WO2010098382A1 - ピストンリング - Google Patents

ピストンリング Download PDF

Info

Publication number
WO2010098382A1
WO2010098382A1 PCT/JP2010/052951 JP2010052951W WO2010098382A1 WO 2010098382 A1 WO2010098382 A1 WO 2010098382A1 JP 2010052951 W JP2010052951 W JP 2010052951W WO 2010098382 A1 WO2010098382 A1 WO 2010098382A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
piston ring
thermal spray
sliding surface
spray coating
Prior art date
Application number
PCT/JP2010/052951
Other languages
English (en)
French (fr)
Other versions
WO2010098382A9 (ja
Inventor
相沢 健
敬純 久保
大宮 隆雄
Original Assignee
日本ピストンリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピストンリング株式会社 filed Critical 日本ピストンリング株式会社
Priority to EP10746261.6A priority Critical patent/EP2402474B1/en
Priority to CN201080008846.XA priority patent/CN102325918B/zh
Priority to JP2011501636A priority patent/JP5514187B2/ja
Publication of WO2010098382A1 publication Critical patent/WO2010098382A1/ja
Publication of WO2010098382A9 publication Critical patent/WO2010098382A9/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Definitions

  • the present invention relates to a piston ring, and more particularly, to a piston ring formed with a thermal spray coating that is excellent in wear resistance, scuff resistance, and initial conformability, and has low opponent attack.
  • cermet sprayed coating composed of a hard ceramic phase such as chromium carbide and a metal phase formed by a plasma spraying method is particularly excellent in wear resistance and seizure resistance.
  • Patent Documents 1 to 4 are listed as prior arts related to plasma spray coating.
  • a sliding member provided with a sprayed layer by plasma spraying has been proposed as a sliding member that requires wear resistance and scuff resistance.
  • Patent Document 2 discloses that in a piston ring including a surface sprayed coating having excellent abrasion resistance and scuff resistance on a base sprayed coating having high peel resistance formed on the outer peripheral surface, the base sprayed coating has a particle size of 44 to 44.
  • a piston ring which is made of a thermal spray material of Mo 60-80% by weight less than 125 ⁇ m and 20-40% Ni-based self-fluxing alloy having a particle size of less than 10-64 ⁇ m and has a coating thickness of 20-100 ⁇ m.
  • Patent Document 3 includes a Mo metal phase or a Mo metal phase of 10% by volume or more and a metal phase and / or alloy phase containing one or more of Fe, Ni, Co, Cr, Cu, and Zn. Thermal spray coating sliding materials have been proposed. In Patent Document 3, the metal phase and / or the alloy phase improve adhesion, film toughness, and denseness.
  • Patent Document 4 proposes a piston ring that has a NiCr alloy phase and a hard ceramic phase made of chromium carbide and has a sprayed film having a porosity of 1% or less formed on a sliding surface. This sprayed film is said to be able to reduce the aggressiveness of the hard ceramic phase against the counterpart material by setting the porosity to 1% or less by the HVOF spraying method or the HVAF spraying method.
  • Patent Document 5 proposes a piston ring in which a sprayed coating having a structure in which Mo, a NiCr alloy, and a cermet region made of chromium carbide are mixed is formed on a sliding surface. This thermal spray coating is said to be excellent in wear resistance and scuff resistance and low in attacking the counterpart material.
  • a thermal spray coating is often formed on the sliding surface, but in addition to having a characteristic of low wear (abrasion resistance) in such piston rings, It is important to have a characteristic that the wear of the counterpart material is small (low attack of the opponent).
  • marine piston rings are operated while periodically replacing the piston ring, so the weight of the piston ring is less important than the wear resistance of the piston ring itself and can be reduced in terms of scuff resistance and wear of the counterpart material. Tend. Furthermore, after replacement, it is required to have excellent initial conformability to the bore.
  • the piston rings proposed in Patent Documents 1 to 5 are not satisfactory for such demands.
  • the thermal spray coatings proposed in Patent Documents 1 to 3 do not have sufficient initial conformability and resistance to opponent attack
  • the piston rings proposed in Patent Documents 4 and 5 have a hard ceramic phase such as chromium carbide.
  • the wear resistance based on it is excellent, it still has high opponent attack, and the scuff resistance and initial conformability were not sufficient. Therefore, as a surface treatment for the piston ring, it has been desired to develop a sprayed coating that is excellent in wear resistance, scuff resistance and initial conformability of the piston ring and has low opponent attack.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a piston ring formed with a sprayed coating that is excellent in wear resistance and scuff resistance and has low opponent attack. There is.
  • the piston ring of the present invention for solving the above problems is a piston in which a thermal spray coating formed by spraying a mixed powder containing at least Mo powder, Ni-based self-fluxing alloy powder and Cu or Cu alloy powder is formed on a sliding surface.
  • the ring wherein the thermal spray coating contains at least 50 to 80% by mass of Mo, 1 to 12% by mass of Cu or Cu alloy, and the balance: Ni-based self-fluxing alloy,
  • the area ratio of the Cu or Cu alloy phase appearing on the surface is 0.5 to 15%.
  • “appears on the sliding surface” means that it appears on the surface after polishing the sliding surface itself from the sliding surface side.
  • Mo is a high melting point metal and excellent in wear resistance and scuffing resistance
  • a sprayed coating in which a self-fluxing Ni-based alloy is used as a binder and Cu or Cu alloy is further dispersed.
  • wear resistance is further improved by using a Ni-based self-fluxing alloy as a binder, and initial conformability is improved by dispersing Cu or Cu alloy between Mo and Ni-based self-fluxing alloy.
  • the opponent aggression can be reduced.
  • the Cu or Cu alloy phase excellent in initial conformability at an area ratio of 0.5 to 15% always appears on the sliding surface of the sprayed coating there is an effect that scuff resistance can be improved.
  • the area ratio of the Cu or Cu alloy phase appearing in the cross section of the sprayed coating is 0.1 to 10%.
  • the thermal spray coating preferably has a porosity of 8% or less.
  • the Cu or Cu alloy phase has a flat shape that is expanded in an in-plane direction of the sliding surface and compressed in a normal direction of the sliding surface.
  • the piston ring of the present invention is preferably a marine piston ring.
  • wear resistance is further improved by using a Ni-based self-fluxing alloy as a binder for Mo metal having good wear resistance and scuff resistance, and initializing by dispersing Cu or Cu alloy.
  • the familiarity can be improved and the opponent aggression can be reduced.
  • the thermal spray coating that constitutes the piston ring of the present invention has low opponent attack and excellent initial conformability, so that the sliding surface of the piston ring that is used as a replacement, for example, as a large piston ring for ships, etc. It is preferably applied to.
  • FIG. 1 is a cross-sectional view showing an example of a piston ring of the present invention.
  • a thermal spray coating 3 is formed on the outer peripheral sliding surface of the piston ring base material 2.
  • the piston ring of the present invention is a piston ring in which a sprayed coating formed by spraying a mixed powder containing at least Mo powder, Ni-based self-fluxing alloy powder and Cu or Cu alloy powder is formed on the sliding surface.
  • the sprayed coating contains at least 50 to 80% by mass of Mo, 1 to 12% by mass of Cu or Cu alloy, and the balance: Ni-based self-fluxing alloy.
  • piston ring base material on which the thermal spray coating is to be formed examples include various materials, such as boron cast iron, flake graphite cast iron, spheroidal graphite cast iron, CV cast iron, and steel.
  • the sprayed coating is formed on the sliding surface of the piston ring by plasma spraying or HVOF spraying.
  • Plasma spraying is spraying in which a thermal spray material is heated and accelerated using a plasma jet generated by a plasma spray gun, and melted or sprayed onto a substrate in a state close thereto.
  • the working gas argon gas or the like
  • a thermal spray coating is formed on the substrate by feeding the thermal spray material into the plasma flame with argon gas or the like and spraying it on the substrate.
  • HVOF High Velocity Oxygen Fuel
  • a high-pressure oxygen and fuel mixed gas is combusted in the combustion chamber, the combustion flame is throttled by the nozzle, and abrupt gas expansion occurs at the moment when it enters the atmosphere, resulting in a supersonic jet.
  • the thermal spray material accelerated by high acceleration energy hardly undergoes oxidation or composition change, and a high-density thermal spray coating is formed on the substrate.
  • the thermal spray material As the thermal spray material, a Mo powder having a Mo content of 50 to 80% by mass of a sprayed coating after film formation, a Cu powder or a Cu alloy powder having a Cu or Cu alloy content of 1 to 12% by mass, and in addition, a material containing at least a Ni-based self-fluxing alloy powder that becomes a Ni-based self-fluxing alloy is used. Since the content of each metal or alloy of the thermal spray coating and the composition ratio of the powder component in the thermal spray material are usually the same, each content of the thermal spray coating can be said to be the component ratio of the thermal spray material. . Therefore, in order to make a thermal spray coating into a desired component ratio, the compounding quantity of the powder which comprises a thermal spray material can be adjusted.
  • Mo is a high melting point metal contained in the sprayed coating in an amount of 50 to 80% by mass. Since this thermal spray coating containing Mo is excellent in wear resistance and scuff resistance, Mo is preferably used as the base metal of the thermal spray coating formed on the piston ring. When the Mo content is less than 50% by mass, the wear resistance and scuff resistance are poor. On the other hand, if the Mo content exceeds 80% by mass, the cost increases. It has been confirmed that desired wear resistance and scuff resistance can be obtained when the Mo content is in the range of 50 mass% to 80 mass%.
  • the Mo content is represented by a value quantified using a backscattering measurement device.
  • the Mo powder as the thermal spray material those having an average particle diameter of 20 to 53 ⁇ m are preferably used, but the size is not particularly limited.
  • the average particle size of the Mo powder is represented by a value measured by a particle size distribution measuring device.
  • the Ni-based self-fluxing alloy is a base metal which is a self-fluxing alloy contained as the balance of Mo, Cu or Cu alloy, other metal or alloy contained as necessary, and unavoidable impurities in the thermal spray coating. Acts as a binder for Mo. Furthermore, since this Ni-based self-fluxing alloy is a self-fluxing alloy, there is an advantage that good wear resistance can be obtained. Examples of the Ni-based self-fluxing alloy include NiCr alloys and NiCo alloys, and NiCr alloys are particularly preferable.
  • the Ni-based self-fluxing alloy is contained in the thermal spray coating as the remainder of Mo and Cu or Cu alloy, the content cannot be generally stated, but if the content of the Ni-based self-fluxing alloy is less than 20% by mass, The effect of Mo as a binder may be reduced, and the adhesion between Mo molten particles constituting the thermal spray coating may be reduced. On the other hand, when the content of the Ni-based self-fluxing alloy exceeds 50% by mass, the scuff resistance may decrease. In this application, for example, a thermal spray coating containing 50% by mass of Mo and 1% by mass of Cu or a Cu alloy is used. Since the maximum content of the balance (Ni-based self-fluxing alloy) is 49% by mass, this problem does not occur.
  • the content of the Ni-based self-fluxing alloy is also represented by a value quantified using a backscattering measurement apparatus, as described above.
  • the Ni-based self-fluxing alloy powder as the thermal spray material those having an average particle diameter of 15 to 53 ⁇ m are preferably used, but the size is not particularly limited.
  • the average particle size of the Ni-based self-fluxing alloy powder is represented by a value measured with a particle size distribution measuring device.
  • Cu or Cu alloy is contained in the sprayed coating in an amount of 1 to 12% by mass.
  • the initial conformability is improved and excellent wear resistance and scuff resistance are exhibited, and the opponent attack is low. It becomes a sprayed coating.
  • Cu or Cu alloy examples include Cu, CuAlFe alloy (for example, Cu-9Al-1Fe alloy), CuNi alloy, and the like.
  • Cu and CuAlFe alloy are preferable, and one of them may be used, or a mixture of both may be used. When both are mixed, the content of Cu and Cu alloy is within the above range. If the content of Cu or Cu alloy is less than 1% by mass, good initial conformability cannot be obtained, so that the scuff resistance may be inferior. On the other hand, if the content of Cu or Cu alloy exceeds 12% by mass, the Vickers hardness of the sprayed coating may be lowered, and the wear resistance may be lowered.
  • the content of Cu or Cu alloy is in the range of 1% by mass or more and 12% by mass or less, good initial conformability, scuff resistance and wear resistance can be obtained.
  • the content of Cu or Cu alloy is also expressed as a value quantified using a backscattering measuring device.
  • the Cu powder or Cu alloy powder as the thermal spray material those having an average particle diameter of 45 to 90 ⁇ m are preferably used, but the size is not particularly limited.
  • the average particle size of the powder is also measured by a particle size distribution measuring device as described above.
  • the thermal spray coating may be formed by using a raw material powder containing a metal powder or alloy powder other than these. In that case, it is a premise that the characteristics of the present invention are not impaired.
  • FIG. 2 is an explanatory view showing the form of the Cu or Cu alloy phase appearing on the sliding surface of the obtained thermal spray coating
  • FIG. 3 shows the form of the Cu or Cu alloy phase appearing on the cross section of the obtained thermal spray coating. It is explanatory drawing shown.
  • the plan view of FIG. 2 is an observation of the surface that appears after the sliding surface itself is polished
  • the cross-sectional view of FIG. 3 is a cross-sectional view of the piston ring after the thermal spray coating is formed, cut along a plane orthogonal to the sliding surface.
  • the surface that appears after the polished cross section is polished is observed.
  • the tissue morphology shown in FIGS. 2 and 3 was observed using a metal microscope.
  • the thermal spray coating has a Mo metal phase made of Mo, a Ni-base self-fluxing alloy phase made of Ni-base self-fluxing alloy, and a Cu or Cu alloy phase made of Cu or Cu alloy.
  • the Cu or Cu alloy phase has a flat shape that is expanded in the in-plane direction of the sliding surface and compressed in the normal direction of the sliding surface.
  • the Cu or Cu alloy phase having such a flat shape always appears in a form stretched on the sliding surface of the thermal spray coating, and the Mo metal phase or Ni-based self-fluxing alloy phase in the thickness direction of the thermal spray coating. It exists in a form in which the layers are stacked in the middle and are distributed (dispersed) uniformly or substantially uniformly in the thermal spray coating.
  • the Cu or Cu alloy phase appearing in a mode uniformly or substantially uniformly distributed (dispersed) on the sliding surface of the sprayed coating is expressed by an area ratio, it is present in a ratio of 0.5% or more and 15% or less. Since the Cu or Cu alloy phase is always present in the in-plane direction and the ratio of the above-mentioned area ratio on the sliding surface that is worn by sliding with the counterpart material, the initial familiarity with the counterpart material. Improves. A thermal spray coating with good initial conformability can improve scuff resistance.
  • the area ratio of the Cu or Cu alloy phase is less than 0.5%, the initial conformability to the counterpart material may not be sufficient, and the scuff resistance may not be sufficient, while the area ratio of the Cu or Cu alloy phase may be 15 If it exceeds%, the Vickers hardness is lowered and the wear resistance may be insufficient. Note that “appear on the sliding surface” means that it appears on the surface after the sliding surface itself is polished from the sliding surface side.
  • the Cu or Cu alloy phase appearing on the sliding surface with such an area ratio exists in the cross section of the sprayed coating at an area ratio of 0.1% or more and 10% or less.
  • the Cu or Cu alloy phase is compressed and stacked in the thickness direction of the thermal spray coating.
  • the sprayed material is melted or close to the sprayed surface and sprayed onto the sliding surface of the piston ring. It piles up in the state where it was crushed up, becomes a flat shape shown in FIG.2 and FIG.3, and is formed in a sliding surface.
  • the Cu or Cu alloy phase present in the sprayed coating is present in an area ratio of 0.5 to 15% when viewed from the sliding surface side, but is 0.1 to 10% when viewed in cross section. It exists at a low area ratio.
  • the size of the Cu or Cu alloy phase present in the sprayed coating varies depending on the direction of observation. For example, as illustrated in FIG. 2, the size when viewed from the sliding surface side is 20 ⁇ m to 150 ⁇ m, while the size when the sliding surface is viewed in cross section as illustrated in FIG. 3 is also 20 ⁇ m to 150 ⁇ m. Met. This size varies depending on the size of the raw material powder used and the spraying conditions, but is preferably within the above range.
  • the shape is different, and when viewed in plan, it is a flat shape extending relatively two-dimensionally in plane, and when viewed in cross-section It turns out that it is the aspect crushed thinly in the thickness direction.
  • the “size” is a value obtained by measuring the major axis of the major axis and minor axis constituting the Cu or Cu alloy phase.
  • the Vickers hardness of the sprayed coating is 400 to 700 HV0.3, preferably 450 to 600 HV0.3, and the Vickers hardness of the Cu or Cu alloy phase existing in the above-mentioned area ratio in the sprayed coating is 100. It is preferably ⁇ 200HV0.01.
  • the Vickers hardness of the thermal spray coating and the Vickers hardness of the Cu or Cu alloy phase are the above-mentioned Vickers by setting the content of each metal component constituting the thermal spray coating in the above range and the area ratio of the Cu or Cu alloy phase in the above range.
  • the thermal spray coating having the Vickers hardness range exhibits good wear resistance against the counterpart material, and the Cu or Cu alloy phase having the Vickers hardness range is in contrast to the counterpart material. Shows good initial conformability and good scuff resistance, and lowers the opponent's aggression.
  • the Vickers hardness of the thermal spray coating is the total hardness of the cross section of the film in which Cu or Cu alloy is dispersed in the thermal spray coating, and the measurement is “HV0” measured with a micro Vickers hardness meter under a load of 0.3 kgf. .3 ".
  • the Vickers hardness of the Cu or Cu alloy phase is the hardness of the Cu or Cu alloy phase at the cross section of the film in which Cu or the Cu alloy is dispersed in the sprayed coating, and the measurement is performed using a micro Vickers hardness meter. Evaluation was made in units of “HV0.01” measured at 0.01 kgf. In addition, let the value of Vickers hardness be an average value of the result obtained by measuring five places at random.
  • the porosity of the thermal spray coating is preferably 8% (area%) or less.
  • the thermal spray coating contains Cu or a Cu alloy phase
  • the porosity can be made 8% or less as compared with a thermal spray coating that does not contain Cu or a Cu alloy phase. If the porosity of the thermal spray coating exceeds 8%, chipping or peeling may occur at the interface between the thermal spray coating and the piston ring base material or in the thermal spray coating starting from the pores.
  • the porosity is more preferably 6% or less from the viewpoint of wear resistance based on the denseness and oil retention of the sprayed coating.
  • the lower limit of the porosity is not particularly limited, but may be 0.5%, for example.
  • the thickness of the thermal spray coating is not particularly limited, but when it is formed on the sliding surface of a large-sized piston ring for ships or the like, the thickness can be set to 150 ⁇ m to 800 ⁇ m, for example. Further, in the case of a piston ring for automobiles and the like that is not as large as for ships, the thickness can be arbitrarily set in a wide range of, for example, 100 ⁇ m to 300 ⁇ m depending on the size of the piston ring.
  • the piston ring of the present invention uses a high melting point metal, which is a high melting point metal and has excellent wear resistance and scuff resistance, as a base metal, and Ni base self-fluxing alloy phase such as NiCr as a binder.
  • the wear resistance is further improved by using a Ni-based self-fluxing alloy phase as a binder, and the initial conformability and scuffing resistance are improved by dispersing Cu or a Cu alloy phase.
  • the opponent aggression can be reduced.
  • Example 1 Thermal spray material by blending Mo metal powder having an average particle size of 50 ⁇ m, NiCr alloy powder having an average particle size of 40 ⁇ m, and Cu powder having an average particle size of 70 ⁇ m to 64 mass%, 35 mass%, and 1 mass%, respectively. Adjusted.
  • the component composition of the NiCr alloy is Ni: 70.5 mass%, Cr: 17 mass%, Fe: 4 mass%, Si: 4 mass%, B: 3.5 mass%, C: 1 mass%. .
