WO2010101112A1 - 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法 - Google Patents

原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法 Download PDF

Info

Publication number
WO2010101112A1
WO2010101112A1 PCT/JP2010/053243 JP2010053243W WO2010101112A1 WO 2010101112 A1 WO2010101112 A1 WO 2010101112A1 JP 2010053243 W JP2010053243 W JP 2010053243W WO 2010101112 A1 WO2010101112 A1 WO 2010101112A1
Authority
WO
WIPO (PCT)
Prior art keywords
containment vessel
condensed water
reactor containment
reactor
cooling
Prior art date
Application number
PCT/JP2010/053243
Other languages
English (en)
French (fr)
Inventor
美香 田原
中丸 幹英
昭 村瀬
亮一 濱崎
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to US13/204,000 priority Critical patent/US20110314858A1/en
Priority to EP10748707.6A priority patent/EP2405444B9/en
Publication of WO2010101112A1 publication Critical patent/WO2010101112A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a reactor containment cooling technology that removes decay heat in the event of reactor water loss and maintains the environment around the reactor safely, and in particular, the steam pressure inside the reactor containment vessel is used as a driving force.
  • Reactor containment vessel cooling technology for generating emergency cooling water including reactor containment vessel cooling equipment, reactor containment vessel and reactor containment vessel cooling method.
  • the nuclear reactor is equipped with an emergency core cooling system and decay heat removal system that maintain the safety of the surrounding environment by cooling the inside of the reactor containment vessel to remove decay heat in the event of a reactor water loss accident.
  • an emergency core cooling system and decay heat removal system that maintain the safety of the surrounding environment by cooling the inside of the reactor containment vessel to remove decay heat in the event of a reactor water loss accident.
  • there are guidelines for thorough accident countermeasures so that cooling water can be reliably cooled by introducing cooling water from an external water source to the reactor containment vessel. Is set.
  • this reactor containment vessel cooling technology cools the inside of the containment vessel without using a power source such as a pump. Therefore, even if a power loss accident occurs in the entire facility, The cooling function of the container is not lost.
  • the reactor pressure vessel Since the nuclear reactor pressure vessel has a large amount of radioactive nuclides such as fission products and fuel nuclides, the reactor pressure vessel continues to be heated by the decay heat of the radioactive nuclides in the event of loss of reactor water. At this time, the atmospheric temperature inside the reactor containment vessel rises using the reactor pressure vessel as a heat source.
  • radioactive nuclides such as fission products and fuel nuclides
  • the present invention has been made in view of the circumstances in the prior art described above. By reducing or increasing the temperature of water vapor or gas taken in by the reactor containment cooling equipment, the cooling function and structural integrity are reduced. It is an object of the present invention to provide a containment vessel cooling facility, a containment vessel, and a containment vessel cooling method that can be suppressed.
  • the reactor containment vessel cooling facility was obtained by taking in the water vapor inside the vessel using the water vapor pressure inside the reactor containment vessel as a driving force and condensing the taken water vapor.
  • a reactor containment cooling system that cools a containment vessel using condensed water, a heat exchange pool that is provided separately from the dry well and the suppression chamber of the containment vessel and stores a cooling medium for the taken-in water vapor
  • a heat exchanger that is immersed in the heat exchange pool and takes in water vapor from the dry well of the reactor containment vessel and heat-exchanges the water vapor with a cooling medium of the heat exchange pool to form condensed water, and the heat exchanger.
  • a condensate drain pipe that draws the condensate and guides and discharges the condensate to flow toward the reactor pressure vessel. And butterflies.
  • the condensate drain pipe may discharge the condensate so that the condensate flows down a side surface of a heat insulating material covering the periphery of the reactor pressure vessel.
  • the condensate drain pipe may discharge the condensate from a position above a biological shielding wall provided outside the heat insulating material toward a side surface of the heat insulating material.
  • the condensate drain pipe includes a ring-shaped header pipe that surrounds the heat insulating material in the circumferential direction and through which the condensed water flows, and a plurality of condensed water discharges provided at intervals along the circumferential direction of the header pipe. You may make it have an exit.
  • the condensed water drain pipe may discharge the condensed water so that the condensed water flows down the side surface of the reactor pressure vessel.
  • the condensed water drain pipe may discharge condensed water from a position above the biological shielding wall toward a side surface of the reactor pressure vessel.
  • the condensed water drain pipe includes a ring-shaped header pipe that surrounds the reactor pressure vessel in the circumferential direction and through which the condensed water flows, and a plurality of the condensed water pipes provided at intervals along the circumferential direction of the header pipe. You may make it have a discharge port of water.
  • the discharge port may be configured by using a nozzle that penetrates a heat insulating material covering the periphery of the reactor pressure vessel from the outside toward the inside.
  • header pipe may be configured to be embedded in a heat insulating material.
  • the condensate drain pipe may be configured to have a partially bent curved pipe.
  • a reactor containment vessel includes a reactor pressure vessel that houses a core, a biological shielding wall that is provided so as to surround an outer periphery of the nuclear pressure vessel, and the atomic vessel.
  • a dry well that forms a storage space for the reactor pressure vessel, a suppression chamber that controls the internal pressure of the reactor containment vessel, and the water vapor pressure inside the reactor containment vessel is taken in and taken in by using the water vapor pressure inside the reactor containment vessel as a driving force.
  • a reactor containment vessel cooling facility for cooling the reactor containment vessel using condensed water obtained by condensing water vapor is provided, and this reactor containment vessel cooling facility has the above-described structural features.
  • the reactor containment vessel cooling method takes in the water vapor inside the vessel using the water vapor pressure inside the reactor containment vessel, and condenses the taken-in water vapor.
  • the present invention by lowering the temperature of water vapor or gas taken in by the reactor containment vessel cooling facility, it is possible to suppress a decrease in the cooling function and structural integrity of the reactor containment vessel cooling facility.
  • FIG. 1 is a front sectional view showing a first embodiment of a reactor containment vessel cooling facility according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the reactor containment vessel cooling facility shown in FIG. 1
  • FIG. 2A is a layout diagram of condensed water drain piping
  • FIG. 2B is an overhead view of the condensed water drain pipe shown in FIG. 2A.
  • Action explanatory drawing of the reactor containment cooling equipment of FIG. Sectional drawing which shows 2nd Embodiment of the reactor containment vessel cooling equipment which concerns on this invention.
  • the principal part enlarged view which shows 3rd Embodiment of the reactor containment vessel cooling equipment which concerns on this invention.
  • FIG. 1 is a front cross-sectional view showing a first embodiment of a reactor containment cooling system according to the present invention.
  • the reactor containment vessel cooling facility 20 of the first embodiment is provided inside or outside the reactor containment vessel 10.
  • the reactor containment vessel 10 is provided so as to surround the reactor pressure vessel 12 that accommodates the core 11, the biological shielding wall 13, and other reactor structures, and the piping such as the main steam pipe 14 is broken by any chance.
  • the reactor water inside the pressure vessel 12 is lost, and the fuel is melted or damaged by this, the structure prevents the fission products from spreading into the atmosphere.
  • the reactor containment vessel 10 includes a dry well 15 (upper dry well 15a, lower dry well 15b) that forms a storage space for the reactor pressure vessel 12, and a suppression chamber (wet well) 16 that controls internal pressure of the reactor containment vessel 10.
  • the dry well 15 and the suppression chamber 16 communicate with each other through a vent pipe 18.
  • the suppression chamber 16 has a suppression pool 17 that stores emergency cooling water, and is provided so as to surround the reactor pressure vessel 12.
  • the reactor containment vessel 10 is provided with an emergency core cooling system and a decay heat removal system (both not shown).
  • the emergency core cooling system and decay heat removal system operate to remove the surrounding decay heat.
  • this emergency core cooling system or the like is activated, the steam derived from the pool water taken from the suppression pool 17 by the emergency core cooling system together with the steam derived from the reactor water leaking from the pipe fracture portion to the outside of the reactor pressure vessel 12 is obtained.
  • the dry well 15 is filled.
  • the water vapor filled in the dry well 15 passes through the vent pipe 18 and moves to the suppression pool 17 and is absorbed and condensed, the increase in the internal pressure of the reactor containment vessel 10 is alleviated.
  • the reactor containment vessel cooling facility 20 converts the water vapor filled in the reactor pressure vessel 12 into condensed water and uses this condensed water to contain the reactor.
  • the container 10 is cooled.
  • the reactor containment vessel cooling facility 20 includes a heat exchange pool 21, a heat exchanger 22, a water vapor suction pipe 23, a non-aggregating gas vent pipe 24, and a condensed water drain pipe 25.
  • the heat exchange pool 21 is provided thermally and spatially separated from the dry well 15 and the suppression chamber 16 of the reactor containment vessel 10, and cools the water vapor that fills the reactor containment vessel 10 above the upper dry well 15a. Store the medium.
  • This cooling medium is light water, for example.
  • the heat exchanger 22 has a heat transfer tube 22 a made of a material having good heat conductivity, and is immersed in the heat exchange pool 21.
  • the heat exchanger 22 heat-exchanges the water vapor introduced into the heat transfer tube 22a with the cooling medium of the heat exchange pool 21 to produce condensed water.
  • the water vapor suction pipe 23 is configured such that the suction port is located in the upper dry well 15a, sucks the water vapor filling the upper dry well 15a, and sends it into the heat transfer pipe 22a.
  • the suction of water vapor by the water vapor suction pipe 23 is performed using the water vapor pressure of the reactor containment vessel 10 as a driving force.
  • the non-cohesive gas vent pipe 24 draws the non-condensable gas sent together with the water vapor into the heat transfer tube 22a to the outside of the heat transfer tube 22a, and maintains the heat exchange function between the water vapor inside the heat transfer tube 22a and the cooling medium of the heat exchange pool 21.
  • the non-condensable gas vent pipe 24 extends from the outlet side of the heat transfer tube 22 a constituting the heat exchanger 22 toward the suppression chamber 16, and the extended end side is immersed in the suppression pool 17. Is done.
  • the condensed water drain pipe 25 draws condensed water from the heat exchanger 22 and guides and discharges the condensed water to flow toward the reactor pressure vessel 12.
  • the condensate is drawn out and guided using the water vapor pressure and gravity inside the reactor containment vessel 10 as driving forces.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the reactor containment vessel cooling equipment 20 shown in FIG. 1
  • FIG. 2A is a cross-sectional view showing the arrangement of the condensed water drain pipe 25, and
  • FIG. is there. 3 is an overhead view of the condensed water drain pipe 25 shown in FIG. 2A.
  • the extended end portion of the condensed water drain pipe 25 surrounds the heat insulating material 19 that covers the periphery of the reactor pressure vessel 12 in the circumferential direction and is condensed water drawn from the heat exchanger 22.
  • the heat insulating material 19 suppresses heat radiation from the reactor pressure vessel 12 during normal operation of the reactor and is made of a metal material.
  • the header pipe 26 has a plurality of discharge ports 27 provided at intervals along the circumferential direction thereof. As shown in FIG. 2B, the discharge port 27 discharges condensed water flowing through the header pipe 26 toward the side surface of the heat insulating material 19 so as to face the gap formed by the biological shielding wall 13 and the heat insulating material 19. As such, the angle or arrangement is set. 2D indicates the discharge direction of the condensed water discharged from the header pipe 26.
  • the emergency core cooling system or the like is activated, and the steam derived from the pool water released by the emergency core cooling system is discharged together with the steam derived from the reactor water leaking from the broken portion of the pipe connected to the reactor pressure vessel 12. It moves upward above the dry well 15 and fills the upper dry well 15a.
  • a heat exchange pool 21 that is provided separately from the dry well 15 and the suppression chamber 16 of the reactor containment vessel 10 and stores a cooling medium for water vapor, and is immersed in the heat exchange pool 21.
  • a heat exchanger 22 that takes in water vapor from the dry well 15 and heat-exchanges this water vapor with the cooling medium of the heat exchange pool 21 to make condensed water, draws condensed water from the heat exchanger 22, and uses this condensed water as a reactor pressure.
  • the water vapor generated in the dry well 15 is heat-exchanged to become condensed water by being provided with the condensed water drain pipe 25 that guides and discharges it so as to flow toward the container 12. Released.
  • the decay heat of the radionuclide adhering to the reactor pressure vessel 12 is efficiently removed, and an increase in the ambient temperature of the dry well 15 due to the decay heat is suppressed.
  • the temperature of the water vapor or gas taken in by the reactor containment vessel cooling facility 20 can be reduced, and the cooling function and structural integrity of the reactor containment vessel cooling facility 20 can be suppressed.
  • the condensed water drain pipe 25 discharges condensed water from the position above the biological shielding wall 13 toward the side surface of the heat insulating material 19, the condensed water flows down the side surface of the heat insulating material 19. For this reason, the heat generation of the heat insulating material 19, that is, the decay heat of the radionuclide adhering to the reactor pressure vessel 12 can be indirectly absorbed in a wide range of the heat insulating material 19.
