に製出する。溶鋼の組成としては、方向性電磁鋼板10の素材として一般的に用いられる、Siを含有する鉄合金が挙げられる。本実施形態では、例えば以下の組成の溶鋼が用いられる。
 Si;2.5質量%以上4.0質量%以下
 C;0.02質量%以上0.10質量%以下
 Mn;0.05質量%以上0.20質量%以下
 酸可溶性Al;0.020質量%以上0.040質量%以下
 N;0.002質量%以上0.012質量%以下
 S;0.001質量%以上0.010質量%以下
 P;0.01質量%以上0.04質量%以下
 残部;Fe及び不純物
熱間圧延工程S02では、鋳造工程S01から得られた鋳塊を所定温度(例えば1150~1400℃)に加熱して熱間圧延を実施する。これにより、たとえば厚さ1.8~3.5mmの熱間圧延材を製出する。
焼鈍工程S03では、熱間圧延工程S02から得られた熱間圧延材に対して、例えば、焼鈍温度:750~1200℃、焼鈍時間:30秒~10分の条件で熱処理を行う。
 冷間圧延工程S04では、焼鈍工程S03後の熱間圧延材の表面を酸洗した後で、冷間圧延を実施する。これにより、たとえば厚さ0.15~0.35mmの鋼板11を製出する。

脱炭焼鈍工程S05では、冷間圧延工程S04から得られた鋼板11に対して、例えば、焼鈍温度:700~900℃、焼鈍時間:1~3分の条件で熱処理を行う。なお、本実施形態では、図7に示すように、鋼板11を走行させた状態で脱炭焼鈍炉31を通過させることによって熱処理を実施している。
 この脱炭焼鈍工程S05により、鋼板11の表面にはシリカ(SiO)を主体とするSiO皮膜が形成される。
レーザ処理工程S06では、図9に示すように、SiO皮膜12aが形成された鋼板11の幅方向一端側領域に対して、下記で詳細に説明するレーザ照射条件で圧延方向に沿ってレーザビームを照射して、レーザ処理部20を形成する。このレーザ処理部20は、仕上げ焼鈍工程S08の後にレーザ照射痕14として鋼板11の表面に確認される。なお、鋼板11の両面にレーザビームを照射することにより、鋼板11の両面にレーザ処理部20を形成してもよい。
レーザ処理工程S06は、図7に示すように、脱炭焼鈍炉31の後段側に配設されたレーザ処理装置33によって実施される。なお、脱炭焼鈍炉31とレーザ処理装置33の間には、脱炭焼鈍工程S05の後の鋼板11を冷却する冷却装置32が配設されていてもよい。この冷却装置32によって、レーザ処理装置33に搬送される鋼板11の温度Tを、例えば0℃超300℃以下の範囲内に設定することが可能である。
なお、レーザ処理工程は、冷間圧延工程S04と脱炭焼鈍工程S05との間、あるいは、焼鈍分離剤塗布工程S07と仕上げ焼鈍工程S08の間に設けられていても良い。以下では、図6のフロー図に示すように、脱炭焼鈍工程S05と焼鈍分離剤塗布工程S07との間にレーザ処理工程S06が設けられた実施形態について説明する。
以下、レーザ処理工程S06について説明する。レーザ処理装置33は、図8に示すように、レーザ発振器33aと、集光レンズ33bと、レーザ照射点近傍にアシストガスを噴射するガスノズル33cと、を備えている。アシストガスとしては空気や窒素を用いることができる。レーザの光源、種類については、特に限定はされない。
本実施形態では、鋼板11への熱影響として顕在化する溶融再凝固部22の深さDが鋼板11の板厚tの0%超80%以下となるように、レーザビームの照射条件が設定される。図10には、レーザ処理部20における鋼板11の幅方向断面を観察した際に現れる組織の模式図を示す。
図10に示すように、溶融再凝固部22は、レーザビームの熱により鋼板11が溶融した後に再凝固した部分である。この溶融再凝固部22では、レーザビームの照射により熱影響を受けて、鋼板11の組織が粗大化している。ここで、溶融再凝固部22の深さDは、熱影響を受けない部分に比べて粗大化した組織が存在する領域の板厚方向の深さである。レーザビームの照射条件については、後で詳述する。本実施形態では、溶融再凝固部22の深さDが板厚tの0%超80%以下となるようにレーザビームの照射条件が設定される。これにより、仕上げ焼鈍工程S08で生ずる鋼板11の側歪み部5eの幅Wg(以下、側歪み幅Wgという。)を低減できる。また、このようなレーザビームの照射条件の下では、鋼板11のうちレーザ処理部20の下部に位置する部位において、各結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rが、20°超40°以下の範囲となる。
ここで、溶融再凝固部22の深さDと鋼板11の板厚tとの比を、q(=D/t)と定義する。本実施形態では、qが0超0.8以下となるようにレーザビームの照射条件が設定される。
