WO2010103751A1 - 原子層堆積装置及び薄膜形成方法 - Google Patents

原子層堆積装置及び薄膜形成方法 Download PDF

Info

Publication number
WO2010103751A1
WO2010103751A1 PCT/JP2010/001462 JP2010001462W WO2010103751A1 WO 2010103751 A1 WO2010103751 A1 WO 2010103751A1 JP 2010001462 W JP2010001462 W JP 2010001462W WO 2010103751 A1 WO2010103751 A1 WO 2010103751A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
substrate
thin film
internal space
atomic layer
Prior art date
Application number
PCT/JP2010/001462
Other languages
English (en)
French (fr)
Inventor
村田和俊
森康成
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to US13/203,400 priority Critical patent/US9068261B2/en
Priority to EP10750510.9A priority patent/EP2408003B1/en
Priority to KR1020117023449A priority patent/KR101224975B1/ko
Publication of WO2010103751A1 publication Critical patent/WO2010103751A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge

Definitions

  • the present invention relates to an atomic layer deposition (hereinafter also referred to as ALD (Atomic Layer Deposition)) apparatus for forming a thin film on a substrate, and a thin film forming method for forming a thin film on a substrate by an atomic layer deposition method.
  • ALD atomic layer Deposition
  • the ALD method two types of gas mainly composed of elements constituting a film to be formed are alternately supplied onto a film formation target substrate, and a thin film is formed on the substrate in units of atomic layers repeatedly several times.
  • This is a thin film forming technique for forming a film having a desired thickness.
  • a source gas containing Si and an oxidizing gas containing O are used.
  • a nitriding gas is used instead of the oxidizing gas.
  • the ALD method has both high step coverage and film thickness controllability compared to the general CVD (Chemical Vapor Deposition) method. Therefore, it is expected to be put to practical use for forming capacitors for memory elements and insulating films called “high-k gates”.
  • an insulating film can be formed at a temperature of 300 ° C. or lower. Therefore, it is expected that the ALD method is applied to formation of a gate insulating film of a thin film transistor of a display device using a glass substrate such as a liquid crystal display.
  • Patent Document 1 discloses an ALD apparatus for forming a thin film on a substrate, a source gas adsorption chamber that adsorbs at least one type of source gas to the substrate, and a reaction that irradiates the substrate with at least one type of reactive gas.
  • An ALD apparatus having a reactive gas irradiation chamber and means for replacing a substrate between the source gas adsorption chamber and the reactive gas irradiation chamber is described.
  • This apparatus is realized as an object to provide an apparatus capable of forming a film efficiently without requiring frequent maintenance of a film formation chamber in vacuum film formation by the ALD method.
  • Patent Document 1 since the film forming chamber is divided for each necessary process, neither the source gas adsorption chamber nor the reactive gas irradiation chamber is deposited on the wall surface of the room, as in the prior art. It is described that maintenance of a film forming chamber is unnecessary, and radicals having high reactivity can be used effectively. However, such an apparatus becomes large and the cost increases. In particular, when an 8th generation glass plate having a side exceeding 2 m is used as a target substrate on which a thin film is formed, the installation area and the equipment cost are greatly increased.
  • the present invention is different from the ALD apparatus described above in order to reduce costs, and has a single film formation chamber, and an atomic layer deposition apparatus capable of forming a thin film with uniform film quality on a substrate, and An object is to provide a method for forming a thin film.
  • An atomic layer deposition apparatus of the present invention is an atomic layer deposition apparatus that forms a thin film on a substrate, a container that forms a first internal space, and a substrate loading / unloading port for loading or unloading a substrate;
  • a first container provided at a different position with a gas inlet for introducing a gas for forming a thin film on the substrate into the inside, and provided in the first container and separated from the first internal space
  • a second container that forms a second internal space and includes a first opening; a first moving mechanism that moves the second container in a predetermined direction; and a substrate that is loaded or unloaded,
  • the first moving mechanism is controlled so that the second container is moved to the position of 2. And having a control unit for, a.
  • the thin film forming method of the present invention includes a first container that forms a first internal space, and a second internal space that is provided inside the first container and separated from the first internal space.
  • the thin film forming step of forming a thin film by moving to a second position opposite to the gas inlet for introducing the gas forming the gas into the second internal space, and the first opening includes the substrate loading / unloading port. And a substrate unloading step for unloading the substrate. And wherein the door.
  • a thin film having a uniform film quality can be formed on a substrate.
  • FIG. 1 is a schematic block diagram of the 2nd container of the atomic layer deposition apparatus shown in FIG.
  • B is a figure explaining the carrying-in and carrying-out method of a board
  • FIG. 1 is a schematic block diagram of the board
  • FIG. 2 is a schematic block diagram of the 2nd container of the atomic layer deposition apparatus shown in FIG.
  • substrate is a figure explaining the carrying-in and carrying-out method of a board
  • substrate carrying-in process of the atomic layer deposition apparatus shown in FIG. 1 is a board
  • FIG. 1 shows the state at the time of the cleaning process of the atomic layer deposition apparatus shown in FIG.
  • FIG. 1 is a cross-sectional view showing a schematic device configuration of an atomic layer deposition apparatus (hereinafter referred to as an ALD apparatus) 10 for forming a thin film on a substrate 12 during a thin film forming process.
  • a source gas such as TMA (Tri-Methyl-Aluminium)
  • an oxidizing gas such as ozone O 3
  • the ALD apparatus 10 mainly includes a first container 20, a second container 60, and a pressing member 80.
  • the first container 20 is an outer container that forms a first inner space 22 that maintains a predetermined pressure.
  • the second container 60 is an inner container that is provided inside the first container 20 and forms a second inner space 62 that maintains a predetermined pressure.
  • the pressing member 80 separates the second internal space 62 from the first internal space 22 by pressing the second container 60.
  • the first container 20 is made of a metal material such as SUS.
  • a gas inlet for introducing N 2 gas (or inert gas) into the first internal space 22 is provided on the upper wall of the first container 20.
  • An exhaust port to which the exhaust pipe 42 is connected is provided on the upper wall of the first container 20.
  • the gas in the first internal space 22 is exhausted to the outside of the first container 20 by an exhaust unit 44 such as a turbo molecular pump. Thereby, the inside of the first internal space 22 is maintained at a predetermined pressure in the atmosphere of the introduced N 2 gas.
  • an exhaust unit 44 such as a turbo molecular pump.
  • the heater 24 is provided adjacent to the second container 60 above the second container 60 provided inside the first container 20.
  • the heater 24 heats the source gas supplied to the substrate 12 placed in the second container 60 and the second inner space 62 through the second container 60.
  • the wiring and the like of the heater 24 are drawn out through a through hole provided in the upper portion of the first container 20 and connected to a power source (not shown).
  • a heater 25 is provided adjacent to the second container 60 below the second container 60 provided in the first container 20.
  • the heater 25 heats the source gas supplied to the substrate 12 placed in the second container 60 and the second inner space 62 through the second container 60.
  • the wiring and the like of the heater 25 are drawn out of the first container 20 through a through hole (not shown) and connected to a power source (not shown).
  • a substrate loading / unloading port 28 for loading and unloading the substrate 12 is provided on the wall surface 26 (the right side surface in FIG. 1) of the first container 20. Further, a shutter 27 connected to the outside of the first container 20 is provided at a portion extending in the horizontal direction from the substrate loading / unloading port 28 toward the outside of the first container 20. Therefore, when the substrate 12 is carried in, the shutter 27 is opened, and the substrate 12 is carried into the first container 20 through the substrate carry-in / out port 28. When unloading the substrate 12, the shutter 27 is opened, and the substrate 12 is unloaded from the first container 20 through the substrate loading / unloading port 28. The state when the substrate 12 is carried in and out is shown in FIG. A description of FIG. 3 will be given later.
  • a gas introduction port 29 for introducing a gas for forming a thin film on the substrate is provided on the wall surface 26 where the substrate loading / unloading port 28 is provided.
  • a gas introduction pipe 30 that introduces a source gas or an oxidizing gas into the second internal space 62 is connected to the gas introduction port 29.
  • two gas introduction pipes 30a and 30b are connected.
  • the gas introduction pipe 30 a introduces a source gas (for example, an organic metal gas such as TMA) or a purge gas (for example, nitrogen gas) into the second internal space 62.
  • a source gas for example, an organic metal gas such as TMA
  • a purge gas for example, nitrogen gas
  • the gas introduction pipe 30 b introduces an oxidizing gas (for example, ozone) or a purge gas (for example, nitrogen gas) into the second internal space 62.
  • a plurality of gas inlets 29 are provided at equal intervals in the width direction of the substrate 12 (in the direction perpendicular to the plane of FIG. 1).
  • the gas inlet 29 is provided in a wider range than the width direction of the substrate 12.
  • the gas introduction port 29 is configured to be positioned vertically above a position in the height direction where a substrate support portion 67 described later is provided.
  • a through hole through which an exhaust pipe 68 (described later) passes is provided on the other wall surface (the left surface in FIG. 1) of the first container 20.
  • a first moving mechanism 36 for moving the heater 25 in the vertical direction is provided on the bottom surface 32 of the first container 20.
  • the heater 25 can be moved in the vertical direction.
  • the second container 60 can be supported at a predetermined position by controlling the length of the support mechanism 36a extending from the first moving mechanism 36.
  • the first moving mechanism 36 includes a caster 37 and can move in the in-plane direction of the bottom surface 32 of the first container 20.
  • the bottom surface 32 of the first container 20 is separable from the wall surface and upper wall of the first container 20.
  • Two support mechanisms 38a extending downward in the figure are provided on the bottom surface 32 of the first container 20, and a second moving mechanism 38 such as a hydraulic cylinder is provided on the two support mechanisms 38a.
  • the support mechanism 38a of the second moving mechanism 38 includes the bottom surface 32 of the first container 20, the first moving mechanism 36, the heater 25 supported by the support mechanism 36a of the first moving mechanism 36, and the heater 25.
  • the second container 60 to be supported is moved in the vertical direction.
  • An O-ring 33 is provided between the bottom surface 32 and the wall surface of the first container 20, and the second moving mechanism 38 raises the bottom surface 32, so that the first internal space 22 is directed to the outside. Closed configuration.
  • the first moving mechanism 36 and the second moving mechanism 38 are connected to the control unit 100.