  • the condensed water remaining without being evaporated in the process of flowing down the heat insulating material 19 is accumulated between the biological shielding wall 13 and the thermal insulation material 19 and is provided in the biological shielding wall 13, for example, a piping phase such as a recirculation system nozzle. It overflows from the common opening 13a.
  • the overflowing condensed water absorbs decay heat and becomes steam, and finally flows into the suppression pool 17 through the vent pipe 18 to be cooled and condensed, and partly moves to the upper dry well 15a to exchange heat. It is taken into the container 22.
  • FIG. 4 shows the non-condensable gas partial pressure ratio (ratio of the partial pressure of the non-condensable gas in the atmospheric pressure) shown in Non-Patent Document 1 and the deterioration factor (relative performance) of the reactor containment vessel cooling device due to heat exchange.
  • the graph shows the correlation with the index.
  • the condensed water is efficiently evaporated by the decay heat of the radionuclide adhering to the reactor pressure vessel 12, so that the water vapor ratio in the upper dry well 15a is higher than that in the lower dry well 15b.
  • the partial pressure ratio of the non-condensable gas is relatively lowered in the upper dry well 15a than in the lower dry well 15b.
  • the heat exchange function of the heat exchanger 22 is reduced, that is, the atoms
  • the cooling function deterioration of the furnace containment vessel cooling facility 20 can be suppressed.
  • the condensed water drain pipe 25 includes a ring-shaped header pipe 26 that surrounds the heat insulating material 19 in the circumferential direction and in which condensed water circulates, and a plurality of condensed water provided at intervals along the circumferential direction of the header pipe 26. And an outlet 27 for the same. Therefore, the effect (2) can be obtained without changing the structure of the heat insulating material 19 and without impairing the heat retaining performance of the heat insulating material 19 required during normal operation of the reactor.
  • FIG. 5 is an enlarged cross-sectional view showing the main part of a second embodiment of the reactor containment cooling system according to the present invention.
  • This embodiment is an example in which the configuration of the condensed water drain pipe 25 in the reactor containment vessel cooling facility 20 of the first embodiment is changed. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted, and the configurations of the first embodiment that are changed or newly added are described by adding “A” to the symbols.
  • the condensed water drain pipe 25A of the present embodiment has a header pipe 26A.
  • the header pipe 26 ⁇ / b> A is configured by a ring-shaped pipe through which condensed water drawn from the heat exchanger 22 (see FIG. 1) flows in the same manner as in the first embodiment. It arrange
  • the header pipe 26A has a plurality of discharge ports 27A provided at intervals along the circumferential direction.
  • the discharge port 27A faces the gap formed by the reactor pressure vessel 12 and the heat insulating material 19, and the condensed water flowing through the header pipe 26 is discharged toward the side surface of the reactor pressure vessel 12. An angle or arrangement is set.
  • the condensate drain pipe 25A has a bent portion (bent portion) 28A as shown in FIG.
  • the bent portion 28A is configured by forming a part of the condensed water drain pipe 25A as a downwardly convex bent pipe, and is provided so that water can stay therein during normal operation of the nuclear reactor.
  • the curved pipe is composed of a U-shaped tube or a V-shaped tube.
  • symbol W of FIG. 4 is a water surface.
  • the condensed water drain pipe 25 ⁇ / b> A releases condensed water toward the side surface of the reactor pressure vessel 12 rather than the heat insulating material 19, so the condensed water flows down the side surface of the reactor pressure vessel 12. For this reason, the condensed water directly absorbs the decay heat of the radionuclide adhering to the reactor pressure vessel 12, and the effect (1) of the first embodiment is enhanced.
  • the condensed water flowing down the reactor pressure vessel 12 moves from a gap such as a guide tube (not shown) of the control rod drive mechanism to the lower dry well 15b (see FIG. 1) and becomes steam.
  • the water vapor derived from the condensed water finally flows into the suppression pool 17 through the vent pipe 18 to be cooled and condensed, and a part thereof is transferred to the upper dry well 15a and taken into the heat exchanger 22.
  • the condensate drain pipe 25A is partially configured using a U-shaped tube that protrudes downward, and water is stored in the U-shaped tube. Therefore, the staying water in the U-shaped tube serves as a barrier, and the atmospheric gas that fills the structural space of the reactor pressure vessel 12 and the heat insulating material 19 is less likely to move upstream of the condensed water drain pipe 25A. That is, the heat staying between the reactor pressure vessel 12 and the heat insulating material 19 is difficult to leak from the condensed water drain pipe 25A. As a result, condensed water can be directly discharged to the reactor pressure vessel 12 without impairing the heat retaining function of the reactor pressure vessel 12 during normal operation of the reactor.
  • FIG. 6 is an enlarged cross-sectional view showing a main part of a third embodiment of the reactor containment cooling equipment 20 according to the present invention.
  • the present embodiment is an example in which the condensed water discharge port 27A is modified in the reactor containment vessel cooling facility 20A of the second embodiment. Note that the same components as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted, and the configurations of the second embodiment that are changed or newly added are described by adding “B” to the symbols.
  • the reactor containment vessel cooling equipment 20B has a nozzle 29B.
  • the nozzle 29B extends from the edge of the discharge port 27A (see FIG. 5) of the second embodiment, and forms a discharge portion of condensed water drawn from the heat exchanger 22 (see FIG. 1).
  • the nozzle 29B is provided so as to penetrate the heat insulating material 19 from the outside to the inside, and the angle is set so that condensed water is discharged toward the side surface of the reactor pressure vessel 13.
  • the heat insulating material 19 is in close contact with the tube wall of the nozzle 29B.
  • the outlet of the condensate drain pipe 25B is configured using a nozzle 29B that penetrates the heat insulating material covering the periphery of the reactor pressure vessel 12 from the outside to the inside. That is, in the configuration in which condensed water is directly discharged to the reactor pressure vessel 12, the atmospheric gas filled in the structural space between the reactor pressure vessel 12 and the heat insulating material 19 is less likely to leak out of the heat insulating material 19. . For this reason, condensed water can be directly discharged into the reactor pressure vessel 12 without impairing the heat retaining function of the reactor pressure vessel 12 during normal operation of the reactor.
  • the reactor containment vessel, the reactor containment cooling system, and the reactor containment cooling method according to the present invention have been described based on the three embodiments. However, the specific configuration is limited to these embodiments. However, design changes and additions are permitted without departing from the spirit of the invention described in the claims.
  • condensed water may be discharged to the top surface of the heat insulating material.
  • condensed water may be discharged to the top surface of the heat insulating material.
  • 2nd Embodiment and 3rd Embodiment although the example which discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

 原子炉格納容器冷却設備により取り込まれる水蒸気やガスの温度を低下させることにより、冷却機能および構造健全性の低下を抑えることができる原子炉格納容器冷却技術を提供すること。本技術において、本発明では、原子炉格納容器内部の水蒸気圧を駆動力にしてこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器を冷却する原子炉格納容器冷却設備において、原子炉格納容器10のドライウェル15およびサプレッションチェンバ16と隔離して設けられ、水蒸気の冷却媒体を貯留する熱交換プール21と、熱交換プール21に浸漬され、原子炉格納容器10のドライウェル15から水蒸気を取り込むと共にこの水蒸気を熱交換プール21の冷却媒体と熱交換させて凝縮水とする熱交換器22と、熱交換器22から凝縮水を引き出し、この凝縮水を原子炉圧力容器12に向かって流れるように案内して放出する凝縮水ドレン配管25とを採用した。

Description

原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法
 本発明は、原子炉の炉水喪失事故時に崩壊熱を除去して原子炉周辺環境の安全維持を図る原子炉格納容器冷却技術に係り、特に、原子炉格納容器内部の水蒸気圧を駆動力として非常用冷却水を生成する原子炉格納容器冷却技術に関し、原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法、を含む。
 原子炉は、万一の炉水喪失事故が生じたときに原子炉格納容器内部を水冷して崩壊熱を除去し、周辺環境の安全維持を図る非常用炉心冷却系や崩壊熱除去系を備える。加えて、非常用炉心冷却系や崩壊熱除去系が作動しない場合も想定し、外部水源から原子炉格納容器に冷却水を導いて原子炉格納容器を確実に冷却できるよう万全の事故対策ガイドラインが設定されている。
 外部水源を用いる冷却方式にあっては、原子炉格納容器内部への冷却水供給によって原子炉格納容器の水蒸気圧が過剰に上昇しないよう、水蒸気やガスは大気中に適宜解放される。この冷却方式では、大気中に解放される水蒸気やガスに含まれる核分裂生成物等の放射性核種は事前に分離処理されることになっているが、水蒸気等と共に放射能の大気移行の可能性は排除しきれない。ゆえに、このような冷却方式は、社会的に受容され難いとの考え方がある。
 かかる背景の下、原子炉格納容器内部の水蒸気圧を駆動力として原子炉圧力容器内部の水蒸気を取り込んで凝縮水とし、この凝縮水を用いて原子炉格納容器を冷却する原子炉格納容器冷却技術が提案されている(特許文献1参照)。
 この特許文献1に記載の原子炉格納容器冷却技術では、原子炉格納容器内部の閉じた領域で、水蒸気の取り込み→水蒸気の凝縮→凝縮水による冷却→凝縮水由来の水蒸気の取り込みという冷却サイクルが繰り返されるため、外部水源を用いる必要がなく上述した社会的受容性の問題は解消される。
 また、この原子炉格納容器冷却技術では、ポンプなどの電力方式の駆動源を用いることなく原子炉格納容器内部の冷却が行われるため、万一施設全体の電源喪失事故が生じても原子炉格納容器の冷却機能は失われない。
特開2003-240888号公報
 原子炉圧力容器には核分裂生成物や燃料核種などの放射性核種が多量に付着しているため、炉水喪失事故時、放射性核種の崩壊熱により原子炉圧力容器の加熱状態が継続する。このとき、原子炉格納容器内部の雰囲気温度は、原子炉圧力容器を熱源として上昇する。
 原子炉格納容器内部の温度が上昇すると原子炉格納容器冷却設備に取り込まれる水蒸気やガスの温度が高くなり、原子炉格納容器の冷却機能が低下しやすいだけでなく、熱による原子炉格納容器冷却設備の構造劣化の速度も早まる。
 本発明は上記従来技術に於ける事情に鑑みてなされたもので、原子炉格納容器冷却設備により取り込まれる水蒸気やガスの温度を低下させ或いは上昇させることにより、冷却機能および構造健全性の低下を抑制することができる原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法を提供することを目的とする。
 上述した目的を達成するため、本発明に係る原子炉格納容器冷却設備では、原子炉格納容器内部の水蒸気圧を駆動力にしてこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器を冷却する原子炉格納容器冷却設備において、前記原子炉格納容器のドライウェルおよびサプレッションチェンバと離隔して設けられ、取り込んだ水蒸気の冷却媒体を貯留する熱交換プールと、前記熱交換プールに浸漬され、原子炉格納容器のドライウェルから水蒸気を取り込むとともにこの水蒸気を熱交換プールの冷却媒体と熱交換させて凝縮水とする熱交換器と、前記熱交換器から凝縮水を引き出し、この凝縮水を原子炉圧力容器に向かって流れるように案内して放出する凝縮水ドレン配管と、を備えることを特徴とする。
 上記の特徴を有する原子炉格納容器冷却設備においては、以下の好適な実施態様を取りうる。
 前記凝縮水ドレン配管は、前記凝縮水が前記原子炉圧力容器の周囲を覆う保温材の側面を流下するように、前記凝縮水を放出するようにしても良い。
 前記凝縮水ドレン配管は、前記保温材の外側に設けられた生体遮蔽壁の上方位置から保温材の側面に向かって前記凝縮水を放出するようにしても良い。
 また、前記凝縮水ドレン配管は、前記保温材を周方向に取り囲み前記凝縮水が流通するリング状のヘッダ管と、このヘッダ管の周方向に沿って間隔を置いて複数設けられる凝縮水の放出口とを有するようにしても良い。
 また、前記凝縮水ドレン配管は、前記凝縮水が前記原子炉圧力容器の側面を流下するように、前記凝縮水を放出するようにしても良い。
 また、前記凝縮水ドレン配管は、前記生体遮蔽壁の上方位置から前記原子炉圧力容器の側面に向かって凝縮水を放出するようにしても良い。
 また、前記凝縮水ドレン配管は、前記原子炉圧力容器を周方向に取り囲み前記凝縮水が流通するリング状のヘッダ管と、このヘッダ管の周方向に沿って間隔を置いて複数設けられる前記凝縮水の放出口とを有するようにしても良い。
 更にまた、前記放出口は、前記原子炉圧力容器の周囲を覆う保温材を外側から内側に向かって貫通するノズルを用いて構成するようにしても良い。
 尚、前記ヘッダ管は、保温材に埋め込まれて構成するようにしても良い。
 また、前記凝縮水ドレン配管は、部分的に下方に凸の曲管を有するように構成しても良い。
 また、上述した目的を達成するため、本発明に係る原子炉格納容器は、炉心を収容する原子炉圧力容器と、前記原子力圧力容器外周を包囲するように設けられた生体遮蔽壁と、前記原子炉圧力容器の収容空間を成すドライウェルと、前記原子炉格納容器の内圧制御を担うサプレッションチェンバと、前記原子炉格納容器内部の水蒸気圧を駆動力にしてこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器を冷却する原子炉格納容器冷却設備を備えており、この原子炉格納容器冷却設備は、上述の構成上の特徴を有することを特徴とする。
 更にまた、上述した目的を達成するため、本発明に係る原子炉格納容器冷却方法は、 原子炉格納容器内部の水蒸気圧を利用してこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器内部を冷却する方法であって、前記原子炉格納容器のドライウェルおよびサプレッションチェンバと離隔した位置で水蒸気の冷却媒体を貯留しておき、前記原子炉格納容器のドライウェルから水蒸気を取り込むと共にこの水蒸気を前記冷却媒体と熱交換させて凝縮水とし、この凝縮水を原子炉圧力容器に向かって流れるように案内して放出することを特徴とする。