  • plasma spraying was performed under the following conditions to form a sprayed coating having a thickness of 300 ⁇ m on the sliding surface of the piston ring made of boron cast iron.
  • the component composition of the thermal spray coating was quantified using a backscattering measurement device (manufactured by Nissin High Voltage Co., Ltd.), and Mo: 64% by mass, NiCr alloy: 35% by mass, Cu, similar to the composition of the thermal spray material as the raw material 1% by mass.
  • Examples 2 to 6 and Comparative Examples 1 to 4 Using the raw material powder used in Example 1 as a base, adjusting the blending amount so as to have the component composition shown in Table 1 and changing the composition of the thermal spray material, sliding the piston ring under the same thermal spraying conditions as in Example 1 A sprayed coating was formed on the surface.
  • the component composition of the obtained thermal spray coating was measured in the same manner as in Example 1 and shown in Table 1.
  • CuAl represented in Examples 5 and 6 and Comparative Examples 3 and 4 indicates a case where 90Cu-9Al-1Fe alloy powder with an average particle size of 40 ⁇ m and mass% is used.
  • Plasma spraying conditions Sulzer Metco 9MB plasma spray gun Voltage 60-70V Current 500A
  • the area ratio is obtained by polishing the sliding surface of the obtained thermal spray coating, taking a photograph of the surface that has been magnified 200 times with a metal microscope, and analyzing the photographed image with image analysis software. (Referred to as “sliding surface area ratio”).
  • sliding surface area ratio On the other hand, the cross section cut in parallel (or in the ring axis direction) to the normal of the sliding surface of the thermal spray coating is polished, and a photograph of the cross section magnified 200 times with a metal microscope is taken. And the area ratio of Cu phase (referred to as “cross-sectional area ratio”) was measured. The obtained results are shown in Table 1.
  • the thermal spray coating is polished with polishing papers of 180, 240, 320, 600, 800, and 1200 in order of decreasing particle size, and finally 1.0 ⁇ m powder of alumina (aluminum oxide) is used. Then, buffing was performed for 20 seconds, and the obtained polished surface was used as an area ratio observation sample.
  • the Vickers hardness of Cu or Cu—Al—Fe shown in Table 1 is a measurement result of the Vickers hardness in the film cross section of the Cu phase or Cu—Al—Fe phase, and the Vickers hardness of the spray coating is the Cu phase or Cu—Al It is a measurement result of the entire Vickers hardness in the film cross section of the sprayed coating containing the -Fe phase. Since the sprayed coating contains a hard Mo metal phase, a soft Cu phase, or a Cu—Al—Fe phase, the Vickers hardness of the sprayed coating can be said to be the average hardness of the entire sprayed coating.
  • the Vickers hardness was measured using a micro Vickers hardness meter (manufactured by Akashi Co., Ltd.), the Vickers hardness of Cu or Cu—Al—Fe was measured with a load of 0.01 kgf, and the Vickers hardness of the sprayed coating was measured with a load of 0.3 kgf. In addition, Vickers hardness measured 5 places at random and represented it with the average value of the obtained result.
  • the wear resistance index and the counterpart material wear resistance index were measured by a wear test.
  • a wear test a high load type wear tester 5 shown in FIG. 4 was used.
  • the test material 6 which is a piece
  • the test material 6 (fixed piece) and the counterpart material 7 which is a rotating piece were brought into contact with each other and a load P was applied.
  • the test material 6 is composed of three pins ( ⁇ 5 mm, 58.9 mm 2 ) made of flake graphite cast iron and a disk with an outer diameter of 40 mm, and the disk has an outer diameter of 40 mm and a thickness of the pin. Including 12 mm.
  • the counterpart material 7 (rotating piece) is boron cast iron having an outer diameter of 40 mm and a thickness of 12 mm.
  • the wear test conditions were as follows: lubricating oil: spindle oil equivalent, oil temperature: 125 ° C., peripheral speed: 1.65 m / sec (1050 rpm), contact surface pressure: 76.4 MPa, test time: 8 hours. .
  • the wear index of each test material corresponding to Examples 1 to 6, Comparative Examples 1 to 4 and Conventional Example 2 is the same as the wear index of the test material corresponding to Conventional Example 1.
  • the abrasion resistance index was evaluated as “ ⁇ ” when 100 or more and less than 110, “ ⁇ ” when 110 or more and less than 120, and “x” when 120 or more.
  • less than 80 is “ ⁇ ”
  • 80 to less than 100 is “ ⁇ ”
  • 100 to less than 120 is “ ⁇ ”
  • 120 or more is “x”.
  • the scuff limit surface pressure of each test piece 11 was measured with a rotary flat sliding friction tester 10 shown in FIG.
  • the friction testing machine measured the surface pressure when the scuff was generated as the limit surface pressure by pressing the test piece 11 against the rotating surface of the mating member 12 rotating at a constant speed for a predetermined time at a predetermined surface pressure (P). Is.
  • the pressure contact operation was performed by a method in which the initial surface pressure was 2.5 MPa and held for 30 minutes, and then the surface pressure was gradually increased from 5 MPa by 1 MPa every 5 minutes.
  • the test piece 11 is flake graphite cast iron, and the counterpart material 12 is boron cast iron.
  • the scuff generation load of the test material corresponding to Conventional Example 1 is assumed to be 100, and the scuff generation load of each test material corresponding to Examples 1 to 6, Comparative Examples 1 to 4, and Conventional Example 2 is conventionally used. Comparison was made as a scuffing resistance index with respect to the result of the test material corresponding to Example 1. Therefore, as the scuff resistance index of each test material is larger than 100, the scuff generation load increases, and the scuff resistance is superior to the test material corresponding to Conventional Example 1.
  • the scuff resistance index was evaluated as “ ⁇ ” for 120 or more, “ ⁇ ” for 105 or more and less than 120, “ ⁇ ” for 95 or more and less than 105, and “x” for less than 95.
  • each example was superior to the conventional example and the comparative example in scuff resistance and mating material wear resistance.
  • the scuff resistance is better as the content of Cu or Cu alloy phase is higher, so it is considered that the initial conformability to the counterpart material of Cu or Cu alloy phase acts effectively.
  • Example 1 The effect of the porosity of the thermal spray coating on the wear resistance and the wear resistance of the mating material was tested.
  • the thermal spray material used in Example 1 and the like was prepared, and a thermal spray coating of 64Mo-35NiCr-1Cu and 60Mo-30NiCr-10Cu was formed on the sliding surface of a piston ring made of boron cast iron with a thickness of 300 ⁇ m.
  • the plasma spraying conditions (voltage range of 50 to 70 V, current range of 450 to 500 A) were changed to obtain sprayed coatings having the porosity shown in Table 2.
  • the porosity of the thermal spray coating is determined by polishing a cross section cut in parallel to the normal of the sliding surface (or in the ring axis direction), and taking a photograph of the cross section magnified 200 times with a metal microscope. It was determined by analysis with image analysis software.
  • the cross section of the sprayed coating is polished with abrasive papers of 180, 240, 320, 600, 800, 1200, and so on, and finally 1.0 ⁇ m powder of alumina (aluminum oxide). was buffed for 20 seconds.
  • the obtained cross section was used as an observation sample of porosity. The porosity was measured at five locations at random and evaluated by the average value of the image analysis results (the same applies to Experiments 2 and 3).
  • the abrasion resistance and the counterpart material wear resistance of the thermal spray coating used in the experiment were measured by the same method as in Example 1 above, and evaluated as the wear resistance index and the counterpart material wear resistance index, respectively.
  • the criteria for individual evaluation and comprehensive evaluation for each sample are the same.
  • good evaluation was obtained when the porosity was in the range of 0.62% to 7.71%. This result supports the above-described range in which the preferable porosity range is 0.5% to 8%. It can be said that particularly preferable wear resistance index and counterpart material wear resistance index can be obtained when the porosity is 0.5% to 6%.
  • the overall evaluation in Table 2 is calculated by taking “ ⁇ ” for each item as 2 points, “ ⁇ ” as 1 point, and “ ⁇ ” as 0 point, and wear resistance index and counterpart material wear resistance index. A total of 2 to 4 points was given a comprehensive evaluation of “ ⁇ ”, and a 0 to 1 point was given a comprehensive evaluation of “ ⁇ ”.
  • Example 2 Next, it experimented about the influence which the porosity of a thermal spray coating has on adhesive force.
  • the thermal spray material used in Example 1 was prepared, and a thermal spray coating of 60Mo-30NiCr-10Cu was formed on the sliding surface of a piston ring made of boron cast iron with a thickness of 300 ⁇ m.
  • a sprayed coating of 65Mo-35NiCr containing no Cu was formed on the end face of a cylindrical test piece (outer diameter 25 mm, length 40 mm) for measuring the adhesion force to a thickness of 300 ⁇ m.
  • plasma spraying conditions voltage range of 50 to 70 V, current range of 450 to 500 A
  • thermal spray coatings having five levels of porosity shown in Table 3 were obtained.
  • the porosity of the sprayed coating was measured in the same manner as in Experiment 1 by polishing the cross section of the cylindrical test piece on which the sprayed coating was formed.
  • the measurement of the adhesion force is based on JIS H 8667, and the end face of the cylindrical test piece on which the thermal spray coating is formed and the end face of the cylindrical test piece on which the thermal spray coating is not formed are bonded together by a thermosetting resin.
  • a tensile test was performed by fixing both ends of the cylinder with upper and lower chucks of a tensile tester.
  • the tensile speed was 1 mm / min
  • the load when the sprayed coating was peeled off from the interface of the boron cast iron or when delamination was within the sprayed coating was 1 mm / min
  • the load when the sprayed coating was peeled off from the interface of the boron cast iron or when delamination was within the sprayed coating was 1 mm / min
  • the load when the sprayed coating was peeled off from the interface of the boron cast iron or when delamination was within the sprayed coating was 1 dividing the load by the area of the cylindrical end face. Asked.
  • the value of the sprayed coating of 65Mo-35NiCr was set to 1 (reference), and was compared with the adhesion of a test sample having a five-step porosity.
  • Table 3 Note that exfoliation at the interface with the curable resin and delamination within the curable resin layer were excluded from the evaluation.