  • the control unit 100 controls the first moving mechanism 36 and the second moving mechanism 38 so that the second container 60 is at a predetermined position. Details of the control of the moving mechanisms 36 and 38 by the control unit 100 will be described later.
  • the substrate loading / unloading port 28, the gas introduction port 29, and the through hole through which the exhaust pipe 68 passes can be made separate openings. Thereby, there is no restriction on the structure of the gas inlet 29 for supplying the source gas uniformly, and a thin film with uniform film quality can be formed.
  • FIG. 2A is a schematic configuration diagram of the second container 60.
  • the second container 60 is provided inside the first container 20.
  • the second container 60 is a cylindrical container that forms the second internal space 62. Quartz is preferably used for the second container 60 from the viewpoint of a stable material.
  • the substrate 12 is a glass substrate, the material itself is substantially the same, so there is an advantage that there is no fear that different components adhere to the substrate 12.
  • the second container 60 is supported by the support mechanism 36a so as to be positioned horizontally inside the first container 20.
  • a first opening 64 through which a source gas for forming a thin film is formed on the substrate 12 is provided at one end of the cylindrical shape.
  • the gas inlet 29 provided on the wall surface 26 of the first container 20 and the first opening 64 are in a position facing each other.
  • a second opening 66 through which the gas in the second internal space 62 flows out of the second internal space 62 is provided at the end opposite to the side having the first opening 64.
  • two second openings 66a and 66b are provided.
  • the second opening 66a is provided at a position vertically above a position in the height direction where a substrate support 67 described later is provided.
  • the gas flowing out of the second internal space 62 through the second opening 66 passes through a through hole provided in the left wall surface of the first container 20 and passes through an exhaust pipe 68 connected to the through hole.
  • the air is exhausted by an exhaust unit 69 such as a vacuum pump.
  • an exhaust unit 69 such as a vacuum pump.
  • the pressure in the second internal space 62 may be the same pressure as the pressure in the first internal space 22 described above, or may be a different pressure.
  • FIG. 2B is a diagram for explaining a method for carrying in and carrying out the substrate 12.
  • substrate 12 is mounted in the fork part 70 of the board
  • the substrate 12 placed on the fork unit 70 opens and closes the shutter 27, and is carried into and out of the second container 60 through the substrate carry-in / out port 28 and the first opening 64.
  • the substrate carry-in process and the substrate carry-out process will be described in detail later.
  • a substrate support portion 67 for placing the substrate 12 is provided inside the second container 60.
  • the substrate support portion 67 is provided at an intermediate position in the height direction of the second internal space 62. Further, the substrate support portion 67 has a flat surface provided in parallel with the cylindrical longitudinal direction of the second container 60. This plane is used as a substrate mounting surface.
  • the shape of the substrate support portion 67 on the first opening 64 side is a comb-like shape corresponding to the fork portion 70 at the substrate placement tip of the transport carriage that carries in and out the substrate 12.
  • the large substrate 12 is carried into and out of the second internal space 62 having a low cylindrical shape.
  • the substrate 12 can be carried in and out without the surface on which the thin film is formed touching the inner surface of the second container 60.
  • the source gas passes over the substrate 12 placed on the substrate support portion 67, and a part thereof is adsorbed on the substrate 12. Further, the activated oxidizing gas in the heated state can oxidize the components of the source gas adsorbed on the substrate 12.
  • the pressing member 80 presses the second container 60 in the cylindrical longitudinal direction (horizontal direction).
  • An O-ring 86a, a spacer 84, and an O-ring 86b are sequentially provided between the pressing member 80 and the second container 60.
  • a square bellows 82 is provided between the left wall surface of the first container 20 in FIG. Therefore, the pressing member 80 can move in the horizontal direction.
  • an O-ring 90a, a spacer 88, and an O-ring 90b are sequentially provided between the second container 60 and the wall surface 26 (the right-side surface in FIG. 1) of the first container 20.
  • deposition preventing plates 31 and 83 are provided on the inner wall of the wall surface 26 near the gas inlet 29 and the inner wall of the exhaust pipe 68 for preventing the thin film from adhering to the substrate other than the substrate on which the thin film is to be formed. .
  • the second container 60 is supported by the first moving mechanism 36 including the casters 37. Therefore, the second container 60 can move in the longitudinal direction of the cylindrical shape.
  • the pressing member 80 presses the second container 60 in the longitudinal direction of the cylindrical shape
  • the second container 60 is pressed against the first container 20 through the O-rings 86a, 86b, 90a, 90b.
  • the second internal space 62 is separated from the first internal space 22. That is, the presser member 80 presses the second container 60 in the longitudinal direction of the cylindrical shape of the second container 60, so that the presser member 80 separates the second internal space 62 from the first internal space 22.
  • the first internal space 22 and the second internal space 62 are separated from each other so that the pressure in the first internal space 22 and the pressure in the second internal space 62 can be individually controlled. It means that it is separated.
  • the shorter the circumference of the O-ring the more reliably the two spaces can be separated.
  • the second container 60 is configured to be pressed in the longitudinal direction of the cylindrical shape of the second container 60, the second internal space 62 is separated from the first internal space 22.
  • the required circumference of the O-ring can be shortened according to the cylindrical shape.
  • the second container 60 is configured to be pressed in the longitudinal direction of the cylindrical shape of the second container 60, whereby the second inner space 62 of the second container 60 is made to be in relation to the first inner space 22. Can be separated more reliably. Therefore, the source gas can be prevented from leaking from the second internal space 62 to the first internal space 22.
  • the pressing member 80 presses the second container 60 in the longitudinal direction of the cylindrical shape of the second container 60 to form a thin film having a more uniform film quality. Can do.
  • FIG. 3 is a cross-sectional view showing the state of the atomic layer deposition apparatus 10 during the substrate carry-in process.
  • the first opening 64 of the second container 60 is at a position facing the substrate loading / unloading port 28.
  • substrate carrying in / out port 28 oppose be a 1st position. That is, in the substrate loading process, the second container 60 is in the first position.
  • the second container 60 moves to the first position. This movement is performed by the control unit 100 controlling the first movement mechanism 36. Then, the shutter 27 is opened, and the substrate 12 is carried into the second container 60 through the shutter 27, the substrate loading / unloading port 28, and the first opening 64. As shown in FIG. 2B, the substrate is loaded by placing the substrate 12 on the fork 70 at the tip of the substrate placement of the transport carriage.
  • FIG. 1 is a cross-sectional view showing the state of the atomic layer deposition apparatus 10 during the thin film formation process.
  • the first opening 64 of the second container 60 is at a position facing the gas inlet 29.
  • the position of the second container 60 in a state where the first opening 64 and the gas introduction port 29 face each other is referred to as a second position. That is, in the thin film forming process, the second container 60 is in the second position.
  • the second container 60 moves to the second position. This movement is performed by the control unit 100 controlling the first moving mechanism 36.
  • the pressing member 80 presses the second container 60 in the cylindrical longitudinal direction (horizontal direction) of the second container 60.
  • the second internal space 62 is separated from the first internal space 22.
  • a raw material gas is flowed from the gas introduction pipe 30 to the second internal space 62 to form a thin film on the substrate 12.
  • FIG. 3 is a cross-sectional view showing the state of the atomic layer deposition apparatus 10 during the substrate unloading process.
  • the second container 60 is in the first position.
  • the pressing member 80 is pressing the second container 60 against the first container 20. Therefore, the pressing member 80 is moved in a direction in which the pressing member 80 moves away from the second container 60 (left direction in FIG. 1), and the pressing of the second container 60 is released.
  • the second container 60 moves to the first position. This movement is performed by the control unit 100 controlling the first moving mechanism 36.
  • the shutter 27 is opened, and the substrate 12 is unloaded from the second container 60 through the first opening 64, the substrate loading / unloading port 28, and the shutter 27.
  • the substrate is unloaded by placing the substrate 12 on the fork portion 70 at the tip of the substrate placement of the transport carriage.
  • the ALD apparatus 10 moves the second container 60 inside the first container 20 and has a simple structure as compared with the conventional technique, and the second internal space 62 and the substrate for forming a thin film. It is possible to separate the first internal space 22 that carries in and out. Therefore, the inner wall surface of the first container 20, the inner wall surface of the substrate loading / unloading port 28, and the inner wall surface of the shutter 27 are not exposed to the source gas, and particles are mixed when the substrate 12 is loaded and unloaded. Can be suppressed.
  • FIG. 4 is a cross-sectional view showing the state of the atomic layer deposition apparatus 10 during the cleaning process.
  • the lower portion 34 and the upper portion 40 of the first container 20 are separated.
  • the second container 60 is taken out of the first container 20.
  • the second moving mechanism 38 separates the lower part 34 including the bottom surface 32 of the first container 20 from the upper part 40 ( That is, the second container 60 moves to a position (third position) where the second container 60 can be taken out. This movement is performed by the control unit 100 controlling the second moving mechanism 38.
  • the position where the second container 60 can be taken out means that the position in the height direction of the uppermost part of the second container 60 is lower than the position in the height direction of the lowermost part of the upper part 40 of the first container 20. It is such a position.
  • the control unit 100 controls the first moving mechanism 36 so that the length of the support mechanism 36a is as short as possible. Thereby, the magnitude
  • the first moving mechanism 36 is moved in the in-plane direction of the bottom surface 32 of the first container 20.
  • the second container 60 can be moved from vertically below the upper portion 40 of the first container. In this way, the second container 60 is removed from the first container 20.
  • the second container 60 provided inside the first container 20 can be easily taken out, the second container 60 can be easily cleaned.
  • For cleaning for example, wet etching is performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 基板上に薄膜を形成する原子層堆積装置であって、第1の内部空間を形成する容器であって、基板を搬入又は搬出するための基板搬入出口と、基板上に薄膜を形成するガスを内部に導入するためのガス導入口とを異なる位置に備える第1の容器と、第1の容器の内部に設けられ、第1の内部空間と隔てられる第2の内部空間を形成し、第1の開口を備える第2の容器と、第2の容器を所定の方向に移動する第1の移動機構と、基板を搬入又は搬出する場合、基板搬入出口と第1の開口とが対向する第1の位置に第2の容器を移動し、基板上に薄膜を形成する場合、ガス導入口と第1の開口とが対向する第2の位置に第2の容器を移動するように、第1の移動機構を制御する制御部と、を有する。