 本発明によれば、原子炉格納容器冷却設備により取り込まれる水蒸気やガスの温度を低下させることにより、原子炉格納容器冷却設備の冷却機能および構造健全性の低下を抑えることができる。
本発明に係る原子炉格納容器冷却設備の第1実施形態を示す正面断面図。 図1に示す原子炉格納容器冷却設備の要部拡大断面図であり、図2Aは凝縮水ドレン配管の配置図、図2Bは図AのP部拡大図。 図2Aに示す凝縮水ドレン配管の俯瞰図。 図1の原子炉格納容器冷却設備の作用説明図。 本発明に係る原子炉格納容器冷却設備の第2実施形態を示す断面図。 本発明に係る原子炉格納容器冷却設備の第3実施形態を示す要部拡大図。
 本発明に係る原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法の実施形態について、添付図面を参照して説明する。尚、以下の記載において、上下、左右等方向に関する記載は添付図面に記載に基づいて用いられたか、実際の据付状態に於いて用いられていることは理解されるべきである。
 (第1実施形態)
 図1は本発明に係る原子炉格納容器冷却設備の第1実施形態を示す正面断面図である。
 第1実施形態の原子炉格納容器冷却設備20は、原子炉格納容器10の内側若しくは外側に設けられる。
 原子炉格納容器10は、炉心11を収容する原子炉圧力容器12および生体遮蔽壁13その他の原子炉構造物を取り囲むように設けられ、主蒸気管14などの配管が万一破断して原子炉圧力容器12内部の炉水が喪失し、これによって燃料が溶融ないし破損した場合には核分裂生成物の大気拡散を防止する構造となっている。
 原子炉格納容器10は、原子炉圧力容器12の収容空間を成すドライウェル15(上部ドライウェル15a、下部ドライウェル15b)と原子炉格納容器10の内圧制御を担うサプレッションチェンバ(ウェットウェル)16とを有し、このドライウェル15とサプレッションチェンバ16とはベント管18を介して互いに連通する。また、サプレッションチェンバ16は、非常用の冷却水を貯蓄するサプレッションプール17を有し、原子炉圧力容器12の周囲を取り囲むように設けられる。
 この原子炉格納容器10には非常用炉心冷却系および崩壊熱除去系(いずれも図示省略)が設けられており、主蒸気管14が破断して炉水喪失を伴う事故が生じると、炉心11周辺の崩壊熱を除去すべく非常用炉心冷却系や崩壊熱除去系が作動する。この非常用炉心冷却系等が作動すると、配管破断部分から原子炉圧力容器12外側へと漏れ出す炉水由来の水蒸気と共に非常用炉心冷却系によってサプレッションプール17から取水されたプール水由来の水蒸気がドライウェル15に充満する。なお、ドライウェル15に充満した水蒸気は、ベント管18を通過してサプレッションプール17に移行して吸収・凝縮されるため、原子炉格納容器10の内圧上昇は緩和される。
 このとき、原子炉格納容器冷却設備20は、非常用炉心冷却系等の冷却機能を補強すべく、原子炉圧力容器12に充満した水蒸気を凝縮水にすると共にこの凝縮水を用いて原子炉格納容器10を冷却する。この原子炉格納容器冷却設備20は、図1に示すように、熱交換プール21、熱交換器22、水蒸気吸い込み管23、非凝集性ガスベント配管24および凝縮水ドレン配管25を有する。
 熱交換プール21は、原子炉格納容器10のドライウェル15およびサプレッションチェンバ16と熱的および空間的に離隔して設けられ、上部ドライウェル15aの上方で原子炉格納容器10に充満する水蒸気の冷却媒体を貯留する。この冷却媒体は、例えば、軽水である。
 熱交換器22は、熱伝導性の良好な材料により構成された伝熱管22aを有し、熱交換プール21に浸漬される。この熱交換器22は、伝熱管22a内部に導入された水蒸気を熱交換プール21の冷却媒体と熱交換させて凝縮水にする。
 水蒸気吸い込み管23は、吸い込み口が上部ドライウェル15aに位置するように構成され、上部ドライウェル15aに充満する水蒸気を吸い込んで伝熱管22a内部へ送り込む。この水蒸気吸い込み管23による水蒸気の吸い込みは、原子炉格納容器10の水蒸気圧を駆動力として行われる。
 非凝集性ガスベント配管24は、伝熱管22a内部に水蒸気と共に送り込まれる非凝縮性ガスを伝熱管22a外部に引き出し、伝熱管22a内部の水蒸気と熱交換プール21の冷却媒体との熱交換機能を維持する。この非凝縮性ガスベント配管24は、例えば、熱交換器22を構成する伝熱管22aの出口側からサプレッションチェンバ16に向かって延設され、その延設末端側がサプレッションプール17に浸漬されるように構成される。
 凝縮水ドレン配管25は、熱交換器22から凝縮水を引き出し、その凝縮水を原子炉圧力容器12に向かって流れるように案内して放出する。なお、この凝縮水の引き出しおよび案内は、原子炉格納容器10内部の水蒸気圧および重力を駆動力として行なわれる。
 図2は図1に示す原子炉格納容器冷却設備20の要部拡大断面図であり、図2Aは凝縮水ドレン配管25の配置を示す断面図、図2Bは図2AのP部拡大断面図である。図3は図2Aに示す凝縮水ドレン配管25の俯瞰図である。
 凝縮水ドレン配管25の延設末端部は、図2Aおよび図3に示すように、原子炉圧力容器12の周囲を覆う保温材19を周方向に取り囲むと共に熱交換器22から引き出された凝縮水が保温材19の周方向に沿って流れるリング状のヘッダ管26により構成される。なお、保温材19は、原子炉通常運転中に原子炉圧力容器12からの放熱を抑制するもので金属材料により構成される。
 ヘッダ管26は、その周方向に沿って間隔を置いて複数設けられる放出口27を有する。放出口27は、図2Bに示すように、生体遮蔽壁13と保温材19とで形成される隙間を臨むように且つヘッダ管26を流れる凝縮水が保温材19の側面に向かって放出されるように、その角度ないし配置が設定される。なお、図2Bの符号Dは、ヘッダ管26から放出される凝縮水の放出方向を示す。
 次に、原子炉格納容器冷却設備20の効果を説明する。
 原子炉圧力容器12に接続される主蒸気管14(図1参照)が破断して冷却材が喪失する万一のシビアアクシデントを想定する。この場合、非常用炉心冷却系等が作動し、原子炉圧力容器12に接続される配管の破断箇所から漏れ出す炉水由来の水蒸気と共に非常用炉心冷却系により放出されるプール水由来の水蒸気がドライウェル15の上方へと移行し、上部ドライウェル15aに充満する。
 上記の構成を有する本実施形態の原子炉格納容器冷却設備20にあっては、以下に列挙する効果を得ることができる。
 (1)原子炉格納容器10のドライウェル15およびサプレッションチェンバ16と離隔して設けられ、水蒸気の冷却媒体を貯留する熱交換プール21と、熱交換プール21に浸漬され、原子炉格納容器10のドライウェル15から水蒸気を取り込むと共にこの水蒸気を熱交換プール21の冷却媒体と熱交換させて凝縮水とする熱交換器22と、熱交換器22から凝縮水を引き出し、この凝縮水を原子炉圧力容器12に向かって流れるように案内して放出する凝縮水ドレン配管25とを備えるため、上述したドライウェル15内で発生する水蒸気は熱交換されて凝縮水となり、原子炉圧力容器12の周辺で放出される。このため、原子炉圧力容器12に付着した放射性核種の崩壊熱が効率よく除去され、崩壊熱によるドライウェル15の雰囲気温度の上昇が抑制される。その結果、原子炉格納容器冷却設備20により取り込まれた水蒸気やガスの温度を低下させ、原子炉格納容器冷却設備20の冷却機能および構造健全性の低下を抑えることができる。
 (2)凝縮水ドレン配管25は、生体遮蔽壁13の上方位置から保温材19の側面に向かって凝縮水を放出するため、凝縮水は保温材19の側面を流下していく。このため、保温材19の広い範囲で、保温材19の発熱すなわち原子炉圧力容器12に付着した放射性核種の崩壊熱を間接的に吸収することができる。
