WO2010101102A1 - 耐落下衝撃性に優れた多層プラスチック容器 - Google Patents

耐落下衝撃性に優れた多層プラスチック容器 Download PDF

Info

Publication number
WO2010101102A1
WO2010101102A1 PCT/JP2010/053208 JP2010053208W WO2010101102A1 WO 2010101102 A1 WO2010101102 A1 WO 2010101102A1 JP 2010053208 W JP2010053208 W JP 2010053208W WO 2010101102 A1 WO2010101102 A1 WO 2010101102A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier
container
intermediate layer
resin
multilayer
Prior art date
Application number
PCT/JP2010/053208
Other languages
English (en)
French (fr)
Inventor
豊彦 中谷
秀彦 勝田
義孝 横手
吉川 雅之
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to EP10748697.9A priority Critical patent/EP2404838B1/en
Priority to US13/202,245 priority patent/US20110303685A1/en
Priority to CN2010800098993A priority patent/CN102341310A/zh
Publication of WO2010101102A1 publication Critical patent/WO2010101102A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/60Bottles

Definitions

  • the present invention relates to a multilayer plastic container, and more particularly to a multilayer plastic container having a barrier layer formed in an intermediate layer and excellent in barrier properties and drop impact resistance.
  • the container wall has a multilayer structure, polyester resin as the inner and outer layers, ethylene vinyl alcohol copolymer and xylylene group-containing polyamide that improve the gas barrier properties as the intermediate layer A resin or a resin having functionality such as a cyclic olefin copolymer that improves water vapor (moisture) barrier properties is used (Patent Document 1, etc.).
  • an object of the present invention is to provide a multilayered plastic container that is thin and lightweight and has excellent barrier properties and drop impact resistance.
  • the lower end of the barrier intermediate layer A multilayer plastic container is provided in which the position of the container in the radial direction of the container is located on the outer side of the container in the radial direction of the container with respect to the grounding part at the bottom of the container or the grounding part.
  • the multilayer plastic container of the present invention 1. It is a pressure-resistant container for storing contents with self-generated pressure, 2.
  • the bottom of the container is formed by alternately forming a foot portion having a grounding portion and a trough portion; 3.
  • the position in the container axial direction of the lower end portion of the barrier intermediate layer is located above the center portion or the center portion of the ground contact portion and the uppermost end portion of the valley portion, 4).
  • the inner and outer layers are made of polyethylene terephthalate, and the barrier intermediate layer is made of a mixture of polyethylene terephthalate and a barrier resin; 5).
  • the barrier resin contains clay, Is preferred.
  • FIG. 1 is a side view showing an example of the multilayer plastic container of the present invention
  • FIG. 2 is a partial cross-sectional view showing the layer structure of the bottom of an example of the multilayer plastic container of the present invention. It is formed by biaxial stretch blow molding of a two-layer / three-layer preform in which the inner and outer layers are made of a polyester resin and the intermediate layer is made of a barrier resin.
  • the multi-layer plastic container 1 includes a mouth part 2, a shoulder part 3, a body part 4, and a bottom part 5.
  • the bottom part 5 has a plurality of trough parts 6 and 6 located on a virtual curved surface convex downward in the container axial direction. ..
  • the lower end portion 12a of the barrier intermediate layer 12 made of the inner layer 10, the outer layer 11 and the barrier resin is larger than the container grounding portion 8 in the container radius.
  • the radius (Da) at the outer side in the direction, that is, the portion where the end portion 12a is located, is formed to be the same as or larger than the radius (Ds) at the position of the ground contact portion 8 (see FIG. 2).
  • the distance m is equal to or half the distance m at half distance L / 2 from the ground surface of the vertical distance L between the grounding portion 8 and the uppermost end portion 6a of the valley portion 6. It is located above the position m (in the specific example shown in FIG. 2, it is above the position m at a half distance).
  • the position of the container radial direction of the lower end of the barrier intermediate layer is positioned outside the container radial direction from the grounding part or the grounding part of the container bottom, so that the barrier intermediate layer is conventionally dropped when dropped. It becomes possible to prevent effectively the crack which had generate
  • the container axial direction position of the lower end portion of the barrier intermediate layer is positioned above the center portion or the center portion between the ground contact portion and the uppermost end portion of the valley portion. Also, delamination can be significantly reduced.
  • both the bottles (Comparative Examples 1 and 2) in which the position of the lower end portion of the barrier intermediate layer is located on the inner side in the container radial direction with respect to the grounding portion at the bottom of the container are below the barrier intermediate layer While cracks occurred at the end positions and delamination occurred starting from the locations where the cracks occurred, the lower end position of the barrier intermediate layer was placed on the container more than the grounding part at the bottom of the container.
  • the lower end of the barrier intermediate layer when used as a pressure-resistant container that requires particularly high gas barrier performance, is at least the uppermost end of the bottom or lower than the uppermost end. It is preferable that it is located on the side (for example, in the specific example shown in FIG. 1, the position of B or a position below B).
  • the thickness of the barrier intermediate layer of the trunk according to the barrier performance required for the multilayer plastic container, even if there is a portion where the barrier intermediate layer is not formed, Almost the same barrier property can be secured.
  • the total use of the resin (PET) and the barrier resin constituting the inner layer and the outer layer for forming the preform By making the amount the same, even in the bottle of the present invention (Examples 1 to 3) in which the barrier intermediate layer is not formed on the inner side of the grounding portion at the bottom, the barrier intermediate layer is formed to the bottom.
  • the barrier property equivalent to that of the bottle (Comparative Example 1) is obtained, the thickness of the bottom portion without the barrier layer is relatively thick, and the thickness of the barrier property intermediate layer is reduced in the body portion that easily affects the barrier property. By increasing the size, it is possible to improve the impact resistance without deteriorating the barrier properties.
  • the multilayer plastic container of the present invention has excellent barrier properties and drop impact resistance while being thin and lightweight, and effectively prevents cracking and delamination due to falling seen in conventional multilayer plastic containers. Has been.
  • excellent barrier properties and drop impact resistance can be exhibited even in a pressure resistant container in which cracking and delamination due to drop impact are particularly remarkable due to internal pressure.
  • polyester resin used for the inner and outer layers of the present invention a conventionally known polyester resin comprising a dicarboxylic acid component and a diol component can be used.
  • the dicarboxylic acid component 50% or more, particularly 80% or more of the dicarboxylic acid component is preferably terephthalic acid from the viewpoint of mechanical properties and thermal properties, but it is of course possible to contain a carboxylic acid component other than terephthalic acid. .
  • carboxylic acid components other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, p- ⁇ -oxyethoxybenzoic acid, biphenyl-4,4′-dicarboxylic acid, diphenoxyethane-4,4′-dicarboxylic acid, 5- Examples thereof include sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid and the like.
  • the diol component 50% or more, particularly 80% or more of the diol component is preferably ethylene glycol in view of mechanical properties and thermal properties.
  • diol components other than ethylene glycol include 1,4-butanediol, Examples include propylene glycol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexane dimethanol, ethylene oxide adduct of bisphenol A, glycerol, and trimethylolpropane.
  • the dicarboxylic acid component and the diol component may contain a tribasic or higher polybasic acid and a polyhydric alcohol.
  • trimellitic acid for example, trimellitic acid, pyromellitic acid, hemimellitic acid, 1,1,2,2 -Ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid, 1,3,5-pentanetricarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, biphenyl-3,4,3 ', 4
  • Polybasic acids such as' -tetracarboxylic acid, polyvalent acids such as pentaerythritol, glycerol, trimethylolpropane, 1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl) cyclohexane Examples include alcohol.
  • the polyester resin used for the inner and outer layers of the present invention has a 1: 1 ratio by weight of phenol / tetrachloroethane, and the intrinsic viscosity measured at 30 ° C. is in the range of 0.60 to 1.40 dL / g. Is preferred.
  • a melting point (Tm) of 200 to 275 ° C.
  • the glass transition point is preferably 30 ° C. or higher, particularly 50 to 120 ° C.
  • the polyester resin used for the inner and outer layers of the present invention contains known compounding agents for resins such as colorants, antioxidants, stabilizers, various antistatic agents, mold release agents, lubricants, nucleating agents, etc. in the final molded product. Can be blended in accordance with a known formulation within a range that does not impair the quality.
  • barrier resins such as a gas barrier property, a water vapor barrier property, and an oxygen-absorbing gas barrier property.
  • MXD6 polymetaxylene adipamide having excellent gas barrier properties
  • the above-mentioned barrier resin can be used alone, or can be used by blending with other resins.
  • a clay-containing barrier resin composition comprising a polyester resin, a barrier resin and clay, or an oxygen-absorbing barrier resin composition comprising a polyester resin, a barrier resin, an oxidizing organic component and a transition metal catalyst, or the oxygen
  • a clay-containing oxygen-absorbing barrier resin composition obtained by further adding clay to the absorbent barrier resin composition can be suitably used.
  • a sea-island dispersion structure is formed in which a dispersed phase made of a barrier resin is formed in a continuous phase made of a polyester resin. The interlaminar adhesion with the polyester resin constituting the inner and outer layers is particularly excellent.
  • polyester resin those exemplified as the polyester resin used for the inner and outer layers can be used, and it is particularly preferable to use the same resin as that used for the inner and outer layers in order to improve interlayer adhesion.
  • the clay compounded in the clay-containing barrier resin is mica, vermiculite, smectite, etc., preferably 2-octahedral or 3-octahedral layered silicic acid having a charge density of 0.25 to 0.6.
  • Examples of the 2-octahedral type include montmorillonite, beidellite and nontronite, and examples of the 3-octahedral type include hectorite and saponite.
  • the clay is particularly preferably clay obtained by swelling clay with an organic agent.
  • montmorillonite is particularly preferable because it has a high swellability and swelling due to permeation of the organic agent tends to spread between the layers.
  • a quaternary ammonium salt can be preferably used. More preferably, a quaternary ammonium salt having at least one alkyl group having 12 or more carbon atoms, specifically, a trimethyldodecyl ammonium salt, Trimethyltetradecyl ammonium salt and the like are used.
  • clay it is preferable to add clay to the barrier resin at a ratio of 1 to 10 parts by weight, particularly 1 to 8 parts by weight per 100 parts by weight of the barrier resin.
  • the amount of clay is less than the above range, the gas barrier property obtained by blending clay cannot be sufficiently obtained as compared with the case where it is in the above range, while the amount of clay is less than the above range.
  • the moldability is inferior to that in the above range and the container becomes pearly, which is not desirable when importance is attached to the transparency of the container.
  • the oxidizing organic component used in the oxygen-absorbing barrier resin composition has a functional group at the side chain or terminal and can be oxidized, specifically, an acid such as butadiene or maleic anhydride-modified butadiene.
  • an acid such as butadiene or maleic anhydride-modified butadiene.
  • examples thereof include polyene oligomers and polymers modified with acid anhydrides, and as the transition metal catalyst, Group VIII metal components such as iron, cobalt and nickel are used. It is not limited to examples.
  • the blending amount of the oxidizing organic component is preferably blended in an amount of 2 to 10 parts by weight per 100 parts by weight of the barrier resin, and the transition metal catalyst is preferably blended in at least 300 ppm in terms of metal. .
  • the above-mentioned barrier resin or barrier resin composition is combined with the above-mentioned clay, oxidizing component and transition metal catalyst, or oxygen scavenger, filler, colorant, heat resistance.
  • the multilayer polyester container of the present invention can adopt various layer configurations as long as it has at least one inner and outer layers made of polyester resin and a barrier intermediate layer, and the inner layer 10 made of polyester resin as shown in FIG.
  • a two-layer three-layer structure in which a barrier intermediate layer 12 is formed between the outer layer 11 and the outer layer 11 can be particularly preferably employed, but a multilayer structure that has been conventionally employed in multilayer polyester containers can also be employed.
  • the interlayer adhesion between the inner and outer layers and the intermediate layer is improved, it is not necessary to interpose an adhesive resin between the resin layers in the production of the multilayer container.
  • adhesive resins include carbonyl (—CO—) groups based on carboxylic acids, carboxylic anhydrides, carboxylates, carboxylic acid amides, carboxylic acid esters, etc.
  • thermoplastic (meq) / 100 g resin particularly thermoplastic resin contained at a concentration of 10 to 500 meq / 100 g resin.
  • Suitable examples of the adhesive resin include ethylene-acrylic acid copolymer, ion-crosslinked olefin copolymer, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, acrylic acid grafted polyolefin, ethylene-vinyl acetate copolymer, copolymer Polymerized polyester and the like.
  • the thickness of the body portion varies depending on the volume (weight) of the container, the use of the container, the kind of the barrier resin to be used, etc., but less than 0.36 mm, particularly 0.20 to It is preferable that the thickness is reduced to a range of 0.30 mm.
  • the barrier intermediate layer is not formed on the inner side of the grounding portion at the bottom, it is desirable to increase the ratio of the thickness of the intermediate layer of the trunk portion as compared with the conventional one.
  • the total thickness of the container body is 5 to 30%, particularly 10 to 20%.
  • the intermediate layer is thicker than the above range, it is not desirable in terms of economy, moldability and container transparency, while if the thickness of the intermediate layer is thinner than the above range, sufficient barrier properties are imparted. Becomes difficult. Further, as described above, when a plurality of intermediate layers made of the barrier resin composition are present, the intermediate layer as a whole is desirably in the range of 10 to 30% of the total thickness of the body portion.
  • the multilayer polyester container of the present invention is a conventionally known one disclosed in, for example, JP-A-1-254539 and JP-A-2004-130650, except for controlling the position of the lower end of the barrier intermediate layer. It can be manufactured by a method for manufacturing a multilayer plastic container. Hereinafter, a method for producing a pressure-resistant biaxial stretch blow molded container that can be most suitably used as the multilayer polyester container of the present invention will be described.
  • the position of the lower end of the barrier intermediate layer is the container radius more than the grounded part or the grounded part in the final molded product state.
  • the multi-layer plug is controlled so that it is positioned on the outside in the direction, preferably at the center of the grounding portion and the top end of the bottom or above the center and below the top end of the bottom or below the top end.
  • the preform can be produced by a conventionally known injection molding method or compression molding method, but in order to accurately and reliably control the lower end position of the barrier intermediate layer, simultaneous injection molding or sequential It is preferable to carry out by injection molding.
  • the barrier intermediate layer is preferably encapsulated in the inner and outer layers of the polyester resin.
  • the multilayer preform and its stretch blow molding are preferably implemented by the cold parison method as described above, but also applied to the hot parison method in which stretch blow molding is performed without completely cooling the multilayer preform to be formed. it can.
  • the preform Prior to stretch blow molding, the preform is preheated to the stretch temperature by means of hot air, infrared heater, high frequency induction heating, etc., but in the present invention, the preform is heated to a higher temperature than normal stretch blow molding at 110 to 120 ° C. Then, it is preferable to stretch blow.
  • This heated preform is supplied into a stretch blow molding machine known per se, set in a mold, stretched in the axial direction by pushing a stretching rod, and stretched in the circumferential direction by blowing fluid.
  • the barrier intermediate layer is made of a clay-containing barrier resin composition
  • the multilayer preform is internally heated using a heating body heated to 300 to 600 ° C. and / or 150 to 220 ° C. It is preferable to use hot air. That is, when the preform heated to the above temperature range is biaxially stretch blow-molded, a heated body heated to a high temperature is inserted into the preform and / or internally heated and / or hot hot air is injected.
  • the heating time for the internal heating is preferably changed depending on the preheating temperature of the preform and the set temperature of the heating body used for the internal heating, and the heating is preferably performed in the range of 8 to 20 seconds, particularly 10 to 15 seconds. It is desirable. Further, it is desirable that hot air used for stretch blow molding is pressed into the preform set in the mold for 2 to 3 seconds.
  • the neck portion of the preform is thermally crystallized and can be manufactured by a known heat-resistant container manufacturing method such as a two-stage blow molding method.
  • the draw ratio in the pressure-resistant polyester container as the final product ranges from 1.5 to 25 times in area magnification, 1.2 to 6 times in axial direction draw ratio, and 1.2 to 4.5 times in circumferential direction draw ratio. It is preferable that the pressure-resistant polyester container has a conventionally known pressure-resistant bottom shape such as a so-called petaloid shape as shown in FIG. 1 or a champagne shape in which a bottom portion is formed with a recess at the center. Can be manufactured as.
  • the pressure-resistant polyester container obtained by the method of the present invention has a polyester resin density of 1.353 g / cm 3 or more in the container body, a crystallinity by the density method of 15% or more, and excellent transparency. Have.
  • a co-injection molding machine equipped with an inner layer / outer layer common injection machine and an intermediate layer injection machine was used to form a multilayer preform for pressure bottles.
  • the layer structure was two types and three layers (inner layer / intermediate layer / outer layer).
  • the following PET materials are used for the inner and outer layers, and the following barrier materials (barrier materials in which clay is mixed with MXD6) and dry pellets of the following PET materials are dry blended at a weight ratio of 4: 6 for the intermediate layer.
  • the weight of the multilayer preform was 24 g, and in both Examples and Comparative Examples, the inner layer / outer layer resin was prepared at a ratio of 95% by weight and the intermediate layer resin was prepared at a ratio of 5% by weight. At this time, the molding temperature of the intermediate layer was 280 to 290 ° C. Control the timing of the injection conditions of the intermediate layer injection machine so that the position of the lower end of the barrier layer (hereinafter simply referred to as “tip position”) is the position shown in Table 1 of the multilayer bottle. Molded.
  • the injection of the intermediate layer resin is stopped at the neck injection, the intermediate layer resin is injected after the shoulder, and the intermediate layer position of each Example / Comparative Example shown in Table 1 is set. After the corresponding position, the intermediate layer resin injection was stopped.
  • the produced multilayer preform was biaxially stretched and blow molded into a pressure-resistant bottle for 500 ml (body thickness 0.25 mm, intermediate layer thickness 40 ⁇ m) to produce a multilayer bottle and evaluated for barrier properties and drop impact resistance. .
  • Barrier material polymetaxylene adipamide (MXD6, 97%) + organically treated clay (montmorillonite, 3%)
  • the barrier property of the obtained multilayer bottle was evaluated by the carbon dioxide gas permeation rate. After filling the obtained multi-layer bottle with carbonated water to a gas volume of 4.0, it is placed in a sealed chamber controlled at 23 ° C. and 50% RH, and the carbon dioxide concentration in the atmosphere in the chamber is measured. cc / bottle / day) was calculated. When the carbon dioxide permeation rate became almost steady, the barrier property of the bottle was evaluated based on the following criteria. ⁇ and ⁇ are acceptable ranges for products. ⁇ : Carbon dioxide transmission rate is less than 4.7 ⁇ : Carbon dioxide transmission rate is 4.7 or more and less than 5.0 ⁇ : Carbon dioxide transmission rate is 5.0 or more
  • Example 1 Multi-layer bottles having the above-mentioned specifications with the front end position of the barrier intermediate layer set to C (the uppermost end of the valley) in FIG. 1 were produced, and the barrier properties and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 2 A multilayer bottle was produced in the same manner as in Example 1 except that the front end position of the barrier intermediate layer was changed to D in FIG. Sex was evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 3 A multilayer bottle was produced in the same manner as in Example 1 except that the front end position of the barrier intermediate layer was changed to E (grounding portion) in FIG. 1, and the barrier property and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 4 A multilayer bottle was prepared in the same manner as in Example 1 except that the front end position of the barrier intermediate layer was changed to B (bottommost end) in FIG. 1, and the barrier property and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 5 A multilayer bottle was produced in the same manner as in Example 1 except that the organically treated clay was not added to the barrier intermediate layer, and the barrier property and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 6 A multilayer bottle was produced in the same manner as in Example 1 except that MXD6 nylon was used as the barrier intermediate layer, and the barrier property and drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 7 The multilayer bottle and the multilayer bottle were made into the shape for a heat-resistant bottle for 500 ml, and the multilayer bottle was treated in the same manner as in Example 3 except that the ion-exchanged water was filled for evaluation of the drop impact resistance and the barrier property was not evaluated. The drop impact resistance was evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 1 A multilayer bottle was prepared in the same manner as in Example 1 except that the front end position of the barrier intermediate layer was changed to G in FIG. 1 (the barrier layer was on the entire bottom surface), and the barrier property and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 2 A multilayer bottle was produced in the same manner as in Example 1 except that the front end position of the barrier intermediate layer was changed to F (center portion of the bottom radius) in FIG. 1, and the barrier property and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • Example 3 A multilayer bottle was produced in the same manner as in Example 1 except that the front end position of the barrier intermediate layer was changed to A (trunk center) in FIG. 1, and the barrier property and the drop impact resistance were evaluated. Table 1 shows the bottle specifications and evaluation results.
  • the multilayer plastic container of the present invention is excellent in barrier properties and drop impact resistance even when it is thin and light, especially when filled with carbonated beverages having self-generated pressure, etc. Is effectively prevented, and can be suitably used particularly as a pressure-resistant polyester container, and can be particularly suitably used in carbonated soft drinks, carbonated drinks with fruit juice, etc., but is not limited to these examples.

Abstract

 本発明は、少なくとも容器の側壁部において、ポリエステル樹脂から成る内層及び外層、バリア性樹脂から成るバリア性中間層が形成されている多層プラスチック容器において、前記バリア性中間層の下側端部の容器半径方向の位置が、容器底部の接地部よりも容器半径方向外側に位置することにより、薄肉軽量化された多層プラスチック容器でありながら、バリア性及び耐落下衝撃性にも顕著に優れている。

Description

耐落下衝撃性に優れた多層プラスチック容器
 本発明は、多層プラスチック容器に関するものであり、より詳細には、中間層にバリア層が形成されて成る、バリア性及び耐落下衝撃性に優れた多層プラスチック容器に関する。
 プラスチック包装容器の材料コストを削減するためなどの目的のために器壁を薄肉化して軽量化することが行われているが、このような器壁の薄肉化に伴う内容物の保存性の低下を補うため、或いは更なる保存性の向上のために、従来より、容器壁を多層構造とし、内外層としてポリエステル樹脂、中間層としてガスバリア性を向上させるエチレンビニルアルコール共重合体やキシリレン基含有ポリアミド樹脂、或いは水蒸気(水分)バリア性を向上させる環状オレフィンコポリマー等の機能性を有する樹脂を用いることが行われている(特許文献1等)。
特開2005-067637号公報
 上述したように、バリア性樹脂から成る中間層を設け、容器の器壁を多層化することによって容器の内容物の保存性は確保されるが、従来の薄肉軽量化された多層容器は単層容器に比べて、落下衝撃により層間剥離や割れが生じやすいことがわかった。
 従って本発明の目的は、バリア性及び耐落下衝撃性に優れた薄肉軽量化された多層プラスチック容器を提供することである。
 本発明によれば、少なくとも容器の側壁部において、ポリエステル樹脂から成る内層及び外層、バリア性樹脂から成るバリア性中間層が形成されている多層プラスチック容器において、前記バリア性中間層の下側端部の容器半径方向の位置が、容器底部の接地部或いは接地部よりも容器半径方向外側に位置することを特徴とする多層プラスチック容器が提供される。
 本発明の多層プラスチック容器においては、
1.自生圧力を有する内容物を収納する耐圧性容器であること、
2.容器底部が、接地部を有する足部と、谷部とが交互に形成されて成ること、
3.バリア性中間層の下側端部の容器軸方向の位置が、前記接地部と谷部の最上端部との中央部或いは中央部よりも上方に位置すること、
4.内層及び外層がポリエチレンテレフタレートから成り、バリア性中間層がポリエチレンテレフタレートとバリア性樹脂の混合物から成ること、
5.バリア性樹脂が、クレイを含有すること、
が好適である。
 前述した通り、薄肉軽量化された多層プラスチック容器においては、落下衝撃を受けると層間剥離を生じたり、或いは底部の割れを生じやすいことから、本発明者等はその原因について鋭意研究を行った結果、従来の多層プラスチック容器においては、底部中央を除く底部においても多層構造が形成されており、かかる多層構造が形成された部分と、底部中央の単層部分との境界箇所において応力集中が生じて、この部分に割れが発生し、またこの境界箇所を起点に層間剥離が生じていること、また底部全面に多層構造が形成されている場合でも、ゲート部での層間境界部が脆いため、衝撃により層間剥離や割れが生じていることを見出した。
 このような割れや層間剥離の発生は、特に自生圧力を有する内容物を充填するため、内圧に対して変形抵抗が大きく、しかも耐圧性の点から容器軸方向下方に突出した足部を有するペタロイド型の底部形状を有する耐圧性容器において顕著である。
 図1は、本発明の多層プラスチック容器の一例を示す側面図、及び図2は、本発明の多層プラスチック容器の一例の底部の層構造を示す一部断面図であり、この多層プラスチック容器は、内外層がポリエステル樹脂、中間層がバリア性樹脂から構成される、2種3層のプリフォームを二軸延伸ブロー成形することにより成形されている。
 この多層プラスチック容器1においては、口首部2、肩部3、胴部4、及び底部5からなり、底部5は、容器軸方向下方に凸の仮想曲面上に位置する複数の谷部6,6・・と、隣り合う谷部6,6の間に位置し、谷部6よりも容器軸方向下方に突出し且つ底部中央の付け根部7から容器径方向外方に延びている先端部分が接地部8となる足部9,9・・が形成されて成るペタロイド型の形状を有している。
 本発明の多層プラスチック容器においては、図2から明らかなように、内層10、外層11及びバリア性樹脂から成るバリア性中間層12の下側端部12aが、容器の接地部8よりも容器半径方向外側、すなわち端部12aが位置する部分における半径(Da)が、接地部8の位置における半径(Ds)と同じか或いは半径(Ds)よりも大きくなるように形成されており(図2に示す具体例では、Da>Ds)、しかも接地部8と谷部6の最上端部6aの間の垂直距離Lの接地面から半分の距離L/2の位置mと同じか或いは半分の距離の位置mよりも上方に位置している(図2に示す具体例では、半分の距離の位置mよりも上方)。
 本発明においては、バリア性中間層の下側端部の容器半径方向位置を容器底部の接地部或いは接地部よりも容器半径方向外側に位置させることにより、従来、落下の際にバリア性中間層の下側端部が位置する部分に発生していた割れを有効に防止することが可能となる。特に図2に示すように、バリア性中間層の下側端部の容器軸方向位置が、接地部と谷部の最上端部との中央部或いは中央部よりも上方に位置していることにより、層間剥離も顕著に低減させることが可能となる。
 すなわち、バリア性中間層の下側端部の位置が、容器底部の接地部よりも容器半径方向内側に位置しているボトル(比較例1及び2)は、いずれもバリア性中間層の下側端部の位置で割れが発生し、また割れが発生した箇所を起点に層間剥離が発生しているのに対し、バリア性中間層の下側端部の位置が容器底部の接地部よりも容器半径方向外側に位置するボトルでは、このような割れや層間剥離が見られず(実施例1~2,4~6)、また容器底部の接地部に位置しているボトル(実施例3,7)も層間剥離が多少発生しているものの、割れは発生しておらず、本発明の多層プラスチック容器が優れた耐落下衝撃性を有することが明らかである。
 また本発明の多層プラスチック容器において、特に高いガスバリア性能が要求される耐圧性容器として使用する場合には、バリア性中間層の下側端部が少なくとも底部の最上端部或いは最上端部よりも下側に位置していることが好ましい(例えば、図1に示す具体例においてはBの位置或いはBよりも下側の位置)。
 また、多層プラスチック容器に要求されるバリア性能に応じて胴部のバリア性中間層の厚みを厚くすることによって、バリア性中間層が形成されていない部位があっても、従来の多層プラスチック容器とほぼ同等のバリア性を確保することが可能になる。
 すなわち、後述する実施例から明らかなように、バリア性中間層の下側先端の位置にかかわらず、プリフォーム形成のための内層及び外層を構成する樹脂(PET)及びバリア性樹脂のトータルの使用量を同じにすることにより、底部の接地部よりも内側にバリア性中間層が形成されていない本発明のボトル(実施例1~3)であっても、底部までバリア性中間層が形成されたボトル(比較例1)と同等のバリア性が得られており、バリア層のない底部の肉厚が比較的厚いことと共に、バリア性に影響を与えやすい胴部においてバリア性中間層の厚みを大きくすることによって、バリア性を劣化させることなく耐衝撃性を向上することが可能となる。
 本発明の多層プラスチック容器においては、薄肉軽量化されていながら、優れたバリア性及び耐落下衝撃性を有しており、従来の多層プラスチック容器に見られた落下による割れや層間剥離が有効に防止されている。
 また本発明の多層プラスチック容器においては、内圧により特に耐落下衝撃による割れや層間剥離の発生が顕著な耐圧性容器においても、優れたバリア性及び耐落下衝撃性を発現することが可能となる。
本発明の多層プラスチック容器の一例を示す側面図である。 多層プラスチック容器の底部の層構造を示すための一部拡大断面図である。
(内外層)
 本発明の内外層に用いるポリエステル樹脂は、従来公知のジカルボン酸成分及びジオール成分から成るポリエステル樹脂を用いることができる。
 ジカルボン酸成分としては、ジカルボン酸成分の50%以上、特に80%以上がテレフタル酸であることが機械的性質や熱的性質から好ましいが、テレフタル酸以外のカルボン酸成分を含有することも勿論できる。テレフタル酸以外のカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、p-β-オキシエトキシ安息香酸、ビフェニル-4,4’-ジカルボン酸、ジフェノキシエタン-4,4’-ジカルボン酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸等を挙げることができる。
 ジオール成分としては、ジオール成分の50%以上、特に80%以上がエチレングリコールであることが、機械的性質や熱的性質から好ましく、エチレングリコール以外のジオール成分としては、1,4-ブタンジオール、プロピレングリコール、ネオペンチルグリコール、1,6-へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、グリセロール、トリメチロールプロパン等を挙げることができる。
 また上記ジカルボン酸成分及びジオール成分には、三官能以上の多塩基酸及び多価アルコールを含んでいてもよく、例えば、トリメリット酸、ピロメリット酸、ヘミメリット酸,1,1,2,2-エタンテトラカルボン酸、1,1,2-エタントリカルボン酸、1,3,5-ペンタントリカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、ビフェニル-3,4,3’,4’-テトラカルボン酸等の多塩基酸や、ペンタエリスリトール、グリセロール、トリメチロールプロパン、1,2,6-ヘキサントリオール、ソルビトール、1,1,4,4-テトラキス(ヒドロキシメチル)シクロヘキサン等の多価アルコールが挙げられる。
 本発明の内外層に用いるポリエステル樹脂は、重量比1:1のフェノール/テトラクロロエタン混合溶媒を用い、30℃にて測定した固有粘度が、0.60乃至1.40dL/gの範囲にあることが好ましい。また多層容器の耐熱性、加工性等を向上するため、200乃至275℃の融点(Tm)を有することが好ましい。またガラス転移点は、30℃以上、特に50乃至120℃の範囲であることが好ましい。
 本発明の内外層に用いるポリエステル樹脂には、それ自体公知の樹脂用配合剤、例えば着色剤、酸化防止剤、安定剤、各種帯電防止剤、離型剤、滑剤、核剤等を最終成形品の品質を損なわない範囲で公知の処方に従って配合することができる。
(バリア性中間層)
 本発明の多層ポリエステル容器の中間層を構成するバリア性樹脂としては、ガスバリア性、水蒸気バリア性、酸素吸収ガスバリア性等の従来公知のバリア性樹脂を挙げることができ、具体的には、ガスバリア性樹脂のポリメタキシリレンアジパミド、ポリメタキシリレンセバカミド等のキシリレン基含有ポリアミド樹脂、エチレンビニルアルコール共重合体等や、水蒸気バリア性樹脂の環状オレフィン系樹脂等を挙げることができるが、本発明においては特に、ガスバリア性に優れたポリメタキシレンアジパミド(MXD6)を用いる場合に、その優れた作用効果を顕著に発現することができる。
 バリア性中間層は、上記バリア性樹脂を単独で用いることもできるし、或いは他の樹脂等とブレンドして用いることもできる。
 例えば、ポリエステル樹脂、バリア性樹脂及びクレイから成るクレイ配合バリア性樹脂組成物、或いはポリエステル樹脂、バリア性樹脂、酸化性有機成分及び遷移金属触媒から成る酸素吸収性バリア性樹脂組成物、或いは該酸素吸収性バリア性樹脂組成物にクレイを更に配合して成るクレイ配合酸素吸収性バリア性樹脂組成物等を好適に使用することができる。
 上記クレイ配合バリア性樹脂組成物及び酸素吸収性バリア性樹脂組成物においては、ポリエステル樹脂から成る連続相中にバリア性樹脂から成る分散相が形成されて成る海島分散構造を構成していることから、内外層を構成するポリエステル樹脂との層間接着性に特に優れている。
 ポリエステル樹脂としては、内外層に用いるポリエステル樹脂として例示したものを用いることができ、特に、内外層に用いた樹脂と同じ樹脂を用いることが層間接着性を向上させる上で好ましい。
 またクレイ配合バリア性樹脂に配合するクレイとしては、マイカ、バーミキュライト、スメクタイト等であり、好ましくは0.25~0.6の電荷密度を有する2-八面体型や3-八面体型の層状珪酸塩であり、2-八面体型としては、モンモリロナイト、バイデライト、ノントロナイト等、3-八面体型としてはヘクトライト、サポナイト等が挙げられる。
 クレイは、クレイを有機化剤で膨潤化処理したものであることが特に好適である。この場合、上記クレイの中でも、モンモリロナイトは高膨潤性を有し、有機化剤の浸透による膨潤が起こり層間が広がりやすいため特に好ましい。
 有機化剤としては、第4級アンモニウム塩が好ましく使用できるが、より好ましくは、炭素数12以上のアルキル基を少なくとも一つ以上有する第4級アンモニウム塩、具体的には、トリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩等が用いられる。
 クレイはバリア性樹脂100重量部当たり1乃至10重量部、特に1乃至8重量部の割合で、バリア性樹脂に配合することが好ましい。上記範囲よりもクレイの量が少ない場合には、クレイを配合することにより得られるガスバリア性を上記範囲にある場合に比して充分に得ることができず、一方上記範囲よりもクレイの量が多い場合には、上記範囲にある場合に比して成形性に劣ると共に、容器がパール状を呈するように成り、容器の透明性を重視する場合には望ましくない。
 また酸素吸収バリア性樹脂組成物に使用する、酸化性有機成分としては、側鎖または末端に官能基を有し且つ酸化可能なもの、具体的には、ブタジエン、無水マレイン酸変性ブタジエン等の酸乃至酸無水物で変性されたポリエンオリゴマー乃至ポリマーを挙げることができ、また遷移金属触媒としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属成分が使用されるが、勿論、これらの例に限定されない。
 酸化性有機成分の配合量は、バリア性樹脂100重量部当たり2乃至10重量部の量で配合されていることが好ましく、また遷移金属触媒は、金属換算で少なくとも300ppm配合されていることが好ましい。
 本発明のバリア性中間層においては、上記バリア性樹脂、或いはバリア性樹脂組成物に、上述したクレイ、酸化性成分及び遷移金属触媒の組み合わせ、或いは、脱酸素剤、充填剤、着色剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、金属セッケンやワックス等の滑剤、改質用樹脂乃至ゴム等の公知の樹脂配合剤を、本発明の目的を損なわない範囲で、それ自体公知の処方に従って配合することもできる。
(多層構造)
 本発明の多層ポリエステル容器は、ポリエステル樹脂から成る内外層、バリア性中間層を少なくとも1層有する限り種々の層構成を採用することができ、図2に示したような、ポリエステル樹脂から成る内層10及び外層11の間にバリア性中間層12が形成された2種3層の層構成のものを特に好適に採用できるが、従来多層ポリエステル容器に採用されていた多層構造を採用することもできる。
 本発明においては、内外層及び中間層の層間接着性が向上されているので、多層容器の製造に当たって、各樹脂層間に接着剤樹脂を介在させる必要はないが、勿論介在させることもできる。
 このような接着剤樹脂としては、カルボン酸、カルボン酸無水物、カルボン酸塩、カルボン酸アミド、カルボン酸エステル等に基づくカルボニル(-CO-)基を主鎖又は側鎖に、1乃至700ミリイクイバレント(meq)/100g樹脂、特に10乃至500meq /100g樹脂の濃度で含有する熱可塑性樹脂が挙げられる。接着剤樹脂の適当な例は、エチレン-アクリル酸共重合体、イオン架橋オレフィン共重合体、無水マレイン酸グラフトポリエチレン、無水マレイン酸グラフトポリプロピレン、アクリル酸グラフトポリオレフイン、エチレン-酢酸ビニル共重合体、共重合ポリエステル等である。
 本発明の多層ポリエステル容器は、胴部の厚みは、容器の容積(目付)や容器の用途、或いは使用するバリア性樹脂の種類等によっても相違するが、0.36mm未満、特に0.20乃至0.30mmの範囲に薄肉化されていることが好ましい。
 また本発明においては、底部の接地部よりも内側にバリア性中間層が形成されていないため、胴部の中間層の厚みの割合を従来のものに比して高くすることが望ましい。使用するバリア性中間層を構成する樹脂或いは樹脂組成物の組成にもよるが、容器胴部における全肉厚の5乃至30%、特に10乃至20%の範囲にすることが好適である。上記範囲よりも中間層の厚みが厚い場合には、経済性、成形性及び容器の透明性の点で望ましくなく、一方上記範囲よりも中間層の厚みが薄いと充分なバリア性を付与することが困難になる。
 また前述したように、バリア性樹脂組成物から成る中間層を複数存在させるときは、中間層全体として胴部の全厚みの10乃至30%の範囲にあることが望ましい。
(製造方法)
 本発明の多層ポリエステル容器は、バリア性中間層の下側端部の位置を制御する以外は、例えば特開平1-254539号公報や特開2004-130650号公報などに開示されている従来公知の多層プラスチック容器の製造法により製造することができる。以下、本発明の多層ポリエステル容器として最も好適に利用できる耐圧性二軸延伸ブロー成形容器の製法を説明する。
 本発明の耐圧性二軸延伸ブロー成形容器においては、多層プリフォームの製造において、バリア性中間層の下側端部の位置が、最終成形品の状態において、接地部或いは接地部よりも容器半径方向外側、好適には、接地部と底部の最上端部との中央部或いは中央部よりも上方且つ底部の最上端位置或いは最上端位置よりも下方、に位置するように制御して、多層プリフォームを製造する。プリフォームの製造は、従来公知の射出成形法、圧縮成形法により成形することができるが、バリア性中間層の下側先端位置の制御を正確且つ確実に行うためには、同時射出成形或いは逐次射出成形により行うことが好ましい。尚、バリア性中間層は、ポリエステル樹脂の内外層中に内封されていることが好ましい。
 多層プリフォームの成形とその延伸ブロー成形とは、上記の通りコールドパリソン方式で実施することが好ましいが、形成される多層プリフォームを完全に冷却しないで延伸ブロー成形を行うホットパリソン方式にも適用できる。
 延伸ブロー成形に先立って、プリフォームを熱風、赤外線ヒーター、高周波誘導加熱等の手段で延伸温度まで予備加熱するが、本発明においては、110乃至120℃の通常の延伸ブロー成形よりも高温に加熱して延伸ブローすることが好ましい。
 この加熱されたプリフォームを、それ自体公知の延伸ブロー成形機中に供給し、金型内にセットして、延伸棒の押し込みにより軸方向に引張延伸すると共に、流体の吹き込みにより周方向に延伸する。この際、バリア性中間層がクレイ配合バリア性樹脂組成物から成る場合には、多層プリフォームを300乃至600℃に加熱された加熱体を用いて内部加熱すること及び/又は150乃至220℃のホットエアーを用いることが好ましい。
 すなわち、上記温度範囲に加熱されたプリフォームを二軸延伸ブロー成形するに際して、プリフォーム内部に高温に加熱された加熱体が挿入されて内部加熱されていること及び/又は高温の熱風が圧入されていることにより、プリフォーム内部の温度がより高温になると共に、延伸ブロー成形時においてプリフォーム内部の温度が高温に保たれるため、歪の緩和が促進され、延伸応力の高いクレイ配合バリア性樹脂組成物から成る中間層の歪も緩和されるため、透明性及びガスバリア性等の機能を損なうことが有効に抑制される。
 内部加熱の加熱時間は、プリフォームの予備加熱温度及び内部加熱に用いる加熱体の設定温度によって変化させることが好ましく、好適には、8乃至20秒、特に10乃至15秒の範囲で加熱を行うことが望ましい。また、延伸ブロー成形する際に用いられるホットエアーは金型内にセットされたプリフォーム内部に2乃至3秒間圧入されることが望ましい。
 また多層プラスチック容器に耐熱性を付与する場合には、プリフォームの口首部を熱結晶化させておくと共に、二段ブロー成形法等、公知の耐熱性容器の製法で製造することもできる。
 最終製品である耐圧性ポリエステル容器における延伸倍率は、面積倍率で1.5乃至25倍、軸方向延伸倍率で1.2乃至6倍、周方向延伸倍率で1.2乃至4.5倍の範囲にあることが好ましく、これにより図1に示すような所謂ペタロイド型形状や、底部が中心部に凹部が形成されたシャンパン型等の従来公知の耐圧性の底部形状とすることにより耐圧性ポリエステル容器として製造することができる。
 本発明方法により得られた耐圧性ポリエステル容器は、容器胴部におけるポリエステル樹脂の密度が1.353g/cm以上であり、密度法による結晶化度で15%以上であり、優れた透明性も有している。
<多層ボトルの作製>
 内層外層共用射出機と中間層用射出機を備えた共射出成形機を使用し、耐圧ボトル用の多層プリフォームを成形した。層構成は2種3層(内層/中間層/外層)であった。内外層には下記PET材を使用し、中間層には下記バリア材(MXD6にクレイを配合したバリア材)と下記PET材の乾燥済みペレットを4:6の重量比率でドライブレンドして成形機のホッパーに投入し、共射出成形した。多層プリフォームの重量は24gであり、いずれの実施例・比較例とも内層外層樹脂を95重量%、中間層樹脂を5重量%の比率で作製した。このとき、中間層の成形温度は280乃至290℃とした。中間層射出機の射出条件のタイミングを制御して、バリア層の下側端部の位置(以下、単に「先端位置」という)が多層ボトルの表1の位置になるようにして多層プリフォームを成形した。中間層射出機の射出条件のタイミング制御にあたり、口首部射出では中間層樹脂射出を停止し、肩部以降では中間層樹脂を射出し、表1に示す各実施例・比較例の中間層位置に相当する位置以降では中間層樹脂射出を停止した。作製した多層プリフォームを500ml用耐圧ボトル(胴部肉厚 0.25mm、中間層肉厚40μm)に二軸延伸ブロー成形して多層ボトルを作製し、バリア性、耐落下衝撃性、を評価した。
(使用材料)
 PET材:イソフタル酸共重合ポリエチレンテレフタレート(イソフタル酸1.5mol%、IV=0.83dL/g)
 バリア材:ポリメタキシレンアジパミド(MXD6、97%)+有機処理クレイ(モンモリロナイト、3%)
(評価方法、条件)
<バリア性>
 得られた多層ボトルのバリア性を、炭酸ガス透過速度で評価した。
 得られた多層ボトルに炭酸水をガスボリューム4.0に充填した後、23℃50%RHに制御した密封チャンバーに入れ、チャンバー内雰囲気の二酸化炭素濃度を測定し、ボトルの二酸化炭素透過速度(cc/ボトル/day)を算出した。二酸化炭素透過速度がほぼ定常になった時点で、次の基準をもとにボトルのバリア性を評価した。○と△を製品としての許容範囲とした。
  ○:二酸化炭素透過速度が、4.7未満
  △:二酸化炭素透過速度が、4.7以上で、5.0未満
  ×:二酸化炭素透過速度が、5.0以上
<耐落下衝撃性>
 得られた多層ボトルに炭酸水をガスボリューム4.0に充填した後、23℃で1日間保管した。その後、2.0mの高さから、底部を下にしてコンクリート床面へ1回落下させ、視覚で割れとデラミ発生を評価した。n=3で行い、最も程度の大きいものにつき、次の基準をもとにボトルの耐落下衝撃性を評価した。○と△を製品としての許容範囲とした。
  ○:割れ無し、デラミなし
  △ :割れ無し、軽度なデラミあり
  × :割れ有り、大きなデラミあり
<総合評価>
 得られたバリア性評価と耐落下衝撃性評価をもとに、次の基準で総合評価とした。○と△を製品としての許容範囲とした。
  ○:いずれの評価も「○」
  △:いずれの評価も「○」あるいは「△」であり、いずれかの評価に「
    △」がある
  ×:少なくともいずれかの評価に「×」がある
<実施例1>
 上記の仕様でバリア性中間層の先端位置を図1のC(谷部最上端)にした多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<実施例2>
 バリア性中間層の先端位置を図1のD(接地部と谷部の最上端部との中央部)にした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<実施例3>
 バリア性中間層の先端位置を図1のE(接地部)にした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<実施例4>
 バリア性中間層の先端位置を図1のB(底部最上端)にした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<実施例5>
 バリア性中間層に有機処理クレイを添加しなかった以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<実施例6>
 バリア性中間層をMXD6ナイロンのみにした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<実施例7>
 多層プリフォームと多層ボトルを500ml用耐熱ボトル用形状にし、耐落下衝撃性評価用にイオン交換水を充填したこととバリア性評価は実施しなかったこと以外は実施例3と同様にして多層ボトルを作製し、耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<比較例1>
 バリア性中間層の先端位置を図1のG(底全面にバリア層あり)にした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<比較例2>
 バリア性中間層の先端位置を図1のF(底半径の中央部)にした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
<比較例3>
 バリア性中間層の先端位置を図1のA(胴中央部)にした以外は実施例1と同様にして多層ボトルを作製し、バリア性と耐落下衝撃性を評価した。ボトル仕様と評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 本発明の多層プラスチック容器は、薄肉軽量化されていても、バリア性及び耐落下衝撃性に優れており、特に自生圧力を有する炭酸飲料等を充填した場合にも、落下時の割れや層間剥離が有効に防止されているため、特に耐圧性ポリエステル容器として好適に使用でき、飲料では炭酸ソフトドリンク、果汁入り炭酸飲料等に特に好適に使用できるが、これらの例に限定されない。

Claims (6)

  1.  少なくとも容器の側壁部において、ポリエステル樹脂から成る内層及び外層、バリア性樹脂から成るバリア性中間層が形成されている多層プラスチック容器において、前記バリア性中間層の下側端部の容器半径方向の位置が、容器底部の接地部或いは接地部よりも容器半径方向外側に位置することを特徴とする多層プラスチック容器。
  2.  自生圧力を有する内容物を収納する耐圧性容器である請求項1記載の多層プラスチック容器。
  3.  前記容器底部が、接地部を有する足部と、谷部とが交互に形成されて成る請求項1又は2記載の多層プラスチック容器。
  4.  前記バリア性中間層の下側端部の容器軸方向の位置が、前記接地部と谷部の最上端部との中央部或いは中央部よりも上方に位置する請求項3記載の多層プラスチック容器。
  5.  内層及び外層がポリエチレンテレフタレートから成り、バリア性中間層がポリエチレンテレフタレートとバリア性樹脂の混合物から成る請求項1記載の多層プラスチック容器。
  6.  前記バリア性樹脂が、クレイを含有する請求項5記載の多層プラスチック容器。
PCT/JP2010/053208 2009-03-03 2010-03-01 耐落下衝撃性に優れた多層プラスチック容器 WO2010101102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10748697.9A EP2404838B1 (en) 2009-03-03 2010-03-01 Multilayered plastic container having superior drop impact resistance
US13/202,245 US20110303685A1 (en) 2009-03-03 2010-03-01 Multilayered plastic container having excellent drop impact resistance
CN2010800098993A CN102341310A (zh) 2009-03-03 2010-03-01 具有优秀抗跌落冲击性的多层塑料容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-049401 2009-03-03
JP2009049401A JP5387054B2 (ja) 2009-03-03 2009-03-03 耐落下衝撃性に優れた多層プラスチック容器

Publications (1)

Publication Number Publication Date
WO2010101102A1 true WO2010101102A1 (ja) 2010-09-10

Family

ID=42709659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053208 WO2010101102A1 (ja) 2009-03-03 2010-03-01 耐落下衝撃性に優れた多層プラスチック容器

Country Status (5)