Abstract

【課題】耐摩耗性と耐スカッフ性に優れ、かつ相手攻撃性の低い溶射皮膜が形成されてなるピストンリングを提供する。 【解決手段】Mo粉末とNi基自溶性合金粉末とCu又はCu合金粉末とを少なくとも含む混合粉末を溶射してなる溶射皮膜を摺動面に形成したピストンリングであって、その溶射皮膜は、50~80質量%のMoと、1~12質量%のCu又はCu合金と、残部:Ni基自溶性合金とを少なくとも含有し、溶射皮膜の摺動面に現れるCu又はCu合金相の面積率が0.5~15%であるようにして上記課題を解決した。

Description

ピストンリング
 本発明は、ピストンリングに関し、更に詳しくは、耐摩耗性、耐スカッフ性及び初期なじみ性に優れ、かつ相手攻撃性の低い溶射皮膜が形成されてなるピストンリングに関する。
 近年、内燃機関の高出力化と高性能化に伴い、ピストンリング等の摺動部材の使用環境はますます厳しくなっており、良好な耐摩耗性、耐スカッフ性を有する摺動部材が要求されている。
 従来、内燃機関用ピストンリング等の摺動部材の耐摩耗性や耐スカッフ性を改善する手段として、例えば自動車用のピストンリングにおいては、その摺動面にPVD皮膜や窒化処理層等の表面処理が施されている。これらの表面処理のうち、特にPVD皮膜は、優れた耐摩耗性を示すことから、過酷な運転条件の下で使用されるピストンリングに対する表面処理として広く実用に供されている。
 また、船舶用等の大きいサイズのピストンリングにおいては、その摺動面に硬質クロムめっき皮膜やプラズマ溶射法によるセラミック皮膜等の表面処理が施されている。これらの表面処理のうち、特にプラズマ溶射法により形成した炭化クロム等の硬質セラミック相と金属相とからなるサーメット溶射皮膜は、耐摩耗性と耐焼付き性に優れている。
 プラズマ溶射皮膜についての先行技術として、下記の特許文献1~4を挙げる。特許文献1には、Cr,B,Si,C,Fe,Coを含有するNi基自溶性合金粉末:80~40重量%と、Mo粉末:20~60重量%との混合粉末を基材表面にプラズマ溶射して溶射層を設けた摺動部材が、耐摩耗性と耐スカッフ性を要求される摺動部材として提案されている。また、特許文献2には、外周面に形成した耐剥離強度の高い下地溶射皮膜上に耐摩耗性・耐スカッフ性に優れる表層部の溶射皮膜を備えるピストンリングにおいて、下地溶射皮膜が粒度44~125μm未満のMo60~80重量%と、粒度10~64μm未満のNi基自溶性合金20~40%との溶射材からなり、かつその皮膜厚さが20~100μmであるピストンリングが提案されている。また、特許文献3には、Mo金属相、もしくは10体積%以上のMo金属相とFe,Ni,Co,Cr,Cu,Znの1種以上を含有する金属相及び/又は合金相とからなる溶射皮膜摺動材料が提案されている。この特許文献3においては、その金属相及び/又は合金相が、密着性、皮膜靭性、緻密性を改善するものとされている。
 また、特許文献4には、NiCr合金相と炭化クロムからなる硬質セラミック相とを有し、気孔率が1%以下の溶射膜を摺動面に形成してなるピストンリングが提案されている。この溶射膜は、HVOF溶射法又はHVAF溶射法により気孔率を1%以下にすることによって、硬質セラミック相による相手材への攻撃性を低減させることができるとされている。また、特許文献5には、MoとNiCr合金と炭化クロムからなるサーメット領域とが混在した組織の溶射皮膜を摺動面に形成してなるピストンリングが提案されている。この溶射皮膜は、耐摩耗性・耐スカッフ性に優れ、相手材攻撃性が低いとされている。
特開昭59-150080号公報 特開平3-260474号公報 特開2004-346417号公報 特開2005-155711号公報 特開2007-314839号公報
 船舶用等の大きいサイズのピストンリングにおいては、その摺動面に溶射皮膜を形成する場合が多いが、こうしたピストンリングにおいては、自身の摩耗が小さい特性(耐摩耗性)を有することに加え、相手材の摩耗が小さい特性(相手攻撃性が低い)を有することが重要である。特に船舶用のピストンリングでは、定期的にピストンリングを交換しながら運航するため、ピストンリング自身の耐摩耗性よりも、耐スカッフ性や相手材であるボアの摩耗を低減できることに重きがおかれる傾向がある。さらに、交換した後においては、ボアに対する初期なじみ性に優れることが要求されている。
 しかしながら、上記特許文献1~5で提案されたピストンリングは、こうした要求に対して満足できるものではなかった。例えば特許文献1~3で提案された溶射皮膜では、初期なじみ性及び耐相手攻撃性が十分ではなく、また、特許文献4,5で提案されたピストンリングは、炭化クロム等の硬質セラミック相に基づく耐摩耗性は優れるものの、依然として相手攻撃性が高く、また、耐スカッフ性や初期なじみ性も十分とは言えなかった。そのため、ピストンリングに対する表面処理として、ピストンリングの耐摩耗性、耐スカッフ性及び初期なじみ性に優れ、かつ相手攻撃性の低い溶射皮膜の開発が望まれていた。
 本発明は、上記課題を解決するためになされたものであって、その目的は、耐摩耗性と耐スカッフ性に優れ、かつ相手攻撃性の低い溶射皮膜が形成されてなるピストンリングを提供することにある。
 上記課題を解決するための本発明のピストンリングは、Mo粉末とNi基自溶性合金粉末とCu又はCu合金粉末とを少なくとも含む混合粉末を溶射してなる溶射皮膜を摺動面に形成したピストンリングであって、前記溶射皮膜は、50~80質量%のMoと、1~12質量%のCu又はCu合金と、残部:Ni基自溶性合金とを少なくとも含有し、前記溶射皮膜の摺動面に現れるCu又はCu合金相の面積率が、0.5~15%であることを特徴とする。ここで、「摺動面に現れる」とは、摺動面側より摺動面自身を研磨した後の面に現れることを指す。
 この発明では、高融点金属で耐摩耗性と耐スカッフ性に優れたMoをベース金属とし、そこに自溶性のNi基合金をバインダーとし、さらにCu又はCu合金を分散させた溶射皮膜としている。こうした本発明によれば、Ni基自溶性合金をバインダーとすることでさらに耐摩耗性が向上し、Mo及びNi基自溶性合金の間にCu又はCu合金を分散させることで初期なじみ性が向上し且つ相手攻撃性を低下させることができる。しかも、溶射皮膜の摺動面には、0.5~15%の面積率で初期なじみ性に優れるCu又はCu合金相が必ず現れるので、耐スカッフ性を向上させることができるという効果がある。
 本発明のピストンリングにおいて、前記溶射皮膜の断面に現れるCu又はCu合金相の面積率が、0.1~10%であることが好ましい。
 本発明のピストンリングにおいて、前記溶射皮膜の空孔率が8%以下であることが好ましい。
 本発明のピストンリングにおいて、前記Cu又はCu合金相は、前記摺動面の面内方向に伸張され且つ前記摺動面の法線方向に圧縮されてなる偏平形状を呈していることが好ましい。
 本発明のピストンリングが、船舶用ピストンリングであることが好ましい。
 本発明のピストンリングによれば、耐摩耗性と耐スカッフ性のよいMo金属にNi基自溶性合金をバインダーとすることでさらに耐摩耗性が向上し、Cu又はCu合金を分散させることで初期なじみ性が向上し且つ相手攻撃性を低下させることができる。こうした本発明のピストンリングを構成する溶射皮膜は、相手攻撃性が低く、しかも初期なじみ性が優れるので、例えば船舶用等の大きいサイズのピストンリングのように交換して用いるピストンリングの摺動面に対して好ましく適用される。
本発明のピストンリングの一例を示す断面図である。 本発明を構成する溶射皮膜の摺動面を研磨した後の面に現れるCu又はCu合金相の形態を示す説明図である。 本発明を構成する溶射皮膜の断面に現れるCu又はCu合金相の形態を示す説明図である。 摩耗量測定に用いた高負荷型摩耗試験機の構成原理図である。 スカッフ荷重測定に用いた回転式平面滑り摩擦試験機の構成原理図である。
 以下、本発明のピストンリングについて詳しく説明する。図1は本発明のピストンリングの一例を示す断面図である。図1に示すように、ピストンリング母材2の外周摺動面に溶射皮膜3を形成する。
 (構成材料)
 本発明のピストンリングは、Mo粉末とNi基自溶性合金粉末とCu又はCu合金粉末とを少なくとも含む混合粉末を溶射してなる溶射皮膜を摺動面に形成したピストンリングである。そして、その溶射皮膜は、50~80質量%のMoと、1~12質量%のCu又はCu合金と、残部:Ni基自溶性合金とを少なくとも含有している。
 溶射皮膜を形成する対象となるピストンリング母材としては、各種のものを挙げることができるが、例えば、ボロン鋳鉄、片状黒鉛鋳鉄、球状黒鉛鋳鉄、CV鋳鉄、スチール等を挙げることができる。
 溶射皮膜は、プラズマ溶射やHVOF溶射によってピストンリングの摺動面に形成される。プラズマ溶射は、プラズマ溶射ガンで生じるプラズマジェットを用いて溶射材料を加熱・加速し、溶融又はそれに近い状態にして基材に吹き付ける溶射のことである。原理は公知のとおりであるが、陰極と陽極との間に電圧をかけて直流アークを発生させると、後方から送給される作動ガス(アルゴンガス等)が電離し、プラズマを発生する。そのプラズマフレーム中に溶射材料をアルゴンガス等で送給し、基材に吹き付けることによって溶射皮膜が基材上に形成される。一方、HVOF(High Velocity Oxygen Fuelの略)溶射は、酸素と燃料を使用した高速度ジェットフレームの溶射のことである。具体的には、高圧の酸素及び燃料の混合ガスを燃焼室内で燃焼させ、その燃焼炎がノズルにより絞られ、大気に出た瞬間に急激なガス膨張が発生し、超音速のジェットとなる。高い加速エネルギーにより加速された溶射材料は、ほとんど酸化や組成変化せず、高密度の溶射皮膜が基材上に形成される。
 溶射材料としては、成膜後の溶射皮膜のMoの含有量が50~80質量%となるMo粉末と、Cu又はCu合金の含有量が1~12質量%となるCu粉末又はCu合金粉末と、残部がNi基自溶性合金となるNi基自溶性合金粉末と、を少なくとも含むものが用いられる。溶射皮膜の各金属又は合金の含有量と、溶射材料中の粉末成分の組成割合とは、通常同じであるので、前記の溶射皮膜の各含有量は、溶射材料の成分割合と言うことができる。したがって、溶射皮膜を所望の成分割合とするために、溶射材料を構成する粉末の配合量を調整することができる。
 Moは、溶射皮膜中に50~80質量%含まれる高融点の金属である。このMoを含有する溶射皮膜は、耐摩耗性や耐スカッフ性に優れるので、Moは、ピストンリングに形成する溶射皮膜のベース金属として好ましく用いられる。Moの含有量が50質量%未満では、耐摩耗性と耐スカッフ性が劣る。一方、Moの含有量が80質量%を超えると、コスト高の原因になる。Moの含有量を50質量%以上80質量%以下の範囲とすれば、所望の耐摩耗性と耐スカッフ性を得ることができることは確認済みである。Moの含有量は、後方散乱測定装置を用いて定量した値で表している。溶射材料としてのMo粉末としては、平均粒径20~53μmのものが好ましく用いられるが、特にその大きさは限定されない。このMo粉末の平均粒径は、粒度分布測定装置で測定したもので表している。
 Ni基自溶性合金は、溶射皮膜中に、Mo、Cu又はCu合金、必要に応じて含まれる他の金属又は合金、及び不可避不純物、の残部として含まれる自溶性合金であり、ベース金属であるMoのバインダーとして作用する。さらに、このNi基自溶性合金が自溶性合金であることから、良好な耐摩耗性が得られるという利点がある。Ni基自溶性合金としては、NiCr合金、NiCo合金等を挙げることができ、特にNiCr合金が好ましい。Ni基自溶性合金は溶射皮膜中にMoとCu又はCu合金等の残部として含まれるので、その含有量は一概には言えないが、Ni基自溶性合金の含有量が20質量%未満では、Moのバインダーとしての効果が薄れ、溶射皮膜を構成するMo溶融粒子間の密着力が低下することがある。一方、Ni基自溶性合金の含有量が50質量%を超えると耐スカッフ性が低下することがあるが、本願では例えば50質量%のMoと1質量%のCu又はCu合金を含む溶射皮膜の残部(Ni基自溶性合金)の最大含有量は49質量%となるので、この問題は生じない。ここでのNi基自溶性合金の含有量も上記同様、後方散乱測定装置を用いて定量した値で表している。溶射材料としてのNi基自溶性合金粉末としては、平均粒径15~53μmのものが好ましく用いられるが、特にその大きさは限定されない。このNi基自溶性合金粉末の平均粒径は、粒度分布測定装置で測定したもので表している。
 Cu又はCu合金は、溶射皮膜中に1~12質量%含まれる。このCu又はCu合金がNi基自溶性合金をバインダーとしたMoベース金属中に含まれることにより、初期なじみ性が向上して優れた耐摩耗性及び耐スカッフ性を示すとともに、相手攻撃性の低い溶射皮膜となる。
 Cu又はCu合金としては、Cu、CuAlFe合金(例えばCu-9Al-1Fe合金)、CuNi合金等を挙げることができる。特に、CuとCuAlFe合金が好ましく、それらの一方を用いてもよいし、両方を混ぜたものであってもよい。両方を混ぜた場合には、Cu及びCu合金の含有量を前記の範囲内とする。Cu又はCu合金の含有量が1質量%未満では、良好な初期なじみ性が得られないので、耐スカッフ性に劣ることがある。一方、Cu又はCu合金の含有量が12質量%を超えると、溶射皮膜のビッカース硬度が低下し、耐摩耗性が低下することがある。Cu又はCu合金の含有量を1質量%以上12質量%以下の範囲とすれば、良好な初期なじみ性、耐スカッフ性及び耐摩耗性を得ることができることは確認済みである。Cu又はCu合金の含有量も上記同様、後方散乱測定装置を用いて定量した値で表している。溶射材料としてのCu粉末又はCu合金粉末としては、平均粒径45~90μmのものが好ましく用いられるが、特にその大きさは限定されない。この粉末の平均粒径も上記同様、粒度分布測定装置で測定したもので表している。
 溶射皮膜は、これら以外の金属粉又は合金粉を配合させた原料粉末を用いて溶射皮膜を形成してもよい。その際には、本発明の特徴が損なわれないことが前提である。
 (Cu又はCu合金相の形態)
 図2は、得られた溶射皮膜の摺動面に現れるCu又はCu合金相の形態を示す説明図であり、図3は、得られた溶射皮膜の断面に現れるCu又はCu合金相の形態を示す説明図である。図2の平面図は、摺動面自身を研磨した後に現れる面を観察したものであり、図3の断面図は、溶射皮膜を形成した後のピストンリングを摺動面に直交する面で切断した断面を研磨した後に現れる面を観察したものである。図2や図3に示す組織形態は、金属顕微鏡を用いて観察した。
 溶射皮膜は、図2及び図3に示すように、MoからなるMo金属相、Ni基自溶性合金からなるNi基自溶性合金相、Cu又はCu合金からなるCu又はCu合金相を有している。特にCu又はCu合金相は、図2及び図3に示すように、摺動面の面内方向に伸張され且つ摺動面の法線方向に圧縮された偏平形状を呈している。こうした偏平形状からなるCu又はCu合金相は、溶射皮膜の摺動面に引き延ばされた態様で必ず現れており、しかも溶射皮膜の厚さ方向にMo金属相やNi基自溶性合金相の間に積み重ねられた様相で且つ溶射皮膜内に均一又は略均一に分布(分散)した態様で存在している。
 そして、溶射皮膜の摺動面に均一又は略均一に分布(分散)した態様で現れるCu又はCu合金相を面積率で表せば、0.5%以上、15%以下の割合で存在する。Cu又はCu合金相が、相手材と摺動して摩耗した摺動面に、面内方向に伸張された態様で且つ前記の面積率の割合で常に存在することにより、相手材との初期なじみ性が向上する。初期なじみ性のよい溶射皮膜は、耐スカッフ性を向上させることができる。Cu又はCu合金相の面積率が0.5%未満では、相手材に対する初期なじみ性が十分ではなく、耐スカッフ性が十分ではないことがあり、一方、Cu又はCu合金相の面積率が15%を超えると、ビッカース硬度が低下し、耐摩耗性が不十分となることがある。なお、「摺動面に現れる」とは、摺動面側より摺動面自身を研磨した後の面に現れることを指す。
 こうした面積率で摺動面に現れるCu又はCu合金相は、溶射皮膜の断面には、0.1%以上、10%以下の面積率で存在する。図3に示すように、Cu又はCu合金相は、溶射皮膜の厚さ方向に圧縮され、積み重ねられた様相で存在している。本発明の溶射皮膜を主に形成するプラズマ溶射やHVOF溶射においては、溶射材料を溶融又はそれに近い状態にしてピストンリングの摺動面に吹き付けるので、摺動面に溶射された粉末材料は基材上に押し潰れた状態で積み重なり、図2及び図3に示す偏平形状となって摺動面に形成される。したがって、溶射皮膜内に存在するCu又はCu合金相は、摺動面側より平面視したときは0.5~15%の面積率で存在するものの、断面視したときは0.1~10%という低い面積率で存在する。
 溶射皮膜に存在するCu又はCu合金相の大きさは、観察する方向によって異なる。例えば図2に例示したように摺動面側より平面視した場合の大きさは20μm~150μmであり、一方、図3に例示したように摺動面を断面視した場合の大きさも20μm~150μmであった。この大きさは、用いた原料粉末の大きさや溶射条件によっても異なるが、およそ上記範囲内であることが好ましい。なお、平面視したときと断面視したときの大きさは同じであってもその形状は異なり、平面視した場合は比較的平面的に二次元に伸びた偏平形状であり、断面視した場合は厚さ方向に薄く押しつぶされた態様であることがわかる。なお、「大きさ」とは、Cu又はCu合金相を構成する長径と短径のうち長径を測定した値で表したものである。
 本発明のピストンリングにおいて、溶射皮膜のビッカース硬度が400~700HV0.3、好ましくは450~600HV0.3であり、溶射皮膜内に上記の面積率で存在するCu又はCu合金相のビッカース硬度が100~200HV0.01であることが好ましい。溶射皮膜を構成する各金属成分の含有量を上記範囲とし、Cu又はCu合金相の面積率を上記範囲とすることにより、溶射皮膜のビッカース硬度とCu又はCu合金相のビッカース硬度は上記のビッカース硬度の範囲内となるが、上記ビッカース硬度範囲を有する溶射皮膜は、相手材に対して良好な耐摩耗性を示すとともに、上記ビッカース硬度範囲を有するCu又はCu合金相は、相手材に対して良好な初期なじみ性と良好な耐スカッフ性を示し、相手攻撃性を低下させる。
 溶射皮膜のビッカース硬度は、Cu又はCu合金が溶射皮膜に分散している膜断面の全体の硬度のことであり、その測定はマイクロビッカース硬度計にて荷重0.3kgfの条件で測定した「HV0.3」の単位で評価した。一方、Cu又はCu合金相のビッカース硬度は、Cu又はCu合金が溶射皮膜に分散している膜断面でのCu又はCu合金相の硬度のことであり、その測定はマイクロビッカース硬度計にて荷重0.01kgfで測定した「HV0.01」の単位で評価した。なお、ビッカース硬度の値は、ランダムに5箇所測定して得られた結果の平均値とする。
 本発明のピストンリングにおいて、溶射皮膜の空孔率は8%(面積%)以下であることが好ましい。本発明では、溶射皮膜がCu又はCu合金相を含むので、Cu又はCu合金相を含まない溶射皮膜に比べて空孔率を8%以下とすることができる。溶射皮膜の空孔率が8%を超えると、空孔を起点として、溶射皮膜とピストンリング母材との界面で又は溶射皮膜内で欠けや剥離が発生することがある。なお、溶射皮膜の緻密性と保油性に基づく耐摩耗性の観点からは空孔率が6%以下であることがより好ましい。また、空孔率の下限は特に限定されないが、例えば0.5%とすることができる。
 溶射皮膜の厚さは特に限定しないが、船舶用等の大きいサイズのピストンリングの摺動面に形成する場合には、例えば150μm~800μmの厚さとすることができる。また、船舶用ほど大きくない自動車用等のピストンリングの場合には、そのピストンリングの大きさ等に応じて、例えば100μm~300μmの広い範囲で任意の厚さとすることができる。
 以上説明したように、本発明のピストンリングは、高融点金属で耐摩耗性と耐スカッフ性に優れたMo相をベース金属とし、そこにNiCr等のNi基自溶性合金相をバインダーとし、さらに初期なじみ性のよいCu又はCu合金相を分散させた溶射皮膜としている。こうした構成からなる本発明によれば、Ni基自溶性合金相をバインダーとすることでさらに耐摩耗性が向上し、Cu又はCu合金相を分散させることで初期なじみ性と耐スカッフ性が向上し且つ相手攻撃性を低下させることができるという効果を奏する。
 以下に、実施例と比較例を挙げて、本発明を更に詳しく説明する。
 [実施例1]
 平均粒径50μmのMo金属粉末と、平均粒径40μmのNiCr合金粉末と、平均粒径70μmのCu粉末とをそれぞれ64質量%、35質量%、1質量%となるように配合して溶射材料を調整した。なお、NiCr合金の成分組成は、Ni:70.5質量%、Cr:17質量%、Fe:4質量%、Si:4質量%、B:3.5質量%、C:1質量%である。
 この溶射材料を用い、以下の条件でプラズマ溶射し、ボロン鋳鉄からなるピストンリングの摺動面に厚さ300μmの溶射皮膜を形成した。溶射皮膜の成分組成は、後方散乱測定装置(日新ハイボルテージ株式会社製)を用いて定量し、原料である溶射材料の組成と同じく、Mo:64質量%、NiCr合金:35質量%、Cu:1質量%であった。
 [実施例2~6及び比較例1~4]
 実施例1で用いた原料粉末をベースとし、表1に示す成分組成となるように配合量を調整して溶射材料の組成を代え、実施例1と同様の溶射条件で、ピストンリングの摺動面に溶射皮膜を形成した。得られた溶射皮膜の成分組成を実施例1と同様に測定して表1に示した。なお、表1中、実施例5,6及び比較例3,4で表すCuAlは、平均粒径40μm、質量%で90Cu-9Al-1Fe合金粉末を用いた場合を指している。
 [従来例1,2]
 表1に示す成分組成となるように配合量を調整して、実施例1と同様の溶射条件でピストンリングの摺動面に溶射皮膜を形成した。なお、従来例2のCrは、平均粒径30μmのCr粉末を用いた場合を指している。
 [測定と評価]
 得られた溶射皮膜について、Cu相又はCu合金相の摺動面面積率と断面面積率とビッカース硬度を以下のように測定した。また、溶射皮膜及びCu又はCu-Al-Fe合金のビッカース硬度と、耐摩耗性指数と、相手材耐摩耗性指数と、耐スカッフ性指数とを、以下のように測定し、それぞれについて評価した。評価結果を表1に示した。
 (溶射条件)
 プラズマ溶射条件:スルザーメテコ社製9MBプラズマ溶射ガン
          電圧60~70V
          電流500A
 (面積率)
 面積率は、得られた溶射皮膜の摺動面を研磨し、現れた面を金属顕微鏡で200倍に拡大した写真を撮影し、その撮影画像を画像解析ソフトで解析してCu相の面積率(「摺動面面積率」という。)を測定した。一方、溶射皮膜の摺動面の法線に平行(又はリング軸方向)に切断した断面を研磨し、その断面を金属顕微鏡で200倍に拡大した写真を撮影し、その撮影画像を画像解析ソフトで解析してCu相の面積率(「断面面積率」という。)を測定した。得られた結果を表1に示した。なお、溶射皮膜の研磨は、180番、240番、320番、600番、800番、1200番と粒度を順次小さくした研磨紙で行い、最後にアルミナ(酸化アルミニウム)の1.0μm粉末を用いて20秒間バフ研磨し、得られた研磨面を面積率の観察試料とした。
 (ビッカース硬度)
 表1に示すCu又はCu-Al-Feのビッカース硬度は、Cu相又はCu-Al-Fe相の膜断面におけるビッカース硬度の測定結果であり、溶射皮膜のビッカース硬度は、Cu相又はCu-Al-Fe相を含む溶射皮膜の膜断面における全体のビッカース硬度の測定結果である。なお、溶射皮膜には、硬いMo金属相や柔らかいCu相又はCu-Al-Fe相が混在するので、溶射皮膜のビッカース硬度は溶射皮膜全体の平均的な硬度と言うことができる。ビッカース硬度は、マイクロビッカース硬度計(株式会社アカシ製)を用い、Cu又はCu-Al-Feのビッカース硬度は荷重0.01kgfで測定し、溶射皮膜のビッカース硬度は荷重0.3kgfで測定した。なお、ビッカース硬度はランダムに5箇所を測定し、得られた結果の平均値で表した。
 (耐摩耗性指数と相手材耐摩耗性指数)
 耐摩耗性指数と相手材耐摩耗性指数は、摩耗試験により測定した。摩耗試験は、図4に示す高負荷型摩耗試験機5を使用し、上記実施例1~6、比較例1~4及び従来例1,2で得られたピストンリングと同じ条件で得た固定片である供試材6を用い、供試材6(固定片)と、回転片である相手材7とを接触させ、荷重Pを負荷して行った。ここでの供試材6は、片状黒鉛鋳鉄からなる3本のピン(φ5mm、58.9mm)と外径40mmの円盤とを一体型とし、円盤は外径40mm、厚さはピンを含め12mmとした。また、相手材7(回転片)は、外径40mm、厚さ12mmのボロン鋳鉄である。摩耗試験条件は、潤滑油:スピンドル油相当品、油温:125℃、周速:1.65m/秒(1050rpm)、接触面圧:76.4MPa、試験時間:8時間の条件下で行った。
 耐摩耗性及び相手材耐摩耗性は、実施例1~6、比較例1~4、従来例2に相当する各供試材の摩耗指数を、従来例1に対応する供試材の摩耗指数に対しての相対比として比較し、耐摩耗性指数とした。従って、各供試材の耐摩耗性指数が100より小さいほど摩耗量が小さいことを表す。耐摩耗性指数の評価は、100以上110未満を「○」、110以上120未満を「△」、120以上を「×」とした。相手材耐摩耗性指数の評価は、80未満を「◎」、80以上100未満を「○」、100以上120未満を「△」、120以上を「×」とした。
 (耐スカッフ性指数)
 耐スカッフ性指数は、図5に示す回転式平面滑り摩擦試験機10により、各試験片11のスカッフ限界面圧を測定した。摩擦試験機は、一定速度で回転する相手材12の回転面に試験片11を一定時間、所定の面圧(P)で圧接し、スカッフが発生した時の面圧を限界面圧として測定したものである。圧接操作は、初期面圧を2.5MPaとして30分間保持し、その後、面圧を5MPaから5分毎に1MPaずつ漸次増加させていく方法で行った。測定は、周速5m/秒、潤滑油はSAE30:灯油=1:1に混合した油を試験前のみ塗布して行った。なお、試験片11は片状黒鉛鋳鉄であり、相手材12はボロン鋳鉄である。
 耐スカッフ性は、従来例1に対応する供試材のスカッフ発生荷重を100とし、実施例1~6、比較例1~4、従来例2に相当する各供試材のスカッフ発生荷重を従来例1に対応する供試材の結果に対する耐スカッフ性指数として比較した。従って、各供試材の耐スカッフ性指数が100より大きいほど、スカッフ発生荷重が大きくなり、従来例1に対応する供試材よりも耐スカッフ性に優れることとなる。耐スカッフ性指数の評価は、120以上を「◎」、105以上120未満を「○」、95以上105未満を「△」、95未満を「×」とした。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 表1中の総合評価は、各項目の「◎」を2点とし、「○」を1点とし、「△」を0点として計算し、耐摩耗性指数、相手材耐摩耗性指数及び耐スカッフ性指数の3項目の合計が4点以上を総合評価「◎」とし、2~3点を総合評価「○」とし、0~1点を総合評価「△」とし、1項目でも×のついたものは総合評価「×」とした。総合評価が「×」のものは本発明の範囲外である。
 各実施例は、耐スカッフ性及び相手材耐摩耗性において従来例及び比較例よりも優れていることが確認された。特に耐スカッフ性については、Cu又はCu合金相の含有量が多いものほど良好であることから、Cu又はCu合金相の相手材に対する初期なじみ性が効果的に作用していると考えられる。また、耐摩耗性は、従来例及び比較例とほとんど差がないことが確認された。
 次に、溶射皮膜の空孔率が、耐摩耗性と相手材耐摩耗性に及ぼす影響、及びピストンリング母材との密着性に及ぼす影響について、下記の実験1~3により検討した。
 [実験1]
 溶射皮膜の空孔率が耐摩耗性と相手材耐摩耗性に及ぼす影響について実験した。実施例1等で用いた溶射材料を調整し、64Mo-35NiCr-1Cu及び60Mo-30NiCr-10Cuの溶射皮膜をボロン鋳鉄からなるピストンリングの摺動面に厚さ300μmで作製した。2種の組成の溶射皮膜については、プラズマ溶射条件(電圧は50~70Vの範囲、電流は450~500Aの範囲)を変化させ、表2に示す空孔率を持つ溶射皮膜を得た。
 (測定と評価)
 溶射皮膜の空孔率は、摺動面の法線に平行(又はリング軸方向)に切断した断面を研磨し、その断面を金属顕微鏡で200倍に拡大した写真を撮影し、その撮影画像を画像解析ソフトで解析して求めた。なお、溶射皮膜の断面の研磨は、180番、240番、320番、600番、800番、1200番と粒度を順次小さくした研磨紙で行い、最後にアルミナ(酸化アルミニウム)の1.0μm粉末を用いて20秒間バフ研磨した。得られた断面を空孔率の観察試料とした。空孔率は、ランダムに5箇所を撮影し、その画像解析結果の平均値で評価した(実験2,3でも同じ)。
 実験に供した溶射皮膜の耐摩耗性と相手材耐摩耗性は、上記実施例1等と同じ方法で測定し、それぞれ耐摩耗性指数と相手材耐摩耗性指数として評価した。各試料の個別の評価と総合評価の基準も同じである。表2の結果からわかるように、空孔率が0.62%~7.71%の範囲で良好な評価が得られた。この結果は、好ましい空孔率の範囲を0.5%~8%とした既述の範囲を裏付けるものである。なお、空孔率が0.5%~6%で特に好ましい耐摩耗性指数と相手材耐摩耗性指数が得られるといえる。
 なお、表2中の総合評価は、各項目の「◎」を2点とし、「○」を1点とし、「△」を0点として計算し、耐摩耗性指数と相手材耐摩耗性指数の2項目の合計が2~4点を総合評価「○」とし、0~1点を総合評価「△」とした。
Figure JPOXMLDOC01-appb-T000002
 [実験2]
 次に、溶射皮膜の空孔率が密着力に及ぼす影響について実験した。実験1と同様に、実施例1等で用いた溶射材料を調整し、60Mo-30NiCr-10Cuの溶射皮膜をボロン鋳鉄からなるピストンリングの摺動面に厚さ300μmで作製した。比較試料として、Cuを含有させない65Mo-35NiCrの溶射皮膜(上記従来例1)を、密着力測定用の円筒試験片(外径25mm、長さ40mm)の端面に厚さ300μmで作製した。溶射皮膜については、プラズマ溶射条件(電圧は50~70Vの範囲、電流は450~500Aの範囲)を変化させ、表3に示す5段階の空孔率を持つ溶射皮膜を得た。
 (測定と評価)
 溶射皮膜の空孔率の測定は、溶射皮膜を形成した円筒試験片の断面を研磨し、実験1と同様に行った。一方、密着力の測定は、JIS H 8667に準拠し、溶射皮膜を形成した円筒試験片の端面と、溶射皮膜を形成していない円筒試験片の端面とを熱硬化性樹脂で接着して一体化し、その筒の両端を引張試験機の上下のチャックで固定して引張試験を行った。引張試験は、引張速度を1mm/minとし、溶射皮膜がボロン鋳鉄の界面から剥がれたとき又は溶射皮膜内で層間剥離したときの荷重を測定し、その荷重を円筒端面の面積で除した値を求めた。65Mo-35NiCrの溶射皮膜の値を1(基準)とし、5段階の空孔率を持つ試験試料の密着力と対比した。その結果を表3に示す。なお、硬化性樹脂との界面での剥離や硬化性樹脂層内での層間剥離は評価から除外した。
 表3の結果からわかるように、実験に供した溶射皮膜の密着力は、空孔率が0.71%~7.52%の範囲で良好な評価が得られた。この結果は、好ましい空孔率の範囲を0.5%~8%とした既述の範囲を裏付けるものである。なお、空孔率が3%~8%で好ましい密着力が得られるといえる。
Figure JPOXMLDOC01-appb-T000003
 [実験3]
 次に、空孔率によって、耐摩耗性と相手材耐摩耗性に優れる領域(0.5%~6%)と、密着力に優れる領域(3%~8%)とがあったことから、母材であるボロン鋳鉄上に先ず5.43%の空孔率を持つ60Mo-35NiCr-5Cuの厚さ100μmの溶射皮膜を形成し、その上に2.46%の空孔率を持つ60Mo-35NiCr-5Cuの厚さ200μmの溶射皮膜を形成した。上記実験2と同様に評価したところ、密着力が1.5であった。同様な実験を行い、下層として、空孔率3%~8%の溶射皮膜を形成し、表層として、空孔率0.5%~6%の溶射皮膜を形成すれば、耐摩耗性、相手材耐摩耗性及び密着力が良好になることを確認した。
 1 ピストンリング
 2 ピストンリング母材
 3 溶射皮膜
 5 高負荷型摩耗試験機
 6 供試材
 7 回転片
 10 回転式平面滑り摩擦試験機
 11 試験片
 12 相手材
 P 荷重

Claims (5)

  1.  Mo粉末とNi基自溶性合金粉末とCu又はCu合金粉末とを少なくとも含む混合粉末を溶射してなる溶射皮膜を摺動面に形成したピストンリングであって、
     前記溶射皮膜は、50~80質量%のMoと、1~12質量%のCu又はCu合金と、残部:Ni基自溶性合金とを少なくとも含有し、
     前記溶射皮膜の摺動面に現れるCu又はCu合金相の面積率が、0.5~15%であることを特徴とするピストンリング。
  2.  前記溶射皮膜の断面に現れるCu又はCu合金相の面積率が、0.1~10%である、請求項1に記載のピストンリング。
  3.  前記溶射皮膜の空孔率が8%以下である、請求項1又は2に記載のピストンリング。
  4.  前記Cu又はCu合金相は、前記摺動面の面内方向に伸張され且つ前記摺動面の法線方向に圧縮されてなる偏平形状を呈している、請求項1~3のいずれか1項に記載のピストンリング。
  5.  船舶用ピストンリングである、請求項1~4のいずれか1項に記載のピストンリング。
PCT/JP2010/052951 2009-02-26 2010-02-25 ピストンリング WO2010098382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10746261.6A EP2402474B1 (en) 2009-02-26 2010-02-25 Piston ring
CN201080008846.XA CN102325918B (zh) 2009-02-26 2010-02-25 活塞环
JP2011501636A JP5514187B2 (ja) 2009-02-26 2010-02-25 ピストンリング

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-044157 2009-02-26
JP2009044157 2009-02-26

Publications (2)

Publication Number Publication Date
WO2010098382A1 true WO2010098382A1 (ja) 2010-09-02
WO2010098382A9 WO2010098382A9 (ja) 2010-11-18

Family

ID=42665587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052951 WO2010098382A1 (ja) 2009-02-26 2010-02-25 ピストンリング

Country Status (4)

Country Link
EP (1) EP2402474B1 (ja)
JP (1) JP5514187B2 (ja)
CN (1) CN102325918B (ja)
WO (1) WO2010098382A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413006A1 (en) * 2010-07-29 2012-02-01 Nippon Piston Ring Co., Ltd. Piston ring
JP2013249536A (ja) * 2012-06-01 2013-12-12 Sulzer Metco Ag 軸受部品及び溶射法
JP2016102233A (ja) * 2014-11-28 2016-06-02 日本ピストンリング株式会社 ピストンリング及びその製造方法
KR20230162694A (ko) 2021-12-16 2023-11-28 닛폰 피스톤 린구 가부시키가이샤 용사 피막, 슬라이딩 부재 및 피스톤 링

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985961B2 (ja) * 2017-03-28 2021-12-22 日本ピストンリング株式会社 ピストンリング及びその製造方法
CN107858622A (zh) * 2017-11-17 2018-03-30 梁乔保 一种铜铝合金焊粉及其制备方法
CN116324233B (zh) * 2021-09-30 2023-09-19 帝伯爱尔株式会社 滑动构件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150080A (ja) 1983-02-11 1984-08-28 Toyota Motor Corp 摺動部材
JPS62112745A (ja) * 1985-11-05 1987-05-23 ザ・パ−キン−エルマ−・コ−ポレイシヨン 高い耐磨耗性および耐蝕性を有する合金、ならびにこの合金を基礎とする溶射用粉末
JPS63195254A (ja) * 1987-02-09 1988-08-12 Toyo Kohan Co Ltd 複合材の製造方法
JPH03260474A (ja) 1990-03-08 1991-11-20 Teikoku Piston Ring Co Ltd ピストンリング
JP2004346417A (ja) 2003-05-26 2004-12-09 Komatsu Ltd 溶射皮膜摺動材料、摺動部材および摺動部品並びにそれが適用される装置
JP2005155711A (ja) 2003-11-21 2005-06-16 Riken Corp 溶射ピストンリング及びその製造方法
JP2007314839A (ja) 2006-05-26 2007-12-06 Riken Corp ピストンリング用溶射皮膜及びそのピストンリング

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150080A (ja) 1983-02-11 1984-08-28 Toyota Motor Corp 摺動部材
JPS62112745A (ja) * 1985-11-05 1987-05-23 ザ・パ−キン−エルマ−・コ−ポレイシヨン 高い耐磨耗性および耐蝕性を有する合金、ならびにこの合金を基礎とする溶射用粉末
JPS63195254A (ja) * 1987-02-09 1988-08-12 Toyo Kohan Co Ltd 複合材の製造方法
JPH03260474A (ja) 1990-03-08 1991-11-20 Teikoku Piston Ring Co Ltd ピストンリング
JP2004346417A (ja) 2003-05-26 2004-12-09 Komatsu Ltd 溶射皮膜摺動材料、摺動部材および摺動部品並びにそれが適用される装置
JP2005155711A (ja) 2003-11-21 2005-06-16 Riken Corp 溶射ピストンリング及びその製造方法
JP2007314839A (ja) 2006-05-26 2007-12-06 Riken Corp ピストンリング用溶射皮膜及びそのピストンリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402474A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413006A1 (en) * 2010-07-29 2012-02-01 Nippon Piston Ring Co., Ltd. Piston ring
JP2012046821A (ja) * 2010-07-29 2012-03-08 Nippon Piston Ring Co Ltd ピストンリング
JP2013249536A (ja) * 2012-06-01 2013-12-12 Sulzer Metco Ag 軸受部品及び溶射法
JP2013249533A (ja) * 2012-06-01 2013-12-12 Sulzer Metco Ag 亜鉛不含噴霧粉末、銅含有溶射層、および銅含有溶射層を製造する方法
US9885382B2 (en) 2012-06-01 2018-02-06 Oerlikon Metco Ag, Wohlen Zinc-free spray powder, copper-containing thermal spray layer, as well as method of manufacturing a copper-containing thermal spray layer
JP2016102233A (ja) * 2014-11-28 2016-06-02 日本ピストンリング株式会社 ピストンリング及びその製造方法
KR101915593B1 (ko) * 2014-11-28 2018-11-06 닛폰 피스톤 린구 가부시키가이샤 피스톤 링 및 그 제조 방법
KR20230162694A (ko) 2021-12-16 2023-11-28 닛폰 피스톤 린구 가부시키가이샤 용사 피막, 슬라이딩 부재 및 피스톤 링

Also Published As

Publication number Publication date
WO2010098382A9 (ja) 2010-11-18
CN102325918A (zh) 2012-01-18
JPWO2010098382A1 (ja) 2012-09-06
JP5514187B2 (ja) 2014-06-04
CN102325918B (zh) 2013-11-06
EP2402474A4 (en) 2013-02-20
EP2402474B1 (en) 2013-10-23
EP2402474A1 (en) 2012-01-04

Similar Documents

Publication Publication Date Title
JP5689735B2 (ja) ピストンリング
JP5514187B2 (ja) ピストンリング
KR101731746B1 (ko) 피스톤 링용 용사 피막, 피스톤 링 및 피스톤 링용 용사 피막의 제조 방법
WO2009099226A1 (ja) Dlc被覆摺動部材及びその製造方法
US7279227B2 (en) Spraying piston ring
TW200411083A (en) Piston ring, sprayed coating used therefor and its production method
Umanskyi et al. Effect of TiB2 additives on wear behavior of NiCrBSi-based plasma-sprayed coatings
JP6411875B2 (ja) ピストンリング及びその製造方法
DK180330B1 (en) STAMP RING AND METHOD OF MANUFACTURE THEREOF
JP3547583B2 (ja) シリンダーライナー
WO2023113035A1 (ja) 溶射皮膜、摺動部材及びピストンリング
JP2004307975A (ja) 摺動部材
JP4247882B2 (ja) 耐摩耗溶射皮膜
Gok et al. Effect of abrasive particle sizes on abrasive wear of ceramic coatings sprayed by plasma process
EP3141628B1 (en) Sliding member and piston ring
WO2014127110A1 (en) Thermally sprayed wear-resistant piston ring coating
JP2004018880A (ja) 耐摩耗性摺動部材
JP3749618B2 (ja) 潤滑油存在下での耐摩耗性に優れる摺動部材
JP2006057507A (ja) ピストンリング及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008846.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501636

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010746261

Country of ref document: EP