WO2010100936A1 - 吸水性樹脂の製造方法 - Google Patents

吸水性樹脂の製造方法 Download PDF

Info

Publication number
WO2010100936A1
WO2010100936A1 PCT/JP2010/001521 JP2010001521W WO2010100936A1 WO 2010100936 A1 WO2010100936 A1 WO 2010100936A1 JP 2010001521 W JP2010001521 W JP 2010001521W WO 2010100936 A1 WO2010100936 A1 WO 2010100936A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mixer
absorbing resin
absorbent resin
particulate
Prior art date
Application number
PCT/JP2010/001521
Other languages
English (en)
French (fr)
Inventor
角永憲資
夛田賢治
笹部昌純
加藤誠司
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201080010035.3A priority Critical patent/CN102341435B/zh
Priority to US13/254,573 priority patent/US8648150B2/en
Priority to JP2011502661A priority patent/JP5615801B2/ja
Priority to EP20100748535 priority patent/EP2404954B1/en
Publication of WO2010100936A1 publication Critical patent/WO2010100936A1/ja
Priority to US14/136,339 priority patent/US9796820B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1152Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis with separate elements other than discs fixed on the discs, e.g. vanes fixed on the discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/87Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the receptacle being divided into superimposed compartments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing a water-absorbent resin that is excellent in physical properties and can be obtained efficiently while ensuring high productivity at a low cost. More specifically, the present invention relates to a method for reforming and producing a water absorbent resin in which a mixing device having a specific structure is used and / or mixed under specific conditions when mixing a particulate water absorbent resin and an additive.
  • Water-absorbing resins are widely used in various applications such as paper diapers, sanitary napkins, sanitary materials such as adult incontinence products, and soil water retention agents because of their ability to absorb large amounts of aqueous solution, several times to several hundred times their own weight. Are produced and consumed in large quantities.
  • a water-absorbing resin also referred to as a highly water-absorbing resin or a water-absorbing polymer
  • JIS Japanese Industrial Standard
  • the water-absorbing resin is produced by drying a water-containing gel-like polymer obtained by polymerizing an aqueous solution containing a hydrophilic monomer and a crosslinking agent, and performing a surface treatment.
  • a hydrophilic monomer for example, poly (meth) acrylic acid (salt) is well known as the hydrophilic monomer.
  • the hydrogel polymer obtained by polymerizing this monomer is obtained as a mass or an aggregate of hydrogel particles and is usually about 1 to 10 mm using a pulverizer such as a kneader or meat chopper. Coarsely pulverized (coarse crushing) to a particle size. The coarsely crushed (coarse crushed) hydrogel is dried to a solid content of about 95% by weight.
  • pulverization is performed by a pulverizer so that the value of the weight average particle diameter is 150 ⁇ m or more and 850 ⁇ m or less, and a particulate water-absorbing resin is obtained. At this time, particles outside the target particle size (particle size) range are also included. Accordingly, the pulverized product after drying is sieved with a classifier to prepare a particulate water-absorbing resin having a size within the target particle size range.
  • the particulate water-absorbing resin used for hygiene products those having a particle diameter in the range of 150 ⁇ m or more and less than 850 ⁇ m are preferably used.
  • the particulate water-absorbing resin is subjected to a surface treatment process to obtain physical properties such as water absorption capacity and liquid permeability under pressure that are desirable for sanitary agents (sanitary products) and the like.
  • the surface treatment step is usually a step of providing a highly crosslinked layer in the vicinity of the surface of the particulate water-absorbing resin by reacting the particulate water-absorbing resin with a surface crosslinking agent or a polymerizable monomer by light or heat (surface Cross-linking step) or additives (surface treatment agents) that impart functionality such as liquid permeability improvers, deodorants, anti-coloring agents, antibacterial agents, anti-blocking agents, etc. to the particulate water-absorbing resin
  • the process (addition process) of providing an additive layer in the surface vicinity of particulate water-absorbing resin is said.
  • the surface cross-linking agent contains a cross-linking agent having a functional group capable of reacting with a carboxyl group or a polymerizable monomer.
  • the surface cross-linking techniques that have been studied so far include, for example, a technique regarding the combined use of a surface cross-linking agent (Patent Document 1), a technique regarding an apparatus for mixing a water-absorbing resin and a surface cross-linking agent (Patent Document 2), Technology for a heating device for reacting a resin and a surface cross-linking agent (Patent Document 3), Technology for temperature increase control of a heating temperature for reacting a water absorbent resin and a surface cross-linking agent (Patent Document 4), The technique (patent document 5) etc. about the surface cross-linking process of the water-absorbing resin having a high water content can be mentioned.
  • a technique (patent documents 6 and 7) that modifies a water-absorbent resin by applying heat without using a surface cross-linking agent, unlike ordinary surface cross-linking is also known.
  • oxazoline compounds Patent Document 8
  • vinyl ether compounds Patent Document 9
  • epoxy compounds Patent Document 10
  • oxetane compounds Patent Document 11
  • polyhydric alcohol compounds Patent.
  • Document 12 polyamide polyamine-epihalo adduct
  • Patent Document 15 hydroxyacrylamide compound
  • Patent Document 16 oxazolidinone compound
  • Patent Document 17 2-oxo Tetrahydro-1,3-oxazolidine compounds
  • Patent Document 19 alkylene carbonate compounds
  • Patent Documents 20 and 21 a technique for polymerizing monomers to crosslink the surface
  • Patent Document 22 a technique for radical crosslinking with persulfate
  • Patent Document 21 and 22 describe drying by heating in superheated steam atmosphere.
  • Patent Documents 24 and 25 a water-soluble cation such as an aluminum salt
  • Patent Document 26 an alkali
  • Patent Document 27 a technique that uses a specific mixer as a mixer for the surface cross-linking agent is also known.
  • Patent Document 29 a technique for performing surface crosslinking twice
  • Patent Document 30 a technique for using a plurality of heat treatment apparatuses
  • Patent Document 31 a technique for heating a water-absorbing resin before surface crosslinking in advance
  • Patent Document 31 a technique for heating a water-absorbing resin before surface crosslinking in advance
  • the speed at which the particulate water-absorbing resin moves toward the discharge port in the mixing tank can be changed depending on the direction of the stirring blades in the dispersion process and the mixing process of the particulate water-absorbing resin.
  • Patent Document 35 the ratio of the particulate water-absorbing resin moving toward the discharge port and the particulate water-absorbing resin moving toward the inlet in the opposite direction is adjusted by a stirring blade in the mixer. Thus, it is described that the mixing property is improved. Furthermore, since the particulate water-absorbing resin to which the surface treatment agent is adhered aggregates and deteriorates the mixing property, the particulate water-absorbing resin has sufficient kinetic energy so that the particulate water-absorbing resin does not aggregate in the mixing process. This is described in Patent Document 35.
  • Patent Document 35 as a mixer used for mixing a particulate water-absorbing resin and an additive, a Patterson-Kelly mixer, a DRAIS turbulent mixer, a Lodige mixer, a Luberg ( Ruberg) mixers, screw mixers, pan mixers, fluidized bed mixers, MTI mixers, Shugi mixers and the like are described.
  • Patent Document 2 discloses a technique of using a water-repellent substrate on the inner wall of a mixer in order to prevent the particulate water-absorbing resin from adhering and to improve the mixing property.
  • a mixer used for mixing the particulate water-absorbing resin and the surface cross-linking agent Henschel mixer (Mitsui Miike Machinery Co., Ltd.), New Speed Mixer (Okada Seiko Co., Ltd.), Heavy Duty Matrix (Nara) Machine Manufacturing Co., Ltd.), Turbulizer, Sand Turpo (both manufactured by Hosokawa Micron Corporation) and the like are described.
  • a horizontal mixer that is, a mixer in which the rotating shaft of the stirring blade is in the horizontal direction, the height is 50% or less of the rotating circumferential diameter.
  • Patent Document 36 describes that by installing a weir near the outlet or between stirring blades, the residence time in the mixing tank can be controlled, and a short pass can be prevented.
  • particulate water-absorbing resin having a particle size smaller than the target particle size range generated in the production process of a series of water-absorbing resins is called fine powder.
  • fine powder having a particle size smaller than 150 ⁇ m is used in absorbent articles such as diapers. Since clogging causes a decrease in liquid permeability, it is not suitable for use in hygiene agents (sanitary products).
  • a binder such as an aqueous solution or a fine particle aqueous dispersion is preferable as the fine powder binder from the viewpoints of efficiency, safety, production cost, and the like.
  • a binder such as an aqueous solution or a fine particle aqueous dispersion
  • a high-speed stirring type mixer for example, a turbulizer (manufactured by Hosokawa Micron), a redige mixer (manufactured by Lodige), and a mortar mixer (manufactured by West Japan Testing Machine Co., Ltd.) is used for mixing fine powder and binder.
  • the method which bind
  • Patent Documents 8 to 19 many of the above-mentioned surface cross-linking agents (Patent Documents 8 to 19) and their combined use (Patent Document 1), their mixing devices (Patent Documents 2 and 28), surface cross-linking aids (Patent Documents 24 to 27), and their heating
  • Patent Documents 3, 4, 29 to 34 many technologies such as treatment methods
  • these surface crosslinking technologies alone provide the absorption capacity of the water-absorbent resin under pressure and the passing through of the user. It has been difficult to meet increasing demands for physical properties such as liquidity.
  • the above method shows a certain effect in small-scale production at the laboratory level and batch-type (batch-type) production, but in the continuous production on the industrial scale (for example, 1 t or more per unit time), it is as small as the small scale. In some cases, the effect was not shown.
  • the additive is a surface cross-linking agent
  • the surface cross-linked layer will form only a part of the surface of the particulate water-absorbent resin.
  • the physical properties such as properties are greatly impaired.
  • the use amount of other surface treatment agents is increased in order to exert the effect, and physical properties are impaired.
  • the fine powder has a large surface area relative to the weight, and is particularly difficult to mix uniformly.
  • the binding force of the obtained binder is weak and easily collapses. Therefore, in order to spread the binder throughout the fine powder, the amount of water added as a binder is large in the conventional technology, the moisture content of the binder exceeds 50% by weight, and the energy required for drying is high. It was a problem to grow.
  • the method of binding using only water vapor as in Patent Document 40 can reduce the moisture content of the binder, but in the disclosed method, the fine powder is sufficiently bound for a long time. They are mixed and difficult to operate continuously.
  • the present invention has been made in view of the above-described conventional problems, and the object thereof is to efficiently obtain a surface-crosslinked water-absorbing resin having excellent physical properties while ensuring high productivity at low cost.
  • Another object of the present invention is to provide a method for producing a water-absorbent resin, particularly a method for mixing a water-absorbent resin and an additive.
  • a surface cross-linking agent and water are added to a particulate water absorbent resin in a mixer.
  • a method for producing surface-crosslinked water-absorbent resin particles comprising sequentially a step and a step of reacting the water-absorbent resin mixture taken out of the mixer with a surface-crosslinking agent by heating or irradiation with active energy rays in a reactor.
  • a part or all of the water added in the mixer is added with water vapor.
  • the physical properties of the water-absorbent resin after surface cross-linking for example, water absorption capacity under pressure (AAP), without using a change of the surface cross-linking agent or a new auxiliary agent, Liquid permeability (SFC) and the like can be improved.
  • AAP water absorption capacity under pressure
  • SFC Liquid permeability
  • the physical properties are reduced during the scale-up in the production process.
  • the physical properties are hardly deteriorated even during the continuous production or the scale-up.
  • the method for producing a water absorbent resin of the present invention efficiently obtains a particulate water absorbent resin having excellent physical properties by uniformly mixing the particulate water absorbent resin and an additive while ensuring high productivity. be able to.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a mixer used in Examples 1 to 6, 8 to 11, and 14 to 37 and Comparative Example 3. It is sectional drawing which shows schematic structure of the mixer used in Example 12 and 13 and the comparative example 6. FIG. It is sectional drawing which shows schematic structure of the horizontal mixer used by the comparative examples 2, 5, and 7.
  • Embodiments of the present invention will be described below.
  • the definition of terms is [1], and a typical method for producing a water-absorbing resin is shown in [2] below, but the step of surface treatment, which is a characteristic part of the present invention, is shown in (2-6).
  • the step of performing surface cross-linking is described in (2-6-1) below, and the step of adding an additive for imparting functionality such as a liquid permeability improver is performed in (2-6-2).
  • the steps of binding are shown in (2-7) below.
  • Each of these steps may be carried out batchwise or continuously, but industrially, it is preferable that the steps are connected and continuously produced as a whole. In particular, the mixing of the particulate water-absorbing resin and the additive is continuously performed.
  • Water absorbent resin The “water-absorbing resin” in the present invention means a water-swellable water-insoluble polymer gelling agent.
  • Water swellability means that the CRC (water absorption capacity under no pressure) specified in ERT441.2-02 is usually 5 [g / g] or more, and “water-insoluble” means Ext (water soluble content) specified by ERT470.2-02 is usually 0 to 50% by weight (particularly 20% by weight or less).
  • the water-absorbent resin can be appropriately designed according to its use and is not particularly limited, but may be a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group. preferable. Further, the total amount (100% by weight) is not limited to the form of a polymer, and may contain additives and the like within a range that maintains the above performance.
  • polyacrylic acid (salt) water-absorbing resin means a water-absorbing resin mainly composed of acrylic acid and / or a salt thereof (hereinafter referred to as acrylic acid (salt)) as a repeating unit. To do.
  • the total monomer (excluding the crosslinking agent) used in the polymerization refers to a polymer usually containing 30 to 100 mol%, preferably 50 to 100 mol% of acrylic acid (salt), preferably Means a water-absorbing resin (water-swellable / water-insoluble crosslinking agent polymer) containing 70 to 100 mol%, more preferably 90 to 100 mol%, particularly preferably substantially 100 mol%.
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation for a method for measuring water-absorbent resin (EDANA Recommended Test Method), which is a European standard (almost world standard). is there.
  • EDANA Recommended Test Method European Standard (almost world standard).
  • CRC is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity) and means water absorption capacity without pressure (hereinafter also referred to as “water absorption capacity”). Specifically, the water absorption capacity (unit: [g / g]) after 30 minutes of free swelling with respect to a 0.9 wt% sodium chloride aqueous solution and further drained with a centrifuge.
  • AAP is an abbreviation for Absorption against Pressure, which means water absorption capacity under pressure. Specifically, the water absorption capacity (unit: [g / g]) after swelling under a load of 2.06 kPa for 1 hour with respect to a 0.9% by weight sodium chloride aqueous solution is 1 hour in the present invention. It was set as the water absorption capacity (unit: [g / g]) under a load of 4.83 kPa.
  • Extractables is an abbreviation for Extractables and means a water-soluble component (water-soluble component amount). Specifically, it is a value (unit:% by weight) measured by pH titration after stirring 1 g of water absorbent resin for 16 hours with respect to 200 g of 0.9 wt% sodium chloride aqueous solution.
  • liquid permeability The flow of the liquid flowing between the particles of the swollen gel under load or no load is called “liquid permeability”.
  • Typical measurement methods for this “liquid permeability” include SFC (Saline Flow Conductivity) and GBP (Gel Bed Permeability).
  • SFC Seline Flow Inducibility
  • GBP refers to the permeability of 0.69 wt% physiological saline to the water-absorbent resin under load or free expansion. It is measured according to the GBP test method described in International Publication No. 2005/016393 pamphlet.
  • X to Y indicating a range means “X or more and Y or less”, and “(meth) acryl” used for (meth) acrylic acid and the like. Means acrylic or methacrylic.
  • t (ton) which is a unit of weight means “Metric ton”, and unless otherwise noted, “ppm” means “ppm by weight” or “ppm by mass”. "Means.
  • acrylic acid alone, or a combination of acrylic acid and a monomer other than acrylic acid, or only from a monomer other than acrylic acid a water absorbent resin is appropriately used.
  • a water absorbent resin is appropriately used.
  • acrylic acid and / or a salt thereof is preferable.
  • acrylic acid (salt) composed of 1 to 50 mol% of acrylic acid and 50 to 99 mol% of an alkali metal salt of acrylic acid is most preferably used. Is done.
  • the acid group is a monovalent salt, preferably an alkali metal salt or an ammonium salt, more preferably an alkali metal salt, particularly preferably.
  • Sodium salt is used.
  • the acid group is neutralized before or after polymerization in the range of 0 to 100 mol%, preferably 20 to 100 mol%, more preferably 50 to 99 mol%, and still more preferably 60 to 90 mol%.
  • crosslinking agent examples include N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Polyoxyethylene) trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, polyethylene glycol di ( ⁇ -acryloyloxypropionate), trimethylolpropane tri ( ⁇ -acryloyloxypropionate), poly Compounds having at least two polymerizable double bonds in the molecule such as (meth) allyloxyalkane; polyglycidyl ether (ethylene glycol diglycidyl ether), polyol (ethylene glycol, polyethylene glycol, glycerin) One or more compounds capable of forming a covalent bond by reacting with the carboxyl groups of sorbitol) and the like.
  • crosslinking agent it is preferable to essentially use a compound having at least two polymerizable double bonds in the molecule in consideration of the absorption characteristics of the resulting water-absorbent resin.
  • the crosslinking agent is used in the range of 0.0001 to 5 mol%, preferably 0.005 to 2 mol%, based on the physical properties, with respect to the monomer.
  • (C) Concentration These monomers are usually polymerized in an aqueous solution, and the monomer concentration is usually 10 to 90% by weight, preferably 20 to 80% by weight, more preferably 30 to 70% by weight, particularly The range is preferably 30 to 60% by weight.
  • the aqueous solution contains a surfactant, polyacrylic acid (salt) or a crosslinked product thereof (water absorbent resin), a polymer compound such as starch, polyvinyl alcohol, various chelating agents, various additives, and the like. You may use together in 0 to 30weight% or less with respect to 0 weight%.
  • the aqueous solution includes a dispersion exceeding the saturation concentration, but is preferably polymerized at a saturation concentration or less.
  • the water-absorbent resin of the present invention is produced by crosslinking and polymerizing the unsaturated monomer to obtain a hydrogel polymer.
  • Polymerization is usually spray polymerization, drop polymerization, aqueous solution polymerization or reverse phase suspension polymerization because of performance and ease of control of polymerization, and in particular, aqueous solution that has been difficult to control the particle size because of its irregularly shaped particles. Polymerization and further continuous aqueous polymerization are performed.
  • Reverse phase suspension polymerization is a polymerization method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent.
  • aqueous solution polymerization is a method of polymerizing an aqueous monomer solution without using a dispersion solvent.
  • aqueous solution polymerization or reverse phase suspension polymerization preferably aqueous solution polymerization, more preferably continuous aqueous solution polymerization, particularly preferably continuous belt polymerization or continuous kneader polymerization are applied.
  • the solid content is 0.1% by weight or more, preferably 1 to 40% by weight before and after the polymerization. %, More preferably 2 to 30% by weight, particularly preferably 3 to 20% by weight.
  • the rise in solid content is appropriately determined by the temperature at the time of polymerization (for example, polymerization at the boiling point), the air flow and the shape (particle size and sheet thickness of the polymer gel) and the like.
  • polymerizations can be carried out in an air atmosphere, but are carried out in an inert gas atmosphere such as nitrogen or argon, for example, at an oxygen concentration of 1% by volume or less.
  • the monomer component is preferably used for polymerization after the dissolved oxygen is sufficiently substituted with an inert gas and the oxygen concentration becomes less than 1 [mg / L] (ppm).
  • the effect is exhibited by controlling the particle size in the production and pulverization of a real scale, especially a huge scale, rather than a laboratory scale. Therefore, in particular, the unsaturated monomer aqueous solution is polymerized in one line to make the water-absorbing resin 1 [t / hr] or more, further 2 [t / hr] or more, and further 5 [t / hr] or more.
  • the present invention can be suitably employed in continuous polymerization and continuous pulverization produced or pulverized on a huge scale of 10 [t / hr] or more. The upper limit of production is appropriately determined, for example, 100 [t / hr].
  • continuous kneader polymerization for example, US Pat. Nos. 6,987,151 and 6,710,141, US Patent Application Publication No. 2008/0080300
  • continuous belt polymerization for example, US Pat. Nos. 4,893,999 and 6,241,928,.
  • US Patent Application Publication No. 2005/215734 for example, US Pat. Nos. 6,987,151 and 6,710,141, US Patent Application Publication No. 2008/0080300
  • Examples of the polymerization method for aqueous solution polymerization include a static polymerization method in which a monomer aqueous solution is polymerized in a static state, and a stirring polymerization method in which polymerization is performed in a stirring device.
  • a static polymerization method a method using an endless belt is preferable.
  • a stirring polymerization method a uniaxial stirrer can be used, but a multi-stirrer stirrer such as a kneader is preferably used.
  • the polymerization method in the present invention there is a continuous polymerization method at a high monomer concentration using an endless belt as described in JP-A No. 2005-307195.
  • Such continuous belt polymerization or continuous kneader polymerization is also suitably applied to the present invention.
  • high temperature start for example, the temperature of the monomer is 30 ° C. or higher, more preferably 35 ° C. or higher, further preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher, and the upper limit is the boiling point.
  • High monomer concentration for example, 30% by weight or more, more preferably 35% by weight or more, further preferably 40% by weight or more, particularly preferably 45% by weight or more, and the upper limit is a saturation concentration). Is a preferred example.
  • the polymerization initiator used by this invention is suitably selected by the form of superposition
  • a polymerization initiator a water-soluble polymerization initiator, preferably a photodecomposition polymerization initiator, a thermal decomposition polymerization initiator, a redox polymerization initiator, and the like can be exemplified.
  • photodegradable polymerization initiator examples include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, azo compounds, and the like.
  • thermal decomposition type polymerization initiator examples include persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide and methyl ethyl ketone peroxide; azonitrile compounds , Azoamidine compounds, cyclic azoamidine compounds, azoamide compounds, alkylazo compounds, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydro And azo compounds such as chloride.
  • persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate
  • peroxides such as hydrogen peroxide, t-butyl peroxide and methyl ethyl ketone peroxide
  • azonitrile compounds Azoamidine compounds, cyclic azoamidine
  • Examples of the redox polymerization initiator include a system in which a reducing compound such as L-ascorbic acid or sodium bisulfite is used in combination with the persulfate or peroxide, and the both are combined.
  • the amount of the polymerization initiator is 0.0001 to 1 mol%, preferably 0.001 to 0.5 mol%, based on the monomer.
  • the hydrogel polymer before drying is finely granulated during or after polymerization. Preferably it is.
  • the hydrogel polymer (hydrous cross-linked polymer) obtained by aqueous solution polymerization (especially when continuous belt polymerization is used) in the present invention for example, in the form of a lump or sheet, is pulverized by a pulverizer to form a particulate hydrogel. And then dried.
  • a particulate water-containing gel is obtained by polymerization, but the particulate water-containing gel after polymerization may be dried as it is, and if necessary, further pulverization or The particle size may be adjusted by binding.
  • the weight average particle size (D50) determined by standard sieve classification is preferably in the range of 0.5 to 10 mm, and preferably in the range of 1 to 5 mm. Is more preferably 1 to 3 mm, particularly preferably 1 to 2 mm.
  • the water-containing gel polymer preferably the particulate water-containing gel polymer, is dried until the solid content becomes pulverizable.
  • the form of the hydrophilic cross-linked polymer (hydrogel polymer) used in the drying step is a coarsely crushed hydrogel, agglomerate thereof, and a sheet hydrogel by a kneader, meat chopper, cutter, or the like. You may put the crushing process and the crushing process of an aggregate suitably in this drying process. As such a technique, for example, US Pat. No. 6,187,902 is adopted.
  • a drying method in the present invention various methods can be adopted so as to achieve a desired moisture content, and the drying with hot drying, hot air drying, reduced pressure drying, infrared drying, microwave drying, and hydrophobic organic solvent can be used. Examples include dehydration by boiling and high-humidity drying using high-temperature steam.
  • a conduction heat transfer dryer eg, a radiation heat transfer dryer (eg, infrared drying), a hot air heat transfer dryer, a dielectric heating dryer (eg, microwave drying). ), And combinations thereof.
  • a hot air heat transfer type dryer is preferably used from the viewpoint of drying efficiency.
  • the hot air drying method there are a method of drying in a stationary state, a method of drying in a stirring state, a method of drying in a vibrating state, a method of drying in a fluidized state, a method of drying in an air current, and the like.
  • hot air drying using fluidized bed drying or stationary drying (further aeration band drying) and continuous stationary drying (continuous aeration band drying) is used from the viewpoint of efficiency.
  • the drying temperature is usually 60 to 250 ° C., preferably 100 to 250 ° C., more preferably 100 to 220 ° C., further preferably 120 to 200 ° C., particularly preferably 150 to 190 ° C. (especially hot air temperature). Is called.
  • the drying time depends on the surface area of the polymer, the moisture content, the type of the dryer, and the air volume, and is selected so as to achieve the desired moisture content.
  • the drying time may be appropriately selected within the range of 1 minute to 5 hours and 1 minute to 1 hour.
  • the solid content of the hydrophilic crosslinked polymer is preferably increased to 70 to 95% by weight, more preferably 80 to 95% by weight, still more preferably 85 to 95% by weight, and particularly preferably 90 to 95% by weight. .
  • the weight average particle diameter is preferably 100 to 1000 ⁇ m, more preferably 200 to 800 ⁇ m, and particularly preferably 300 to 600 ⁇ m.
  • those having a particle size in the range of 150 ⁇ m or more and less than 850 ⁇ m are preferably 80% by weight or more, and more preferably 90% by weight or more.
  • This particulate water-absorbing resin is sent to “(2-6) surface treatment step” described later.
  • the fine powder having a particle size of 150 ⁇ m or less generated in this step deteriorates the physical properties of the water-absorbent resin, and is also a problem in safety and hygiene, so it is classified and removed.
  • the step of classifying and removing fine powder may be performed during or after the heating and drying step, as will be described later.
  • the fine powder is appropriately collected and subjected to a process such as being formed again into a granular shape or recovered in a monomer aqueous solution.
  • the surface cross-linking step is a characteristic part of the present invention. That is, the method for producing a water absorbent resin of the present invention includes a step of adding a surface cross-linking agent and water to a particulate water absorbent resin in a mixer, and the water absorbent resin mixture taken out of the mixer is heated or activated in a reactor.
  • a method for producing surface-crosslinked water-absorbing resin particles which sequentially includes a step of reacting with a surface-crosslinking agent by irradiation with energy rays, wherein a part or all of water addition in a mixer is added with water vapor.
  • various organic crosslinking agents or inorganic crosslinking agents can be exemplified.
  • known crosslinking agents exemplified in the above-mentioned documents 1-34.
  • An agent can be used.
  • the surface cross-linking agent can be used without particular limitation as long as it can cross-link the water-absorbent resin.
  • a crosslinking technique Patent Document 22
  • Patent Document 22 can also be used or included as a crosslinking agent.
  • a carboxyl group of the water-absorbent resin particularly neutralized or unneutralized carboxyl group of polyacrylic acid
  • a reactive surface cross-linking agent can be used.
  • examples of the surface crosslinking agent include compounds having a hydroxyl group, an amino group, or a derivative thereof.
  • polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds or their condensates with haloepoxy compounds, oxazoline compounds, mono-, di- or polyoxazolidinone compounds, polyvalent metal salts, alkylene carbonate compounds and the like can be mentioned.
  • the cross-linking agent in which the surface cross-linking agent can dehydrate with carboxyl groups, especially A dehydration reactive crosslinking agent selected from polyhydric alcohol compounds (Patent Document 12), oxazolidinone compounds (Patent Documents 16 to 18), alkylene carbonate (Patent Document 19), and oxetane (Patent Document 11) can be preferably used.
  • Such a dehydration-reactive crosslinking agent forms a covalent bond through a dehydration reaction with the carboxyl group of the water-absorbent resin, it does not substantially react when water vapor is added (water addition). That is, after that, the water-absorbing resin mixture taken out from the mixer is heated or irradiated with active energy in the reactor to perform a dehydration reaction, thereby providing an excellent water-absorbing resin.
  • examples of the surface cross-linking agent capable of dehydrating with a carboxyl group include compounds exemplified in US Pat. Nos. 6,228,930, 6071976, 6254990, and the like.
  • mono, di, tri, tetra or polyethylene glycol monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3-pentanediol, polypropylene glycol, glycerin, polyglycerin , 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, etc.
  • Alcohol compounds Epoxy compounds such as ethylene glycol diglycidyl ether and glycidol; Multivalents such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, and polyamidepolyamine Haloepoxy compounds such as epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin; condensates of the above polyvalent amine compounds and the above haloepoxy compounds; oxazolidinone compounds such as 2-oxazolidinone; ethylene carbonate, etc. An alkylene carbonate compound; an oxetane compound; and a cyclic urea compound such as 2-imidazolidinone.
  • Multivalents such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, and polyamidepolyamine
  • polyamine and polyvalent metal salt can be used as a surface cross-linking agent capable of ionic cross-linking with the carboxyl group of the particulate water-absorbing resin, and can also be used as a liquid permeability improver described later.
  • These surface cross-linkings may be performed once or may be performed a plurality of times on the particulate water-absorbing resin by using the same or different surface cross-linking agents.
  • dehydration reactive cross-linking agents not disclosed in the above-mentioned Patent Document 33, in particular, polyhydric alcohols, (mono or polyvalent) oxazolidinones, (mono or polyvalent) alkylene carbonates, (mono or polyvalent) Oxetane is exemplified, and these dehydration-reactive cross-linking agents are AAP not disclosed in Patent Document 33 because the cross-linking agent or the ring-opened product of the hydroxyl group or amino group undergoes dehydration reaction and cross-linking with the carboxy group of the water absorbent resin. And SFC can be improved.
  • these dehydration-reactive crosslinking agents are preferably added to the particulate water-absorbing resin as a solution, particularly an aqueous solution, thereby improving AAP and SFC not disclosed in Patent Document 33. be able to.
  • a crosslinking agent particularly a dehydration-reactive crosslinking agent
  • a dehydration reaction by heat treatment added to the water-absorbent resin as a solution, particularly as an aqueous solution, so that AAP or SFC can be obtained.
  • the dehydration reaction hardly (or at all) proceeds in the presence of water, the progress of the dehydration reaction can be easily confirmed by a decrease in water content of the water-absorbent resin particles before and after surface cross-linking (synonyms; increase in solid content).
  • the water content of the water-absorbing resin particles after the surface cross-linking is reduced, in particular 3% by weight or less, 2% by weight or less, 1% by weight or less, 0. This can be confirmed by a decrease to 5 wt% or less.
  • the use of water vapor and the increase in the weight of the water-absorbent resin with water vapor are necessary for eliminating unevenness due to the use of an aqueous solution in surface crosslinking.
  • the amount of the surface cross-linking agent used depends on the compounds used and combinations thereof, but is preferably in the range of 0.001 to 10 parts by weight, preferably 0.01 to 5 parts per 100 parts by weight of the particulate water-absorbing resin. More preferably within the range of parts by weight.
  • water is used together with the surface cross-linking agent.
  • the amount of water used is preferably in the range of 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the particulate water-absorbing resin.
  • a hydrophilic organic solvent can be used in addition to water.
  • the amount of the hydrophilic organic solvent used is in the range of more than 0 parts by weight and 10 parts by weight or less, preferably more than 0 parts by weight and 5 parts by weight or less with respect to 100 parts by weight of the particulate water-absorbing resin. It is a range.
  • hydrophilic organic solvent for example, lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and t-butyl alcohol; ketones such as acetone; Ethers such as dioxane, tetrahydrofuran, methoxy (poly) ethylene glycol; amides such as ⁇ -caprolactam and N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetra Ethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, polypropylene Glycol, glycerin, polyglycerin, 2-butene-1,4-diol, 1,
  • the polyhydric alcohols may be used as a crosslinking agent by appropriately selecting the temperature and time, or may be used as a solvent without reacting at all, or a plurality of polyhydric alcohols having these properties respectively. You may use together. These solutions including water are used at 0 to 100 ° C., preferably 5 to 50 ° C. in consideration of the mixing property, although depending on the freezing point and boiling point.
  • the range does not hinder the effect of the present invention, for example, within the range of more than 0% by weight and not more than 10% by weight, preferably more than 0% by weight and more than 5% by weight.
  • the water-insoluble fine particle powder and the surfactant may coexist in the following range, more preferably in the range of more than 0% by weight and 1% by weight or less.
  • Preferred surfactants and methods for using them are exemplified in US Pat. No. 7,381,775, for example.
  • the particulate water-absorbing resin supplied to the surface cross-linking step The particulate water-absorbing resin that has undergone the above “(2-5) step of controlling the particle size” is preferably temporarily stored in a heated or warmed storage facility. And is quantitatively supplied to the surface cross-linking step by a feeder.
  • a preferred feeder is a circle feeder or a screw feeder.
  • the temperature of the particulate water-absorbing resin supplied to the mixer is preferably lower than the temperature of water vapor, more preferably 10 to 100 ° C., further preferably 30 to 90 ° C., particularly 50 to 80 ° C. It is preferable.
  • the temperature of the particulate water-absorbing resin supplied to the surface cross-linking step is preferably 30 to 150 ° C., more preferably 40 to 120 ° C., even more preferably when it is charged into the mixer. It is 30 to 90 ° C, particularly preferably 40 to 80 ° C, most preferably 50 to 70 ° C.
  • the water-absorbent resin is likely to adhere and agglomerate, and if the temperature of the particulate water-absorbent resin to be added is lower than 30 ° C., the water-absorbent resin is likely to adhere and may be clogged due to the growth of the adhering matter during long time operation.
  • the temperature is higher than 150 ° C., the particulate water-absorbing resin may be deteriorated, and the mixing property of the particulate water-absorbing resin may be deteriorated depending on the additive.
  • the water is efficiently absorbed by the particulate water-absorbing resin by setting the temperature of the particulate water-absorbing resin lower than the water vapor.
  • the temperature of the particulate water-absorbing resin is excessively lower than the temperature of the water vapor, for example, 110 ° C. or higher, and further 150 ° C. or higher, the aggregation of the particulate water-absorbing resin occurs, and the subsequent heat treatment, That is, the water-absorbent resin mixture taken out from the mixer may be disadvantageous for heating in the reactor to form a dehydration reaction.
  • the temperature of the particulate water-absorbing resin can be measured by taking out the particulate water-absorbing resin put into the mixer and quickly bringing it into contact with a general contact thermometer.
  • the first production method of the present invention is to supply water vapor into the mixer.
  • saturated steam having a vapor pressure higher than 1 atm is supplied to the mixer through a steam line.
  • a device for supplying a gas such as a blower becomes unnecessary, and water vapor can be efficiently supplied.
  • the preferable vapor pressure (gauge pressure) of the supplied water vapor is 0.01 to 1 MPa, more preferably 0.05 to 0.9 MPa, and still more preferably 0.1 to 0.8 MPa. If it is less than 0.01 MPa, the mixing property is deteriorated. On the other hand, when the pressure is higher than 1 MPa, high-pressure steam is opened in the mixer, which is dangerous. Moreover, the temperature of water vapor
  • the vapor pressure of saturated water vapor can be read as the temperature of saturated water vapor by using a table described in page 400 of Chemical Engineering Handbook 6th edition (issued by Maruzen).
  • the preferred water vapor temperature is about 100-180 ° C.
  • the dew point in the mixer is preferably 60 to 100 ° C, more preferably 70 to 100 ° C, and particularly preferably 80 to 100 ° C. When the dew point in the mixer is lower than 60 ° C., the effect of the present invention is reduced.
  • (D) Mixer In the present invention, after adding a surface cross-linking agent to the particulate water-absorbing resin and mixing in the mixer, heating or active energy rays are used to react the surface cross-linking agent with the particulate water-absorbing resin. Irradiate.
  • the reactor for reacting the surface cross-linking agent and the particulate water-absorbing resin may be of the same type as the apparatus for mixing the surface cross-linking agent and the particulate water-absorbing resin, or may be of another type. Good. However, since it is necessary for the mixer to quickly mix the particulate water-absorbing resin and the surface cross-linking agent, it is difficult to achieve a device structure that is heated or irradiated with active energy for a sufficient time to promote the cross-linking reaction. . Accordingly, the mixer and the reactor are preferably different types.
  • the average residence time of the particulate water-absorbing resin in the mixer is preferably 1 second or more and less than 5 minutes, more preferably 1 second or more and less than 1 minute.
  • the average residence time of the water-absorbing resin mixture in the connected reactor is appropriately determined depending on the reactivity of the cross-linking agent, and is, for example, 1 minute or longer, usually 6 minutes to 10 hours, further 10 minutes to 2 hours. is there.
  • the mixing device used when mixing the particulate water-absorbing resin and the surface cross-linking agent has a large mixing force in order to mix these substances uniformly and reliably.
  • Examples of the mixing apparatus include a cylindrical mixer, a double wall conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, and a pulverizing kneader.
  • Rotating mixers, airflow mixers, turbulators, batch-type Redige mixers, continuous-type Redige mixers, and the like are suitable.
  • a more preferred mixer is a vertical mixer having a cylindrical mixing tank and a paddle rotating about a central axis.
  • the vertical type means that the rotation axis is in the vertical direction (vertical direction)
  • the horizontal type means that the rotation axis is in the horizontal direction.
  • the water-absorbing resin that is moistened easily accumulates in the lower part of the mixing tank, and there is a possibility that large water-absorbing resin agglomerates may be formed or the water-absorbing resin adheres to the paddles, resulting in poor mixing. .
  • a vertical mixing apparatus that satisfies the following conditions (i) to (iii) for mixing the particulate water-absorbing resin and an additive such as a surface cross-linking agent. .
  • the stirring blade rotates at 300 to 3000 rpm.
  • At least one of the rotating shafts of the stirring blades is in the vertical direction (vertical mixer).
  • the mixing tank is divided into two or more chambers at the top and bottom by a partition having an opening degree of 5 to 70%.
  • the above vertical mixing apparatus has been studied by the present inventors.
  • a conventional vertical mixer that is, a mixer whose rotating shaft is in the vertical direction, a stirring blade is used.
  • a stirring blade is used.
  • the temperature of the particulate water-absorbing resin is set to 30 to 150 ° C. in advance, and the following conditions (i) to (iii) ), (I)
  • the stirring blade rotates at 300 to 3000 rpm.
  • At least one rotating shaft of the stirring blade is in the vertical direction.
  • the mixing tank is divided into two or more chambers at the top and bottom by a partition having an opening degree of 5 to 70%.
  • uniform mixing can be performed in the mixing of the particulate water-absorbing resin and the additive, and the resulting mixture has preferable physical properties depending on the purpose of the additive. Furthermore, it is also suitable for the production of a water-absorbing resin with a scale exceeding 1 t / hr. That is, in the above method, the mixing of the particulate water-absorbing resin and the additive has high mixing properties, high processing power, and stable operability.
  • the preferable shape of the mixing tank in the vertical mixer is a drum type, and has a rotating shaft of a stirring blade in the center. Such a barrel portion of the mixing tank may be swollen or constricted to the extent that the present invention is not hindered.
  • the particulate water-absorbing resin charged into the vertical mixer is discharged through two processes: (I) dispersion and (II) stirring and mixing.
  • the particulate water-absorbing resin obtains a centrifugal force and is dispersed toward the side wall by the stirring blade and the air flow generated by the rotation of the stirring blade.
  • the rotational speed of the vertical mixer is 300 to 3000 rpm, preferably 500 to 3000 rpm.
  • the maximum rotating diameter of the stirring blade is usually about 0.1 to 1 m, and the diameter of the mixing tank is usually about 0.15 to 1.2 m. If the rotational speed is slower than 300 rpm, an air flow sufficient for dispersion cannot be obtained. If the rotational speed is faster than 3000 rpm, the water-absorbent resin may be damaged by collision with the stirring blades, resulting in a decrease in physical properties and an increase in fine powder.
  • At least one of the rotating shafts of the stirring blade is in the vertical direction.
  • the vertical direction may not be strict, and may be inclined to the extent that does not impair the operation of the mixer.
  • the rotating shaft of the stirring blade can be 1 to 5, and is usually one.
  • the particulate water-absorbing resin is charged into the mixing tank from the charging port provided on the upper surface of the mixing tank.
  • a partition is installed to prevent the particulate water-absorbing resin from falling toward the discharge port before being sufficiently dispersed.
  • the partition is preferably used under the inlet.
  • the partition of the continuous mixing apparatus has an opening degree of 5 to 70%, preferably 10 to 50%, particularly preferably 10 to 30%.
  • the degree of opening refers to the area (S1) of the interior surrounded by the inner wall of the casing, the structure surrounded by the inner wall of the casing, and the particulate water absorption in a plane (horizontal plane in the present invention) perpendicular to the rotation axis. It is a value obtained from the following mathematical formula with respect to the area (S2) of the hollow portion inside the structure (for example, the hollow inside the rotating shaft) where the functional resin cannot enter.
  • the shape and location of the opening are determined as appropriate, and the number of openings may be one or more.
  • the outer periphery of the rotating shaft, particularly the inner wall is 1 to 5 locations, more preferably 1 to 3 locations, Installed at.
  • a suitable opening has a partition structure as described below. Such a partition is preferably formed by a plate having an area of S2, particularly a disk, having an opening with an area (S1-S2), and upper and lower partitions.
  • the size of one opening is larger than the water-absorbent resin particles, and the area is preferably at least twice, more preferably at least 10 times, at least 100 times the cross-sectional area of the weight average particle diameter (D50). And / or the cross-sectional area of one opening is 1 cm 2 or more, further 5 cm 2 or more.
  • the upper limit of the aperture is properly determined by the processing amount 6000 cm 2 or less, usually about 2 1000 cm.
  • partitions There are one or more partitions, and two or more partitions may be installed on the top and bottom, and the mixing tank is divided into two or more rooms on the top and bottom.
  • the volume of any room is preferably 10% or more of the volume of the mixing tank, and the division method can be appropriately selected within this range.
  • the partition may be a fixed type attached to the side wall of the mixing tank, but a partition that rotates about the rotation axis of the stirring blade can be used.
  • a partition that rotates about the rotation axis of the stirring blade can be used.
  • a plate-like structure may be attached to the rotating shaft, or a part of the rotating shaft may be thickened and used as the partition.
  • such a partition may be integrated with the stirring blade. That is, instead of attaching the stirring blade to the shaft, the stirring blade can be attached to the partition.
  • the additive to be mixed by the continuous mixing apparatus has properties of liquid, dispersion, or solid fine particles.
  • the mixer used in the present invention is particularly effective in terms of preventing adhesion, etc., but even if the additive is a solid fine particle, good mixing properties are denied. It is not a thing, and since it mixes rapidly, the damage given to a particulate water-absorbing resin can be reduced.
  • the amount of the additive depends on the purpose of use and properties, but is preferably 100 parts by weight or less, more preferably 70 parts by weight or less, and more preferably 0.001 parts by weight or more with respect to 100 parts by weight of the particulate water-absorbing resin. Preferably there is.
  • the addition method of the additive is dripping or spraying, and preferably spraying in order to uniformly mix with the water absorbent resin.
  • a preferable addition position of the additive is in the middle of the “(I) dispersion” process or after the completion of the “(I) dispersion” process.
  • the particulate water-absorbing resin to which the above additives are attached enters the above-mentioned “(II) stirring and mixing” process.
  • the area where “(I) dispersion” and “(II) stirring and mixing” are performed is divided by a large partition, thereby preventing a short pass.
  • a plurality of the partitions may be installed.
  • a partition is provided between the stirring blade and the other stirring blade.
  • the particulate water-absorbing resin to which the additive has adhered is in a state of forming a staying layer while rotating along the side wall due to centrifugal force. As the stirring blade passes through the staying layer, the particulate water-absorbing resin and the additive are vigorously mixed, and uniform mixing is achieved. In this process, when the fine powder and the binder are mixed, the fine powders are further bound to each other to form a binder having a particle diameter of 150 ⁇ m or more.
  • the particulate water-absorbing resin is retained on the side wall by centrifugal force, and in order to perform stirring, it is preferable to provide a discharge port on the rotating shaft side from the track drawn by the tip of at least one stirring blade. More preferably, in order to control the retention amount for the purpose of improving physical properties, a weir structure whose length and / or angle can be changed is provided at the discharge port.
  • This weir structure has an inner wall of the casing in which the horizontal length ( ⁇ ) from the side wall (inner wall) to the rotation axis side is preferably the maximum radius of the mixing tank (the plane perpendicular to the rotation axis (horizontal plane in the present invention)).
  • the maximum radius of the enclosed interior is 1 to 40%, and the angle ( ⁇ ) made with respect to the horizontal plane is preferably 10 to 80 °. If the weir angle exceeds 80 °, or the overhang length is less than 1% of the maximum radius of the mixing tank, the particulate water-absorbing resin may not form a staying layer and the mixing property may deteriorate. . On the other hand, if the weir angle is less than 10 °, or the overhang length exceeds 40% of the maximum radius of the mixing tank, the discharge performance may be deteriorated.
  • the height of the mixing tank in the rotation axis direction may be low.
  • the height of the mixing tank in the direction of the rotation axis is H, and the diameter of the maximum portion of the mixing tank (maximum diameter (maximum inside the plane surrounded by the inner wall of the casing in the plane perpendicular to the rotation axis (horizontal plane in the present invention)).
  • the value of H / D is preferably 0.1 to 1.0, particularly preferably 0.1 to 0.5, where D is the diameter)).
  • the maximum diameter of the mixing tank is preferably 0.15 to 1.2 m, and the height of the mixing tank is preferably 0.03 to 1 m. Therefore, although it is a mixer having a very compact shape, which has not been heretofore, the amount of the water-absorbing resin charged into the mixer is preferably 10 to 300 kg / hr, more preferably 10 to 300 kg / hr per mixing tank volume of the mixer. Is mixed with the particulate water-absorbing resin at a high processing force of 10 to 150 kg / hr. At this time, the processing power of one mixer is preferably 50 to 30000 kg / hr, although it depends on the size of the mixer.
  • the inner wall is preferably heated or kept warm.
  • the inner wall includes an inner surface of the casing, a shaft, a partition, and a stirring blade.
  • steam or warm water inside a shaft or a partition is also preferable.
  • the temperature of the inner wall is preferably 50 to 150 ° C. If it is lower than this range, it may adhere to the inner wall depending on the additive, and if it is higher than this range, the particulate water-absorbing resin may be deteriorated.
  • the mixer according to the present invention is preferably coated with a material to which the inner wall is difficult to adhere.
  • the inner wall can be coated using a material (base material) having a contact angle with water of 60 ° or more.
  • a fluororesin can be used as such a material. Since the continuous mixing apparatus is compact, coating is easy. In particular, since the direction of the rotation axis can be shortened, it is advantageous that the area of the side wall that is heavily worn by friction with the particulate water-absorbent resin is small.
  • water vapor may be introduced in mixing the particulate water-absorbing resin and the additive.
  • water vapor By introducing water vapor, it may be possible to suppress adhesion of the particulate water-absorbing resin to the inner wall and control the permeability of the additive.
  • the mixing of the fine powder and the binder is preferable because water vapor becomes water on the surface of the fine powder and has an effect of binding the fine powder.
  • the water vapor supplied to the mixer is saturated water vapor and is preferably opened in the mixer.
  • the gauge pressure of water vapor is 0.1 to 2.0 MPa, preferably 0.1 to 1.0 MPa, more preferably 0.1 to 0.5 MPa. If the gauge pressure is lower than 0.1 MPa, the effect of water vapor is not exhibited. If the gauge pressure is higher than 2.0 MPa, the particulate water-absorbing resin may be deteriorated.
  • the supply amount of the water vapor is 1 to 100 kg / hr, preferably 1 to 50 kg / hr, more preferably 1 to 30 kg / hr with respect to 100 kg / hr of the particulate water absorbent resin. If the supply amount of the water vapor is less than 1 kg / hr with respect to the supply amount of the particulate water-absorbing resin 100 kg / hr, the effect of the water vapor is not exhibited, and if it is more than 100 kg / hr, the mixed state may be deteriorated.
  • the water vapor absorbed by the particulate water-absorbent resin is only a part of the supplied water vapor.
  • the mixer which is a feature of the present invention, is less suitable for adhesion when steam is introduced, and is therefore suitable for mixing with steam.
  • the preferred rotation speed of the paddle in the mixer is 100 rpm or more and less than 5000 rpm, more preferably 300 rpm or more and less than 2000 rpm. If the rotational speed of the paddle is less than 100 rpm, large water-absorbent resin aggregates are likely to be formed in the mixing tank. Further, if the rotational speed of the paddle is 5000 rpm or more, the water absorbent resin may be crushed due to the collision between the paddle and the water absorbent resin.
  • the residence time of the particulate water-absorbing resin in the mixer is preferably 1 second or more and less than 5 minutes. More preferably, it is 1 second or more and less than 1 minute. If the residence time is less than 1 second, sufficient mixing cannot be obtained, and physical properties after surface cross-linking, such as absorption capacity under pressure, may be deteriorated. On the other hand, if the residence time is 5 minutes or longer, the water-absorbent resin is damaged due to the collision between the paddle and the water-absorbent resin, and the physical properties after surface crosslinking may be deteriorated.
  • an exhaust device is preferably provided from the mixer to the reactor inlet.
  • the mixer preferably has an exhaust device. More preferably, an exhaust device is provided near the outlet of the water absorbent resin after mixing. This is to prevent excessive water vapor from staying. For this reason, it is preferable that the exhaust device is kept warm or heated.
  • the pressure of the exhaust line is -0.01 to -1 kPa (gauge pressure), more preferably -0.05 to -0.5 kPa. If the exhaust pressure is less than -0.01 kPa, the water absorbent resin tends to form large agglomerates. If the exhaust pressure is higher than ⁇ 1 kPa, the water-absorbing resin may enter the exhaust line, which may cause a loss or reduce the capacity of the exhaust device.
  • the temperature of the inner surface of the mixer (such as the inner wall and a stirring blade installed if necessary) is preferably lower than water vapor, more preferably 10 to 100 ° C., further preferably 30 to 90 ° C., particularly preferably 50 ⁇ 80 ° C lower.
  • the temperature of the mixer is excessively lower than the temperature of the water vapor, for example, when the temperature is 110 ° C. or higher, and further 150 ° C. or higher, the water-absorbing resin particles are agglomerated, and the subsequent heat treatment, that is, mixing The water-absorbing resin mixture taken out from the machine is heated in the reactor, which is disadvantageous for forming a dehydration reaction.
  • the temperature on the inner surface of the mixer is set low, water vapor is condensed on the inner surface of the mixer, and the particulate water-absorbing resin contacts the condensed inner surface, so that uniform water is supplied to the particulate water-absorbing resin. It is estimated that the addition is promoted. However, in the present embodiment, it does not matter whether water addition to the particulate water-absorbing resin is absorption of water vapor directly or absorption of condensed water of water vapor.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an example of a vertical mixing apparatus according to the present embodiment
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of another example of the vertical mixing apparatus according to the present embodiment
  • FIG. 3 is a cross-sectional view showing a schematic configuration of still another example of the vertical mixing apparatus according to the present embodiment.
  • the vertical mixing apparatus is provided in a mixing layer 10 with a rotating shaft 6 installed in the vertical direction for stirring, and the rotating shaft 6. And a plate-like partition 7 provided on the side wall 1 of the mixed layer 10 that divides the mixing tank 10 into two or more chambers.
  • an inlet 2 for introducing water-absorbing resin particles and an additive inlet 4 for introducing a surface cross-linking agent are provided at the upper part of the mixed layer 10.
  • a discharge port 3 for discharging the mixture of the particulate water-absorbing resin and the additive is provided at the lower part of the mixed layer 10, and the size of the discharge port 3 is changed by the weir 8. Can be made.
  • the particulate water-absorbing resin supplied from the inlet 2 and the additive such as the surface cross-linking agent supplied from the additive inlet 4 are mixed in the mixed layer 10.
  • the mixed layer 10 is divided into two chambers by the partition 7 in the vertical direction, the particulate water-absorbing resin is prevented from falling toward the discharge port before being sufficiently mixed. Then, a sufficiently mixed mixture of the particulate water-absorbing resin and the additive is discharged from the discharge port 3.
  • the partition 7 is installed on the side wall 1, but as shown in FIGS. 2 and 3, the partition 7 is installed on the stirring shaft 6 and the rotating shaft of the stirring blade 5 is rotated.
  • the structure which rotates to the center may be sufficient. 2 and 3, the stirring blade 5 is installed in the partition 7.
  • the amount of water supplied to the mixer as water vapor and taken into the particulate water-absorbing resin is normally taken into 100% particulate water-absorbing resin. Good. That is, in the present invention, the amount of water supplied to the mixer as water vapor and taken into the particulate water-absorbent resin is the amount of water supplied to the mixer as liquid water from the increase in moisture in the particulate water-absorbent resin. It shall be subtracted.
  • the amount of water taken into the particulate water absorbent resin as liquid water is preferably in the range of 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the particulate water absorbent resin. is there.
  • the amount of water supplied as water vapor and taken into the particulate water-absorbing resin is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the particulate water-absorbing resin. Part range.
  • the amount of water increased by incorporating water vapor is less than 0.1 parts by weight, the effect of the present invention is small.
  • the amount exceeds 10 parts by weight there is a possibility that stable operation is difficult due to a large amount of aggregates of the particulate water-absorbing resin.
  • the supplied water vapor is taken into the particulate water absorbent resin, it is preferably 1.1 to 5 times, more preferably 1.5 to 3 times the amount of water taken into the particulate water absorbent resin.
  • water vapor must be supplied to the mixer. The amount of water vapor supplied to the mixer can be measured with a commercially available flow meter.
  • the water added to the particulate water-absorbing resin is preferably a combination of liquid and water vapor.
  • the liquid water may be water alone or may be added as a mixture of water and an organic solvent.
  • the water added to the particulate water-absorbing resin is A crosslinker aqueous solution and water vapor are used in combination.
  • 0.1 to 10 parts by weight of water is mixed with 100 parts by weight of the particulate water-absorbing resin, and the amount of water supplied as a liquid is 0 to 95% by weight of the total supply water, Is preferably 20 to 90% by weight, particularly 40 to 80% by weight.
  • Patent Documents 20, 21, 33, and 34 a technique (Patent Documents 20, 21, 33, and 34) using water vapor for a heating reaction in the heat treatment of a water absorbent resin mixture after mixing a monomer and a surface cross-linking agent has also been proposed.
  • a technique of using water vapor for granulating a water-absorbent resin Japanese Patent Laid-Open No. 2005-054151 has also been proposed.
  • a water-absorbing resin having high physical properties is achieved by using water vapor, preferably water vapor and liquid water (particularly, an aqueous solution of the crosslinking agent) when mixing the surface crosslinking agent.
  • (F) Step of reacting the surface cross-linking agent The water absorbent resin mixture after mixing the surface cross-linking agent is heated or irradiated with active energy in the reactor.
  • the water-absorbent resin mixture is subjected to a heat treatment and, if necessary, a cooling treatment thereafter.
  • the heating temperature is preferably in the range of 70 to 300 ° C, more preferably 120 to 250 ° C, still more preferably 150 to 250 ° C.
  • the heating time is preferably 1 minute or longer, usually 6 minutes to 10 hours, more preferably 10 minutes to 2 hours.
  • the heat treatment can be performed using a normal dryer or a heating furnace. Preferably, by using a dryer with a paddle, aggregate formation and heat unevenness can be prevented.
  • a polymerizable or radical-reactive surface cross-linking agent such as in Patent Documents 20 to 22, heating or active energy ray irradiation may be performed in a reactor.
  • the surface cross-linking method of the present invention may be less effective in small kales and batch reactions, and can be suitably used for continuous production on a continuous huge scale, and usually 0.1 [t / hr] or more, preferably Can be suitably used for continuous production of 1 [t / hr], further 2 to 100 [t / hr].
  • the obtained water absorbent resin mixture (usually particles)
  • the temperature of the surface water-absorbing resin mixed with 0.001 to 10 parts by weight of a surface cross-linking agent and 0.5 to 10 parts by weight of water) is increased by 2 ° C. or more, and further 3 to 60 It is preferable to raise the temperature by 4 ° C., raise the temperature by 4-50 ° C., raise the temperature by 5-40 ° C., and raise the temperature by 6-30 ° C.
  • This temperature control is performed by controlling the amount of steam added, the residence time in the mixer, and the temperature of the inner wall of the mixer.
  • steam is used as the first production method, and the inner wall of the mixer is heated to the above range.
  • the temperature of the water-absorbing resin mixture taken out from the mixer is preferably 50 to 140 ° C., more preferably 60 to 110 ° C., and particularly preferably 70 to 95 ° C. It is.
  • the present invention provides, as a second production method, a step of adding a surface cross-linking agent and water to a particulate water-absorbing resin in a mixer, and the water-absorbing resin mixture taken out from the mixer is heated or reacted in a reactor.
  • a method of producing surface-crosslinked water-absorbent resin particles which sequentially comprises a step of reacting with a surface cross-linking agent by irradiation with active energy rays, wherein the surface cross-linking agent and water are added in a mixer in the form of particles
  • a production method in which the temperature of the resulting water absorbent resin mixture is increased by 2 ° C. or more with respect to the temperature of the water absorbent resin.
  • the preferred temperature rise is the use of water vapor, but in addition, “the temperature of the inner wall of the mixer and the residence time may be controlled.
  • the surface cross-linking treatment in the present invention there is a method of performing surface cross-linking treatment by irradiating active energy after adding a treatment liquid containing a radical polymerizable compound to the particulate water-absorbing resin.
  • Japanese Patent Application “Japanese Patent Application No. 2003-303306” US Pat. No. 7,201,941).
  • a surface active agent can also be added to the said process liquid, and an active energy can be irradiated and surface crosslinking can also be performed.
  • the water absorbent resin particles obtained by the method for producing a water absorbent resin of the present invention are further added with a liquid permeability improver at the same time as surface crosslinking or after surface crosslinking. It is preferable. By adding a liquid permeability improver, the difference from the prior art appears more remarkably, and the present invention is clarified. When the liquid permeability improving agent is added, the water absorbent resin particles have a liquid permeability improving agent layer. Thereby, the water absorbent resin particles are further excellent in liquid permeability.
  • the particulate water-absorbing resin can be further added with other function-imparting agents such as deodorants, anti-coloring agents, antibacterial agents, anti-blocking agents, etc. at the same time or in separate steps.
  • function-imparting agents such as deodorants, anti-coloring agents, antibacterial agents, anti-blocking agents, etc. at the same time or in separate steps.
  • liquid permeability improver examples include polyamines, polyvalent metal salts, water-insoluble fine particles, and water-dispersed fine particles. Particularly preferred are polyvalent metal salts such as aluminum sulfate, particularly water-soluble polyvalent metal salts. Nos. 7179862, 7157141, 6831142, U.S. Patent Application Publication Nos. 2004/176557, 2006/204755, 2006/73969, 2007/1060113, and European Patent No. 1165631 The described techniques apply. Polyamines and water-insoluble fine particles are exemplified in International Publication Nos. 2006/082188, 2006/082189, and 2006/082197.
  • Polyamines and polyvalent metal salts can also be used as ion-reactive surface cross-linking agents that can be ion-cross-linked with the carboxyl groups of the particulate water-absorbing resin.
  • the surface cross-linking may be performed once, or may be performed a plurality of times by separately using an ion-reactive cross-linking agent after use or before use.
  • the amount of the liquid permeability improver used is preferably in the range of 0.001 to 5 parts by weight, more preferably in the range of 0.01 to 1 part by weight, with respect to 100 parts by weight of the water-absorbent resin particles.
  • the amount of the liquid permeability improver used is within the above range, the water absorption capacity under pressure (AAP) and physiological saline flow conductivity (SFC) of the surface-crosslinked water absorbent resin particles can be improved.
  • the addition of the liquid permeability improver is preferably a method of mixing or dispersing in advance with water and / or a hydrophilic organic solvent, if necessary, and then spraying or dropping and mixing the water-absorbent resin particles, more preferably a spraying method.
  • the addition of the liquid permeability improver is preferably performed in a cooling step in the fluidized bed of the water absorbent resin particles.
  • the addition of the liquid permeation improver may be performed simultaneously with the addition of the surface cross-linking agent, or may be performed after the heat treatment or the cooling treatment in the surface cross-linking step, and the mixing method of the present invention is applicable in either case.
  • Step of Binding Fine Powders In the step of binding fine powders, which is another embodiment of the present invention, fine powder is produced by the above-described vertical mixing apparatus satisfying (i) to (iii). And a binder are preferably mixed and discharged as a binder.
  • fine powder is fine powder generated by pulverization in “(2-5) Step of controlling particle size” or process damage in “(2-6) Surface treatment step”.
  • the fine powder used in the step of binding the fine powders contains 50 to 100% by weight, preferably 70 to 100% by weight, having a particle size of 150 ⁇ m or less.
  • the binder preferably contains 90 to 100% by weight of water. Moreover, you may mix and use an inorganic metal salt, an inorganic fine particle, and an organic solvent for this liquid. Furthermore, it is preferable to put water vapor into the mixer.
  • the amount of the binder added is preferably 100 parts by weight or less, more preferably 70 parts by weight or less, and preferably 10 parts by weight or more with respect to 100 parts by weight of the particulate water-absorbing resin.
  • the fine powder is bound by the binder, and a binder having a particle size of 150 ⁇ m or more can be formed.
  • This binder can be confirmed by the fact that a plurality of individual particles are gathered and aggregated while maintaining the shape by an optical microscope, and the fact that they are expanded as a plurality of discontinuous particles upon liquid absorption.
  • This binder has a solid content of 50 to 90% by weight, preferably 60 to 90% by weight, particularly preferably 60 to 80% by weight.
  • the vertical mixing device is a mixer with good mixing properties
  • the amount of the binder may be smaller than that of the prior art and the solid content of the binder can be increased by using the vertical mixing device. For this reason, less energy is required to dry the binder.
  • this mixer can have a high processing power of 10 to 300 kg / hr, more preferably 10 to 150 kg / hr per liter of mixing tank volume.
  • the binder moves to roll on the side wall of the mixer and is therefore generally spherical.
  • a feature of the vertical mixing apparatus is that the weight average particle diameter of the binder can be controlled in the range of 0.5 to 5 mm by the weir structure of the discharge port.
  • the above-mentioned binders are “(2-2) polymerization step”, “(2-3) step of refining the hydrogel polymer”, “(2-4) drying step”, “(2-5) particle size” It is preferable that the process is returned to any one of the steps of “controlling” and “(2-6) surface treatment step” and reused.
  • this binder is pulverized or classified so as to be dried and become a particulate water-absorbing resin having a weight average particle diameter of 300 ⁇ m or more and 600 ⁇ m or less. Since the binder dried in this step has a small ratio of returning to a fine powder again, it is possible to confirm the difficulty of collapsing the binder, which is an effect of the present invention.
  • the surface-crosslinked water-absorbing resin particles are used during or after the polymerization, such as a lubricant, chelating agent, deodorant, antibacterial agent, water, Surfactants, water-insoluble fine particles, antioxidants, reducing agents, and the like can be added to and mixed with the water-absorbent resin particles at about 0 to 30% by weight, further about 0.01 to 10% by weight.
  • Chelating agents that can be suitably used are exemplified in US Pat. No. 6,599,989 and International Publication No. 2008/090961, and surfactants and lubricants are exemplified in US Pat. Nos. 6,107,358 and 7,473,739.
  • the addition and mixing can be performed before drying, after drying, before pulverization, or after pulverization.
  • the water absorbent resin particles may be added with other substances as long as the properties of the water absorbent resin are not impaired.
  • the method for adding other substances is not particularly limited. In the present invention, even when the water-absorbent resin contains a small amount of additives (for example, more than 0 and 30% by weight), that is, when it is a water-absorbent resin composition, it is generically called a water-absorbent resin.
  • [3] Physical properties of the water-absorbent resin For the purpose of sanitary materials, particularly paper diapers, at least one of the preferred physical property ranges listed in the following (a) to (h), and further, AAP is added by the above polymerization and surface crosslinking. It is preferable to control so as to satisfy two or more, particularly three or more. When the following range is not satisfied, sufficient performance may not be exhibited with a high-concentration diaper described below.
  • the water-absorbing resin is excellent in initial coloring.
  • the L value Lightness
  • the value is preferably 85 or more, more preferably 87 or more, still more preferably 89 or more
  • b The value is -5 to 10, more preferably -5 to 5, further preferably -4 to 4, and the value a is -2 to 2, at least -1 to 1, preferably -0.5 to 1, Most preferably, it is 0-1.
  • the YI value is 10 or less, further 8 or less, particularly 6 or less
  • the WB value is 70 or more, further 75 or more, particularly 77 or more.
  • such a water-absorbent resin is excellent in coloring over time, and exhibits sufficient whiteness even at high temperature and high humidity, which is an accelerated test (model) for long-term storage.
  • AAP Absorption capacity under pressure
  • AAP indicates the water absorption capacity of the water-absorbent resin under a load.
  • the water absorption capacity (AAP) with respect to a 0.9 mass% sodium chloride aqueous solution under a pressure of 1.9 kPa and further under a pressure of 4.8 kPa is preferably 10 [g / g] or more, more preferably 15 [g / g] or more, further preferably 20 [g / g] or more, more preferably 22 [g / g] or more, and further preferably 24 [g / g] or more. g / g] or more.
  • the upper limit is preferably 28 [g / g] or less, more preferably 27 [g / g] or less, and particularly preferably 26 [g / g] from the balance with other physical properties.
  • SFC Saline flow conductivity
  • the SFC which is a liquid flow characteristic under pressure, is 1 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more. 10 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more, preferably 20 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more, more preferably 50 [ ⁇ 10 ⁇ 7].
  • the water absorption capacity (CRC) under no pressure is preferably 10 [g / g] or more, more preferably 20 [g / g] or more, still more preferably 25 [g / g] or more, particularly preferably 30 [g. / G] or more.
  • the higher the CRC, the more preferable the upper limit value is not particularly limited, but from the balance with other physical properties, it is usually 100 [g / g] or less, preferably 50 [g / g] or less, more preferably 45 [g / g] or less. More preferably, it is 40 [g / g] or less.
  • the water-soluble content is preferably 0 to 35% by mass or less, more preferably 25% by mass or less, further preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • the amount of residual monomer is usually 500 ppm or less, preferably 0 to 400 ppm, more preferably 0 to 300 ppm, particularly preferably 0 to 200 ppm.
  • the water absorption rate and impact resistance are preferably adjusted so that a predetermined amount of water remains (for example, a water content of 0.1 to 10% by weight, more preferably 1 to 8% by weight).
  • solid content (% by weight) 100-water content (% by weight)
  • the solid content is defined as 85 to 99.9% by weight, more preferably 90 to 99.9% by weight, and still more preferably 95 to 99.9% by weight. If the solid content is out of the above range, the physical properties may deteriorate.
  • Weight average particle diameter (D50) The final water-absorbent resin that has undergone the above-described steps and the like has a weight average particle diameter (D50) of preferably 300 to 600 ⁇ m, more preferably 350 to 500 ⁇ m, from the viewpoint of physical properties.
  • the ratio of 850 to 150 ⁇ m is preferably controlled to 90 to 100% by weight, more preferably 95 to 100% by weight, particularly 98 to 100% by weight.
  • the water-absorbent resin according to the present invention is used for applications intended to absorb water and is widely used as an absorbent or absorbent article, but is particularly suitable as a sanitary material for absorbing bodily fluids such as urine and blood. Used. In particular, it is used for high-concentration diapers (a large amount of water-absorbent resin is used for one diaper), which has been problematic in the past due to odor, coloring, etc., especially in the absorbent upper layer in the absorbent article. When used in parts, particularly excellent performance is exhibited.
  • the absorber is an absorbent molded with a particulate water absorbent (water absorbent resin) and hydrophilic fibers as main components.
  • the absorbent body is manufactured by being molded into, for example, a film shape, a cylindrical shape, or a sheet shape using a particulate water-absorbing agent and hydrophilic fibers.
  • the content (core concentration) of the particulate water-absorbing agent with respect to the total mass of the particulate water-absorbing agent and the hydrophilic fiber is 20 to 100% by weight, 30 to 100% by weight, 40 to 100% by weight, 50 -100% by weight, 60-100% by weight, and 70-100% by weight are preferable in this order, and 75-95% by weight is most preferable.
  • the core concentration of the particulate water-absorbing agent is higher, the effect of reducing the absorption characteristics of the particulate water-absorbing agent at the time of production of the absorbent body or paper diaper becomes more prominent.
  • the absorber is preferably thin with a thickness of 0.1 to 5 mm.
  • the said absorbent article is an absorbent article provided with the said absorber, the surface sheet which has liquid permeability, and the back sheet
  • the manufacturing method of the said absorbent article first produces an absorber (absorption core) by blending or sandwiching, for example, a fiber material and a particulate water-absorbing agent. Next, the absorbent body is sandwiched between a liquid-permeable top sheet and a liquid-impermeable back sheet, and if necessary, equipped with an elastic member, a diffusion layer, an adhesive tape, etc.
  • Absorbent articles especially adult paper diapers and sanitary napkins.
  • the absorbent body is used by being compression-molded in a range of density 0.06 to 0.50 g / cc and basis weight 0.01 to 0.20 g / cm 2 .
  • the fiber material used include hydrophilic fibers such as pulverized wood pulp, cotton linters and crosslinked cellulose fibers, rayon, cotton, wool, acetate, and vinylon. Preferably, they are airlaid.
  • the above water-absorbent article exhibits excellent absorption characteristics.
  • Specific examples of such absorbent articles include diapers for children, sanitary napkins, sanitary materials such as so-called incontinence pads, as well as adult paper diapers that have been growing rapidly in recent years. However, it is not limited to them.
  • the above-mentioned water-absorbent article has a small amount of return due to the excellent absorption characteristics of the particulate water-absorbing agent present in the absorbent article, has a remarkably dry feeling, and greatly reduces the burden on the wearer and the caregiver. be able to.
  • weir structure of the mixer which is a feature of the present invention, the horizontal length from the side wall of the weir structure to the rotating shaft side is simply the weir length ( ⁇ ), and the angle formed with respect to the horizontal plane is simply the weir. Described as an angle ( ⁇ ).
  • the particulate water-containing gel particle size before drying was in accordance with the method described in Japanese Patent Publication No. 3175790. That is, 25 g of the sampled hydrogel polymer (solid content ⁇ wt%) was put into 1200 g of a 20 wt% sodium chloride aqueous solution, and the stirrer chip was rotated at 300 rpm and stirred for 60 minutes.
  • the dispersion is put into a sieve (aperture 9.5 mm, 8.0 mm, 4.0 mm, 2.0 mm, 0.85 mm, 0.60 mm, 0.30 mm, 0.075 mm), and from above 6000 g of 20% by weight aqueous sodium chloride solution was slowly poured to classify the particulate hydrogel polymer.
  • the particulate hydrogel polymer on each classified sieve was thoroughly drained and weighed.
  • the sieve opening was converted into a sieve opening R (100) corresponding to a solid content of 100% by weight of the hydrogel polymer according to the following formula.
  • the weight average particle diameter (D50) is a particle diameter of a standard sieve corresponding to 50% by weight of the whole particle with a standard sieve having a constant opening, as described in US Pat. No. 5,051,259.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is expressed by the following equation, and the smaller the value of ⁇ , the narrower the particle size distribution.
  • the particulate water-absorbing resin in an amount corresponding to 0.2 g in solid content is used, and the solid content correction is performed at the time of CRC calculation. The above method was followed.
  • AAP Absorption capacity under pressure
  • a glass filter with a diameter of 90 mm (manufactured by Mutual Chemical Glass Co., Ltd., pore diameter: 100 to 120 ⁇ m) is placed inside a petri dish with a diameter of 150 mm, and a 0.90% by weight sodium chloride aqueous solution (20 to 25 ° C.). ) was added to the same level as the top surface of the glass filter.
  • a sheet of 90 mm diameter filter paper (trade name: “JIS P 3801 No. 2”, manufactured by ADVANTEC Toyo Co., Ltd., thickness 0.26 mm, reserved particle size 5 ⁇ m) was placed so that the entire surface was wetted. Excess liquid was removed.
  • the set of measuring devices was placed on the wet filter paper, and the liquid was absorbed under load. After 1 hour (60 minutes), the measuring device set was lifted and its mass W 3 (g) was measured. And from these masses W 2 and W 3 , the absorption capacity under pressure (AAP) (g / g) was calculated according to the formula (2).
  • the absorption capacity under pressure (AAP) under the pressure (under load) of 4.83 kPa (0.7 Psi) was used when the baby was sleeping or sitting in the absorbent body or disposable diaper, etc. This assumes the situation where absorbent articles are used.
  • a glass tube is inserted in the tank.
  • the glass tube is arranged by adjusting the position of the lower end so that the level of the 0.69 wt% sodium chloride aqueous solution in the cell is maintained at a height of 5 cm above the bottom of the swollen gel.
  • the 0.69 wt% sodium chloride aqueous solution in the tank is supplied to the cell through an L-shaped tube with a cock.
  • a collection container for collecting the liquid that has passed is arranged under the cell, and the collection container is placed on an upper pan balance.
  • the inner diameter of the cell is 6cm.
  • a 400 stainless steel wire mesh (aperture 38 ⁇ m) is installed.
  • the cell is placed on a table on which the cell is placed, and this table is installed on a stainless steel wire mesh so as not to prevent the liquid from passing therethrough.
  • the artificial urine is composed of 0.25 g of calcium chloride dihydrate, 2.0 g of potassium chloride, 0.50 g of magnesium chloride hexahydrate, 2.0 g of sodium sulfate, 0.85 g of ammonium dihydrogen phosphate, 2 hydrogen phosphates. What added 0.15g of ammonium and 994.25g of pure waters is used.
  • the SFC test was performed at room temperature (20 to 25 ° C.). Using a computer and a balance, the amount of liquid passing through the gel layer at 20 second intervals as a function of time was recorded for 10 minutes.
  • the flow rate Fs (t) passing through the swollen gel (mainly between the particles) was determined in units of g / s by dividing the increased mass (g) by the increased time (s).
  • the unit of the liquid passing rate under pressure is (10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ).
  • Fs (t 0): flow rate expressed in g / s L 0 : height of gel layer expressed in cm ⁇ : density of NaCl solution (1.003 g / cm 3 ) A: Area above the gel layer in the cell (28.27 cm 2 ) ⁇ P: hydrostatic pressure applied to the gel layer (4920 dyne / cm 2 ) [Production Example 1] In a kneader equipped with two sigma blades, a monomer aqueous solution (monomer concentration: 39 wt%, neutralization rate: 75 mol%) consisting of an aqueous sodium acrylate solution and acrylic acid and water was prepared. Polyethylene glycol diacrylate (average number of ethylene oxide units: 9) was dissolved in the monomer aqueous solution so as to be 0.07 mol% (with respect to the monomer).
  • Nitrogen gas was blown into the monomer aqueous solution to reduce dissolved oxygen in the monomer aqueous solution and to replace the entire inside of the kneader with nitrogen.
  • cold water of 10 ° C. was circulated through the jacket, and the temperature of the monomer aqueous solution was adjusted to 20 ° C.
  • the obtained hydrogel polymer was dried in a hot air drier at 170 ° C. for 60 minutes.
  • the obtained dried product was roughly crushed and then sieved with a JIS standard sieve having an opening of 850 ⁇ m.
  • the dried product remaining on the sieve was pulverized with a roll mill.
  • the obtained pulverized product was classified using a sieve having openings of 850 ⁇ m and 180 ⁇ m.
  • the unpassed product of the sieve having an opening of 850 ⁇ m was pulverized again with a roll mill and classified in the same manner as described above.
  • the passing material (fine powder a) classified by a sieve having an opening of 180 ⁇ m was about 15 wt% of the entire dried product.
  • the particulate water-absorbing resin (A-1) obtained by the above classification and having an opening between a sieve having an opening of 850 ⁇ m and a sieve having a diameter of 180 ⁇ m has a water content of 4.9% by weight, a water absorption capacity without pressure (CRC ) was 35 [g / g], and the weight average particle diameter (D50) was 420 ⁇ m.
  • the fine powder (a) of the water-absorbent resin has a weight-absorbing capacity (CRC) of 34 [g / g] under no pressure, a weight average particle diameter (D50) of 88 ⁇ m, and a sieve passing through a sieve of 150 ⁇ m is about 80 wt%. Met.
  • Example 1 Surface cross-linking with water vapor and vertical mixer of the present application
  • three stirring blades 5 are provided above the partition, three below, and three on the side of the partition.
  • Vertical rotating disk type mixer with an internal volume of 5 L (maximum diameter (D) of mixing tank 300 mm (maximum radius 150 mm), mixing tank height (H) 70 mm, opening degree 20%, weir length ( ⁇ ) 21 mm, Using a weir angle ( ⁇ ) of 45 ° and an inner wall of fluororesin coating, the stirring blades are rotated at 1000 rpm, and the above particulate water-absorbing resin (A- 1) was supplied to the mixer at 200 kg / hr.
  • composition liquid having 1,4-butanediol / propylene glycol / water 0.4 parts by weight / 0.6 parts by weight / 3.0 parts by weight as an aqueous surface crosslinking agent solution with respect to 100 parts by weight of the particulate water-absorbing resin.
  • B-1) 8 [kg / hr] and water vapor (gauge pressure 0.6 MPa, mixer internal release, 5 [kg / hr]) are continuously mixed while being injected into the mixer, and the water-absorbing resin A mixture (C-1) was obtained.
  • the vertical mixer has three stirring blades above the rotating disk, three below, and three on the side of the disk.
  • the mixing tank has a diameter (D) of 300 mm (radius 150 mm), mixing
  • the height of the tank is (H) 70 mm.
  • the vertical mixer has an exhaust facility above the discharge port.
  • the particulate water-absorbing resin (A-1) was sampled at the outlet of the quantitative feeder, and a temperature measured by inserting a contact thermometer into this was 58 ° C.
  • the temperature of the composition liquid (B-1) was 26 ° C.
  • the temperature of the water absorbent resin mixture (C-1) obtained by the above mixing was 76 ° C.
  • the water content was 9.4 wt%
  • the flow rate was 212 [kg / hr]. Therefore, the water supplied by water vapor is 4 [kg / hr].
  • the flow rate of the water-absorbent resin mixture was obtained by taking the mixture for 10 minutes in a bag and measuring the weight.
  • the dew point near the outlet of the mixer was 100 ° C.
  • mixing was stopped 30 minutes after the start of mixing and the inside of the mixer was inspected, there was no adhesion.
  • the water-absorbent resin mixture (C-1) was heat-treated at 210 ° C. (oil bath temperature) for 40 minutes while stirring with a mortar mixer (manufactured by West Japan Testing Machine Co., Ltd.). Further, the particles were pulverized until passing through a sieve having an opening of 850 ⁇ m. Thus, surface-crosslinked water-absorbing resin particles (D-1) were obtained. Table 1 shows the physical properties of the surface-crosslinked water-absorbing resin particles (D-1). The water content of the surface-crosslinked water-absorbing resin particles (D-1) was 1%.
  • Example 2 Surface cross-linking with water vapor and vertical mixer of the present application Particulate water absorption was performed in the same manner as in Example 1 except that the amount of water vapor injection was changed from 5 [kg / hr] to 15 [kg / hr].
  • a mixture (C-2) of the water-soluble resin (A-1) and the composition liquid (B-1) and surface-crosslinked water-absorbing resin particles (D-2) were obtained.
  • the temperature of the above mixture (C-2) was 79 ° C.
  • the water content was 10.2 wt%
  • the flow rate was 214 [kg / hr]. Therefore, the water supplied by water vapor is 6 [kg / hr].
  • Table 1 shows the physical properties of the surface-crosslinked water-absorbent resin particles (D-2).
  • Example 3 Surface cross-linking in the vertical mixer of the present application
  • the particulate water-absorbing resin (A-1) and the composition liquid (B -1) mixture (E-1) and surface-crosslinked water-absorbing resin particles (F-1) were obtained.
  • the temperature of the mixture (E-1) was 58 ° C.
  • Table 1 shows the physical properties of the surface-crosslinked water-absorbent resin particles (F-1).
  • Example 4 Surface cross-linking in the vertical mixer of the present application
  • the composition liquid (B-2) in which the amount of water is increased is used instead of the composition liquid (B-1) without injecting water vapor into the mixer. Except for the above, in the same manner as in Example 1, the mixture (E-2) of the particulate water-absorbing resin (A-1) and the composition liquid (B-1), and the surface-crosslinked water-absorbing resin particles (F- 2) was obtained. The water content of the surface-crosslinked water-absorbing resin particles (F-2) was 1%.
  • the temperature of the composition liquid (B-2) was 25 ° C.
  • the temperature of the mixture (E-2) was 58 ° C., and many aggregates were observed.
  • Table 1 shows the physical properties of the surface-crosslinked water-absorbent resin particles (F-2).
  • Example 5 Surface cross-linking with water vapor and vertical mixer of the present application
  • the mixture (E-1) of the particulate water-absorbing resin (A-1) and the composition liquid (B-1) of Example 3 The water-absorbing resin (A-1) and the composition liquid (B-1) were added again to the mixer, and steam was injected into the mixer at 5 [kg / hr] and heated with steam.
  • the water content of the obtained mixture (C-3) was 9.0% by weight.
  • the mixture (C-3) was heat-treated in the same manner as in Example 1 to obtain surface-crosslinked water-absorbing resin particles (D-3).
  • Table 1 shows the physical properties of the surface-crosslinked water-absorbing resin particles (D-3).
  • Example 6 Surface crosslinking with water vapor without using liquid water
  • the composition liquid (B-3) in which the amount of water was 0 parts by weight was used. Except for the above, in the same manner as in Example 1, the mixture (C-4) of the particulate water-absorbing resin (A-1) and the composition liquid (B-3), and the surface-crosslinked water-absorbing resin particles (D- 4) was obtained.
  • composition liquid (B-3) was 25 ° C.
  • temperature of the mixture (C-4) was 57 ° C., and many aggregates were observed.
  • Table 1 shows the physical properties of the surface-crosslinked water-absorbent resin particles (D-4).
  • Example 7 Surface cross-linking with water vapor and horizontal type mixer 5.00 kg of particulate water-absorbing resin (A-1) adjusted to 60 ° C. obtained in Production Example 1 and composition liquid (B-1) 0.20 kg, horizontal type mixer (made by Ledge Mixer, Ledige) with a 20L internal volume, equipped with a vertical blade, crushing blade, spray nozzle (one-fluid spray nozzle, manufactured by Ikeuchi Co., No.
  • the mixture (C-5) of the particulate water-absorbing resin (A-1) and the composition liquid (B-1) obtained by the above mixing has more aggregates than the mixture (C-1) of Example 1. It was.
  • the temperature of the mixture (C-5) was 82 ° C., and the water content was 10.1% by weight. Note that 5.35 kg of the mixture (C-5) was obtained, and therefore, the water supplied by water vapor was 0.15 kg.
  • the mixture (C-5) was heat-treated with the mortar mixer of Example 1, and the resulting particles were crushed until passing through a sieve having an opening of 850 ⁇ m, and surface-crosslinked water-absorbent resin particles (D-5) Got. Table 1 shows the physical properties of the surface-crosslinked water-absorbent resin particles (D-5).
  • the water absorption obtained in Production Example 1 is obtained by rotating the stirring blade at 1300 rpm and supplying from the supply port (input port) 2 provided at the right end of the rotating shaft 6 in the casing.
  • Resin particles (A-1) were supplied at a rate of 200 kg / hr using a quantitative feeder (manufactured by Accurate Inc.).
  • air is supplied from one end of the horizontal continuous mixer, that is, a supply port (input port) 2 provided at the right end in FIG. 6, and the pressure in the casing in the horizontal continuous mixer is reduced.
  • An additive supply port provided at a position 200 mm from the right end of the casing when the total length of the rotary shaft 6 existing in the casing of the horizontal continuous mixer is 490 mm while maintaining a reduced pressure of 5 mmH 2 O or less.
  • the powder and the surface treatment agent were continuously mixed while spraying the surface treatment agent 8 kg / hr from the additive inlet 4).
  • the particulate water-absorbing resin (A-1) was sampled at the outlet of the quantitative feeder, and when a temperature was measured by inserting a contact thermometer into this, it was 58 ° C.
  • the obtained mixture (G-2) was heat-treated with a mortar under stirring at 200 ° C. for 40 minutes to obtain surface-crosslinked water-absorbent resin particles (H-2).
  • Table 1 shows the physical properties of the surface-crosslinked water-absorbent resin particles (H-2).
  • Example 3 Effect of powder temperature of water-absorbent resin in vertical mixer of the present application The same operation as in Example 3 was performed except that the operation of heating the particulate water-absorbent resin in an oven was not performed. At this time, when the particulate water-absorbing resin (A-1) was collected from the outlet of the quantitative feeder and the temperature was measured with a contact thermometer, it was 24 ° C. When mixing was stopped 30 minutes after the start of mixing and the inside was inspected, adhesion of water-absorbent resin was observed on the side wall of the mixer.
  • Example 7 use of a horizontal mixer, steam injection (or increase the temperature of the resulting water absorbent resin mixture by 2 ° C. or more) )
  • SFC saline flow conductivity
  • Example 2 From the comparison between Example 1 and Example 4 in which the vertical mixer of the present application was used and the same 5 parts by weight as the amount of moisture uptake, the water absorption capacity under pressure (AAP) was 22 [g / g] (Comparative Example 2) to 24 [g / g] (Example 1), Saline flow conductivity (SFC) is 75 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] (Comparative Example 2) Thus, it was confirmed that the density improved dramatically to 105 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] (Example 1).
  • AAP water absorption capacity under pressure
  • SFC Saline flow conductivity
  • Example 3 use of the vertical mixer of the present application
  • Comparative Examples 1 and 2 use of the horizontal mixer
  • SFC physiological saline flow conductivity Both
  • Example 1 both the water absorption capacity under pressure (AAP) and the saline flow conductivity (SFC) were improved in Example 1. Therefore, it is preferable that the addition of water is performed using a combination of liquid water and water vapor rather than water vapor alone.
  • AAP water absorption capacity under pressure
  • SFC saline flow conductivity
  • Example 1 improved both the absorption capacity under pressure (AAP) and the saline flow conductivity (SFC). Therefore, it is preferable that water is added as water vapor at the same time as the surface cross-linking agent is added.
  • AAP absorption capacity under pressure
  • SFC saline flow conductivity
  • Example 8 Further use of aluminum sulfate In Example 1 in which water vapor and the vertical mixer of the present application were used for surface crosslinking, aluminum sulfate was further used. That is, 35 g of surface-crosslinked water-absorbent resin particles (D-1) and 10 g of glass beads obtained in Example 1 were placed in a 225 ml mayonnaise bottle, and a paint shaker (Toyo And shaken with Seiki Co., Ltd. for 30 minutes.
  • Example 9 Further use of aluminum sulfate
  • aluminum sulfate was further used. That is, the same procedure as in Example 8 was performed except that the surface-crosslinked water-absorbent resin particles (D-1) in Example 8 were changed to surface-crosslinked water-absorbent resin particles (F-1). A treated product (I-2) was obtained. Table 2 shows the physical properties of the aluminum surface-treated product (I-2).
  • Example 10 Further use of aluminum sulfate In Example 4 in which the vertical mixer of the present application was used for surface crosslinking, aluminum sulfate was further used. That is, the same procedure as in Example 8 was conducted except that the surface-crosslinked water-absorbent resin particles (D-1) in Example 8 were changed to surface-crosslinked water-absorbent resin particles (F-2). A treated product (I-3) was obtained. Table 2 shows the physical properties of the aluminum surface-treated product (I-3).
  • Example 11 Continuous mixing of aluminum sulfate in the vertical mixer of the present application
  • the surface-crosslinked water-absorbing resin particles (F-1) obtained in Example 3 were put in an oven in a state of being packed in a polypropylene bag and 100 ° C. Heated.
  • 500 kg / hr of surface crosslinked water-absorbing resin particles (F-1) surface treatment comprising aluminum sulfate 14-18 hydrate, sodium lactate and water.
  • the mixture was continuously mixed while injecting 5 kg / hr of the agent.
  • the particulate water-absorbing resin (F-1) was sampled at the outlet of the quantitative feeder, and the temperature was 94 ° C. when a contact-type thermometer was inserted therein to measure the temperature.
  • the obtained mixture was heat-treated at 100 ° C. for 10 minutes with stirring to obtain water-absorbing resin particles (K-1).
  • Table 2 shows the physical properties of the surface-crosslinked water-absorbent resin particles (K-1).
  • the obtained mixture was heat-treated at 100 ° C. for 10 minutes with stirring to obtain water-absorbing resin particles (L-1).
  • Table 2 shows the physical properties of the aluminum surface-treated water-absorbent resin particles (L-1).
  • Table 2 shows the results of using a liquid permeability improver (aluminum sulfate) in the surface crosslinking of Table 1.
  • a liquid permeability improver aluminum sulfate
  • the SFC of Example 8 is 140 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] (increase: 35 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ]).
  • the SFC was 90 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] (increase: 15 [10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ]).
  • a method of adding part or all of the water added in the mixer with water vapor (or the temperature of the resulting water-absorbent resin mixture is 2 ° C. or less).
  • the saline flow conductivity (SFC) is high, and a great effect of improving the saline flow conductivity (SFC) by the liquid permeability improver can be obtained. confirmed.
  • Example 11 using the vertical mixer of this application has a large increase in SFC, as compared to Comparative Example 5 using a horizontal mixer as a mixing device of the surface-crosslinked water-absorbent resin particles and aluminum sulfate. It was. This indicates that the vertical mixer of the present application is excellent in mixing properties.
  • Example 12 Binding of fine powder in vertical mixer of the present application
  • the fine powder (a) of the water-absorbent resin obtained in Production Example 1 was put in an oven and heated to 60 ° C in a bag-packed state.
  • FIG. 5 schematically shows a 5 liter vertical rotary disk mixer (maximum diameter of the mixing tank) having three stirring blades above the partition, three below the partition, and nine on the side of the partition.
  • D 300 mm (maximum radius 150 mm), mixing tank height (H) 70 mm, opening degree 20%, weir length ( ⁇ ) 0.5 mm, weir angle ( ⁇ ), inner wall is coated with fluororesin)
  • the stirring blade was rotated at 1100 rpm.
  • Fine powder (a) was supplied at a rate of 500 kg / hr using a quantitative feeder (manufactured by Accurate Inc.) and continuously mixed while injecting 167 kg / hr of water.
  • the binder was taken out from the mixer, dried in a hot air dryer at 170 ° C. for 60 minutes, and the obtained dried product was pulverized until it passed through a sieve having an opening of 850 ⁇ m.
  • the water-absorbent resin particles (a1) obtained by the above pulverization have a non-pressurized absorption capacity (CRC) of 33 g / g, a weight average particle diameter (D50) of 370 ⁇ m, and the content of powder having a particle diameter of 150 ⁇ m or less is 18 wt%. Met.
  • Example 13 Binding of fine powder in the vertical mixer of the present application Example 12 except that the conditions of the weir structure of the mixer were the weir length ( ⁇ ) 21 mm and the weir angle ( ⁇ ) 20 °.
  • a binder and its pulverized product (a2) were obtained.
  • the above-mentioned binder was spherical, and was quickly classified to measure the particle size distribution.
  • the weight average particle size (D50) of the binder was 4.0 mm, and the logarithmic standard deviation ( ⁇ ) was 0.54.
  • the pulverized product (a2) had an absorption capacity without load (CRC) of 34 g / g, a weight average particle diameter (D50) of 400 ⁇ m, and a content of a particulate water-absorbing resin having a particle diameter of 150 ⁇ m or less was 13 wt%. .
  • air is supplied from one end of the horizontal continuous mixer, that is, the supply port provided at the right end in FIG. 6, and the pressure in the casing of the horizontal continuous mixer is 5 mmH 2 O or less.
  • the degree of vacuum when the total length of the rotary shaft 6 existing in the casing of the horizontal continuous mixer is 490 mm, from the additive supply port 4 provided at a position 200 mm from the right end of the casing, 167 kg / water While spraying hr, the powder and the surface treatment agent were continuously mixed.
  • the particulate water-absorbing resin (A-1) was sampled at the outlet of the quantitative feeder, and when a temperature was measured by inserting a contact thermometer into this, it was 58 ° C. Ten minutes after the start of mixing, the mixing was stopped because the current value of the mixer increased. When the inside of the mixer was inspected, severe adhesion and coarse aggregates were found inside.
  • a 1.0% by weight sodium persulfate aqueous solution was further added to a concentration of 0.05 g / mol (with respect to the monomer), and then the temperature was maintained at about 100 ° C.
  • a monomer aqueous solution was continuously supplied to an endless belt running at a speed of minutes. The monomer aqueous solution continuously supplied onto the belt started to polymerize rapidly, and a band-shaped hydrogel sheet (hydrogel polymer) was obtained.
  • This hydrogel sheet is continuously finely granulated using a meat chopper having a screen with a diameter of 9.5 mm (manufactured by Hiraga Works), and a hydrogel gel having a weight average particle diameter (D50) of about 2.0 mm as a polymer. A polymer was obtained.
  • the obtained hydrogel polymer was dried in a hot air drier at 170 ° C. for 60 minutes.
  • the obtained dried product was roughly crushed and then sieved with a JIS standard sieve having an opening of 850 ⁇ m.
  • the dried product remaining on the sieve was pulverized with a roll mill.
  • the obtained pulverized product was classified using a sieve having openings of 850 ⁇ m and 180 ⁇ m.
  • the unpassed product of the sieve having an opening of 850 ⁇ m was pulverized again with a roll mill and classified in the same manner as described above.
  • the passing material classified by a sieve having an opening of 180 ⁇ m was about 15 wt% of the entire dried material.
  • the particulate water-absorbing resin (A-2) obtained by the above classification and having a mesh size between a sieve having an opening of 850 ⁇ m and a sieve having a diameter of 180 ⁇ m has a water content of 5.1% by weight and a water absorption capacity without pressure (CRC).
  • CRC water absorption capacity without pressure
  • Example 14 Example 1 except that the particulate water-absorbing resin (A-1) was changed to the particulate water-absorbing resin (A-2) and the heat treatment conditions were 212 ° C. (oil bath temperature) and 35 minutes in Example 1.
  • surface-crosslinked water-absorbing resin particles (M-1) were obtained.
  • Table 3 shows the physical properties of the surface-crosslinked water-absorbent resin particles (M-1).
  • the temperature increase of the obtained water absorbent resin mixture was 18 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Table 3 shows the physical properties of the surface-crosslinked water-absorbent resin particles (D-5).
  • the temperature increase of the obtained water absorbent resin mixture was 19 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Table 3 shows the physical properties of the surface-crosslinked water-absorbent resin particles (D-6).
  • the temperature increase of the obtained water absorbent resin mixture was 17 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Surface-crosslinked water-absorbent resin particles (M-4) were obtained in the same manner as in Example 14 except that the heat treatment conditions were changed to 218 ° C. (oil bath temperature) and 20 minutes. Table 3 shows the physical properties of the surface-crosslinked water-absorbent resin particles (M-4).
  • the temperature increase of the obtained water absorbent resin mixture was 18 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Example 18 surface crosslinking was performed in the same manner as in Example 14 except that the composition liquid (B-2) was used instead of the composition liquid (B-1) without injecting water vapor into the mixer. Water-absorbing resin particles (N-1) were obtained. Table 3 shows the physical properties of the surface-crosslinked water-absorbent resin particles (N-1). In the step of adding the composition liquid (B-2) in the mixer, the temperature increase of the obtained water absorbent resin mixture was 0 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Example 19 In Example 15, a composition liquid (B ⁇ ) in which the amount of water was increased by an amount corresponding to absorption from water vapor in Example 15 instead of the composition liquid (B-4) without injecting water vapor into the mixer.
  • Surface-crosslinked water-absorbing resin particles (N-2) were obtained in the same manner as in Example 15 except that 7) was used.
  • Table 3 shows the physical properties of the surface-crosslinked water-absorbent resin particles (N-2). In the step of adding the composition liquid (B-7) in the mixer, the temperature increase of the obtained water absorbent resin mixture was 0 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Example 20 the composition liquid (B ⁇ ) was obtained by increasing the amount of water by an amount corresponding to absorption from water vapor in Example 11 instead of the composition liquid (B-5) without injecting water vapor into the mixer.
  • Surface-crosslinked water-absorbent resin particles (N-3) were obtained in the same manner as in Example 16 except that 8) was used.
  • Table 3 shows the physical properties of the surface-crosslinked water-absorbing resin particles (N-3).
  • the temperature increase of the obtained water absorbent resin mixture was 0 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Example 21 the composition liquid (B ⁇ ) was prepared by increasing the amount of water by an amount corresponding to absorption from water vapor in Example 17 instead of the composition liquid (B-6) without injecting water vapor into the mixer.
  • Surface-crosslinked water-absorbent resin particles (N-4) were obtained in the same manner as in Example 17 except that 9) was used.
  • Table 3 shows the physical properties of the surface-crosslinked water-absorbing resin particles (N-4).
  • the temperature increase of the obtained water absorbent resin mixture was 0 ° C. with respect to the temperature of the particulate water absorbent resin (A-2). .
  • Example 23 In Example 15, further aluminum sulfate was used. That is, in the same manner as in Example 22 except that the surface-crosslinked water-absorbing resin particles (M-1) in Example 22 were changed to surface-crosslinked water-absorbing resin particles (M-2), an aluminum surface-treated product was obtained. (O-2) was obtained. Table 4 shows the physical properties of the aluminum surface treated product (O-2).
  • Example 24 aluminum sulfate was further used. That is, in Example 22, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (M-3), an aluminum surface-treated product was obtained. (O-3) was obtained. Table 4 shows the physical properties of the aluminum surface-treated product (O-3).
  • Example 25 aluminum sulfate was further used. That is, in Example 22, except that the surface-crosslinked water-absorbing resin particles (M-1) were changed to surface-crosslinked water-absorbing resin particles (M-4), an aluminum surface-treated product was obtained. (O-4) was obtained. Table 4 shows the physical properties of the aluminum surface treated product (O-4).
  • Example 26 In Example 18, further aluminum sulfate was used. That is, in Example 22, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (N-1), the aluminum surface-treated product was obtained. (P-1) was obtained. Table 4 shows the physical properties of the aluminum surface-treated product (P-1).
  • Example 27 aluminum sulfate was further used. That is, in Example 22, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (N-2), an aluminum surface-treated product was obtained. (P-2) was obtained. Table 4 shows the physical properties of the aluminum surface-treated product (P-2).
  • Example 28 In Example 20, further aluminum sulfate was used. That is, in Example 22, except that the surface-crosslinked water-absorbing resin particles (M-1) were changed to surface-crosslinked water-absorbing resin particles (N-3), the aluminum surface-treated product was obtained. (P-3) was obtained. Table 4 shows the physical properties of the aluminum surface-treated product (P-3).
  • Example 29 In Example 21, further aluminum sulfate was used. That is, in Example 22, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (N-4), an aluminum surface-treated product was obtained. (P-4) was obtained. Table 4 shows the physical properties of the aluminum surface-treated product (P-4).
  • Example 30 In Example 14, further silica was used. That is, 35 g of the surface-crosslinked water-absorbent resin particles (M-1) obtained in Example 14 and 10 g of glass beads were placed in a 225 ml mayonnaise bottle, and then for 30 minutes with a paint shaker (manufactured by Toyo Seiki Co., Ltd.). Shake. Next, silica (AEROSIL200 manufactured by Nippon Aerosil Co., Ltd.) as a liquid permeability improver is added to the water-absorbing resin particles after shaking, and 0.5 parts by weight is added to 100 parts by weight of the water-absorbing resin particles and mixed. A surface-treated product (Q-1) was obtained. Table 5 shows the physical properties of the silica surface-treated product (Q-1).
  • AEROSIL200 manufactured by Nippon Aerosil Co., Ltd.
  • Example 31 In Example 15, further silica was used. That is, in Example 30, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (M-2), a silica surface-treated product was obtained. (Q-2) was obtained. Table 5 shows the physical properties of the silica surface-treated product (Q-2).
  • Example 32 In Example 16, further silica was used. That is, in Example 30, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (M-3), a silica surface-treated product was obtained. (Q-3) was obtained. Table 5 shows the physical properties of the silica surface-treated product (Q-3).
  • Example 33 In Example 17, further silica was used. That is, in Example 30, except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (M-4), a silica surface-treated product was obtained. (Q-4) was obtained. Table 5 shows the physical properties of the silica surface-treated product (Q-4).
  • Example 34 In Example 18, further silica was used.
  • the silica surface-treated product was obtained in the same manner as in Example 30 except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (N-1) in Example 30. (R-1) was obtained.
  • Table 5 shows the physical properties of the silica surface-treated product (R-1).
  • Example 35 In Example 19, further silica was used. That is, in Example 30, the surface-treated water-absorbent resin particles (M-1) were changed to the surface-crosslinked water-absorbent resin particles (N-2) in the same manner as in Example 30, (R-2) was obtained. Table 5 shows the physical properties of the silica surface-treated product (R-2).
  • Example 36 In Example 20, further silica was used. That is, in Example 30, the surface-treated water-absorbing resin particles (M-1) were replaced with the surface-crosslinked water-absorbing resin particles (N-3) in the same manner as in Example 30, (R-3) was obtained. Table 5 shows the physical properties of the silica surface-treated product (R-3).
  • Example 37 In Example 21, further silica was used.
  • the silica surface-treated product was obtained in the same manner as in Example 30 except that the surface-crosslinked water-absorbent resin particles (M-1) were changed to surface-crosslinked water-absorbent resin particles (N-4) in Example 30. (R-4) was obtained.
  • Table 5 shows the physical properties of the silica surface-treated product (R-4).
  • each of the vertical mixers of the present application was used, and each surface cross-linking agent was used in the same manner as when aluminum sulfate was added to the surface-treated silica. It was confirmed that the effect of improving the saline flow conductivity (SFC) is increased by using the water or raising the temperature of the mixture as compared with the case without water vapor or without raising the temperature of the mixture.
  • SFC saline flow conductivity
  • a water-absorbing resin comprising: a step of reacting water-absorbing resin particles having surface cross-linking, wherein part or all of the water added in the mixer is added with water vapor. Manufacturing method.
  • 0.1 to 10 parts by weight of water is mixed with 100 parts by weight of the particulate water-absorbing resin, and the water supplied as a liquid is 0 to 95% by weight of the total amount of the supplied water.
  • a continuous apparatus in which the mixer and the reactor are connected, the average residence time of the particulate water-absorbing resin in the mixer is 1 second to 5 minutes, and the water absorption in the reactor The production method according to any one of (1) to (6), wherein an average residence time of the resin mixture is 6 minutes to 10 hours.
  • the temperature of the obtained water absorbent resin mixture is raised by 3 to 60 ° C. compared to the temperature of the particulate water absorbent resin by the step of adding the surface cross-linking agent and water in the mixer, (1) The manufacturing method according to any one of (15) to (15).
  • a method for producing a water-absorbent resin wherein the temperature of the particulate water-absorbent resin is set to 30 to 150 ° C. in the mixing of the particulate water-absorbent resin and the additive, and the following conditions (a) to (C), (A) The stirring blade rotates at 300 to 3000 rpm. (B) At least one of the rotating shafts of the stirring blade is in the vertical direction. (C) The mixing tank is divided into two or more chambers at the top and bottom by a partition having an opening degree of 5 to 70%. Using a continuous mixing device that satisfies:
  • the discharge port has a dam structure
  • the dam structure has an angle with respect to the horizontal plane of 10 to 80 °
  • the horizontal length from the side wall to the rotating shaft is 1 to the maximum radius of the mixing tank.
  • a value (H / D) obtained by dividing the height (H) inside the mixing tank by the maximum diameter (D) of the mixing tank is 0.1 to 1, (1) to (10 ).
  • the amount of the particulate water-absorbing resin charged into the mixer is 10 to 300 kg / hr per liter of mixing tank volume of the mixer, according to any one of (1) to (11). Method.
  • the water absorbent resin obtained by the production method of the present invention exhibits excellent absorption characteristics and the like (water absorption magnification under pressure, liquid permeability, etc.).
  • a particulate water-absorbing resin is, for example, a flocculant, a coagulant, a soil conditioner, as an absorbent for hygiene materials such as adult paper diapers, children's diapers, sanitary napkins, so-called incontinence pads, It can be widely used as a water-soluble polymer suitably used for soil stabilizers, thickeners, etc., or as a water retaining agent, dehydrating agent, etc. in the fields of agriculture and horticulture and civil engineering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、ポリアクリル酸塩系吸水性樹脂に表面架橋剤および水を混合機中で添加する工程、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程を順次含む、表面架橋された吸水性樹脂の製造方法であって、混合機中での水の添加の一部または全部を水蒸気で添加する製造方法である。これにより、物性に優れた、表面架橋された吸水性樹脂を、低コストで高い生産性を確保しながら効率的に得ることができる吸水性樹脂の製造方法を提供することができる。

Description

吸水性樹脂の製造方法
 本発明は、物性に優れた吸水性樹脂であって、低コストで高い生産性を確保しながら効率的に得ることができる吸水性樹脂の製造方法に関するものである。より詳しくは、粒子状吸水性樹脂と添加剤との混合の際、特定構造の混合装置を使用し、および/または特定の条件で混合する吸水性樹脂の改質および製造方法に関するものである。
 吸水性樹脂は、自重の数倍から数百倍という多量の水溶液を吸収する性質から紙オムツや生理用ナプキン、成人用失禁製品等の衛生材料、土壌用保水剤等の各種用途に幅広く利用され、大量に生産および消費されている。このような吸水性樹脂(高吸水性樹脂、吸水性ポリマーとも呼ばれる)は、例えば、日本工業規格(JIS)K7223-1996に記載されており、また、市販の多くの参考図書でも紹介されており、既に公知である。
 近年、特に紙オムツや生理用ナプキン、成人用失禁製品等の衛生用品用途では、製品の薄型化のために吸水性樹脂の使用量を増やし、パルプ繊維の使用量を減らす傾向にある。これにより、吸収体内において従来パルプが行ってきた液体の通液性や拡散性といった機能を吸水性樹脂が担う必要が生じる。そのような機能の優劣を評価する公知の指標として、吸水性樹脂の加圧下の吸水倍率や通液性が提唱されており、その値の大きいものが望まれている。一方で、この薄型化の傾向は衛生用品1枚当りの吸水性樹脂の使用量増加につながり、従って、低コストの吸水性樹脂に対する要望が高まる。
 一般に、吸水性樹脂は、親水性単量体および架橋剤を含む水溶液を重合することにより得られる含水ゲル状重合体を乾燥し、表面処理を行うことで製造される。上記親水性単量体としては、例えば、ポリ(メタ)アクリル酸(塩)がよく知られている。この単量体を重合して得られた含水ゲル状重合体は、塊状または含水ゲル粒子の凝集体として得られ、通常は、ニーダーやミートチョッパー等の粉砕機を用いて、1~10mm程度の粒径に粗粉砕(粗解砕)される。そして、この粗粉砕(粗解砕)された含水ゲルは、固形分量95重量%程度まで乾燥される。
 乾燥後の粉砕工程では、粉砕機で重量平均粒子径の値が150μm以上850μm以下となるように粉砕され、粒子状吸水性樹脂が得られる。このとき、目的とする粒子径(粒径)範囲以外の粒子も含まれている。そこで、この乾燥後の粉砕物を分級機で篩分けして、目的とする粒径範囲の大きさの粒子状吸水性樹脂を調整する。用途によっての違いはあるが、衛生用品に用いられる粒子状吸水性樹脂としては、通常、150μm以上850μm未満の範囲にある粒径のものが好ましく用いられる。
 上記粒子状吸水性樹脂は、表面処理工程を経て、衛剤(衛生用品)向け等に望ましい加圧下の吸水倍率や通液性等の物性を得る。表面処理工程とは、通常、上記粒子状吸水性樹脂と表面架橋剤あるいは重合性単量体を光や熱で反応させることにより、粒子状吸水性樹脂の表面近傍に高架橋層を設ける工程(表面架橋工程)、または、上記粒子状吸水性樹脂に、通液性向上剤、消臭剤、着色防止剤、抗菌剤、ブロッキング防止剤等の機能性を付与する添加剤(表面処理剤)を添加して、粒子状吸水性樹脂の表面近傍に添加剤層を設ける工程(添加工程)をいう。
 なお、ポリ(メタ)アクリル酸塩を主成分とする吸水性樹脂の表面架橋においては、表面架橋剤はカルボキシル基と反応可能な官能基を持つ架橋剤、または重合性単量体を含んでいる。
 これまで検討されてきた表面架橋技術は、例えば、表面架橋剤の併用についての技術(特許文献1)、吸水性樹脂と表面架橋剤とを混合する装置についての技術(特許文献2)、吸水性樹脂と表面架橋剤とを反応させるための加熱装置についての技術(特許文献3)、吸水性樹脂と表面架橋剤とを反応させるための加熱温度の昇温制御についての技術(特許文献4)、高含水率の吸水性樹脂の表面架橋処理についての技術(特許文献5)等が挙げられる。また、通常の表面架橋と異なり、表面架橋剤を使用せずに、熱を加えることで吸水性樹脂の改質を行う技術(特許文献6、7)も知られている。
 また、各種表面架橋剤も提案されており、オキサゾリン化合物(特許文献8)、ビニルエーテル化合物(特許文献9)、エポキシ化合物(特許文献10)、オキセタン化合物(特許文献11)、多価アルコール化合物(特許文献12)、ポリアミドポリアミン-エピハロ付加物(特許文献13、14)、ヒドロキシアクリルアミド化合物(特許文献15)、オキサゾリジノン化合物(特許文献16)、ビスまたはポリ-オキサゾリジノン化合物(特許文献17)、2-オキソテトラヒドロ-1,3-オキサゾリジン化合物(特許文献18)、アルキレンカーボネート化合物(特許文献19)等が知られている。
 また、単量体を重合して表面架橋する技術(特許文献20、21)や過硫酸塩等でラジカル架橋する技術(特許文献22)も知られている。なお、ラジカル架橋反応には吸水性樹脂中の水分の維持が必要であるから、特許文献21および22では、過熱水蒸気雰囲気下で加熱乾燥することが記載されている。
 さらに、表面架橋剤の混合に添加剤を併用する技術も提案され、添加剤としてアルミニウム塩等の水溶性カチオン(特許文献24、25)、アルカリ(特許文献26)、有機酸や無機酸(特許文献27)等が知られている。また、表面架橋剤の混合機に特定の混合機を使用する技術(特許文献27)も知られている。
 また、加熱工程において、表面架橋を2度行う技術(特許文献29)、加熱処理装置を複数用いる技術(特許文献30)、予め表面架橋前の吸水性樹脂を加熱しておく技術(特許文献31、32)も提案されている。さらに、上記特許文献20および21以外にも、カルボキシルとの反応性の表面架橋剤を混合した吸水性樹脂の加熱工程において、加熱反応のために水蒸気を使用する技術(特許文献33、34)も提案されている。
 粒子状吸水性樹脂と表面処理剤とを混合する技術については、混合機内において粒子状吸水性樹脂の動きを制御する方法がいくつか考案されている。例えば、撹拌羽根の起こす気流により混合槽を移動する粒子状吸水性樹脂の動きを制御する方法がある。
 例えば、特許文献28には、撹拌羽根の向きにより、混合槽中を粒子状吸水性樹脂が排出口へ向かって移動する速度を、粒子状吸水性樹脂の分散過程と混合過程で変化させることが記載されている。
 また特許文献35では混合機中において、排出口側へ向かって移動する粒子状吸水性樹脂と、それとは逆向きに投入口側へ移動する粒子状吸水性樹脂との割合を、撹拌羽根により調整して、混合性を高めていることが記載されている。さらに表面処理剤の付着した粒子状吸水性樹脂は凝集して混合性を悪くするため、混合過程において粒子状吸水性樹脂が凝集しないように、粒子状吸水性樹脂に十分な運動エネルギーを持たせることが特許文献35に記載されている。
 また、上記特許文献35には、粒子状吸水性樹脂と添加剤との混合に用いられる混合機として、パターソン・ケリー(Patterson-Kelley)ミキサー、DRAIS乱流ミキサー、レディゲ(Lodige)ミキサー、ルベルク(Ruberg)ミキサー、スクリューミキサー、パンミキサー、流動床ミキサー、MTIミキサー、Schugiミキサーなどの装置が記載されている。
 さらに、粒子状吸水性樹脂が付着することを防ぎ、混合性を高めるために、混合機の内壁に撥水性の基材を用いる技術が特許文献2に記載されている。また、特許文献2では粒子状吸水性樹脂と表面架橋剤との混合に用いる混合機としてヘンシェルミキサー(三井三池機械株式会社製)、ニュースピードミキサー(岡田精工株式会社製)、ヘビーデューティーマトリックス(奈良機械製作所株式会社製)、タービュライザーおよびサンドターポ(共にホソカワミクロン株式会社製)などが記載されている。
 混合槽内の粒子状吸水性樹脂の動きを制御する別の方法として、横型混合機、すなわち撹拌羽根の回転軸が水平方向である混合機に、高さが回転円周直径の50%以下の堰を、出口付近や撹拌羽根間に設置することにより、混合槽内の滞留時間が制御できること、およびショートパスを防ぐことができることが特許文献36に記載されている。
 一方、一連の吸水性樹脂の生産過程で発生した、目的とする粒径範囲より小さな粒子状吸水性樹脂は微粉と呼ばれ、特に粒子径が150μmより小さい微粉は、オムツなどの吸収物品中で目詰まりすることによって通液性を低下させる要因となることから、衛剤(衛生用品)向けには使用が不適当である。
 しかし、微粉を廃棄すると収率の低下や、廃棄コストの問題があるため、微粉は適宜回収され、再利用されることが知られている。例えば上記微粉をモノマー調製液に添加して再利用する方法(例えば、特許文献37参照。)や、上記微粉を重合時あるいは重合後のゲル状物に添加して混合し再使用する方法(例えば、特許文献38参照。)などが知られている。しかし、上記のように微粉をモノマー調製液やゲル状物に添加する方法は混合が難しいという問題を有している。
 他の微粉の回収方法として、微粉に添加剤として結着剤を加え、粒径が150μm以上になるように微粉同士を結着して回収される方法(例えば、特許文献39参照。)が知られている。
 一般的に、微粉の結着剤としては、効率や安全性、製造コスト等の面から、水溶液または微粒子の水分散液などの結着剤が好適である。また、微粉と結着剤の混合性を増すために、結着剤として温水を用いるもの(特許文献40)や水蒸気を用いるもの(特許文献41)が知られている。上記の方法には微粉と結着剤の混合に高速撹拌型混合機、例えばタービュライザー(ホソカワミクロン社製)、レディゲミキサー(Lodige社製)、およびモルタルミキサー(西日本試験機社製)が用いられると記載されている。また、特定の混合機を用いて微粉同士を結着させる方法(特許文献42)も知られている。
米国特許第5422405号明細書 日本国公開特許公報「特開平4-214734号公報」 日本国公開特許公報「特開2004-352941号公報」 米国特許第6514615号明細書 米国特許第6875511号明細書 米国特許第5206205号明細書 欧州特許第0603292号明細書 米国特許第6297319号明細書 米国特許第6372852号明細書 米国特許第6265488号明細書 米国特許第6809158号明細書 米国特許第4734478号明細書 米国特許第4755562号明細書 米国特許第4824901号明細書 米国特許第6239230号明細書 米国特許第6559239号明細書 米国特許第6472478号明細書 米国特許第6657015号明細書 米国特許第5672633号明細書 米国特許出願公開第2005/48221号明細書 日本国公開特許公報「特開平2-160814号公報」 米国特許第4783510号明細書 欧州特許第1824910号明細書 米国特許第6605673号明細書 米国特許第6620899号明細書 米国特許出願公開第2004/106745号明細書 米国特許第5610208号明細書 米国特許第6071976号明細書 米国特許第5672633号明細書 米国特許出願公開第2007/0149760号明細書 日本国公開特許公報「特開平7-242709号公報」 日本国公開特許公報「特開平7-224204号公報」 日本国公開特許公報「特開平1-113406号公報」 日本国公開特許公報「特開平1-297430号公報」 国際公開公報第2004/037900号パンフレット 日本国公開特許公報「特開2004-352940号公報」 日本国公開特許公報「特開平04-227705号公報」 日本国公開特許公報「特開平03-152104号公報」 日本国公開特許公報「特開2000-189794号公報」 米国特許第6458921号明細書 日本国公開特許公報「特開2005-054151号公報」 米国特許第6133193号明細書
 しかしながら、上記多くの表面架橋剤(特許文献8~19)やその併用(特許文献1)、その混合装置(特許文献2、28)、表面架橋の助剤(特許文献24~27)、その加熱処理方法(特許文献3、4、29~34)等、多くの技術が提供されているにもかかわらず、これらの表面架橋技術だけでは、ユーザーからの、吸水性樹脂の加圧下吸収倍率や通液性等の物性に対する、高まる要求に対応していくのが困難であった。また、表面架橋剤の変更や新たな助剤の使用に伴って、コストアップ、安全性低下、他の物性低下(例えば、吸水性樹脂の色調悪化)等が見られる場合もあった。
 さらに、上記手法は、実験室レベルの小スケールやバッチ式(回分式)での製造では一定の効果を示すが、工業的スケール(例えば、単位時間あたり1t以上)の連続生産では小スケールほどの効果を示さないことがあった。
 また、上記のように粒子状吸水性樹脂と添加剤とを混合するために、多くの混合機、混合方法に関する技術も提案されている。しかし、これらの技術についても、ラボスケールでの混合では高物性の吸水性樹脂を作ることができても、吸水性樹脂を大量生産するために、1t/hrを越えるような大きな処理量で連続混合を行うと、付着の発生や、混合性の悪化による物性の低下が度々見られる。
 このような現象は上記の混合槽内の粒子状吸水性樹脂の動きを制御する技術にもかかわらず、混合ムラが起こっていると解される。上記の混合機を回転軸方向に長くすれば、一般にはショートパスを低減させることができる。しかし、混合槽内の粒子状吸水性樹脂の動きを制御するためにより多くの撹拌羽根を設置しなければならず、付着しやすい突起物を増やすことになる。
 さらに、不要に長時間滞留する吸水性樹脂が存在するため、物性の向上につながらないこともある。また、特許文献2のように、横型混合機では堰を増やしたり、堰を大きくしたりすれば、混合槽が閉塞しやすくなる。そのために、吸水性樹脂を大量生産するために混合機一台あたりの処理量を少なくして、混合機の数を増やさざるを得ず、機器コストが高くなり、ラインの枝分けによる工程の複雑化を招くことになる。
 添加剤が表面架橋剤であるとき、均一な混合ができなければ、表面架橋層が粒子状吸水性樹脂の表面の一部しか形成されないために、吸水性樹脂の加圧下における吸収倍率や通液性などの物性が大きく損なわれてしまう。また、他の表面処理剤についても、効果を発揮するために使用量が増えたり、物性を損ねたりする。
 また、微粉は重量に対して表面積が大きく、特に均一混合するのが困難である。その結果、微粉と結着剤との混合においては、得られる結着物の結着力が弱く、崩れやすい。そこで、微粉全体に結着剤を行きわたらせるために、従来技術では結着剤としての水の添加量が多く、結着物の含水率が50重量%を超えており、乾燥に必要なエネルギーが大きくなることが問題であった。
 一方、特許文献40のように水蒸気のみを用いて結着する方法は、結着物の含水率を低くすることができるが、開示されている方法では、微粉が十分に結着するために長時間混合しており、連続的に運転するのは困難である。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、物性に優れた、表面架橋された吸水性樹脂を、低コストで高い生産性を確保しながら効率的に得ることができる吸水性樹脂の製造方法、特に、吸水性樹脂と添加剤との混合方法を提供することにある。
 本発明者らは各種検討を行った結果、上記課題を解決するために、本発明の吸水性樹脂の製造方法は、粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程と、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程とを順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、上記混合機中で添加する水の一部または全部を水蒸気で添加することを特徴とする。
 本願発明によれば、吸水性樹脂の表面架橋において、表面架橋剤の変更や新たな助剤を使用せずに、表面架橋後の吸水性樹脂の物性(例えば、加圧下吸水倍率(AAP)、通液性(SFC)等)を向上させることができる。また、従来、生産工程におけるスケールアップ時に物性低下を伴っていたが、本願発明によれば、連続生産やスケールアップ時でも物性の低下がほとんどない。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
 本発明の吸水性樹脂の製造方法は、粒子状吸水性樹脂と添加剤とを均一に混合することにより、物性に優れた粒子状吸水性樹脂を、高い生産性を確保しながら効率的に得ることができる。
本実施の形態に係る方法に用い得る混合機の一例の概略構成を示す断面図である。 本実施の形態に係る方法に用い得る混合機の別の一例の概略構成を示す断面図である。 本実施の形態に係る方法に用い得る混合機のさらに別の一例の概略構成を示す断面図である。 実施例1~6、8~11および14~37、比較例3で用いた混合機の概略構成を示す断面図である。 実施例12および13、比較例6で用いた混合機の概略構成を示す断面図である。 比較例2、5および7で用いた横型混合機の概略構成を示す断面図である。
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更して実施し得るものである。具体的には、本発明は下記の各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。なお、本明細書において、「質量」と「重量」とは同義であるものとする。
 本発明の実施形態について、以下に説明する。なお、用語の定義を〔1〕、代表的な吸水性樹脂の製造方法は下記〔2〕に示すが、本発明の特徴部分である表面処理を行う工程は(2-6)に示す。そのうち、表面架橋を行う工程は下記(2-6-1)に、通液性向上剤などの機能性を付与するための添加剤を添加する工程は(2-6-2)に、微粉同士を結着する工程は下記(2-7)に、それぞれ示す。これらの各工程はバッチ方式で行ってもよく、連続的に行ってもよいが、工業的には各行程は連結されて、全体として連続製造されることが好ましい。特に粒子状吸水性樹脂と添加剤との混合は連続的に行われる。
 〔1〕用語の定義
 (1-1)「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味する。なお、「水膨潤性」とは、ERT441.2-02で規定するCRC(無加圧下吸水倍率)が通常5[g/g]以上であることをいい、また、「水不溶性」とは、ERT470.2-02で規定するExt(水可溶分)が通常0~50重量%(特には20重量%以下)であることをいう。
 上記吸水性樹脂は、その用途に応じて適宜設計可能であり、特に限定されるものではないが、カルボキシル基を有する不飽和単量体を架橋重合させた、親水性架橋重合体であることが好ましい。また、全量(100重量%)が重合体である形態に限定されず、上記性能を維持する範囲内において、添加剤等を含んでもよい。
 (1-2)「ポリアクリル酸(塩)系吸水性樹脂」
 本発明における「ポリアクリル酸(塩)系吸水性樹脂」とは、繰り返し単位として、アクリル酸および/またはその塩(以下、アクリル酸(塩)と称する)を主成分とする吸水性樹脂を意味する。
 具体的には、重合に用いられる総単量体(架橋剤を除く)のうち、アクリル酸(塩)を通常30~100モル%、好ましくは50~100モル%を含む重合体をいい、好ましくは70~100モル%、より好ましくは90~100モル%、特に好ましくは実質100モル%を含む吸水性樹脂(水膨潤性・水不溶性架橋剤重合体)をいう。
 (1-3)「EDANA」および「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)である吸水性樹脂の測定方法(EDANA Recomeded Test Method)の略称である。なお、本発明においては、特に断りのない限り、ERT原本(公知文献:2002年改定)に準拠して、吸水性樹脂等の物性を測定する。
 (a)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。具体的には、0.9重量%塩化ナトリウム水溶液に対する30分間の自由膨潤後さらに遠心分離機で水切りした後の吸水倍率(単位;[g/g])である。
 (b)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、加圧下吸水倍率を意味する。具体的には、0.9重量%塩化ナトリウム水溶液に対する1時間、2.06kPaでの荷重下膨潤後の吸水倍率(単位;[g/g])であるが、本発明においては、1時間、4.83kPa荷重下での吸水倍率(単位;[g/g])とした。
 (c)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、水可溶分(水可溶成分量)を意味する。具体的には、0.9重量%塩化ナトリウム水溶液200gに対して、吸水性樹脂1gを16時間攪拌した後、溶解したポリマー量をpH滴定で測定した値(単位;重量%)である。
 (1-4)「通液性」
 荷重下または無荷重下における膨潤ゲルの粒子間を流れる液の流れを「通液性」という。この「通液性」の代表的な測定方法として、SFC(Saline Flow Conductivity)や、GBP(Gel Bed Permeability)がある。
 「SFC(生理食塩水流れ誘導性)」は、荷重0.3psiにおける吸水性樹脂に対する0.69重量%生理食塩水の通液性をいう。米国特許第5669894号明細書に記載されたSFC試験方法に準じて測定される。
 「GBP」は、荷重下または自由膨張における吸水性樹脂に対する0.69重量%生理食塩水の通液性をいう。国際公開第2005/016393号パンフレットに記載されたGBP試験方法に準じて測定される。
 (1-5)その他
 本明細書において、範囲を示す「X~Y」は、「X以上、Y以下」であることを意味し、(メタ)アクリル酸等に用いられる「(メタ)アクリル」はアクリルまたはメタクリルを意味する。また、重量の単位である「t(トン)」は、「Metric ton(メトリック トン)」であることを意味し、さらに、特に注釈のない限り、「ppm」は「重量ppm」または「質量ppm」を意味する。
 〔2〕吸水性樹脂の製造方法
 (2-1)アクリル酸(塩)水溶液
 (a)単量体
 本発明で使用できる不飽和単量体として、アクリル酸、メタクリル酸、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸、ビニルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリロキシアルカンスルホン酸、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等の親水性モノマー類、並びにそれらの塩が挙げられる。
 これらの単量体のうちで、例えば、アクリル酸単独、または、アクリル酸とアクリル酸以外の単量体とを併用して、または、アクリル酸以外の単量体のみから、吸水性樹脂を適宜得ることができる。不飽和単量体で、吸水性樹脂の物性(吸水倍率や水可溶分、残存モノマー、通液性等)の観点から、アクリル酸および/またはその塩が好ましい。
 不飽和単量体としてアクリル酸および/またはその塩を使用する場合、アクリル酸1~50モル%とアクリル酸のアルカリ金属塩50~99モル%とからなるアクリル酸(塩)が最も好適に使用される。
 また、重合体の繰り返し単位として、酸基含有単量体さらにはアクリル酸を使用する場合、酸基は一価塩、好ましくはアルカリ金属塩ないしアンモニウム塩、より好ましくはアルカリ金属塩、特に好ましくはナトリウム塩が用いられる。酸基は、重合前または重合後に0~100モル%、好ましくは20~100モル%、より好ましくは50~99モル%、さらに好ましくは60~90モル%の範囲で中和される。
 (b)架橋剤
 任意に使用できる架橋剤としては、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリオキシエチレン)トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリエチレングリコールジ(β-アクリロイルオキシプロピオネート)、トリメチロールプロパントリ(β-アクリロイルオキシプロピオネート)、ポリ(メタ)アリロキシアルカン等の分子内に重合性二重結合を少なくとも2個有する化合物;ポリグリシジルエーテル(エチレングリコールジグリシジルエーテル)、ポリオール(エチレングリコール、ポリエチレングリコール、グリセリン、ソルビトール)等のカルボキシル基と反応して共有結合を形成し得る化合物の1種または2種以上が挙げられる。
 架橋剤を使用する場合には、得られる吸水性樹脂の吸収特性等を考慮して、分子内に重合性二重結合を少なくとも2個有する化合物を必須に用いることが好ましい。また、架橋剤は、物性面から、前記単量体に対して0.0001~5モル%、好ましくは0.005~2モル%の範囲で使用される。
 (c)濃度
 これらの単量体は、通常、水溶液で重合され、その単量体濃度は、通常10~90重量%、好ましくは20~80重量%、より好ましくは30~70重量%、特に好ましくは30~60重量%の範囲である。
 また、水溶液には、界面活性剤、ポリアクリル酸(塩)やその架橋体(吸水性樹脂)、澱粉、ポリビニルアルコール等の高分子化合物、各種キレート剤、各種添加剤等を、前記単量体に対して0重量%を超え30重量%以下の範囲で併用してもよい。なお、本願で水溶液とは、飽和濃度を超えた分散液も含むが、好ましくは飽和濃度以下で重合される。
 (2-2)重合工程
 (a)重合方法
 本発明の吸水性樹脂は、前記不飽和単量体を架橋重合し、含水ゲル状重合体を得ることにより製造される。重合は、性能面や重合の制御の容易さから、通常、噴霧重合、滴下重合、水溶液重合または逆相懸濁重合、特に、従来、その不定形状粒子のために粒度制御が困難であった水溶液重合、さらには連続水溶液重合で行われる。
 逆相懸濁重合とは、単量体水溶液を疎水性有機溶媒に懸濁させる重合法であり、例えば、米国特許第4093776号、同第4367323号、同第4446261号、同第4683274号、同第5244735号等の米国特許に記載されている。一方、水溶液重合とは、分散溶媒を用いずに単量体水溶液を重合する方法であり、例えば、米国特許第4625001号、同第4873299号、同第4286082号、同第4973632号、同第4985518号、同第5124416号、同第5250640号、同第5264495号、同第5145906号、同第5380808号等の米国特許や、欧州特許第0811636号、同第0955086号、同第0922717号、同第1178059号等の欧州特許に記載されている。なお、重合に際し、これらに記載されている単量体、架橋剤、重合開始剤、その他の添加剤等も本発明では使用可能である。
 本発明の効果をより発揮させる点から、好ましくは水溶液重合または逆相懸濁重合、さらに好ましくは水溶液重合、より好ましくは連続水溶液重合、特に好ましくは連続ベルト重合または連続ニーダー重合が適用される。
 物性や乾燥効率の観点から、かかる重合時の重合熱によって、重合溶媒の少なくとも一部を揮発させることが好ましく、例えば、重合前後で固形分を0.1重量%以上、好ましくは1~40重量%、より好ましくは2~30重量%、特に好ましくは3~20重量%程度上昇させればよい。固形分上昇は重合時の温度(例えば、沸点で重合)、気流や形状(重合ゲルの粒径やシート厚み)などで適宜決定される。
 これらの重合は、空気雰囲気下でも実施できるが、窒素やアルゴン等の不活性気体雰囲気下、例えば、酸素濃度1容積%以下で行われる。また、単量体成分は、その溶存酸素が不活性気体で十分に置換されて、酸素濃度が1[mg/L](ppm)未満となった後に重合に用いられることが好ましい。
 本発明では実験室スケールよりも実機スケール、中でも巨大スケールの製造や粉砕での粒度制御により効果を発揮する。そこで、特に1ラインで不飽和単量体水溶液を重合して吸水性樹脂を1[t/hr]以上、さらには2[t/hr]以上、よりさらには5[t/hr]以上、特に10[t/hr]以上の巨大スケールで製造ないし粉砕する連続重合および連続粉砕において、本発明は好適に採用し得る。生産の上限は例えば100[t/hr]等適宜決定される。
 よって、好ましい連続重合として、連続ニーダー重合(例えば、米国特許第6987151号、同第6710141号、米国特許出願公開第2008/0080300号)、連続ベルト重合(例えば、米国特許第4893999号、同第6241928号および米国特許出願公開第2005/215734号)が挙げられる。
 水溶液重合の重合方法については、単量体水溶液を静置状態で重合する静置重合法、攪拌装置内で重合する攪拌重合法などがある。静置重合法では、エンドレスベルトを用いる方法が好ましい。攪拌重合法では、一軸攪拌機でも可能であるが、ニーダーなどの複数攪拌軸の攪拌機が好ましく用いられる。
 本発明における重合方法の、より具体的な例としては、特開2005-307195号公報に記載されているような、エンドレスベルトを用いた高モノマー濃度での連続重合法が挙げられる。かかる連続ベルト重合ないし連続ニーダー重合が、本発明にも好適に適用される。
 なお、連続重合では、高温開始(例えば、単量体の温度が30℃以上であり、より好ましくは35℃以上、さらに好ましくは40℃以上、特に好ましくは50℃以上であり、上限は沸点である)、高単量体濃度(例えば、30重量%以上、より好ましくは35重量%以上、さらに好ましくは40重量%以上、特に好ましくは45重量%以上であり、上限は飽和濃度である)での重合が好ましい一例として例示できる。
 (b)重合開始剤
 本発明で使用される重合開始剤は、重合の形態によって適宜選択される。このような重合開始剤としては、好ましくは水溶性重合開始剤、さらには、光分解型重合開始剤、熱分解型重合開始剤、レドックス系重合開始剤等を例示することができる。また、本発明においては、光分解型重合開始剤と熱分解型重合開始剤とを併用することも好ましい。
 光分解型重合開始剤としては、例えば、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等が挙げられる。
 また、熱分解型重合開始剤としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;アゾニトリル化合物、アゾアミジン化合物、環状アゾアミジン化合物、アゾアミド化合物、アルキルアゾ化合物、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物等が挙げられる。
 レドックス系重合開始剤としては、例えば、前記過硫酸塩や過酸化物に、L-アスコルビン酸や亜硫酸水素ナトリウムのような還元性化合物を併用し、両者を組み合わせた系が挙げられる。重合開始剤の量は、前記モノマーに対し、0.0001~1モル%、好ましくは0.001~0.5モル%の範囲で使用される。
 (2-3)含水ゲル状重合体を細粒化する工程
 乾燥効率、乾燥後の粉砕効率並びに物性の面から、乾燥前の含水ゲル状重合体が、重合中ないし重合後に細粒化されていることが好ましい。
 本発明で水溶液重合(特に連続ベルト重合を用いる場合)により得られる、例えば、塊状、シート状等の含水ゲル状重合体(含水架橋重合体)は、粉砕装置によって粉砕され、粒子状の含水ゲルとされた後、乾燥される。また、噴霧重合、滴下重合、逆相懸濁重合では、重合によって粒子状の含水ゲルが得られるが、重合後の粒子状の含水ゲルはそのまま乾燥してもよく、また、必要によりさらに粉砕ないし結着させて粒度を調整してもよい。
 上記粒子状の含水ゲルの好ましい粒径としては、標準篩分級により求められる重量平均粒子径(D50)が0.5~10mmの範囲内であることが好ましく、1~5mmの範囲内であることがより好ましく、さら好ましくは1~3mm、特に好ましくは1~2mmである。
 なお、含水ゲル状重合体を細粒化する工程で、上記の範囲内に制御する方法としては、米国特許第6906159号、同第5275773号、同第6100305号、同第6140395号、同第6875511号、米国特許出願公開第2004/234607号、同第2005/46069号等が採用される。
 (2-4)乾燥工程
 上記の含水ゲル重合体、好ましくは粒子状含水ゲル重合体は、粉砕が可能となる固形分量になるまで乾燥される。ここで、乾燥工程に供される親水性架橋重合体(含水ゲル状重合体)の形態は、ニーダー、ミートチョッパーおよびカッターなどによる粗砕含水ゲル並びにその凝集物、シート状含水ゲルである。この乾燥工程の中に適宜、凝集物の解砕工程や粗砕工程を入れてもよい。このような技術として、例えば、米国特許第6187902号が採用される。
 本発明での乾燥方法としては、目的の含水率となるように種々の方法を採用することができ、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、疎水性有機溶媒との共沸による脱水、高温の水蒸気を用いた高湿乾燥等が挙げられる。また、これらの乾燥に用いる乾燥機としては、伝導伝熱型乾燥機、輻射伝熱型乾燥機(例;赤外線乾燥)、熱風伝熱型乾燥機、誘電加熱型乾燥機(例;マイクロ波乾燥)、およびこれらを併用したものが挙げられる。これらの乾燥は減圧下で行ってもよいが、好ましくは、乾燥効率から熱風伝熱型乾燥機が用いられる。
 熱風乾燥方法としては、静置状態で乾燥を行う方法、攪拌状態で乾燥を行う方法、振動状態で乾燥を行う方法、流動状態で乾燥を行う方法、気流で乾燥を行う方法等がある。これらの中でも、効率面から、流動層乾燥または静置乾燥(さらには通気バンド乾燥)、さらには連続静置乾燥(連続通気バンド乾燥)を用いた熱風乾燥が使用される。
 乾燥温度は、通常60~250℃、好ましくは100~250℃、より好ましくは100~220℃、さらに好ましくは120~200℃、特に好ましくは150~190℃の温度範囲(特に熱風温度)で行われる。
 乾燥時間は、重合体の表面積、含水率、および乾燥機の種類、風量に依存し、目的とする含水率になるよう選択される。例えば、乾燥時間は、1分~5時間、1分~1時間の範囲内で適宜選択すればよい。
 この乾燥により親水性架橋重合体の固形分量は、好ましくは70~95重量%、より好ましくは80~95重量%、さらに好ましくは85~95重量%、特に好ましくは90~95重量%に上昇する。
 (2-5)粒度を制御する工程
 乾燥により得られた乾燥物は、粒径制御のため、粉砕、および必要により分級される。これらの方法については、例えば、国際公開第2004/69915号(米国特許出願公開第2006/024755号)に記載されている。
 衛材向けであれば、好ましくは重量平均粒子径が100~1000μm、より好ましくは200~800μm、特に好ましくは300~600μmである。また、衛材向けであれば、粒径が150μm以上850μm未満の範囲にあるものが80重量%以上であることが好ましく、90重量%以上であることがより好ましい。この粒子状吸水性樹脂は後述する「(2-6)表面処理工程」に送られる。
 この工程で発生する、粒度が150μm以下の微粉は、吸水性樹脂の物性を低下させ、また、安全衛生上問題となるため、分級して取り除かれる。この分級して微粉を取り除く工程は、後述のとおり、加熱乾燥工程の途中または後に行っても構わない。この微粉は適宜回収され、再度粒状に成形される、あるいは単量体水溶液に回収される等の工程を経る。
 一方、粒度を制御する重合機に回収される、または後述する「(2-7)微粉同士を結着する工程」で、重合機、乾燥機に回収される、等の工程を経る。
 (2-6)表面処理工程
 (2-6-1)表面架橋工程
 表面架橋工程は本発明の特徴的な部分である。すなわち、本発明の吸水性樹脂の製造方法は、粒子状吸水性樹脂に表面架橋剤および水を混合機中で添加する工程、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程を順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、混合機中での水の添加の一部または全部を水蒸気で添加することを特徴とする。
 上記の方法では、表面架橋剤と粒子状吸水性樹脂とが混合された後、続いて表面架橋剤と粒子状吸水性樹脂のカルボキシル基との反応を促進するために加熱ないし活性エネルギーの照射を行うことで、表面架橋された吸水性樹脂粒子が得られる。
 以下に本工程の実施方法の詳細を示す。
 (a)カルボキシル基と反応しうる架橋剤
 本発明において表面架橋剤としては、種々の有機架橋剤または無機架橋剤を例示することができるが、例えば、上記文献1~34に例示の公知の架橋剤を用いることができる。本発明では、表面架橋剤は吸水性樹脂の架橋を行うものであれば特に制限なく使用でき、単量体を重合して表面架橋する技術(特許文献20、21)や過硫酸塩などでラジカル架橋する技術(特許文献22)も架橋剤として使用ないし包含できる。物性や取り扱い性の観点から、好ましくは、吸水性樹脂のカルボキシル基(特にポリアクリル酸の中和または未中和のカルボキシル基)と反応、特に共有結合またはイオン結合で反応、さらには共有結合で反応する表面架橋剤が使用できる。
 例えば、表面架橋剤としては、水酸基、アミノ基、ないしそれらの誘導体を有する化合物が挙げられる。さらには多価アルコール化合物、エポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、モノ,ジまたはポリオキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物等が挙げられる。
 これら表面架橋剤の中でも、物性面(特に高い加圧下吸水倍率や通液性)や安全性の面から、表面架橋剤がカルボキシル基と脱水反応しうる架橋剤(脱水反応性架橋剤)、特に、多価アルコール化合物(特許文献12)、オキサゾリジノン化合物(特許文献16~18)、アルキレンカーボネート(特許文献19)、オキセタン(特許文献11)から選ばれる脱水反応性架橋剤が好適に使用できる。
 かかる脱水反応性架橋剤は、吸水性樹脂のカルボキシル基と脱水反応を経て共有結合を形成するため、水蒸気添加(水添加)では実質的に反応しない。つまり、その後、混合機から取り出した吸水性樹脂混合物を反応機中で加熱ないし活性エネルギー照射することによって脱水反応を行い、優れた吸水性樹脂を提供する。
 カルボキシル基と脱水反応しうる表面架橋剤としてより具体的には、米国特許第6228930号、同第6071976号、同第6254990号等に例示されている化合物を挙げることができる。例えば、モノ,ジ,トリ,テトラまたはポリエチレングリコール、モノプロピレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,3,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン、ポリアミドポリアミン等の多価アミン化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;上記多価アミン化合物と上記ハロエポキシ化合物との縮合物;2-オキサゾリジノン等のオキサゾリジノン化合物;エチレンカーボネート等のアルキレンカーボネート化合物;オキセタン化合物;2-イミダゾリジノン等の環状尿素化合物等が挙げられる。
 なお、ポリアミンや多価金属塩は、粒子状吸水性樹脂のカルボキシル基とイオン架橋しうる表面架橋剤としても使用でき、後述の通液性向上剤としても使用できる。また、これら表面架橋は一度でもよく、粒子状吸水性樹脂に対して、同じまたは別の表面架橋剤を用いて複数回行ってもよい。
 好ましい表面架橋剤として、上記特許文献33に開示されていない脱水反応性架橋剤、特に、多価アルコール、(モノまたは多価)オキサゾリジノン、(モノまたは多価)アルキレンカーボネート、(モノまたは多価)オキセタンが例示され、これら脱水反応性架橋剤は架橋剤ないしその開環物が有する水酸基やアミノ基が吸水性樹脂のカルボキシ基と脱水反応して架橋することで、特許文献33に開示のないAAPやSFCを向上させることができる。また、水蒸気で水を添加する際、好ましくは、これら脱水反応性架橋剤は溶液、特に水溶液として粒子状吸水性樹脂に添加されることで、特許文献33に開示のないAAPやSFCを向上させることができる。
 すなわち、水溶液で水を添加するに際して、好ましい形態として、架橋剤、特に脱水反応性架橋剤は溶液、特に水溶液として吸水性樹脂に添加された加熱処理で脱水反応を行うことで、AAPやSFCを向上させることができる。脱水反応は水の存在下では殆ど(あるいは全く)進行しないため、脱水反応の進行は表面架橋前後の吸水性樹脂粒子の水分量の減少(同義語;固形分の上昇)でも容易に確認でき、表面架橋剤(水溶液)の添加前の粒子状吸水性樹脂に比べて、表面架橋後の吸水性樹脂粒子の水分が減少、特に3重量%以下、2重量%以下、1重量%以下、0.5重量%以下への減少で確認できる。上記特許文献33は表面架橋において、水溶液の使用による不均一の解消のために、水蒸気の使用や水蒸気での吸水性樹脂の重量増加(0.7重量部まで、特に0.02~0.1重量部)を開示するが、液体の水の使用を開示しないし、また、脱水反応や反応後の水分量を開示しない。本願は表面架橋前後で、添加した水や水蒸気を脱水反応時に除去して吸水性樹脂粒子の水分を減少させることが好ましい。
 表面架橋剤の使用量は、用いる化合物やそれらの組み合わせ等にもよるが、粒子状吸水性樹脂100重量部に対して、0.001~10重量部の範囲内が好ましく、0.01~5重量部の範囲内がより好ましい。
 本発明において、表面架橋剤とともに水が使用される。この際、使用される水の量は、粒子状吸水性樹脂100重量部に対し、好ましくは0.5~20重量部、より好ましくは0.5~10重量部の範囲である。また、本発明において、水以外に、親水性有機溶媒を用いることも可能である。この際、使用される親水性有機溶媒の量は、粒子状吸水性樹脂100重量部に対して、0重量部を超え10重量部以下の範囲、好ましくは0重量部を超え5重量部以下の範囲である。
 親水性有機溶媒を用いる場合には、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン、メトキシ(ポリ)エチレングリコール等のエーテル類;ε-カプロラクタム、N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,2-シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール類等が挙げられる。
 なお、多価アルコール類は、温度や時間を適宜選択することによって架橋剤として用いてもよいし、全く反応させず、溶媒として用いてもよいし、これら性質をそれぞれ有する複数の多価アルコールを併用してもよい。水を含めこれらの溶液は凝固点や沸点にもよるが混合性を考慮して、0~100℃、好ましくは5~50℃で用いられる。
 また、粒子状吸水性樹脂への架橋剤溶液の混合に際し、本発明の効果を妨げない範囲、例えば、0重量%を超え10重量%以下の範囲内、好ましくは0重量%を超え5重量%以下の範囲内、より好ましくは0重量%を超え1重量%以下の範囲内で、水不溶性微粒子粉体や界面活性剤を共存させてもよい。好ましい界面活性剤やその使用方法は、例えば、米国特許第7381775号に例示されている。また、これらと同時に水蒸気を混合槽に入れてもよい。これらの表面架橋剤は本発明の混合方法により良好に混合される。
 (b)表面架橋工程に供給される粒子状吸水性樹脂
 上記「(2-5)粒度を制御する工程」を経た粒子状吸水性樹脂は、好ましくは、加熱もしくは保温された貯蔵設備に一時的に保存され、フィーダーによって定量的に表面架橋工程に供給される。好ましいフィーダーはサークルフィーダーまたはスクリューフィーダーである。
 また、混合機に供給される粒子状吸水性樹脂の温度が、水蒸気の温度より低いことが好ましく、より好ましくは10~100℃低い、さらに好ましくは30~90℃低い、特に50~80℃低いことが好ましい。
 また、表面架橋工程に供給される粒子状吸水性樹脂の温度は、混合機に投入されるときに予め30~150℃となっていることが好ましく、より好ましくは40~120℃、さらに好ましくは30~90℃、特に好ましくは40~80℃、最も好ましくは50~70℃である。吸水性樹脂は付着や凝集が起こりやすく、投入される粒子状吸水性樹脂の温度が30℃より低いと、付着が生じやすく長時間運転では付着物の成長等により閉塞が起こる場合がある。一方、150℃より高いと粒子状吸水性樹脂の劣化が起こるおそれがあり、添加剤によっては粒子状吸水性樹脂の混合性が悪化する場合がある。
 粒子状吸水性樹脂の温度を水蒸気より低く設定することで、粒子状吸水性樹脂に効率的に水分が吸収される。ただし、粒子状吸水性樹脂の温度が水蒸気の温度より過度に低い場合、例えば、110℃以上、さらには150℃以上低い場合、粒子状吸水性樹脂の凝集が起ったり、その後の加熱処理、すなわち、混合機から取り出した吸水性樹脂混合物を反応機中で加熱し脱水反応を形成するのに不利になったりすることがある。
 なお、粒子状吸水性樹脂の温度を低く設定することで、水蒸気が粒子状吸水性樹脂の表面で結露して、粒子状吸水性樹脂への均一な水の添加を促すとも推定されるが、粒子状吸水性樹脂への水添加が直接的な水蒸気の吸収であるか、水蒸気の結露水の吸収であるかは特に問わない。
 また、粒子状吸水性樹脂の温度は、混合機に投入される粒子状吸水性樹脂を取り出し、速やかに一般的な接触型温度計を接触させることにより測定できる。
 (c)水蒸気
 本発明の第一の製造方法は、混合機中に水蒸気を供給することである。好ましくは1気圧より高い蒸気圧の飽和水蒸気を蒸気ラインにより混合機に供給する。1気圧より高い蒸気圧とすることで、ブロワー等、気体を供給する装置が不要となり、効率よく水蒸気を供給することができる。
 供給される水蒸気(好ましくは飽和水蒸気)の好ましい蒸気圧(ゲージ圧)は0.01~1MPa、より好ましくは0.05~0.9MPa、さらに好ましくは0.1~0.8MPaである。0.01MPa未満では混合性が悪化する。一方、1MPaより高いと高圧蒸気を混合機内で開放することになるため危険である。また、水蒸気の温度が高く、ポリマーを劣化させる場合がある。
 なお、例えば、化学工学便覧第六版(発行:丸善)400ページに記載されている表を用いることにより飽和水蒸気の蒸気圧を飽和水蒸気の温度に読み替えることができる。好ましい水蒸気の温度は約100~180℃である。混合機内の露点は、好ましくは60~100℃、さらに好ましくは70~100℃、特に好ましくは80~100℃となる。混合機内の露点が60℃より低くなると、本発明の効果が小さくなってしまう。
 (d)混合機
 本発明において、混合機中で粒子状吸水性樹脂に表面架橋剤を添加し、混合した後、表面架橋剤と粒子状吸水性樹脂とを反応させるために加熱または活性エネルギー線の照射を行う。
 表面架橋剤と粒子状吸水性樹脂とを反応させるための反応機は、表面架橋剤と粒子状吸水性樹脂とを混合する装置と同一形式であってもよいし、別の形式であってもよい。ただし、混合機は粒子状吸水性樹脂と表面架橋剤とをすばやく混ぜる必要があるので、架橋反応を促進するために十分な時間、加熱または活性エネルギーの照射を行うような装置構造にはなりにくい。よって、混合機と反応機とは、別の形式が好ましい。
 すなわち、混合機と反応機とが連結された連続装置(各工程を連続的に行う装置)であることが好ましい。混合機中における粒子状吸水性樹脂の平均滞留時間は、1秒以上5分未満が好ましく、より好ましくは1秒以上1分未満である。また、連結された反応機中の吸水性樹脂混合物の平均滞留時間は、架橋剤の反応性などで適宜決定され、例えば1分以上、通常6分~10時間、さらには10分~2時間である。
 粒子状吸水性樹脂と表面架橋剤とを混合する際に用いられる混合装置は、これら各物質を均一に、かつ確実に混合するために、大きな混合力を備えていることが好ましい。
 上記の混合装置としては例えば、円筒型混合機、二重壁円錐混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型ニーダー、粉砕型ニーダー、回転式混合機、気流型混合機、タービュライザー、バッチ式レディゲミキサー、連続式レディゲミキサー等が好適である。本発明においてさらに好ましい混合機は円筒状の混合槽を持ち、中央の軸を中心にパドルが回転する縦型混合機である。
 なお、縦型とは回転軸が上下方向(鉛直方向)のものであり、横型とは回転軸が水平方向のものである。横型混合機では混合槽の下部にしっとりとした吸水性樹脂が溜まりやすく、大きな吸水性樹脂の凝集物ができたりパドルに吸水性樹脂が付着したりして、混合性の悪化を招くおそれがある。
 本発明においては、上記観点から、粒子状吸水性樹脂と表面架橋剤などの添加剤との混合に、以下の条件(i)~(iii)を、満たす縦型混合装置を使用することが好ましい。
 (i)300~3000rpmで撹拌羽根が回転する、
 (ii)撹拌羽根の回転軸は少なくとも1本は鉛直方向(縦型混合機)である、
 (iii)開口度が5~70%の仕切りにより、混合槽が上下に2室以上に分けられている。
 上記縦型混合装置は、本発明の課題を解決するため、本発明者らが各種検討を行った結果、従来の縦型混合機、すなわち回転軸が鉛直方向である混合機の場合、撹拌羽根だけでは、粒子状吸水性樹脂のショートパスを防ぐことができないと考え、混合槽に仕切りを入れることに着目して完成させたものである。
 つまり、本発明における第二の方法は、粒子状吸水性樹脂と添加剤の混合において、予め粒子状吸水性樹脂の温度を30~150℃とすること、および以下の条件(i)~(iii)、
 (i)300~3000rpmで撹拌羽根が回転する、
 (ii)撹拌羽根の回転軸は少なくとも1本は鉛直方向である、
 (iii)開口度が5~70%の仕切りにより、混合槽が上下に2室以上に分けられている、
を満たす連続混合装置を使用することを特徴とする方法を提供する。
 上記方法により、粒子状吸水性樹脂と添加剤との混合において、均一な混合を行うことができ、得られる混合物は添加剤の目的に応じて好ましい物性を持つ。さらに、1t/hrを超えるようなスケールでの吸水性樹脂の製造にも適している。つまり、上記方法では、粒子状吸水性樹脂と添加剤との混合において、高い混合性と、高い処理力、安定運転性を兼ね備えている。
 以下、上記縦型混合機の混合機構、および好ましい混合条件の詳細を示す。
 上記縦型混合機における混合槽の好ましい形状は、ドラム型で、中央に撹拌羽根の回転軸を持つ。このような混合槽の胴の部分は本発明を阻害しない程度に膨らみやくびれがあっても構わない。
 上記縦型混合機に投入された粒子状吸水性樹脂は、二つの過程、(I)分散、(II)撹拌混合、を経て排出される。
 上記(I)分散過程では、撹拌羽根およびそれが回転することによって起きる気流により、粒子状吸水性樹脂が遠心力を得て、側壁に向かって分散される。該縦型混合機の回転速度は300~3000rpm、好ましくは500~3000rpmである。撹拌羽根の最大回転直径は通常0.1~1m程度、混合槽の直径は通常0.15~1.2m程度である。回転速度が300rpmより遅ければ、分散に十分な気流が得られないし、3000rpmより速ければ、吸水性樹脂が撹拌羽根との衝突でダメージを受け、物性の低下や微粉の増加が問題となり得る。
 撹拌羽根の回転軸の少なくとも1本は鉛直方向である。ただし、鉛直方向とは厳密なものでなくてもよく、混合機の運転を害さない程度で傾いていてもよい。撹拌羽根の回転軸は1~5本とすることができ、通常1本である。
 粒子状吸水性樹脂は、混合槽の上面に設けられた投入口より混合槽へ投入される。このとき十分分散される前に粒子状吸水性樹脂が排出口へ向かって落下することを防ぐため、仕切りを設置する。仕切りは投入口の下に用いられることが好ましい。
 上記連続混合装置の仕切りは開口度が5~70%であり、好ましくは10~50%、特に好ましくは10~30%である。開口度とは、回転軸と直角をなす平面(本発明では水平面)における、ケーシングの内壁で囲まれた内部の面積(S1)、ケーシングの内壁で囲まれた内部における構造物、および粒子状吸水性樹脂が進入できないような構造物内部の空洞部分(例えば回転軸内部の空洞)の面積(S2)に対して、以下の数式から求められる値である。
Figure JPOXMLDOC01-appb-M000001
 開口度が5%未満では閉塞が発生し易く、開口度が70%より大きいと、粒子状吸水性樹脂が混合機をショートパスし易く、混合性が悪化する傾向にある。なお、開口の形状および場所などは適宜決定され、開口の数も一箇所または複数でもよいが、好ましくは回転軸の外周部、特に内壁周辺に1ヶ所~5ヶ所、さらには1~3ヶ所、で設置される。好適な開口は後述のような仕切り構造を有する。かかる仕切りは、面積がS2の板、特に円盤により形成され、面積(S1-S2)の開口を有し、上下の仕切りであることが好ましい。
 また、ひとつの開口の大きさは吸水性樹脂粒子より大きいことが必須であり、面積が好ましくは重量平均粒子径(D50)の断面積の2倍以上、さらには10倍以上、100倍以上あるか、および/または、ひとつの開口の断面積が1cm以上、さらには5cm以上である。開口の上限は処理量で適宜決定されるが6000cm以下、通常、1000cm程度である。
 上記仕切りは1枚以上あり、上下に2枚以上設置してもよく、混合槽は上下に2室以上に分割される。どの部屋の容積も混合槽の容積の1割以上であることが好ましく、分割方法はこの範囲で適宜選択することができる。
 上記仕切りは、混合槽の側壁に取り付けた固定式のものでもよいが、撹拌羽根の回転軸を中心に、回転する構成のものを用いることができる。この方法により、大きな仕切りであっても遠心力により付着が起こりにくい。このような仕切りは、例えば回転軸に板状の構造物を取り付けてもよいし、回転軸の一部を太くして、仕切りとして用いてもよい。また、このような仕切りは撹拌羽根と一体となっていてもよい。すなわち軸に撹拌羽根を取り付けるのではなく、仕切りに撹拌羽根を取り付けることができる。
 上記連続混合装置で混合する添加剤は、液体または分散液または固体微粒子の性状を持つ。添加剤が液体または分散液であるとき、本発明に用いる混合機は特に付着の防止などの点で特に大きな効果を発揮するが、添加剤が固体微粒子であっても混合性の良さを否定されるものではないし、速やかに混合されるために、粒子状吸水性樹脂に与えるダメージを低減できる。
 添加剤の量は使用目的、性状にもよるが、粒子状吸水性樹脂100重量部に対して、好ましくは100重量部以下、さらに好ましくは70重量部以下であり、0.001重量部以上であることが好ましい。
 添加剤の添加方法は滴下、または噴霧であり、吸水性樹脂と均一に混合するために、好ましくは噴霧である。ただし、液滴が撹拌羽根および気流により、霧状となる場合は、滴下であっても十分な混合を行うことができる。好ましい添加剤の添加位置は上記「(I)分散」過程の途中か、「(I)分散」過程終了後である。
 上記の添加剤が付着した粒子状吸水性樹脂は上記「(II)撹拌混合」過程に入る。上記連続混合装置では、「(I)分散」と「(II)撹拌混合」とが行われる領域が大きな仕切りによって分けられており、ショートパスを防いでいる。この仕切りは複数設置されていてもよい。好ましくは撹拌羽根と他の撹拌羽根との間に仕切りを設ける。
 上記「(II)混合」過程では遠心力により、添加剤の付着した粒子状吸水性樹脂が側壁に沿って回転運動しながら滞留層を形成している状態である。この滞留層を撹拌羽根が通過することにより、粒子状吸水性樹脂と添加剤とが激しく混合され、均一混合が達成される。この過程は微粉と結着剤との混合の場合、さらに微粉同士が結着して粒子径が150μm以上の結着物を形成する。
 上記のように遠心力により粒子状吸水性樹脂を側壁に滞留させるとともに、撹拌を行うために、少なくとも一つの撹拌羽根の先端が描く軌道より回転軸側に排出口を設けることが好ましい。さらに好ましくは、物性を向上させる目的で滞留量を制御するために、排出口に長さおよび/または角度が変更可能な堰構造を設ける。
 この堰構造は側壁(内壁)から回転軸側への水平方向の長さ(α)が好ましくは混合槽の最大半径(回転軸と直角をなす平面(本発明では水平面)における、ケーシングの内壁で囲まれた内部の最大半径)の1~40%であり、水平面に対して成す角度(β)が好ましくは10~80°である。上記堰角度が80°を超える、または上記張り出し長さが混合槽の最大半径の1%未満であると、粒子状吸水性樹脂が滞留層を形成せず、混合性が悪化する可能性がある。一方堰角度が10°未満である、または張り出し長さが混合槽の最大半径の40%を超えていれば排出性が悪化する可能性がある。
 本発明における混合方法はいずれもショートパスや不要な滞留を低減する方法であるため、回転軸方向の混合槽の高さは低くてもよい。好ましくは回転軸方向の混合槽の高さをH、混合槽の最大部分の直径(最大直径(回転軸と直角をなす平面(本発明では水平面)における、ケーシングの内壁で囲まれた内部の最大直径))をDとしてH/Dの値が0.1~1.0であることが好ましく、特に好ましくは0.1~0.5である。
 なお、混合槽の最大直径は0.15~1.2mであることが好ましく、混合槽の高さは0.03~1mが好ましい。従って従来にはない、非常にコンパクトな形状を持つ混合機であるが、混合機に投入される吸水性樹脂の量は、好ましくは混合機の混合槽容積1Lあたり10~300kg/hr、より好ましくは10~150kg/hrという高い処理力で粒子状吸水性樹脂を混合する。このとき混合機一台の処理力は混合機のサイズにもよるが、好ましくは50~30000kg/hrである。
 本発明における混合機は内壁が加熱または保温されていることが好ましい。この内壁はケーシングの内面、軸、仕切り、撹拌羽根を含む。この方法としてジャケットに水蒸気、温水を通すこと等による加熱がある。また、軸や仕切りの内部に水蒸気や温水の配管を通して加熱する方法も好ましい。内壁の温度は50~150℃が好ましい。この範囲より低いと、添加剤によっては内壁に付着する可能性があり、この範囲より高いと、粒子状吸水性樹脂が劣化する可能性がある。
 付着を防止するもう一つの方法として、本発明における混合機は内壁が付着しにくい素材で被覆されていることが好ましい。このような方法として例えば水に対する接触角が60°以上の材料(基材)を用いて内壁を被覆すことができる。このような材料として例えばフッ素樹脂を用いることができる。上記連続混合装置がコンパクトであるため、被覆が容易である。特に回転軸方向を短くできるため、粒子状吸水性樹脂との摩擦で磨耗の激しい側壁の面積が小さいのが利点である。
 上記連続混合装置においても、粒子状吸水性樹脂と添加剤との混合において水蒸気を導入してもよい。水蒸気を導入することで、粒子状吸水性樹脂の内壁への付着を抑え、添加剤の浸透性を制御できる場合がある。特に微粉と結着剤との混合では、水蒸気が微粉表面で水になり、微粉同士を結着させる効果をもつため好ましい。
 混合機に供給される水蒸気は飽和水蒸気であり、混合機内で開放されることが好ましい。水蒸気のゲージ圧は0.1~2.0MPa、好ましくは0.1~1.0MPa、より好ましくは0.1~0.5MPaである。上記ゲージ圧が0.1MPaより低ければ、水蒸気の効果が発揮されず、2.0MPaより高ければ、粒子状吸水性樹脂が劣化するおそれがある。
 上記水蒸気の供給量は粒子状吸水性樹脂100kg/hrに対し、1~100kg/hr、好ましくは1~50kg/hr、より好ましくは1~30kg/hrである。粒子状吸水性樹脂の供給量100kg/hrに対し、上記水蒸気の供給量が1kg/hrより少なければ水蒸気の効果が発揮されず、100kg/hrより多ければ、混合状態が悪化するおそれがある。なお、粒子状吸水性樹脂に吸収される水蒸気は供給される水蒸気の一部だけである。本発明の特徴である混合機は水蒸気を導入すると付着が起こったりすることが少ないため、水蒸気を導入した混合に好適である。
 混合機におけるパドルの好ましい回転数は100rpm以上5000rpm未満、より好ましくは300rpm以上2000rpm未満である。もしパドルの回転数が100rpm未満であれば、混合槽内に大きな吸水性樹脂の凝集物ができやすい。またパドルの回転数が5000rpm以上であれば、パドルと吸水性樹脂との衝突により、吸水性樹脂は粉砕されてしまうおそれがある。
 混合機中における粒子状吸水性樹脂の滞留時間は1秒以上5分未満が好ましい。より好ましくは1秒以上1分未満である。もし滞留時間が1秒未満であれば十分な混合は得られず、表面架橋後の物性、例えば加圧下吸収倍率が悪化するおそれがある。一方、滞留時間が5分以上であればパドルと吸水性樹脂との衝突により、吸水性樹脂はダメージを受け、表面架橋後の物性が悪化するおそれがある。
 なお、上記混合機から反応機の入口までに、排気装置が設けられていることが好ましい。混合機は好ましくは排気装置を有する。より好ましくは混合後の吸水性樹脂の排出口付近に排気装置を有する。これは、余分な水蒸気の滞留を防ぐためである。このため、排気装置は保温または加温されていることが好ましい。
 好ましくは排気ラインの圧力(排気圧)を-0.01~-1kPa(ゲージ圧)、より好ましくは-0.05~-0.5kPaになるようにする。もし排気圧が-0.01kPa未満であれば、吸水性樹脂が大きな凝集物を作りやすくなる。また、排気圧が-1kPaより大きければ、吸水性樹脂が排気ラインに入り、ロスが発生したり、排気装置の能力の低下をもたらしたりする場合がある。
 また、混合機の内面(内壁や必要により設置される攪拌翼など)の温度が水蒸気より低いことが好ましく、より好ましくは10~100℃低い、さらに好ましくは30~90℃低い、特に好ましくは50~80℃低い。
 混合機内面の温度を水蒸気より低く設定することで、粒子状吸水性樹脂に効率的に水分が吸収される。さらに、粒子状吸水性樹脂の付着を防ぐ効果を有する。これは、混合機の内壁で水蒸気の凝縮が起こって水の層を形成し、内壁と粒子状吸水性樹脂が直接接するのを防いでいるためと想像される。
 ただし、混合機の温度が水蒸気の温度より過度に低い場合、例えば、110℃以上、さらには150℃以上低い場合、粒子状吸水性樹脂の凝集が起ったり、その後の加熱処理、すなわち、混合機から取り出した吸水性樹脂混合物を反応機中で加熱し脱水反応を形成するのに不利になったりする。
 なお、混合機内面の温度を低く設定すれば水蒸気が混合機の内面で結露して、粒子状吸水性樹脂と結露した内面とが接触することで、粒子状吸水性樹脂への均一な水の添加を促すとも推定される。しかしながら、本実施の形態では、粒子状吸水性樹脂への水添加が直接的な水蒸気の吸収であるか、水蒸気の結露水の吸収であるかは特に問わない。
 上述した縦型混合装置の具体例について、図1~3を用いて以下説明する。
 図1は、本実施の形態に係る縦型混合装置の一例の概略構成を示す断面図であり、図2は、本実施の形態に係る縦型混合装置の別の一例の概略構成を示す断面図であり、図3は、本実施の形態に係る縦型混合装置の更に別の一例の概略構成を示す断面図である。
 図1に示すように、本実施の形態に係る縦型混合装置は、混合層10内に、撹拌のための、鉛直方向に沿って設置された回転軸6と、当該回転軸6に備えられた攪拌羽根5と、混合槽10を上下に2室以上に分ける、混合層10の側壁1に設置された板状の仕切り7とを備える。
 そして、混合層10の上部には、吸水性樹脂粒子を投入するための投入口2と、表面架橋剤を投入するための添加剤投入口4とが設けられている。また、混合層10の下部には、粒子状吸水性樹脂と添加剤との混合物を排出するための排出口3が設けられており、当該排出口3は、堰8によって、その大きさを変化させることができる。
 このような構成によって、投入口2から供給される粒子状吸水性樹脂と、添加剤投入口4から供給される、表面架橋剤等の添加剤とが混合層10で混合される。ここで、混合層10は仕切り7によって上下に2室に分けられているため、十分混合される前に粒子状吸水性樹脂が排出口へ向かって落下することが抑制される。そして、十分に混合された、粒子状吸水性樹脂と添加剤との混合物が排出口3から排出される。
 また、図1に示す縦型混合装置では、仕切り7は側壁1に設置されているが、図2や図3に示すように、仕切り7が攪拌軸6に設置され撹拌羽根5の回転軸を中心に回転する構成であってもよい。なお、図2および図3に示す構成では、攪拌羽根5は、仕切り7に設置されている。
 (e)供給される水の量
 粒子状吸水性樹脂中の水分の増加は、液体の水として混合機に供給されて粒子状吸水性樹脂に取り込まれる水分量と、水蒸気として混合機に供給されて粒子状吸水性樹脂に取り込まれる水分量との和である。なお、水蒸気として混合機に供給されて粒子状吸水性樹脂に取り込まれる水分には、直接的な水蒸気の吸収と、水蒸気の結露水の吸収とがあり得るが、本発明では特に問わない。
 また、水蒸気として混合機に供給されて粒子状吸水性樹脂に取り込まれる水分量を計算する際、液体の水として混合機に供給される水は通常100%粒子状吸水性樹脂に取り込まれるものとしてよい。すなわち、本発明では水蒸気として混合機に供給されて、粒子状吸水性樹脂に取り込まれる水分量は、粒子状吸水性樹脂中の水分の増加から液体の水として混合機に供給される水分量を引いたものとする。
 液体の水として粒子状吸水性樹脂に取り込まれる水分量は、粒子状吸水性樹脂100重量部に対し、好ましくは0.5~20重量部、より好ましくは0.5~10重量部の範囲である。一方、水蒸気として供給されて粒子状吸水性樹脂に取り込まれた水分量は、粒子状吸水性樹脂100重量部に対し、好ましくは0.1~10重量部、より好ましくは0.5~5重量部の範囲である。
 水蒸気を取り込むことにより増加する水分の量が0.1重量部未満であれば、本発明の効果は小さい。一方、10重量部を超えると粒子状吸水性樹脂の凝集物が多くて安定運転が難しくなるおそれがある。供給される水蒸気のすべてが、粒子状吸水性樹脂に取り込まれるわけではないので、好ましくは粒子状吸水性樹脂に取り込まれる水分量の1.1~5倍、より好ましくは1.5~3倍の水蒸気を混合機に供給する必要がある。混合機に供給される水蒸気の量は市販の流量計で測定することが可能である。
 すなわち、本発明では好ましくは粒子状吸水性樹脂に添加される水は液体および水蒸気が併用されてなる。その際、液体の水は水のみであってもよく、また、水と有機溶媒との混合物で添加してもよいが、物性面からは、粒子状吸水性樹脂に添加される水は、表面架橋剤水溶液および水蒸気が併用されてなる。
 粒子状吸水性樹脂100重量部に対して、水0.1~10重量部が混合され、かつ、液体として供給された水が、供給水全体の0~95重量%であることが好ましく、さらには20~90重量%、特に40~80重量%が好ましい。
 なお、従来、単量体や表面架橋剤を混合後の吸水性樹脂混合物の加熱処理において、加熱反応のために水蒸気を使用する技術(特許文献20、21、33、34)も提案され、また、吸水性樹脂の造粒に水蒸気を使用する技術(特開平2005-054151号)も提案されている。これに対して、本発明では、表面架橋剤の混合時に、水蒸気、好ましくは水蒸気と液体の水(特に架橋剤水溶液)を使用することで、高物性の吸水性樹脂を達成した。
 (f)表面架橋剤を反応させる工程
 表面架橋剤を混合後の吸水性樹脂混合物は、反応機中で加熱または活性エネルギー照射が行われる。好ましくは、吸水性樹脂混合物は加熱処理され、必要によりその後に冷却処理される。加熱温度は、好ましくは70~300℃、より好ましくは120~250℃、さらに好ましくは150~250℃の範囲である。また、加熱時間は、好ましくは1分以上、通常6分~10時間、さらに好ましくは10分~2時間である。
 加熱処理は、通常の乾燥機または加熱炉を用いて行うことができる。好ましくは、パドルが付いた乾燥機を用いることで、凝集物形成や熱ムラを防止することができる。また、特許文献20~22等、重合性やラジカル反応性の表面架橋剤を使用する場合、反応機中で加熱または活性エネルギー線照射を行ってもよい。
 (g)生産量
 本発明の表面架橋方法では小ケールやバッチ反応では効果が小さい場合もあり、連続巨大スケールの連続生産に好適に使用でき、通常、0.1[t/hr]以上、好ましくは、1[t/hr]、さらには2~100[t/hr]の連続生産に好適に使用できる。
 (h)昇温(第2の製造方法)
 本発明では上記水蒸気添加を達成手段の一例として、表面架橋剤および水を混合機中に添加する工程において、粒子状吸水性樹脂の温度に対して、得られた吸水性樹脂混合物(通常、粒子状吸水性樹脂100重量部に対して、表面架橋剤0.001~10重量部、水0.5~10重量部を混合したもの)の温度を、2℃以上昇温、さらには3~60℃昇温、4~50℃昇温、5~40℃昇温、6~30℃昇温させることが好ましい。
 この温度制御は、水蒸気添加量や混合機中の滞留時間、混合機内壁の温度を制御することで行われる。好ましくは上記第一の製造方法である水蒸気がされ、混合機内壁が前記範囲に加熱される。混合前の粒子状吸水性樹脂の温度にもよるが、混合機から取り出した吸水性樹脂混合物の温度は、好ましくは50~140℃、さらに好ましくは60~110℃、特に好ましくは70~95℃である。
 かかる表面架橋剤および水を混合機中で添加する工程で、吸水性樹脂混合物が昇温されることで、吸水性樹脂表面への表面架橋剤の浸透や拡散が促進および最適化されるとも推定される。このため、従来に比べて優れた物性を達成するうえに、その後の反応時間も短縮され、その結果省エネルギー化されるという利点を有する。
 すなわち、本発明は第2の製造方法として、粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程と、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程とを順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、上記表面架橋剤および水を混合機中で添加する工程において、粒子状吸水性樹脂の温度に対して、得られる吸水性樹脂混合物の温度を2℃以上昇温させる製造方法も提供する。好ましい昇温は水蒸気の利用であるが、その他、「混合機内壁の温度や滞留時間を制御して行ってもよい。
 また、本発明における表面架橋処理の別の形態としては、ラジカル重合性化合物を含む処理液を粒子状吸水性樹脂に添加した後に、活性エネルギーを照射して表面架橋処理する方法が挙げられ、例えば、日本国特許出願「特願2003-303306号」(米国特許第7201941号)に記載されている。また、上記処理液に界面活性剤を添加し、活性エネルギーを照射して表面架橋処理することもできる。
 さらに、本発明における表面架橋処理の別の形態としては、過酸化物ラジカル開始剤を含む水性液を粒子状吸水性樹脂に添加した後に、加熱して表面架橋処理する方法が挙げられ、例えば、日本国公開特許公報「特公平07-8883号公報」(米国特許第4783510号)に記載されている。
 (2-6-2)通液性向上剤
 本発明の吸水性樹脂の製造方法により得られた吸水性樹脂粒子は、表面架橋と同時または表面架橋後に、さらに通液性向上剤が添加されることが好ましい。通液性向上剤を添加することにより、より従来技術との差が顕著に現れ、本発明が明確化される。通液性向上剤が添加されることによって、上記吸水性樹脂粒子は通液性向上剤層を有することになる。これにより、上記吸水性樹脂粒子は、さらに、通液性に優れることになる。
 上記粒子状吸水性樹脂は、さらにその他の機能性付与剤、例えば消臭剤、着色防止剤、抗菌剤、ブロッキング防止剤などを同時、または別工程で添加することができる。
 通液性向上剤としては、ポリアミン、多価金属塩、水不溶性微粒子、水分散微粒子が例示でき、特に、硫酸アルミニウム等の多価金属塩、特に水溶性多価金属塩が好ましく、米国特許第7179862号、同第7157141号、同第6831142号、米国特許出願公開第2004/176557号、同第2006/204755号、同第2006/73969号、同第2007/106013号、欧州特許第1165631号に記載の技術が適用される。なお、ポリアミンや水不溶性微粒子は、国際公開第2006/082188号、同第2006/082189号、同第2006/082197号等に例示される。
 なお、ポリアミンや多価金属塩は、粒子状吸水性樹脂のカルボキシル基とイオン架橋しうるイオン反応性の表面架橋剤としても使用できる。上記表面架橋は一度でもよく、脱水反応性表面架橋剤を使用後または使用前にイオン反応性架橋剤を別途使用するなどして、複数回行ってもよい。
 通液性向上剤の使用量は、吸水性樹脂粒子100重量部に対して、0.001~5重量部の範囲内が好ましく、0.01~1重量部の範囲内がより好ましい。通液性向上剤の使用量が、上記範囲内であれば、表面架橋された吸水性樹脂粒子の加圧下吸水倍率(AAP)、生理食塩水流れ誘導性(SFC)を向上させることができる。
 上記通液性向上剤の添加は、必要により水および/または親水性有機溶媒と予め混合または分散した後、吸水性樹脂粒子に噴霧あるいは滴下混合する方法が好ましく、噴霧する方法がより好ましい。なお、上記通液性向上剤の添加は、吸水性樹脂粒子の流動層内での冷却工程で行われることが好ましい。
 この通液向上剤の添加は表面架橋剤の添加と同時に行っても、表面架橋工程の加熱処理後または冷却処理後に行ってもよく、どちらでも本発明の混合方法が適用可能である。
 (2-7)微粉同士を結着する工程
 本発明のもう一つの実施形態である微粉同士を結着する工程では、上述した、(i)~(iii)を満たす縦型混合装置により、微粉と結着剤とが混合され、結着物となって排出されることが好ましい。
 この微粉の大部分は「(2-5)粒度を制御する工程」における粉砕、または「(2-6)表面処理工程」におけるプロセスダメージにより発生した微粉である。
 微粉同士を結着する工程に供される微粉は、粒径が150μm以下であるものが50~100重量%、好ましくは70~100重量%含まれている。結着剤は水が90~100重量%含まれていることが好ましい。また、この液に無機金属塩、無機微粒子、有機溶剤を混ぜて使ってもよい。さらに水蒸気を混合機に入れることが好ましい。
 上記結着剤の添加量は、粒子状吸水性樹脂100重量部に対し好ましくは100重量部以下、さらに好ましくは70重量部以下であり、好ましくは10重量部以上である。
 上記の方法により微粉は結着剤により結着し、粒径が150μm以上の結着物を形成させることができる。この結着物は光学顕微鏡によって個々の粒子が形状を保ったまま複数集まり凝集している事実や、吸液時に複数の不連続粒子として膨張する事実で確認することができる。この結着物は固形分が50~90重量%、好ましくは60~90重量%、特に好ましくは60~80重量%である。
 上記縦型混合装置は混合性のよい混合機であるため、上記縦型混合装置を用いれば、結着剤の量が従来に比べ少なくてよく、結着物の固形分を高くできる。このため、この結着物の乾燥に必要なエネルギーは少なくてすむ。またこの混合機は混合槽容積1Lあたり10~300kg/hr、より好ましくは10~150kg/hrという高い処理力を持たせることが可能である。
 上記縦型混合装置を用いると、ショートパスと不必要な滞留が防止されるため、従来に比べ、崩れにくく、粒度の揃った結着物が得られるのが特徴である。特徴的な実施形態においては、結着物は混合機の側壁を転がるように動くため、ほぼ球形である。
 上記縦型混合装置の特徴として、排出口の堰構造により、この結着物の重量平均粒子径を0.5~5mmの範囲で制御できることが挙げられる。上記結着物は「(2-2)重合工程」、「(2-3)含水ゲル状重合体を細粒化する工程」、「(2-4)乾燥工程」、「(2-5)粒度を制御する工程」、「(2-6)表面処理工程」のいずれかの工程に戻されて再使用されることが好ましい。
 なお、この結着物は、乾燥されて、重量平均粒子径の値が300μm以上600μm以下の粒子状吸水性樹脂になるように粉砕ないし分級されることが好ましい。この工程において乾燥された結着物が、再度微粉に戻る割合が少ないことで、本発明の効果である結着物の崩れにくさを確かめることができる。
 (2-8)表面架橋された吸水性樹脂粒子に添加されるその他の物質
 表面架橋された吸水性樹脂粒子は、重合中または重合後に、滑剤、キレート剤、消臭剤、抗菌剤、水、界面活性剤、水不溶性微粒子、酸化防止剤、還元剤等が吸水性樹脂粒子に0~30重量%、さらには0.01~10重量%程度で添加混合されうる。好適に使用できるキレート剤は、米国特許第6599989号、国際公開第2008/090961号等に、界面活性剤や滑剤は、米国特許第6107358号、同第7473739号等に例示されている。
 重合後に添加混合する場合には、乾燥前、乾燥後、粉砕前または粉砕後に添加混合することができる。また、吸水性樹脂粒子は、吸水性樹脂の特性を阻害しない限り、他の物質を添加してもよい。他の物質を添加する方法としては、特に限定されるものではない。なお、本発明では吸水性樹脂に少量の添加剤(例えば、0を超えて30重量%)を含む場合でも、すなわち、吸水性樹脂組成物である場合でも、吸水性樹脂と総称する。
 (2-9)その他の工程
 上記の工程以外に、必要により、整粒工程、微粉除去工程、微粉リサイクル工程等を設けてもよい。例えば、米国特許第5264495号、米国特許第5369148号、米国特許第5478879号、米国特許第6228930号、米国公開公報第2006/247351号、国際公開公報第2006/101271号等に記載の工程が挙げられる。
 〔3〕吸水性樹脂の物性
 衛生材料、特に紙オムツを目的とする場合、上記重合や表面架橋をもって、下記(a)~(h)に挙げる好ましい物性の範囲の少なくとも1つ、さらにはAAPを含め2つ以上、特に3つ以上を満たすように制御されることが好ましい。下記範囲を満たさない場合、後述の高濃度おむつでは十分な性能を発揮しないことがある。
 (a)初期着色
 かかる吸水性樹脂は初期着色に優れ、例えば、ハンターLab表面色系において、L値(Lightness)が好ましくは85以上、より好ましくは87以上、さらに好ましくは89以上であり、b値が-5~10、より好ましくは-5~5、さらに好ましくは-4~4であり、また、a値は-2~2、少なくとも-1~1、好ましくは-0.5~1、最も好ましくは0~1である。YI値は10以下、さらには8以下、特に6以下であり、WB値は70以上、さらには75以上、特に77以上である。さらに、かかる吸水性樹脂は経時着色にも優れ、長期保存の促進試験(モデル)である高温高湿でも十分な白色度を示す。
 (b)加圧下吸水倍率(AAP)
 加圧下吸水倍率(AAP)は、荷重をかけた状態での、吸水性樹脂の吸水倍率を示している。
 紙オムツでのモレを防止するため、上記重合を達成手段の一例として、1.9kPaの加圧下さらには4.8kPaの加圧下での0.9質量%の塩化ナトリウム水溶液に対する吸水倍率(AAP)が、好ましくは10[g/g]以上、より好ましくは15[g/g]以上、さらに好ましくは20[g/g]以上、より好ましくは22[g/g]以上、さらに好ましくは24[g/g]以上に制御される。また、上限としては、他の物性とのバランスから、28[g/g]以下が好ましく、27[g/g]以下がより好ましく、特に好ましくは26[g/g]である。
 (c)生理食塩水流れ誘導性(SFC)
 生理食塩水流れ誘導性(SFC)は、吸水性樹脂の膨潤時の通液性を示す値であり、その値が大きいほど高い通液性を有することを示している。
 紙オムツでのモレを防止するため、上記重合を達成手段の一例として、加圧下での液の通液特性であるSFCは、1[×10-7・cm・s・g-1]以上、好ましくは10[×10-7・cm・s・g-1]以上、好ましくは20[×10-7・cm・s・g-1]以上、より好ましくは50[×10-7・cm・s・g-1]以上、さらに好ましくは70[×10-7・cm・s・g-1]以上、特に好ましくは80[×10-7・cm・s・g-1]以上、最も好ましくは100[×10-7・cm・s・g-1]以上に制御される。
 (d)無加圧下吸水倍率(CRC)
 無加圧下吸水倍率(CRC)は、好ましくは10[g/g]以上であり、より好ましくは20[g/g]以上、さらに好ましくは25[g/g]以上、特に好ましくは30[g/g]以上に制御される。CRCは高いほど好ましく上限値は特に限定されないが、他の物性とのバランスから、通常100[g/g]以下、好ましくは50[g/g]以下、より好ましくは45[g/g]以下、さらに好ましくは40[g/g]以下である。
 (e)水可溶分(Ext)
 水可溶分は、好ましくは0~35質量%以下、より好ましくは25質量%以下であり、さらに好ましくは15質量%以下、特に好ましくは10質量%以下である。
 (f)残存モノマー
 上記重合を達成手段の一例として、残存モノマー(残存単量体)量は通常500ppm以下、好ましくは0~400ppm、より好ましくは0~300ppm、特に好ましくは0~200ppmを示す。
 (g)含水率(固形分量)
 吸水速度や耐衝撃性からも好ましくは所定量の水が残存(例えば、含水率0.1~10重量%、さらに好ましくは1~8重量%)するように調整される。
 また、下記式
 固形分量(重量%)=100-含水率(重量%)
で定義される固形分量は、85~99.9重量%が好ましく、90~99.9重量%がより好ましく、95~99.9重量%がさらに好ましい。固形分量が上記範囲を外れると、物性が低下することがある。
 (h)重量平均粒子径(D50)
 上記工程等を経た、最終的な吸水性樹脂としては、物性面から重量平均粒子径(D50)が300~600μmであること好ましく、350~500μmであることがさらに好ましい。850~150μmの割合が90~100重量%、さらには95~100重量%特に98~100重量%に制御されることが好ましい。
 〔4〕吸収体および/または吸収性物品(吸水性樹脂の用途)
 本発明に係る吸水性樹脂は、吸水を目的とした用途に用いられ、吸収体や吸収性物品として広く使用されるが、特に、尿や血液等の体液を吸収するための衛生材料として好適に用いられる。特に、従来、原料由来の臭気、着色等が問題になっていた高濃度オムツ(1枚のオムツに多量の吸水性樹脂を使用したもの)に使用され、特に前記吸収性物品中の吸収体上層部に使用された場合に、特に優れた性能が発揮される。
 具体的には、本発明の吸水性樹脂の製造方法により得られた、表面架橋処理をした吸水性樹脂粒子に、通液性向上剤、界面活性剤、滑剤等の他の物質を添加することにより、粒子状吸水剤を製造する。そして、この粒子状吸水剤を用いて、吸収体や吸収性物品を製造する。なお、他の物質を添加する方法としては、特に限定されるものではない。
 ここで、上記吸収体とは、粒子状吸水剤(吸水性樹脂)と親水性繊維とを主成分として成型された吸収剤のことである。上記吸収体は、粒子状吸水剤と親水性繊維とを用いて、例えば、フィルム状、筒状、シート状に成型され、製造される。
 上記吸収体では、粒子状吸水剤と親水性繊維との合計質量に対する粒子状吸水剤の含有量(コア濃度)が、20~100重量%、30~100重量%、40~100重量%、50~100重量%、60~100重量%、70~100重量%の順に好ましく、75~95重量%が最も好ましい。上記吸収体は、粒子状吸水剤のコア濃度が高いほど、吸収体や紙オムツ等の作製時における粒子状吸水剤の吸収特性低下効果が顕著に表れてくるものとなる。また、上記吸収体は、厚みが0.1~5mmの薄型であることが好ましい。
 上記吸収性物品とは、上記吸収体、通液性を有する表面シート、及び液不透過性を有する背面シートを備える吸収性物品である。上記吸収性物品の製造方法は、まず、例えば繊維材料と粒子状吸水剤とをブレンドないしサンドイッチすることで吸収体(吸収コア)を作製する。次に、上記吸収体を、通液性を有する表面シートと液不透過性を有する背面シートとでサンドイッチして、必要に応じて、弾性部材、拡散層、粘着テープ等を装備することで、吸収性物品、特に大人用紙オムツや生理用ナプキンとされる。上記吸収体は、密度0.06~0.50g/cc、坪量0.01~0.20g/cmの範囲に圧縮成型されて用いられる。なお、用いられる繊維材料としては、親水性繊維、例えば粉砕された木材パルプ、コットンリンターや架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等を例示できる。好ましくは、それらをエアレイドしたものである。
 上記吸水性物品は、優れた吸収特性を示すものである。このような吸収性物品としては、具体的には、近年成長の著しい大人用紙オムツをはじめ、子供用オムツ、生理用ナプキン、いわゆる失禁パッド等の衛生材料等が挙げられる。ただし、それらに限定されるものではない。上記吸水性物品は、吸収性物品の中に存在する粒子状吸水剤の優れた吸収特性により、戻り量も少なく、ドライ感が著しく、装着している本人・介護の人々の負担を大きく低減することができる。
 〔実施例〕
 以下に、製造例、実施例、比較例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。異なる実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施例についても、本発明の範囲に含まれる。
 なお、以下では、便宜上、「質量部」を単に「部」と、「リットル」を単に「L」と記すことがある。また、「質量%」を「wt%」と記すことがある。また、本発明の特徴である混合機の堰構造の説明において、堰構造の側壁から回転軸側への水平方向の長さを単に堰長さ(α)、水平面に対して成す角度を単に堰角度(β)と表記する。
 また、実施例において使用される電気機器は、特に指定がない場合、全て200Vまたは100Vで使用した。さらに、吸水性樹脂は、特に指定がない場合、25±2℃、相対湿度50%RHの条件下で使用した。下記、測定法や製造例、実施例、比較例で例示された試薬や器具は適宜相当品で代替されてよい。
 〔物性の測定方法〕
 <粒径>
 粒径の分布および重量平均粒子径(D50)は、以下で説明するように、試料を標準篩にかけることにより測定した。
 粉砕物の粒径分布の測定方法については、粉砕物10.0gを、室温(20~25℃)、湿度50RH%の条件下で、目開き850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、45μmのJIS標準篩(THE IIDA TESTING SIEVE:径8cm)に仕込み、振動分級器(IIDA SIEVE SHAKER、TYPE:ES-65型、SER.No.0501)により、5分間、分級を行った。
 乾燥前の粒子状含水ゲル粒径は、日本国特許公報第3175790号に記載の方法に従った。すなわち、サンプリングした含水ゲル状重合体(固形分α重量%)25gを、20重量%塩化ナトリウム水溶液1200g中に投入し、スターラーチップを300rpmで回転させ、60分間攪拌した。
 攪拌終了後、篩(目開き9.5mm、8.0mm、4.0mm、2.0mm、0.85mm、0.60mm、0.30mm、0.075mm)に上記分散液を投入し、上から6000gの20重量%塩化ナトリウム水溶液をゆっくり注ぎ、粒子状含水ゲル状重合体を分級した。分級されたそれぞれの篩上の粒子状含水ゲル状重合体を充分に水切り後、秤量した。
 篩の目開きは、下記式に従い、含水ゲル状重合体の固形分100重量%相当の篩の目開きR(100)に換算した。対数確率紙に固形分100重量%相当の、すなわち乾燥換算時の含水ゲル状重合体の粒度分布をプロットした。
Figure JPOXMLDOC01-appb-M000002
 重量平均粒子径(D50)は、米国特許第5051259号等にあるように、一定目開きの標準篩で粒子全体の50重量%に対応する標準篩の粒子径のことである。上記粒径分布の測定法により得られた、粒子状吸水性樹脂、乾燥物、および含水ゲル状重合体の粒径分布を用いて、各粒子径の残留百分率(R)を対数確率紙にプロットした。これにより、R=50%に相当する粒子径から重量平均粒子径(D50)を読み取った。
 また、粒度分布の対数標準偏差(σζ)は下記の式で表され、σζの値が小さいほど粒度分布が狭いことを意味する。
Figure JPOXMLDOC01-appb-M000003
  (X1はR=84.1%、X2は15.9%の時のそれぞれの粒径)
 <含水率>
 含水ゲル状重合体ないし粒子状吸水性樹脂1gを6cmのアルミ皿に薄く広げて、180℃の無風オーブンで3時間乾燥することで、その乾燥前の重量と乾燥後の重量とを測定し、下記式に代入することにより含水率(重量%)を測定した。なお、固形分(重量%)は、(100-含水率)(重量%)で規定される。
Figure JPOXMLDOC01-appb-M000004
 <無加圧下吸収倍率(CRC)>
 粒子状吸水性樹脂0.2gを不織布製の袋(60mm×60mm、南国パルプ工業(製)ヒートロンペーパー GS-22)に均一に入れ、ヒートシール後、0.9重量%塩化ナトリウム水溶液(生理食塩水)中に浸漬した。30分後に袋を引き上げ、遠心分離器を用いて250×9.81m/s(250G)で3分間水切りを行った後、袋の質量W(g)を測定した。また、同様の操作を、粒子状吸水性樹脂を用いないで行い、そのときの質量W(g)を測定した。そして、これら質量W、Wから、式(1)に従って無加圧下吸収倍率(CRC)を算出した。
Figure JPOXMLDOC01-appb-M000005
 ただし、加熱乾燥工程より前の粒子状吸水性樹脂のCRC測定については、固形分で0.2gに相当する量の粒子状吸水性樹脂を用い、CRC算出時に固形分補正を行うこと以外は、上記方法に従った。
 <加圧下吸収倍率(AAP)>
 4.83kPa(0.7Psi)の圧力になるように調製した荷重を準備した。そして、底に400メッシュ(目開き38μm)の金網を貼着した直径60mmのプラスチック円筒の金網上に、粒子状吸水性樹脂0.90gを均一に散布した。その上に、上記荷重を載せて、この測定装置一式の質量W(g)を測定した。
 次に、直径150mmのペトリ皿の内側に、直径90mmのガラスフィルター(株式会社相互理化学硝子製作所製、細孔直径100~120μm)を置き、0.90重量%の塩化ナトリウム水溶液(20~25℃)を、ガラスフィルターの上面と同じレベルになるように加えた。
 その上に、直径90mmの濾紙(商品名:「JIS P 3801 No.2」、ADVANTEC東洋株式会社製、厚さ0.26mm、保留粒径5μm)を1枚載せ、表面が全て濡れるようにし、かつ過剰の液を除いた。
 上記測定装置一式を、上記湿った濾紙上に載せ、液を荷重下で吸収させた。1時間(60分)後、測定装置一式を持ち上げ、その質量W(g)を測定した。そして、これら質量W、Wから、式(2)に従って、加圧下吸収倍率(AAP)(g/g)を算出した。
Figure JPOXMLDOC01-appb-M000006
 なお、4.83kPa(0.7Psi)の圧力下(荷重下)での加圧下吸収倍率(AAP)を用いたのは、乳幼児の寝ている状態及び座った状態で、吸収体または紙おむつ等の吸収性物品が使用される状況を想定したものである。
 <Extractables>
 ERT470.2-02に従って測定した。
 <生理食塩水流れ誘導性(SFC)>
 生理食塩水流れ誘導性(SFC)は、米国公開特許第2004-0106745号明細書、特表平09-509591号公報の塩水流れ誘導性(SFC)試験に準じて行った。
 具体的には、セルに均一に入れた粒子状吸水性樹脂0.90gを、人工尿中で0.3psi(2.07kPa)の加圧下、60分間膨潤させ、ゲル層の高さを記録した。次に、0.3psi(2.07kPa)の加圧下、0.69重量%塩化ナトリウム水溶液を、一定の静水圧でタンクから膨潤したゲル層に通液させた。
 タンクには、ガラス管が挿入されている。ガラス管は、セル中の0.69重量%塩化ナトリウム水溶液の液面が、膨潤ゲルの底部から5cm上の高さに維持されるように、下端の位置を調整して配置されている。タンク中の0.69重量%塩化ナトリウム水溶液は、コック付きL字管を通じてセルへ供給される。セルの下には、通過した液を捕集する捕集容器が配置されており、捕集容器は上皿天秤の上に設置されている。
 セルの内径は6cmであり、下部の底面にはNo.400ステンレス製金網(目開き38μm)が設置されている。ピストンの下部には、液が通過するのに十分な穴があり、底部には粒子状吸水性樹脂またはその膨潤ゲルが、穴に入り込まないように、透過性のよいガラスフィルターが取り付けてある。セルは、セルを載せるための台の上に置かれ、この台は、液の透過を妨げないように、ステンレス製の金網の上に設置されている。
 上記人工尿は、塩化カルシウム2水和物0.25g、塩化カリウム2.0g、塩化マグネシウム6水和物0.50g、硫酸ナトリウム2.0g、リン酸2水素アンモニウム0.85g、リン酸水素2アンモニウム0.15g、及び、純水994.25gを加えたものを用いる。
 なお、SFC試験は、室温(20~25℃)で行った。コンピュータと天秤とを用いて、時間の関数として20秒間隔でゲル層を通過する液体量を10分間記録した。膨潤したゲル(主に粒子間)を通過する流速Fs(t)は、増加質量(g)を増加時間(s)で割ることによりg/sの単位で決定した。
 一定の静水圧と安定した流速とが得られた時間をtsとし、tsから10分間に得た流速を使用して、Fs(t=0)の値、つまりゲル層を通る最初の流速を計算した。Fs(t=0)は、Fs(t)の対時間の最小2乗法の結果をt=0に外挿することにより計算した。そして、式(3)を用いて塩水流れ誘導性SFC(加圧下通液速度)を求めた。なお、加圧下通液速度の単位は、(10-7×cm×s×g-1)である。
Figure JPOXMLDOC01-appb-M000007
  Fs(t=0):g/sで表した流速
  L:cmで表したゲル層の高さ
  ρ:NaCl溶液の密度(1.003g/cm
  A:セル中のゲル層上側の面積(28.27cm
  ΔP:ゲル層にかかる静水圧(4920dyne/cm
 〔製造例1〕
 2本のシグマ型ブレードを備えたニーダーに、アクリル酸ナトリウム水溶液、アクリル酸および水からなる単量体水溶液(単量体濃度:39wt%、中和率:75モル%)を調製し、さらにこの単量体水溶液に、ポリエチレングリコールジアクリレート(平均エチレンオキシドユニット数:9)を0.07モル%(対単量体)となるように溶解させた。
 単量体水溶液に窒素ガスを吹き込み、単量体水溶液中の溶存酸素を低減させるとともにニーダー内全体を窒素置換した。次いで、ニーダーのブレードを回転させながら、ジャケットに10℃の冷水を循環させ、単量体水溶液の温度を20℃にした。
 引き続き、重合開始剤として過硫酸ナトリウム0.05モル%(対単量体)およびL-アスコルビン酸0.003モル%(対単量体)を添加して重合を開始し、さらに30分間撹拌して熟成を行い、重合物として重量平均粒子径(D50)が約2.0mmの含水ゲル状重合体を得た。
 得られた含水ゲル状重合体を170℃の熱風乾燥機中で60分間乾燥した。得られた乾燥物を粗解砕した後、目開き850μmのJIS標準篩で篩った。次いで、篩の上に残った乾燥物をロールミルで粉砕した。得られた粉砕物を目開き850μmと180μmの篩を用いて分級した。目開き850μmの篩の未通過物は、再度ロールミルで粉砕し、上記同様に分級した。目開き180μmの篩により分級された通過物(微粉a)は、乾燥物全体の約15wt%であった。
 上記分級により得られた、目開きが850μmの篩と180μmの篩との間にある粒子状吸水性樹脂(A-1)は、含水率が4.9重量%、無加圧下吸水倍率(CRC)が35[g/g]、重量平均粒子径(D50)が420μmであった。
 また、吸水性樹脂の微粉(a)は、無加圧下吸水倍率(CRC)が34[g/g]、重量平均粒子径(D50)が88μm、目開き150μmの篩の通過物は約80wt%であった。
 〔実施例1〕水蒸気および本願縦型混合機での表面架橋
 図4で模式的に示された、撹拌羽根5を仕切りの上方に3枚、下方に3枚、仕切りの側面に3枚備えた内容積5Lの縦型回転円盤型混合機(混合槽の最大直径(D)300mm(最大半径150mm)、混合槽の高さ(H)70mm、開口度20%、堰長さ(α)21mm、堰角度(β)45°、内壁をフッ素樹脂コート)を用いて、1000rpmで攪拌羽根を回転させ、定量供給機(アキュレートInc.製)を用いて、上記の粒子状吸水性樹脂(A-1)を200kg/hrで上記混合機に供給した。
 さらに粒子状吸水性樹脂100重量部に対し、表面架橋剤水溶液として1,4-ブタンジオール/プロピレングリコール/水=0.4重量部/0.6重量部/3.0重量部である組成液(B-1)8[kg/hr]と、水蒸気(ゲージ圧0.6MPa、ミキサー内部開放、5[kg/hr])とを上記混合機に注入しながら連続的に混合し、吸水性樹脂混合物(C-1)を得た。
 なお、上記縦型混合機は、撹拌羽根を回転円盤の上方に3枚、下方に3枚、円盤の側面に3枚備えており、混合槽の直径(D)は300mm(半径150mm)、混合槽の高さは(H)70mmである。また、この縦型混合機は排出口の上方に排気設備をもつ。
 定量供給機出口で粒子状吸水性樹脂(A-1)を採取し、これに接触型温度計を差し込んで温度を測定すると58℃であった。また、組成液(B-1)の温度は26℃であった。一方、上記混合で得られた吸水性樹脂混合物(C-1)の温度は76℃で、含水率は9.4重量%、流量は212[kg/hr]であった。従って水蒸気により供給された水は4[kg/hr]となる。
 なお、吸水性樹脂混合物の流量は、10分間混合物を袋に取り、重量を測定することにより求めた。混合機の排出口付近の露点は100℃であった。また、混合開始の30分後に混合を止めて混合機の内部を点検したところ、付着はなかった。
 上記吸水性樹脂混合物(C-1)をモルタルミキサー(西日本試験機社製)で撹拌下、210℃(オイルバス温度)で40分間加熱処理した。さらに、その粒子を目開き850μmの篩を通過するまで解砕した。こうして、表面架橋された吸水性樹脂粒子(D-1)を得た。表面架橋された吸水性樹脂粒子(D-1)の物性を表1に示す。なお、表面架橋された吸水性樹脂粒子(D-1)の含水率は1%であった。
 〔実施例2〕水蒸気および本願縦型混合機での表面架橋
 水蒸気注入量を5[kg/hr]から15[kg/hr]に変更したこと以外は実施例1と同様にして、粒子状吸水性樹脂(A-1)と組成液(B-1)の混合物(C-2)、および表面架橋された吸水性樹脂粒子(D-2)を得た。混合開始の30分後に混合を止めて混合機の内部を点検したところ、付着はなかった。また、上記の混合物(C-2)の温度は79℃で、含水率は10.2重量%、流量は214[kg/hr]であった。従って、水蒸気により供給された水は6[kg/hr]となる。表面架橋された吸水性樹脂粒子(D-2)の物性を表1に示す。
 〔実施例3〕本願縦型混合機での表面架橋
 混合機内部に水蒸気を注入しなかったこと以外は実施例1と同様にして、粒子状吸水性樹脂(A-1)と組成液(B-1)の混合物(E-1)、および表面架橋された吸水性樹脂粒子(F-1)を得た。混合物(E-1)の温度は58℃であった。表面架橋された吸水性樹脂粒子(F-1)の物性を表1に示す。
 〔実施例4〕本願縦型混合機での表面架橋
 混合機内部に水蒸気を注入せずに、組成液(B-1)の代わりに水の量を増やした組成液(B-2)を使用したこと以外は実施例1と同様にして、粒子状吸水性樹脂(A-1)と組成液(B-1)の混合物(E-2)、および表面架橋された吸水性樹脂粒子(F-2)を得た。なお、表面架橋された吸水性樹脂粒子(F-2)の含水率は1%であった。
 なお、組成液(B-2)は粒子状吸水性樹脂100重量部に対し、1,4-ブタンジオール/プロピレングリコール/水=0.4重量部/0.6重量部/5.0重量部であった。また、組成液(B-2)の温度は25℃であった。混合物(E-2)の温度は58℃で、多数の凝集物が見られた。表面架橋された吸水性樹脂粒子(F-2)の物性を表1に示す。
 〔実施例5〕水蒸気および本願縦型混合機での表面架橋
 実施例3の、粒子状吸水性樹脂(A-1)と組成液(B-1)との混合物(E-1)を、粒子状吸水性樹脂(A-1)と組成液(B-1)との混合に用いた混合機に再度投入し、水蒸気を5[kg/hr]で上記混合機に注入して水蒸気加熱した。得られた混合物(C-3)の含水率は9.0重量%であった。この混合物(C-3)を実施例1と同様に加熱処理することにより表面架橋された吸水性樹脂粒子(D-3)を得た。表面架橋された吸水性樹脂粒子(D-3)の物性を表1に示す。
 〔実施例6〕液体の水を未使用で水蒸気での表面架橋
 実施例1において、組成液(B-1)の代わりに水の量を0重量部とした組成液(B-3)を使用したこと以外は実施例1と同様にして、粒子状吸水性樹脂(A-1)と組成液(B-3)の混合物(C-4)、および表面架橋された吸水性樹脂粒子(D-4)を得た。なお、組成液(B-3)は粒子状吸水性樹脂100重量部に対し、1,4-ブタンジオール/プロピレングリコール/水=0.4重量部/0.6重量部/0重量部であった。また、組成液(B-3)の温度は25℃であった。混合物(C-4)の温度は57℃で、多数の凝集物が見られた。表面架橋された吸水性樹脂粒子(D-4)の物性を表1に示す。
 〔実施例7〕水蒸気および横型混合機での表面架橋
 製造例1で得られた、60℃に調温された粒子状吸水性樹脂(A-1)5.00kgと組成液(B-1)0.20kgとを、鋤型羽根、解砕羽根、噴霧ノズル(一流体噴霧ノズル、いけうち社製、No.6)およびジャケットを備えた内容積20Lの横型混合機(Ledige Mixer、Ledige社製)を用い、ノズル(内径3mmの直管)から0.6kPa(ゲージ圧)流量5[kg/hr]の飽和水蒸気(撹拌機内部開放)を供給しながら30秒間撹拌した。なお、混合機の回転数は200rpm、解砕羽根の回転速度は2000rpm、ジャケット温度は60℃であった。
 上記混合により得られた粒子状吸水性樹脂(A-1)と組成液(B-1)との混合物(C-5)は実施例1の混合物(C-1)に比べ凝集物が多くなった。混合物(C-5)の温度は82℃で、含水率は10.1重量%であった。なお、混合物(C-5)は5.35kg得られており、従って水蒸気により供給された水は0.15kgとなる。混合物(C-5)は実施例1のモルタルミキサーで加熱処理を行い、得られた粒子を目開き850μmの篩を通過するまで解砕して表面架橋された吸水性樹脂粒子(D-5)を得た。表面架橋された吸水性樹脂粒子(D-5)の物性を表1に示す。
 〔比較例1〕水蒸気注入なしで横型混合機での表面架橋
 水蒸気を供給しなかったこと以外は実施例7と同様にして、粒子状吸水性樹脂(A-1)と組成液(B-1)との混合物(G-1)、および表面架橋された吸水性樹脂粒子(H-1)を得た。混合物(G-1)の温度は61℃であった。表面架橋された吸水性樹脂粒子(H-1)の物性を表1に示す。
 〔比較例2〕水蒸気注入なしで横型混合機での表面架橋
 製造例1で得られた粒子状吸水性樹脂(A-1)を、袋詰めした状態でオーブンに入れて60℃に加熱した。
 図6に示す横型連続式混合機において、1300rpmで攪拌翼を回転させ、上記ケーシング内における回転軸6の右端に設けられた供給口(投入口)2から、製造例1で得られた吸水性樹脂粒子(A-1)を、定量供給機(アキュレートInc.製)を用いて、200kg/hrで供給した。
 一方、該横型連続式混合機の一方の端部、即ち、図6中、右端に設けられた供給口(投入口)2から空気を供給し、該横型連続式混合機におけるケーシング内の圧力を5mmHO以下の減圧度に保ちながら、該横型連続式混合機のケーシング内に存在する回転軸6の全長を490mmとした場合にケーシングの右端から200mmの位置に設けられた添加剤供給口(添加剤投入口)4から、表面処理剤8kg/hrを噴霧しながら、上記粉末と表面処理剤とを連続に混合した。
 なお、定量供給機出口で粒子状吸水性樹脂(A-1)を採取し、これに接触型温度計を差し込んで温度を測定すると58℃であった。
 上記表面処理剤中の各成分の組成比(質量比)は、吸水性樹脂100質量部に対し、1,4-ブタンジオール/プロピレングリコール/水=0.4/0.6/3.0である。得られた混合物(G-2)を、モルタルで、撹拌下、200℃で40分間加熱処理し、表面架橋された吸水性樹脂粒子(H-2)を得た。表面架橋された吸水性樹脂粒子(H-2)の物性を表1に示す。
 〔比較例3〕本願縦型混合機において吸水性樹脂の粉温の影響
 粒子状吸水性樹脂をオーブンで加熱する操作を行わなかった以外は、実施例3と同様の操作を行った。このとき定量供給機出口から粒子状吸水性樹脂(A-1)を採取し、接触型温度計で温度を測定すると24℃であった。混合を始めて30分後に混合を止めて内部点検したところ、混合機の側壁に吸水性樹脂の付着が見られた。
Figure JPOXMLDOC01-appb-T000001
 (まとめ)
 表1に示すように、比較例1、2(横型混合機の使用)に対し、実施例7(横型混合機の使用、水蒸気注入(または得られる吸水性樹脂混合物の温度を2℃以上昇温))では生理食塩水流れ誘導性(SFC)が向上することが確認された。なお、本願縦型混合機を使用し、水分取り込み量として同じ5重量部である実施例1と実施例4との比較から、水蒸気の使用によって、加圧下吸水倍率(AAP)が22[g/g](比較例2)から24[g/g](実施例1)、生理食塩水流れ誘導性(SFC)が75[10-7×cm×s×g-1](比較例2)から105[10-7×cm×s×g-1](実施例1)へと飛躍的に向上することが確認された。また、比較例1、2(横型混合機の使用)に対し、実施例3(本願縦型混合機の使用)では加圧下吸水倍率(AAP)が向上することが確認された。さらに実施例1および2(本願縦型混合機の使用、水蒸気注入(または得られる吸水性樹脂混合物の温度を2℃以上昇温))では加圧下吸水倍率(AAP)と生理食塩水流れ誘導性(SFC)がともに向上することが確認された。
 一方、実施例6に対し、実施例1では加圧下吸水倍率(AAP)と生理食塩水流れ誘導性(SFC)がともに向上することが確認された。よって水の添加が水蒸気単独で行われるよりも液体の水と水蒸気の併用で行われることが好ましい。
 また、実施例5に対し、実施例1では加圧下吸水倍率(AAP)と生理食塩水流れ誘導性(SFC)がともに向上することが確認された。よって水蒸気として水が添加されるのは表面架橋剤が添加されるのと同時であることが好ましい。
 〔実施例8〕さらに硫酸アルミニウムの使用
 水蒸気および本願縦型混合機を表面架橋に使用した実施例1において、さらに硫酸アルミニウムを使用した。すなわち、実施例1で得られた、表面架橋された吸水性樹脂粒子(D-1)35gとガラスビーズ10gとを、225mlのマヨネーズ瓶に入れ、プロセス上の耐衝撃モデルとして、ペイントシェイカー(東洋精機(株)製)で30分間振とうした。次いで、振とう後の吸水性樹脂粒子30gに、該吸水性樹脂粒子100重量部に対して、50%硫酸アルミニウム水溶液/プロピレングリコール/乳酸ナトリウム=1.0重量部/0.025重量部/0.3重量部からなる通液性向上剤0.3gを添加・混合後、60℃の乾燥機で30分間硬化を行った。硬化後、ガラスビーズ10gの入った225mlのマヨネーズ瓶に入れ、ペイントシェイカーで10分間振とうし、アルミ表面処理物(I-1)を得た。アルミ表面処理物(I-1)の物性を表2に示す。
 〔実施例9〕さらに硫酸アルミニウムの使用
 本願縦型混合機を表面架橋に使用した実施例3において、さらに硫酸アルミニウムを使用した。すなわち、上記実施例8で表面架橋された吸水性樹脂粒子(D-1)を表面架橋された吸水性樹脂粒子(F-1)に変更したこと以外は実施例8と同様に行い、アルミ表面処理物(I-2)を得た。アルミ表面処理物(I-2)の物性を表2に示す。
 〔実施例10〕さらに硫酸アルミニウムの使用
 本願縦型混合機を表面架橋に使用した実施例4において、さらに硫酸アルミニウムを使用した。すなわち、上記実施例8で表面架橋された吸水性樹脂粒子(D-1)を表面架橋された吸水性樹脂粒子(F-2)に変更したこと以外は実施例8と同様に行い、アルミ表面処理物(I-3)を得た。アルミ表面処理物(I-3)の物性を表2に示す。
 〔比較例4〕さらに硫酸アルミニウムの使用
 水蒸気および縦型混合機を使用しない比較例1において、さらに硫酸アルミニウムを使用した。すなわち、表面架橋された吸水性樹脂粒子(D-1)を表面架橋された吸水性樹脂粒子(H-1)に変更したこと以外は実施例8と同様に行い、アルミ表面処理物(J-1)を得た。アルミ表面処理物(J-1)の物性を表2に示す。
 〔実施例11〕本願縦型混合機での硫酸アルミニウムの連続混合
 実施例3で得た表面架橋吸水性樹脂粒子(F-1)を、ポリプロピレン袋に袋詰めした状態でオーブンに入れて100℃に加熱した。実施例1と同様の縦型回転円盤型混合機を用いて、表面架橋吸水性樹脂粒子(F-1)500kg/hrに、硫酸アルミニウム14-18水和物、乳酸ナトリウムおよび水からなる表面処理剤5kg/hrを注入しながら連続的に混合した。なお、定量供給機出口で粒子状吸水性樹脂(F-1)を採取し、これに接触型温度計を差し込んで温度を測定すると94℃であった。
 また、上記組成液中の各成分の組成比(質量比)は、吸水性樹脂100質量部に対し、硫酸アルミウム14-18水和物/乳酸ナトリウム/水=0.4/0.1/0.5である。得られた混合物を、撹拌下、100℃で10分間加熱処理し、吸水性樹脂粒子(K-1)を得た。表面架橋された吸水性樹脂粒子(K-1)の物性を表2に示す。
 〔比較例5〕横型混合機での硫酸アルミニウムの連続混合
 実施例3で得た表面架橋吸水性樹脂粒子(F-1)を、ポリプロピレン袋に袋詰めした状態でオーブンに入れて100℃に加熱した。比較例2と同様の横型連続式混合機を用いて、表面架橋吸水性樹脂粒子(F-1)500kg/hrに、硫酸アルミニウム14-18水和物、乳酸ナトリウムおよび水からなる表面処理剤5kg/hrを注入しながら連続的に混合した。なお、定量供給機出口で粒子状吸水性樹脂(D-5)を採取し、これに接触型温度計を差し込んで温度を測定すると95℃であった。また、上記表面処理剤中の各成分の組成比(質量比)は、吸水性樹脂100質量部に対し、硫酸アルミウム14-18水和物/乳酸ナトリウム/水=0.4/0.1/0.5である。得られた混合物を、撹拌下、100℃で10分間加熱処理し、吸水性樹脂粒子(L-1)を得た。アルミ表面処理された吸水性樹脂粒子(L-1)の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (まとめ)
 表2では、表1の表面架橋においてさらに通液性向上剤(硫酸アルミニム)を使用した結果を示す。表2に示すように、水分取り込み量として同じ5重量部である実施例8と実施例10との比較から、表面架橋後の通液性向上剤(硫酸アルミニウム)添加量が同じであっても、水蒸気使用の有無によって、生理食塩水流れ誘導性(SFC)およびその上昇度に影響を及ぼすことが分かる。すなわち、実施例8のSFCが140[10-7×cm×s×g-1](上昇度;35[10-7×cm×s×g-1])に対して、実施例10では、SFCが90[10-7×cm×s×g-1](上昇度;15[10-7×cm×s×g-1])であった。
 本願の縦型混合機で表面架橋剤を混合することに加え、混合機中で添加する水の一部または全部を水蒸気で添加する方法(または、得られる吸水性樹脂混合物の温度を2℃以上昇温させる方法)を採用することにより、生理食塩水流れ誘導性(SFC)が高く、かつ、通液性向上剤による生理食塩水流れ誘導性(SFC)の向上の大きな効果が得られることが確認された。
 さらに表面架橋された吸水性樹脂粒子と硫酸アルミニウムの混合装置として横型混合機を用いた比較例5に対し、本願縦型混合機を用いた実施例11はSFCの上昇度が大きいことが確認された。これは本願縦型混合機が混合性に優れることを示している。
 〔実施例12〕本願縦型混合機での微粉の結着
 製造例1で得られた吸水性樹脂の微粉(a)を、袋詰めした状態でオーブンに入れて60℃に加熱した。
 図5で模式的に示された、撹拌羽根を仕切りの上方に3枚、下方に3枚、仕切りの側面に9枚備えた内容積5Lの縦型回転円盤型混合機(混合槽の最大直径(D)300mm(最大半径150mm)、混合槽の高さ(H)70mm、開口度20%、堰長さ(α)0.5mm、堰角度(β)、内壁をフッ素樹脂コート)を用いて、1100rpmで攪拌羽根を回転させた。微粉(a)を、定量供給機(アキュレートInc.製)を用いて、500kg/hrで供給し、水167kg/hrを注入しながら連続的に混合した。なお、定量供給機出口で微粉(a)を採取し、これに接触型温度計を差し込んで温度を測定すると57℃であった。上記混合機の排出口から不定形の塊状となった結着物を得た。この結着物の含水率は29%であった。
 上記混合後、混合機から上記結着物を取り出し、170℃の熱風乾燥機中で60分間乾燥し、得られた乾燥物を目開きが850μmの篩を全量が通過するまで粉砕した。
 上記粉砕により得られた吸水性樹脂粒子(a1)は、無加圧下吸収倍率(CRC)が33g/g、重量平均粒子径(D50)が370μm、粒子径150μm以下の粉末の含有率が18wt%であった。
 〔実施例13〕本願縦型混合機での微粉の結着
 混合機の堰構造の条件を堰長さ堰長さ(α)21mm、堰角度(β)20°としたこと以外は実施例12と同様にして、結着物およびその粉砕物(a2)を得た。上記結着物は球状で、速やかに分級して粒子径分布を測定したところ、結着物の重量平均粒子径(D50)は4.0mm、対数標準偏差(σζ)は0.54であった。上記粉砕物(a2)は、無加圧下吸収倍率(CRC)が34g/g、重量平均粒子径(D50)が400μm、粒子径150μm以下の粒子状吸水性樹脂の含有率が13wt%であった。
 〔比較例6〕本願縦型混合機において吸水性樹脂の粉温の影響
 微粉をオーブンで加熱する操作を行わなかったこと以外は、実施例12と同様の操作を行った。このとき定量供給機出口から粒子状吸水性樹脂(a)を採取し、接触型温度計で温度を測定すると23℃であった。混合を始めて30分後に混合を止めて内部点検したところ、混合機の投入口と側壁に吸水性樹脂の付着が見られた。
 〔比較例7〕横型混合機での吸水性樹脂
 製造例1で得られた吸水性樹脂の微粉(a)を、袋詰めした状態でオーブンに入れて60℃に加熱した。図6に示す横型連続式混合機において、1300rpmで攪拌翼を回転させ、上記ケーシング内における回転軸6の右端に設けられた供給口から、製造例1で得られた吸水性樹脂の微粉(a)を、定量供給機(アキュレートInc.製)を用いて、500kg/hrで供給した。
 一方、該横型連続式混合機の一方の端部、即ち、図6中、右端に設けられた供給口から空気を供給し、該横型連続式混合機におけるケーシング内の圧力を5mmHO以下の減圧度に保ちながら、該横型連続式混合機のケーシング内に存在する回転軸6の全長を490mmとした場合にケーシングの右端から200mmの位置に設けられた添加剤供給口4から、水167kg/hrを噴霧しながら、上記粉末と表面処理剤とを連続的に混合した。
 なお、定量供給機出口で粒子状吸水性樹脂(A-1)を採取し、これに接触型温度計を差し込んで温度を測定すると58℃であった。混合開始から10分後、混合機の電流値が上がったため混合を止めた。混合機の内部を点検すると内部に激しい付着と粗大な凝集物が見られた。
 〔製造例2〕
 48.5重量%水酸化ナトリウム水溶液、アクリル酸、および水を単量体濃度45wt%、中和率:70モル%なるように供給し、さらに単量体水溶液に、ポリエチレングリコールジアクリレート(平均エチレンオキシドユニット数:9)を0.07モル%(対単量体)、1重量%ジエチレントリアミン5酢酸3ナトリウム水溶液を100ppm(対単量体)となるように上記単量体に加え、連続的に混合した。このとき、単量体水溶液の温度は95℃であった。
 この調整された単量体水溶液に、さらに、1.0重量%過硫酸ナトリウム水溶液を0.05g/モル(対単量体)となるように加えた後、約100℃に保温された200cm/分の速度で走行するエンドレスベルトに、単量体水溶液を連続的に供給した。ベルト上に連続的に供給された単量体水溶液は速やかに重合を開始し、帯状の含水ゲルシート(含水ゲル状重合体)が得られた。
 この含水ゲルシートを直径9.5mmのスクリーンを有するミートチョッパー(平賀工作所製)を用いて連続的に細粒化して、重合物として重量平均粒子径(D50)が約2.0mmの含水ゲル状重合体を得た。
 得られた含水ゲル状重合体を170℃の熱風乾燥機中で60分間乾燥した。得られた乾燥物を粗解砕した後、目開き850μmのJIS標準篩で篩った。次いで、篩の上に残った乾燥物をロールミルで粉砕した。得られた粉砕物を目開き850μmと180μmの篩を用いて分級した。目開き850μmの篩の未通過物は、再度ロールミルで粉砕し、上記同様に分級した。目開き180μmの篩により分級された通過物は、乾燥物全体の約15wt%であった。
 上記分級により得られた、目開きが850μmの篩と180μmの篩の間にある粒子状吸水性樹脂(A-2)は、含水率が5.1重量%、無加圧下吸水倍率(CRC)が36[g/g]、重量平均粒子径(D50)が400μmであった。
 〔実施例14〕
 実施例1において粒子状吸水性樹脂(A-1)を粒子状吸水性樹脂(A-2)に、加熱処理の条件を212℃(オイルバス温度)、35分とした以外は、実施例1と同様にして、表面架橋された吸水性樹脂粒子(M-1)を得た。表面架橋された吸水性樹脂粒子(M-1)の物性を表3に示す。なお、組成液(B-1)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は18℃であった。
 〔実施例15〕
 実施例14において、組成液(B-1)を粒子状吸水性樹脂100重量部に対し、1,4-ブタンジオール/水=0.9重量部/3.0重量部である組成液(B-4)に変更し、加熱処理の条件を218℃(オイルバス温度)、25分とした以外は、実施例14と同様にして、表面架橋された吸水性樹脂粒子(M-2)を得た。表面架橋された吸水性樹脂粒子(D-5)の物性を表3に示す。なお、組成液(B-4)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は19℃であった。
 〔実施例16〕
 実施例14において、組成液(B-1)を粒子状吸水性樹脂100重量部に対し、1,6-ヘキサンジオール/水=0.9重量部/3.0重量部である組成液(B-5)に変更し、加熱処理の条件を218℃(オイルバス温度)、35分とした以外は、実施例14と同様にして、表面架橋された吸水性樹脂粒子(M-3)を得た。表面架橋された吸水性樹脂粒子(D-6)の物性を表3に示す。なお、組成液(B-5)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は17℃であった。
 〔実施例17〕
 実施例14において、組成液(B-1)を粒子状吸水性樹脂100重量部に対し、炭酸エチレン/水=0.9重量部/3.0重量部である組成液(B-6)に変更し、加熱処理の条件を218℃(オイルバス温度)、20分とした以外は、実施例14と同様にして、表面架橋された吸水性樹脂粒子(M-4)を得た。表面架橋された吸水性樹脂粒子(M-4)の物性を表3に示す。なお、組成液(B-6)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は18℃であった。
 〔実施例18〕
 実施例14において、混合機内部に水蒸気を注入せずに、組成液(B-1)の代わりに組成液(B-2)を使用した以外は実施例14と同様にして、表面架橋された吸水性樹脂粒子(N-1)を得た。表面架橋された吸水性樹脂粒子(N-1)の物性を表3に示す。なお、組成液(B-2)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は0℃であった。
 〔実施例19〕
 実施例15において、混合機内部に水蒸気を注入せずに、組成液(B-4)の代わりに実施例15で水蒸気からの吸収に相当する分だけ水の量を増やした組成液(B-7)を使用した以外は実施例15と同様にして、表面架橋された吸水性樹脂粒子(N-2)を得た。なお、組成液(B-7)は粒子状吸水性樹脂100重量部に対し、1,4-ブタンジオール/水=0.9重量部/5.0重量部であった。表面架橋された吸水性樹脂粒子(N-2)の物性を表3に示す。なお、組成液(B-7)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は0℃であった。
 〔実施例20〕
 実施例16において、混合機内部に水蒸気を注入せずに、組成液(B-5)の代わりに実施例11で水蒸気からの吸収に相当する分だけ水の量を増やした組成液(B-8)を使用した以外は実施例16と同様にして、表面架橋された吸水性樹脂粒子(N-3)を得た。なお、組成液(B-8)は粒子状吸水性樹脂100重量部に対し、1,6-ヘキサンジオール/水=0.9重量部/5.0重量部であった。表面架橋された吸水性樹脂粒子(N-3)の物性を表3に示す。なお、組成液(B-8)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は0℃であった。
 〔実施例21〕
 実施例17において、混合機内部に水蒸気を注入せずに、組成液(B-6)の代わりに実施例17で水蒸気からの吸収に相当する分だけ水の量を増やした組成液(B-9)を使用した以外は実施例17と同様にして、表面架橋された吸水性樹脂粒子(N-4)を得た。なお、組成液(B-9)は粒子状吸水性樹脂100重量部に対し、炭酸エチレン/水=0.9重量部/5.0重量部であった。表面架橋された吸水性樹脂粒子(N-4)の物性を表3に示す。なお、組成液(B-9)を混合機中で添加する工程において、粒子状吸水性樹脂(A-2)の温度に対して、得られる吸水性樹脂混合物の温度上昇は0℃であった。
Figure JPOXMLDOC01-appb-T000003
 (まとめ)
 表3に示すように、いずれも本願の縦型混合機を用い、各表面架橋剤の使用に対し、表面架橋剤混合中の水蒸気の使用または混合物の昇温により、表面架橋された吸水性樹脂粒子の加圧下吸水倍率(AAP)または生理食塩水流れ誘導性(SFC)、特にSFCについて物性が向上することが確認された。
 〔実施例22〕
 実施例14において、さらに硫酸アルミニウムを使用した。すなわち、実施例14で得られた、表面架橋された吸水性樹脂粒子(M-1)35gとガラスビーズ10gとを、225mlのマヨネーズ瓶に入れ、プロセス上の耐衝撃モデルとして、ペイントシェイカー(東洋精機(株)製)で30分間振とうした。次いで、振とう後の吸水性樹脂粒子30gに、該吸水性樹脂粒子100重量部に対して、50%硫酸アルミニウム水溶液/プロピレングリコール/乳酸ナトリウム=1.0重量部/0.025重量部/0.3重量部からなる通液性向上剤0.3gを添加・混合後、60℃の乾燥機で30分間硬化を行った。硬化後、ガラスビーズ10gの入った225mlのマヨネーズ瓶に入れ、ペイントシェイカーで10分間振とうし、アルミ表面処理物(O-1)を得た。アルミ表面処理物(O-1)の物性を表4に示す。
 〔実施例23〕
 実施例15において、さらに硫酸アルミニウムを使用した。すなわち、実施例22において表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(M-2)に変更した以外は実施例22と同様に行い、アルミ表面処理物(O-2)を得た。アルミ表面処理物(O-2)の物性を表4に示す。
 〔実施例24〕
 実施例16において、さらに硫酸アルミニウムを使用した。すなわち実施例22において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(M-3)に変更した以外は実施例22と同様に行い、アルミ表面処理物(O-3)を得た。アルミ表面処理物(O-3)の物性を表4に示す。
 〔実施例25〕
 実施例17において、さらに硫酸アルミニウムを使用した。すなわち実施例22において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(M-4)に変更した以外は実施例22と同様に行い、アルミ表面処理物(O-4)を得た。アルミ表面処理物(O-4)の物性を表4に示す。
 〔実施例26〕
 実施例18において、さらに硫酸アルミニウムを使用した。すなわち実施例22において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-1)に変更した以外は実施例22と同様に行い、アルミ表面処理物(P-1)を得た。アルミ表面処理物(P-1)の物性を表4に示す。
 〔実施例27〕
 実施例19において、さらに硫酸アルミニウムを使用した。すなわち実施例22において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-2)に変更した以外は実施例22と同様に行い、アルミ表面処理物(P-2)を得た。アルミ表面処理物(P-2)の物性を表4に示す。
 〔実施例28〕
 実施例20において、さらに硫酸アルミニウムを使用した。すなわち実施例22において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-3)に変更した以外は実施例22と同様に行い、アルミ表面処理物(P-3)を得た。アルミ表面処理物(P-3)の物性を表4に示す。
 〔実施例29〕
 実施例21において、さらに硫酸アルミニウムを使用した。すなわち実施例22において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-4)に変更した以外は実施例22と同様に行い、アルミ表面処理物(P-4)を得た。アルミ表面処理物(P-4)の物性を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 (まとめ)
 表4に示すように、いずれも本願の縦型混合機を用い、各表面架橋剤の使用に対し、表面架橋後の通液向上剤(硫酸アルミニウム)の添加量が同じであっても、表面架橋剤混合中の水蒸気の使用または混合物の昇温により、水蒸気なしまたは混合物の昇温なしの場合に比べ、生理食塩水流れ誘導性(SFC)の向上効果が大きくなることが確認された。
 〔実施例30〕
 実施例14において、さらにシリカを使用した。すなわち、実施例14で得られた表面架橋された吸水性樹脂粒子(M-1)35gとガラスビーズ10gとを、225mlのマヨネーズ瓶に入れ、ペイントシェイカー(東洋精機(株)製)で30分間振とうした。次いで振とう後の吸水性樹脂粒子に通液性向上剤としてシリカ(AEROSIL200 日本アエロジル(株)社製)を、該吸水性樹脂粒子100重量部に対し0.5重量部加えて混合し、シリカ表面処理物(Q-1)を得た。シリカ表面処理物(Q-1)の物性を表5に示す。
 〔実施例31〕
 実施例15において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(M-2)に変更した以外は実施例30と同様に行い、シリカ表面処理物(Q-2)を得た。シリカ表面処理物(Q-2)の物性を表5に示す。
 〔実施例32〕
 実施例16において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(M-3)に変更した以外は実施例30と同様に行い、シリカ表面処理物(Q-3)を得た。シリカ表面処理物(Q-3)の物性を表5に示す。
 〔実施例33〕
 実施例17において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(M-4)に変更した以外は実施例30と同様に行い、シリカ表面処理物(Q-4)を得た。シリカ表面処理物(Q-4)の物性を表5に示す。
 〔実施例34〕
 実施例18において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-1)に変更した以外は実施例30と同様に行い、シリカ表面処理物(R-1)を得た。シリカ表面処理物(R-1)の物性を表5に示す。
 〔実施例35〕
 実施例19において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-2)に変更した以外は実施例30と同様に行い、シリカ表面処理物(R-2)を得た。シリカ表面処理物(R-2)の物性を表5に示す。
 〔実施例36〕
 実施例20において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-3)に変更した以外は実施例30と同様に行い、シリカ表面処理物(R-3)を得た。シリカ表面処理物(R-3)の物性を表5に示す。
 〔実施例37〕
 実施例21において、さらにシリカを使用した。すなわち実施例30において、表面架橋された吸水性樹脂粒子(M-1)を表面架橋された吸水性樹脂粒子(N-4)に変更した以外は実施例30と同様に行い、シリカ表面処理物(R-4)を得た。シリカ表面処理物(R-4)の物性を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 (まとめ)
 表5で示すように、いずれも本願の縦型混合機を用い、各表面架橋剤の使用に対し、シリカ表面処理物は、硫酸アルミニウムを添加した場合と同様に、表面架橋剤混合中の水蒸気の使用または混合物の昇温により、水蒸気なしまたは混合物の昇温なしの場合に比べ、生理食塩水流れ誘導性(SFC)の向上効果が大きくなることが確認された。
 なお、上述した本発明は、以下のように言い換えることもできる。
 (1)粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程と、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程とを順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、上記混合機中で添加する水の一部または全部を水蒸気で添加することを特徴とする、吸水性樹脂の製造方法。
 (2)粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程と、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程とを順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、上記表面架橋剤および水を混合機中で添加する工程において、粒子状吸水性樹脂の温度に対して、得られる吸水性樹脂混合物の温度を2℃以上昇温させることを特徴とする、吸水性樹脂の製造方法。
 (3)上記粒子状吸水性樹脂に添加される水は、液体および水蒸気が併用されてなる、(1)記載の製造方法。
 (4)上記粒子状吸水性樹脂に添加される水は、表面架橋剤水溶液および水蒸気が併用されてなる、(1)または(2)記載の製造方法。
 (5)上記粒子状吸水性樹脂100重量部に対して、水0.1~10重量部が混合され、かつ、液体として供給された水が、供給水全体の0~95重量%である、(1)~(3)のいずれか1項に記載の製造方法。
 (6)上記混合機に供給される粒子状吸水性樹脂の温度が、水蒸気の温度より10~100℃低い、(1)~(4)のいずれか1項に記載の製造方法。
 (7)上記混合機の内面の温度が、水蒸気の温度より10~100℃低い、(1)~(5)のいずれか1項に記載の製造方法。
 (8)上記混合機および反応機中が連結された連続装置であって、混合機中の粒子状吸水性樹脂の平均滞留時間が1秒~5分であり、かつ、反応機中の吸水性樹脂混合物の平均滞留時間が6分~10時間である、(1)~(6)のいずれか1項に記載の製造方法。
 (9)上記表面架橋剤がカルボキシル基と脱水反応しうる架橋剤である、(1)~(7)のいずれか1項に記載の製造方法。
 (10)上記水蒸気の供給により、吸水性樹脂内の水分量が、供給される粒子状吸水性樹脂100重量部に対して、0.1~10重量部増加する、(1)~(8)のいずれか1項に記載の製造方法。
 (11)上記供給される水蒸気が、0.01~1MPa(ゲージ圧)である、(1)~(9)のいずれか1項に記載の製造方法。
 (12)上記混合機内の露点が、60~100℃である、(1)~(10)のいずれか1項に記載の製造方法。
 (13)上記混合機に供給される粒子状吸水性樹脂の温度が、30~90℃である、(1)~(11)のいずれか1項に記載の製造方法。
 (14)上記混合機が縦型混合機である、(1)~(12)のいずれか1項に記載の製造方法。
 (15)表面架橋と同時または表面架橋後に、さらに、ポリアミンポリマー、多価金属塩、水不溶性微粒子から選ばれる通液性向上剤が添加される、(1)~(14)のいずれか1項に記載の製造方法。
 (16)表面架橋剤および水を混合機中で添加する工程によって、粒子状吸水性樹脂の温度に比べて、得られた吸水性樹脂混合物の温度が3~60℃昇温させる、(1)~(15)のいずれか1項に記載の製造方法。
 (17)1時間あたりの処理量が、1t以上の連続生産である、(1)~(16)のいずれか1項に記載の製造方法。
 (18)上記混合機から取り出した吸水性樹脂混合物の温度が、50~140℃である、(1)~(17)のいずれか1項に記載の製造方法。
 (19)上記混合機から反応機の入口までに、保温ないし加温された排気ラインを持つ、(1)~(18)のいずれか1項に記載の製造方法。
 また、以下のようにも言い換えることもできる。
 (1)吸水性樹脂の製造方法であって、粒子状吸水性樹脂と添加剤の混合において、予め粒子状吸水性樹脂の温度を30~150℃とすること、および以下の条件(a)~(c)、
 (a)300~3000rpmで撹拌羽根が回転する、
 (b)撹拌羽根の回転軸は少なくとも1本は鉛直方向である、
 (c)開口度が5~70%の仕切りにより、混合槽が上下に2室以上に分けられている、
を満たす連続混合装置を使用することを特徴とする方法。
 (2)粒子状吸水性樹脂と添加剤の混合において、予め粒子状吸水性樹脂の温度を40~120℃とする、(1)に記載の方法。
 (3)添加剤は水溶液または水分散液である、(1)または(2)に記載の方法。
 (4)添加剤は架橋剤を含む、(1)~(3)のいずれか一項に記載の方法。
 (5)上記混合機は内壁が加熱ないし保温されている、(1)~(4)のいずれか一項に記載の方法。
 (6)上記混合機は内壁が50~150℃に加熱されている、(5)に記載の方法。
 (7)上記混合機の内壁の一部または全面に、水に対する接触角が60°以上であり熱変形温度が70℃以上の材料を用いる、(1)~(6)のいずれか一項に記載の方法。
 (8)上記混合機において、開口度が5~70%で、撹拌羽根の回転軸を中心に回転する仕切りをもつ、(1)~(7)のいずれか一項に記載の方法。
 (9)上記混合機において、少なくとも一つの撹拌羽根の先端が描く軌道より回転軸側に排出口がある、(1)~(8)のいずれか一項に記載の方法。
 (10)上記混合機において、排出口に堰構造をもち、その堰構造は水平面に対する角度が10~80°、側壁から回転軸側への水平方向の長さが混合槽の最大半径の1~40%で、上記範囲内で角度または長さを変更できる、(1)~(9)のいずれか一項に記載の方法。
 (11)上記混合機において、混合槽内部の高さ(H)を混合槽の最大直径(D)で除した値(H/D)が0.1~1である、(1)~(10)のいずれか一項に記載の方法。
 (12)上記混合機に投入される粒子状吸水性樹脂の量が、混合機の混合槽容積1Lあたり10~300kg/hrである、(1)~(11)のいずれか一項に記載の方法。
 (13)上記混合機において、混合槽に水蒸気を導入する、(1)~(12)のいずれか一項に記載の方法。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明の製造方法により得られる吸水性樹脂は、優れた吸収特性等(加圧下吸水倍率、通液性など)を示すものである。このような粒子状吸水性樹脂は、例えば、近年成長の著しい大人用紙オムツ、子供用オムツ、生理用ナプキン、いわゆる失禁パッド等の衛生材料用吸収剤として、凝集剤、凝結剤、土壌改良剤、土壌安定剤、増粘剤等に好適に用いられる水溶性重合体として、あるいは農園芸用分野、土木業分野において保水剤、脱水剤等として広く利用することが可能である。
 1  側壁
 2  投入口
 3  排出口
 4  添加剤投入口
 5  撹拌羽根
 6  回転軸
 7  仕切り
 8  堰(堰に連続して点線で囲まれた部分は堰の長さが可変であることを示す。)
 9  水蒸気投入口
10  混合層(ケーシング)

Claims (31)

  1.  粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程と、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程とを順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、
     上記混合機中で添加する水の一部または全部を水蒸気で添加することを特徴とする、吸水性樹脂の製造方法。
  2.  粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程と、混合機から取り出した吸水性樹脂混合物を反応機中で加熱または活性エネルギー線照射で表面架橋剤と反応させる工程とを順次含む、表面架橋された吸水性樹脂粒子の製造方法であって、上記表面架橋剤および水を混合機中で添加する工程において、粒子状吸水性樹脂の温度に対して、得られる吸水性樹脂混合物の温度を2℃以上昇温させることを特徴とする、吸水性樹脂の製造方法。
  3.  上記粒子状吸水性樹脂に添加される水の一部または全部を水蒸気で添加する、請求項2に記載の製造方法。
  4.  上記粒子状吸水性樹脂に添加される水として、液体および水蒸気が併用される、請求項1~3のいずれか1項に記載の製造方法。
  5.  上記粒子状吸水性樹脂に添加される水として、表面架橋剤水溶液および水蒸気が併用される、請求項1~4のいずれか1項記載の製造方法。
  6.  上記粒子状吸水性樹脂100重量部に対して水0.1~10重量部が混合され、かつ、液体として供給された水が供給水全体の0~95重量%である、請求項1~3のいずれか1項に記載の製造方法。
  7.  上記混合機に供給される粒子状吸水性樹脂の温度が、水蒸気の温度より10~100℃低い、請求項1~6のいずれか1項に記載の製造方法。
  8.  上記混合機の内面の温度が、水蒸気の温度より10~100℃低い、請求項1~7のいずれか1項に記載の製造方法。
  9.  上記混合機と反応機とは、互いが連結された、上記各工程を連続的に行う装置であり、
     混合機中の粒子状吸水性樹脂の平均滞留時間が1秒~5分であり、かつ、反応機中の吸水性樹脂混合物の平均滞留時間が6分~10時間である、請求項1~8のいずれか1項に記載の製造方法。
  10.  上記表面架橋剤が、カルボキシル基と脱水反応しうる架橋剤である、請求項1~9のいずれか1項に記載の製造方法。
  11.  上記水蒸気の供給により粒子状吸水性樹脂に取り込まれた水分量が、混合機へ供給される粒子状吸水性樹脂100重量部に対して、0.1~10重量部である、請求項1および3~10のいずれか1項に記載の製造方法。
  12.  上記供給される水蒸気の圧力が0.01~1MPa(ゲージ圧)である、請求項1および3~11のいずれか1項に記載の製造方法。
  13.  上記混合機内の露点が60~100℃である、請求項1~12のいずれか1項に記載の製造方法。
  14.  上記混合機に供給される粒子状吸水性樹脂の温度が30~90℃である、請求項1~13のいずれか1項に記載の製造方法。
  15.  上記混合機が縦型混合機である、請求項1~14のいずれか1項に記載の製造方法。
  16.  共有結合性表面架橋剤による表面架橋と同時または表面架橋後に、さらに、ポリアミン、多価金属塩、および水不溶性微粒子からなる群から選ばれる1種以上の通液性向上剤が添加される、請求項1~15のいずれか1項に記載の製造方法。
  17.  上記混合機へ投入する粒子状吸水性樹脂の温度に比べて、得られた吸水性樹脂混合物の温度を3~60℃昇温させる、請求項1~16のいずれか1項に記載の製造方法。
  18.  1時間あたりの処理量が1t以上の連続生産である、請求項1~17のいずれか1項に記載の製造方法。
  19.  上記混合機から取り出した吸水性樹脂混合物の温度が50~140℃である、請求項1~18のいずれか1項に記載の製造方法。
  20.  上記混合機から反応機の入口までに、保温または加温された排気装置が設けられている、請求項1~19のいずれか1項に記載の製造方法。
  21.  粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程において、予め粒子状吸水性樹脂の温度を30~150℃とすること、および以下の条件(i)~(iii)、
     (i)300~3000rpmで撹拌羽根が回転する、
     (ii)撹拌羽根の回転軸は少なくとも1本は鉛直方向である、
     (iii)開口度が5~70%の仕切りにより、混合槽が上下に2室以上に分けられている、を満たす連続混合装置を使用する、請求項1~13のいずれか1項に記載の製造方法。
  22.  粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程において、予め粒子状吸水性樹脂の温度を30~150℃とすること、および以下の条件(i)~(iii)、
     (i)300~3000rpmで撹拌羽根が回転する、
     (ii)撹拌羽根の回転軸は少なくとも1本は鉛直方向である、
     (iii)開口度が5~70%の仕切りにより、混合槽が上下に2室以上に分けられている、を満たす連続混合装置を使用する製造方法。
  23.  粒子状吸水性樹脂に、表面架橋剤および水を混合機中で添加する工程において、予め粒子状吸水性樹脂の温度を40~120℃とする、請求項21または22に記載の方法。
  24.  上記混合機は内壁が加熱または保温されている、請求項21~23のいずれか1項に記載の方法。
  25.  上記混合機は内壁が50~150℃に加熱されている、請求項21~24のいずれか1項に記載の方法。
  26.  上記混合機の内壁の一部または全面に、水に対する接触角が60°以上であり熱変形温度が70℃以上の材料を用いる、請求項21~25のいずれか1項に記載の方法。
  27.  上記混合機は、開口度が5~70%であり、撹拌羽根の回転軸を中心に回転する仕切りを備えている、請求項21~26のいずれか1項に記載の方法。
  28.  上記混合機において、少なくとも一つの撹拌羽根の先端が描く軌道より回転軸側に排出口がある、請求項21~27のいずれか1項に記載の方法。
  29.  上記混合機において、排出口に堰構造を備え、その堰構造は水平面に対する角度が10~80°、側壁から回転軸側への水平方向の長さが混合槽の最大半径の1~40%で、上記範囲内で角度および/または長さを変更できる、請求項21~28のいずれか1項に記載の方法。
  30.  上記混合機において、混合槽内部の高さ(H)を混合槽の最大直径(D)で除した値(H/D)が0.1~1である、請求項21~29のいずれか1項に記載の方法。
  31.  上記混合機に投入される粒子状吸水性樹脂の量が、混合機の混合槽容積1Lあたり10~300kg/hrである、請求項21~30のいずれか1項に記載の方法。
PCT/JP2010/001521 2009-03-04 2010-03-04 吸水性樹脂の製造方法 WO2010100936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080010035.3A CN102341435B (zh) 2009-03-04 2010-03-04 吸水性树脂的制造方法
US13/254,573 US8648150B2 (en) 2009-03-04 2010-03-04 Method for producing water absorbent resin
JP2011502661A JP5615801B2 (ja) 2009-03-04 2010-03-04 吸水性樹脂の製造方法
EP20100748535 EP2404954B1 (en) 2009-03-04 2010-03-04 Process for producing water-absorbing resin
US14/136,339 US9796820B2 (en) 2009-03-04 2013-12-20 Method for producing water absorbent resin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009050381 2009-03-04
JP2009-050381 2009-03-04
JP2009197091 2009-08-27
JP2009-197091 2009-08-27
JP2010022690 2010-02-04
JP2010-022690 2010-02-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/254,573 A-371-Of-International US8648150B2 (en) 2009-03-04 2010-03-04 Method for producing water absorbent resin
US14/136,339 Division US9796820B2 (en) 2009-03-04 2013-12-20 Method for producing water absorbent resin

Publications (1)

Publication Number Publication Date
WO2010100936A1 true WO2010100936A1 (ja) 2010-09-10

Family

ID=42709502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001521 WO2010100936A1 (ja) 2009-03-04 2010-03-04 吸水性樹脂の製造方法

Country Status (5)

Country Link
US (2) US8648150B2 (ja)
EP (1) EP2404954B1 (ja)
JP (2) JP5615801B2 (ja)
CN (1) CN102341435B (ja)
WO (1) WO2010100936A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
JP2015526572A (ja) * 2012-08-29 2015-09-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
JP2016529368A (ja) * 2013-08-27 2016-09-23 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
JP2020520390A (ja) * 2018-04-03 2020-07-09 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
US10829630B2 (en) 2016-03-11 2020-11-10 Lg Chem, Ltd. Super absorbent polymer
WO2021187323A1 (ja) * 2020-03-18 2021-09-23 住友精化株式会社 吸水性樹脂粒子を製造する方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCZ20080010A1 (it) * 2008-10-30 2010-04-30 Cit Di Tassone Giuseppe Dispositivo per la miscelazione ed il confezionamento di materiali in polvere di qualsiasi granulometria
NZ593495A (en) * 2011-06-16 2014-02-28 David Kenneth Pinches Disc for industrial plants
JP6002773B2 (ja) 2012-09-11 2016-10-05 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
CN104822740B (zh) 2012-12-03 2020-08-11 株式会社日本触媒 聚丙烯酸(盐)系吸水性树脂及其制造方法
US10662300B2 (en) * 2013-05-10 2020-05-26 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
US9868800B2 (en) 2014-04-25 2018-01-16 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
EP3009474B1 (de) 2014-10-16 2017-09-13 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
CN104356256B (zh) * 2014-11-25 2016-06-08 中广核达胜加速器技术有限公司 一种电子束辐照喷淋法合成高性能吸水树脂的方法
KR101919985B1 (ko) * 2015-06-10 2018-11-19 주식회사 엘지화학 내파쇄성 고흡수성 수지 및 그 제조방법
KR102429796B1 (ko) 2016-03-31 2022-08-04 스미토모 세이카 가부시키가이샤 흡수성 수지 입자의 제조 장치
AT519978B1 (de) * 2017-12-19 2018-12-15 Sonderhoff Eng Gmbh Vorrichtung zur Herstellung von Kunststoffteilen
JP7257090B2 (ja) * 2018-03-29 2023-04-13 Sdpグローバル株式会社 吸水性樹脂粒子及びその製造方法
KR102500281B1 (ko) 2018-12-12 2023-02-15 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN111377654B (zh) * 2018-12-29 2021-11-09 江苏苏博特新材料股份有限公司 一种杂化型无碱速凝剂及其制备方法
CN110302712A (zh) * 2019-07-18 2019-10-08 南京汇科高分子材料有限公司 一种玻璃包边材料生产用预处理釜
JP7270828B2 (ja) * 2020-02-14 2023-05-10 株式会社日本触媒 吸水性樹脂およびその製造方法
CN111895272A (zh) * 2020-07-24 2020-11-06 南通华林科纳半导体设备有限公司 抛光液dsp供应系统

Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093776A (en) 1976-10-07 1978-06-06 Kao Soap Co., Ltd. Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4367323A (en) 1980-12-03 1983-01-04 Sumitomo Chemical Company, Limited Production of hydrogels
US4446261A (en) 1981-03-25 1984-05-01 Kao Soap Co., Ltd. Process for preparation of high water-absorbent polymer beads
US4625001A (en) 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
US4683274A (en) 1984-10-05 1987-07-28 Seitetsu Kagaku Co., Ltd. Process for producing a water-absorbent resin
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
JPS6399211A (ja) * 1986-06-04 1988-04-30 Hayashikane Zosen Kk 改質吸水性樹脂の製造方法
US4755562A (en) 1986-06-10 1988-07-05 American Colloid Company Surface treated absorbent polymers
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
JPH01113406A (ja) 1987-07-16 1989-05-02 Lion Corp 高吸水性ポリマーの製造方法
US4873299A (en) 1986-03-21 1989-10-10 Basf Aktiengesellschaft Batchwise preparation of crosslinked, finely divided polymers
JPH01297430A (ja) 1988-05-24 1989-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd 吸水性樹脂の表面処理方法
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH02160814A (ja) 1988-12-14 1990-06-20 Kazuo Saotome 吸水性樹脂の改質方法
US4973632A (en) 1988-06-28 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production process for water-absorbent resin
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
JPH03152104A (ja) 1989-09-15 1991-06-28 Dow Chem Co:The 水性流体吸収性微粒子の再循環方法および装置
US5051259A (en) 1987-12-15 1991-09-24 Coloplast A/S Skin barrier product with discontinuous adhesive layer
US5124416A (en) 1988-05-23 1992-06-23 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Method for production of absorbent polymer
JPH04214734A (ja) 1990-04-02 1992-08-05 Nippon Shokubai Co Ltd 吸水性樹脂の表面処理方法
JPH04227705A (ja) 1990-04-27 1992-08-17 Nippon Shokubai Co Ltd 耐塩性吸水性樹脂の製造方法
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5206205A (en) 1991-08-15 1993-04-27 Kimberly-Clark Corporation Thermal treatment of superabsorbents to enhance their rate of absorbency under load
US5244735A (en) 1988-06-28 1993-09-14 Nippon Shokubai Kagaku Kabushiki Kaisha Water-absorbent resin and production process
US5250640A (en) 1991-04-10 1993-10-05 Nippon Shokubai Co., Ltd. Method for production of particulate hydrogel polymer and absorbent resin
US5264495A (en) 1990-04-27 1993-11-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of salt-resistant absorbent resin
US5275773A (en) 1991-02-01 1994-01-04 Nippon Shokubai Co., Ltd. Method for production of particulate hydrated gel polymer and absorbent resin
EP0603292A1 (en) 1991-09-09 1994-06-29 The Dow Chemical Company Superabsorbent polymers and process for producing
US5369148A (en) 1990-04-27 1994-11-29 Nippon Shokubai Co., Ltd. Method for continuous agglomeration of an absorbent resin powder and apparatus therefor
US5380808A (en) 1990-07-17 1995-01-10 Sanyo Chemical Industries, Ltd. Process for producing water-absorbing resins
US5422405A (en) 1992-12-16 1995-06-06 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
JPH07224204A (ja) 1994-02-10 1995-08-22 Toagosei Co Ltd 吸水性樹脂の製造方法
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
US5478879A (en) 1991-01-22 1995-12-26 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
US5610208A (en) 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
JPH09509591A (ja) 1994-02-17 1997-09-30 ザ、プロクター、エンド、ギャンブル、カンパニー 改良された吸収特性を有する吸収性材料およびその製造方法
US5672633A (en) 1993-09-29 1997-09-30 Chemische Fabrik Stockhausen Gmbh Powdery polymers capable of absorbing aqueous liquids, a process for their production and their use as absorbents
EP0811636A1 (en) 1996-06-05 1997-12-10 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
EP0922717A1 (en) 1997-12-10 1999-06-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin
EP0955086A2 (en) 1998-04-28 1999-11-10 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JPH11349625A (ja) * 1998-06-10 1999-12-21 Sanyo Chem Ind Ltd 吸水剤の製造法および吸水剤
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
JP2000189794A (ja) 1998-12-28 2000-07-11 Nippon Shokubai Co Ltd 吸水材の製造方法
US6100305A (en) 1996-10-24 2000-08-08 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6133193A (en) 1994-10-26 2000-10-17 Nippon Shokubai Co., Ltd. Absorbent resin composition and method for production thereof
US6140395A (en) 1997-12-25 2000-10-31 Nippon Shokubai Co., Ltd. Method of producing hydrophilic resin
US6187902B1 (en) 1997-12-25 2001-02-13 Nippon Shokubai Co., Ltd. Production process of hydrophilic crosslinked polymer
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP3175790B2 (ja) 1991-04-10 2001-06-11 株式会社日本触媒 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6297319B1 (en) 1998-11-05 2001-10-02 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
EP1165631A1 (de) 1999-03-05 2002-01-02 STOCKHAUSEN GmbH & CO. KG Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere, verfahren zu ihrer herstellung und ihre verwendung
EP1178059A2 (en) 2000-08-03 2002-02-06 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6372852B2 (en) 1998-03-31 2002-04-16 Nippon Shokubai Co., Ltd Water-absorbing composition and production process for water-absorbing agent
JP2002121291A (ja) * 2000-02-29 2002-04-23 Nippon Shokubai Co Ltd 吸水性樹脂粉末およびその製造方法
JP2002201290A (ja) * 2000-09-20 2002-07-19 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
US6472478B1 (en) 1998-02-21 2002-10-29 Basf Aktiengesellschaft Process for crosslinking hydrogels with bis- and poly-2- oxazolidinones
US6514615B1 (en) 1999-06-29 2003-02-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
US6559239B1 (en) 1998-11-26 2003-05-06 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
US6620899B1 (en) 1998-10-15 2003-09-16 E. I. Du Pont De Nemours And Company Polymers, containing a fluorocyclobutyl ring and their preparation
JP2003303306A (ja) 2002-04-08 2003-10-24 Nec Soft Ltd プリペイド方式による商品代金支払システム
US6657015B1 (en) 1998-11-26 2003-12-02 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
JP2004037900A (ja) 2002-07-04 2004-02-05 Ricoh Co Ltd 中間転写装置及び画像形成装置
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US20040069915A1 (en) 2002-09-20 2004-04-15 Alain Guennec Satellite antenna holder
US20040106745A1 (en) 2001-06-08 2004-06-03 Yasuhisa Nakashima Water-absorbing agent and production process therefor, and sanitary material
US20040176557A1 (en) 2000-09-04 2004-09-09 Richard Mertens Pulverulent, crosslinked polymers which absorb aqueous liquids and blood
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US20040234607A1 (en) 2003-04-25 2004-11-25 Nippon Shokubai Co.,Ltd. Method for disintegrating hydrate polymer and method for production of water-absorbent resin
JP2004352941A (ja) 2003-05-30 2004-12-16 Nippon Shokubai Co Ltd 吸水性樹脂の製造法
JP2004352940A (ja) 2003-05-30 2004-12-16 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および鋤型混合装置
JP2005016393A (ja) 2003-06-25 2005-01-20 Toyota Motor Corp 内燃機関の排気浄化システム
US20050048221A1 (en) 2003-08-27 2005-03-03 Yoshio Irie Process for production of surface-treated particulate water-absorbent resin
JP2005054151A (ja) 2003-08-07 2005-03-03 Nippon Shokubai Co Ltd 粒子状吸水性樹脂の製法
US20050046069A1 (en) 2003-09-01 2005-03-03 Masazumi Sasabe Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
US6875511B2 (en) 2002-05-30 2005-04-05 Nippon Shokubai Co., Ltd. Production process for particulate water-absorbent resin
JP2005097585A (ja) * 2003-08-27 2005-04-14 Nippon Shokubai Co Ltd 表面処理された粒子状吸水性樹脂の製造方法
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
JP2005307195A (ja) 2004-03-24 2005-11-04 Nippon Shokubai Co Ltd 吸水性樹脂の連続製造方法
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US20060024755A1 (en) 2001-04-30 2006-02-02 George Jackowski Biopolymer marker indicative of disease state having a molecular weight of 1424 daltons
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
US20060101271A1 (en) 2004-11-10 2006-05-11 Michael Thomas Method and system for conveying alternate acceptable canonicalizations of a digitally signed piece of electronic mail
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082188A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
US20060247351A1 (en) 2005-03-14 2006-11-02 Kazushi Torii Water-absorbing agent and its production process
US7157141B2 (en) 2000-03-31 2007-01-02 Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
US7179862B2 (en) 1999-03-05 2007-02-20 Stockhausen Gmbh Powdery, cross-linked absorbent polymers method for the production thereof and their use
US20070106013A1 (en) 2003-06-24 2007-05-10 Yoshifumi Adachi Water absorbent resin composition and production method thereof
US20070149760A1 (en) 2005-12-22 2007-06-28 Kenji Kadonaga Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
EP1824910A2 (en) 2004-12-10 2007-08-29 Nippon Shokubai Co.,Ltd. Method for production of modified water absorbent resin
JP2008038128A (ja) * 2005-12-22 2008-02-21 Nippon Shokubai Co Ltd 吸水性樹脂の表面架橋方法および吸水性樹脂の製造方法
US20080080300A1 (en) 2004-09-28 2008-04-03 Basf Aktiengesellschaft Mixing Kneader and Process for Preparing Poly(Meth)Acrylates Using the Mixing Kneader
US20080090961A1 (en) 2006-10-13 2008-04-17 Bayer Materialscience Llc Impact resistant, flame retardant thermoplastic molding composition
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522877A (en) 1975-06-24 1977-01-10 Noubi Kogyo Kk Process and apparatus for granulating of high molecular coagulating ag ents
DE3308420A1 (de) 1983-03-09 1984-09-13 Wolff Walsrode Ag, 3030 Walsrode Verfahren zur kontinuierlichen granulierung von carboxymethylcellulose
EP0386897B1 (en) 1989-02-28 1995-05-03 Nippon Shokubai Co., Ltd. Process for producing quality-improved water-absorbent polymers and products
DE4131045C1 (ja) * 1991-09-18 1992-11-19 Cassella Ag, 6000 Frankfurt, De
JP3742098B2 (ja) * 1995-12-27 2006-02-01 株式会社日本触媒 吸水剤の製造方法並びに吸水性樹脂への水性液の混合方法
DE60112630T3 (de) 2000-02-29 2016-03-03 Nippon Shokubai Co., Ltd. Verfaren zur Herstellung eines wasserabsorbierenden Harzpulvers
US6720389B2 (en) * 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
AU2003296558A1 (en) 2002-10-25 2004-05-13 Stockhausen Gmbh Absorbent polymer structure provided with an improved retention capacity and permeability
TWI302541B (en) 2003-05-09 2008-11-01 Nippon Catalytic Chem Ind Water-absorbent resin and its production process
CN101242891B (zh) * 2005-08-24 2011-05-11 巴斯夫欧洲公司 生产吸水性聚合物颗粒的方法
DE102007024080A1 (de) * 2007-05-22 2008-11-27 Evonik Stockhausen Gmbh Verfahren zum schonenden Mischen und Beschichten von Superabsorbern

Patent Citations (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093776A (en) 1976-10-07 1978-06-06 Kao Soap Co., Ltd. Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4367323A (en) 1980-12-03 1983-01-04 Sumitomo Chemical Company, Limited Production of hydrogels
US4446261A (en) 1981-03-25 1984-05-01 Kao Soap Co., Ltd. Process for preparation of high water-absorbent polymer beads
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US4625001A (en) 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
US4683274A (en) 1984-10-05 1987-07-28 Seitetsu Kagaku Co., Ltd. Process for producing a water-absorbent resin
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4873299A (en) 1986-03-21 1989-10-10 Basf Aktiengesellschaft Batchwise preparation of crosslinked, finely divided polymers
JPS6399211A (ja) * 1986-06-04 1988-04-30 Hayashikane Zosen Kk 改質吸水性樹脂の製造方法
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US4824901A (en) 1986-06-10 1989-04-25 American Colloid Company Surface treated absorbent polymers
US4755562A (en) 1986-06-10 1988-07-05 American Colloid Company Surface treated absorbent polymers
JPH01113406A (ja) 1987-07-16 1989-05-02 Lion Corp 高吸水性ポリマーの製造方法
US5051259A (en) 1987-12-15 1991-09-24 Coloplast A/S Skin barrier product with discontinuous adhesive layer
US5124416A (en) 1988-05-23 1992-06-23 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Method for production of absorbent polymer
JPH01297430A (ja) 1988-05-24 1989-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd 吸水性樹脂の表面処理方法
US4973632A (en) 1988-06-28 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production process for water-absorbent resin
US5244735A (en) 1988-06-28 1993-09-14 Nippon Shokubai Kagaku Kabushiki Kaisha Water-absorbent resin and production process
JPH02160814A (ja) 1988-12-14 1990-06-20 Kazuo Saotome 吸水性樹脂の改質方法
JPH03152104A (ja) 1989-09-15 1991-06-28 Dow Chem Co:The 水性流体吸収性微粒子の再循環方法および装置
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
JPH04214734A (ja) 1990-04-02 1992-08-05 Nippon Shokubai Co Ltd 吸水性樹脂の表面処理方法
US5264495A (en) 1990-04-27 1993-11-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of salt-resistant absorbent resin
JPH04227705A (ja) 1990-04-27 1992-08-17 Nippon Shokubai Co Ltd 耐塩性吸水性樹脂の製造方法
US5369148A (en) 1990-04-27 1994-11-29 Nippon Shokubai Co., Ltd. Method for continuous agglomeration of an absorbent resin powder and apparatus therefor
US5380808A (en) 1990-07-17 1995-01-10 Sanyo Chemical Industries, Ltd. Process for producing water-absorbing resins
US5478879A (en) 1991-01-22 1995-12-26 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
US5275773A (en) 1991-02-01 1994-01-04 Nippon Shokubai Co., Ltd. Method for production of particulate hydrated gel polymer and absorbent resin
US5250640A (en) 1991-04-10 1993-10-05 Nippon Shokubai Co., Ltd. Method for production of particulate hydrogel polymer and absorbent resin
JP3175790B2 (ja) 1991-04-10 2001-06-11 株式会社日本触媒 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
US5206205A (en) 1991-08-15 1993-04-27 Kimberly-Clark Corporation Thermal treatment of superabsorbents to enhance their rate of absorbency under load
EP0603292A1 (en) 1991-09-09 1994-06-29 The Dow Chemical Company Superabsorbent polymers and process for producing
US5422405A (en) 1992-12-16 1995-06-06 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
US5672633A (en) 1993-09-29 1997-09-30 Chemische Fabrik Stockhausen Gmbh Powdery polymers capable of absorbing aqueous liquids, a process for their production and their use as absorbents
JPH07224204A (ja) 1994-02-10 1995-08-22 Toagosei Co Ltd 吸水性樹脂の製造方法
US5610208A (en) 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
JPH09509591A (ja) 1994-02-17 1997-09-30 ザ、プロクター、エンド、ギャンブル、カンパニー 改良された吸収特性を有する吸収性材料およびその製造方法
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US6133193A (en) 1994-10-26 2000-10-17 Nippon Shokubai Co., Ltd. Absorbent resin composition and method for production thereof
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
EP0811636A1 (en) 1996-06-05 1997-12-10 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6100305A (en) 1996-10-24 2000-08-08 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
US6458921B1 (en) 1997-06-18 2002-10-01 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
EP0922717A1 (en) 1997-12-10 1999-06-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin
US6140395A (en) 1997-12-25 2000-10-31 Nippon Shokubai Co., Ltd. Method of producing hydrophilic resin
US6187902B1 (en) 1997-12-25 2001-02-13 Nippon Shokubai Co., Ltd. Production process of hydrophilic crosslinked polymer
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
US6472478B1 (en) 1998-02-21 2002-10-29 Basf Aktiengesellschaft Process for crosslinking hydrogels with bis- and poly-2- oxazolidinones
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
US6372852B2 (en) 1998-03-31 2002-04-16 Nippon Shokubai Co., Ltd Water-absorbing composition and production process for water-absorbing agent
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
EP0955086A2 (en) 1998-04-28 1999-11-10 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JPH11349625A (ja) * 1998-06-10 1999-12-21 Sanyo Chem Ind Ltd 吸水剤の製造法および吸水剤
US6620899B1 (en) 1998-10-15 2003-09-16 E. I. Du Pont De Nemours And Company Polymers, containing a fluorocyclobutyl ring and their preparation
US6297319B1 (en) 1998-11-05 2001-10-02 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor
US6559239B1 (en) 1998-11-26 2003-05-06 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
US6657015B1 (en) 1998-11-26 2003-12-02 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
JP2000189794A (ja) 1998-12-28 2000-07-11 Nippon Shokubai Co Ltd 吸水材の製造方法
US7179862B2 (en) 1999-03-05 2007-02-20 Stockhausen Gmbh Powdery, cross-linked absorbent polymers method for the production thereof and their use
EP1165631A1 (de) 1999-03-05 2002-01-02 STOCKHAUSEN GmbH & CO. KG Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere, verfahren zu ihrer herstellung und ihre verwendung
US6605673B1 (en) 1999-03-05 2003-08-12 Stockhausen Gmbh & Co., Kg Powdery, cross-linked polymers which absorb aqueous liquids and blood, method for the production thereof and their use
US6514615B1 (en) 1999-06-29 2003-02-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
JP2002121291A (ja) * 2000-02-29 2002-04-23 Nippon Shokubai Co Ltd 吸水性樹脂粉末およびその製造方法
US7157141B2 (en) 2000-03-31 2007-01-02 Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
EP1178059A2 (en) 2000-08-03 2002-02-06 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6831142B2 (en) 2000-09-04 2004-12-14 Stockhausen Gmbh & Co. Kg Pulverulent, crosslinked polymers which absorb aqueous liquids and blood
US20040176557A1 (en) 2000-09-04 2004-09-09 Richard Mertens Pulverulent, crosslinked polymers which absorb aqueous liquids and blood
JP2002201290A (ja) * 2000-09-20 2002-07-19 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US20060024755A1 (en) 2001-04-30 2006-02-02 George Jackowski Biopolymer marker indicative of disease state having a molecular weight of 1424 daltons
US20040106745A1 (en) 2001-06-08 2004-06-03 Yasuhisa Nakashima Water-absorbing agent and production process therefor, and sanitary material
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
JP2003303306A (ja) 2002-04-08 2003-10-24 Nec Soft Ltd プリペイド方式による商品代金支払システム
US6875511B2 (en) 2002-05-30 2005-04-05 Nippon Shokubai Co., Ltd. Production process for particulate water-absorbent resin
JP2004037900A (ja) 2002-07-04 2004-02-05 Ricoh Co Ltd 中間転写装置及び画像形成装置
US20040069915A1 (en) 2002-09-20 2004-04-15 Alain Guennec Satellite antenna holder
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
US20040234607A1 (en) 2003-04-25 2004-11-25 Nippon Shokubai Co.,Ltd. Method for disintegrating hydrate polymer and method for production of water-absorbent resin
JP2004352941A (ja) 2003-05-30 2004-12-16 Nippon Shokubai Co Ltd 吸水性樹脂の製造法
JP2004352940A (ja) 2003-05-30 2004-12-16 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および鋤型混合装置
US20070106013A1 (en) 2003-06-24 2007-05-10 Yoshifumi Adachi Water absorbent resin composition and production method thereof
JP2005016393A (ja) 2003-06-25 2005-01-20 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005054151A (ja) 2003-08-07 2005-03-03 Nippon Shokubai Co Ltd 粒子状吸水性樹脂の製法
US20050048221A1 (en) 2003-08-27 2005-03-03 Yoshio Irie Process for production of surface-treated particulate water-absorbent resin
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
JP2005097585A (ja) * 2003-08-27 2005-04-14 Nippon Shokubai Co Ltd 表面処理された粒子状吸水性樹脂の製造方法
US20050046069A1 (en) 2003-09-01 2005-03-03 Masazumi Sasabe Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
JP2005307195A (ja) 2004-03-24 2005-11-04 Nippon Shokubai Co Ltd 吸水性樹脂の連続製造方法
US20080080300A1 (en) 2004-09-28 2008-04-03 Basf Aktiengesellschaft Mixing Kneader and Process for Preparing Poly(Meth)Acrylates Using the Mixing Kneader
US20060101271A1 (en) 2004-11-10 2006-05-11 Michael Thomas Method and system for conveying alternate acceptable canonicalizations of a digitally signed piece of electronic mail
EP1824910A2 (en) 2004-12-10 2007-08-29 Nippon Shokubai Co.,Ltd. Method for production of modified water absorbent resin
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082188A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
US20060247351A1 (en) 2005-03-14 2006-11-02 Kazushi Torii Water-absorbing agent and its production process
JP2008038128A (ja) * 2005-12-22 2008-02-21 Nippon Shokubai Co Ltd 吸水性樹脂の表面架橋方法および吸水性樹脂の製造方法
US20070149760A1 (en) 2005-12-22 2007-06-28 Kenji Kadonaga Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
US20080090961A1 (en) 2006-10-13 2008-04-17 Bayer Materialscience Llc Impact resistant, flame retardant thermoplastic molding composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chemical Engineering Handbook", MARUZEN COMPANY, LIMITED.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
JP2015526572A (ja) * 2012-08-29 2015-09-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
JP2016529368A (ja) * 2013-08-27 2016-09-23 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
US10829630B2 (en) 2016-03-11 2020-11-10 Lg Chem, Ltd. Super absorbent polymer
JP2020520390A (ja) * 2018-04-03 2020-07-09 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
US11161942B2 (en) 2018-04-03 2021-11-02 Lg Chem, Ltd. Method for preparing superabsorbent polymer
JP7008718B2 (ja) 2018-04-03 2022-01-25 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
WO2021187323A1 (ja) * 2020-03-18 2021-09-23 住友精化株式会社 吸水性樹脂粒子を製造する方法

Also Published As

Publication number Publication date
US8648150B2 (en) 2014-02-11
US9796820B2 (en) 2017-10-24
US20140107293A1 (en) 2014-04-17
JP2015014002A (ja) 2015-01-22
JP5847260B2 (ja) 2016-01-20
CN102341435A (zh) 2012-02-01
JPWO2010100936A1 (ja) 2012-09-06
EP2404954A4 (en) 2013-06-19
CN102341435B (zh) 2016-04-20
JP5615801B2 (ja) 2014-10-29
US20110319518A1 (en) 2011-12-29
EP2404954A1 (en) 2012-01-11
EP2404954B1 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5847260B2 (ja) 吸水性樹脂の製造方法
JP6385993B2 (ja) ポリアクリル酸(塩)系吸水剤
JP5507254B2 (ja) 吸水性樹脂の製造方法および吸水性樹脂並びにそれらの利用
EP3085439B1 (en) Water absorbing agent based on polyacrylic acid and/or a salt thereof
EP2896645B1 (en) Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
EP1677845B2 (en) Water absorbent and producing method of same
JP5064032B2 (ja) 吸水性樹脂造粒物の製造方法および吸水性樹脂造粒物
WO2016204302A1 (ja) ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP5367364B2 (ja) 吸水性樹脂を主成分として含む吸水剤およびその製造方法
WO2009125849A1 (ja) 吸水性樹脂の表面処理方法および吸水性樹脂の製造方法
JP2005344103A (ja) 吸水剤およびその製造方法
JP2010053296A (ja) 吸水性樹脂の製造方法
JP4722545B2 (ja) 吸水性樹脂組成物とその製造方法
JP4722546B2 (ja) 吸水性樹脂組成物とその製造方法
JP2015016450A (ja) 吸水剤及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010035.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13254573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010748535

Country of ref document: EP