 なお、保温材19を流下する過程で蒸発せずに残った凝縮水は、生体遮蔽壁13と保温材19の間に蓄積され、生体遮蔽壁13に設けられる例えば再循環系ノズルなどの配管相通用の開口部13aから溢れる。溢れた凝縮水は、崩壊熱を吸収して水蒸気なり、ベント管18を通って最終的にサプレッションプール17に流入して冷却・凝縮されると共に一部が上部ドライウェル15aに移行して熱交換器22に取り込まれる。
 ここで、熱交換器22に取り込まれる非凝縮性ガスが雰囲気中に占める体積割合(分圧比)の濃度と熱交換器22の熱交換機能とは相関があり、非凝縮性ガスの分圧比が高いほど熱交換器22の熱交換機能が低下することが分かっている。図4に、非特許文献1に示された非凝縮性ガス分圧比(雰囲気圧力に占める非凝縮性ガスによる分圧の割合)と、熱交換による原子炉格納容器冷却装置の劣化係数(相対性能を表す指数)との相関関係をグラフとして示す。
 原子炉格納容器冷却設備20では、原子炉圧力容器12に付着した放射性核種の崩壊熱によって凝縮水の蒸発が効率的に行われるため、上部ドライウェル15aにおける水蒸気割合が下部ドライウェル15bに比べて増加する。したがって、上部ドライウェル15aでは下部ドライウェル15bよりも非凝縮性ガスの分圧比が相対的に低下するようになる。原子炉格納容器冷却設備20にあっては、この非凝縮性ガスの分圧比が相対的に低下する上部ドライウェル15aから優先的に水蒸気を取り込む結果、熱交換器22の熱交換機能低下すなわち原子炉格納容器冷却設備20の冷却機能低下を抑制することができる。
 (3)凝縮水ドレン配管25は、保温材19を周方向に取り囲み凝縮水が流通するリング状のヘッダ管26と、このヘッダ管26の周方向に沿って間隔を置いて複数設けられる凝縮水の放出口27とを有する。このため、保温材19の構造を変更することなく且つ原子炉通常運転時に要求される保温材19の保温性能を損なうことなく、上記(2)の効果を得ることができる。
 (第2実施形態)
 図5は本発明に係る原子炉格納容器冷却設備の第2実施形態を示す要部拡大断面図である。本実施形態は、第1実施形態の原子炉格納容器冷却設備20における凝縮水ドレン配管25の構成を変更した例である。なお、第1実施形態と同様の構成は同一符号を付して説明を省略し、第1実施形態の構成を変更し或いは新たに追加した構成は符号に「A」を付して説明する。
 本実施形態の凝縮水ドレン配管25Aは、ヘッダ管26Aを有する。
 ヘッダ管26Aは、第1実施形態と同様に熱交換器22(図1参照)から引き出された凝縮水が流通するリング状の配管により構成されるが、保温材19に埋め込まれて原子炉圧力容器12を周方向に取り囲むように配置される。
 また、ヘッダ管26Aは、その周方向に沿って間隔を置いて複数設けられる放出口27Aを有する。放出口27Aは、原子炉圧力容器12と保温材19とで形成される隙間を臨むように且つヘッダ管26を流れる凝縮水が原子炉圧力容器12の側面に向かって放出されるように、その角度ないし配置が設定される。
 さらに、凝縮水ドレン配管25Aは、図4に示すように、折り曲げ部(屈曲部)28Aを有する。この折り曲げ部28Aは、凝縮水ドレン配管25Aの一部を下方に凸の曲管で構成したものであり、原子炉通常運転時はその内部に水が滞留可能に設けられる。曲管は、U字管或いはV字管で構成される。なお、図4の符号Wは、水面である。
 原子炉格納容器冷却設備20Aにあっては、第1実施形態の(1)の効果に加え、次の効果を得ることができる。
 (4)凝縮水ドレン配管25Aは、保温材19ではなく原子炉圧力容器12の側面に向かって凝縮水を放出するため、凝縮水は原子炉圧力容器12の側面を流下していく。このため、凝縮水は原子炉圧力容器12に付着した放射性核種の崩壊熱を直接的に吸収するようになり、第1実施形態の(1)の効果が高められる。なお、原子炉圧力容器12を流下する凝縮水は、制御棒駆動機構の案内管(図示省略)などの隙間から下部ドライウェル15b(図1参照)へと移行して水蒸気となる。凝縮水由来の水蒸気は、ベント管18を通って最終的にサプレッションプール17に流入して冷却・凝縮されると共に一部が上部ドライウェル15aに移行して熱交換器22に取り込まれる。
 (5)凝縮水ドレン配管25Aのヘッダ管は保温材19に埋め込まれるため、凝縮水ドレン配管25Aと保温材19との構造間隙が生じにくいものとなる。このため、原子炉通常運転時における原子炉圧力容器12の保温機能を損なうことなく、凝縮水を直接的に原子炉圧力容器12に放出できる。
 (6)凝縮水ドレン配管25Aは部分的に下方に凸のU字管を用いて構成され、このU字管に水が貯められる。したがって、U字管の滞留水が障壁となって、原子炉圧力容器12と保温材19の構造空間に満たされる雰囲気ガスは凝縮水ドレン配管25Aの上流側に移行しにくいものとなる。すなわち、原子炉圧力容器12と保温材19の間に滞留する熱が凝縮水ドレン配管25Aから漏れ難いものとなる。その結果、原子炉通常運転時における原子炉圧力容器12の保温機能を損なうことなく、凝縮水を直接的に原子炉圧力容器12に放出できる。
 (第3実施形態)
 図6は本発明に係る原子炉格納容器冷却設備20の第3実施形態を示す要部拡大断面図である。本実施形態は、第2実施形態の原子炉格納容器冷却設備20Aにおいて凝縮水の放出口27Aを変形した例である。なお、第2実施形態と同様の構成は同一符号を付して説明を省略し、第2実施形態の構成を変更し或いは新たに追加した構成は符号に「B」を付して説明する。
 図6に示すように、原子炉格納容器冷却設備20Bは、ノズル29Bを有する。このノズル29Bは、第2実施形態の放出口27A(図5参照)の縁から延設され、熱交換器22(図1参照)から引き出された凝縮水の放出部を成す。
 ノズル29Bは、保温材19を外側から内側へと貫通して設けられ、凝縮水が原子炉圧力容器13の側面に向かって放出されるよう角度が設定される。なお、ノズル29Bの管壁には、保温材19が密着される。
 原子炉格納容器冷却設備20Bにあっては、第1実施形態の(1)の効果ならびに第2実施形態の(4)~(6)の効果に加え、次の効果を得ることができる。
 (7)凝縮水ドレン配管25Bの放出口は、原子炉圧力容器12の周囲を覆う保温材を外側から内側に向かって貫通するノズル29Bを用いて構成される。すなわち、原子炉圧力容器12に対して直接的に凝縮水を放出する構成において、原子炉圧力容器12と保温材19の構造空間に満たされる雰囲気ガスが保温材19の外部へ漏れにくいものとなる。このため、原子炉通常運転時における原子炉圧力容器12の保温機能を損なうことなく、凝縮水を直接的に原子炉圧力容器12に放出できる。
 以上、本発明に係る原子炉格納容器、原子炉格納容器冷却設備および原子炉格納容器冷却方法を3つの実施形態に基づき説明してきたが、具体的な構成については、これらの実施形態に限られるものではなく、特許請求の範囲に記載の発明の要旨を逸脱しない限り設計の変更や追加等は許容される。
 例えば、第1実施形態では、凝縮水ドレン配管を用いて凝縮水を保温材の側面に放出する例を示したが、凝縮水を保温材の頂上面に放出するようにしてもよい。また、第2実施形態および第3実施形態では、凝縮水ドレン配管を用いて凝縮水を原子炉圧力容器の側面に放出する例を示しが、凝縮水を原子炉圧力容器の頂上に放出するようにしてもよい。この構成によると、原子炉圧力容器のより広い面積を凝縮水を流れるようになるため、原子炉圧力容器が持つ崩壊熱をより効果的に除去できるようになる。
 また、第2実施形態では、原子炉通常運転時には曲管(U字管等)の内部に水を滞留させる例を示したが、必ずしもU字管の内部に水を滞留させる必要はない。U字管の内部では温度成層が生じるため、原子炉圧力容器と保温材の間の雰囲気ガスがU字管よりも上流側に移動することが抑制されるからである。