Description

原子層堆積装置及び薄膜形成方法
 本発明は、基板上に薄膜を形成する原子層堆積(以下、省略してALD(Atomic Layer Deposition)ともいう)装置、及び原子層堆積法により基板上に薄膜を形成する薄膜形成方法に関する。
 ALD法は、形成しようとする膜を構成する元素を主成分とする2種類のガスを成膜対象基板上に交互に供給し、基板上に原子層単位で薄膜を形成することを複数回繰り返して所望厚さの膜を形成する薄膜形成技術である。例えば、基板上にSiO2膜を形成する場合、Siを含む原料ガスとOを含む酸化ガスが用いられる。また、基板上に窒化膜を形成する場合、酸化ガスの代わりに窒化ガスが用いられる。
 ALD法では、原料ガスを供給している間に1層あるいは数層の原料ガス成分だけが基板表面に吸着され、余分な原料ガスは成長に寄与しない、いわゆる成長の自己停止作用(セルフリミット機能)を利用する。
 ALD法は、一般的なCVD(Chemical Vapor Deposition)法と比較して高い段差被覆性と膜厚制御性を併せ持つ。そのため、メモリ素子のキャパシタや、「high-kゲート」と呼ばれる絶縁膜の形成への実用化が期待されている。また、ALD法では、300℃以下の温度で絶縁膜を形成することが可能である。そのため、液晶ディスプレイなどのように、ガラス基板を用いる表示装置の薄膜トランジスタのゲート絶縁膜の形成にALD法を適用することが期待されている。
 下記特許文献1には、基板上に薄膜を形成するALD装置であって、少なくとも一種類の原料ガスを基板に吸着させる原料ガス吸着室と、少なくとも一種類の反応性ガスを基板に照射する反応性ガス照射室と、上記原料ガス吸着室と反応性ガス照射室との間で基板を入れ替える手段と、を有するALD装置が記載されている。
 当該装置は、ALD法による真空成膜において、成膜室の頻繁なメンテナンスが不要で効率良く成膜しうる装置を提供することを課題として実現されたものである。
特開2008-240077号公報
 上記特許文献1では、必要な工程毎に成膜室を分けたことにより、原料ガス吸着室、反応性ガス照射室のいずれにおいても、室内の壁面に成膜されることがなく、従来のような成膜室のメンテナンスが不要になり、また、反応性の高いラジカルを有効に使うことが可能となる、と記載されている。しかし、このような装置は、装置自体が大掛かりになり、コストは増大する。特に、一辺が2mを超える第8世代のガラス板等を、薄膜を形成する対象基板とした場合、設置面積および設備コストは大幅に増大する。
 そこで、本発明は、コストを抑えるべく、上記ALD装置の構成と異なり、成膜室を1つとする構成であって、均一な膜質の薄膜を基板上に形成することのできる原子層堆積装置及び薄膜形成方法を提供することを目的とする。
 本発明の原子層堆積装置は、基板上に薄膜を形成する原子層堆積装置であって、第1の内部空間を形成する容器であって、基板を搬入又は搬出するための基板搬入出口と、基板上に薄膜を形成するガスを内部に導入するためのガス導入口とを異なる位置に備える第1の容器と、前記第1の容器の内部に設けられ、前記第1の内部空間と隔てられる第2の内部空間を形成し、第1の開口を備える第2の容器と、前記第2の容器を所定の方向に移動する第1の移動機構と、基板を搬入又は搬出する場合、前記基板搬入出口と前記第1の開口とが対向する第1の位置に前記第2の容器を移動し、基板上に薄膜を形成する場合、前記ガス導入口と前記第1の開口とが対向する第2の位置に前記第2の容器を移動するように、前記第1の移動機構を制御する制御部と、を有することを特徴とする。
 また、本発明の薄膜形成方法は、第1の内部空間を形成する第1の容器と、該第1の容器の内部に設けられ、該第1の内部空間と隔てられる第2の内部空間を形成する第2の容器とを用い、原子層堆積方法により基板上に薄膜を形成する薄膜形成方法であって、前記第2の容器が備える第1の開口が、前記第1の容器が備える、基板を搬入又は搬出するための基板搬入出口と対向する第1の位置に移動し、基板を搬入する基板搬入工程と、前記第1の開口が、前記第1の容器が備える、基板上に薄膜を形成するガスを前記第2の内部空間に導入するためのガス導入口と対向する第2の位置に移動し、薄膜を形成する薄膜形成工程と、前記第1の開口が、前記基板搬入出口と対向する位置に移動し、基板を搬出する基板搬出工程と、を有することを特徴とする。
 本発明の原子層堆積装置及び薄膜形成方法によれば、均一な膜質の薄膜を基板上に形成することができる。
本発明の原子層堆積装置の一実施形態の概略の装置構成を示し、薄膜形成工程時の状態を示す断面図である。 (a)は、図1に示す原子層堆積装置の第2の容器の概略構成図である。(b)は、基板の搬入及び搬出方法を説明する図である。 図1に示す原子層堆積装置の基板搬入工程時、基板搬出工程時の状態を示す断面図である。 図1に示す原子層堆積装置のクリーニング工程時の状態を示す断面図である。
 以下、本発明の原子層堆積装置及び薄膜形成方法を、一実施形態に基づいて、詳細に説明する。
<原子層堆積装置の概略構成>
 原子層堆積装置10は、TMA(Tri-Methyl-Aluminium)等の原料ガスと、オゾンO3等の酸化ガスを交互に供給して、原子単位で堆積して薄膜を形成する。
 図1は、薄膜形成工程時における、基板12上に薄膜を形成する原子層堆積装置(以降、ALD装置という)10の概略の装置構成を示す断面図である。
 ALD装置10は、主に、第1の容器20と、第2の容器60と、押え部材80とを有する。第1の容器20は、所定の圧力を維持する第1の内部空間22を形成する外側容器である。第2の容器60は、第1の容器20の内部に設けられ、所定の圧力を維持する第2の内部空間62を形成する内側容器である。押え部材80は、第2の容器60を押えることにより、第2の内部空間62を第1の内部空間22から隔てる。
 以下、これらの構成について、より詳細に説明する。
(第1の容器)
 まず、図1を参照して、第1の容器20について説明する。
 第1の容器20は、SUS等の金属材料で構成されている。第1の容器20の上壁には、Nガス(あるいは不活性ガス)を第1の内部空間22に導入するガス導入口が設けられている。また、第1の容器20の上壁には、排気管42が接続される排気口が設けられている。第1の内部空間22内のガスは、ターボ分子ポンプなどの排気部44により、第1の容器20の外部に排気される。これにより、第1の内部空間22内は、導入されたNガスの雰囲気で、所定の圧力に維持される。第1の内部空間22を所定の圧力に減圧することにより、後述するヒータ24、25が酸化するのを抑制することができる。
 第1の容器20の内部に設けられる第2の容器60の上方には、第2の容器60に隣接してヒータ24が設けられている。ヒータ24は、第2の容器60を通して、第2の容器60の内部に載置される基板12、及び第2の内部空間62に供給される原料ガスを加熱する。ヒータ24の配線等は、第1の容器20の上部に設けられた貫通孔を通して外部に引き出され、不図示の電源に接続されている。
 また、第1の容器20の内部に設けられる第2の容器60の下方には、第2の容器60に隣接してヒータ25が設けられている。ヒータ25は、第2の容器60を通して、第2の容器60の内部に載置される基板12、及び第2の内部空間62に供給される原料ガスを加熱する。ヒータ25の配線等は、不図示の貫通孔を通して第1の容器20の外部に引き出され、不図示の電源に接続されている。
 第1の容器20の壁面26(図1中右側の面)には、基板12の搬入及び搬出を行う基板搬入出口28が設けられている。また、この基板搬入出口28から第1の容器20の外側に向けて水平方向に延長した部分に、第1の容器20の外部に繋がるシャッタ27が設けられている。したがって、基板12を搬入するときは、シャッタ27を開き、基板搬入搬出口28を通して、第1の容器20内に基板12を搬入する。また、基板12を搬出するときは、シャッタ27を開き、基板搬入搬出口28を通して、第1の容器20内から基板12を搬出する。
 なお、基板12の搬入、搬出時の状態は、図3に示されている。図3についての説明は後述する。
 基板搬入出口28が設けられる壁面26には、基板上に薄膜を形成するガスを内部に導入するためのガス導入口29が設けられている。ガス導入口29には、原料ガスや酸化ガスを第2の内部空間62に導入するガス導入管30が接続されている。図1に示される例では、2つのガス導入管30a,30bが接続されている。
 ガス導入管30aは、原料ガス(例えば、TMA等の有機金属のガス)やパージガス(例えば、窒素ガス)を第2の内部空間62に導入する。ガス導入管30bは、酸化ガス(例えば、オゾン)やパージガス(例えば、窒素ガス)を第2の内部空間62に導入する。
 基板12に原料ガスを均一に供給するため、ガス導入口29は基板12の幅方向(図1の紙面垂直方向)に等間隔に複数設けられている。また、ガス導入口29は、基板12の幅方向よりも広い範囲に設けられている。
 図1に示される例では、後述する基板支持部67が設けられる高さ方向の位置よりも鉛直上方の位置に、ガス導入口29が位置するように構成される。
 また、第1の容器20の他の壁面(図1中左側の面)には、後述する排気管68が貫通する貫通孔が設けられている。
 第1の容器20の底面32の上には、ヒータ25を鉛直方向に移動する第1の移動機構36が設けられている。第1の移動機構36から延びる支持機構36aの長さを調節することにより、ヒータ25を鉛直方向に移動することができる。ヒータ25は第2の容器60を支持しているため、第1の移動機構36から延びる支持機構36aの長さを制御することにより、第2の容器60を所定の位置に支持することができる。
 また、第1の移動機構36はキャスタ37を備えており、第1の容器20の底面32の面内方向に移動することができる。
 第1の容器20の底面32は、第1の容器20の壁面及び上壁と分離可能になっている。第1の容器20の底面32には、図中下方に延びる2つの支持機構38aが設けられ、この2つの支持機構38aに油圧シリンダ等の第2の移動機構38が設けられている。第2の移動機構38の支持機構38aは、第1の容器20の底面32と、第1の移動機構36と、第1の移動機構36の支持機構36aが支持するヒータ25と、ヒータ25が支持する第2の容器60とを鉛直方向に移動させる。第1の容器20の底面32と壁面との間にはOリング33が設けられており、第2の移動機構38が底面32を上昇させることで、第1の内部空間22が外部に対して閉じる構成となっている。
 第1の移動機構36、第2の移動機構38は制御部100と接続されている。制御部100は、第2の容器60が所定の位置となるように、第1の移動機構36、第2の移動機構38を制御する。制御部100による移動機構36、38の制御の詳細は、後述する。
 本実施形態によれば、基板搬入出口28と、ガス導入口29と、排気管68が貫通する貫通孔とを別々の開口とすることができる。これにより、原料ガスを均一に供給するためのガス導入口29の構造に対する制約がなくなり、均一な膜質の薄膜を形成することができる。
(第2の容器)
 次に、図2を参照して、第2の容器60について説明する。図2(a)は、第2の容器60の概略構成図である。
 第2の容器60は、第1の容器20の内部に設けられる。また、第2の容器60は、第2の内部空間62を形成する筒形状の容器である。第2の容器60は、安定した材質の点から石英が好適に用いられる。基板12をガラス基板とした場合、材料自体が略同じであるため、基板12に異なる成分が付着する心配がないという利点がある。
 第2の容器60は、第1の容器20の内部に水平に位置するように、支持機構36aに支持されている。筒形状の一端には、基板12上に薄膜を形成する原料ガスが流れる第1の開口64が設けられている。図1に示される薄膜形成工程においては、第1の容器20の壁面26に設けられるガス導入口29と第1の開口64とが対向する位置にある。
 第1の開口64を備える側と反対側の端には、第2の内部空間62内のガスが第2の内部空間62外に流れる第2の開口66が設けられている。図2(a)に示される例では、2つの第2の開口66a,66bが設けられている。第2の開口66aは、後述する基板支持部67が設けられる高さ方向の位置よりも鉛直上方の位置に設けられている。
 第2の開口66を通って第2の内部空間62外に流れるガスは、第1の容器20の左壁面に設けられた貫通孔を通り、この貫通孔に接続される排気管68を通って、真空ポンプなどの排気部69により排気される。これにより、第2の内部空間62内は、導入された原料ガスの雰囲気で、所定の圧力に維持される。第2の内部空間62の圧力は、前述した第1の内部空間22の圧力と同じ圧力であってもよいし、異なる圧力であってもよい。
 図2(b)は、基板12の搬入及び搬出方法を説明する図である。基板12は、搬送台車の基板載置先端のフォーク部70に載置される。フォーク部70に載置された基板12は、シャッタ27を開いて、基板搬入出口28、第1の開口64を通って第2の容器60に搬入及び搬出される。基板搬入工程、基板搬出工程については、後に詳しく説明する。
 第2の容器60の内部には、基板12を載置するための基板支持部67が設けられている。基板支持部67は、第2の内部空間62の高さ方向の中間の位置に設けられる。また、基板支持部67は、第2の容器60の筒形状の長手方向に平行に設けられた平面を持つ。この平面を基板の載置面とする。基板支持部67の第1の開口64側の形状は、基板12を搬入及び搬出する搬送台車の基板載置先端のフォーク部70に対応した櫛歯状である。
 このように、第1の開口64側の形状をフォーク部70に対応した櫛歯状としたことにより、筒形状の高さの低い第2の内部空間62に大きな基板12を搬入、搬出する場合でも、薄膜を形成する面が第2の容器60の内面と触れることなく、基板12を搬入及び搬出することができる。
 原料ガスは、基板支持部67に載置される基板12上を通過し、その一部が基板12に吸着される。また、加熱状態にあり活性化された酸化ガスは、基板12に吸着された原料ガスの成分を酸化することができる。
(押え部材)
 次に、図1を参照して、押え部材80について説明する。押え部材80は、第2の容器60を筒形状の長手方向(水平方向)に押える。押え部材80と第2の容器60との間には、Oリング86a、スペーサ84、Oリング86bが順に設けられている。また、第1の容器20の図1中左側の壁面と押え部材80との間には角型ベローズ82が設けられている。そのため、押え部材80は、水平方向に移動することができる。また、第2の容器60と第1の容器20の壁面26(図1中右側の面)との間には、Oリング90a、スペーサ88、Oリング90bが順に設けられている。また、ガス導入口29近傍の壁面26の内壁や、排気管68の内壁には、薄膜を形成すべき基板以外に薄膜が付着するのを防ぐための防着板31,83が設けられている。
 第2の容器60はキャスタ37を備える第1の移動機構36に支持されている。そのため、第2の容器60は、筒形状の長手方向に移動することができる。筒形状の長手方向に、押え部材80が第2の容器60を押えることで、第2の容器60は、Oリング86a,86b,90a,90bを通して第1の容器20に押し付けられる。その結果、第2の内部空間62は第1の内部空間22に対して隔てられる。すなわち、押え部材80が第2の容器60の筒形状の長手方向に第2の容器60を押えることにより、押え部材80は第2の内部空間62を第1の内部空間22から隔てる。
 なお、第1の内部空間22と第2の内部空間62とを隔てるとは、第1の内部空間22の圧力と第2の内部空間62の圧力とが個別に制御可能な程度に空間的に分離していることを意味する。
 一般に、Oリングを用いて空間を密閉する場合、Oリングの周の長さが短いほど、より確実に2つの空間を隔てることができる。図1に示される例では、第2の容器60の筒形状の長手方向に第2の容器60を押える構成としたため、第2の内部空間62を第1の内部空間22に対して隔てるために必要なOリングの周の長さを筒形状に合わせて短くすることができる。
 このように、第2の容器60の筒形状の長手方向に第2の容器60を押える構成とすることにより、第2の容器60の第2の内部空間62を第1の内部空間22に対してより確実に隔てることができる。そのため、第2の内部空間62から第1の内部空間22へ原料ガスが漏れ出ることを抑制することができる。
 第2の内部空間62から第1の内部空間22へ原料ガスが漏れ出ることを抑制することにより、第1の内部空間22へ漏れる原料ガスによる第1の内部空間22内面への膜形成が抑制され、結果的にパーティクルを低減することができる。さらに、第2の内部空間62を第1の内部空間22に対してより確実に隔てることにより、第1の内部空間22に存在するパーティクルが第2の内部空間62に混入することを抑制することができる。したがって、図1に示される例のように、押え部材80が、第2の容器60の筒形状の長手方向に第2の容器60を押えることにより、より均一な膜質の薄膜を成膜することができる。
<原子層堆積方法の概略工程>
 次に、本実施形態の原子層堆積方法について説明する。
(基板搬入工程)
 まず、基板搬入工程について説明する。図3は、基板搬入工程時における原子層堆積装置10の状態を示す断面図である。第2の容器60の第1の開口64は基板搬入出口28と対向する位置にある。以降、第1の開口64と基板搬入出口28とが対向する状態における第2の容器60の位置を第1の位置とする。すなわち、基板搬入工程では、第2の容器60は第1の位置にある。
 基板を搬入する際に、第2の容器60が第1の位置にない場合、第2の容器60が第1の位置に移動する。この移動は、制御部100が第1の移動機構36を制御することによりなされる。
 そして、シャッタ27が開き、シャッタ27、基板搬入出口28、第1の開口64を通して、基板12が第2の容器60の内部に搬入される。基板の搬入は、図2(b)に示すように、搬送台車の基板載置先端のフォーク部70に基板12を載置して行う。
(薄膜形成工程)
 次に、薄膜形成工程について説明する。図1は、薄膜形成工程時における原子層堆積装置10の状態を示す断面図である。第2の容器60の第1の開口64はガス導入口29と対向する位置にある。以降、第1の開口64とガス導入口29とが対向する状態における第2の容器60の位置を第2の位置とする。すなわち、薄膜形成工程では、第2の容器60は第2の位置にある。
 基板上に薄膜を形成する際に、第2の容器60が第2の位置にない場合、第2の容器60が第2の位置に移動する。この移動は、制御部100が第1の移動機構36を制御することによりなされる。
 第2の容器60が第2の位置に移動した後、押え部材80が、第2の容器60の筒形状の長手方向(水平方向)に第2の容器60を押さえる。これにより、第2の内部空間62は第1の内部空間22から隔てられる。そして、ガス導入管30から第2の内部空間62に原料ガスを流し、基板12上に薄膜を形成する。
(基板搬出工程)
 次に、基板搬出工程について説明する。図3は、基板搬出工程時における原子層堆積装置10の状態を示す断面図である。第2の容器60は第1の位置にある。
 薄膜形成工程が終了した際は、押え部材80が第2の容器60を第1の容器20に押さえつけた状態となっている。そのため、押え部材80が第2の容器60から離れる方向(図1中左方向)に、押え部材80を移動し、第2の容器60の押さえを開放する。
 そして、第2の容器60が第1の位置に移動する。この移動は、制御部100が第1の移動機構36を制御することによりなされる。
 そして、シャッタ27を開き、第1の開口64、基板搬入出口28、シャッタ27を通して、第2の容器60の内部から基板12が搬出される。基板の搬出は、図2(b)に示されるように、搬送台車の基板載置先端のフォーク部70に基板12を載置して行う。
 このように、ALD装置10は、第1の容器20の内部で第2の容器60を移動させるという、従来の技術に比べて簡易な構成により、薄膜を形成する第2の内部空間62と基板の搬入搬出を行う第1の内部空間22とを隔てることができる。そのため、第1の容器20の内壁面、基板搬入出口28の内壁面、シャッタ27の内壁面が原料ガスに曝されることがなく、基板12を搬入、搬出する際に、パーティクルが混入することを抑制することができる。
(クリーニング工程)
 図4は、クリーニング工程時における原子層堆積装置10の状態を示す断面図である。第1の容器20の下側部分34と上側部分40とが分離した状態となっている。
 第2の容器60のクリーニングを行うために、第2の容器60を第1の容器20の外部に取り出す。第2の容器60を第1の容器20の外部に取り出すために、第2の移動機構38は第1の容器20の底面32を含む下側部分34を、上側部分40から分離するように(すなわち、鉛直下方に)移動し、第2の容器60が外部に取り出せる位置(第3の位置)に移動する。この移動は、制御部100が第2の移動機構38を制御することによりなされる。
 第2の容器60が外部に取り出せる位置とは、第2の容器60の最上部の高さ方向の位置が、第1の容器20の上側部分40の最下部の高さ方向の位置より低くなるような位置である。クリーニング工程において、支持機構36aの長さができるだけ短くなるよう、制御部100が第1の移動機構36を制御することが好ましい。これにより、原子層堆積装置10の高さ方向の大きさを小さくすることができる。
 図4に示されるように、第1の容器20の下側部分34と上側部分40とを分離した後、第1の容器20の底面32の面内方向に第1の移動機構36を移動することにより、第2の容器60を第1の容器の上側部分40の鉛直下方から移動することができる。こうして、第2の容器60は第1の容器20から取り外される。
 図4に示される例では、第1の容器20の内部に設けた第2の容器60を容易に取り出すことができるため、第2の容器60のクリーニングを容易に行うことができる。クリーニングは、例えばウェットエッチングを行う。
 10 原子層堆積装置
 12 基板
 20 第1の容器
 22 第1の内部空間
 24,25 ヒータ
 26 壁面
 27 シャッタ
 28 基板搬入出口
 29 ガス導入口
 30,30a,30b ガス導入管
 31 防着板
 32 底面
 33 Oリング
 34 下側部分
 36 第1の移動機構
 36a 支持機構
 37 キャスタ
 38 第2の移動機構
 38a 支持機構
 40 上側部分
 42 排気管
 44 排気部
 60 第2の容器
 62 第2の内部空間
 64 第1の開口
 66,66a,66b 第2の開口
 67 基板支持部
 68 排気管
 69 排気部
 70 フォーク部
 80 固定部材
 82 角型ベローズ
 83 防着板
 84,88 スペーサ
 86a,86b,90a,90b Oリング
 100 制御部

Claims (10)

  1.  基板上に薄膜を形成する原子層堆積装置であって、
     第1の内部空間を形成する容器であって、基板を搬入又は搬出するための基板搬入出口と、基板上に薄膜を形成するガスを内部に導入するためのガス導入口とを異なる位置に備える第1の容器と、
     前記第1の容器の内部に設けられ、前記第1の内部空間と隔てられる第2の内部空間を形成し、第1の開口を備える第2の容器と、
     前記第2の容器を所定の方向に移動する第1の移動機構と、
     基板を搬入又は搬出する場合、前記基板搬入出口と前記第1の開口とが対向する第1の位置に前記第2の容器を移動し、基板上に薄膜を形成する場合、前記ガス導入口と前記第1の開口とが対向する第2の位置に前記第2の容器を移動するように、前記第1の移動機構を制御する制御部と、
     を有することを特徴とする原子層堆積装置。
  2.  前記基板搬入出口と前記ガス導入口とは、前記第1の容器の同じ壁面に設けられている、請求項1に記載の原子層堆積装置。
  3.  前記第2の容器は筒形状であり、前記第2の内部空間を前記第1の内部空間から隔てるために、筒形状の長手方向に該第2の容器を押える押え部材を備える、請求項1又は2のいずれかに記載の原子層堆積装置。
  4.  前記第2の容器は、前記第1の開口を備える側と反対側の端に、前記第2の内部空間内のガスが該第2の内部空間外に流れる第2の開口を備える、請求項3に記載の原子層堆積装置。
  5.  前記第1の容器は、該第1の容器の底面を含む下側部分と、該下側部分以外の上側部分とに分離可能に構成され、
     前記原子層堆積装置は、前記下側部分を前記上側部分から分離するように移動する第2の移動機構を備え、
     前記制御部は、前記第2の容器を前記第1の容器の外部に取り出す場合、前記第2の容器が外部に取り出せる位置である第3の位置に移動するように、前記第2の移動機構を制御する、請求項1乃至4のいずれかに記載の原子層堆積装置。
  6.  第1の内部空間を形成する第1の容器と、該第1の容器の内部に設けられ、該第1の内部空間と隔てられる第2の内部空間を形成する第2の容器とを用い、原子層堆積方法により基板上に薄膜を形成する薄膜形成方法であって、
     前記第2の容器が備える第1の開口が、前記第1の容器が備える、基板を搬入又は搬出するための基板搬入出口と対向する第1の位置に移動し、基板を搬入する基板搬入工程と、
     前記第1の開口が、前記第1の容器が備える、基板上に薄膜を形成するガスを前記第2の内部空間に導入するためのガス導入口と対向する第2の位置に移動し、薄膜を形成する薄膜形成工程と、
     前記第1の開口が、前記基板搬入出口と対向する位置に移動し、基板を搬出する基板搬出工程と、
     を有することを特徴とする薄膜形成方法。
  7.  前記ガス導入口は、前記基板搬入出口が設けられる壁面と同じ壁面に設けられ、前記ガス導入口を通して、基板上に薄膜を形成するガスを前記第2の内部空間に導入する、請求項6に記載の薄膜形成方法。
  8.  前記第2の容器は筒形状であり、
     前記第2の内部空間を前記第1の内部空間から隔てるように、前記第2の容器の筒形状の長手方向に該第2の容器を押えて、前記第2の容器を前記第1の容器の内部で固定する工程を有する、請求項6又は7に記載の薄膜形成方法。
  9.  前記第2の容器が、前記第1の開口を備える側と反対側の端に備える第2の開口から、前記第2の内部空間内のガスを該第2の内部空間外に流す、請求項8に記載の薄膜形成方法。
  10.  前記第1の容器は、該第1の容器の底面を含む下側部分と、該下側部分以外の上側部分とに分離可能に構成され、
     前記第2の容器を前記第1の容器の外部に取り出すために、前記第2の容器が外部に取り出せる位置である第3の位置に移動するように、前記下側部分を移動する工程を有する、請求項6乃至9のいずれかに記載の薄膜形成方法。
PCT/JP2010/001462 2009-03-10 2010-03-03 原子層堆積装置及び薄膜形成方法 WO2010103751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/203,400 US9068261B2 (en) 2009-03-10 2010-03-03 Atomic layer deposition apparatus and thin film forming method
EP10750510.9A EP2408003B1 (en) 2009-03-10 2010-03-03 Atomic layer deposition apparatus and thin film forming method
KR1020117023449A KR101224975B1 (ko) 2009-03-10 2010-03-03 원자층 퇴적 장치 및 박막 형성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-056642 2009-03-10
JP2009056642A JP4523661B1 (ja) 2009-03-10 2009-03-10 原子層堆積装置及び薄膜形成方法

Publications (1)

Publication Number Publication Date
WO2010103751A1 true WO2010103751A1 (ja) 2010-09-16

Family

ID=42709069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001462 WO2010103751A1 (ja) 2009-03-10 2010-03-03 原子層堆積装置及び薄膜形成方法

Country Status (6)

Country Link
US (1) US9068261B2 (ja)
EP (1) EP2408003B1 (ja)
JP (1) JP4523661B1 (ja)
KR (1) KR101224975B1 (ja)
TW (1) TWI500807B (ja)
WO (1) WO2010103751A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523661B1 (ja) * 2009-03-10 2010-08-11 三井造船株式会社 原子層堆積装置及び薄膜形成方法
SG185372A1 (en) * 2010-06-04 2012-12-28 Oc Oerlikon Balzers Ag Vacuum processing device
JP2012126977A (ja) * 2010-12-16 2012-07-05 Ulvac Japan Ltd 真空成膜装置及び成膜方法
JP5750281B2 (ja) * 2011-03-07 2015-07-15 株式会社アルバック 真空一貫基板処理装置及び成膜方法
JP2012184482A (ja) * 2011-03-07 2012-09-27 Ulvac Japan Ltd 真空成膜装置及び成膜方法
JP5747647B2 (ja) * 2011-05-09 2015-07-15 株式会社Sumco バレル型気相成長装置
US9418880B2 (en) * 2011-06-30 2016-08-16 Semes Co., Ltd. Apparatuses and methods for treating substrate
JP6024377B2 (ja) * 2012-10-18 2016-11-16 大日本印刷株式会社 ナノインプリントリソグラフィ用テンプレートブランク、その製造方法、および、ナノインプリントリソグラフィ用テンプレートの製造方法
JP6354539B2 (ja) * 2014-11-25 2018-07-11 東京エレクトロン株式会社 基板処理装置、基板処理方法、記憶媒体
JP5990626B1 (ja) 2015-05-26 2016-09-14 株式会社日本製鋼所 原子層成長装置
JP6054471B2 (ja) 2015-05-26 2016-12-27 株式会社日本製鋼所 原子層成長装置および原子層成長装置排気部
JP6054470B2 (ja) 2015-05-26 2016-12-27 株式会社日本製鋼所 原子層成長装置
JP6050860B1 (ja) * 2015-05-26 2016-12-21 株式会社日本製鋼所 プラズマ原子層成長装置
JP6776757B2 (ja) * 2016-09-15 2020-10-28 大日本印刷株式会社 多段構造体を有するテンプレートの製造方法
US11251019B2 (en) * 2016-12-15 2022-02-15 Toyota Jidosha Kabushiki Kaisha Plasma device
US11725279B2 (en) 2017-02-08 2023-08-15 Picosun Oy Deposition or cleaning apparatus with movable structure
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
KR102405723B1 (ko) 2017-08-18 2022-06-07 어플라이드 머티어리얼스, 인코포레이티드 고압 및 고온 어닐링 챔버
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
WO2019055415A1 (en) 2017-09-12 2019-03-21 Applied Materials, Inc. APPARATUS AND METHODS FOR MANUFACTURING SEMICONDUCTOR STRUCTURES USING A PROTECTIVE BARRIER LAYER
JP6863199B2 (ja) 2017-09-25 2021-04-21 トヨタ自動車株式会社 プラズマ処理装置
WO2019094481A1 (en) 2017-11-11 2019-05-16 Micromaterials Llc Gas delivery system for high pressure processing chamber
CN111432920A (zh) 2017-11-17 2020-07-17 应用材料公司 用于高压处理系统的冷凝器系统
CN111902929A (zh) 2018-03-09 2020-11-06 应用材料公司 用于含金属材料的高压退火处理
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
CN112996950B (zh) 2018-11-16 2024-04-05 应用材料公司 使用增强扩散工艺的膜沉积
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534786A (ja) * 1999-01-04 2002-10-15 ジエヌス・インコーポレイテツド 原子層成長プロセスのための処理チャンバ
JP2006222468A (ja) * 2002-03-26 2006-08-24 Tokyo Electron Ltd 基板処理装置、基板処理方法、クリーニング方法
JP2006310813A (ja) * 2005-03-29 2006-11-09 Mitsui Eng & Shipbuild Co Ltd 成膜装置
JP2008240077A (ja) 2007-03-28 2008-10-09 Canon Anelva Corp Ald装置及びこれを用いた成膜方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954191A (en) * 1974-11-18 1976-05-04 Extrion Corporation Isolation lock for workpieces
US4030622A (en) * 1975-05-23 1977-06-21 Pass-Port Systems, Inc. Wafer transport system
JPS6411320A (en) * 1987-07-06 1989-01-13 Toshiba Corp Photo-cvd device
US5683072A (en) * 1988-11-01 1997-11-04 Tadahiro Ohmi Thin film forming equipment
JP2592511B2 (ja) * 1988-12-03 1997-03-19 株式会社フレンドテック研究所 縦型半導体製造システム
US5088444A (en) * 1989-03-15 1992-02-18 Kabushiki Kaisha Toshiba Vapor deposition system
US5223001A (en) * 1991-11-21 1993-06-29 Tokyo Electron Kabushiki Kaisha Vacuum processing apparatus
JPH0613361A (ja) * 1992-06-26 1994-01-21 Tokyo Electron Ltd 処理装置
US5374412A (en) * 1992-07-31 1994-12-20 Cvd, Inc. Highly polishable, highly thermally conductive silicon carbide
JP3183575B2 (ja) * 1992-09-03 2001-07-09 東京エレクトロン株式会社 処理装置および処理方法
FI100409B (fi) * 1994-11-28 1997-11-28 Asm Int Menetelmä ja laitteisto ohutkalvojen valmistamiseksi
US5772770A (en) * 1995-01-27 1998-06-30 Kokusai Electric Co, Ltd. Substrate processing apparatus
FR2747111B1 (fr) * 1996-04-03 1998-04-30 Commissariat Energie Atomique Systeme d'accouplement pour un transfert confine d'un objet plat d'une boite de confinement vers une unite de traitement de l'objet
JP3801730B2 (ja) * 1997-05-09 2006-07-26 株式会社半導体エネルギー研究所 プラズマcvd装置及びそれを用いた薄膜形成方法
JP3966594B2 (ja) * 1998-01-26 2007-08-29 東京エレクトロン株式会社 予備真空室およびそれを用いた真空処理装置
JP4275769B2 (ja) * 1998-06-19 2009-06-10 株式会社渡辺商行 基体の移載装置
DE19847101C1 (de) * 1998-10-13 2000-05-18 Wacker Siltronic Halbleitermat CVD-Reaktor und Verfahren zur Herstellung einer mit einer epitaktischen Schicht versehenen Halbleiterscheibe
US6183564B1 (en) * 1998-11-12 2001-02-06 Tokyo Electron Limited Buffer chamber for integrating physical and chemical vapor deposition chambers together in a processing system
US6409837B1 (en) * 1999-01-13 2002-06-25 Tokyo Electron Limited Processing system and method for chemical vapor deposition of a metal layer using a liquid precursor
JP2000212749A (ja) * 1999-01-22 2000-08-02 Ulvac Japan Ltd 薄膜形成装置、及び窒化タングステン薄膜製造方法
JP4054159B2 (ja) * 2000-03-08 2008-02-27 東京エレクトロン株式会社 基板処理方法及びその装置
AU4351601A (en) * 2000-03-09 2001-09-17 Semix Inc Wafer processing apparatus and method
JP4422295B2 (ja) * 2000-05-17 2010-02-24 キヤノンアネルバ株式会社 Cvd装置
JP2002035572A (ja) * 2000-05-18 2002-02-05 Ulvac Japan Ltd 真空処理装置と多室型真空処理装置
KR100767294B1 (ko) * 2000-06-23 2007-10-16 캐논 아네르바 가부시키가이샤 Cvd장치
TW511185B (en) * 2000-08-11 2002-11-21 Tokyo Electron Ltd Substrate processing apparatus and processing method
US6630053B2 (en) * 2000-08-22 2003-10-07 Asm Japan K.K. Semiconductor processing module and apparatus
US7018504B1 (en) * 2000-09-11 2006-03-28 Asm America, Inc. Loadlock with integrated pre-clean chamber
US6852167B2 (en) * 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US7085616B2 (en) * 2001-07-27 2006-08-01 Applied Materials, Inc. Atomic layer deposition apparatus
US6846380B2 (en) * 2002-06-13 2005-01-25 The Boc Group, Inc. Substrate processing apparatus and related systems and methods
JP4294976B2 (ja) * 2003-02-27 2009-07-15 東京エレクトロン株式会社 基板処理装置
JP4257576B2 (ja) * 2003-03-25 2009-04-22 ローム株式会社 成膜装置
US7682454B2 (en) * 2003-08-07 2010-03-23 Sundew Technologies, Llc Perimeter partition-valve with protected seals and associated small size process chambers and multiple chamber systems
JP2006176826A (ja) * 2004-12-22 2006-07-06 Canon Anelva Corp 薄膜処理装置
US7422636B2 (en) * 2005-03-25 2008-09-09 Tokyo Electron Limited Plasma enhanced atomic layer deposition system having reduced contamination
WO2007018016A1 (ja) * 2005-08-05 2007-02-15 Hitachi Kokusai Electric Inc. 基板処理装置、冷却ガス供給ノズルおよび半導体装置の製造方法
KR100745130B1 (ko) * 2006-02-09 2007-08-01 삼성전자주식회사 박막 증착 장치 및 방법
US7670432B2 (en) * 2006-03-08 2010-03-02 Tokyo Electron Limited Exhaust system for a vacuum processing system
US7794546B2 (en) * 2006-03-08 2010-09-14 Tokyo Electron Limited Sealing device and method for a processing system
US7740705B2 (en) * 2006-03-08 2010-06-22 Tokyo Electron Limited Exhaust apparatus configured to reduce particle contamination in a deposition system
US7456429B2 (en) * 2006-03-29 2008-11-25 Eastman Kodak Company Apparatus for atomic layer deposition
KR100932964B1 (ko) * 2006-12-12 2009-12-21 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 장치의 제조 방법 및 반응 용기
JP5051875B2 (ja) * 2006-12-25 2012-10-17 東京エレクトロン株式会社 成膜装置および成膜方法
US7993457B1 (en) * 2007-01-23 2011-08-09 Novellus Systems, Inc. Deposition sub-chamber with variable flow
JP2008192642A (ja) * 2007-01-31 2008-08-21 Tokyo Electron Ltd 基板処理装置
US8282735B2 (en) * 2007-11-27 2012-10-09 Asm Genitech Korea Ltd. Atomic layer deposition apparatus
JP4540742B2 (ja) * 2008-01-25 2010-09-08 三井造船株式会社 原子層成長装置および薄膜形成方法
KR101659095B1 (ko) * 2008-02-08 2016-09-22 램 리써치 코포레이션 측방향 벨로우 및 비접촉 입자 밀봉을 포함하는 조정가능한 갭이 용량적으로 커플링되는 rf 플라즈마 반응기
CN101918611B (zh) * 2008-02-27 2012-09-26 硅绝缘体技术有限公司 Cvd反应器中气态前体的热化
US20100075488A1 (en) * 2008-09-19 2010-03-25 Applied Materials, Inc. Cvd reactor with multiple processing levels and dual-axis motorized lift mechanism
US8627783B2 (en) * 2008-12-19 2014-01-14 Lam Research Corporation Combined wafer area pressure control and plasma confinement assembly
JP2010171388A (ja) * 2008-12-25 2010-08-05 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法及び基板処理用反応管
JP4564570B2 (ja) * 2009-03-10 2010-10-20 三井造船株式会社 原子層堆積装置
JP4523661B1 (ja) * 2009-03-10 2010-08-11 三井造船株式会社 原子層堆積装置及び薄膜形成方法
JP5136574B2 (ja) * 2009-05-01 2013-02-06 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
KR101271246B1 (ko) * 2011-08-02 2013-06-07 주식회사 유진테크 에피택셜 공정을 위한 반도체 제조설비

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534786A (ja) * 1999-01-04 2002-10-15 ジエヌス・インコーポレイテツド 原子層成長プロセスのための処理チャンバ
JP2007027791A (ja) * 1999-01-04 2007-02-01 Genus Inc 原子層成長プロセスのための処理チャンバ
JP2006222468A (ja) * 2002-03-26 2006-08-24 Tokyo Electron Ltd 基板処理装置、基板処理方法、クリーニング方法
JP2006310813A (ja) * 2005-03-29 2006-11-09 Mitsui Eng & Shipbuild Co Ltd 成膜装置
JP2008240077A (ja) 2007-03-28 2008-10-09 Canon Anelva Corp Ald装置及びこれを用いた成膜方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2408003A4 *

Also Published As

Publication number Publication date
JP4523661B1 (ja) 2010-08-11
EP2408003B1 (en) 2014-09-24
JP2010212434A (ja) 2010-09-24
EP2408003A1 (en) 2012-01-18
EP2408003A4 (en) 2013-08-14
TW201043726A (en) 2010-12-16
US9068261B2 (en) 2015-06-30
KR20110129453A (ko) 2011-12-01
TWI500807B (zh) 2015-09-21
US20110305836A1 (en) 2011-12-15
KR101224975B1 (ko) 2013-01-22

Similar Documents

Publication Publication Date Title
JP4523661B1 (ja) 原子層堆積装置及び薄膜形成方法
JP4564570B2 (ja) 原子層堆積装置
JP6095825B2 (ja) 基板処理装置および半導体装置の製造方法
JP5722595B2 (ja) 基板処理装置および半導体装置の製造方法
KR101132231B1 (ko) 기판 처리 장치
TWI808199B (zh) 選擇性地形成膜之方法及系統
CN103173741A (zh) 成膜装置
KR20120024384A (ko) 성막 방법 및 성막 장치
JP2006286716A (ja) 半導体デバイスの製造方法
JP2012222024A (ja) 基板処理装置及び半導体装置の製造方法
JP2011029441A (ja) 基板処理装置及び基板処理方法
TWI827871B (zh) 基板處理裝置、半導體裝置之製造方法、基板處理程式及記錄媒體
KR101550590B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리 장치
JP5021688B2 (ja) 原子層成長装置
JP6021977B2 (ja) 基板処理装置および半導体装置の製造方法
JP4918109B2 (ja) 原子層成長装置
JP2010202912A (ja) 原子層成長装置および方法
KR20180110601A (ko) 성막 방법 및 종형 열처리 장치
JP2009130108A (ja) 基板処理装置及び半導体装置の製造方法
JP5204809B2 (ja) 基板処理装置、基板処理方法及び半導体デバイスの製造方法
JP2007227804A (ja) 半導体装置の製造方法
CN115125515A (zh) 衬底处理方法、半导体器件的制造方法、记录介质及衬底处理装置
JP2007073879A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13203400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010750510

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117023449

Country of ref document: KR

Kind code of ref document: A