WO2010101156A1 - 無線通信システム、送信装置および受信装置 - Google Patents

無線通信システム、送信装置および受信装置 Download PDF

Info

Publication number
WO2010101156A1
WO2010101156A1 PCT/JP2010/053357 JP2010053357W WO2010101156A1 WO 2010101156 A1 WO2010101156 A1 WO 2010101156A1 JP 2010053357 W JP2010053357 W JP 2010053357W WO 2010101156 A1 WO2010101156 A1 WO 2010101156A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
delay
signal
reception
receiving
Prior art date
Application number
PCT/JP2010/053357
Other languages
English (en)
French (fr)
Inventor
西本 浩
智也 山岡
久保 博嗣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011502766A priority Critical patent/JP5183798B2/ja
Priority to CN2010800103455A priority patent/CN102342056A/zh
Priority to EP10748751.4A priority patent/EP2405600B1/en
Priority to US13/254,677 priority patent/US8824446B2/en
Publication of WO2010101156A1 publication Critical patent/WO2010101156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0894Space-time diversity using different delays between antennas

Definitions

  • the present invention relates to a wireless communication system that uses a plurality of antennas for signal transmission and reception, respectively.
  • the transmitting apparatus includes two antennas, and transmits a modulated wave delayed by one time slot or more to one antenna that radiates a modulated wave from the other antenna.
  • the receiving apparatus performs multipath processing that emphasizes and extracts the main wave component included in the received wave. Thereby, it is possible to obtain a diversity effect by space and frequency diversity without expanding the band.
  • Patent Document 1 Such a technique is disclosed in Patent Document 1 below.
  • the number of transmission antennas is limited to two and the number of reception antennas is limited to one transmission diversity. Therefore, there is a problem that it cannot be applied when a plurality of antennas are used for transmission and reception.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a wireless communication system capable of providing an appropriate amount of delay when a plurality of antennas are used for transmission and reception.
  • the present invention is a wireless communication system including a transmission device including a plurality of transmission antennas and a reception device including a plurality of reception antennas
  • the transmission apparatus includes a branching unit that branches a signal into a plurality of transmission signals that pass through a plurality of signal paths corresponding to the plurality of transmission antennas, and a transmission delay that is provided in at least one of the signal paths and adds a delay to the transmission signal And when the transmission signal branched by the branching means is delayed by the transmission delay means, the transmission signal to which the delay is added is used as a transmission signal, and each transmission signal is transmitted to the plurality of transmissions.
  • the signal is transmitted to the receiving device via an antenna, and the receiving device is provided in at least one of a plurality of signal paths through which a plurality of received signals received by the plurality of receiving antennas are received.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 3 is a diagram illustrating a configuration example of a receiving apparatus.
  • FIG. 4 is a diagram for explaining stream composition.
  • FIG. 5 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 6 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus.
  • FIG. 8 is a diagram illustrating stream composition.
  • FIG. 9 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 10 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 10 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 11 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 12 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 13 is a diagram for explaining stream composition.
  • FIG. 14 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 15 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 16 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 17 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 18 is a diagram illustrating a configuration example of a transmission device.
  • FIG. 19 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 20 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 21 is a diagram illustrating a configuration example of a receiving device.
  • FIG. 22 is a diagram illustrating a configuration example of a transmission apparatus.
  • FIG. 23 is a diagram illustrating
  • Embodiment 1 FIG.
  • the number of transmission antennas of the transmission apparatus is M
  • the number of spatial multiplexing is 1
  • the number of reception antennas of the reception apparatus is N
  • the number of spatial multiplexing is 1
  • the modulation unit and the demodulation unit are multipath transmission countermeasures.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the present embodiment.
  • the transmission apparatus includes M transmission antennas and a reception apparatus including N reception antennas.
  • M transmission antennas M transmission antennas
  • N reception antennas N reception antennas
  • FIG. 2 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 11, signal lines 12-1 to 12-M, delay units 13-2 to 13-M, gain applying units 14-1 to 14-M, and transmission antennas 15-1 to 15-15. -M.
  • the modulation unit 11 generates a transmission signal.
  • the signal lines 12-1 to 12-M are signal lines obtained by branching a transmission signal to the same number as the number of transmission antennas by branching means (not shown).
  • the delay units 13-2 to 13-M perform delay processing on the transmission signal.
  • the gain applying units 14-1 to 14-M add a complex gain to the transmission signal.
  • the transmission antennas 15-1 to 15-M transmit a transmission signal to the reception device.
  • FIG. 3 is a diagram illustrating a configuration example of a receiving device.
  • the receiving device includes receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, delay units 23-2 to 23-N, an adding unit 24, and a demodulating unit 25. .
  • the reception antennas 21-1 to 21-N receive the reception signal from the transmission device.
  • Gain applying sections 22-1 to 22-N add a complex gain to the received signal.
  • the delay units 23-2 to 23-N perform delay processing on the received signal.
  • the adder 24 adds the received signals after the delay.
  • the demodulator 25 demodulates the received signal after addition.
  • the modulation unit 11 In the transmission apparatus, the modulation unit 11 generates a transmission signal and branches it into M series of signal lines 12-1 to 12-M. Among these, the signal lines 12-2 to 12-M input the transmission signals to the delay units 13-2 to 13-M connected thereto, respectively.
  • D (i ⁇ 1) is given in the delay unit 13-i (2 ⁇ i ⁇ M) using a certain fixed time D as a reference time.
  • D 1 / ((MN ⁇ 1) ⁇ f)
  • the transmission signal from the signal line 12-1 and the delayed transmission signal from the delay units 13-2 to 13-M are input, and each is multiplied by a complex gain.
  • the complex gain A i multiplied by the transmission signal of the transmission antenna 15-i (1 ⁇ i ⁇ M) uses a real gain G i (0 ⁇ G i ) and a phase ⁇ i (0 ⁇ ⁇ i ⁇ 2 ⁇ ). Is expressed by the following equation (1).
  • the amplitude may be multiplied by G i and the phase may be changed by ⁇ i .
  • the gain imparting process here is arbitrary, and may not be performed if not necessary for obtaining the diversity effect.
  • the positions of the delay units 13-2 to 13-M and the gain applying units 14-2 to 14-M may be changed. Transmitting antennas 15-1 to 15-M transmit the transmission signals after gain addition from gain applying sections 14-1 to 14-M to the receiving apparatus.
  • the receiving antennas 21-1 to 21-N input the received signals received to the gain applying units 22-1 to 22-N.
  • the gain applying units 22-1 to 22-N perform complex gain application. However, the gain application process here is optional, and may not be performed if it is not necessary to obtain the diversity effect.
  • the delay units 23-2 to 23-N receive the received signals from the gain applying units 22-2 to 22-N, and as an example of an appropriate delay amount for obtaining the diversity effect, the transmission signal mounting delay amount DM Is used to provide DM (j ⁇ 1) in the delay unit 23-j (2 ⁇ j ⁇ N).
  • the method of setting the delay amount for each receiving antenna is not limited to this.
  • Adder 24 combines the received signal from signal line 22-1 and the delayed received signals from delay units 23-2 to 23-N. Thereafter, the demodulation unit 25 performs demodulation processing on the combined received signal.
  • FIG. 4 is a diagram for explaining stream composition.
  • the dotted line interval represents the sampling interval based on the delay amount D, and the solid line represents the main signal.
  • the transmission apparatus transmits the signal output from the modulation unit 11 and the signals delayed by the delay amounts D, 2D, and 3D in the delay units 13-2 to 13-4 to four transmission antennas 15-1 to 15-4, respectively.
  • the receiving apparatus receives four signals by the two receiving antennas 21-1 to 21-2, and delays the signal received by one receiving antenna 21-2 by 4D in the delay unit 23-2. Thereafter, the receiving device adds the signal of the one receiving antenna 21-2 that has been subjected to the delay processing and the signal of the other receiving antenna 21-1 that has not been subjected to the delay processing by the adding unit 24. By giving such a delay amount, the timing of each main signal which is a solid line portion does not overlap in the output of the adder 24.
  • the transmission apparatus independently gives a delay to signals transmitted from a plurality of transmission antennas so that the timing of the main signal does not overlap at the reception antenna.
  • the receiving apparatus independently delays the signals received by the plurality of receiving antennas so that the timing of the main signal does not overlap at the time of addition.
  • the demodulation unit of the receiving apparatus performs effective reception processing for multipath transmission, demodulation with a diversity effect is possible even if the signal after addition is directly input.
  • the signals processed by the delay units 13-2 to 13-M and 23-2 to 23-N are not limited to analog signals or digital signals.
  • the delay amount described in the embodiment and a considerable amount of delay processing are possible.
  • the delay time of the signal transmitted from each antenna is different.
  • the transmission delay time added at -3 is D respectively.
  • the output of the return antenna shown in FIG. 4 is different between T 2 and T 3.
  • the arrival time of the transmission path from the transmission antenna 15-3 to the reception antennas 21-1 and 21-2 is 4 is delayed by one sampling interval from the arrival time of the transmission path from 2 to the receiving antennas 21-1 and 21-2, the receiving antennas 21-1 and 21-2 are similar to the receiving antenna input shown in FIG. There is an effect that it becomes the timing of the main signal.
  • the reception delay times are DM,..., DM (N-1), the reception delay times in the receiving apparatus are different, but added by delay units 23-2 and 23-3, for example. There may be the same reception delay time so that each transmission delay time is DM.
  • the arrival time of the transmission path from the transmission antennas 15-1 to 15-M to the reception antenna 21-3 is DM more than the arrival time of the transmission path from the transmission antennas 15-1 to 15-M to the reception antenna 21-2.
  • delay there is an effect that the input to the adder 24 has the same timing as the timing of the main signal described in the present embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of a transmission apparatus.
  • the transmission device includes signal lines 12-1 to 12-M, delay units 13-2 to 13-M, modulation units 31-1 to 31-M, and transmission antennas 15-1 to 15-M.
  • Modulating units 31-1 to 31-M modulate input data from signal line 12-1 and delayed input data from delay units 13-2 to 13-M. For example, this is effective when the output of the modulation unit is an analog signal and delay processing is difficult due to hardware limitations.
  • Embodiment 2 FIG. In the present embodiment, a delay amount different from that of the first embodiment is given to the transmission device and the reception device. A different part from Embodiment 1 is demonstrated.
  • FIG. 6 is a diagram illustrating a configuration example of a transmission apparatus.
  • the transmission apparatus includes a modulation unit 11, signal lines 12-1 to 12-M, delay units 41-2 to 41-M, gain applying units 14-1 to 14-M, and transmission antennas 15-1 to 15-15. -M.
  • the delay units 41-2 to 41-M perform delay processing on the transmission signal.
  • FIG. 7 is a diagram illustrating a configuration example of a receiving device.
  • the receiving device includes receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, delay units 51-2 to 51-N, an adding unit 24, and a demodulating unit 25. .
  • the delay units 51-2 to 51-N perform delay processing on the received signal.
  • the signal lines 12-2 to 12-M input the transmission signals to the delay units 41-2 to 41-M respectively connected thereto.
  • DM (i ⁇ 1) is given in the delay unit 41-i (2 ⁇ i ⁇ M) using a certain fixed time D.
  • the gain applying units 14-1 to 14-M receive the transmission signal from the signal line 12-1 and the delayed transmission signals from the delay units 41-2 to 41-M, and apply complex gain to each of them.
  • the delay units 51-2 to 51-N receive the received signals from the gain applying units 22-2 to 22-N, and as an example of an appropriate delay amount for realizing the diversity effect, a certain fixed amount Using the time D, D (j ⁇ 1) is given in the delay unit 51-j (2 ⁇ j ⁇ N).
  • FIG. 8 is a diagram illustrating stream composition.
  • the transmission apparatus converts the signal output from the modulation unit 11 and the signals delayed by the delay amounts 2D, 4D, and 6D in the delay units 41-2 to 41-4 into four transmission antennas 15-1 to 15-4, respectively. Output from.
  • the receiving apparatus receives four signals respectively by the two receiving antennas 21-2 to 21-2, and delays the signal received by one receiving antenna 21-2 by D in the delay unit 51-2. Thereafter, the receiving device adds the signal of the one receiving antenna 21-2 that has been subjected to the delay processing and the signal of the other receiving antenna 21-1 that has not been subjected to the delay processing by the adding unit 24. By giving such a delay amount, the timing of each main signal which is a solid line portion does not overlap in the output of the adder 24.
  • the signals processed by the delay units 41-2 to 41-M and 51-2 to 51-N are not limited to analog signals or digital signals.
  • the delay amount described in the above embodiment and a considerable delay time are possible.