Claims (12)

  1.  原子炉格納容器内部の水蒸気圧を駆動力にしてこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器を冷却する原子炉格納容器冷却設備において、
     前記原子炉格納容器のドライウェルおよびサプレッションチェンバと離隔して設けられ、取り込んだ水蒸気の冷却媒体を貯留する熱交換プールと、
     前記熱交換プールに浸漬され、原子炉格納容器のドライウェルから水蒸気を取り込むとともにこの水蒸気を熱交換プールの冷却媒体と熱交換させて凝縮水とする熱交換器と、
     前記熱交換器から凝縮水を引き出し、この凝縮水を原子炉圧力容器に向かって流れるように案内して放出する凝縮水ドレン配管と、
     を備えることを特徴とする原子炉格納容器冷却設備。
  2.  前記凝縮水ドレン配管は、前記凝縮水が前記原子炉圧力容器の周囲を覆う保温材の側面を流下するように、前記凝縮水を放出することを特徴とする請求項1に記載の原子炉格納容器冷却設備。
  3.  前記凝縮水ドレン配管は、前記保温材の外側に設けられた生体遮蔽壁の上方位置から保温材の側面に向かって前記凝縮水を放出することを特徴とする請求項2に記載の原子炉格納容器冷却設備。
  4.  前記凝縮水ドレン配管は、前記保温材を周方向に取り囲み前記凝縮水が流通するリング状のヘッダ管と、このヘッダ管の周方向に沿って間隔を置いて複数設けられる凝縮水の放出口とを有することを特徴とする請求項3に記載の原子炉格納容器冷却設備。
  5.  前記凝縮水ドレン配管は、前記凝縮水が前記原子炉圧力容器の側面を流下するように、前記凝縮水を放出することを特徴とする請求項1に記載の原子炉格納容器冷却設備。
  6.  前記凝縮水ドレン配管は、前記生体遮蔽壁の上方位置から前記原子炉圧力容器の側面に向かって凝縮水を放出することを特徴とする請求項5に記載の原子炉格納容器冷却設備。
  7.  前記凝縮水ドレン配管は、前記原子炉圧力容器を周方向に取り囲み前記凝縮水が流通するリング状のヘッダ管と、このヘッダ管の周方向に沿って間隔を置いて複数設けられる前記凝縮水の放出口とを有することを特徴とする請求項6に記載の原子炉格納容器冷却設備。
  8.  前記放出口は、前記原子炉圧力容器の周囲を覆う保温材を外側から内側に向かって貫通するノズルを用いて構成されることを特徴とする請求項7に記載の原子炉格納容器冷却設備。
  9.  前記ヘッダ管は、保温材に埋め込まれて構成されることを特徴とする請求項7に記載の原子炉格納容器冷却設備。
  10.  前記凝縮水ドレン配管は、部分的に下方に凸の曲管を有することを特徴とする請求項1に記載の原子炉格納容器冷却設備。
  11.  炉心を収容する原子炉圧力容器と、
     前記原子力圧力容器外周を包囲するように設けられた生体遮蔽壁と、
     前記原子炉圧力容器の収容空間を成すドライウェルと、
     前記原子炉格納容器の内圧制御を担うサプレッションチェンバと、
     前記原子炉格納容器内部の水蒸気圧を駆動力にしてこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器を冷却する原子炉格納容器冷却設備を備えた、原子炉格納容器において、
     前記原子炉格納容器冷却設備は、原子炉格納容器のドライウェルおよびサプレッションチェンバと離隔して設けられ、取り込んだ水蒸気の冷却媒体を貯留する熱交換プールと、 前記熱交換プールに浸漬され、原子炉格納容器のドライウェルから水蒸気を取り込むとともにこの水蒸気を熱交換プールの冷却媒体と熱交換させて凝縮水とする熱交換器と、前記熱交換器から凝縮水を引き出し、この凝縮水を原子炉圧力容器に向かって流れるように案内して放出する凝縮水ドレン配管と、を備えることを特徴とする、原子炉格納容器。
  12.  原子炉格納容器内部の水蒸気圧を利用してこの容器内部の水蒸気を取り込み、取り込んだ水蒸気を凝縮させて得た凝縮水を用いて原子炉格納容器内部を冷却する原子炉格納容器冷却方法において、
     前記原子炉格納容器のドライウェルおよびサプレッションチェンバと離隔した位置で水蒸気の冷却媒体を貯留しておき、
     前記原子炉格納容器のドライウェルから水蒸気を取り込むと共にこの水蒸気を前記冷却媒体と熱交換させて凝縮水とし、この凝縮水を原子炉圧力容器に向かって流れるように案内して放出することを特徴とする原子炉格納容器冷却方法。
PCT/JP2010/053243 2009-03-02 2010-03-01 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法 WO2010101112A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/204,000 US20110314858A1 (en) 2009-03-02 2010-03-01 Reactor containment vessel cooling system, reactor containment vessel, and reactor containment vessel cooling method
EP10748707.6A EP2405444B9 (en) 2009-03-02 2010-03-01 Nuclear reactor containment vessel and method of cooling the nuclear reactor containment vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009048348A JP2010203858A (ja) 2009-03-02 2009-03-02 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法
JP2009-048348 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010101112A1 true WO2010101112A1 (ja) 2010-09-10

Family

ID=42709669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053243 WO2010101112A1 (ja) 2009-03-02 2010-03-01 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法

Country Status (4)

Country Link
US (1) US20110314858A1 (ja)
EP (1) EP2405444B9 (ja)
JP (1) JP2010203858A (ja)
WO (1) WO2010101112A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140175106A1 (en) * 2012-12-20 2014-06-26 Eric Paul LOEWEN Entrainment-reducing assembly, system including the assembly, and method of reducing entrainment of gases with the assembly
CN111785399A (zh) * 2020-07-06 2020-10-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种用于海洋核动力平台热量导出的系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798473B2 (ja) * 2011-12-16 2015-10-21 日立Geニュークリア・エナジー株式会社 原子炉
US9589685B2 (en) 2012-05-21 2017-03-07 Smr Inventec, Llc Passive reactor cooling system
WO2014031767A2 (en) * 2012-08-21 2014-02-27 Holtec International, Inc. Component cooling water system for nuclear power plant
US11901088B2 (en) 2012-05-04 2024-02-13 Smr Inventec, Llc Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
KR101665353B1 (ko) * 2012-05-21 2016-10-24 에스엠알 인벤텍, 엘엘씨 수동형 원자로 격납보호시스템
US10096389B2 (en) 2012-05-21 2018-10-09 Smr Inventec, Llc Loss-of-coolant accident reactor cooling system
US9786394B2 (en) * 2012-05-21 2017-10-10 Smr Inventec, Llc Component cooling water system for nuclear power plant
US11935663B2 (en) 2012-05-21 2024-03-19 Smr Inventec, Llc Control rod drive system for nuclear reactor
JP6071404B2 (ja) * 2012-10-12 2017-02-01 株式会社東芝 原子力プラントおよび静的格納容器冷却系
JP6004438B2 (ja) * 2013-03-18 2016-10-05 日立Geニュークリア・エナジー株式会社 原子炉冷却システム
KR101529529B1 (ko) * 2013-12-03 2015-06-18 한국원자력연구원 피동격납건물냉각계통 및 이를 구비하는 원전
CN107093470B (zh) * 2017-03-10 2021-04-27 中国核电工程有限公司 一种加强冷却的安全壳抑压系统
KR101973996B1 (ko) 2017-05-15 2019-04-30 한국원자력연구원 원자로용기 외벽 냉각 및 발전 시스템
JP7045966B2 (ja) * 2018-09-20 2022-04-01 日立Geニュークリア・エナジー株式会社 原子力プラント及びその運転方法
CN111883269B (zh) * 2020-08-12 2022-04-22 中国核动力研究设计院 用于浮动核电站的熔融物堆内滞留非能动冷却系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061299U (ja) * 1973-10-15 1975-06-05
JPS52110391A (en) * 1976-03-12 1977-09-16 Hitachi Ltd Heat insulating structure of pressure vessel of nuclear reac tor
JPH06308273A (ja) * 1993-04-21 1994-11-04 Toshiba Corp 原子炉格納容器のスプレイ装置
JP2003240888A (ja) 2002-02-18 2003-08-27 Toshiba Corp 原子炉格納容器冷却設備

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423286A (en) * 1966-02-18 1969-01-21 Westinghouse Electric Corp Pressure suppressing arrangement for use with a nuclear reactor
JPS5412176B2 (ja) * 1973-09-28 1979-05-21
US4737337A (en) * 1985-05-09 1988-04-12 Stone & Webster Engineering Corporation Nuclear reactor having double tube helical coil heat exchanger
JPS63229390A (ja) * 1987-03-18 1988-09-26 株式会社日立製作所 原子炉
JP2866520B2 (ja) * 1992-02-20 1999-03-08 株式会社東芝 沸騰水型原子炉
US5282230A (en) * 1992-11-25 1994-01-25 General Electric Company Passive containment cooling system
JP3149606B2 (ja) * 1993-03-11 2001-03-26 株式会社日立製作所 原子炉格納容器の冷却システム
JPH10221480A (ja) * 1996-12-06 1998-08-21 Toshiba Corp 気水分離装置、原子力発電プラント及びボイラー装置
US6243432B1 (en) * 1997-06-09 2001-06-05 General Electric Company Modified passive containment cooling system for a nuclear reactor
JPH11281786A (ja) * 1998-03-31 1999-10-15 Toshiba Corp 原子炉格納容器
JP3253934B2 (ja) * 1998-08-27 2002-02-04 株式会社東芝 沸騰水型原子炉
JP2000180582A (ja) * 1998-12-11 2000-06-30 Toshiba Corp 原子力発電プラント
JP2002122686A (ja) * 2000-10-17 2002-04-26 Toshiba Corp 沸騰水型原子力発電プラントおよびその建設工法
US7340387B2 (en) * 2003-06-26 2008-03-04 Doosan Heavy Industries & Construction Co., Ltd. Control rod driving simulator for verification of control rod driving mechanism control system of atomic power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061299U (ja) * 1973-10-15 1975-06-05
JPS52110391A (en) * 1976-03-12 1977-09-16 Hitachi Ltd Heat insulating structure of pressure vessel of nuclear reac tor
JPH06308273A (ja) * 1993-04-21 1994-11-04 Toshiba Corp 原子炉格納容器のスプレイ装置
JP2003240888A (ja) 2002-02-18 2003-08-27 Toshiba Corp 原子炉格納容器冷却設備

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. AKINAGA ET AL.: "EVALUATION OF PASSIVE CONTAINMENT COOLING SYSTEM PERFORMANCE DURING SEVERE ACCIDENTS", APPENDIX A, 1998
See also references of EP2405444A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140175106A1 (en) * 2012-12-20 2014-06-26 Eric Paul LOEWEN Entrainment-reducing assembly, system including the assembly, and method of reducing entrainment of gases with the assembly
US9738440B2 (en) * 2012-12-20 2017-08-22 Ge-Hitachi Nuclear Energy Americas Llc Entrainment-reducing assembly, system including the assembly, and method of reducing entrainment of gases with the assembly
US10464744B2 (en) 2012-12-20 2019-11-05 Ge-Hitachi Nuclear Energy Americas Llc Entrainment-reducing assembly, system including the assembly, and method of reducing entrainment of gases with the assembly
CN111785399A (zh) * 2020-07-06 2020-10-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种用于海洋核动力平台热量导出的系统
CN111785399B (zh) * 2020-07-06 2023-06-20 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种用于海洋核动力平台热量导出的系统

Also Published As

Publication number Publication date
EP2405444A1 (en) 2012-01-11
EP2405444B1 (en) 2016-02-17
JP2010203858A (ja) 2010-09-16
EP2405444B9 (en) 2016-04-27
US20110314858A1 (en) 2011-12-29
EP2405444A4 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
WO2010101112A1 (ja) 原子炉格納容器冷却設備、原子炉格納容器および原子炉格納容器冷却方法
TWI559328B (zh) 靜態存放容器冷卻過濾器排氣系統及核能發電廠
EP2791943B1 (en) Emergency core cooling system (eccs) for nuclear reactor employing closed heat transfer pathways
US8867690B2 (en) Pressurized water reactor with compact passive safety systems
US20130272474A1 (en) Passive containment air cooling for nuclear power plants
JP5911762B2 (ja) 原子力プラントおよび静的格納容器冷却系
JP6716479B2 (ja) 非常用炉心冷却系およびそれを用いた沸騰水型原子力プラント
US20130114778A1 (en) Liquid metal cooled nuclear reactor and heat removal method for the same
KR20100072306A (ko) 사고 상황에서 향상된 냉각능력을 갖는 원자로
JP2006322627A (ja) 熱交換器とその製造方法、ならびに原子炉格納容器システム
JP2014081219A (ja) 原子力プラントおよび静的格納容器冷却系
CN106898389A (zh) 一种固有安全的安全壳抑压冷却系统
JP4309578B2 (ja) 原子力設備における格納容器および復水器の運転方法
JP5687440B2 (ja) 原子炉格納容器除熱装置及び除熱方法
JP2012154644A (ja) 原子炉格納容器の熱輸送装置およびその方法
JP4340521B2 (ja) 原子炉建屋
JP5989529B2 (ja) 水素除去装置
JP2003139881A (ja) 超臨界圧水冷却炉、チャンネルボックス、水ロッドおよび燃料集合体
JP7399405B2 (ja) 原子力プラント
JP2013246099A (ja) 水素処理装置及び方法
JP2001221880A (ja) 原子炉建屋
JPH06194484A (ja) 原子炉格納容器冷却設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010748707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13204000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE