WO2010098456A1 - 電力制御装置および方法 - Google Patents
電力制御装置および方法 Download PDFInfo
- Publication number
- WO2010098456A1 WO2010098456A1 PCT/JP2010/053131 JP2010053131W WO2010098456A1 WO 2010098456 A1 WO2010098456 A1 WO 2010098456A1 JP 2010053131 W JP2010053131 W JP 2010053131W WO 2010098456 A1 WO2010098456 A1 WO 2010098456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power control
- control method
- capacity
- necessary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00004—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00034—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/12—The local stationary network supplying a household or a building
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Definitions
- the present invention relates to a power control apparatus and method for performing power outage prevention surplus power control.
- the present invention has been made to solve the above-described problem, and in an environment where an independent spot load exists, load-side control (DSM: Demand Side Management) that prevents a power failure and does not impair user convenience.
- DSM Demand Side Management
- the power control apparatus calculates the remaining power capacity of the system for each system from the power consumption and the maximum power capacity for each system, and consumes the power and the contract power for the entire system.
- a storage means a selection means for selecting at least one power control technique from a plurality of the power control techniques when it is detected that the necessary surplus capacity is insufficient; At least one application of the power control method is executed until it is detected that there is no shortage, and if the necessary surplus capacity is ensured, at least one power control is performed so that it is detected that the necessary surplus capacity is not insufficient. And execution means for waiting for the technique.
- the block diagram which shows the electric power control apparatus which concerns on this embodiment The flowchart which shows the operation
- the power control apparatus 100 includes a power capacity information calculation unit 101, a power tightness detection unit 102, a power control method candidate verification unit 103, a power control method selection unit 104, and a power control method execution unit 105.
- the power tightness detection unit 102, the power control method candidate verification unit 103, and the power control method selection unit 104 are collectively referred to as a power control unit 106.
- an external switchboard having a function of notifying the amount of electric power for each system (for example, in-home system) by ECHONET (registered trademark), etc., and a control device capable of controlling outside used for power control, Connected.
- the power capacity information calculation unit 101 receives the current power consumption amount and the maximum power capacity for each system from the external switchboard, and receives the power consumption amount and contract power amount of the entire system, which is the total of all systems.
- the maximum power capacity of each system and the contracted power amount of the entire system are entered in the device profile of the switchboard and can be obtained separately by means such as ECHONET (registered trademark). Further, this process is performed at regular time intervals (for example, every second).
- the remaining power capacity of the entire system is calculated from the amount and the contracted power amount. Furthermore, the calculated system remaining power capacity and the entire system remaining power capacity are notified to the power tightness detection unit 102.
- the system is identified by a system ID used in the entire system.
- the power tightness detection unit 102 determines the necessary remaining power for each system and for the entire system by a constant or another means.
- the necessary surplus power is an estimated amount of power that can be used in a general independent spot load, that is, the maximum value of power consumption when the independent spot load operates.
- the independent spot load is a load that consumes a relatively large amount of power in a short time by a user's instruction, and examples thereof include an iron, an electric heater, a hot plate, a dryer, and a microwave oven.
- the tight values for each system and the entire system are calculated and notified to the power control method candidate verification unit 103.
- the tight value is a value obtained by subtracting the remaining power capacity received from the power capacity information calculation unit 101 from the necessary remaining power. If the tightness value is zero, the necessary surplus is used up, and if the power is used more than that, the surplus will be overpowered. The remaining capacity is sufficient.
- the power control method candidate verification unit 103 secures the necessary surplus power so that the current tightness value received from the power tightness detection unit 102 is controlled so as not to exceed zero, that is, the necessary surplus power is not insufficient.
- the power control method it is verified whether there is an applicable power control method. Therefore, power control information that is information on a plurality of applicable power control methods stored in a power control method executing unit 105 described later is acquired. The contents included in the power control information are shown below. In addition to the above, costs related to the operation of the device, necessary conditions (conditions of flag variables to be referenced), and the like may be included. State: This power control method is applied and can be in standby state (“Apply”), and this power control method is not applied and can be applied (“Standby”).
- Application priority Indicates whether it is inapplicable or in a standby state (“operation not possible”).
- Application priority Indicates the priority of applying this method when power is tight.
- the application priority may be anything that can be compared. In the present embodiment, 1 (applied first) to 10 (applied after applying other means).
- Standby priority This indicates the priority for stopping the application of this method when the remaining power is generated and returning the devices that have been stopped for power control.
- the standby priority may be any value that can be compared. In this embodiment, it is assumed that 1 (the device is restored first) to 10 (the device is restored last).
- Reduction / restorable power amount When the amount of power that can be reduced by applying this power control method or the amount of power that can be consumed by standby of the method is known, the amount of power is indicated.
- Applicable system If it is a means corresponding to a specific system, the system is indicated by the system ID.
- Calling procedure indicator Defines a procedure for calling the operation of the power control technique execution unit 105 by the power control technique selection unit 104 during application or standby. This may be a pointer to a function or a WSDL in a web service.
- the power control information including the above-described content is sent to the power control method selection unit 104 by combining the tightness values for each system and the entire system received from the power tightness detection unit 102.
- the selection of power control information is as follows. When the tightness value is negative, out of those currently in the “applied” state, those whose “reducible / restorable energy” is below the absolute value of the tightness value are sorted by standby priority, and the power control information is The data is sent to the control method selection unit 104. When the tightness value is positive, those currently in the “standby” state are sorted according to the application priority, and the power control information is sent to the power control method selection unit 104.
- the power control method selection unit 104 When the tightness value of power is negative, the power control method selection unit 104 has the highest standby priority (small numerical value) among the methods indicated by the power control information received from the power control method candidate verification unit 103 1 In response, a standby instruction is issued to the corresponding power control technique execution unit 105.
- the standby instruction may be issued using a plurality of means at the same time as long as the sum of the “reducible / restorable power amount” does not exceed the absolute value of the tight value. Since this process is repeatedly executed, even if only one is executed in this step, the standby process is performed in a short time from the one having a high standby priority (small numerical value) within a range not exceeding the tight value.
- the power control technique execution unit 105 stores a plurality of power control techniques and power control information related to the power control technique in association with each other. Based on an instruction from the power control method selection unit 104, the most suitable power control method is selected to execute individual power control or standby processing. Further, the power control information candidate verification unit 103 is provided with the power control information described above.
- the following three examples can be considered as the protection mode.
- a protective operation when an independent spot load is applied will be described.
- a part of the power outage accident at home is that a plurality of independent spot loads are used at the same time, which temporarily exceeds the contracted capacity that is not a problem at all times.
- the following power control technique is realized.
- the maximum value of the amount of power that may be used in a general independent spot load is estimated, and this is registered as a necessary surplus capacity in the power tightness detection unit 102.
- an outlet box with a protective function, a warning function, and load control are defined.
- state transition is described by a notation of “state name before transition ⁇ state name after transition: condition for causing state transition / operation accompanying state transition”.
- Outlet box with protection function A part corresponding to a power outlet is provided with a sensor for detecting whether a plug is inserted into each outlet, a power meter, and a power shut-off function that can be individually controlled.
- a sensor for detecting whether a plug is inserted into each outlet For example, 15 minutes
- a power shut-off function that can be individually controlled.
- the time during which the power supply flow rate is zero continues for a certain period of time (for example, 15 minutes) or the plug is not inserted, it can be determined that the outlet is not used.
- the power is tight, it is possible to avoid the introduction of a new independent spot load by cutting off the power supply to all the outlets that are not used.
- the power control information of this method is as follows.
- Standby The simplest consists of the following two state transitions, and alerts about every 2 minutes when tight Standby ⁇ No operation: Warning instructions / Wait for a certain time (Prevents frequent warnings) Cannot be operated ⁇ Standby: Elapsed time (for example, 2 minutes) / Standby Application priority: 4 Notify users if easily processable means are not applicable Standby priority: N / A Since there is no state transition to accept standby operation, standby priority has no meaning Reduction / restorable power consumption: 0 “Load control” that does not change the amount of electric power: Controls (suppresses) the power supply to a controllable control device such as an air conditioner even if it is stopped.
- the power control information of this method is as follows.
- Standby ⁇ Application Equipment shutdown by applying power control method
- Application ⁇ Standby: Restoration of equipment due to power recovery
- Applicable ⁇ Operation not possible: Device stopped by user request or timer Operation not possible
- Standby Device operation status based on user request or timer
- Application priority 7 Applied after all other controls that can be applied without cost are applied
- Reduced / restorable power (during operation) power consumption in the current operation mode / (during stop) power consumption expected at power-on
- the power capacity information calculation unit 101 acquires power information per second (in this case, power consumption as an example) from the switchboard, or collects power information notified separately every second, and calculates power consumption for each system and the entire system. Then, the power tightness detection unit 102 is notified. The power tightness detection unit 102 compares the notified power consumption amount and the maximum power capacity or the entire contracted capacity for each system obtained from the device profile of the switchboard with the current power consumption amount, and the remaining power for each of them. Calculate capacity. The tightness value is calculated by comparing with a predetermined necessary reserve m (m is an integer) (S201, S202). The formula for calculating this tightness value is as follows.
- Tension value Necessary remaining capacity-Remaining power capacity
- the power tightness detection unit 102 sends tightness values and the like to the power control method candidate verification unit 103.
- the above-mentioned “outlet box with protection function”, “warning function”, and “load control” are “standby”. At this time, all power control methods can be applied, the tight value is a positive value of 200, and the necessary remaining power m is insufficient.
- the power control information of the three power control means of “warning function” and “load control” is sent.
- the power control method selection unit 104 that has received the power control information performs application (application instruction) of the power control method.
- An “outlet box with protection function” having the highest application priority (application priority: 1) is applied to block unused outlet terminals (S203).
- application priority: 1 application priority
- S203 block unused outlet terminals
- S204 it is determined whether there is an applicable power control method (S204). If there is no applicable power control method, the process returns to S201, and the power capacity information calculation unit 101 again calculates a tight value after a predetermined time has elapsed. On the other hand, if there is an applicable power control method, the process proceeds to S205.
- the power control method candidate verification unit 103 sends the power control information of “warning function” and “load control” to the power control method selection unit 104. It is determined whether there is an applicable power control method (S204).
- the power control method selection unit 104 executes the “warning function” based on the application priority (here, the application priority of the “warning function” is 4, and the application priority of the “load control”) : “Warning function” has priority since it is 7, and the process returns to S201 again (S205, S206).
- the power control method selection unit 104 notified of the negative tightness value is a power control method capable of waiting, that is, power control information in which the state is “applied” and the “reducible / restorable power amount” is smaller than the absolute value of the tightness value. Is transmitted to the power control technique selection unit.
- the “outlet box with protection function” having the highest standby priority is applied, and additional power can be used by returning the unused outlet terminal (S207).
- the “load control” is “ ⁇ 300 / ⁇ 500 because the“ reducible / restorable electric energy ”is 500 W and the tight value is ⁇ 300 (
- the load control is continued until the remaining power is secured by other means because of the standby priority.
- the “warning function” allows the user to reduce the power consumption by, for example, stopping the high-power device.
- the process returns to S201 and similarly, the remaining power measurement after a certain time is performed.
- the power tightness detection unit 102 calculates the tightness value, and the tightness value becomes negative. For example, if a resident uses a spot load such as a toaster, the remaining power is recovered by stopping the load, and the air conditioner can be restored when the tightness value exceeds ⁇ 500. Above, the processing flow of this embodiment is complete
- control was performed based on “application priority” and “standby priority”, but the intention is that unexpected loads from outlets that are not used at that time due to the application of the “protective function outlet box”. This is to prevent this, and to recover the remaining power by applying another power control method in a state where the system is protected.
- ⁇ Control by protection function system> The above control is performed independently for each system and also for contract power.
- wiring with a rating of 10A to 15A (1000W to 1500W) is performed, and there is a risk of interruption when a power load is concentrated on some outlets. Therefore, it is necessary to indicate to which system the individual power control method works. Therefore, the power control information of each power control method may have a value indicating the applied system.
- the power control method candidate verification unit 103 selects a power control method that can be applied or waited for each input tight value for each system.
- the application system of the power control information corresponding to each power control technique is selected by the above-mentioned technique from the one that matches the system ID of the tight value.
- the selection by the power control method corresponding to the tight value for contract power is not limited by the applied system.
- power control information may be prepared for each system.
- the priority of application of the warning power control information for the contract power is set to the power of the warning for each system so that the user warning for each system is not applied when the user warning for the entire system for the contract power is to be applied.
- the power priority of the control information is set higher than the priority of the control information and the warning power control method for the contract power is applied, the status of the other power control methods for the warning system is linked to “impossible to operate”.
- the exclusive control is performed.
- a type of load such as a large-capacity charging device for rapidly charging a high energy battery such as an electric vehicle is referred to as a storage load.
- a storage load is considered to be provided with mode switches such as “economic charging mode”, “normal charging mode”, and “rapid charging mode”, and it is considered that different power usage patterns are performed in each mode.
- mode switches such as “economic charging mode”, “normal charging mode”, and “rapid charging mode”, and it is considered that different power usage patterns are performed in each mode.
- mode switches such as “economic charging mode”, “normal charging mode”, and “rapid charging mode”
- one storage load is assumed. It is assumed that this is one quick charge battery-equipped device (for example, an electric vehicle). Of course, the problem is the same even if there are multiple storage loads.
- the storage load has power control information corresponding to each of “economic charge mode”, “normal charge mode”, and “rapid charge mode”, and the power control information corresponding to the state of the mode switch 104.
- Economic charging mode This is a regular charging mode that uses midnight power. In the following example, charging is stopped at the end of the midnight power time. However, once charging is started, operation may be performed until full charging. Status: Operates only when midnight power is available. Cannot operate ⁇ Standby: Rechargeable battery is connected and midnight power is available / Charging starts Standby ⁇ Application: Instruction to pause charging / stop charging by power control Application ⁇ Standby: Return from charge stop state by power control / Restart charge Standby ⁇ No operation: Charging complete or battery removal / charging stopped Applicable ⁇ No operation: End of late-night power hours or battery removal / charge stop Applicable priority: 1 Apply technique before warning Standby priority: 6 Wait only when power usage is stable Reduction / restorable energy: constant Charging for a long time (eg, 2-6 hours) with low power to extend battery life “Normal charging mode”: Select this mode when you need to charge even during the daytime.
- Standby priority 6 Wait only when power usage is stable
- Reduction / restorable energy Constant “Rapid charge mode” in which charging is performed over a long period of time (for example, about 1 to 2 hours) with relatively low power in order to extend the battery life: load control is performed to secure power.
- the switchboard is monitored at any time, and power that can be used at that time is acquired. Therefore, in the “rapid charging mode”, the amount of power required for charging is divided into a plurality of amounts, and the divided amount of power is set as one stage, and power control information is provided for each. For example, if it is a charger that can be charged at a maximum of 3000 W and the charging speed is 500 W as one step and can be adjusted every 500 W, six pieces of the same power control information are presented. As a result, the remaining charge on the spot can be secured every 500 W, instead of the two choices of zero and maximum charge amount.
- a method of operating for a certain period of time after obtaining the user's permission using a user interface or a physical switch, etc., or setting a monthly budget separately within the budget, and disabling operation when the budget is exceeded Convenience may be improved by a method or a combination of these methods.
- the power control method can be applied to reduce power consumption or use an external power source, and load side control can be performed without impairing user convenience while preventing power outages. Thereby, an efficient load factor can be obtained even with a small power contract capacity.
- This embodiment is different from the first embodiment in that the value of the necessary remaining force is dynamically determined by monitoring the value of the necessary remaining force that is a fixed value in the first embodiment. is there. Necessary surplus power is sufficient if it is the maximum power consumption (ampere or wattage) of one independent spot load that is not under control, so if there is a switchboard that can obtain power consumption information in the system, it is the same
- the power consumption of the independent spot load can be known as long as the power is not turned on simultaneously.
- the change in the power consumption of the switchboard is an appropriate time interval (longer than the time from switching on a general independent spot load to the start of power consumption, and short enough to capture a single power consumption fluctuation, for example, By monitoring in about 20 seconds to 1 minute), it is possible to know what kind of power consumption device is connected to each system. Of these, for example, air conditioners are often independent. Therefore, the maximum amount of the independent spot load (hereinafter referred to as the maximum power displacement) of the change amount (including both increase and decrease) of the power consumption of the switchboard is not the power control by this embodiment or known means. It is assumed that the necessary surplus is obtained by multiplying this by a safety factor (a constant of 1.2).
- the power control apparatus according to the present embodiment will be described with reference to FIG. 3 is a mechanism for dynamically calculating “required remaining capacity” in the power tightness detection unit 102.
- the power control apparatus 300 according to the present embodiment includes a non-control power capacity learning unit 301, a network monitor unit 302, and a load control monitoring unit 303 in addition to the power control apparatus 100 according to the first embodiment.
- a non-control power capacity learning unit 301 includes a non-control power capacity learning unit 301, a network monitor unit 302, and a load control monitoring unit 303 in addition to the power control apparatus 100 according to the first embodiment.
- omitted about the same part as 1st Embodiment, since it performs the same operation
- the non-control power capacity learning unit 301 receives the power amount for each system from the power distribution panel from the power capacity information calculation unit 101 at the above-described fixed time interval, records the maximum power displacement amount, and uses this as the necessary remaining power for each system. Provided to the tightness detection unit 102. Further, it receives information on control contents from a load control monitoring unit 303 described later. From these, the necessary remaining power of the entire system is calculated, and if necessary, the necessary remaining power is updated as will be described later, and the maximum value of the necessary remaining power for each system is provided to the power tightness detection unit 102.
- the network monitor unit 302 monitors a control command from another device such as a control device.
- the network monitor unit 302 When the control device is controlled, the network monitor unit 302 notifies the load control monitoring unit 303 of control content indicating that the control device is controlled.
- the load control monitoring unit 303 receives the control content from the network monitoring unit 302 and the feedback of the control content from the power control method execution unit 105 and sends the feedback to the non-control power capacity learning unit 301.
- the load control monitoring unit 303 prepares a power control flag, which is one flag, and the network monitoring unit 302 monitors a network message related to power control, and if a message is observed, sets the power control flag of the corresponding system. Stand up.
- the power control flag of the corresponding system is also raised.
- the power system flag corresponding to all the systems is set.
- the non-control power capacity learning unit 301 operates with an independent algorithm for each system.
- f power control flag
- m maximum power displacement amount
- step S409 the process waits for a predetermined time regardless of whether the value of m is updated.
- the determination of the necessary surplus power for each system is not limited to the method of using the history for a certain time to obtain the maximum value, It may be a method of making it a function of the safety factor and the elapsed time from observation. This is to take into account the load that is rarely used and the energy saving effect of replacement of equipment.
- a substantially necessary surplus function M such as From time to time necessary spare capacity calculated by M (m, t e), and, in comparison of the observed power displacement by the algorithm shown in FIG. 4, M (m, t e ) and the observed displacement at that time and (cp-pp) And when the observed displacement is larger, if updated, t e and m are updated, and M (m, t e ) is recalculated.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
系統ごとの消費電力量および最大電力容量、系統全体についての契約電力量を外部から取得して、系統ごとおよび系統全体の残りの電力容量を算出する算出手段101と、非制御機器の消費電力量の見積もり量を示す必要余力と残りの電力容量とに応じて、必要余力が不足しているか否かを検知する検知手段102と、電力制御手法を複数格納する格納手段105と、必要余力が不足していると検知された場合、複数の電力制御手法から、少なくとも1つの電力制御手法を選択する選択手段104と、必要余力が不足していないと検知されるまで電力制御手法の適用を少なくとも1つ実行し、必要余力が確保されれば、必要余力が不足していないと検知されるように少なくとも1つの電力制御手法を待機させる実行手段105と、を具備する。
Description
本発明は、停電防止余力制御をおこなう電力制御装置および方法に関する。
消費電力が設定電力値を超えたとき、運転を中断させることのできる家電機器を選択し、これを中断する技術がある。機器ごとの動作プログラムに基づいた消費電力量プロファイルをもとに、設定電力を超えないように機器間の動作調整を行っている(例えば、特許文献1参照)。
しかし、ネットワーク等の外的手段で制御可能な家電と、そうでない家電があった場合、そうでない家電に関する制御がおおまかであり、利便性を損ねる。例えば、ホットプレートやドライヤーなどといった、一般にネットワーク経由の制御を期待できないにも関わらず短時間に大電力を消費する機器(独立スポット負荷)の接続に対して、宅内の電気系統(以下系統)を十分に保護する能力はない。特に、そういった負荷が複数存在する際に、それらのみなし合計値を単なる定数として定めており、そういった大電力機器のために空けておかなければいけない電源容量が大きいので、契約電力を下げることが難しい。
本発明は、上述の課題を解決するためになされたものであり、独立スポット負荷が存在する環境において、停電を予防しつつ利用者の利便性を損なわない負荷側制御(DSM:Demand Side Management)によって、より少ない電力契約容量を実現する電力制御装置および方法を提供する。
上述の課題を解決するため、本発明に係る電力制御装置は、系統ごとの消費電力量および最大電力容量から該系統ごとの系統残り電力容量を算出し、系統全体の消費電力量および契約電力量から該系統全体の系統全体残り電力容量を算出する算出手段と、制御することができない非制御機器の消費電力量の見積もり量を示す必要余力と前記系統残り電力容量および前記系統全体残り電力容量とに応じて、該必要余力が不足しているか否かを検知する検知手段と、各前記系統および前記系統全体の必要余力が不足とならないように該必要余力を確保する電力制御手法を複数格納する格納手段と、前記必要余力が不足していると検知された場合、複数の前記電力制御手法から、少なくとも1つ電力制御手法を選択する選択手段と、前記必要余力が不足していないと検知されるまで該電力制御手法の適用を少なくとも1つ実行し、前記必要余力が確保されれば、前記必要余力が不足していないと検知されるように少なくとも1つの電力制御手法を待機させる実行手段と、を具備することを特徴とする。
本発明の電力制御装置および方法によれば、独立スポット負荷が存在する環境において、停電防止を予防しつつ利用者の利便性を損なわない負荷側制御によって、より少ない電力契約容量を実現できる。
以下、図面を参照しながら本発明の実施形態に係る電力制御装置および方法について詳細に説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作をおこなうものとして、重ねての説明を省略する。
(第1の実施形態)
本実施形態に係る電力制御装置の構成について図1を参照して詳細に説明する。
本実施形態に係る電力制御装置100は、電力容量情報算出部101、電力逼迫検知部102、電力制御手法候補検証部103、電力制御手法選択部104、電力制御手法実行部105とを含む。また、電力逼迫検知部102、電力制御手法候補検証部103および電力制御手法選択部104をまとめて電力制御部106という。さらに、ECHONET(登録商標)などにより、系統(例えば、宅内系統)ごとの電力量を通知する機能を持つ外部にある配電盤と、電力制御に使う外部にある制御することが可能である制御機器と接続される。
電力容量情報算出部101は、外部にある配電盤から、系統ごとの現在の消費電力量および最大電力容量を受け取り、全系統を合算した系統全体の消費電力量および契約電力量を受け取る。それぞれの系統の最大電力容量と系統全体の契約電力量は、配電盤のデバイスプロファイルに記入され、別途ECHONET(登録商標)などの手段によって取得可能である。また、この処理は一定時間ごと(例えば、1秒ごと)におこなう。受け取った系統ごとの消費電力量と最大電力容量とから、系統ごとの現在の系統残り電力容量を算出し(例えば、最大電力容量と消費電力量との差を算出する)、系統全体の消費電力量と契約電力量とから、系統全体の系統全体残り電力容量を算出する。さらに、算出した系統残り電力容量および系統全体残り電力容量を電力逼迫検知部102へ通知する。系統はシステム全体で用いられる系統IDにより識別される。
(第1の実施形態)
本実施形態に係る電力制御装置の構成について図1を参照して詳細に説明する。
本実施形態に係る電力制御装置100は、電力容量情報算出部101、電力逼迫検知部102、電力制御手法候補検証部103、電力制御手法選択部104、電力制御手法実行部105とを含む。また、電力逼迫検知部102、電力制御手法候補検証部103および電力制御手法選択部104をまとめて電力制御部106という。さらに、ECHONET(登録商標)などにより、系統(例えば、宅内系統)ごとの電力量を通知する機能を持つ外部にある配電盤と、電力制御に使う外部にある制御することが可能である制御機器と接続される。
電力容量情報算出部101は、外部にある配電盤から、系統ごとの現在の消費電力量および最大電力容量を受け取り、全系統を合算した系統全体の消費電力量および契約電力量を受け取る。それぞれの系統の最大電力容量と系統全体の契約電力量は、配電盤のデバイスプロファイルに記入され、別途ECHONET(登録商標)などの手段によって取得可能である。また、この処理は一定時間ごと(例えば、1秒ごと)におこなう。受け取った系統ごとの消費電力量と最大電力容量とから、系統ごとの現在の系統残り電力容量を算出し(例えば、最大電力容量と消費電力量との差を算出する)、系統全体の消費電力量と契約電力量とから、系統全体の系統全体残り電力容量を算出する。さらに、算出した系統残り電力容量および系統全体残り電力容量を電力逼迫検知部102へ通知する。系統はシステム全体で用いられる系統IDにより識別される。
電力逼迫検知部102は、系統ごとおよび系統全体の必要余力を定数あるいは別の手段により決定する。必要余力とは、一般的な独立スポット負荷で使われる可能性のある電力量、つまり独立スポット負荷が動作するときの消費電力量の最大値を見積もり量のことを示す。また、独立スポット負荷とは、ユーザの指示などにより短期集中して比較的大電力を消費する負荷であり、例としては、アイロンや電熱ヒーター、ホットプレート、ドライヤー、電子レンジなどがある。必要余力を決定した後は、系統ごとおよび系統全体についての逼迫値をそれぞれ算出し、電力制御手法候補検証部103に通知する。逼迫値とは、電力容量情報算出部101から受け取った残りの電力容量を必要余力から引いた値である。逼迫値がゼロの場合は、必要余力を使い切っていて、それ以上電力を使用すると余力をオーバーしてしまう状態であり、逼迫値が正の場合は余力が足りず、逼迫値が負の場合は余力が十分な状態である。
電力制御手法候補検証部103は、電力逼迫検知部102から受け取った現在の逼迫値がゼロを上まわらないように制御をおこなうための手法、つまり必要余力が不足とならないように必要余力を確保する電力制御手法について、適用可能な電力制御手法があるかどうかを検証する。そのため、後述する電力制御手法実行部105に格納されている複数の適用可能な電力制御手法に関する情報である電力制御情報を取得する。以下に、電力制御情報に含まれる内容を示す。なお、これ以外にも機器の作動に関わるコストや必要条件(参照するフラグ変数の条件)などを含んでも良い。
状態:この電力制御手法が適用されており、待機可能な状態(「適用」)、この電力制御手法が適用されていない状態で、適用可能な状態(「待機」)か、この電力制御手法が適用不可能あるいは待機不可能な状態(「操作不可」)か、を示す。
適用優先度:電力逼迫時にこの手法を適用する優先度を示す。適用優先度は比較可能な数値であれば何でもよい。本実施例では、1(最初に適用)から10(他の手段を適用後に適用)とする。
待機優先度:電力余力発生時にこの手法の適用を停止させて、電力制御のために停止していた機器などを復帰させる優先度を示す。待機優先度は比較可能な数値であれば何でもよい。本実施例では、1(最初に機器を復帰)から10(最後に機器を復帰)とする。
削減/復元可能電力量:この電力制御手法の適用により削減可能な電力量、あるいは手法の待機により消費されうる電力量がわかる場合は、その電力量を示す。
適用系統:もし特定の系統に対応する手段であれば、その系統を系統IDにより示す。
呼び出し手続き指示子:適用ないし待機の際に電力制御手法選択部104により電力制御手法実行部105の動作を呼び出す手続きを定義する。なお、これは関数へのポインタのようなものでもよいし、ウェブサービスにおけるWSDLのようなものでもよい。
状態:この電力制御手法が適用されており、待機可能な状態(「適用」)、この電力制御手法が適用されていない状態で、適用可能な状態(「待機」)か、この電力制御手法が適用不可能あるいは待機不可能な状態(「操作不可」)か、を示す。
適用優先度:電力逼迫時にこの手法を適用する優先度を示す。適用優先度は比較可能な数値であれば何でもよい。本実施例では、1(最初に適用)から10(他の手段を適用後に適用)とする。
待機優先度:電力余力発生時にこの手法の適用を停止させて、電力制御のために停止していた機器などを復帰させる優先度を示す。待機優先度は比較可能な数値であれば何でもよい。本実施例では、1(最初に機器を復帰)から10(最後に機器を復帰)とする。
削減/復元可能電力量:この電力制御手法の適用により削減可能な電力量、あるいは手法の待機により消費されうる電力量がわかる場合は、その電力量を示す。
適用系統:もし特定の系統に対応する手段であれば、その系統を系統IDにより示す。
呼び出し手続き指示子:適用ないし待機の際に電力制御手法選択部104により電力制御手法実行部105の動作を呼び出す手続きを定義する。なお、これは関数へのポインタのようなものでもよいし、ウェブサービスにおけるWSDLのようなものでもよい。
上述した内容を含む電力制御情報を、電力逼迫検知部102から受信した系統ごとおよび系統全体での逼迫値を合わせて電力制御手法選択部104に送る。また、電力制御情報の選択に関しては次の通りである。
逼迫値が負の場合は、現在「適用」状態にあるもののうち、「削減/復元可能電力量」が逼迫値の絶対値を下まわるものについて、待機優先度によりソートし、電力制御情報を電力制御手法選択部104に送る。逼迫値が正の場合は、現在「待機」状態にあるものを適用優先度によりソートし、電力制御情報を電力制御手法選択部104に送る。
逼迫値が負の場合は、現在「適用」状態にあるもののうち、「削減/復元可能電力量」が逼迫値の絶対値を下まわるものについて、待機優先度によりソートし、電力制御情報を電力制御手法選択部104に送る。逼迫値が正の場合は、現在「待機」状態にあるものを適用優先度によりソートし、電力制御情報を電力制御手法選択部104に送る。
電力制御手法選択部104は、電力の逼迫値が負の場合は、電力制御手法候補検証部103から受け取った電力制御情報で示される手法のうちもっとも待機優先度の高い(数値の小さい)もの1つについて、対応する電力制御手法実行部105に対し待機指示をおこなう。なお、ここで、「削減/復元可能電力量」の合計が逼迫値の絶対値を上まわらない範囲で同時に複数の手段を用いて待機指示をおこなってもよい。本処理は繰り返し実行されるため、このステップで1つのみ実行しても、逼迫値を上まわらない範囲において短時間で待機優先度の高い(数値の小さい)ものから待機処理が行われる。
また、逼迫値が正の場合は、適用優先度の高い(数値の小さい)ものから、対応する電力制御手法実行部105に対し、順次待機指示をおこなう。また、コストがかかる手段を選ぶ場合には、予め定数値が割り当てられた予算からコストを差し引く処理、ユーザに許可を求める処理などを合理的な範囲で付加しても良い。なお、ユーザに許可を求める処理を複数の電力制御手法実行部105を連動させておこなう手法については図2を参照して後述する。
電力制御手法実行部105は、複数の電力制御手法とこの電力制御手法に関する電力制御情報を関連付けて格納している。電力制御手法選択部104の指示に基づいて、最も適した電力制御手法を選択して個々の電力制御または待機処理を実行する。また、電力制御手法候補検証部103へ前出の電力制御情報を提供する。
また、逼迫値が正の場合は、適用優先度の高い(数値の小さい)ものから、対応する電力制御手法実行部105に対し、順次待機指示をおこなう。また、コストがかかる手段を選ぶ場合には、予め定数値が割り当てられた予算からコストを差し引く処理、ユーザに許可を求める処理などを合理的な範囲で付加しても良い。なお、ユーザに許可を求める処理を複数の電力制御手法実行部105を連動させておこなう手法については図2を参照して後述する。
電力制御手法実行部105は、複数の電力制御手法とこの電力制御手法に関する電力制御情報を関連付けて格納している。電力制御手法選択部104の指示に基づいて、最も適した電力制御手法を選択して個々の電力制御または待機処理を実行する。また、電力制御手法候補検証部103へ前出の電力制御情報を提供する。
<独立スポット負荷の投入時の保護動作>
本実施形態では、保護形態として以下の3つの例が考えられる。まず1つめとして独立スポット負荷を投入したときの保護動作について説明する。家庭における停電事故の一部は、独立スポット負荷が同時に複数利用されることにより、常時であれば問題ない契約容量を一時的にオーバーしてしまうことである。
このような状況を防止するために、以下のような電力制御手法を実現する。まず、一般的な独立スポット負荷で使われる可能性のある電力量の最大値を見積り、これを必要余力とし、電力逼迫検知部102に登録する。また、電力制御手法として簡単かつ安全性の高い手法の一例として、保護機能付きコンセントボックス、警告機能、負荷制御の3つを定義する。
なお、以下の「状態」における各状態遷移については、それぞれ、「遷移前状態名→遷移後状態名:状態遷移をおこす条件/状態遷移に伴う動作」という記法により状態遷移を記述している。
本実施形態では、保護形態として以下の3つの例が考えられる。まず1つめとして独立スポット負荷を投入したときの保護動作について説明する。家庭における停電事故の一部は、独立スポット負荷が同時に複数利用されることにより、常時であれば問題ない契約容量を一時的にオーバーしてしまうことである。
このような状況を防止するために、以下のような電力制御手法を実現する。まず、一般的な独立スポット負荷で使われる可能性のある電力量の最大値を見積り、これを必要余力とし、電力逼迫検知部102に登録する。また、電力制御手法として簡単かつ安全性の高い手法の一例として、保護機能付きコンセントボックス、警告機能、負荷制御の3つを定義する。
なお、以下の「状態」における各状態遷移については、それぞれ、「遷移前状態名→遷移後状態名:状態遷移をおこす条件/状態遷移に伴う動作」という記法により状態遷移を記述している。
「保護機能つきコンセントボックス」:電源コンセントに相当する部分に、個々のコンセントに、プラグが差さっているかを検出するセンサ、利用電力量計と、個別制御可能な電源遮断機能を備える。ここで、電源流量がゼロである時間が一定時間(例えば15分間)続くか、あるいはプラグが差さっていないことがわかると、そのコンセントに関しては利用していないと判断できる。ここで、電力逼迫時は利用していないコンセント全てについて電源供給を遮断することで、新規の独立スポット負荷の投入を避けることができる。この手法の電力制御情報は以下のようになる。
状態:以下の2つの状態遷移から構成される
待機→適用:電力供給遮断指示/その時点で利用していないコンセントについて電力供給遮断
適用→待機:電力供給復帰指示/遮断していたコンセントの電力供給復帰
適用優先度:1
最初に適用し、他の手段を用いて逼迫状態から回復する
待機優先度:1
逼迫状態から回復したら最初に待機する
削減/復元可能電力量:0
電力量を変化させるような操作は行わない
「警告機能」:テレビへのオーバーレイ表示や音声などを用いて、利用者(住人)への電力逼迫警告をおこなう。この手法の電力制御情報は以下のようになる。
状態:もっとも簡単なものは、以下の2つの状態遷移から構成され、逼迫時には約2分ごとに警告を発する
待機→操作不可:警告指示/一定時間待つ(警告が多発することを防止)
操作不可→待機:一定時間(例えば2分)経過/待機
適用優先度:4
簡単に処理可能な手段が適用不可能であれば利用者に通知する
待機優先度:N/A
待機操作を受け付ける状態遷移が存在しないので、待機優先度は意味を持たない
削減/復元可能電力量:0
電力量を変化させるような操作は行わない
「負荷制御」:エアコンなどの制御可能な制御機器に対し、止めても問題ない負荷への電源供給を制御(供給停止)する。この手法の電力制御情報は以下のようになる。
状態:機器の作動状態に応じて以下のように遷移する
待機→適用:電力制御手法適用による機器の作動停止
適用→待機:電力回復にともなう機器の作動復帰
適用→操作不可:ユーザのリクエストあるいはタイマ等による機器停止状態
操作不可→待機:ユーザのリクエストあるいはタイマ等による機器動作状態
適用優先度:7
コストがからない範囲で適用できる他の制御が全て適用された後に適用
待機優先度:2
利用者や環境にとって影響が大きいので、できるだけ早めに待機
削減/復元可能電力量:(動作時)その時点の動作モードでの消費電力量/(停止時)電源投入時に消費が見込まれる電力量
ここで、例えば、独立スポット負荷の投入により電力逼迫すると仮定した場合の処理フローを図2のフローチャートを用いて詳細に説明する。
まず、電力容量情報算出部101は、配電盤から毎秒電力情報(ここでは例として消費電力量)を取得、あるいは別途通知された電力情報を毎秒まとめ、系統ごとと系統全体との消費電力量を算出して電力逼迫検知部102に通知する。
電力逼迫検知部102は、通知された消費電力量と、配電盤のデバイスプロファイルなどから得た系統ごとの最大電力容量ないし全体の契約容量を、現在の消費電力量と比較し、それぞれについて残りの電力容量を算出する。予め定められた必要余力m(mは整数)と比較することで、逼迫値の算出をおこなう(S201、S202)。この逼迫値の計算式は以下にようになる。
逼迫値=必要余力-残りの電力容量
ここで、定格1500Wの系統に1300Wの負荷がかかり、必要余力mが400Wの場合、逼迫値は400-(1500-1300)=200である。つまり逼迫値が正であるから、この系統で200Wの電力を削らないと、独立スポット負荷の稼動による系統遮断の可能性がある、ということを意味する。電力逼迫検知部102は逼迫値などを電力制御手法候補検証部103に送付する。ここで、前出の「保護機能つきコンセントボックス」「警告機能」「負荷制御」の各状態が「待機」だったとする。このとき、全ての電力制御手法が適用可能であり、逼迫値は正の値である200で必要余力mが不足していることから、電力制御手法選択部104に「保護機能つきコンセントボックス」「警告機能」「負荷制御」の3つの電力制御手段の電力制御情報が送られる。
状態:以下の2つの状態遷移から構成される
待機→適用:電力供給遮断指示/その時点で利用していないコンセントについて電力供給遮断
適用→待機:電力供給復帰指示/遮断していたコンセントの電力供給復帰
適用優先度:1
最初に適用し、他の手段を用いて逼迫状態から回復する
待機優先度:1
逼迫状態から回復したら最初に待機する
削減/復元可能電力量:0
電力量を変化させるような操作は行わない
「警告機能」:テレビへのオーバーレイ表示や音声などを用いて、利用者(住人)への電力逼迫警告をおこなう。この手法の電力制御情報は以下のようになる。
状態:もっとも簡単なものは、以下の2つの状態遷移から構成され、逼迫時には約2分ごとに警告を発する
待機→操作不可:警告指示/一定時間待つ(警告が多発することを防止)
操作不可→待機:一定時間(例えば2分)経過/待機
適用優先度:4
簡単に処理可能な手段が適用不可能であれば利用者に通知する
待機優先度:N/A
待機操作を受け付ける状態遷移が存在しないので、待機優先度は意味を持たない
削減/復元可能電力量:0
電力量を変化させるような操作は行わない
「負荷制御」:エアコンなどの制御可能な制御機器に対し、止めても問題ない負荷への電源供給を制御(供給停止)する。この手法の電力制御情報は以下のようになる。
状態:機器の作動状態に応じて以下のように遷移する
待機→適用:電力制御手法適用による機器の作動停止
適用→待機:電力回復にともなう機器の作動復帰
適用→操作不可:ユーザのリクエストあるいはタイマ等による機器停止状態
操作不可→待機:ユーザのリクエストあるいはタイマ等による機器動作状態
適用優先度:7
コストがからない範囲で適用できる他の制御が全て適用された後に適用
待機優先度:2
利用者や環境にとって影響が大きいので、できるだけ早めに待機
削減/復元可能電力量:(動作時)その時点の動作モードでの消費電力量/(停止時)電源投入時に消費が見込まれる電力量
ここで、例えば、独立スポット負荷の投入により電力逼迫すると仮定した場合の処理フローを図2のフローチャートを用いて詳細に説明する。
まず、電力容量情報算出部101は、配電盤から毎秒電力情報(ここでは例として消費電力量)を取得、あるいは別途通知された電力情報を毎秒まとめ、系統ごとと系統全体との消費電力量を算出して電力逼迫検知部102に通知する。
電力逼迫検知部102は、通知された消費電力量と、配電盤のデバイスプロファイルなどから得た系統ごとの最大電力容量ないし全体の契約容量を、現在の消費電力量と比較し、それぞれについて残りの電力容量を算出する。予め定められた必要余力m(mは整数)と比較することで、逼迫値の算出をおこなう(S201、S202)。この逼迫値の計算式は以下にようになる。
逼迫値=必要余力-残りの電力容量
ここで、定格1500Wの系統に1300Wの負荷がかかり、必要余力mが400Wの場合、逼迫値は400-(1500-1300)=200である。つまり逼迫値が正であるから、この系統で200Wの電力を削らないと、独立スポット負荷の稼動による系統遮断の可能性がある、ということを意味する。電力逼迫検知部102は逼迫値などを電力制御手法候補検証部103に送付する。ここで、前出の「保護機能つきコンセントボックス」「警告機能」「負荷制御」の各状態が「待機」だったとする。このとき、全ての電力制御手法が適用可能であり、逼迫値は正の値である200で必要余力mが不足していることから、電力制御手法選択部104に「保護機能つきコンセントボックス」「警告機能」「負荷制御」の3つの電力制御手段の電力制御情報が送られる。
電力制御情報を受け取った電力制御手法選択部104は、電力制御手法の適用(適用指示)をおこなう。適用優先度がもっとも高い(適用優先度:1)である「保護機能つきコンセントボックス」を適用して未使用コンセント端子を遮断する(S203)。これにより、接続されていない、または作動していない独立スポット負荷が突然投入されるということはなくなり、停電の予防が可能になる。
続いて、適用可能な電力制御手法があるかどうかを判定する(S204)。適用可能な電力制御手法が無い場合は、S201に戻って、再度、電力容量情報算出部101において一定時間経過したのち逼迫値を計算する。一方、適用可能な電力制御手法がある場合はS205へ進む。S205では、適用可能な電力制御手法が複数存在した場合に、適用優先度が最も高い(数値が小さい)ものを1つ選択する。その後S206において、選択された電力制御手法を実行し、次の余力測定をおこなうためS201へ戻る。
次の電力容量情報算出部101のサイクルにおいて、電力利用量が変化していないと仮定する。そうすると、あいかわらず逼迫値が200であることが電力逼迫検知部102で計算される(S201、S202)。ここで、電力制御手法候補検証部103は、「保護機能つきコンセントボックス」が「適用」状態になったので、「警告機能」と「負荷制御」の電力制御情報を電力制御手法選択部104に送信し、適用可能な電力制御手法があるかどうかを判定する(S204)。そして本サイクルにおいては、電力制御手法選択部104は適用優先度から「警告機能」を実行して(ここでは、「警告機能」の適用優先度:4であり、「負荷制御」の適用優先度:7であるため「警告機能」が優先される)再度S201へ戻る(S205、S206)。
続いて、適用可能な電力制御手法があるかどうかを判定する(S204)。適用可能な電力制御手法が無い場合は、S201に戻って、再度、電力容量情報算出部101において一定時間経過したのち逼迫値を計算する。一方、適用可能な電力制御手法がある場合はS205へ進む。S205では、適用可能な電力制御手法が複数存在した場合に、適用優先度が最も高い(数値が小さい)ものを1つ選択する。その後S206において、選択された電力制御手法を実行し、次の余力測定をおこなうためS201へ戻る。
次の電力容量情報算出部101のサイクルにおいて、電力利用量が変化していないと仮定する。そうすると、あいかわらず逼迫値が200であることが電力逼迫検知部102で計算される(S201、S202)。ここで、電力制御手法候補検証部103は、「保護機能つきコンセントボックス」が「適用」状態になったので、「警告機能」と「負荷制御」の電力制御情報を電力制御手法選択部104に送信し、適用可能な電力制御手法があるかどうかを判定する(S204)。そして本サイクルにおいては、電力制御手法選択部104は適用優先度から「警告機能」を実行して(ここでは、「警告機能」の適用優先度:4であり、「負荷制御」の適用優先度:7であるため「警告機能」が優先される)再度S201へ戻る(S205、S206)。
さらに次のサイクルでは、適用可能な(「待機」状態の)電力制御手法が、「負荷制御」のみであり、警告後事態が改善されない場合は、「負荷制御」を適用する(S201からS206)。同様に、ここでは、制御機器であるエアコンの一時停止により消費電力量を下げ、500Wの電力消費が削減されたとする。その後、次のサイクルでS201において同様に余力mの測定をおこなった場合、負荷は1300-500=800であり、逼迫値は計算すると、400-(1500-800)=-300となったとする。逼迫値が負となった場合は、S202において余力mが不足していないためS207へ進む。
逼迫値が負を通知された電力制御手法選択部104は、待機可能な電力制御手法、つまり状態が「適用」で、「削減/復元可能電力量」が逼迫値の絶対値より小さい電力制御情報を、電力制御手法選択部に送信する。ここで、もっとも待機優先度が高い「保護機能つきコンセントボックス」が適用され、未使用コンセント端子が復帰することで追加の電力使用が可能になる(S207)。ただし、この場合は「負荷制御」は、「削減/復元可能電力量」が500Wであり、逼迫値が-300であることから、|-300|<500となり(|x|はxの絶対値)、負荷制御は待機優先度の関係から、他の手段により電力余力が確保されるまでは継続する。
続いて、さらに待機可能な電力制御手法があるかどうかを判定する(S208)。待機可能な電力制御手法がなければS201に戻り、前述した動作を繰り返す。待機可能な電力制御手法がある場合はS209へ進む。さらに待機可能な電力制御手法が複数存在した場合は、重要度がもっとも高いものを1つ選択する(S209、S210)。ここでは「警告機能」により、利用者は大電力機器を停止させるなどして電力消費量を削減することもできる。S210において電力制御手法を待機させた後は、S201に戻り同様に一定時間後の余力測定をおこなう。
そのとき、同様に電力逼迫検知部102が逼迫値を計算し、逼迫値が負になる。例えば、仮に居住者がトースターなどのスポット負荷を使っているのであれば、これを停止するなどして余力を回復し、逼迫値が-500を超えたところでエアコンを復帰させることができる。以上で本実施形態の処理フローを終了する。
上記の例ではあくまで「適用優先度」と「待機優先度」によって制御を行ったが、本意としては、「保護機能コンセントボックス」の適用によりその時点で利用していないコンセントからの不意の負荷がかかることを防止し、該系統を保護した状態で他の電力制御手法を適用し、余力の回復をおこなうことである。
逼迫値が負を通知された電力制御手法選択部104は、待機可能な電力制御手法、つまり状態が「適用」で、「削減/復元可能電力量」が逼迫値の絶対値より小さい電力制御情報を、電力制御手法選択部に送信する。ここで、もっとも待機優先度が高い「保護機能つきコンセントボックス」が適用され、未使用コンセント端子が復帰することで追加の電力使用が可能になる(S207)。ただし、この場合は「負荷制御」は、「削減/復元可能電力量」が500Wであり、逼迫値が-300であることから、|-300|<500となり(|x|はxの絶対値)、負荷制御は待機優先度の関係から、他の手段により電力余力が確保されるまでは継続する。
続いて、さらに待機可能な電力制御手法があるかどうかを判定する(S208)。待機可能な電力制御手法がなければS201に戻り、前述した動作を繰り返す。待機可能な電力制御手法がある場合はS209へ進む。さらに待機可能な電力制御手法が複数存在した場合は、重要度がもっとも高いものを1つ選択する(S209、S210)。ここでは「警告機能」により、利用者は大電力機器を停止させるなどして電力消費量を削減することもできる。S210において電力制御手法を待機させた後は、S201に戻り同様に一定時間後の余力測定をおこなう。
そのとき、同様に電力逼迫検知部102が逼迫値を計算し、逼迫値が負になる。例えば、仮に居住者がトースターなどのスポット負荷を使っているのであれば、これを停止するなどして余力を回復し、逼迫値が-500を超えたところでエアコンを復帰させることができる。以上で本実施形態の処理フローを終了する。
上記の例ではあくまで「適用優先度」と「待機優先度」によって制御を行ったが、本意としては、「保護機能コンセントボックス」の適用によりその時点で利用していないコンセントからの不意の負荷がかかることを防止し、該系統を保護した状態で他の電力制御手法を適用し、余力の回復をおこなうことである。
<保護機能の系統別制御>
上記の制御は、系統ごとに独立した制御も行い、また契約電力に対してもおこなう。一般的な系統では10Aから15A(1000Wから1500W)の定格の配線をおこなうため、一部のコンセントに電力負荷が集中すると遮断のリスクがある。従って、個々の電力制御手法はどの系統に作用するものなのかを示す必要がある。そのために、個々の電力制御手法の電力制御情報には、適用系統を示す値を持たせてもよい。このとき、電力制御手法候補検証部103は、入力された系統別の逼迫値それぞれに対して適用または待機可能な電力制御手法を選定する。このとき、系統別の逼迫値に関しては、個々の電力制御手法に対応する電力制御情報の適用系統が、逼迫値の系統IDと一致するものから前出の手法で選択する。当然ながら、契約電力に対する電力制御は、どの系統に対しても適用できるので、契約電力に対する逼迫値に対応する電力制御手法の選択には、適用系統による制約は加わらない。
なお、ユーザに対する警告のようなものを系統別におこなう際には、系統ごとに電力制御情報を用意してもよい。ただし、契約電力に対する系統全体におけるユーザ警告を適用すべき時に、系統別のユーザ警告を適用してしまうことのないように、契約電力に対する警告の電力制御情報の適用優先度を系統別警告の電力制御情報の適用優先度よりも高くしておき、かつ、契約電力に対する警告の電力制御手法が適用された際には、連動して、他の警告系の電力制御手法の状態を「操作不可」とする、といった排他制御をおこなう。
上記の制御は、系統ごとに独立した制御も行い、また契約電力に対してもおこなう。一般的な系統では10Aから15A(1000Wから1500W)の定格の配線をおこなうため、一部のコンセントに電力負荷が集中すると遮断のリスクがある。従って、個々の電力制御手法はどの系統に作用するものなのかを示す必要がある。そのために、個々の電力制御手法の電力制御情報には、適用系統を示す値を持たせてもよい。このとき、電力制御手法候補検証部103は、入力された系統別の逼迫値それぞれに対して適用または待機可能な電力制御手法を選定する。このとき、系統別の逼迫値に関しては、個々の電力制御手法に対応する電力制御情報の適用系統が、逼迫値の系統IDと一致するものから前出の手法で選択する。当然ながら、契約電力に対する電力制御は、どの系統に対しても適用できるので、契約電力に対する逼迫値に対応する電力制御手法の選択には、適用系統による制約は加わらない。
なお、ユーザに対する警告のようなものを系統別におこなう際には、系統ごとに電力制御情報を用意してもよい。ただし、契約電力に対する系統全体におけるユーザ警告を適用すべき時に、系統別のユーザ警告を適用してしまうことのないように、契約電力に対する警告の電力制御情報の適用優先度を系統別警告の電力制御情報の適用優先度よりも高くしておき、かつ、契約電力に対する警告の電力制御手法が適用された際には、連動して、他の警告系の電力制御手法の状態を「操作不可」とする、といった排他制御をおこなう。
<蓄積負荷制御>
本実施形態では、電気自動車など高エネルギーバッテリを急速充電するための大容量充電装置などといった種類の負荷を、蓄積負荷と呼ぶ。こういった負荷には、「経済充電モード」「通常充電モード」「急速充電モード」といったモードスイッチが具備されると考えられ、それぞれにおいて異なった電力利用パターンをおこなうと考えられる。本実施形態の一例として、電力盤から独自に電力情報を取得し、貪欲に電力を利用する複数の蓄積負荷が、負荷制御により安全な範囲で大量の電力を利用可能であることを示す。
ここで、1つの蓄積負荷を想定する。これは1台の急速充電電池搭載機器(例えば、電気自動車)であるとする。もちろん、蓄積負荷が複数台存在しても問題は同一である。
本実施形態では、電気自動車など高エネルギーバッテリを急速充電するための大容量充電装置などといった種類の負荷を、蓄積負荷と呼ぶ。こういった負荷には、「経済充電モード」「通常充電モード」「急速充電モード」といったモードスイッチが具備されると考えられ、それぞれにおいて異なった電力利用パターンをおこなうと考えられる。本実施形態の一例として、電力盤から独自に電力情報を取得し、貪欲に電力を利用する複数の蓄積負荷が、負荷制御により安全な範囲で大量の電力を利用可能であることを示す。
ここで、1つの蓄積負荷を想定する。これは1台の急速充電電池搭載機器(例えば、電気自動車)であるとする。もちろん、蓄積負荷が複数台存在しても問題は同一である。
また、蓄積負荷は、「経済充電モード」、「通常充電モード」、「急速充電モード」のそれぞれに対応する電力制御情報を持ち、モードスイッチの状態に応じた電力制御情報を電力制御手法選択部104に提供する。
「経済充電モード」:常時の充電モードであり、深夜電力を利用する。なお、以下の例では深夜電力時間終了時に充電を停止するが、充電を開始したら満充電まで動作してもよい。
状態:深夜電力利用可能時のみ動作する。
操作不可→待機:充電池が接続され、深夜電力が利用可能/充電開始
待機→適用:電力制御による充電の一時停止指示/充電停止
適用→待機:電力制御による充電の停止状態からの復帰/充電再開
待機→操作不可:充電完了か、充電池の取り外し/充電停止
適用→操作不可:深夜電力時間帯の終了か、充電池の取り外し/充電停止
適用優先度:1
警告発生前に手法を適用する
待機優先度:6
電力利用が安定している時のみ待機する
削減/復元可能電力量:定数
バッテリ寿命を長持ちさせるため、小電力で長時間(たとえば2~6時間程度)かけて充電する
「通常充電モード」:昼間でも充電する必要がある使い方をする場合に選択する。
状態:操作不可→待機:充電池接続/充電開始
待機→適用:電力制御による充電の一時停止指示/充電停止
適用→待機:電力制御による充電の停止状態からの復帰/充電再開
待機→操作不可:充電完了か、充電池の取り外し/充電停止
適用→操作不可:充電池の取り外し/充電停止
適用優先度:1
警告発生前に適用する。なお、営業所または事業所などのように、電気自動車を頻繁に利用する可能性がある場合は、警告を発するように適用優先度4としてもよい
待機優先度:6
電力利用が安定している時のみ待機する
削減/復元可能電力量: 定数
バッテリ寿命を長持ちさせるため、比較的小電力で長時間(例えば1~2時間程度)かけて充電する
「急速充電モード」:負荷制御をおこない電力を確保する。
状態:操作不可→待機:充電池接続/充電開始
待機→適用:電力制御による充電量の低下指示/1段階分充電停止
適用→待機:電力制御による充電停止状態からの復帰/充電再開
待機→操作不可:充電完了か、充電池の取り外し/充電停止
適用→操作不可:充電池の取り外し/充電停止
適用優先度:8
負荷制御よりも後に適用
待機優先度:1
電力利用が可能になったら最優先で待機
削減/復元可能電力量:「1段階」分の容量とする
ここで、「経済充電モード」と「通常充電モード」については、「経済充電モード」が時刻に基づく自律的な状態遷移をおこなうこと以外には本質的な差はない。一方、「急速充電モード」においては、配電盤を随時モニタし、その時点その時点で利用できるだけの電力を取得する。そのために、「急速充電モード」においては、充電に必要となる電力量を複数に分割し、分割された電力量を1段階として、それぞれについて電力制御情報を提供する。例えば最大3000Wで充電可能で、充電速度が500Wを1段階として、500Wごとの調節が可能な充電器であれば、6つの同じ電力制御情報を提示する。これにより、充電量がゼロと最大の二択ではなく、500Wごとにその場にある余力を確保することができる。なお、負荷制御の適用優先度よりも優先度が下げてあるため、以下の流れで負荷制御を行いその分の電力を充電にまわすことができる。
1.蓄積負荷:充電開始直前に、配電盤から得た電力容量から、用いる電力量を決定
2.蓄積負荷:充電開始により、電力が逼迫(逼迫値が正になる)
3.電力制御:逼迫によりコンセント停止、警告後に負荷制御を開始
4.負荷制御により電力余力が増加
5.蓄積負荷:配電盤への問合せで、蓄積負荷が電力余力の増加を検知
6.蓄積負荷:余力の増分を確保
なお、より柔軟な制御を可能にするために、一つの蓄積負荷に2種類の電力制御情報を作ることもできる。その場合は、適用優先度に差を付けて、逼迫度に応じて利用電力量の定数分(「通常充電モード」と同様)と余力を使い切るための変動分と分けてもよい。
状態:深夜電力利用可能時のみ動作する。
操作不可→待機:充電池が接続され、深夜電力が利用可能/充電開始
待機→適用:電力制御による充電の一時停止指示/充電停止
適用→待機:電力制御による充電の停止状態からの復帰/充電再開
待機→操作不可:充電完了か、充電池の取り外し/充電停止
適用→操作不可:深夜電力時間帯の終了か、充電池の取り外し/充電停止
適用優先度:1
警告発生前に手法を適用する
待機優先度:6
電力利用が安定している時のみ待機する
削減/復元可能電力量:定数
バッテリ寿命を長持ちさせるため、小電力で長時間(たとえば2~6時間程度)かけて充電する
「通常充電モード」:昼間でも充電する必要がある使い方をする場合に選択する。
状態:操作不可→待機:充電池接続/充電開始
待機→適用:電力制御による充電の一時停止指示/充電停止
適用→待機:電力制御による充電の停止状態からの復帰/充電再開
待機→操作不可:充電完了か、充電池の取り外し/充電停止
適用→操作不可:充電池の取り外し/充電停止
適用優先度:1
警告発生前に適用する。なお、営業所または事業所などのように、電気自動車を頻繁に利用する可能性がある場合は、警告を発するように適用優先度4としてもよい
待機優先度:6
電力利用が安定している時のみ待機する
削減/復元可能電力量: 定数
バッテリ寿命を長持ちさせるため、比較的小電力で長時間(例えば1~2時間程度)かけて充電する
「急速充電モード」:負荷制御をおこない電力を確保する。
状態:操作不可→待機:充電池接続/充電開始
待機→適用:電力制御による充電量の低下指示/1段階分充電停止
適用→待機:電力制御による充電停止状態からの復帰/充電再開
待機→操作不可:充電完了か、充電池の取り外し/充電停止
適用→操作不可:充電池の取り外し/充電停止
適用優先度:8
負荷制御よりも後に適用
待機優先度:1
電力利用が可能になったら最優先で待機
削減/復元可能電力量:「1段階」分の容量とする
ここで、「経済充電モード」と「通常充電モード」については、「経済充電モード」が時刻に基づく自律的な状態遷移をおこなうこと以外には本質的な差はない。一方、「急速充電モード」においては、配電盤を随時モニタし、その時点その時点で利用できるだけの電力を取得する。そのために、「急速充電モード」においては、充電に必要となる電力量を複数に分割し、分割された電力量を1段階として、それぞれについて電力制御情報を提供する。例えば最大3000Wで充電可能で、充電速度が500Wを1段階として、500Wごとの調節が可能な充電器であれば、6つの同じ電力制御情報を提示する。これにより、充電量がゼロと最大の二択ではなく、500Wごとにその場にある余力を確保することができる。なお、負荷制御の適用優先度よりも優先度が下げてあるため、以下の流れで負荷制御を行いその分の電力を充電にまわすことができる。
1.蓄積負荷:充電開始直前に、配電盤から得た電力容量から、用いる電力量を決定
2.蓄積負荷:充電開始により、電力が逼迫(逼迫値が正になる)
3.電力制御:逼迫によりコンセント停止、警告後に負荷制御を開始
4.負荷制御により電力余力が増加
5.蓄積負荷:配電盤への問合せで、蓄積負荷が電力余力の増加を検知
6.蓄積負荷:余力の増分を確保
なお、より柔軟な制御を可能にするために、一つの蓄積負荷に2種類の電力制御情報を作ることもできる。その場合は、適用優先度に差を付けて、逼迫度に応じて利用電力量の定数分(「通常充電モード」と同様)と余力を使い切るための変動分と分けてもよい。
<外部資源予約による余力確保>
契約した商用電力とは別に、外部に共用の非常用発電機や太陽電池、風力発電、あるいは接続された電池やキャパシタのようなものが存在し、外部電力源として利用可能な場合がある。ただし、一般的にそういった電力源には制約があり、コストがかかるため、自由に利用できる種類のものではない。
このとき、外部電力源に対応する電力制御情報を以下のように用意することにより、他の手段を講じても電力が逼迫している場合にのみ自動的に外部電力源を利用することができる。
状態:
操作不可→待機:外部電力源が利用可能になった/待機
待機→適用:外部電力源の利用指示/利用開始
適用→待機:外部電力源の利用停止指示/利用停止
適用→操作不可:外部電力源が何らかの理由で利用不可能になった/利用停止
待機→操作不可:外部電力源が何らかの理由で利用不可能になった/利用停止
適用優先度:10
系統内で解決できない場合の最後の手段として用意する
待機優先度:1
可能な限り短期間しか用いないとする
削減/復元可能電力量:定数
供給可能な定格量を示す
なお、コストのかかる外部電力源を自動的に利用すると、利用者としては困る場合もある。そこで、ユーザインターフェイスや物理的なスイッチなどを用いてユーザの許可を得てから一定時間動作させる方法や、毎月の予算を別途定めてその予算の枠内で利用し、予算オーバーしたら操作不可とする方法、あるいはこれらの手法の組み合わせなどにより利便性を向上させてもよい。
契約した商用電力とは別に、外部に共用の非常用発電機や太陽電池、風力発電、あるいは接続された電池やキャパシタのようなものが存在し、外部電力源として利用可能な場合がある。ただし、一般的にそういった電力源には制約があり、コストがかかるため、自由に利用できる種類のものではない。
このとき、外部電力源に対応する電力制御情報を以下のように用意することにより、他の手段を講じても電力が逼迫している場合にのみ自動的に外部電力源を利用することができる。
状態:
操作不可→待機:外部電力源が利用可能になった/待機
待機→適用:外部電力源の利用指示/利用開始
適用→待機:外部電力源の利用停止指示/利用停止
適用→操作不可:外部電力源が何らかの理由で利用不可能になった/利用停止
待機→操作不可:外部電力源が何らかの理由で利用不可能になった/利用停止
適用優先度:10
系統内で解決できない場合の最後の手段として用意する
待機優先度:1
可能な限り短期間しか用いないとする
削減/復元可能電力量:定数
供給可能な定格量を示す
なお、コストのかかる外部電力源を自動的に利用すると、利用者としては困る場合もある。そこで、ユーザインターフェイスや物理的なスイッチなどを用いてユーザの許可を得てから一定時間動作させる方法や、毎月の予算を別途定めてその予算の枠内で利用し、予算オーバーしたら操作不可とする方法、あるいはこれらの手法の組み合わせなどにより利便性を向上させてもよい。
以上に示した第1の実施形態によれば、電力制御することが不可能な独立スポット負荷が存在する環境において、一定時間間隔で消費電力量を取得し逼迫値を計算することで、最も適した電力制御手法を適用して消費電力を抑えたり、外部の電力源を利用したりすることが可能となり、停電を予防しつつ利用者の利便性を損なわない負荷側制御をおこなうことができる。それにより、少ない電力契約容量でも効率のよい負荷率を得ることができる。
(第2の実施形態)
<余力推定>
本実施形態は、第1の実施形態において必要余力の値が固定値であったものを、モニタリングをおこなうことにより必要余力の値を動的に決定する点が第1の実施形態と異なる点である。必要余力は、制御下にない独立スポット負荷ひとつの電力消費量(アンペアあるいはワット数)のうち最大のものであればよいので、系統に電力消費量の情報が得られる配電盤が存在すれば、同一の系統に同時に電源が投入されない限り独立スポット負荷の電力消費量を知ることができる。これは、配電盤の電力消費量の変化を適切な時間間隔(一般的な独立スポット負荷のスイッチ投入から電力消費開始までの時間よりも長く、単独の電力消費量変動が捉えられるほど短い時間、例えば20秒から1分程度)でモニタすることにより、個々の系統にどのような電力消費をおこなう機器が接続されているかがわかることによる。そのうち、例えばエアコンのようなものについては、系統が独立していることが多い。そこで、配電盤の電力消費量の変化量(増加または減少も両方含む)のうち、本実施形態あるいは既知の手段による電力制御によらないものの最大量を独立スポット負荷の最大負荷(以下、最大電力変位量と呼ぶ)とし、またこれに安全率(1.2の定数など)をかけたものを必要余力であるとする。
<余力推定>
本実施形態は、第1の実施形態において必要余力の値が固定値であったものを、モニタリングをおこなうことにより必要余力の値を動的に決定する点が第1の実施形態と異なる点である。必要余力は、制御下にない独立スポット負荷ひとつの電力消費量(アンペアあるいはワット数)のうち最大のものであればよいので、系統に電力消費量の情報が得られる配電盤が存在すれば、同一の系統に同時に電源が投入されない限り独立スポット負荷の電力消費量を知ることができる。これは、配電盤の電力消費量の変化を適切な時間間隔(一般的な独立スポット負荷のスイッチ投入から電力消費開始までの時間よりも長く、単独の電力消費量変動が捉えられるほど短い時間、例えば20秒から1分程度)でモニタすることにより、個々の系統にどのような電力消費をおこなう機器が接続されているかがわかることによる。そのうち、例えばエアコンのようなものについては、系統が独立していることが多い。そこで、配電盤の電力消費量の変化量(増加または減少も両方含む)のうち、本実施形態あるいは既知の手段による電力制御によらないものの最大量を独立スポット負荷の最大負荷(以下、最大電力変位量と呼ぶ)とし、またこれに安全率(1.2の定数など)をかけたものを必要余力であるとする。
本実施形態に係る電力制御装置について図3を参照して説明する。
図3の構成は、電力逼迫検知部102における「必要余力」を動的に算定するための仕組みである。
本実施形態に係る電力制御装置300は、第1の実施形態に係る電力制御装置100に加え、非制御電力容量学習部301、ネットワークモニタ部302、負荷制御監視部303とを含む。
第1の実施形態と同一の部分については同一の動作をおこなうためここでの説明は省略する。
非制御電力容量学習部301は、上述した一定の時間間隔で配電盤から系統ごとの電力量を電力容量情報算出部101から受け取り、最大電力変位量を記録してこれを系統ごとの必要余力として電力逼迫検知部102に提供する。さらに、後述する負荷制御監視部303から制御内容に関する情報を受け取る。これらより系統全体の必要余力を計算して、後述するように必要があれば必要余力を更新して系統ごとの必要余力の最大値を電力逼迫検知部102に提供する。
ネットワークモニタ部302は、制御機器など他の機器による制御命令をモニタし、制御機器が制御された場合、制御されたことを示す制御内容を負荷制御監視部303へ通知する。
負荷制御監視部303は、ネットワークモニタ部302からの制御内容と、電力制御手法実行部105からの制御内容のフィードバックを受け取り、非制御電力容量学習部301へ送る。
図3の構成は、電力逼迫検知部102における「必要余力」を動的に算定するための仕組みである。
本実施形態に係る電力制御装置300は、第1の実施形態に係る電力制御装置100に加え、非制御電力容量学習部301、ネットワークモニタ部302、負荷制御監視部303とを含む。
第1の実施形態と同一の部分については同一の動作をおこなうためここでの説明は省略する。
非制御電力容量学習部301は、上述した一定の時間間隔で配電盤から系統ごとの電力量を電力容量情報算出部101から受け取り、最大電力変位量を記録してこれを系統ごとの必要余力として電力逼迫検知部102に提供する。さらに、後述する負荷制御監視部303から制御内容に関する情報を受け取る。これらより系統全体の必要余力を計算して、後述するように必要があれば必要余力を更新して系統ごとの必要余力の最大値を電力逼迫検知部102に提供する。
ネットワークモニタ部302は、制御機器など他の機器による制御命令をモニタし、制御機器が制御された場合、制御されたことを示す制御内容を負荷制御監視部303へ通知する。
負荷制御監視部303は、ネットワークモニタ部302からの制御内容と、電力制御手法実行部105からの制御内容のフィードバックを受け取り、非制御電力容量学習部301へ送る。
ただし、例外的に、電力制御手法実行部105における制御が発生した時間間隔のデータと、ネットワークに電力制御に関わる(つまり、UPnP(登録商標)/ECHONET(登録商標)機器の参加あるいは離脱、電源投入/遮断指令など)ネットワークメッセージがモニタされた時には、この最大電力変位量を記録しない。つまり、ネットワークに接続された制御機器が動作したことによる消費電力の増加分も含まれるため、必要余力の更新をおこなわない。そのために、負荷制御監視部303において1つのフラグである電力制御フラグを用意し、ネットワークモニタ部302は電力制御に関わるネットワークメッセージをモニタし、もしメッセージが観測されたら対応する系統の電力制御フラグを立てる。また、実際に電力が変化しうる電力制御手法を実行したら、同じく対応する系統の電力制御フラグを立てる。また、対応する系統が不明の場合は、全ての系統に対応する電力系統フラグを立てる。
その上で、非制御電力容量学習部301は系統ごとに独立したアルゴリズムで動作する。
その上で、非制御電力容量学習部301は系統ごとに独立したアルゴリズムで動作する。
必要余力を推定する非制御電力容量学習部301におけるアルゴリズムの一例を図4に示すフローチャートを用いて詳細に説明する。
この例では、はじめにf(電力制御フラグ)をゼロで初期化し(S401)、m(最大電力変位量)も同様にゼロで初期化する(S402)。続いて非制御電力容量学習部301は外部にある配電盤から現在の電力消費量を取得し、変数ppへ代入する(S403)。一定時間経過後(S404)、配電盤から現在の電力消費量を取得して変数cpへ代入する。
そして、fがゼロであればS409へ進み、さらに一定時間待つ。fがゼロでなければ、S407に進み、変数cpと変数ppとの差の絶対値とmの値を比較する。mの値の方が小さければ、新たに必要余力を更新する必要があるためS408へ進む。mの値の方が大きければ、まだ必要余力を更新する必要がないためS409へ進み一定時間待つ。
S408では、変数cpと変数ppとの差の絶対値を新たなmとするためにmの値を更新しさらにfをゼロに初期化してS409へ進む。S409では、mの値を更新するかどうかにかかわらず一定時間待機する。S410では、配電盤で過去に取得した電力消費量であるppを、最新の電力消費量であるcpに更新する。その後S405に戻り同様の処理を繰り返す。以上で必要余力を推定するアルゴリズムの一例の動作を終了する。
この例では、はじめにf(電力制御フラグ)をゼロで初期化し(S401)、m(最大電力変位量)も同様にゼロで初期化する(S402)。続いて非制御電力容量学習部301は外部にある配電盤から現在の電力消費量を取得し、変数ppへ代入する(S403)。一定時間経過後(S404)、配電盤から現在の電力消費量を取得して変数cpへ代入する。
そして、fがゼロであればS409へ進み、さらに一定時間待つ。fがゼロでなければ、S407に進み、変数cpと変数ppとの差の絶対値とmの値を比較する。mの値の方が小さければ、新たに必要余力を更新する必要があるためS408へ進む。mの値の方が大きければ、まだ必要余力を更新する必要がないためS409へ進み一定時間待つ。
S408では、変数cpと変数ppとの差の絶対値を新たなmとするためにmの値を更新しさらにfをゼロに初期化してS409へ進む。S409では、mの値を更新するかどうかにかかわらず一定時間待機する。S410では、配電盤で過去に取得した電力消費量であるppを、最新の電力消費量であるcpに更新する。その後S405に戻り同様の処理を繰り返す。以上で必要余力を推定するアルゴリズムの一例の動作を終了する。
なお、系統ごとの必要余力の決定は、単純に観測された、最大電力変位量を用いる方法の他に、一定時間のヒストリを用いてその中の最大値とする方法や、観測電力変位量と安全率と観測時からの経過時間の関数にする方法などでも良い。これは、まれにしかかからない負荷や、機器買い替えによる省エネ効果などを推測に入れるためのものである。
などといった実質必要余力関数Mを用いる。M(m,te)により随時必要余力を計算し、かつ、図4に示したアルゴリズムによる観測電力変位量の比較において、M(m,te)とその時の観測変位(cp-pp)との比較を行い、観測変位の方が大きければ更新されたら、teとmを更新し、M(m,te)を再計算する、などといった手法である。
以上に示した第2の実施形態によれば、系統ごとの電力量をモニタし、必要余力の値を動的に更新することで効率の良い負荷側制御をおこなうことができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
100、300・・・電力制御装置、101・・・電力容量情報算出部、102・・・電力逼迫検知部、103・・・電力制御手法候補検証部、104・・・電力制御手法選択部、105・・・電力制御手法実行部、106・・・電力制御部、301・・・非制御電力容量学習部、302・・・ネットワークモニタ部、303・・・負荷制御監視部。
Claims (10)
- 系統ごとの消費電力量および最大電力容量から該系統ごとの系統残り電力容量を算出し、系統全体の消費電力量および契約電力量から、該系統全体の系統全体残り電力容量を算出する算出手段と、
制御することができない非制御機器の消費電力量の見積もり量を示す必要余力と前記系統残り電力容量および前記系統全体残り電力容量とに応じて、該必要余力が不足しているか否かを検知する検知手段と、
各前記系統および前記系統全体の必要余力が不足とならないように該必要余力を確保する電力制御手法を複数格納する格納手段と、
前記検知手段により前記必要余力が不足していると検知された場合、複数の前記電力制御手法から、少なくとも1つ電力制御手法を選択する選択手段と、
前記必要余力が不足していないと検知されるまで前記電力制御手法の適用を少なくとも1つ実行し、前記必要余力が確保されれば、前記必要余力が不足していないと検知されるように少なくとも1つの電力制御手法を待機させる実行手段と、を具備することを特徴とする電力制御装置。 - 前記検知手段は、前記必要余力から前記残りの電力容量を引いた値である逼迫値を算出し、該逼迫値の正の場合には該必要余力が不足していると検知し、該逼迫値の負の場合には該必要余力が確保されていると検知することを特徴とする請求項1に記載の電力制御装置。
- 前記格納手段は、複数の前記電力制御手法にそれぞれの対応する、電力制御手法が適用されており該電力制御手法が待機可能な状態を示す第1状態と、電力制御手法が待機されており該電力制御手法が適用可能な状態を示す第2状態と、操作することができない状態を示す第3状態と、電力制御手法を適用する適用優先度と、電力制御手法を待機させて電力を使用できるように機器を復帰させる待機優先度とを含む電力制御情報をさらに格納し、
前記選択手段は、前記必要余力が不足していると検知された場合、前記電力制御情報に含まれる前記状態を参照して、前記第2状態である電力制御手法があるかどうかを判定する検証手段と、前記第2状態である電力制御手法から、前記適用優先度が高い順に少なくとも1つ電力制御手法を選択して選択電力制御手法を得る手法選択手段と、を含み、
前記実行手段は、前記必要余力が不足していないと検知されるまで前記選択電力制御手法の適用を少なくとも1つ実行し、該必要余力が確保されれば、第1状態を示す電力制御手法のうちの前記待機優先度の高い順に電力制御手法を待機することを特徴とする請求項2に記載の電力制御装置。 - 複数の前記電力制御手法の1つは、コンセントボックスへの電源流量が無い時間が閾値以上経過した場合に該コンセントボックスへの電源供給を遮断することを特徴とすることを特徴とする請求項3に記載の電力制御装置。
- 複数の前記電力制御手法の1つは、前記必要余力が不足していることを利用者に警告することを特徴とする請求項4に記載の電力制御装置。
- 複数の前記電力制御手法の1つは、制御することが可能な制御機器に対して電源供給の制御をおこなうことを特徴とする請求項5に記載の電力制御装置。
- 複数の前記電力制御手法の1つは、外部電力源を利用することを特徴とする請求項6に記載の電力制御装置。
- 前記電力制御情報はさらに、どの系統にどの電力制御手法を実行するかを示す適用系統を含み、
前記実行手段は、前記適用系統を参照して前記系統ごとに前記適用系統が示す電力制御手法を実行することを特徴とする請求項7に記載の電力制御装置。 - 一定の時間間隔で前記監視手段が取得した前記消費電力量をモニタするモニタ手段と、
制御することができる制御機器が制御された場合、制御されたこと示す制御内容を通知する通知手段と、
前記制御内容が通知された場合は前記必要余力を更新せず、該制御内容が通知されない場合は、前記モニタ手段が取得した前記消費電力量と1つ前の時間に取得した消費電力容量との差が、該必要余力よりも大きいときに該差を新たな必要余力として更新する更新手段と、をさらに具備する請求項8に記載の電力制御装置。 - 算出手段は、系統ごとの消費電力量および最大電力容量から該系統ごとの系統残り電力容量を算出し、系統全体の消費電力量および契約電力量から、該系統全体の系統全体残り電力容量を算出し、
検知手段は、制御することができない非制御機器の消費電力量の見積もり量を示す必要余力と前記系統残り電力容量及び前記系統全体残り電力容量とに応じて、該必要余力が不足しているか否かを検知し、
格納手段は、各前記系統および前記系統全体の必要余力が不足とならないように該必要余力を確保する電力制御手法を複数格納し、
選択手段は、前記検知手段により前記必要余力が不足していると検知された場合、複数の前記電力制御手法から、少なくとも1つ電力制御手法を選択し、
実行手段は、前記必要余力が不足していないと検知されるまで前記電力制御手法の適用を少なくとも1つ実行し、前記必要余力が確保されれば、前記必要余力が不足していないと検知されるように少なくとも1つの電力制御手法を待機させることを特徴とする電力制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800095092A CN102334261A (zh) | 2009-02-27 | 2010-02-26 | 电力控制装置及方法 |
US13/218,048 US8413035B2 (en) | 2009-02-27 | 2011-08-25 | Power control apparatus and method for realizing efficient load factor with lower contracted power limit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009045933A JP2010200589A (ja) | 2009-02-27 | 2009-02-27 | 電力制御装置および方法 |
JP2009-045933 | 2009-02-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/218,048 Continuation US8413035B2 (en) | 2009-02-27 | 2011-08-25 | Power control apparatus and method for realizing efficient load factor with lower contracted power limit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098456A1 true WO2010098456A1 (ja) | 2010-09-02 |
Family
ID=42665660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053131 WO2010098456A1 (ja) | 2009-02-27 | 2010-02-26 | 電力制御装置および方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8413035B2 (ja) |
JP (1) | JP2010200589A (ja) |
CN (1) | CN102334261A (ja) |
WO (1) | WO2010098456A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102480362A (zh) * | 2010-11-19 | 2012-05-30 | 巴比禄股份有限公司 | PoE供电装置以及供电方法 |
WO2013042520A1 (ja) * | 2011-09-22 | 2013-03-28 | 株式会社日立製作所 | 電力情報管理システム |
JP2014036466A (ja) * | 2012-08-07 | 2014-02-24 | Sharp Corp | 電力管理装置および電力管理システム |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5498193B2 (ja) * | 2010-02-12 | 2014-05-21 | 本田技研工業株式会社 | 車両充電電力マネジメントシステム |
JP2012125091A (ja) * | 2010-12-10 | 2012-06-28 | Toshiba Lighting & Technology Corp | 分電盤装置 |
KR101749761B1 (ko) * | 2010-12-15 | 2017-06-22 | 한국전자통신연구원 | Ami 네트워크에서의 전력기기 관리 장치 및 방법 |
JP5690618B2 (ja) * | 2011-03-11 | 2015-03-25 | 住友林業株式会社 | 蓄電池充電制御システム |
JP5404686B2 (ja) * | 2011-04-13 | 2014-02-05 | 三菱電機株式会社 | バッテリ充電システム |
JP5955581B2 (ja) * | 2012-02-23 | 2016-07-20 | 株式会社東芝 | 電力需給制御装置及び電力需給制御方法 |
JP2013252033A (ja) * | 2012-06-04 | 2013-12-12 | Sony Corp | 電力制御装置、電力供給制御方法及び電力供給制御プログラム |
JP5971557B2 (ja) * | 2012-07-31 | 2016-08-17 | パナソニックIpマネジメント株式会社 | 管理装置、管理システムおよびプログラム |
JP5586811B1 (ja) * | 2013-03-28 | 2014-09-10 | 中国電力株式会社 | 電力供給制御装置 |
JP6199640B2 (ja) * | 2013-07-17 | 2017-09-20 | 京セラ株式会社 | 制御装置、制御システム、分電盤及び制御方法 |
CN105531905B (zh) | 2013-08-06 | 2021-08-27 | 基岩自动化平台公司 | 智能电力系统 |
EP3140822A1 (en) * | 2014-05-08 | 2017-03-15 | Merchandising Technologies, Inc. | Anti-theft security system for electrical appliances |
US9558089B2 (en) * | 2014-11-12 | 2017-01-31 | Intuit Inc. | Testing insecure computing environments using random data sets generated from characterizations of real data sets |
JP6361595B2 (ja) * | 2015-06-30 | 2018-07-25 | 京セラドキュメントソリューションズ株式会社 | 管理装置および管理システム |
FR3047121B1 (fr) * | 2016-01-21 | 2018-01-12 | Rte Reseau De Transport D’Electricite | Installation de surveillance d'une portion de reseau de transmission de courant electrique a haute tension |
WO2018148732A2 (en) * | 2017-02-13 | 2018-08-16 | Griddy Holdings Llc | Methods and systems for an automated utility marketplace platform |
JP6434097B2 (ja) * | 2017-08-24 | 2018-12-05 | 京セラ株式会社 | 制御装置、制御システム、分電盤及び制御方法 |
WO2019046587A1 (en) | 2017-09-01 | 2019-03-07 | Mobile Tech, Inc. | POWER AND / OR ALARM SECURITY SYSTEM FOR ELECTRICAL APPLIANCES |
CN108112063B (zh) * | 2017-12-21 | 2020-03-31 | 珠海市魅族科技有限公司 | 电量管理方法、电量管理装置、终端和可读存储介质 |
JP2020036501A (ja) * | 2018-08-31 | 2020-03-05 | トヨタ自動車株式会社 | 充電システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094170A (ja) * | 1996-09-13 | 1998-04-10 | Toshiba Corp | 消費電力制御システム |
JP2001069668A (ja) * | 1999-08-27 | 2001-03-16 | Matsushita Seiko Co Ltd | 電力管理装置 |
JP2008092680A (ja) * | 2006-10-02 | 2008-04-17 | Matsushita Electric Works Ltd | エネルギマネジメント装置 |
JP2009507340A (ja) * | 2005-09-02 | 2009-02-19 | ソンヨン キム | 自動電源遮断コンセント |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5272382A (en) * | 1991-06-24 | 1993-12-21 | Compaq Computer Corporation | Power supply for computer system manager |
US5283905A (en) * | 1991-06-24 | 1994-02-01 | Compaq Computer Corporation | Power supply for computer system manager |
TW381212B (en) * | 1998-06-16 | 2000-02-01 | Asustek Comp Inc | Detector for standby power supply capacity |
JP2000083323A (ja) * | 1998-09-02 | 2000-03-21 | Miyamoto Engineering:Kk | 電力管理システム |
JP2002369383A (ja) * | 2001-06-06 | 2002-12-20 | Hitachi Ltd | 家電機器の制御装置 |
US6721672B2 (en) * | 2002-01-02 | 2004-04-13 | American Power Conversion | Method and apparatus for preventing overloads of power distribution networks |
US20070005192A1 (en) * | 2005-06-17 | 2007-01-04 | Optimal Licensing Corporation | Fast acting distributed power system for transmission and distribution system load using energy storage units |
US7529948B2 (en) * | 2005-08-25 | 2009-05-05 | Apple Inc. | Methods and apparatuses for dynamic power estimation |
US7562234B2 (en) * | 2005-08-25 | 2009-07-14 | Apple Inc. | Methods and apparatuses for dynamic power control |
US7484110B2 (en) * | 2006-03-16 | 2009-01-27 | Microsoft Corporation | Adaptive power management |
US7888919B2 (en) * | 2008-03-20 | 2011-02-15 | International Business Machines Corporation | Apparatus, system, and method for an adaptive high efficiency switching power supply |
US8140195B2 (en) * | 2008-05-30 | 2012-03-20 | International Business Machines Corporation | Reducing maximum power consumption using environmental control settings |
-
2009
- 2009-02-27 JP JP2009045933A patent/JP2010200589A/ja active Pending
-
2010
- 2010-02-26 WO PCT/JP2010/053131 patent/WO2010098456A1/ja active Application Filing
- 2010-02-26 CN CN2010800095092A patent/CN102334261A/zh active Pending
-
2011
- 2011-08-25 US US13/218,048 patent/US8413035B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094170A (ja) * | 1996-09-13 | 1998-04-10 | Toshiba Corp | 消費電力制御システム |
JP2001069668A (ja) * | 1999-08-27 | 2001-03-16 | Matsushita Seiko Co Ltd | 電力管理装置 |
JP2009507340A (ja) * | 2005-09-02 | 2009-02-19 | ソンヨン キム | 自動電源遮断コンセント |
JP2008092680A (ja) * | 2006-10-02 | 2008-04-17 | Matsushita Electric Works Ltd | エネルギマネジメント装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102480362A (zh) * | 2010-11-19 | 2012-05-30 | 巴比禄股份有限公司 | PoE供电装置以及供电方法 |
WO2013042520A1 (ja) * | 2011-09-22 | 2013-03-28 | 株式会社日立製作所 | 電力情報管理システム |
JP2014036466A (ja) * | 2012-08-07 | 2014-02-24 | Sharp Corp | 電力管理装置および電力管理システム |
Also Published As
Publication number | Publication date |
---|---|
US8413035B2 (en) | 2013-04-02 |
CN102334261A (zh) | 2012-01-25 |
US20120043813A1 (en) | 2012-02-23 |
JP2010200589A (ja) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010098456A1 (ja) | 電力制御装置および方法 | |
JP6418239B2 (ja) | 電力供給装置および電力供給方法 | |
US8110941B2 (en) | Power demand management method and system | |
WO2012049965A1 (ja) | 電力管理システム | |
JPWO2012050014A1 (ja) | 電力管理システム | |
CN111446718B (zh) | 供电方法、系统、电源设备和存储介质 | |
JP6426234B2 (ja) | 電力制御装置、電力制御方法、及び電力制御システム | |
JP2016073003A (ja) | 電力制御システム、方法及び遮断制御装置 | |
JP2014183640A (ja) | 蓄電システム | |
KR20220027094A (ko) | 에너지 저장 시스템(ess)의 비상발전기 대체 방법 및 이를 포함하는 시스템 | |
JP6356517B2 (ja) | 系統監視制御装置 | |
WO2012049955A1 (ja) | 電力管理システム | |
JP2012088086A (ja) | 電力管理システム | |
JP2007265778A (ja) | 電力供給設備 | |
JP2001069668A (ja) | 電力管理装置 | |
JP5953185B2 (ja) | 電力供給システム | |
JP2015050897A (ja) | パワーコンディショナ | |
JP5964668B2 (ja) | バックアップ給電システム | |
JP2015231316A (ja) | 蓄電システム | |
US9979228B2 (en) | Energy management apparatus and method of controlling the same | |
JP6391480B2 (ja) | 充放電制御装置及び充放電制御方法 | |
JP2018064430A (ja) | 充放電装置及び電力制御装置 | |
JP6328020B2 (ja) | 電力制御システム、制御装置及び電力制御の方法 | |
WO2017033400A1 (ja) | 蓄電制御装置、電力変換装置、蓄電システム、蓄電制御方法、およびプログラム | |
JP6295078B2 (ja) | 蓄電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009509.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10746335 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10746335 Country of ref document: EP Kind code of ref document: A1 |