  • the delay amount considering the number of reception antennas of the reception apparatus is given. Even in such a method, the same effect as in the first embodiment can be obtained.
  • Embodiment 3 the number of transmission antennas of the transmission device is LK, the number of outputs of the modulation unit is L, the number of reception antennas of the reception device is PQ, the number of inputs of the demodulation unit is P, and the modulation unit and the demodulation unit
  • MIMO Multiple Input Multiple Output
  • FIG. 9 is a diagram illustrating a configuration example of the transmission device.
  • the transmission apparatus includes a modulation unit 61, signal lines 62-1 to 62-LK, delay units 63-2 to 63-K, 63-K + 2 to 63-K + K,..., 63- (L-1) K + 2 to 63. -LK, gain providing units 64-1 to 64-LK, and transmission antennas 65-1 to 65-LK.
  • the modulation unit 61 generates a transmission signal.
  • the signal lines 62-1 to 62-LK are signal lines that branch the transmission signal to the same number as the number of transmission antennas.
  • the delay units 63-2 to 63-K, 63-K + 2 to 63-K + K,..., 63- (L ⁇ 1) K + 2 to 63-LK perform delay processing on the transmission signal.
  • the gain assigning units 64-1 to 64-LK provide a complex gain to the transmission signal.
  • the transmission antennas 65-1 to 65-LK transmit a transmission signal to the reception device. It can be said that the transmission apparatus includes L transmission blocks each including K transmission antennas.
  • FIG. 10 is a diagram illustrating a configuration example of a receiving device.
  • the receiving apparatus includes receiving antennas 71-1 to 71-PQ, gain applying units 72-1 to 72-PQ, delay units 73-2 to 73-Q, 73-Q + 2 to 73-Q + Q,. P-1) Q + 2 to 73-PQ, adders 74-1 to 74-P, and a demodulator 75.
  • the reception antennas 71-1 to 71-PQ receive the reception signal from the transmission device.
  • Gain assigning sections 72-1 to 72-PQ add a complex gain to the received signal.
  • the delay units 73-2 to 73-Q, 73-Q + 2 to 73-Q + Q,..., 73- (P-1) Q + 2 to 73-PQ perform delay processing on the received signal.
  • Adders 74-1 to 74-P add the received signals after delay.
  • the demodulator 75 demodulates the received signal after the addition. It can be said that the reception apparatus includes P reception blocks each including Q reception antennas.
  • the modulation unit 61 generates a transmission signal and outputs L series of signals. Further, each series of signals is branched into K signals to obtain LK series signals of the signal lines 62-1 to 62-LK.
  • the signal lines 62-2 to 62-K,..., 62- (L-1) K + 2 to 62-LK are delay units 63-2 to 63-K,. -(L-1) Input to K + 2 to 63-LK.
  • D (k) is used in delay unit 63-lK + k (0 ⁇ l ⁇ L ⁇ 1, 2 ⁇ k ⁇ K) using a certain fixed time D. -1) is given.
  • the method of setting the delay amount for each transmission antenna is not limited to this.
  • the gain imparting process here is arbitrary, and may not be performed if not necessary for obtaining the diversity effect.
  • the position of -LK may be changed.
  • the transmission antennas 65-1 to 65-LK transmit the transmission signals after the gain is applied from the gain applying units 64-1 to 64-LK to the receiving device.
  • the receiving antennas 71-1 to 71-PQ input the received signals received to the gain applying units 72-1 to 72-PQ.
  • the gain applying units 72-1 to 72-PQ perform complex gain application.
  • the gain application process here is arbitrary, and may not be performed if it is not necessary for obtaining the diversity effect.
  • Delay units 73-2 to 73-Q,..., 73- (P-1) Q + 2 to 73-PQ are connected to gain applying units 72-2 to 72-Q,..., 72- (P-1) Q + 2 to 72-
  • a delay unit 73 ⁇ pQ + q (0 ⁇ p ⁇ P ⁇ 1, 2 ⁇ q ⁇ Q using a certain fixed time D) ) Gives DK (q-1).
  • the method of setting the delay amount for each receiving antenna is not limited to this.
  • Adders 74-1 to 74-P receive signals from gain applying units 72-1,..., 72- (P-1) Q + 1 and delay units 73-2 to 73-Q,. 1) The delayed received signals from Q + 2 to 73 ⁇ PQ are synthesized. Thereafter, the demodulator 75 demodulates the combined received signal.
  • the method for assigning the delay amount is the same as in the first embodiment.
  • the delay units 63-2 to 63-K, 63-K + 2 to 63-K + K,..., 63- (L-1) K + 2 to 63-LK, 73-2 to 73-Q, 73-Q + 2 73 ⁇ Q + Q,..., 73 ⁇ (P ⁇ 1) Q + 2 to 73 ⁇ PQ are not limited to analog signals or digital signals, but even analog signals are described in this embodiment. Delay amount and a considerable amount of delay processing are possible.
  • the same delay as that in Embodiment 1 is given to each transmission block of the transmission device and each reception block of the reception device.
  • the same effect as in the first embodiment can be obtained.
  • the delay processing described in this embodiment equivalently increases the number of multipaths in the transmission path, it has the effect of reducing the spatial correlation between the transmission and reception branches, and reception and separation of spatially multiplexed signals during spatial multiplexing transmission. Performance can be increased.
  • Embodiment 4 FIG.
  • the transmission device and the reception device give a delay amount considering the signal delay in the multipath transmission path. A different part from Embodiment 1 is demonstrated.
  • FIG. 11 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 11, signal lines 12-1 to 12-M, delay units 81-2 to 81-M, gain applying units 14-1 to 14-M, and transmission antennas 15-1 to 15-15. -M.
  • the delay units 81-2 to 81-M perform delay processing on the transmission signal.
  • FIG. 12 is a diagram illustrating a configuration example of a receiving device.
  • the receiving device includes receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, delay units 91-2 to 91-N, an adding unit 24, and a demodulating unit 25. .
  • the delay units 91-2 to 91-N perform delay processing on the received signal.
  • the maximum delay amount of the incoming wave is D i . That is, D i is the arrival time of the arrival wave that reaches any one of the reception antennas 21-1 to 21-N earliest in the transmission path and the latest reception antenna 21-1 to 21-N in the transmission path. It represents the time difference from the arrival time of an incoming wave that reaches one of them.
  • M (same as the number of transmission antennas) D i ′ satisfying “D i ′> D i ” are determined.
  • the calculation of these delay amounts can be realized, for example, by estimating the transmission path by means of transmission path estimation using pilot symbols in the receiving apparatus and acquiring the delay profile by a method such as notifying the transmitting apparatus. is there.
  • the delay units 81-2 to 81-M are expressed by the following equation (2) in the delay unit 81-i (2 ⁇ i ⁇ M) as an example of an appropriate delay amount for realizing the diversity effect. Give the amount of delay. That is, the delay unit 81-i (2 ⁇ i ⁇ M) gives the total delay amount from the delay units 81-1 to 81- (i-1).
  • the gain applying units 14-1 to 14-M receive the transmission signal from the signal line 12-1 and the delayed transmission signals from the delay units 81-2 to 81-M, and apply complex gain to each of them. Note that the delay amount setting method for each transmission antenna is not limited to this.
  • the delay units 91-2 to 91-N receive the received signals from the gain applying units 22-2 to 22-N, and as an example of an appropriate delay amount for realizing the diversity effect, the delay unit In 91-j (2 ⁇ j ⁇ N), a delay amount expressed by the following equation (3) is given. Note that the delay amount setting method for each reception antenna is not limited to this.
  • FIG. 13 is a diagram for explaining stream composition.
  • the transmission apparatus outputs the signal output from the modulation unit 11 and the signal delayed by the delay amount 2D in the delay unit 81-2 from the two transmission antennas 15-1 to 15-2, respectively.
  • the receiving apparatus receives three signals respectively by the two receiving antennas 21-1 to 21-2, and delays the signal received by one receiving antenna 21-2 by 4D in the delay unit 91-2. Thereafter, the receiving device adds the signal of the one receiving antenna 21-2 that has been subjected to the delay processing and the signal of the other receiving antenna 21-1 that has not been subjected to the delay processing by the adding unit 24. By giving such a delay amount, the timing of each main signal which is a solid line portion does not overlap in the output of the adder 24.
  • the signals processed by the delay units 81-2 to 81-M and 91-2 to 91-N are not limited to analog signals or digital signals.
  • the delay amount described in the embodiment and a considerable amount of delay processing are possible.
  • the transmitting apparatus gives a delay so that the timing of the main signal does not overlap at the receiving antenna even when the transmission signal passes through the multipath transmission path.
  • the receiving apparatus delays the signals received by the plurality of receiving antennas so that the timing of the main signal does not overlap during addition. Thereby, the effect similar to Embodiment 1 can be acquired.
  • Embodiment 5 FIG.
  • the transmission device and the reception device give a delay amount considering the signal delay in the multipath transmission path. A different part from Embodiment 4 is demonstrated.
  • the configurations of the transmission device and the reception device are the same as those in the fourth embodiment.
  • the delay amount of the incoming wave that reaches any of the reception antennas 21-1 to 21-N earliest in the transmission path (transmission time and arrival time). the time difference) between the D i *.
  • D i be the delay amount (the time difference between the transmission time and the arrival time) of the incoming wave that reaches the receiving antennas 21-1 to 21-N that is the latest in the transmission path.
  • M (same as the number of transmitting antennas) D i ′ satisfying “D i ′> (D i ⁇ D i + 1 * )” are determined.
  • the delay units 81-2 to 81-M are expressed by the above equation (2) in the delay unit 81-i (2 ⁇ i ⁇ M) as an example of an appropriate delay amount for realizing the diversity effect. Give the amount of delay.
  • the delay units 91-2 to 91-N are expressed by the above equation (3) in the delay unit 91-j (2 ⁇ j ⁇ N) as an example of an appropriate delay amount for realizing the diversity effect. Give the amount of delay.
  • the signals processed by the delay units 81-2 to 81-M and 91-2 to 91-N are not limited to analog signals or digital signals.
  • the delay amount described in the embodiment and a considerable amount of delay processing are possible.
  • the transmission apparatus when the transmission signal passes through the multipath transmission path, the transmission apparatus gives a delay in consideration of the delay of the leading wave in the transmission path. Thereby, compared with the fourth embodiment, the same effect can be obtained with a small amount of delay.
  • Embodiment 6 FIG.
  • a delay amount considering intersymbol interference is given in the transmission device and the reception device.
  • a guard interval or a guard time widely used in multicarrier communication such as OFDM (Orthogonal Frequency Division Multiplexing) is added to the head of the modulation symbol. Assumes that. A different part from Embodiment 1 is demonstrated.
  • FIG. 14 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 11, signal lines 12-1 to 12-M, a delay amount control unit 101, delay units 102-2 to 102-M, gain applying units 14-1 to 14-M, Transmitting antennas 15-1 to 15-M.
  • the delay amount control unit 101 controls the delay amount of each delay unit.
  • the delay units 102-2 to 102-M perform delay processing on the transmission signal.
  • FIG. 15 is a diagram illustrating a configuration example of a receiving device.
  • the receiving apparatus includes receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, a delay amount control unit 111, delay units 112-2 to 112-N, an adding unit 24, And a demodulator 25.
  • the delay amount control unit 111 controls the delay amount of each delay unit.
  • the delay units 112-2 to 112-N perform delay processing on the received signal.
  • the length of the guard interval or guard time is G_len, and the arrival time of the leading wave that arrives at any of the reception antennas 21-1 to 21-N earliest in all transmission paths and the latest in all transmission paths.
  • the delay amount control unit 101 sets “G_len ⁇ D_len + D (MN ⁇ 1)”. D is determined to satisfy Further, the delay units 102-2 to 102-M give D (i ⁇ 1) in the delay unit 102-i (2 ⁇ i ⁇ M) as an example of an appropriate delay amount for realizing the diversity effect.
  • the calculation of these delay amounts can be realized, for example, by estimating the transmission path by means of transmission path estimation using pilot symbols in the receiving apparatus and acquiring the delay profile by a method such as notifying the transmitting apparatus. is there.
  • the delay amount control unit 111 determines the delay amount by the same method as the delay amount control unit 101. Further, the delay units 112-2 to 112-N give DM (j ⁇ 1) in the delay unit 112-j (2 ⁇ j ⁇ N) as an example of an appropriate delay amount for realizing the diversity effect.
  • the signals processed by the delay units 102-2 to 102-M and 1122-2 to 112-N are not limited to analog signals or digital signals.
  • the delay amount described in the embodiment and a considerable amount of delay processing are possible.
  • the transmission apparatus gives a delay so that the transmission signal does not interfere with the intersymbol at the reception antenna.
  • the receiving apparatus delays signals received by a plurality of receiving antennas so as not to cause intersymbol interference at the time of addition. Thereby, the effect similar to Embodiment 1 can be acquired.
  • Embodiment 7 FIG. In the present embodiment, a delay amount considering intersymbol interference is given in the transmission device and the reception device. A different part from Embodiment 6 is demonstrated.
  • FIG. 16 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 11, signal lines 12-1 to 12-M, a delay amount control unit 121, delay units 122-2 to 122-M, gain applying units 14-1 to 14-M, Transmitting antennas 15-1 to 15-M.
  • the delay amount control unit 121 controls the delay amount of each delay unit.
  • the delay units 122-2 to 122-M perform delay processing on the transmission signal.
  • FIG. 17 is a diagram illustrating a configuration example of a receiving device.
  • the receiving apparatus includes receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, a delay amount control unit 131, delay units 132-2 to 132-N, an adding unit 24, And a demodulator 25.
  • the delay amount control unit 131 controls the delay amount of each delay unit.
  • the delay units 132-2 to 132-N perform delay processing on the received signal.
  • the delay amount of the wave that reaches the receiving antennas 21-1 to 21-N latest Is D i .
  • the length of the guard interval or guard time is G_len
  • the receiving apparatus estimates the transmission path using pilot symbols and the like, Delay profile It can be achieved by obtaining the Le.
  • the delay units 122-2 to 122-M have the delay amount control unit 121 in the delay unit 122-i (2 ⁇ i ⁇ M) as an example of an appropriate delay amount for realizing the diversity effect.
  • a delay amount expressed by the above equation (2) is given.
  • the gain applying units 14-1 to 14-M receive the transmission signal from the signal line 12-1 and the delayed transmission signals from the delay units 122-2 to 122-M, and apply a complex gain to each of them.
  • the delay units 132-2 to 132-N are expressed by the above equation (3) in the delay unit 132-j (2 ⁇ j ⁇ N) as an example of an appropriate delay amount for realizing the diversity effect. Give the amount of delay.
  • the signals processed by the delay units 122-2 to 122-M and 132-2 to 132-N are not limited to analog signals or digital signals.
  • the delay amount described in the embodiment and a considerable amount of delay processing are possible.
  • the transmitting apparatus and the receiving apparatus give a delay so that a signal exceeding a predetermined reception power does not interfere with the intersymbol, so that the reception apparatus mainly exceeds the predetermined reception power. It was decided that signals could be added without overlapping in time. Thereby, the effect similar to Embodiment 1 can be acquired.
  • Embodiment 8 FIG. In this embodiment, an antenna that performs delay processing is selected in the transmission device and the reception device. A different part from Embodiment 1 is demonstrated.
  • FIG. 18 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 11, signal lines 12-1, 18-1 to 18-M, a transmission antenna selection unit 17, delay units 141-2 to 141-M, and gain applying units 14-1 to 14-14. -M and transmitting antennas 15-1 to 15-M.
  • the transmission antenna selection unit 17 selects an antenna to be actually transmitted from antenna candidates 15-2 to 15-M for transmitting a signal after delay processing.
  • the delay units 141-2 to 141-M perform delay processing on the transmission signal.
  • FIG. 19 is a diagram illustrating a configuration example of a receiving device.
  • the receiving apparatus includes receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, delay units 142-2 to 142-N, a receiving antenna selecting unit 27, an adding unit 24, And a demodulator 25.
  • the reception antenna selection unit 27 selects an antenna that is actually combined with the signal received by the reception antenna 21-1 from the reception antenna candidates 21-2 to 21-N.
  • the delay units 142-2 to 142-N perform delay processing on the received signal.
  • the transmission signal generated by the modulation unit 11 is branched to the signal lines 12-1 and 18-1.
  • the signal branched to the signal line 12-1 is processed in the same manner as in the first embodiment and transmitted from the transmission antenna 15-1.
  • the signal branched to the signal line 18-1 is input to the transmission antenna selection unit 17.
  • the transmission antenna selection unit 17 selects an antenna from the transmission antennas 15-2 to 15-M, and connects to a signal line corresponding to the selected antenna.
  • selecting an antenna having the highest transmission path gain can be cited.
  • the transmission channel gain can be calculated by the transmission antenna selection unit 17 switching the transmission antenna and estimating the transmission channel in a transmission channel estimation period using pilot symbols.
  • the transmission antenna selection unit 17 first selects the transmission antenna 15-2, performs transmission channel estimation in the reception device, obtains transmission channel gain, and feeds back to the transmission device.
  • the transmission antenna 15-3 is selected, the transmission apparatus estimates the transmission path at the reception apparatus 17 and the transmission path gain is obtained and fed back to the transmission apparatus.
  • the delay unit 141-i gives a delay to the signal input from the signal line 18-i.
  • the amount of delay given here is determined by any one of the first to seventh embodiments.
  • the gain applying units 14-1 and 14-i the transmission signal from the signal line 12-1 and the delayed transmission signal from the delay unit 141-i are input, and a complex gain is applied to each of them.
  • the reception antenna selection unit 27 selects an antenna from the reception antennas 21-2 to 21-N, and connects the signal line corresponding to the selected antenna and the addition unit 24.
  • the criteria for selecting the antenna include selecting the antenna having the highest transmission line gain, as in the selection criteria in the transmission antenna selection unit 17. For example, in the transmission channel estimation period, the reception antenna selection unit 27 first selects the reception antenna 21-2 to perform transmission channel estimation to obtain a transmission channel gain, and the reception antenna selection unit 27 then receives the reception antenna 21- 3 is selected to estimate the transmission line gain. By performing the above procedure for the receiving antennas 21-2 to 21-N, the transmission path gain can be obtained for all combinations of the receiving antennas.
  • the delay unit 142-j gives a delay to the signal input from the gain applying unit 22-j.
  • the amount of delay given here is determined by any one of the first to seventh embodiments.
  • the adder 24 combines the received signal from the gain applying unit 22-1 and the delayed received signal from the delay unit 142-j.
  • the transmission apparatus selects a transmission antenna that performs delay processing
  • the reception apparatus selects a reception antenna that performs delay processing.
  • Embodiment 9 FIG. In the present embodiment, an antenna used for transmission and reception is selected in the transmission device and the reception device. A different part from Embodiment 8 is demonstrated.
  • FIG. 20 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 11, a selection branching unit 19, signal lines 151-1 to 151-M, delay units 161-1 to 161-M, gain applying units 14-1 to 14-M, transmission Antennas 15-1 to 15-M.
  • the selection branching unit 19 selects an antenna to be actually transmitted from the antenna candidates 15-1 to 15-M for transmitting signals.
  • the delay units 161-1 to 161-M perform delay processing on the transmission signal.
  • FIG. 21 is a diagram illustrating a configuration example of a receiving device.
  • the receiving apparatus selects receiving antennas 21-1 to 21-N, gain applying units 22-1 to 22-N, delay units 162-1 to 162-N, and signal lines 152-1 to 152-N.
  • a combining unit 29 and a demodulating unit 25 are provided.
  • the selection combining unit 29 selects an antenna to be combined from the receiving antenna candidates 21-1 to 21-N.
  • Delay units 162-1 to 162-N perform delay processing on the received signal.
  • the transmission signal generated by the modulation unit 11 is branched by the selection branching unit 19.
  • the selection / branching unit 19 selects one or more antennas from the transmission antennas 15-1 to 15-M.
  • the transmission path gain at each antenna selection is determined and ranked, and antennas with higher transmission path gains under the condition of the specified number of antennas or less are selected in order from the top of the ranking, or the specified total
  • antennas are selected in order from the top of the ranking under the condition that satisfies the transmission line gain, and the number of antennas is suppressed to the minimum.
  • the selected transmission antennas are assumed to be 15-i, 15-j, 15-k (1 ⁇ i, j, k ⁇ M, i ⁇ j, j ⁇ k, k ⁇ i).
  • the selection branching unit 19 branches the signal to the signal lines 151-i, 151-j, 151-k.
  • the delay units 161-i, 161-j, 161-k give a delay to the input signal. The amount of delay given here is determined by any one of the embodiments 1 to 7, but in order to keep the total amount of delay to a minimum amount, no delay is given to one of the selected antennas. A relative delay amount may be set for other antennas.
  • the gain assigning units 14-i, 14-j, and 14-k receive the delayed transmission signals from the delay units 161-i, 161-j, and 161-k, and assign complex gains to them.
  • the selection / combination unit 29 selects an antenna from the reception antennas 21-1 to 21 -N, adds the reception signals from the signal line corresponding to the selected antenna, and outputs the result to the demodulation unit 25.
  • the criterion for selecting the antenna is the same as the selection criterion in the selective branching unit 19.
  • the selection / combination unit 29 combines the reception signals from the delay units 162-l and 162-m.
  • the transmitting apparatus selects the transmitting antenna to be branched, and the receiving apparatus selects the receiving antenna that combines the signals.
  • communication performance can be improved efficiently by selecting an antenna having a high transmission line gain.
  • the number of antennas actually used and the related circuits can be reduced to the minimum number, and the power consumption of the unused antennas and related circuits can be reduced.
  • Embodiment 10 FIG.
  • the number of transmission antennas of the transmission device is LK
  • the number of outputs of the modulation unit is L
  • the number of reception antennas of the reception device is PQ
  • the number of inputs of the demodulation unit is P
  • the modulation unit and the demodulation unit A wireless communication system that performs MIMO spatial multiplexing transmission will be described. A different part from Embodiment 3 is demonstrated.
  • FIG. 22 is a diagram illustrating a configuration example of a transmission device.
  • the transmission apparatus includes a modulation unit 61, selective branching units 69-1 to 69-L, signal lines 171-1 to 171-LK, delay units 181-1 to 181-LK, and gain applying units 64-1 to 64-1. 64-LK and transmission antennas 65-1 to 65-LK.
  • the selection branching unit 69-l (1 ⁇ l ⁇ L) selects an antenna to be actually transmitted from the antenna candidates for transmitting signals 65- (l ⁇ 1) K + 1 to 65-lK, and the signal line 171- (l -1) Connect to the signal line corresponding to the selected antenna from K + 1 to 171-1K.
  • the delay units 181-1 to 181-LK perform delay processing on the transmission signal.
  • FIG. 23 is a diagram illustrating a configuration example of a receiving device.
  • the receiving apparatus selects receiving antennas 71-1 to 71-PQ, gain applying units 72-1 to 72-PQ, delay units 182-1 to 182-PQ, and signal lines 172-1 to 172-PQ. Combining units 79-1 to 79-P and a demodulating unit 75 are provided. Delay units 182-1 to 182-PQ perform delay processing on the received signal.
  • the selection combining unit 79-p (1 ⁇ p ⁇ P) selects the antenna to be actually combined from the antenna candidates 71- (p ⁇ 1) Q + 1 to 71-pQ for combining signals, and the signal line 172- (p -1) From Q + 1 to 171-pQ, connect to the signal line corresponding to the selected antenna.
  • L signal sequences are generated by the modulation unit 61.
  • the l-th (1 ⁇ l ⁇ L) signal sequence will be described. The following description is common to all L transmission blocks, and operates independently for L transmission blocks.
  • the l-th signal series is input to the selection branching unit 69-l.
  • the processing of the selection branching unit 69-l is the same as that in the ninth embodiment.
  • the spatial correlation with the antennas selected by other selective branching units 69-1 to 69-1-1 and 69-l + 1 to 69-L is low. And selecting an antenna that increases the transmission path capacity.
  • the spatial correlation and the transmission path capacity can be calculated by the transmission selection branching unit 69-1 switching the transmission antenna and estimating the transmission path in a transmission path estimation period using pilot symbols.
  • the selected transmitting antenna is 65- (l-1) K + i, 65- (l-1) K + j, 65- (l-1) K + k (1 ⁇ i, j, k ⁇ K, i ⁇ j, j ⁇ k , K ⁇ i).
  • the selection branching unit 69-l branches the signal to the signal lines 171 ⁇ (l ⁇ 1) K + i, 171 ⁇ (l ⁇ 1) K + j, and 171 ⁇ (l ⁇ 1) K + k.
  • the delay units 181- (l ⁇ 1) K + i, 181 ⁇ (l ⁇ 1) K + j, and 181 ⁇ (l ⁇ 1) K + k give a delay to the input signal.
  • the amount of delay given here is determined by any one of the embodiments 1 to 7, but in order to keep the total amount of delay to a minimum amount, no delay is given to one of the selected antennas.
  • a relative delay amount may be set for other antennas.
  • P received signal sequences are input to the demodulator 75.
  • the p-th (1 ⁇ p ⁇ P) signal sequence will be described. The following description is common to all P received blocks and operates independently of P.
  • the selection / combination unit 79-p (1 ⁇ p ⁇ P) selects the antenna from the reception antennas 71- (p ⁇ 1) Q + 1 to 71-pQ, and adds the reception signals from the signal lines corresponding to the selected antennas.
  • the criterion for selecting the antenna is the same as the selection criterion in the selection branching unit 69-1 (1 ⁇ l ⁇ L).
  • the selected reception antenna is 71 ⁇ (p ⁇ 1) Q + 1, 71 ⁇ (p ⁇ 1) Q + m (1 ⁇ l, m ⁇ Q, l ⁇ m).
  • the signal lines 172- (p ⁇ 1) Q + 1 and 172 ⁇ (p ⁇ 1) Q + m are connected to the selection combining unit 79-p.
  • the delay units 182- (p-1) Q + 1 and 182- (p-1) Q + m give a delay to the signals input from the gain applying units 72- (p-1) Q + 1 and 72- (p-1) Q + m.
  • the amount of delay given here is determined by any one of the embodiments 1 to 7, but in order to keep the total amount of delay to a minimum amount, no delay is given to one of the selected antennas.
  • a relative delay amount may be set for other antennas.
  • the selection combining unit 79-p combines the reception signals from the delay units 182- (p-1) Q + 1 and 182- (p-1) Q + m.
  • the same processing as in the ninth embodiment is performed for each transmission block of the transmission device and each reception block of the reception device.
  • the antenna selection criterion described in this embodiment acts to reduce the spatial correlation between the transmission and reception branches or increase the transmission path capacity, it improves the reception separation performance of the spatial multiplexing signal during spatial multiplexing transmission. Can do.
  • the wireless communication system according to the present invention is useful for communication using a plurality of antennas, and is particularly suitable when a plurality of antennas are used for transmission and reception.
  • Delay unit 24 Addition unit 25 Demodulation unit 27 Reception antenna selection unit 29 Selective combination unit 31-1,..., 31-M Modulation unit 41-2, ..., 41-M Delay unit 51-2, ..., 51-N 61-modulator 62-1,..., 62-LK signal line 63-2,..., 63-K, ..., 63- (L-1) K + 2, ..., 63-LK delay unit 64-1,.

Abstract

 複数の送信アンテナを備える送信装置と、複数の受信アンテナを備える受信装置と、から構成される無線通信システムであって、前記送信装置は、信号を複数の前記送信アンテナに対応した複数の信号路を通る複数の送信信号に分岐する分岐部と、前記信号路の少なくとも1つに設けられ送信信号に遅延を付加する遅延部13-2~13-Mと、を備え、前記分岐部により分岐された送信信号が前記遅延部13-2~13-Mにより遅延を付加された場合は該遅延を付加された送信信号を送信信号とし、前記各送信信号を前記複数の送信アンテナを介して前記受信装置へ送信し、前記受信装置は、前記複数の受信アンテナで受信した複数の受信信号を通す複数の信号路の少なくとも1つに設けられ受信信号に遅延を付加する遅延部23-2~23-Nと、遅延を付加された受信信号を受信信号とし、前記各受信信号を加算する加算部24と、を備える。

Description

無線通信システム、送信装置および受信装置
 本発明は、信号の送信および受信にそれぞれ複数のアンテナを用いる無線通信システムに関する。
 従来、無線通信におけるフェージングによる伝送特性の劣化を軽減する空間ダイバーシチの技術がある。送信装置は、2本のアンテナを具備し、変調波を放射する一方のアンテナに対して、1タイムスロット以上遅延させた変調波を他方のアンテナより送信する。受信装置は、受信波に含まれる主波成分を強調して抽出するマルチパス処理を行う。これにより、帯域を拡大することなく、空間、周波数ダイバーシチによるダイバーシチ効果を得ることができる。このような技術が、下記特許文献1において開示されている。
特許第2572765号公報
 しかしながら、上記従来の技術によれば、送信アンテナ本数は2本、受信アンテナ本数は1本の送信ダイバーシチに限定されている。そのため、送受に複数のアンテナを用いる場合には適用できない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、送受に複数のアンテナを用いる場合に、適切な遅延量を付与することが可能な無線通信システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数の送信アンテナを備える送信装置と、複数の受信アンテナを備える受信装置と、から構成される無線通信システムであって、前記送信装置は、信号を複数の前記送信アンテナに対応した複数の信号路を通る複数の送信信号に分岐する分岐手段と、前記信号路の少なくとも1つに設けられ送信信号に遅延を付加する送信遅延手段と、を備え、前記分岐手段により分岐された送信信号が前記送信遅延手段により遅延を付加された場合は該遅延を付加された送信信号を送信信号とし、前記各送信信号を前記複数の送信アンテナを介して前記受信装置へ送信し、前記受信装置は、前記複数の受信アンテナで受信した複数の受信信号を通す複数の信号路の少なくとも1つに設けられ受信信号に遅延を付加する受信遅延手段と、前記受信信号が前記受信遅延手段により遅延を付加された場合は該遅延を付加された受信信号を受信信号とし、前記各受信信号を加算する加算手段と、を備えることを特徴とする。
 本発明によれば、送受に複数のアンテナを用いる場合においても、ダイバーシチ効果を得ることができる、という効果を奏する。
図1は、無線通信システムの構成例を示す図である。 図2は、送信装置の構成例を示す図である。 図3は、受信装置の構成例を示す図である。 図4は、ストリームの合成を説明する図である。 図5は、送信装置の構成例を示す図である。 図6は、送信装置の構成例を示す図である。 図7は、受信装置の構成例を示す図である。 図8は、ストリームの合成を説明する図である。 図9は、送信装置の構成例を示す図である。 図10は、受信装置の構成例を示す図である。 図11は、送信装置の構成例を示す図である。 図12は、受信装置の構成例を示す図である。 図13は、ストリームの合成を説明する図である。 図14は、送信装置の構成例を示す図である。 図15は、受信装置の構成例を示す図である。 図16は、送信装置の構成例を示す図である。 図17は、受信装置の構成例を示す図である。 図18は、送信装置の構成例を示す図である。 図19は、受信装置の構成例を示す図である。 図20は、送信装置の構成例を示す図である。 図21は、受信装置の構成例を示す図である。 図22は、送信装置の構成例を示す図である。 図23は、受信装置の構成例を示す図である。
 以下に、本発明にかかる無線通信システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 本実施の形態では、送信装置の送信アンテナ数をM本、空間多重数を1とし、受信装置の受信アンテナ数をN本、空間多重数を1として、変調部および復調部ではマルチパス伝送対策を行っている無線通信システムについて説明する。
 図1は、本実施の形態の無線通信システムの構成例を示す図である。M本の送信アンテナを備える送信装置と、N本の受信アンテナを備える受信装置から構成される。以下、それぞれの装置について具体的に説明する。
 図2は、送信装置の構成例を示す図である。送信装置は、変調部11と、信号線12-1~12-Mと、遅延部13-2~13-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。変調部11は、送信信号を生成する。信号線12-1~12-Mは、図示しない分岐手段により送信信号を送信アンテナの本数と同数に分岐した信号線である。遅延部13-2~13-Mは、送信信号に対して遅延処理を行う。利得付与部14-1~14-Mは、送信信号に対して複素利得を付与する。送信アンテナ15-1~15-Mは、送信信号を受信装置へ送信する。
 図3は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延部23-2~23-Nと、加算部24と、復調部25と、を備える。受信アンテナ21-1~21-Nは、送信装置からの受信信号を受信する。利得付与部22-1~22-Nは、受信信号に対して複素利得を付与する。遅延部23-2~23-Nは、受信信号に対して遅延処理を行う。加算部24は、遅延後の受信信号を加算する。復調部25は、加算後の受信信号の復調を行う。
 送信装置では、変調部11が送信信号を生成し、信号線12-1~12-MのM本の系列に分岐する。このうち、信号線12-2~12-Mが、送信信号をそれぞれ接続している遅延部13-2~13-Mへ入力する。ここでは、ダイバーシチ効果を実現するための適切な遅延量の一例として、ある一定時間Dを基準時間として用いて、遅延部13-i(2≦i≦M)においてD(i-1)を与える。送信アンテナ毎の遅延量の設定方法としては、例えば、信号の帯域幅をΔfとして、一定時間Dを「D=1/((MN-1)Δf)」とする方法があるが、これに限定するものではない。
 利得付与部14-1~14-Mでは、信号線12-1からの送信信号および遅延部13-2~13-Mからの遅延後の送信信号を入力し、それぞれに複素利得を乗積する。送信アンテナ15-i(1≦i≦M)の送信信号に乗積する複素利得Aiは、実数利得Gi(0<Gi)と位相θi(0≦θi<2π)とを用いて、以下の(1)式により表現される。利得付与部14-i(1≦i≦M)では、実数利得Gi=1として信号の位相のみθiだけ変化させても良く、θi=0として信号の振幅のみをGi倍してしても良く、振幅をGi倍し、かつ、位相をθi変化させても良い。なお、ここでの利得付与の処理は任意であり、ダイバーシチ効果を得る上で必要でなければ行わなくてもよい。また、遅延部13-2~13-Mと利得付与部14-2~14-Mの位置は前後してもよい。送信アンテナ15-1~15-Mは、利得付与部14-1~14-Mからの利得付与後の送信信号を受信装置へ送信する。
Figure JPOXMLDOC01-appb-M000001
 受信装置では、受信アンテナ21-1~21-Nが、受信したそれぞれの受信信号を、利得付与部22-1~22-Nへ入力する。利得付与部22-1~22-Nでは複素利得付与を行うが、ここでの利得付与の処理は任意であり、ダイバーシチ効果を得る上で必要がなければ行わなくてもよい。遅延部23-2~23-Nが、利得付与部22-2~22-Nからの受信信号を入力し、ダイバーシチ効果を得る上で適切な遅延量の一例として、送信信号の装遅延量DMを用いて、遅延部23-j(2≦j≦N)においてDM(j-1)を与える。受信アンテナ毎の遅延量の設定方法は、この限りではない。なお、利得付与部22-2~22-Nと遅延部23-2~23-Nの位置は前後してもよい。加算部24が、信号線22-1からの受信信号および遅延部23-2~23-Nからの遅延後の受信信号を合成する。その後、復調部25が、合成後の受信信号の復調処理を行う。
 具体的に、送信アンテナを4本、受信アンテナを2本、遅延波なし、各伝送路の到来時間差がない場合のストリームの合成例について説明する。図4は、ストリームの合成を説明する図である。点線の間隔が遅延量Dによるサンプリング間隔を表し、実線が主信号を表す。
 送信装置は、変調部11から出力された信号と、遅延部13-2~13-4において遅延量D、2D、3Dだけ遅延された信号を、それぞれ4つの送信アンテナ15-1~15-4から出力する。受信装置は、2つの受信アンテナ21-1~21-2で、それぞれ4つの信号を受信し、一方の受信アンテナ21-2で受信した信号を遅延部23-2において4Dだけ遅延させる。その後、受信装置は、遅延処理をした一方の受信アンテナ21-2の信号と、遅延処理をしていない他方の受信アンテナ21-1の信号を加算部24で加算する。このような遅延量を与えることにより、加算部24の出力においても実線部分である各主信号のタイミングが重複しない。
 以上説明したように、本実施の形態では、送信装置が、複数の送信アンテナから送信する信号に対して、受信アンテナで主信号のタイミングが重複しないように独立に遅延を与える。また、受信装置が、複数の受信アンテナで受信した信号に対して、加算時に主信号のタイミングが重複しないように独立に遅延を与えることとした。これにより、無線通信システムとして、伝送路が有するパス利得を有効利用したパスダイバーシチ効果を得るとともに、複数の送受信アンテナを利用した空間ダイバーシチ効果を得ることができる。
 また、受信装置の復調部では、マルチパス伝送に対して有効な受信処理を行っているため、加算後の信号を直接入力しても、ダイバーシチ効果を得た復調が可能である。
 本実施の形態では、遅延部13-2~13-M、23-2~23-Nで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延処理が可能である。
 なお、上記の実施の形態においては、送信遅延時間はD、…、D(M-1)としたので各アンテナから送信される信号の遅延時間はそれぞれ異なるが、例えば遅延部13-2、13-3で付加される送信遅延時間がそれぞれDであるように、送信遅延時間に同じものがあっても良い。この場合、図4に示す返信アンテナ出力はT2とT3とで異なるが、例えば送信アンテナ15-3から受信アンテナ21-1、21-2までの伝送路の到来時間が、送信アンテナ15-2から受信アンテナ21-1、21-2までの伝送路の到来時間よりも1サンプリング間隔だけ遅延する場合には、受信アンテナ21-1、21-2では図4に示す受信アンテナ入力と同様の主信号のタイミングとなるという効果がある。
 また、上記の実施の形態においては、受信遅延時間はDM、…、DM(N-1)としたので受信装置における受信遅延時間はそれぞれ異なるが、例えば遅延部23-2、23-3で付加される送信遅延時間がそれぞれDMであるように、受信遅延時間に同じものがあってもよい。送信アンテナ15-1~15-Mから受信アンテナ21-3までの伝送路の到来時間が、送信アンテナ15-1~15-Mから受信アンテナ21-2までの伝送路の到来時間よりもDMだけ遅延する場合には、加算部24への入力は本実施の形態で述べた主信号のタイミングと同様のタイミングとなるという効果がある。
 本実施の形態では、送信装置の構成を以下のように変更することも可能である。図5は、送信装置の構成例を示す図である。送信装置は、信号線12-1~12-Mと、遅延部13-2~13-Mと、変調部31-1~31-Mと、送信アンテナ15-1~15-Mと、を備える。変調部31-1~31-Mは、信号線12-1からの入力データおよび遅延部13-2~13-Mからの遅延後の入力データを変調する。例えば、変調部の出力がアナログ信号で遅延処理がハードウエアの制約上困難である場合に有効である。
 なお、本実施の形態で説明した送信装置および受信装置の構成を、1つの装置に搭載した無線通信装置を得ることも可能である。
実施の形態2.
 本実施の形態では、送信装置および受信装置において、実施の形態1と異なる遅延量を付与する。実施の形態1と異なる部分について説明する。
 図6は、送信装置の構成例を示す図である。送信装置は、変調部11と、信号線12-1~12-Mと、遅延部41-2~41-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。遅延部41-2~41-Mは、送信信号に対して遅延処理を行う。
 図7は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延部51-2~51-Nと、加算部24と、復調部25と、を備える。遅延部51-2~51-Nは、受信信号に対して遅延処理を行う。
 送信装置では、信号線12-2~12-Mが、送信信号をそれぞれ接続している遅延部41-2~41-Mへ入力する。ここでは、ダイバーシチ効果を実現するための適切な遅延量の一例として、ある一定時間Dを用いて、遅延部41-i(2≦i≦M)においてDM(i-1)を与える。利得付与部14-1~14-Mでは、信号線12-1からの送信信号および遅延部41-2~41-Mからの遅延後の送信信号を入力し、それぞれに複素利得を付与する。
 受信装置では、遅延部51-2~51-Nが、利得付与部22-2~22-Nからの受信信号を入力し、ダイバーシチ効果を実現するための適切な遅延量の一例として、ある一定時間Dを用いて、遅延部51-j(2≦j≦N)においてD(j-1)を与える。
 具体的に、送信アンテナを4本、受信アンテナを2本、遅延波なし、各伝送路の到来時間差がない場合のストリームの合成例について説明する。図8は、ストリームの合成を説明する図である。
 送信装置は、変調部11から出力された信号と、遅延部41-2~41-4において遅延量2D、4D、6Dだけ遅延された信号を、それぞれ4つの送信アンテナ15-1~15-4から出力する。受信装置は、2つの受信アンテナ21-2~21-2で、それぞれ4つの信号を受信し、一方の受信アンテナ21-2で受信した信号を遅延部51-2においてDだけ遅延させる。その後、受信装置は、遅延処理をした一方の受信アンテナ21-2の信号と、遅延処理をしていない他方の受信アンテナ21-1の信号を加算部24で加算する。このような遅延量を与えることにより、加算部24の出力においても実線部分である各主信号のタイミングが重複しない。
 本実施の形態では、遅延部41-2~41-M、51-2~51-Nで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延時間が可能である。
 以上説明したように、本実施の形態では、送信装置において、受信装置の受信アンテナの本数を考慮した遅延量を付与することとした。このような方法においても、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 本実施の形態では、送信装置の送信アンテナ数をLK本、変調部の出力数をLとし、受信装置の受信アンテナ数をPQ本、復調部の入力数をPとして、変調部および復調部ではMIMO(Multiple Input Multiple Output)空間多重伝送を行い、受信装置では周波数領域での復調処理を行う無線通信システムについて説明する。実施の形態1と異なる部分について説明する。
 図9は、送信装置の構成例を示す図である。送信装置は、変調部61と、信号線62-1~62-LKと、遅延部63-2~63-K、63-K+2~63-K+K、…、63-(L-1)K+2~63-LKと、利得付与部64-1~64-LKと、送信アンテナ65-1~65-LKと、を備える。変調部61は、送信信号を生成する。信号線62-1~62-LKは、送信信号を送信アンテナの本数と同数に分岐した信号線である。遅延部63-2~63-K、63-K+2~63-K+K、…、63-(L-1)K+2~63-LKは、送信信号に対して遅延処理を行う。利得付与部64-1~64-LKは、送信信号に対して複素利得を付与する。送信アンテナ65-1~65-LKは、送信信号を受信装置へ送信する。送信装置は、K本の送信アンテナを備える送信ブロックをL個備えているといえる。
 図10は、受信装置の構成例を示す図である。受信装置は、受信アンテナ71-1~71-PQと、利得付与部72-1~72-PQと、遅延部73-2~73-Q、73-Q+2~73-Q+Q、…、73-(P-1)Q+2~73-PQと、加算部74-1~74-Pと、復調部75と、を備える。受信アンテナ71-1~71-PQは、送信装置からの受信信号を受信する。利得付与部72-1~72-PQは、受信信号に対して複素利得を付与する。遅延部73-2~73-Q、73-Q+2~73-Q+Q、…、73-(P-1)Q+2~73-PQは、受信信号に対して遅延処理を行う。加算部74-1~74-Pは、遅延後の受信信号を加算する。復調部75は、加算後の受信信号の復調を行う。受信装置は、Q本の受信アンテナを備える受信ブロックをP個備えているといえる。
 送信装置では、変調部61が送信信号を生成してL個の系列の信号を出力する。さらに各系列の信号をK本に分岐し、信号線62-1~62-LKのLK本の系列の信号を得る。このうち、信号線62-2~62-K、…、62-(L-1)K+2~62-LKが、送信信号をそれぞれ接続している遅延部63-2~63-K、…、63-(L-1)K+2~63-LKへ入力する。ここでは、ダイバーシチ効果を実現するための適切な遅延量の一例として、ある一定時間Dを用いて、遅延部63-lK+k(0≦l≦L-1、2≦k≦K)においてD(k-1)を与える。送信アンテナ毎の遅延量の設定方法は、この限りではない。
 利得付与部64-1~64-LKでは、信号線62-1、…、62-(L-1)K+1からの送信信号および遅延部63-2~63-K、…、63-(L-1)K+2~63-LKからの遅延後の送信信号を入力し、それぞれに複素利得を付与する。なお、ここでの利得付与の処理は任意であり、ダイバーシチ効果を得る上で必要でなければ行わなくてもよい。また、遅延部63-2~63-K、…、63-(L-1)K+2~63-LKと利得付与部64-2~64-K、…、64-(L-1)K+2~64-LKの位置は前後してもよい。送信アンテナ65-1~65-LKは、利得付与部64-1~64-LKからの利得付与後の送信信号を受信装置へ送信する。
 受信装置では、受信アンテナ71-1~71-PQが、受信したそれぞれの受信信号を、利得付与部72-1~72-PQへ入力する。利得付与部72-1~72-PQでは複素利得付与を行うが、ここでの利得付与の処理は任意であり、ダイバーシチ効果を得る上で必要がなければ行わなくてもよい。遅延部73-2~73-Q、…、73-(P-1)Q+2~73-PQが、利得付与部72-2~72-Q、…、72-(P-1)Q+2~72-PQからの受信信号を入力し、ダイバーシチ効果を得る上で適切な遅延量の一例として、ある一定時間Dを用いて、遅延部73-pQ+q(0≦p≦P-1、2≦q≦Q)においてDK(q-1)を与える。受信アンテナ毎の遅延量の設定方法は、この限りではない。なお、利得付与部72-2~72-Q、…、72-(P-1)Q+2~72-PQと遅延部73-2~73-Q、…、73-(P-1)Q+2~73-PQの位置は前後してもよい。加算部74-1~74-Pが、利得付与部72-1、…、72-(P-1)Q+1からの受信信号および遅延部73-2~73-Q、…、73-(P-1)Q+2~73-PQからの遅延後の受信信号を合成する。その後、復調部75が、合成後の受信信号の復調処理を行う。
 各送信ブロック単位および各受信ブロック単位でみると、遅延量の付与の方法は、実施の形態1と同様である。
 本実施の形態では、遅延部63-2~63-K、63-K+2~63-K+K、…、63-(L-1)K+2~63-LK、73-2~73-Q、73-Q+2~73-Q+Q、…、73-(P-1)Q+2~73-PQで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延処理が可能である。
 以上説明したように、本実施の形態では、送信装置の送信ブロックおよび受信装置の受信ブロックごとに、実施の形態1と同様の遅延を与えることとした。これにより、MIMO空間多重伝送の場合においても、実施の形態1と同様の効果を得ることができる。更に、本実施の形態で述べた遅延処理は、等価的に伝送路のマルチパス数を増加させるため、送受信ブランチ間の空間相関を低減する効果が働き、空間多重伝送時には空間多重信号の受信分離性能を高めることができる。
実施の形態4.
 本実施の形態では、送信装置および受信装置において、マルチパス伝送路における信号の遅延を考慮した遅延量を付与する。実施の形態1と異なる部分について説明する。
 図11は、送信装置の構成例を示す図である。送信装置は、変調部11と、信号線12-1~12-Mと、遅延部81-2~81-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。遅延部81-2~81-Mは、送信信号に対して遅延処理を行う。
 図12は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延部91-2~91-Nと、加算部24と、復調部25と、を備える。遅延部91-2~91-Nは、受信信号に対して遅延処理を行う。
 ここでは、送信アンテナ15-i(1≦i≦M)から受信アンテナ21-j(1≦j≦N)までの伝送路Hi,jがMN通り存在する。ここで、送信アンテナ15-iから全N受信アンテナに対する伝送路において、到来波の最大の遅延量をDiとする。すなわち、Diは、伝送路中で最も早く受信アンテナ21-1~21-Nのいずれかに到達する到来波の到来時刻と、伝送路中で最も遅く受信アンテナ21-1~21-Nのいずれかに到達する到来波の到来時刻との時間差を表している。次に、「Di’>Di」を満たすM個(送信アンテナの本数と同数)のDi’を決定する。これらの遅延量の算出については、例えば、受信装置にてパイロットシンボルを利用した伝送路推定などによって伝送路を推定し、送信装置に通知するなどの方法で遅延プロファイルを取得することによって実現可能である。
 送信装置では、遅延部81-2~81-Mが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部81-i(2≦i≦M)において下記(2)式で表す遅延量を与える。すなわち、遅延部81-i(2≦i≦M)では、遅延部81-1~81-(i-1)までの総遅延量を与える。利得付与部14-1~14-Mでは、信号線12-1からの送信信号および遅延部81-2~81-Mからの遅延後の送信信号を入力し、それぞれに複素利得を付与する。なお、送信アンテナ毎の遅延量の設定方法は、この限りではない。
Figure JPOXMLDOC01-appb-M000002
 受信装置では、遅延部91-2~91-Nが、利得付与部22-2~22-Nからの受信信号を入力し、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部91-j(2≦j≦N)において下記(3)式で表す遅延量を与える。なお、受信アンテナ毎の遅延量の設定方法は、この限りではない。
Figure JPOXMLDOC01-appb-M000003
 具体的に、送信アンテナを2本、受信アンテナを2本、最大遅延量1シンボル、各伝送路の到来時間差がない場合のストリームの合成例について説明する。図13は、ストリームの合成を説明する図である。
 送信装置は、変調部11から出力された信号と、遅延部81-2において遅延量2Dだけ遅延された信号を、それぞれ2つの送信アンテナ15-1~15-2から出力する。受信装置は、2つの受信アンテナ21-1~21-2で、それぞれ3つの信号を受信し、一方の受信アンテナ21-2で受信した信号を遅延部91-2において4Dだけ遅延させる。その後、受信装置は、遅延処理をした一方の受信アンテナ21-2の信号と、遅延処理をしていない他方の受信アンテナ21-1の信号を加算部24で加算する。このような遅延量を与えることにより、加算部24の出力においても実線部分である各主信号のタイミングが重複しない。
 本実施の形態では、遅延部81-2~81-M、91-2~91-Nで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延処理が可能である。
 以上説明したように、本実施の形態では、送信装置が、送信信号がマルチパス伝送路を通過する場合においても、受信アンテナで主信号のタイミングが重複しないように遅延を与える。また、受信装置が、複数の受信アンテナで受信した信号に対して、加算時に主信号のタイミングが重複しないように遅延を与えることとした。これにより、実施の形態1と同様の効果を得ることができる。
 なお、この実施の形態で説明した遅延量の決定法は、実施の形態3に対しても適用可能である。
実施の形態5.
 本実施の形態では、送信装置および受信装置において、マルチパス伝送路における信号の遅延を考慮した遅延量を付与する。実施の形態4と異なる部分について説明する。
 送信装置および受信装置の構成は、実施の形態4と同様である。ここでは、送信アンテナ15-i(1≦i≦M)から受信アンテナ21-j(1≦j≦N)までの伝送路Hi,jがMN通り存在する。ここで、送信アンテナ15-iから全N受信アンテナに対する伝送路において、伝送路中で最も早く受信アンテナ21-1~21-Nのいずれかに到達する到来波の遅延量(送信時刻と到来時刻との時間差)をDi *とする。また、伝送路中で最も遅く受信アンテナ21-1~21-Nのいずれかに到達する到来波の遅延量(送信時刻と到来時刻との時間差)をDiとする。次に、「Di’>(Di-Di+1 *)」を満たすM個(送信アンテナの本数と同数)のDi’を決定する。
 送信装置では、遅延部81-2~81-Mが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部81-i(2≦i≦M)において前記(2)式で表す遅延量を与える。
 受信装置では、遅延部91-2~91-Nが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部91-j(2≦j≦N)において前記(3)式で表す遅延量を与える。
 本実施の形態では、遅延部81-2~81-M、91-2~91-Nで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延処理が可能である。
 以上説明したように、本実施の形態では、送信装置が、送信信号がマルチパス伝送路を通過する場合に、伝送路の先頭波の遅延を考慮して遅延を与えることとした。これにより、実施の形態4と比較して、少ない遅延量の付与で同等の効果を得ることができる。
 なお、この実施の形態で説明した遅延量の決定法は、実施の形態3に対しても適用可能である。
実施の形態6.
 本実施の形態では、送信装置および受信装置において、符号間干渉を考慮した遅延量を付与する。ここでは、伝送路の遅延波による符号間干渉に対応するため、変調シンボルの先頭には、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリア通信で広く用いられる、ガードインターバルまたはガードタイムが付加されることを想定している。実施の形態1と異なる部分について説明する。
 図14は、送信装置の構成例を示す図である。送信装置は、変調部11と、信号線12-1~12-Mと、遅延量制御部101と、遅延部102-2~102-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。遅延量制御部101は、各遅延部の遅延量を制御する。遅延部102-2~102-Mは、送信信号に対して遅延処理を行う。
 図15は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延量制御部111と、遅延部112-2~112-Nと、加算部24と、復調部25と、を備える。遅延量制御部111は、各遅延部の遅延量を制御する。遅延部112-2~112-Nは、受信信号に対して遅延処理を行う。
 送信装置では、ガードインターバルまたはガードタイムの長さをG_lenとし、全伝送路で最も早く受信アンテナ21-1~21-Nのいずれかに到来する先頭波の到来時刻と、全伝送路で最も遅く受信アンテナ21-1~21-Nのいずれかに到来する遅延波の到来時刻との時間差を最大遅延量D_lenとした場合に、遅延量制御部101が、「G_len≧D_len+D(MN-1)」を満たすようにDを決定する。また、遅延部102-2~102-Mが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部102-i(2≦i≦M)においてD(i-1)を与える。これらの遅延量の算出については、例えば、受信装置にてパイロットシンボルを利用した伝送路推定などによって伝送路を推定し、送信装置に通知するなどの方法で遅延プロファイルを取得することによって実現可能である。
 受信装置では、遅延量制御部111が、遅延量制御部101と同様の方法により遅延量を決定する。また、遅延部112-2~112-Nが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部112-j(2≦j≦N)においてDM(j-1)を与える。
 本実施の形態では、遅延部102-2~102-M、112-2~112-Nで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延処理が可能である。
 以上説明したように、本実施の形態では、送信装置が、送信信号が受信アンテナで符号間干渉しないように遅延を与える。また、受信装置が、複数の受信アンテナで受信した信号に対して、加算時に符号間干渉しないように遅延を与えることとした。これにより、実施の形態1と同様の効果を得ることができる。
実施の形態7.
 本実施の形態では、送信装置および受信装置において、符号間干渉を考慮した遅延量を付与する。実施の形態6と異なる部分について説明する。
 図16は、送信装置の構成例を示す図である。送信装置は、変調部11と、信号線12-1~12-Mと、遅延量制御部121と、遅延部122-2~122-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。遅延量制御部121は、各遅延部の遅延量を制御する。遅延部122-2~122-Mは、送信信号に対して遅延処理を行う。
 図17は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延量制御部131と、遅延部132-2~132-Nと、加算部24と、復調部25と、を備える。遅延量制御部131は、各遅延部の遅延量を制御する。遅延部132-2~132-Nは、受信信号に対して遅延処理を行う。
 ここでは、送信アンテナ15-i(1≦i≦M)から受信アンテナ21-j(1≦j≦N)までの伝送路Hi,jがMN通り存在する。ここで、送信アンテナ15-iから全N受信アンテナに対する伝送路において、伝送路中で受信電力が所定の値γを超える到来波のうち、最も早く受信アンテナ21-1~21-Nのいずれかに到来する到来波の遅延量(送信時刻と到来時刻との時間差)をDi *とする。また、伝送路中で受信電力が所定の値γを超える到来波のうち、最も遅く受信アンテナ21-1~21-Nのいずれかに到達する波の遅延量(送信時刻と到来時刻との時間差)をDiとする。
 送信装置および受信装置では、ガードインターバルまたはガードタイムの長さをG_lenとし、全伝送路で最も早く受信アンテナ21-1~21-Nのいずれかに到来する先頭波の到来時刻と、全伝送路で最も遅く受信アンテナ21-1~21-Nのいずれかに到来する遅延波の到来時刻との時間差を最大遅延量D_lenとした場合に、遅延量制御部121、131が、「Di’>(Di-Di+1 *)(ただし、DM’=DMとする)を満たし、かつ、下記(4)式を満たすようにγを決定して、M個(送信アンテナの本数と同数)のD1’、…、DM’を設定する。これらの遅延量の算出については、例えば、受信装置にてパイロットシンボルを利用した伝送路推定などによって伝送路を推定し、送信装置に通知するなどの方法で遅延プロファイルを取得することによって実現可能である。
Figure JPOXMLDOC01-appb-M000004
 送信装置では、遅延部122-2~122-Mが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部122-i(2≦i≦M)において、遅延量制御部121で決定したDi’を用いて、前記(2)式で表す遅延量を与える。利得付与部14-1~14-Mでは、信号線12-1からの送信信号および遅延部122-2~122-Mからの遅延後の送信信号を入力し、それぞれに複素利得を付与する。
 受信装置では、遅延部132-2~132-Nが、ダイバーシチ効果を実現するための適切な遅延量の一例として、遅延部132-j(2≦j≦N)において前記(3)式で表す遅延量を与える。
 本実施の形態では、遅延部122-2~122-M、132-2~132-Nで処理する信号を、アナログ信号またはデジタル信号に限定していないが、アナログ信号であっても、本実施の形態で述べた遅延量と相当量の遅延処理が可能である。
 以上説明したように、本実施の形態では、送信装置および受信装置が、所定の受信電力を超える信号が符号間干渉しないように遅延を与えることで、受信装置では、所定の受信電力を超える主信号同士を時間的に重複せずに加算できることとした。これにより、実施の形態1と同様の効果を得ることができる。
 なお、この実施の形態で説明した遅延量の決定法は、実施の形態3に対しても適用可能である。
実施の形態8.
 本実施の形態では、送信装置および受信装置において、遅延処理を行うアンテナを選択する。実施の形態1と異なる部分について説明する。
 図18は、送信装置の構成例を示す図である。送信装置は、変調部11と、信号線12-1、18-1~18-Mと、送信アンテナ選択部17と、遅延部141-2~141-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。送信アンテナ選択部17は、遅延処理後の信号を送信するアンテナ候補15-2~15-Mから、実際に送信するアンテナを選択する。遅延部141-2~141-Mは、送信信号に対して遅延処理を行う。
 図19は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延部142-2~142-Nと、受信アンテナ選択部27と、加算部24と、復調部25と、を備える。受信アンテナ選択部27は、受信アンテナ候補21-2~21-Nから、受信アンテナ21-1で受信した信号と実際に合成するアンテナを選択する。遅延部142-2~142-Nは、受信信号に対して遅延処理を行う。
 送信装置では、変調部11で生成された送信信号を、信号線12-1と18-1に分岐する。信号線12-1に分岐された信号は、実施の形態1と同様に処理され、送信アンテナ15-1から送信される。信号線18-1に分岐された信号は、送信アンテナ選択部17へ入力される。送信アンテナ選択部17は、送信アンテナ15-2~15-Mからアンテナを選択し、選択したアンテナに対応する信号線と接続する。アンテナを選択する基準として、伝送路利得が最も高いアンテナを選択することなどが挙げられる。伝送路利得の算出については、パイロットシンボルを利用した伝送路推定期間などにおいて、送信アンテナ選択部17が送信アンテナを切り替えて伝送路推定することによって算出可能である。例えば、伝送路推定期間において、送信アンテナ選択部17は、初めに送信アンテナ15-2を選択して受信装置において伝送路推定を行い、伝送路利得を求め送信装置にフィードバックし、送信アンテナ選択部17は、次に送信アンテナ15-3を選択して受信装置において伝送路推定を行い、伝送路利得を求め送信装置にフィードバックする。以上の手順を、送信アンテナ15-2~15-Mについて実施することにより、送信アンテナの全組み合わせでの伝送路利得が得られる。
 選択された送信アンテナを15-i(2≦i≦M)とする。遅延部141-iでは信号線18-iから入力された信号に遅延を与える。ここで与える遅延量は、実施の形態1~7のいずれかの方法で決定することとする。利得付与部14-1、14-iでは、信号線12-1からの送信信号および遅延部141-iからの遅延後の送信信号を入力し、それぞれに複素利得を付与する。
 受信装置では、受信アンテナ選択部27が、受信アンテナ21-2~21-Nから、アンテナを選択し、選択したアンテナに対応する信号線と加算部24とを接続する。アンテナを選択する基準は、前記送信アンテナ選択部17での選択基準と同様、伝送路利得が最も高いアンテナを選択することなどが挙げられる。例えば、伝送路推定期間において、受信アンテナ選択部27は、初めに受信アンテナ21-2を選択して伝送路推定を行い伝送路利得を求め、受信アンテナ選択部27は、次に受信アンテナ21-3を選択して伝送路推定を行い伝送路利得を求める。以上の手順を、受信アンテナ21-2~21-Nについて実施することにより、受信アンテナの全組み合わせでの伝送路利得が得られる。
 選択された受信アンテナを21-j(2≦j≦N)とする。遅延部142-jでは利得付与部22-jから入力された信号に遅延を与える。ここで与える遅延量は、実施の形態1~7のいずれかの方法で決定することとする。加算部24では、利得付与部22-1からの受信信号と、遅延部142-jからの遅延後の受信信号を合成する。
 以上説明したように、本実施の形態では、送信装置において、遅延処理を行う送信アンテナを選択することとし、受信装置において、遅延処理を行う受信アンテナを選択することとした。これにより、実際に使用するアンテナおよび関連する回路の駆動数を最小数に抑え、使用しないアンテナおよび関連する回路の消費電力を低減することができる。
実施の形態9.
 本実施の形態では、送信装置および受信装置において、送信および受信に使用するアンテナを選択する。実施の形態8と異なる部分について説明する。
 図20は、送信装置の構成例を示す図である。送信装置は、変調部11と、選択分岐部19と、信号線151-1~151-Mと、遅延部161-1~161-Mと、利得付与部14-1~14-Mと、送信アンテナ15-1~15-Mと、を備える。選択分岐部19は、信号を送信するアンテナ候補15-1~15-Mから、実際に送信するアンテナを選択する。遅延部161-1~161-Mは、送信信号に対して遅延処理を行う。
 図21は、受信装置の構成例を示す図である。受信装置は、受信アンテナ21-1~21-Nと、利得付与部22-1~22-Nと、遅延部162-1~162-Nと、信号線152-1~152-Nと、選択合成部29と、復調部25と、を備える。選択合成部29は、受信アンテナ候補21-1~21-Nから、合成するアンテナを選択する。遅延部162-1~162-Nは、受信信号に対して遅延処理を行う。
 送信装置では、変調部11で生成された送信信号を、選択分岐部19にて分岐する。選択分岐部19では、送信アンテナ15-1~15-Mから、アンテナを1本以上選択する。アンテナを選択する基準として、各アンテナ選択時の伝送路利得を求めランキングし、規定されたアンテナ本数以下の条件下で伝送路利得が高いアンテナをランキング上位から順に選択することや、規定された総伝送路利得を満足する条件下でランキング上位から順にアンテナを選択し最小のアンテナ数に抑制すること、などが挙げられる。
 ここでは、選択分岐部19において3本の送信アンテナが選択されたとする。選択された送信アンテナを15-i、15-j、15-k(1≦i、j、k≦M、i≠j、j≠k、k≠i)とする。選択分岐部19は、信号線151-i、151-j、151-kに信号を分岐する。遅延部161-i、161-j、161-kでは、入力された信号に遅延を与える。ここで与える遅延量は、実施の形態1~7のいずれかの方法で決定するが、総遅延量を最小量に抑えるため、選択されたアンテナのうち1本に対しては遅延を与えず、その他のアンテナに対しては相対的な遅延量を設定することとしても良い。利得付与部14-i、14-j、14-kでは、遅延部161-i、161-j、161-kからの遅延後の送信信号を入力し、それぞれに複素利得を付与する。
 受信装置では、選択合成部29が、受信アンテナ21-1~21-Nからアンテナを選択し、選択したアンテナに対応する信号線からの受信信号を加算し、復調部25へ出力する。アンテナを選択する基準は、前記選択分岐部19での選択基準と同様である。
 ここでは、選択合成部29において2本の送信アンテナが選択されたとする。選択された受信アンテナを21-l、21-m(1≦l、m≦N、l≠m)とする。信号線152-l、152-mと選択合成部29が接続される。遅延部162-l、162-mでは利得付与部22-l、22-mから入力された信号に遅延を与える。ここで与える遅延量は、実施の形態1~7のいずれかの方法で決定するが、総遅延量を最小量に抑えるため、選択されたアンテナのうち1本に対しては遅延を与えず、その他のアンテナに対しては相対的な遅延量を設定することとしても良い。選択合成部29では、遅延部162-l、162-mからの受信信号を合成する。
 以上説明したように、本実施の形態では、送信装置において、分岐する送信アンテナを選択することとし、受信装置において、信号を合成する受信アンテナを選択することとした。これにより、伝送路利得の高いアンテナを選択することで効率良く通信性能を改善できる。また、実際に使用するアンテナおよび関連する回路の駆動数を最小数に抑え、使用しないアンテナおよび関連する回路の消費電力を低減することができる。
実施の形態10.
 本実施の形態では、送信装置の送信アンテナ数をLK本、変調部の出力数をLとし、受信装置の受信アンテナ数をPQ本、復調部の入力数をPとして、変調部および復調部ではMIMO空間多重伝送を行う無線通信システムについて説明する。実施の形態3と異なる部分について説明する。
 図22は、送信装置の構成例を示す図である。送信装置は、変調部61と、選択分岐部69-1~69-Lと、信号線171-1~171-LKと、遅延部181-1~181-LKと、利得付与部64-1~64-LKと、送信アンテナ65-1~65-LKと、を備える。選択分岐部69-l(1≦l≦L)は、信号を送信するアンテナ候補65-(l-1)K+1~65-lKから、実際に送信するアンテナを選択し、信号線171-(l-1)K+1~171-lKから、選択したアンテナに対応する信号線と接続する。遅延部181-1~181-LKは、送信信号に対して遅延処理を行う。
 図23は、受信装置の構成例を示す図である。受信装置は、受信アンテナ71-1~71-PQと、利得付与部72-1~72-PQと、遅延部182-1~182-PQと、信号線172-1~172-PQと、選択合成部79-1~79-Pと、復調部75と、を備える。遅延部182-1~182-PQは、受信信号に対して遅延処理を行う。選択合成部79-p(1≦p≦P)は、信号を合成するアンテナ候補71-(p-1)Q+1~71-pQから、実際に合成するアンテナを選択し、信号線172-(p-1)Q+1~171-pQから、選択したアンテナに対応する信号線と接続する。
 送信装置では、変調部61にてL個の信号系列が生成される。簡単のため、l番目(1≦l≦L)の信号系列について説明する。以下の説明は、L個の送信ブロック全てに共通であり、L個独立に動作する。l番目の信号系列は、選択分岐部69-lに入力される。選択分岐部69-lの処理は、実施の形態9と同様である。ただし、アンテナを選択する基準として、実施の形態9の基準に加え、他の選択分岐部69-1~69-l-1、69-l+1~69-Lで選択されたアンテナと空間相関が低くなるアンテナを選択することや、伝送路容量が高くなるアンテナを選択すること、などが挙げられる。空間相関や伝送路容量の算出については、パイロットシンボルを利用した伝送路推定期間などにおいて、送選択分岐部69-lが送信アンテナを切り替えて伝送路推定することによって算出可能である。
 ここでは、選択分岐部69-lにおいて3本の送信アンテナが選択されたとする。選択された送信アンテナを65-(l-1)K+i、65-(l-1)K+j、65-(l-1)K+k(1≦i、j、k≦K、i≠j、j≠k、k≠i)とする。選択分岐部69-lは、信号線171-(l-1)K+i、171-(l-1)K+j、171-(l-1)K+kに信号を分岐する。遅延部181-(l-1)K+i、181-(l-1)K+j、181-(l-1)K+kでは、入力された信号に遅延を与える。ここで与える遅延量は、実施の形態1~7のいずれかの方法で決定するが、総遅延量を最小量に抑えるため、選択されたアンテナのうち1本に対しては遅延を与えず、その他のアンテナに対しては相対的な遅延量を設定することとしても良い。
 受信装置では、P個の受信信号系列を復調部75へ入力する。簡単のため、p番目(1≦p≦P)の信号系列について説明する。以下の説明は、P個の受信ブロック全てに共通であり、P個独立に動作する。選択合成部79-p(1≦p≦P)が、受信アンテナ71-(p-1)Q+1~71-pQからアンテナを選択し、選択したアンテナに対応する信号線からの受信信号を加算し、復調部75へ出力する。アンテナを選択する基準は、前記選択分岐部69-l(1≦l≦L)での選択基準と同様である。
 ここでは、選択合成部79-pにおいて2本の送信アンテナが選択されたとする。選択された受信アンテナを71-(p-1)Q+l、71-(p-1)Q+m(1≦l、m≦Q、l≠m)とする。信号線172-(p-1)Q+l、172-(p-1)Q+mと選択合成部79-pが接続される。遅延部182-(p-1)Q+l、182-(p-1)Q+mでは利得付与部72-(p-1)Q+l、72-(p-1)Q+mから入力された信号に遅延を与える。ここで与える遅延量は、実施の形態1~7のいずれかの方法で決定するが、総遅延量を最小量に抑えるため、選択されたアンテナのうち1本に対しては遅延を与えず、その他のアンテナに対しては相対的な遅延量を設定することとしても良い。選択合成部79-pでは、遅延部182-(p-1)Q+l、182-(p-1)Q+mからの受信信号を合成する。
 以上説明したように、本実施の形態では、送信装置の送信ブロックおよび受信装置の受信ブロックごとに、実施の形態9と同様の処理を行うこととした。これにより、MIMO空間多重伝送の場合においても、実施の形態9と同様の効果を得ることができる。更に、本実施の形態で述べたアンテナ選択基準は、送受信ブランチ間の空間相関を低減する、または伝送路容量を増加させるよう作用するため、空間多重伝送時には空間多重信号の受信分離性能を高めることができる。
 なお、上記実施の形態1~10で説明した装置構成と遅延量の設定は、適宜組み合わせることが可能である。
 以上のように、本発明にかかる無線通信システムは、複数のアンテナを使用した通信に有用であり、特に、送受に複数のアンテナを用いる場合に適している。
 11 変調部
 12-1、…、12-M 信号線
 13-2、…、13-M 遅延部
 14-1、…、14-M 利得付与部
 15-1、…、15-M 送信アンテナ
 17 送信アンテナ選択部
 18-1、…、18-M 信号線
 19 選択分岐部
 21-1、…、21-N 受信アンテナ
 22-1、…、22-N 利得付与部
 23-2、…、23-N 遅延部
 24 加算部
 25 復調部
 27 受信アンテナ選択部
 29 選択合成部
 31-1、…、31-M 変調部
 41-2、…、41-M 遅延部
 51-2、…、51-N 遅延部
 61 変調部
 62-1、…、62-LK 信号線
 63-2、…、63-K、…、63-(L-1)K+2、…、63-LK 遅延部
 64-1、…、64-LK 利得付与部
 65-1、…、65-LK 送信アンテナ
 69-1、…、69-L 選択分岐部
 71-1、…、71-PQ 受信アンテナ
 72-1、…、72-PQ 利得付与部
 73-2、…、73-Q、…、73-(P-1)Q+2、…、73-PQ 遅延部
 74-1、…、74-P 加算部
 75 復調部
 79-1、…、79-P 選択合成部
 81-2、…、81-M 遅延部
 91-2、…、91-N 遅延部
 101 遅延量制御部
 102-2、…、102-M 遅延部
 111 遅延量制御部
 112-2、…、112-N 遅延部
 121 遅延量制御部
 122-2、…、122-M 遅延部
 131 遅延量制御部
 132-2、…、132-N 遅延部
 141-2、…、141-M 遅延部
 142-2、…、142-N 遅延部
 151-1、…、151-M 信号線
 152-1、…、152-N 信号線
 161-1、…、161-M 遅延部
 162-1、…、162-N 遅延部
 171-1、…、171-LK 信号線
 172-1、…、172-PQ 信号線
 181-1、…、181-LK 遅延部
 182-1、…、182-PQ 遅延部

Claims (28)

  1.  複数の送信アンテナを備える送信装置と、複数の受信アンテナを備える受信装置と、から構成される無線通信システムであって、
     前記送信装置は、
     信号を複数の前記送信アンテナに対応した複数の信号路を通る複数の送信信号に分岐する分岐手段と、
     前記信号路の少なくとも1つに設けられ送信信号に遅延を付加する送信遅延手段と、
     を備え、
     前記分岐手段により分岐された送信信号が前記送信遅延手段により遅延を付加された場合は該遅延を付加された送信信号を送信信号とし、前記各送信信号を前記複数の送信アンテナを介して前記受信装置へ送信し、
     前記受信装置は、
     前記複数の受信アンテナで受信した複数の受信信号を通す複数の信号路の少なくとも1つに設けられ受信信号に遅延を付加する受信遅延手段と、
     前記受信信号が前記受信遅延手段により遅延を付加された場合は該遅延を付加された受信信号を受信信号とし、前記各受信信号を加算する加算手段と、
     を備える
     ことを特徴とする無線通信システム。
  2.  前記送信遅延手段が複数ある場合、前記送信遅延手段のうちの少なくとも2つが送信信号に付加する遅延量は異なる
     ことを特徴とする請求項1に記載の無線通信システム。
  3.  前記受信遅延手段が複数ある場合、前記受信遅延手段のうちの少なくとも2つが受信信号に付加する遅延量は異なる
     ことを特徴とする請求項1に記載の無線通信システム。
  4.  前記複数の送信アンテナの一部は選択された場合に送信信号を送信する選択送信アンテナであり、前記選択送信アンテナから送信信号の送信に使用する送信アンテナを選択し、前記分岐手段により分岐された送信信号を前記選択された送信アンテナに対応する信号路に出力する送信アンテナ選択手段を備える
     ことを特徴とする請求項1に記載の無線通信システム。
  5.  前記複数の受信アンテナの一部は選択された場合に受信信号を受信する被選択受信アンテナであり、前記被選択受信アンテナから受信信号の受信に使用する受信アンテナを選択し、前記選択された受信アンテナで受信した受信信号を前記加算手段に出力する受信アンテナ選択手段を備える
     ことを特徴とする請求項1に記載の無線通信システム。
  6.  前記分岐手段は、前記複数の送信アンテナの中から送信信号の送信に使用する送信アンテナを選択し、前記選択された送信アンテナに対応する信号路に対して送信信号を分岐する
     ことを特徴とする請求項1に記載の無線通信システム。
  7.  前記加算手段は、前記複数の受信アンテナから受信信号の受信に使用する受信アンテナを選択し、前記選択された受信アンテナで受信された受信信号を加算する
     ことを特徴とする請求項1に記載の無線通信システム。
  8.  複数の送信アンテナを備える送信装置と、複数の受信アンテナを備える受信装置と、から構成される無線通信システムであって、
     前記送信装置は、
     前記送信アンテナの数よりも小さい複数の系列の信号を出力する信号生成手段と、
     前記信号生成手段から出力された各系列の信号に対応し1以上の送信アンテナを含む複数の送信ブロックからなり、
     1の前記送信ブロックは、
     当該ブロックに対応する系列の信号を、当該ブロックが備える送信アンテナに対応した複数の信号路を通る複数の送信信号に分岐する分岐手段と、
     前記信号路の少なくとも1つに設けられ送信信号に遅延を付加する送信遅延手段と、
     を備え、
     前記分岐手段により分岐された送信信号が前記送信遅延手段により遅延を付加された場合は該遅延を付加された送信信号を送信信号とし、前記各送信信号を当該送信ブロックが備える送信アンテナを介して前記受信装置へ送信し、
     前記受信装置は、
     1以上の受信アンテナを含む複数の受信ブロックからなり、
     前記受信ブロックにそれぞれ対応する入力端子を備え、前記各入力端子から入力された受信信号を復調する復調手段、
     を備え、
     1の前記受信ブロックは、
     当該受信ブロックが備える受信アンテナで受信した受信信号を通す信号路の少なくとも1つに設けられ受信信号に遅延を付加する受信遅延手段と、
     前記受信信号が前記受信遅延手段により遅延を付加された場合は該遅延を付加された受信信号を受信信号とし、前記受信信号を加算して前記復調手段へ出力する加算手段と、
     を備える
     ことを特徴とする無線通信システム。
  9.  1の前記送信ブロック内に前記送信遅延手段が複数ある場合、前記送信遅延手段のうちの少なくとも2つが送信信号に付加する遅延量は異なる
     ことを特徴とする請求項8に記載の無線通信システム。
  10.  1の前記受信ブロック内に前記受信遅延手段が複数ある場合、前記受信遅延手段のうちの少なくとも2つが受信信号に付加する遅延量は異なる
     ことを特徴とする請求項8に記載の無線通信システム。
  11.  前記1の送信ブロックの分岐手段は、当該送信ブロックに含まれる送信アンテナの中から送信信号の送信に使用する送信アンテナを選択し、前記選択された送信アンテナに対応する信号路に対して送信信号を分岐する
     ことを特徴とする請求項8に記載の無線通信システム。
  12.  前記1の受信ブロックの加算手段は、当該受信ブロックに含まれる受信アンテナの中から受信信号の受信に使用する受信アンテナを選択し、前記選択された受信アンテナに対応する受信信号を加算する
     ことを特徴とする請求項8に記載の無線通信システム。
  13.  前記送信遅延手段が前記送信信号に付加する遅延量と、前記受信遅延手段が前記受信信号に付加する遅延量は、前記送信装置と受信装置の間の伝送遅延量に基づいて決定される
     ことを特徴とする請求項1または請求項8に記載の無線通信システム。
  14.  前記送信遅延手段が前記送信信号に付加する遅延量と、前記受信遅延手段が前記受信信号に付加する遅延量は、前記送信装置と受信装置の間の伝送遅延量と前記受信装置における受信電力に基づいて決定される
     ことを特徴とする請求項1または請求項8に記載の無線通信システム。
  15.  複数の受信アンテナを備える受信装置と無線通信システムを構成する、複数の送信アンテナを備える送信装置であって、
     前記送信アンテナの数よりも小さい複数の系列の信号を出力する信号生成手段と、
     前記信号生成手段から出力された各系列の信号に対応し1以上の送信アンテナを含む複数の送信ブロックからなり、
     1の前記送信ブロックは、
     当該ブロックに対応する系列の信号を、当該ブロックが備える送信アンテナに対応した複数の信号路を通る複数の送信信号に分岐する分岐手段と、
     前記信号路の少なくとも1つに設けられ送信信号に遅延を付加する送信遅延手段と、
     を備え、
     前記分岐手段により分岐された送信信号が前記送信遅延手段により遅延を付加された場合は該遅延を付加された送信信号を送信信号とし、前記各送信信号を当該送信ブロックが備える送信アンテナを介して前記受信装置へ送信する
     ことを特徴とする送信装置。
  16.  1の前記送信ブロック内に前記送信遅延手段が複数ある場合、前記送信遅延手段のうちの少なくとも2つが送信信号に付加する遅延量は異なる
     ことを特徴とする請求項15に記載の送信装置。
  17.  前記1の送信ブロックの分岐手段は、当該送信ブロックに含まれる送信アンテナの中から送信信号の送信に使用する送信アンテナを選択し、前記選択された送信アンテナに対応する信号路に対して送信信号を分岐する
     ことを特徴とする請求項15に記載の送信装置。
  18.  前記送信遅延手段は、前記送信信号に付加する遅延量を、自装置と前記受信装置の間の伝送遅延量に基づいて決定する
     ことを特徴とする請求項15に記載の送信装置。
  19.  前記送信遅延手段は、前記送信信号に付加する遅延量を、自装置と前記受信装置の間の伝送遅延量、および当該受信装置における受信電力に基づいて決定する
     ことを特徴とする請求項15に記載の送信装置。
  20.  複数の送信アンテナを備える送信装置と無線通信システムを構成する、複数の受信アンテナを備える受信装置であって、
     前記複数の受信アンテナで受信した複数の受信信号を通す複数の信号路の少なくとも1つに設けられ受信信号に遅延を付加する受信遅延手段と、
     前記受信信号が前記受信遅延手段により遅延を付加された場合は該遅延を付加された受信信号を受信信号とし、前記各受信信号を加算する加算手段と、
     を備えることを特徴とする受信装置。
  21.  前記受信遅延手段が複数ある場合、前記受信遅延手段のうちの少なくとも2つが受信信号に付加する遅延量は異なる
     ことを特徴とする請求項20に記載の受信装置。
  22.  前記複数の受信アンテナの一部は選択された場合に受信信号を受信する被選択受信アンテナであり、前記被選択受信アンテナから受信信号の受信に使用する受信アンテナを選択し、前記選択された受信アンテナで受信した受信信号を前記加算手段に出力する受信アンテナ選択手段を備える
     ことを特徴とする請求項20に記載の受信装置。
  23.  前記加算手段は、前記複数の受信アンテナから受信信号の受信に使用する受信アンテナを選択し、前記選択された受信アンテナで受信された受信信号を加算する
     ことを特徴とする請求項20に記載の受信装置。
  24.  複数の送信アンテナを備える送信装置と無線通信システムを構成する、複数の受信アンテナを備える受信装置であって、
     1以上の受信アンテナを含む複数の受信ブロックからなり、
     前記受信ブロックにそれぞれ対応する入力端子を備え、前記各入力端子から入力された受信信号を復調する復調手段、
     を備え、
     1の前記受信ブロックは、
     当該受信ブロックが備える受信アンテナで受信した受信信号を通す信号路の少なくとも1つに設けられ受信信号に遅延を付加する受信遅延手段と、
     前記受信信号が前記受信遅延手段により遅延を付加された場合は該遅延を付加された受信信号を受信信号とし、前記受信信号を加算して前記復調手段へ出力する加算手段と、
     を備える
     ことを特徴とする受信装置。
  25.  1の前記受信ブロック内に前記受信遅延手段が複数ある場合、前記受信遅延手段のうちの少なくとも2つが受信信号に付加する遅延量は異なる
     ことを特徴とする請求項24に記載の受信装置。
  26.  前記1の受信ブロックの加算手段は、当該受信ブロックに含まれる受信アンテナの中から受信信号の受信に使用する受信アンテナを選択し、前記選択された受信アンテナに対応する受信信号を加算する
     ことを特徴とする請求項24に記載の受信装置。
  27.  前記受信遅延手段は、前記受信信号に付加する遅延量を、前記送信装置と自装置の間の伝送遅延量に基づいて決定する
     ことを特徴とする請求項24に記載の受信装置。
  28.  前記受信遅延手段は、前記受信信号に付加する遅延量を、前記送信装置と自装置の間の伝送遅延量、および自装置における受信電力に基づいて決定する
     ことを特徴とする請求項24に記載の受信装置。
PCT/JP2010/053357 2009-03-05 2010-03-02 無線通信システム、送信装置および受信装置 WO2010101156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011502766A JP5183798B2 (ja) 2009-03-05 2010-03-02 無線通信システム、送信装置および受信装置
CN2010800103455A CN102342056A (zh) 2009-03-05 2010-03-02 无线通信系统、发送装置以及接收装置
EP10748751.4A EP2405600B1 (en) 2009-03-05 2010-03-02 Wireless communication system, transmission device, and receiving device
US13/254,677 US8824446B2 (en) 2009-03-05 2010-03-02 Wireless communication system, transmission device, and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-052551 2009-03-05
JP2009052551 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010101156A1 true WO2010101156A1 (ja) 2010-09-10

Family

ID=42709712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053357 WO2010101156A1 (ja) 2009-03-05 2010-03-02 無線通信システム、送信装置および受信装置

Country Status (5)

Country Link
US (1) US8824446B2 (ja)
EP (1) EP2405600B1 (ja)
JP (1) JP5183798B2 (ja)
CN (1) CN102342056A (ja)
WO (1) WO2010101156A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063530A1 (en) * 2009-06-12 2012-03-15 Mitsubishi Electric Corporation Communication device
JP2012095060A (ja) * 2010-10-27 2012-05-17 Nec Corp 無線送信装置、無線受信装置、クロック同期方法および無線通信システム
JPWO2015053110A1 (ja) * 2013-10-10 2017-03-09 ソニー株式会社 受信装置、受信方法、並びにプログラム
JP2018160839A (ja) * 2017-03-23 2018-10-11 日本電気株式会社 受信回路、受信装置、及び、受信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873665B2 (en) * 2012-11-21 2014-10-28 Intel Mobile Communications GmbH Communication devices and methods for receiving data
US9602228B1 (en) * 2013-01-18 2017-03-21 Gregory R. Warnes Method and apparatus for transmission and reception of a signal over multiple frequencies with time offset encoding at each frequency
US10003387B2 (en) * 2013-03-15 2018-06-19 Intel Deutschland Gmbh Communications terminal, a network component, a method for transmitting a signal, and a method for providing feedback information to a communications terminal
CN105593787B (zh) * 2013-06-27 2019-07-05 视力移动科技公司 用于与数字设备交互的直接指向检测的系统和方法
WO2015054837A1 (en) * 2013-10-16 2015-04-23 Empire Technology Development Llc Signal sequence estimation
US10491182B2 (en) * 2017-10-12 2019-11-26 Ethertronics, Inc. RF signal aggregator and antenna system implementing the same
JP7159132B2 (ja) * 2019-09-05 2022-10-24 株式会社東芝 測距装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572765B2 (ja) 1987-05-19 1997-01-16 日本電信電話株式会社 送信パスダイバ−シチ伝送方式
JP2001333005A (ja) * 2000-05-24 2001-11-30 Ntt Docomo Inc 光空間伝送システム、光空間伝送方法及び光空間伝送装置
JP2006509394A (ja) * 2002-12-04 2006-03-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システムにおける遅延ダイバーシチ
JP2008092433A (ja) * 2006-10-04 2008-04-17 Fujitsu Ltd 無線通信方法並びに送信機及び受信機
JP2008278076A (ja) * 2007-04-26 2008-11-13 Kyocera Corp 無線通信装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120130A (ja) 1985-11-20 1987-06-01 Hitachi Ltd 通信装置
JPH0440713A (ja) 1990-06-07 1992-02-12 Nippon Telegr & Teleph Corp <Ntt> ダイバーシチ受信装置
JP2000503184A (ja) * 1995-12-28 2000-03-14 カルコム・インコーポレーテッド 携帯無線電話においてアンテナダイバーシティを提供する方法とその装置
US6259687B1 (en) * 1997-10-31 2001-07-10 Interdigital Technology Corporation Communication station with multiple antennas
US6658269B1 (en) * 1999-10-01 2003-12-02 Raytheon Company Wireless communications system
EP1578032A4 (en) * 2002-12-24 2006-05-10 Matsushita Electric Ind Co Ltd TRANSMISSION PATH SIMULATION PROCEDURE AND TRANSMISSION ROUTE SIMULATOR
WO2005060125A1 (ja) * 2003-12-16 2005-06-30 Mitsubishi Denki Kabushiki Kaisha 無線通信装置
JPWO2005093979A1 (ja) * 2004-03-25 2008-02-14 松下電器産業株式会社 無線システムおよび無線通信装置
US8014463B2 (en) * 2005-05-25 2011-09-06 Qualcomm Incorporated Delay diversity and spatial rotation systems and methods
EA011429B1 (ru) 2005-09-01 2009-02-27 Шарп Кабусики Кайся Устройство беспроводной передачи и способ беспроводной передачи
KR100652440B1 (ko) * 2005-10-27 2006-12-01 삼성전자주식회사 반도체 패키지, 그 패키지를 이용한 스택 패키지 및 그스택 패키지 형성 방법
CN1964218A (zh) * 2005-11-09 2007-05-16 华为技术有限公司 一种无线信号的多天线发送系统、方法及无线通信系统
US8300668B2 (en) * 2006-09-29 2012-10-30 Harris Corporation Automatic delay compensated simulcasting system and method
US20090149146A1 (en) * 2007-12-05 2009-06-11 Motorola, Inc. Adaptive millimeter-wave antenna system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572765B2 (ja) 1987-05-19 1997-01-16 日本電信電話株式会社 送信パスダイバ−シチ伝送方式
JP2001333005A (ja) * 2000-05-24 2001-11-30 Ntt Docomo Inc 光空間伝送システム、光空間伝送方法及び光空間伝送装置
JP2006509394A (ja) * 2002-12-04 2006-03-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システムにおける遅延ダイバーシチ
JP2008092433A (ja) * 2006-10-04 2008-04-17 Fujitsu Ltd 無線通信方法並びに送信機及び受信機
JP2008278076A (ja) * 2007-04-26 2008-11-13 Kyocera Corp 無線通信装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063530A1 (en) * 2009-06-12 2012-03-15 Mitsubishi Electric Corporation Communication device
JP2012095060A (ja) * 2010-10-27 2012-05-17 Nec Corp 無線送信装置、無線受信装置、クロック同期方法および無線通信システム
JPWO2015053110A1 (ja) * 2013-10-10 2017-03-09 ソニー株式会社 受信装置、受信方法、並びにプログラム
JP2018160839A (ja) * 2017-03-23 2018-10-11 日本電気株式会社 受信回路、受信装置、及び、受信方法

Also Published As

Publication number Publication date
JP5183798B2 (ja) 2013-04-17
EP2405600A1 (en) 2012-01-11
CN102342056A (zh) 2012-02-01
EP2405600B1 (en) 2017-07-19
US8824446B2 (en) 2014-09-02
EP2405600A4 (en) 2014-11-26
US20120002661A1 (en) 2012-01-05
JPWO2010101156A1 (ja) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5183798B2 (ja) 無線通信システム、送信装置および受信装置
JP6513287B2 (ja) 受信装置及び受信方法、並びにプログラム及び記録媒体
JP5230766B2 (ja) 到来方向推定装置及び到来方向推定方法
JP4309110B2 (ja) 適応アンテナ無線通信装置
JP4855888B2 (ja) 基地局装置
JP2004032656A (ja) 無線通信装置および到来方向推定方法
JP3591581B2 (ja) 適応アンテナ受信装置
JP2011244475A (ja) 無線通信装置及び無線通信方法
JP2000151485A (ja) 移動通信システムの基地局と移動局
JP2001203624A (ja) 無線受信装置および無線受信方法
JP5085269B2 (ja) 無線通信装置
JP6632466B2 (ja) 受信装置及び受信方法、並びにプログラム及び記録媒体
WO2013094219A1 (ja) 受信装置および受信方法
JP4929481B2 (ja) ダイバーシチ受信機
JP2002084217A (ja) 基地局装置および到来方向推定方法
JP4001880B2 (ja) 空間多重伝送装置
JPH11289213A (ja) アダプティブ受信装置
JP5814134B2 (ja) アレーアンテナ
KR20110031165A (ko) 멀티캐리어 통신 시스템
JP3960888B2 (ja) 信号分離方法および受信装置
JP2005333443A (ja) 送信ダイバーシチを行う方法および無線装置ならびに同装置を用いた通信システム
JP2001223624A (ja) 無線受信装置
JP3554226B2 (ja) 受信装置
JP6851596B2 (ja) 無線基地局および無線基地局の制御方法
JP2008312228A (ja) 適応アンテナ無線通信装置及び適応アンテナ無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010345.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502766

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13254677

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010748751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010748751

Country of ref document: EP