あるレーザの光源、種類、鋼板11の幅方向のレーザビーム径dc(mm)、鋼板11の通板方向(長手方向、圧延方向)のレーザビーム径dL(mm)、鋼板11の通板速度VL(mm/sec)、鋼板の板厚t(mm)、アシストガスの流量Gf(L/min)などのレーザ照射条件がそれぞれ与えられた場合を考える。この場合において、それら全ての条件を固定したまま、レーザパワーP(W)をゼロから徐々に増加させ、鋼板11の地鉄部の表面に溶融が生ずるレーザパワーPの閾値をP0(W)、さらにレーザパワーPを増加させていった際に、qが0.8となるパワーPをP0’(W)とする。
上記のような条件下において、レーザ処理工程S06では、P0≦P<P0’を満たすようなレーザパワーPに設定して、鋼板11にレーザビームを照射することが望ましい。これにより、レーザビームの照射により、鋼板11のレーザ照射位置の直下の地鉄部に溶融再凝固部22を形成でき、その溶融再凝固部22の深さDの板厚tに対する比率qを0超0.8以下とすることができる。つまり、鋼板11の板厚tの0%超80%以下の深さDを有する溶融再凝固部22を形成することができる。
本発明者らは鋭意検討を繰り返した結果、レーザビームの照射条件を以下のように設定することで、溶融再凝固部22の深さD(以下、「溶融再凝固部深さD」という場合もある。)を板厚tの0%超80%以下にする(つまり、0<q≦0.8とする)ことができることを見出した。これらの式は、レーザビーム照射中の熱伝導現象を解析することで得られた溶融再凝固部深さDの予測式を、種々のレーザ条件に対する溶融再凝固部深さDの実験測定結果を用いて補正することにより得たものである。すなわち、レーザビームの照射においては、与えられた鋼板11の通板速度VL(mm/sec)、鋼板11の板厚t(mm)に対して、レーザビームの出力(レーザパワー)P(W)、鋼板11の幅方向に沿ったレーザビーム径dc(mm)、鋼板11の通板方向に沿ったレーザビーム径dL(mm)を以下の式(1)、(2)を満たすように調整する。
 P1<P<P2  ・・・(1)
 0.2mm≦dc≦5.0mm  ・・・(2)
ここで、式(1)中のP1、P2は以下の式(3)~(5)の通りである。なお、dcとdLの定義を図9に示す。
Figure JPOXMLDOC01-appb-M000001
側歪み部5eの進展をレーザ処理部20によって確実に抑制するためには、レーザビームの鋼板幅方向の照射位置を調整し、鋼板11の幅方向一端から照射位置(レーザ処理部20の幅方向中心)までの距離WL(図5に示す「鋼板11の幅方向一端からレーザ照射痕14の幅方向中心までの距離WL」に相当する。)が、5mm以上35mm以下の範囲内となるよう調整することが望ましい。また、レーザ処理部20の圧延方向長さLz(図5に示す「レーザ照射痕14の圧延方向長さLz」に相当する。)は、コイル5の最外周部を起点としてコイル5の全長Lcの20%以上100%以下とすることが望ましい。これにより、側歪み変形が発生し易いコイル5の外周側部分においても、側歪み変形の進展を確実に抑制することができる。
さらに、レーザビームの鋼板幅方向のビーム径dcに対応するレーザ処理部20(レーザ照射痕14)の幅dは、0.05mm以上5.0mm以下の範囲内とすることが望ましい。レーザ処理部20の幅dが側歪み変形の進展度合に与える影響はそれほど大きくない。しかしながら、レーザ処理部20の幅dが0.05mm未満の場合、レーザ照射中の鋼板11への熱拡散が大きくなりエネルギー効率が低下するという問題がある。また、レーザ処理部20の幅dが5mm超の場合、要求されるレーザの出力が大きくなりすぎるという問題がある。
レーザ処理工程S06の次の焼鈍分離剤塗布工程S07では、SiO皮膜12aの上に、マグネシア(MgO)を主体とする焼鈍分離剤を塗布し、加熱乾燥する。なお、本実施形態では、図7に示すように、レーザ処理装置33の後段側に、焼鈍分離剤塗布装置34が配設されており、レーザ処理工程S06が実施された鋼板11の表面に対して連続的に焼鈍分離剤が塗布される。
そして、焼鈍分離剤塗布装置34を通過した鋼板11は、コイル状に巻き取られて、コイル5が得られる。なお、このコイル5の最外周端は、脱炭焼鈍炉31、レーザ処理装置33、焼鈍分離剤塗布装置34を通過する鋼板11の後端となる。そこで、本実施形態では、レーザ処理工程S06において、鋼板11の少なくとも後端側の領域にレーザ処理部20を形成することになる。
次に、仕上げ焼鈍工程S08では、図11に示すように、焼鈍分離剤を塗布された鋼板11が巻き取られて得られたコイル5を、巻軸5aが鉛直方向を向くようにしてコイル受台8の上に載置し、仕上げ焼鈍炉に装入して熱処理(バッチ式の仕上げ焼鈍)を実施する。なお、この仕上げ焼鈍工程S08における熱処理条件は、例えば、焼鈍温度:1100~1300℃、焼鈍時間:20~24時間に設定される。

 この仕上げ焼鈍工程S08では、図11に示すように、コイル5(鋼板11)のうちレーザ処理部20が形成された幅方向一端側部分(コイル5の軸方向の下端側)がコイル受台8に接触するように、コイル5がコイル受台8に載置されている。 
この仕上げ焼鈍工程S08において、コイル5に自重等によって荷重が負荷された場合に、上記レーザ処理部20が優先的に変形することになる。図12に示すように、コイル5とコイル受台8との接触位置(コイル5の幅方向一端側)から側歪み部5eが幅方向他端側に向けて進展していくが、このレーザ処理部20において側歪み部5eの進展が抑制される。よって、側歪み部5eの幅(側歪み幅Wg)が小さくなり、この側歪み部5eを除去する場合であっても、トリミング幅を小さくすることができ、方向性電磁鋼板10の製造歩留まりを向上させることができる。
また、この仕上げ焼鈍工程S08によって、シリカを主体とするSiO皮膜12aとマグネシアを主体とする焼鈍分離剤とが反応し、鋼板11の表面にフォルステライト(MgSiO)からなるグラス皮膜12(図4参照。)が形成される。
本実施形態では、仕上げ焼鈍前に配設されるレーザ処理工程において、レーザビームの照射によって鋼板11に溶融再凝固部22が形成されるが、この溶融再凝固部22の深さDの板厚tに対する比率qが0超0.8以下(0%超80%以下)となる程度の、比較的低い強度(上記レーザパワーP)で、レーザビームを照射する。この限定的な熱影響部(溶融再凝固部22)の形成により、レーザ処理部20の機械的強度が他の部分よりも低くなって変形し易くなる。その結果、仕上げ焼鈍工程において、レーザ処理部20の局所変形によって側歪み部5eの進展が抑制されるものと推測される。
平坦化焼鈍工程S09及び絶縁皮膜形成工程S10では、コイル状に巻き取られた鋼板11を巻き戻して、約800℃の焼鈍温度で張力を加えて板状に伸ばして搬送し、コイル5の巻き変形を開放して平坦化する。同時に、鋼板11の両面に形成されたグラス皮膜12の上に絶縁剤を塗布、焼付けを行い、絶縁皮膜13を形成する。
このようにして、鋼板11の表面にグラス皮膜12及び絶縁皮膜13が形成され、本実施形態に係る方向性電磁鋼板10が製造される(図4参照)。なお、上記絶縁皮膜形成工程S10の後、方向性電磁鋼板10の片面に向けてレーザビームを集光及び照射して、圧延方向にほぼ直交し、かつ、圧延方向に周期的な線状の歪を付与することにより、磁区制御を行ってもよい。
本実施形態に係る方向性電磁鋼板10の製造方法によると、側歪み部5eの側歪み幅Wg及び反りを十分に抑制できる。従って、製造された方向性電磁鋼板10が、側歪み部5eを有したままでも、顧客の要求品質を満足する場合には、側歪み部5eをトリミングしなくてもよい。この場合には、方向性電磁鋼板10の製造歩留まりをより一層向上できる。
本実施形態では、上述のように、レーザビームの照射により形成される溶融再凝固部22の深さDの板厚tに対する比率qが、0%超80%以下(0超0.8以下)となる。この結果、後で詳述するように、仕上げ焼鈍工程S08の後に得られる鋼板11の地鉄部のうち、レーザ照射痕14の下部(鋼板11の板厚方向の内側)に位置する結晶粒に関しては、各結晶粒の磁化容易軸方向と圧延方向との角度ずれ量θaの平均値Rを20°超40°以下に抑制することが可能となる。従って、側歪み部5eのトリミングを行わない場合であっても、用途によっては方向性電磁鋼板10をそのまま磁気特性に優れた製品として用いることができるので、方向性電磁鋼板10の品質及び製品歩留まりの双方を向上できる。
従って、側歪み部5eの側歪み幅Wgが小さく、この側歪み部5eを除去する必要がない場合であっても、レーザ照射痕14の内側の地鉄部分の結晶方位が従来よりも配向性が高く安定しており、用途によっては方向性電磁鋼板10として利用することが可能となる。
また、レーザ処理工程S06におけるレーザビームのパワーPを低く抑えることができるので、大型、大出力のレーザ装置が不要になり、方向性電磁鋼板10を効率良く製造することができる。
 次に、本実施形態に係る方向性電磁鋼板10について説明する。本実施形態に係る方向性電磁鋼板10は、図4に示すように、鋼板11と、鋼板11の表面に形成されたグラス皮膜12と、グラス皮膜12の上に形成された絶縁皮膜13と、を備えている。
鋼板11は、方向性電磁鋼板10の素材として一般的に用いられる、Siを含有する鉄合金で構成される。本実施形態に係る鋼板11は、例えば、以下の組成からなる。
 Si;2.5質量%以上4.0質量%以下
 C;0.02質量%以上0.10質量%以下
 Mn;0.05質量%以上0.20質量%以下
 酸可溶性Al;0.020質量%以上0.040質量%以下
 N;0.002質量%以上0.012質量%以下
 S;0.001質量%以上0.010質量%以下
 P;0.01質量%以上0.04質量%以下
 残部;Fe及び不純物
また、鋼板11の厚さは、一般的に0.15mm以上0.35mm以下であるが、この範囲外であってもよい。
グラス皮膜12は、例えば、フォルステライト(MgSiO)、スピネル(MgAl)及びコージライト(MgAlSi16)、といった複合酸化物によって構成されている。なお、このグラス皮膜12の厚さは、レーザ処理部20に対応するレーザ照射痕14以外の部分においては、例えば、0.5μm~3μmであり、特に、1μm前後が一般的であるが、これらの例に限定されない。
絶縁皮膜13は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)を主体とするコーティング液(例えば、特開昭48-39338号公報、及び特公昭53-28375号公報参照)、又は、アルミナゾルとホウ酸を混合したコーティング液(例えば、特開平6-65754号公報、及び特開平6-65755号公報参照)によって構成されている。本実施形態では、絶縁皮膜13は、リン酸アルミニウムとコロイダルシリカ、無水クロム酸(例えば、特公昭53-28375号公報参照)等からなる。なお、この絶縁皮膜13の厚さは、例えば、2μm前後が一般的であるが、この例に限定されない。
上述の方法で製造された、本実施形態に係る方向性電磁鋼板10においては、レーザ処理工程S06にてレーザ処理部20が形成された領域にレーザ照射痕14が形成されている。このレーザ照射痕14は、方向性電磁鋼板10の一側表面又は両側表面に形成されている。
このレーザ照射痕14は、方向性電磁鋼板10の表面の目視観察にて、他の部位と異なる色を持つ部位として確認することができる。これは、グラス皮膜12中のMgやFe等の元素の組成比や、グラス皮膜12の厚み等が異なっているためと考えられる。このため、レーザ照射痕14を、グラス皮膜12の元素分析によって特定することも可能である。例えばグラス皮膜12のEPMA(Electron Probe Micro Analyser)分析によれば、レーザ照射痕14においては、Mgの特性X線強度が減少する、もしくは、Feの特性X線強度が増加するといった変化を確認できる。
このレーザ照射痕14は、上述したレーザ照射方法により形成されたレーザ処理部20が仕上げ焼鈍工程S08にて変質することに起因して生ずるものである。このレーザ照射痕14は、方向性電磁鋼板10の幅方向の一端から所定距離WLだけ内側に、圧延方向(鋼板11の長手方向)に沿って線状に形成されている。図5の例では、レーザ照射痕14は、圧延方向に沿って連続的な直線状に形成されている。しかし、この例に限定されず、レーザ照射痕14は、圧延方向に沿って、不連続的な直線状、例えば、周期的に破断する破線状に形成されてもよい。
また、レーザ照射痕14は、鋼板11の長手方向(圧延方向)の一部に部分的に形成されてもよい。この場合、レーザ照射痕14は、鋼板11が巻かれて得られるコイル5の最外周部を起点として鋼板11の長手方向の全長の20%以上100%以下の領域に形成されていることが好ましい。つまり、方向性電磁鋼板10の長手方向の先端からのレーザ照射痕14の長手方向長さLzは、方向性電磁鋼板10の全長Lcに対して20%以上(Lz≧0.2×Lc)であることが好ましい。
コイル5の外周側部分は、仕上げ焼鈍時において高温になるので、その外周側部分に側歪み変形が発生し易い。このため、コイル5の最外周部を起点としてコイル5の全長Lcの20%以上の領域にレーザ照射痕14を形成することが好ましい。これにより、仕上げ焼鈍工程S08で、コイル5の外周側部分に形成されたレーザ照射痕14が局所変形し、コイル5の外周側部分における側歪み変形の進展を確実に抑制することができる。一方、レーザ照射痕14の形成範囲がコイル5の全長Lcの20%未満である場合には、コイル5の外周側部分に十分な長さのレーザ照射痕14が形成されていないので、コイル5の外周側部分における側歪み変形の抑制効果が低減してしまう。
 なお、側歪み変形の進展を更に確実に抑制するためには、鋼板11の長手方向(圧延方向)全長に渡ってレーザ照射痕14が形成されてもよい(Lz=Lc)。
また、レーザ照射痕14は、方向性電磁鋼板10の幅方向一端からレーザ照射痕14の幅方向中心までの距離WLが、5mm以上35mm以下となるような位置に形成されている(5mm≦WL≦35mm)。さらに、レーザ照射痕14の幅dは、0.05mm以上5.0mm以下であることが好ましい(0.05mm≦d≦5.0mm)。
このように、5mm≦WL≦35mmという条件を満たす位置にレーザ照射痕14が形成されることで、仕上げ焼鈍工程S08で変形しやすいレーザ照射痕14を、結果として側歪み変形の抑制が可能な位置に形成することができるので、側歪み部5eの側歪み幅Wgを確実に低減することが可能となる。
また、本実施形態では、鋼板11の地鉄部のうち、レーザ照射痕14の下部に位置する部位の地鉄部においては、結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rが、20°超40°以下、好ましくは20°超30°以下である。ここで、角度ずれ量θaの平均値Rは、鋼板11の表面に形成されたレーザ照射痕14の下部に位置する結晶粒(つまり、溶融再凝固部22の領域の結晶粒)に関して、各結晶粒の磁化容易軸の方向と、鋼板11の圧延方向との角度ずれ量θaを定義し、各結晶粒の角度ずれ量θaを、レーザ照射痕14の下部に位置する結晶粒で平均化して得られる。
本実施形態における結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaは、次のように定義される。即ち、対象とする結晶粒の磁化容易軸の方向が、基準となる鋼板面内の圧延方向から、鋼板11の幅方向軸回りに回転している角θtと、鋼板面に垂直な軸回りに回転している角θnの2乗平均値を角度ずれ量θaと定義する(θa=(θt+θn0.5)。これらθt及びθnは、X線回折による結晶方位測定法(ラウエ法)により測定される。θaが大きくなるほど、磁化容易軸が鋼板11の圧延方向から大きくずれた結晶粒であることを意味する。結晶粒の磁化容易軸が圧延方向から大きくずれると、当該部位の磁化方向が圧延方向に対して大きく異なる方向を向きやすく、圧延方向に磁力線を透しにくくなる。この結果、鋼板11の圧延方向に対する磁気特性が劣化する。
また、本実施形態では、図14に示すように、方向性電磁鋼板10の圧延方向に沿って形成されるレーザ照射痕14の下部の地鉄部(レーザ処理部20及び溶融再凝固部22に相当する部位)に生ずる結晶粒に関して、角度ずれ量θaの平均値Rを次の式(6)で定義する。
Figure JPOXMLDOC01-appb-M000002
ここで、iは結晶粒の番号である。図14に示す例では、レーザ照射痕14の下部に6個の結晶粒(i=1~6)が存在する。Lは、図14に示すように鋼板11を表面側から見下ろした際に、レーザ照射痕14とi番目の結晶粒が重なるもしくは接する距離である。θaは、i番目の結晶粒に関し、上記で定義された回転角θaである。また、図14中の3番目及び4番目の結晶粒以外のように、結晶粒がレーザ照射痕14の両側にまたがっているときは、wが“1”に設定される。一方、図14中の3番目及び4番目の結晶粒のように、レーザ照射痕14がちょうど2つの結晶粒の粒界に対応する場合は、wが“0.5”に設定される。
後の実施例でも示すように、レーザ処理工程S06におけるレーザビームの照射によって、板厚を貫通するほどの溶融再凝固部22を地鉄部に形成してしまうと、仕上げ焼鈍中の鋼板11の結晶成長に影響が大きくなる結果、角度ずれ量θaの平均値Rが大きくなり、方向性電磁鋼板10の圧延方向に対する磁気特性が劣化する傾向となる。一方、本実施形態では、溶融再凝固部22の深さDが板厚tの0%超80%以下となるようにレーザ照射条件を設定することにより、鋼板11の内部に板厚を貫通しない程度の溶融再凝固部22が形成される。これにより、角度ずれ量θaの平均値Rが20°超40°以下の範囲に収まり、その結果、磁気特性の劣化が抑制された方向性電磁鋼板10(すなわち、優れた磁気特性を有する方向性電磁鋼板10)が得られる。
本実施形態に係る方向性電磁鋼板10においては、側歪み部5eの側歪み幅Wgが小さく、この側歪み部5eを除去する必要がない場合がある。この際、鋼板11のうちレーザ照射痕14の下部に位置する部位(地鉄)においては、角度ずれ量θaの平均値Rが20°超40°以下となっている。このため、レーザ照射痕14の下部の地鉄部分を含めて鋼板11の幅方向側端部の結晶方位が従来よりも配向性が高く安定しており、用途によっては、その側端部をトリミングすることなく方向性電磁鋼板10として利用することが可能となる。
以上、本発明の一実施形態に係る方向性電磁鋼板10、及び方向性電磁鋼板10の製造方法について説明したが、本発明はこれに限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、鋼板11の組成については、上記実施形態で記載したものに限定されることはなく、他の組成であってもよい。また、上記実施形態では、レーザ処理工程S06を脱炭焼鈍工程S05と焼鈍分離剤塗布工程S07の間に設けた例を説明したが、冷間圧延工程S04より後で、仕上げ焼鈍工程S08より前であれば、どの工程間でレーザ処理を施してもよい。
また、上記実施形態では、図7、図8に示す装置を用いて、脱炭焼鈍工程S05、レーザ処理工程S06、焼鈍分離剤塗布工程S07を実施するものとして説明したが、これに限定されることはなく、他の構造の装置でこれらを実施してもよい。
さらに、上記実施形態では、図5に示すように、レーザ照射痕14が圧延方向に沿って連続的な直線状に形成される例を説明したが、これに限定されることはない。レーザ照射痕14(レーザ処理部20)は、不連続な破線状に形成されてもよく、例えば、図13に示すように、レーザ照射痕14(レーザ処理部20)が圧延方向に沿って周期的に形成されてもよい。この場合、レーザの平均パワーを削減できる効果が得られる。レーザ処理部20を周期的に形成する場合、1周期あたりのレーザ処理部20の割合rは、側歪み変形の抑制効果が得られれば特に限定されないが、例えばr>50%とすることが望ましい。
また、上記実施形態では、レーザ処理工程S06において、鋼板11の板厚tの0%超80%以下の深さDを有する溶融再凝固部22が、レーザ処理部20に対応する位置に形成されるように、レーザビームを鋼板11の圧延方向に沿って照射する場合を例示した。ここで、レーザ処理工程S06において、鋼板11の板厚tの16%超80%以下の深さDを有する溶融再凝固部22が、レーザ処理部20に対応する位置に形成されるように、レーザビームを鋼板11の圧延方向に沿って照射することがより好ましい。
この場合、最終的に得られる方向性電磁鋼板10において、地鉄(鋼板11)の表面に形成されたレーザ照射痕14の下部に存在する各結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rは、25°超40°以下となる。
なお、鋼板11の両面にレーザビームを照射することにより方向性電磁鋼板10の両面にレーザ照射痕14(レーザ処理部20)を形成してもよい。
すなわち、鋼板11を平面視した時に、鋼板11の一方の表面に形成されるレーザ照射痕14と、鋼板11の他方の表面に形成されるレーザ照射痕14とが重なるように、鋼板11の両面にレーザビームを照射してもよい。
この場合、例えば、図18に示すように、鋼板11の一方の表面から深さD1を有する第1の溶融再凝固部22aが形成され、鋼板11の他方の表面から深さD2を有する第2の溶融再凝固部22bが形成されるように、レーザビームの照射条件を設定する。第1の溶融再凝固部22aの深さD1と第2の溶融再凝固部22bの深さD2との合計値D(=D1+D2)が、鋼板11の板厚tの0%超80%以下(より好ましくは16%超80%以下)であればよい。
また、鋼板11を平面視した時に、鋼板11の一方の表面に形成されるレーザ照射痕14と、鋼板11の他方の表面に形成されるレーザ照射痕14とが重ならないように、鋼板11の両面にレーザビームを照射してもよい。
この場合、鋼板11の一方の表面に対するレーザ照射によって形成された第1の溶融再凝固部22aの深さD1と、鋼板11の他方の表面に対するレーザ照射によって形成された第2の溶融再凝固部22bの深さD2との少なくとも一方が、鋼板11の板厚tの0%超80%以下(より好ましくは16%超80%以下)であればよい。
 次に、本発明の効果を確認するために実施した確認実験について説明する。
 まず、Si;3.0質量%、C;0.05質量%、Mn;0.1質量%、酸可溶性Al;0.02質量%、N;0.01質量%、S;0.01質量%、P;0.02質量%、残部がFe及び不純物、といった組成のスラブを鋳造した(鋳造工程S01)。
 このスラブに対して、1280℃で熱間圧延を実施し、厚さ2.3mmの熱間圧延材を製出した(熱間圧延工程S02)。
次に、熱間圧延材に対して、1000℃×1分の条件で熱処理を行い、熱間圧延材を焼鈍した(焼鈍工程S03)。この焼鈍工程後の熱間圧延材に対して酸洗処理を施した上で冷間圧延を実施し、厚さ0.23mmと0.35mmの冷間圧延材を製出した(冷間圧延工程S04)。
 この冷間圧延材に対して、800℃×2分の条件で脱炭焼鈍を実施した(脱炭焼鈍工程S05)。この脱炭焼鈍工程により、冷間圧延材である鋼板11の両面にSiO皮膜12aが形成された。
次いで、レーザ処理装置によって、表面にSiO皮膜12aが形成された鋼板11の表面にレーザを照射し、レーザ処理部20を形成した(レーザ処理工程S06)。
次に、上記SiO皮膜12aにレーザ処理部20が形成された鋼板11の両面に、マグネシアを主成分とする焼鈍分離材を塗布した(焼鈍分離剤塗布工程S07)。
そして、焼鈍分離材を塗布した鋼板11をコイル状に巻き取った状態で、バッチ式の仕上げ焼鈍炉に装入し、1200℃×20時間の条件で仕上げ焼鈍を実施した(仕上げ焼鈍工程S08)。
ここで、上記のレーザ処理工程S06にてレーザ処理部20を形成する際の条件を種々変更し、これらの条件と、仕上げ焼鈍後の側歪み幅Wgと、鋼板11のうちレーザ照射痕14の下側に位置する部位における各結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rとの関係について評価した。
レーザ装置としては、半導体レーザを使用した。鋼板11の通板速度VL(mm/sec)、鋼板11の板厚t(mm)、レーザビームのパワーP(W)、鋼板11の幅方向のレーザビーム径dc(mm)、鋼板11の通板方向(長手方向)のレーザビーム径dL(mm)を種々変えながら、レーザ処理および評価を行った。アシストガスの流量Gf=300(L/min)、レーザビームの鋼板11の幅方向の照射位置WL=18(mm)は、固定した。なお、コイル最外周部を起点としたレーザ処理部20の圧延方向長さLz=2500m(コイル全長Lc=10000m)とした。
表1にレーザビームの条件と評価結果のデータをまとめる。
表1には、上述の式(3)~(5)を用いて計算した(P-P1)/(P2-P1)の値と、レーザ処理直後の鋼板11の断面を研磨後、光学顕微鏡を用いた測定で得られた溶融再凝固部22の深さDの鋼板11の板厚tに対する比率q(=D/t)を示す。また、表1に示す側歪み幅Wgは、コイル全長に対する最大値である。なお、レーザ処理しない場合の側歪み幅Wgは45mmであった。
また表1には、鋼板11のうちレーザ処理部20に位置する地鉄部における結晶粒の磁化容易軸方向を、X線回折を用いて測定し、圧延方向に対する磁化容易軸方向の角度ずれ量θaの平均値Rを求めた値を示す。
さらに、SST(Single sheet tester)試験によりW17/50の鉄損を評価した結果も示している。SST測定の試験片としては、鋼板11の一端(エッジ)から100mm幅の領域(レーザ照射痕14を含む領域)から、鋼板幅方向長さ100mm、鋼板圧延方向長さ500mmのサイズで切り出した四角片を用いた。鉄損劣化率(%)は、同一コイルの鋼板11の中でレーザ処理が施されていない部分の鉄損を基準として定義した。
Figure JPOXMLDOC01-appb-T000003
図15には、表1に示す比率qと、側歪み幅Wgと、角度ずれ量θaの平均値Rとの関係を示す。図15から判るように、本発明例(実施例)1~10のように、q>0であれば、側歪み幅Wgが25mm以下であり、レーザ処理を施さないときの側歪み幅Wg=45mmよりも、20mm以上小さい。また、0<q≦0.8であれば、20°<R≦40°となっている。従って、比率qが0以上0.8以下であれば、側歪み幅Wgを20mm以上低減でき、且つ、角度ずれ量θaの平均値Rを20°超40°以下の範囲内に収めることができる。
また、表1に示す鉄損劣化率のデータからは、角度ずれ量θaの平均値Rが40°以下であれば、鉄損の劣化率を10%未満に抑えられることが判る。側歪み幅Wgを20mm小さくすることは、およそ1000mmのコイル幅を持つ方向性電磁鋼板の製造において、歩留まりが約2%向上することを意味している。本発明者らの試算によると、歩留まりが2%未満では、レーザ照射設備の運転及び維持にかかる費用として算出されるレーザ処理のコストが、歩留まり向上による製造コスト低減しろを上回ってしまうが、歩留まりが2%以上向上する場合は、レーザ照射設備導入によりメリットが生まれ、本発明の効果を享受できる。さらに、本発明の方法により製造された方向性電磁鋼板10は、側歪み部5eの鉄損劣化率が10%未満に抑えられており、且つ、側歪み幅Wgが小さいので、側歪み変形自体が抑えられている。従って、側歪み部5eを有したままでも、それが許容される場合は、側歪み部5eをトリミングしないまま使用することが可能となる。この場合には、方向性電磁鋼板10の歩留まりをより一層向上できる。
比率qが大きくなるほど、角度ずれ量θaの平均値R及び鉄損劣化率は増加する。角度ずれ量θaの平均値Rが40°以下であれば、鉄損の劣化率は10%未満、角度ずれ量θaの平均値Rが30°以下であれば、鉄損の劣化率は6%以下に抑えられる。鉄損の劣化率で10%未満であれば、方向性電磁鋼板10の製品等級において、等級の劣化を1等級以内に抑えられる可能性があることを意味する。従って、R≦40°であれば、用途によっては、レーザ処理により形成されたレーザ照射痕14を含む方向性電磁鋼板10の幅方向の端部をトリミングせずに、方向性電磁鋼板10の内側の部分とまとめて同じ等級の製品として使える可能性が高く、方向性電磁鋼板10の歩留まりを向上できる効果がある。
一方、比較例1は、通板速度VLに対してレーザパワーPが過剰で、比率qが0.8を超えたために、角度ずれ量θaの平均値Rが40°を超え、鉄損の劣化率が10%以上となった例である。また、比較例2は、レーザビーム径dcに対してレーザパワーPが不足で、比率qが0のために、側歪み幅Wgが29mmと大きくなり、側歪み幅Wgの低減量が20mm未満となった例である。
以上より、側歪み幅Wgを20mm以上低減させ、且つ、鉄損の劣化率を10%未満に抑えるためには、比率qの範囲を0<q≦0.8とすれば良いことが判る。
さらに、比較例1と本発明例1等を比較すれば、鋼板11の結晶粒の磁化容易軸の方向と圧延方向との角度ずれ量θaの平均値Rを40°以下にすることにより、鉄損の劣化率を10%未満に抑制できることが判る。また、比較例2と本発明例4等を比較すれば、角度ずれ量θaの平均値Rを20°超、特に、21°以上にすることにより、レーザ処理を施さない場合と比べて、側歪み幅Wgを20mm以上低減できることが判る。
よって、側歪み幅Wgを20mm以上低減させ、且つ、鉄損の劣化率を10%未満に抑えるためには、方向性電磁鋼板10のレーザ照射痕14に対応する位置において、角度ずれ量θaの平均値Rの範囲を20°<R≦40°とすれば良いことが判る。
また、表1に示す(P-P1)/(P2-P1)の値を見れば、0≦(P-P1)/(P2-P1)≦1.0とすれば、溶融再凝固部22の溶け込み深さ(即ち、鋼板11の板厚tに対する溶融再凝固部深さDの比率q)を0<q≦0.8の範囲にできることが判る。
また、鋼板11の幅方向の一側端からレーザ処理部20(レーザ照射痕14)の幅方向中心までの距離WLと、側歪み幅Wgとの関係を図16に示す。なお。このレーザ処理部20(レーザ照射痕14)の圧延方向長さLzは、2500m(コイル全長Lc=10000m)に設定した。レーザ条件は上述の本発明例5に対応する条件に設定した。
図16に示すように、距離WLが40mm以上となると、側歪み幅Wgが25mm超と大きくなり、側歪み幅Wgの低減量が20mm未満となるため、側歪み幅Wgの抑制効果が小さくなることが確認された。これに対し、距離WLが5mm以上、35mm以下であれば、側歪み幅Wgが25mm以下となり、側歪み幅Wgを適切に抑制できることが分かる。また、距離WLが5.0mm未満では、側歪み幅Wgが若干増加する傾向があるため、距離WLは5mm以上であることが好ましい。以上のことから、鋼板11の一側端からレーザ処理部20(レーザ照射痕14)の幅方向中心までの距離WLは5.0mm以上35mm以下であることが好ましい。
さらに、鋼板全長Lc=10000mの場合において、コイル5の最外周部を起点としたレーザ処理部20(レーザ照射痕14)の圧延方向長さLzを変更した際の、圧延方向長さLzと側歪み幅Wgとの関係を図17に示す。なお、レーザ処理部20の圧延方向長さLzの起点はコイル5の最外周部である。レーザ条件は上述の本発明例5に対応する条件に設定した。上記距離WLは、20mmに設定した。図17に示す側歪み幅Wgは、コイル全長に対する最大値である。
図17に示すように、レーザ処理部20の圧延方向長さLzが500m~1500mm(鋼板全長Lcの5~15%)の場合には、側歪み幅Wgが25mm超と大きくなり、側歪み幅Wgの低減量が20mm未満となるため、側歪み幅Wgの抑制効果が小さくなる。これに対し、レーザ処理部20の圧延方向長さLzが2000m以上、すなわち鋼板全長Lcの20%以上の場合には、側歪み幅Wgは25mm未満であり、側歪み幅Wgの低減量が20mm以上となるため、側歪み幅Wgを好適に抑制できる。このことから、側歪み変形が顕著なコイル5の外周から、鋼板11の圧延方向の全長Lcの20%以上の領域に、レーザ処理部20を形成することが好ましい。
5 コイル
 5e 側歪み部
 10 方向性電磁鋼板
 11 鋼板
 12 グラス皮膜
 12a SiO皮膜
 13 絶縁皮膜
 14 レーザ照射痕
 20 レーザ処理部
22 溶融再凝固部

Claims (8)

  1. 冷延工程後の鋼板の幅方向一端側領域に対して、前記鋼板の圧延方向に沿ってレーザビームが照射された後に、前記鋼板がコイル状に巻かれた状態で仕上げ焼鈍されることにより製造された方向性電磁鋼板であって、

     前記鋼板の地鉄部のうち、前記レーザビームの照射により前記鋼板の表面に形成されたレーザ照射痕の下部に位置する結晶粒に関して、各結晶粒の磁化容易軸の方向と前記圧延方向との角度ずれ量θaを定義し、前記角度ずれ量θaを前記レーザ照射痕の下部に位置する結晶粒で平均化して得られる前記角度ずれ量θaの平均値Rが、20°超40°以下であることを特徴とする、方向性電磁鋼板。
  2. 前記鋼板の幅方向一端から前記レーザ照射痕の幅方向中心までの距離WLが、5mm以上35mm以下であることを特徴とする、請求項1に記載の方向性電磁鋼板。
  3.  前記レーザ照射痕は、前記鋼板がコイル状に巻かれたときに最外周に位置する前記鋼板の圧延方向の一端を起点として前記鋼板の圧延方向の全長の20%以上100%以下の領域に形成されることを特徴とする、請求項1又は2に記載の方向性電磁鋼板。
  4. 前記レーザ照射痕の幅dが、0.05mm以上5.0mm以下であることを特徴とする、請求項1~3のいずれか一項に記載の方向性電磁鋼板。
  5. 冷延工程後の鋼板の幅方向一端側領域に対し、前記鋼板の圧延方向に沿ってレーザビームを照射して、レーザ処理部を形成するレーザ処理工程と;
     前記レーザ処理部が形成された前記鋼板をコイル状に巻き、前記コイル状の前記鋼板を仕上げ焼鈍する仕上げ焼鈍工程と;
    を含み、
    前記レーザ処理工程では、前記レーザビームの照射により、前記鋼板の板厚の0%超80%以下の深さの溶融再凝固部を、前記レーザ処理部に対応する位置に形成することを特徴とする、方向性電磁鋼板の製造方法。
  6. 前記鋼板の幅方向一端から、前記レーザ処理部の幅方向中心までの距離WLが、5mm以上35mm以下であることを特徴とする、請求項5に記載の方向性電磁鋼板の製造方法。
  7.  前記レーザ処理工程では、
    前記仕上げ焼鈍工程にて前記鋼板がコイル状に巻かれたときに最外周に位置する前記鋼板の圧延方向の一端を起点として前記鋼板の圧延方向の全長の20%以上100%以下の領域に、前記レーザ処理部を形成することを特徴とする、請求項5又は6に記載の方向性電磁鋼板の製造方法。
  8. 前記レーザ処理部の幅dが、0.05mm以上5.0mm以下であることを特徴とする、請求項5~7のいずれか一項に記載の方向性電磁鋼板の製造方法。
PCT/JP2013/080001 2012-11-26 2013-11-06 方向性電磁鋼板及び方向性電磁鋼板の製造方法 WO2014080763A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020157013093A KR101709877B1 (ko) 2012-11-26 2013-11-06 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
BR112015010560A BR112015010560B1 (pt) 2012-11-26 2013-11-06 chapa de aço elétrica orientada com grãos e método de fabricação de chapa de aço elétrica orientada com grãos
US14/442,530 US10297375B2 (en) 2012-11-26 2013-11-06 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JP2014548508A JP5928607B2 (ja) 2012-11-26 2013-11-06 方向性電磁鋼板及び方向性電磁鋼板の製造方法
EP13857398.5A EP2949767B1 (en) 2012-11-26 2013-11-06 Grain-oriented electrical steel sheet and method for manufacturing said sheet
RU2015119255/02A RU2604550C1 (ru) 2012-11-26 2013-11-06 Лист текстурованной электротехнической стали и способ изготовления листа текстурованной электротехнической стали
IN2464DEN2015 IN2015DN02464A (ja) 2012-11-26 2013-11-06
PL13857398T PL2949767T3 (pl) 2012-11-26 2013-11-06 Blacha ze stali elektrotechnicznej o zorientowanym ziarnie i sposób wytwarzania tej blachy
CN201380060271.XA CN104884643B (zh) 2012-11-26 2013-11-06 方向性电磁钢板及方向性电磁钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012257875 2012-11-26
JP2012-257875 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014080763A1 true WO2014080763A1 (ja) 2014-05-30

Family

ID=50775948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080001 WO2014080763A1 (ja) 2012-11-26 2013-11-06 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Country Status (10)

Country Link
US (1) US10297375B2 (ja)
EP (1) EP2949767B1 (ja)
JP (1) JP5928607B2 (ja)
KR (1) KR101709877B1 (ja)
CN (1) CN104884643B (ja)
BR (1) BR112015010560B1 (ja)
IN (1) IN2015DN02464A (ja)
PL (1) PL2949767T3 (ja)
RU (1) RU2604550C1 (ja)
WO (1) WO2014080763A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287537A4 (en) * 2015-04-20 2018-10-03 Nippon Steel & Sumitomo Metal Corporation Oriented electromagnetic steel sheet
WO2023167303A1 (ja) * 2022-03-02 2023-09-07 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949767B1 (en) * 2012-11-26 2019-05-08 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method for manufacturing said sheet
US20210172071A1 (en) * 2019-12-05 2021-06-10 Monireh Ganjali Hard and wear resistant titanium alloy and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS63100131A (ja) 1986-10-17 1988-05-02 Nippon Steel Corp 珪素鋼板の仕上焼鈍方法
JPS6442530A (en) 1987-08-07 1989-02-14 Nippon Steel Corp Box annealing method for strip coil
JPH0297622A (ja) 1988-09-30 1990-04-10 Nippon Steel Corp 方向性珪素鋼板の仕上焼鈍方法
JPH03177518A (ja) 1989-12-05 1991-08-01 Nippon Steel Corp 方向性珪素鋼板の縁部座屈防止用誘導加熱装置
JPH0665755A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH0665754A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
JP2000038616A (ja) 1998-07-24 2000-02-08 Kawasaki Steel Corp 側歪の少ない方向性けい素鋼板の製造方法
JP2001323322A (ja) 2000-05-12 2001-11-22 Kawasaki Steel Corp 方向性珪素鋼帯の最終仕上げ焼鈍方法
WO2010103761A1 (ja) 2009-03-11 2010-09-16 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
WO2012165393A1 (ja) * 2011-05-27 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363677A (en) * 1980-01-25 1982-12-14 Nippon Steel Corporation Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
IT1182608B (it) * 1984-10-15 1987-10-05 Nippon Steel Corp Lamiera di acciaio elettrico a grana orientata avente una bassa perdita di potenza e metodo per la sua fabbricazione
KR960009170B1 (en) * 1992-07-02 1996-07-16 Nippon Steel Corp Grain oriented electrical steel sheet having high magnetic flux density and ultra iron loss and process for producing the same
JP4319715B2 (ja) 1998-10-06 2009-08-26 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板とその製造方法
JP4398666B2 (ja) * 2002-05-31 2010-01-13 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板およびその製造方法
RU2345148C2 (ru) * 2006-07-13 2009-01-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный аэрокосмический университет им. академика С.П. Королева Способ лазерной термической обработки материалов
EP2599883B1 (en) * 2010-07-28 2015-09-09 Nippon Steel & Sumitomo Metal Corporation Orientated electromagnetic steel sheet and manufacturing method for same
JP5158285B2 (ja) * 2010-09-09 2013-03-06 新日鐵住金株式会社 方向性電磁鋼板
EP2949767B1 (en) * 2012-11-26 2019-05-08 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method for manufacturing said sheet

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5328375B2 (ja) 1971-09-27 1978-08-14
JPS63100131A (ja) 1986-10-17 1988-05-02 Nippon Steel Corp 珪素鋼板の仕上焼鈍方法
JPS6442530A (en) 1987-08-07 1989-02-14 Nippon Steel Corp Box annealing method for strip coil
JPH0297622A (ja) 1988-09-30 1990-04-10 Nippon Steel Corp 方向性珪素鋼板の仕上焼鈍方法
JPH03177518A (ja) 1989-12-05 1991-08-01 Nippon Steel Corp 方向性珪素鋼板の縁部座屈防止用誘導加熱装置
JPH0665755A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH0665754A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
JP2000038616A (ja) 1998-07-24 2000-02-08 Kawasaki Steel Corp 側歪の少ない方向性けい素鋼板の製造方法
JP2001323322A (ja) 2000-05-12 2001-11-22 Kawasaki Steel Corp 方向性珪素鋼帯の最終仕上げ焼鈍方法
WO2010103761A1 (ja) 2009-03-11 2010-09-16 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
WO2012165393A1 (ja) * 2011-05-27 2012-12-06 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287537A4 (en) * 2015-04-20 2018-10-03 Nippon Steel & Sumitomo Metal Corporation Oriented electromagnetic steel sheet
US10434606B2 (en) 2015-04-20 2019-10-08 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2023167303A1 (ja) * 2022-03-02 2023-09-07 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
EP2949767A4 (en) 2016-11-09
EP2949767A1 (en) 2015-12-02
CN104884643B (zh) 2016-11-09
PL2949767T3 (pl) 2019-10-31
BR112015010560A2 (pt) 2017-07-11
US10297375B2 (en) 2019-05-21
RU2604550C1 (ru) 2016-12-10
JP5928607B2 (ja) 2016-06-01
KR20150064219A (ko) 2015-06-10
KR101709877B1 (ko) 2017-02-23
EP2949767B1 (en) 2019-05-08
CN104884643A (zh) 2015-09-02
JPWO2014080763A1 (ja) 2017-01-05
IN2015DN02464A (ja) 2015-09-04
BR112015010560B1 (pt) 2020-02-04
US20160284454A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP5229432B1 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
JP4782248B1 (ja) 方向性電磁鋼板及びその製造方法
WO2016171129A1 (ja) 方向性電磁鋼板
EP2412832B1 (en) Grain-oriented electrical steel sheet and producing method therefor
JP5928607B2 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
CN103562418B (zh) 单向性电磁钢板的制造方法
JP5906654B2 (ja) 方向性電磁鋼板の製造方法
JP3736125B2 (ja) 方向性電磁鋼板
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
WO2023195466A1 (ja) 方向性電磁鋼板及びその製造方法
JP5729014B2 (ja) 方向性電磁鋼板の製造方法
JP6003197B2 (ja) 磁区細分化処理方法
JP2021025128A (ja) 方向性電磁鋼板
JP2009012033A (ja) 方向性電磁鋼板用熱間圧延鋼帯の製造方法および方向性電磁鋼板の製造方法
WO2024111628A1 (ja) 鉄損特性に優れた方向性電磁鋼板
KR20220044836A (ko) 방향성 전자 강판의 제조 방법
JPH06212275A (ja) 低鉄損方向性電磁鋼板およびその製造方法
JPH06172860A (ja) 高磁束密度一方向性電磁鋼板の安定製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548508

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013857398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14442530

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157013093

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015010560

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015119255

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015010560

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150508