Country Link
US (1) US20110303685A1 (ja)
EP (1) EP2404838B1 (ja)
JP (1) JP5387054B2 (ja)
CN (1) CN102341310A (ja)
WO (1) WO2010101102A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763829B2 (en) * 2011-07-22 2014-07-01 Craig Allen Madaus Collapsible container for holding liquids or objects
JP2013028363A (ja) * 2011-07-28 2013-02-07 Yoshino Kogyosho Co Ltd 容器
US9221204B2 (en) * 2013-03-14 2015-12-29 Kortec, Inc. Techniques to mold parts with injection-formed aperture in gate area
JP6300703B2 (ja) * 2014-10-30 2018-03-28 石塚硝子株式会社 炭酸飲料用ボトル
MX2018010762A (es) * 2016-03-11 2019-01-10 Ring Container Tech Llc Metodo de fabricacion de un recipiente.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294342A (ja) * 1987-05-20 1988-12-01 Toyo Seikan Kaisha Ltd 射出−ブロ−成形多層容器
JPH0348015Y2 (ja) * 1986-10-02 1991-10-14
JPH0813499B2 (ja) * 1987-03-04 1996-02-14 三菱瓦斯化学株式会社 多層容器及びその製造法
JP2577807B2 (ja) * 1988-12-30 1997-02-05 コンチネンタル ピーイーティー テクノロジィーズ インコーポレーテッド 予備成形体およびその予備成形体から形成される容器
JP2002138242A (ja) * 2000-10-31 2002-05-14 Toyo Seikan Kaisha Ltd ハイバリアーコーティング、コーティング組成物及び包装材
JP2005239275A (ja) * 2004-02-27 2005-09-08 Yoshino Kogyosho Co Ltd 二軸延伸ブロー成形壜体

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2034663B (en) * 1978-11-07 1983-09-01 Yoshino Kogyosho Co Ltd Synthetic resin thin-walled bottle
GB2078171B (en) * 1979-11-02 1984-05-02 Toyo Boseki Multi-layered vessel and process for producing same
JPS5677143A (en) * 1979-11-30 1981-06-25 Yoshino Kogyosho Co Ltd Polyethylene terephthalate resin product
JPS6071207A (ja) * 1983-09-29 1985-04-23 Toyo Seikan Kaisha Ltd 延伸ブロー成形用多層プリフォームの製造方法
US5464106A (en) * 1994-07-06 1995-11-07 Plastipak Packaging, Inc. Multi-layer containers
AR002773A1 (es) * 1995-07-07 1998-04-29 Continental Pet Technologies Metodo para el moldeado por inyeccion de un articulo plastico y aparato para llevarlo a cabo.
US5927525A (en) * 1997-04-28 1999-07-27 Plastipak Packaging, Inc. Multi-layer containers and preforms
TWI250934B (en) * 1997-10-17 2006-03-11 Advancsd Plastics Technologies Barrier-coated polyester articles and the fabrication method thereof
US6352426B1 (en) * 1998-03-19 2002-03-05 Advanced Plastics Technologies, Ltd. Mold for injection molding multilayer preforms
US20020037377A1 (en) * 1998-02-03 2002-03-28 Schmidt Steven L. Enhanced oxygen-scavenging polymers, and packaging made therefrom
US20030031814A1 (en) * 2000-04-28 2003-02-13 Hutchinson Gerald A. Bottles and preforms having a crystalline neck
JP2002103428A (ja) * 2000-09-29 2002-04-09 Toyo Seikan Kaisha Ltd 多層プリフォームおよびこれを用いて製造した多層ボトル
JP2003220641A (ja) * 2002-01-29 2003-08-05 Yoshino Kogyosho Co Ltd 二軸延伸ブロー成形壜体及びその一次成形品
US8192676B2 (en) * 2004-02-12 2012-06-05 Valspar Sourcing, Inc. Container having barrier properties and method of manufacturing the same
WO2005102667A2 (en) * 2004-04-16 2005-11-03 Advanced Plastics Technologies Luxembourg S.A. Preforms, bottles and methods of manufacturing the preforms and the bottles
ITMO20040354A1 (it) * 2004-12-31 2005-03-31 Granarolo S P A Preforma,metodo per produrre una preforma e contenitore.
CN100500522C (zh) * 2005-03-03 2009-06-17 徐跃 阻隔性双层塑料瓶及其制造方法
DE102005018245A1 (de) * 2005-04-19 2006-10-26 Mht Mold & Hotrunner Technology Ag Mehrschichtiger Vorformling, mehrschichtiger Hohlkörper sowie Verfahren zu deren Herstellung
JP4830677B2 (ja) * 2005-07-08 2011-12-07 三菱瓦斯化学株式会社 多層ボトル
KR101252888B1 (ko) * 2005-07-08 2013-04-09 미츠비시 가스 가가쿠 가부시키가이샤 다층 병
JP4771315B2 (ja) * 2006-08-31 2011-09-14 株式会社吉野工業所 多層ブロー容器
JP5305610B2 (ja) * 2007-04-05 2013-10-02 東洋製罐株式会社 耐圧性ポリエステル容器及びその製造方法
JP4986912B2 (ja) * 2008-03-31 2012-07-25 株式会社吉野工業所 バリア性に優れた合成樹脂製容器
JP5329120B2 (ja) * 2008-04-30 2013-10-30 株式会社吉野工業所 積層ボトル
EP2311624B1 (en) * 2008-06-30 2019-09-18 Yoshino Kogyosyo Co., Ltd. Synthetic-resin laminated bottle body
JP4953178B2 (ja) * 2008-06-30 2012-06-13 株式会社吉野工業所 合成樹脂製積層壜体、射出成形装置及び積層プリフォームの成形方法
JP5652204B2 (ja) * 2008-09-29 2015-01-14 東洋製罐株式会社 軽量多層ポリエステル容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348015Y2 (ja) * 1986-10-02 1991-10-14
JPH0813499B2 (ja) * 1987-03-04 1996-02-14 三菱瓦斯化学株式会社 多層容器及びその製造法
JPS63294342A (ja) * 1987-05-20 1988-12-01 Toyo Seikan Kaisha Ltd 射出−ブロ−成形多層容器
JP2577807B2 (ja) * 1988-12-30 1997-02-05 コンチネンタル ピーイーティー テクノロジィーズ インコーポレーテッド 予備成形体およびその予備成形体から形成される容器
JP2002138242A (ja) * 2000-10-31 2002-05-14 Toyo Seikan Kaisha Ltd ハイバリアーコーティング、コーティング組成物及び包装材
JP2005239275A (ja) * 2004-02-27 2005-09-08 Yoshino Kogyosho Co Ltd 二軸延伸ブロー成形壜体

Also Published As

Publication number Publication date
EP2404838A1 (en) 2012-01-11
EP2404838B1 (en) 2014-06-04
JP5387054B2 (ja) 2014-01-15
EP2404838A4 (en) 2012-08-29
JP2010202249A (ja) 2010-09-16
US20110303685A1 (en) 2011-12-15
CN102341310A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5652204B2 (ja) 軽量多層ポリエステル容器
JP5240189B2 (ja) 多層ポリエステル容器及びその製造方法
KR101369959B1 (ko) 다층 폴리에스테르 용기 및 그 제법
JP5305610B2 (ja) 耐圧性ポリエステル容器及びその製造方法
JP3978012B2 (ja) 多層容器及びその製造方法
WO2006107099A1 (ja) 多層ブロー成形容器及びその製造方法
KR102079282B1 (ko) 다층 프리폼 및 다층 연신 블로우 성형 용기
JP4599900B2 (ja) プリフォーム及びこのプリフォームから成るブロー成形容器
US20050221036A1 (en) Polyester composition with enhanced gas barrier, articles made therewith, and methods
JP5387054B2 (ja) 耐落下衝撃性に優れた多層プラスチック容器
WO2007086331A1 (ja) 多層ボトルの充填方法
JP4730046B2 (ja) 多層ポリエステル容器及びその製法
JP2004323053A (ja) 層間剥離の改良された多層容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009899.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202245

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010748697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE