WO2010098352A9 - 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材 - Google Patents

多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材 Download PDF

Info

Publication number
WO2010098352A9
WO2010098352A9 PCT/JP2010/052875 JP2010052875W WO2010098352A9 WO 2010098352 A9 WO2010098352 A9 WO 2010098352A9 JP 2010052875 W JP2010052875 W JP 2010052875W WO 2010098352 A9 WO2010098352 A9 WO 2010098352A9
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tio
group
glass body
sio
Prior art date
Application number
PCT/JP2010/052875
Other languages
English (en)
French (fr)
Other versions
WO2010098352A1 (ja
Inventor
喬宏 三森
康臣 岩橋
章夫 小池
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011501619A priority Critical patent/JP5578167B2/ja
Priority to EP10746232A priority patent/EP2402293A4/en
Publication of WO2010098352A1 publication Critical patent/WO2010098352A1/ja
Publication of WO2010098352A9 publication Critical patent/WO2010098352A9/ja
Priority to US13/210,673 priority patent/US8356494B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing

Definitions

  • the present invention relates to a method for producing a porous quartz glass body, more specifically to a method for producing a porous quartz glass body containing a metal dopant such as TiO 2 .
  • the porous quartz glass body produced by the method of the present invention is used for various applications.
  • a porous quartz glass body (porous TiO 2 —SiO 2 glass body) containing TiO 2 as a metal dopant is suitable for an optical substrate for EUV lithography (EUVL) such as a mask blank or a mirror.
  • EUVL EUV lithography
  • quartz glass containing TiO 2 as a metal dopant is referred to as TiO 2 —SiO 2 glass.
  • EUV (Extreme Ultra Violet) light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 to 100 nm.
  • an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used.
  • the exposure apparatus is required to form a high-resolution circuit pattern on the wafer surface with a deep focal depth.
  • Short wavelength is being promoted.
  • the exposure light source is advanced from the conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm) and KrF excimer laser (wavelength 248 nm), and an ArF excimer laser (wavelength 193 nm) has begun to be used.
  • immersion exposure technology and double exposure technology using an ArF excimer laser are considered promising. Is expected to cover only the 45 nm generation.
  • EUVL extreme ultraviolet light
  • the optical system member (EUVL optical member) of the EUVL exposure apparatus is a photomask or a mirror, but (1) a base material, (2) a reflective multilayer film formed on the base material, and (3) a reflective multilayer film It is basically composed of an absorber layer formed thereon.
  • As the reflective multilayer film it is considered to form a Mo / Si reflective multilayer film in which Mo layers and Si layers are alternately stacked.
  • Ta and Cr are considered as film forming materials.
  • a base material (EUVL optical base material) used for manufacturing an EUVL optical member a material having a low thermal expansion coefficient is required so that distortion does not occur even under EUV light irradiation, and a glass having a low thermal expansion coefficient. Etc. are being studied.
  • quartz glass containing TiO 2 as a metal dopant that is, TiO 2 —SiO 2 glass is quartz containing no metal dopant.
  • TiO 2 —SiO 2 glass has a possibility as an optical substrate for EUVL.
  • Patent Document 1 discloses a process of forming a porous TiO 2 —SiO 2 glass body by depositing and growing TiO 2 —SiO 2 glass fine particles obtained by flame hydrolysis of a glass forming raw material on a substrate (porous quartz). Glass body forming step), heating the porous TiO 2 —SiO 2 glass body to a densification temperature to obtain a TiO 2 —SiO 2 dense body (densification step), and an H 2 concentration of 1000 ppm or less.
  • the TiO 2 —SiO 2 dense body Heating the TiO 2 —SiO 2 dense body to a vitrification temperature in an atmosphere to obtain a TiO 2 —SiO 2 glass body (vitrification step), a method for producing a TiO 2 —SiO 2 glass body, and the transparent TiO 2 -SiO 2 glass body after the vitrification step, further comprising TiO 2 -SiO 2 glass a step of forming into a desired shape by heating to a temperature above the softening point (molding step) After the vitrification process or the molding process, the TiO 2 —SiO 2 glass body is held at a temperature exceeding 500 ° C. for a certain period of time, and then the average temperature decreasing rate is 100 ° C./hr or less up to 500 ° C.
  • TiO 2 —SiO 2 glass including a step of performing an annealing process for lowering the temperature, or a step of performing an annealing process for lowering a molded glass body of 1200 ° C. or higher to 500 ° C. at an average temperature decreasing rate of 100 ° C./hr or less (annealing step).
  • a method for manufacturing a body is disclosed.
  • the porous quartz glass body forming step is generally called a soot method.
  • a TiO 2 precursor as a glass forming raw material and a SiO 2 precursor are derived from a burner and hydrolyzed in a flame to generate glass fine particles. Then, the produced fine glass particles are deposited and grown on a base material to produce a porous quartz glass body.
  • the porous TiO 2 —SiO 2 glass body used for the EUVL optical substrate is required to have a small concentration distribution of TiO 2 in the glass body.
  • the concentration distribution of TiO 2 in the glass body is required to be 0.12 wt% or less.
  • the distribution ( ⁇ CTE) of the linear thermal expansion coefficient of the optical substrate for EUVL manufactured using the glass body is larger than 6 ppb / ° C. Become. Since the optical base material for EUVL currently requires ⁇ CTE to be 6 ppb / ° C. or less, it is a problem that the concentration distribution of TiO 2 in the glass body is larger than 0.12 wt%. It is expected that the demand for TiO 2 concentration distribution and ⁇ CTE in the glass body will become more severe.
  • ppb means wtppb.
  • the inventors of the present invention have found that when the porous TiO 2 —SiO 2 glass body is used as an EUVL optical member, it is necessary to strictly control the flame temperature in the porous quartz glass forming step described above. That is, it is preferable that the flame temperature is high because flame hydrolysis is promoted. However, if the flame temperature is too high, TiO 2 is crystallized when precipitated, and the obtained porous TiO 2 —SiO 2 glass body is obtained. When it is used for an EUVL optical member, it causes haze and striae, which is a problem.
  • the hydrolysis rate has a relationship of TiO 2 > SiO 2 , and the higher the temperature, the more the difference in reaction rate between the two disappears.
  • the reaction that generates SiO 2 occurs sufficiently, and the concentration of TiO 2 becomes relatively low.
  • the temperature of the outer peripheral portion of the base material is low, the reaction that generates TiO 2 is promoted, and the glass forming raw material is used in a state where SiCl 4 is actively consumed in the central portion of the base material.
  • the concentration of TiO 2 at the outer periphery of the base material becomes relatively high. As a result, the concentration distribution of TiO 2 in the produced porous TiO 2 —SiO 2 glass body is increased.
  • the flame temperature is too low, TiO 2 —SiO 2 glass particles obtained by flame hydrolysis cannot be efficiently deposited and grown on the substrate, and a porous TiO 2 —SiO 2 glass body is obtained. I can't.
  • the porous material is produced in the opposite direction to the case where the flame temperature is too high.
  • the concentration distribution of TiO 2 in the high quality TiO 2 —SiO 2 glass body is increased. That is, the reaction for generating SiO 2 does not occur sufficiently in the central portion of the base material, and the concentration of TiO 2 becomes higher than the outer peripheral portion of the base material. In addition, since the gas containing the glass forming raw material reaches the outer periphery of the base material in a state where TiCl 4 is actively consumed among the glass forming raw materials in the central portion of the base material, the concentration of TiO 2 is lower than the central portion of the base material. Also lower.
  • the present invention provides a method for producing a porous quartz glass body containing a metal dopant, in particular, the flame temperature can be easily controlled, and the TiO 2 Provided is a method for producing a porous quartz glass body having a small concentration distribution and capable of obtaining a porous TiO 2 —SiO 2 glass body suitable for an EUVL optical member.
  • the present invention hydrolyzes a metal dopant precursor and a SiO 2 precursor in a flame of a burner to produce glass fine particles, and deposits the produced glass fine particles on a substrate.
  • a method for producing a porous quartz glass body by growing The burner has at least two nozzles; (A) metal dopant precursor gas, (B) SiO 2 precursor gas, (C) one gas of H 2 and O 2 , and (D) noble gas, N 2 , CO 2 , hydrogen halide and A mixed gas containing one or more gases selected from the group consisting of H 2 O, wherein the ratio of the gas of (D) is 5 to 70 mol%, and (E) H 2 of (C) above and Provided is a method for producing a porous quartz glass body in which the other gas of O 2 is supplied to different nozzles of a burner.
  • the metal dopant is preferably TiO 2 .
  • a method for producing a porous quartz glass body (porous TiO 2 —SiO 2 glass body) containing TiO 2 as a metal dopant will be described in detail, but the present invention is not limited thereto.
  • the gases (A) to (D) are preferably mixed by a mixer.
  • the gases (A) to (D) are preferably mixed at 75 ° C. or higher.
  • the burner is preferably a multi-tube burner.
  • the mixed gas is supplied to a central nozzle of the multi-tube burner,
  • the gas (E) is preferably supplied to the outer peripheral nozzle of the multi-tube burner arranged concentrically on the central nozzle.
  • a second outer peripheral nozzle disposed concentrically with the central nozzle is provided between the central nozzle and the outer peripheral nozzle of the multi-tube burner.
  • F It is preferable to supply one or more kinds of gases selected from the group consisting of rare gas, N 2 , CO 2 , hydrogen halide and H 2 O to the second outer peripheral nozzle.
  • this invention provides the optical member for EUV lithography produced using the porous quartz glass body manufactured by the above-mentioned method.
  • a metal dopant precursor and a SiO 2 precursor are hydrolyzed in a flame of a burner to generate glass particles, and the generated glass particles are deposited and grown on a substrate.
  • the flame temperature of the burner can be easily controlled.
  • a porous TiO 2 —SiO 2 glass body in which crystallization of TiO 2 is suppressed and the concentration distribution of TiO 2 is small can be obtained particularly when TiO 2 is used as the metal dopant.
  • porous quartz glass body obtained by the production method of the present invention particularly when TiO 2 is used as a metal dopant, crystallization of TiO 2 is suppressed, and the concentration distribution of TiO 2 is low, 0.12 wt%. Since it is the following, it is suitable for using for the optical base material for EUVL.
  • FIG. 1 is a perspective view showing an example of a burner used in the manufacturing method of the present invention.
  • FIG. 1 is a perspective view showing an example of a burner used in the manufacturing method of the present invention.
  • a burner 10 shown in FIG. 1 has a central nozzle 1 at the center thereof, and a burner having a triple tube structure in which a second outer peripheral nozzle 3 and an outer peripheral nozzle 2 are arranged concentrically with the central nozzle 1. It is.
  • a mixed gas containing the following gases (A) to (D) is supplied from the central nozzle 1.
  • Noble gas, N 2 , CO 2 , hydrogen halide and H 2 O One or more types of gases selected from the group
  • the gases (A) to (D) will be described.
  • TiO 2 can be mentioned as the metal dopant in (A) a metal dopant precursor gas present invention, TiO 2 is preferred.
  • the TiO 2 precursor gas is a titanium halide compound such as TiCl 4 or TiBr 4 , or R n Ti (OR) 4-n (where R is an alkyl group having 1 to 4 carbon atoms, and n is 0 to 3). integer. the plurality of R is a gas of TiO 2 precursor such alkoxy titanium represented by each other may be the same or different.).
  • SiO 2 precursor gas is a chloride such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl, fluoride such as SiF 4 , SiHF 3 , SiH 2 F 2 , SiBr 4, bromides such as SiHBr 3, halogenated silicon compounds such as iodide such as SiI 4, R n Si (OR) 4- n (wherein R is an alkyl group having 1 to 4 carbon atoms, n represents 0 to 3 integer. Note that it is gas alkoxysilane such SiO 2 precursor represented by the plurality of R may be the same or different.).
  • H 2 and O 2 one of H 2 and O 2 is the combustion gas for forming a oxyhydrogen flame at the burner 10, both identical nozzle (in this case, the central nozzle 1) If it is supplied from the above, there is a possibility that a backfire is generated from the central nozzle 1 or a combustion reaction occurs in the immediate vicinity of the central nozzle 1 to damage the central nozzle 1. For this reason, one gas (for example, H 2 ) of H 2 and O 2 is supplied from the central nozzle 1, and the other gas (for example, O 2 ) is used as a gas of the group (E), and another nozzle of the burner. (In the case of the burner 10 shown in FIG. 1, it supplies from the outer periphery nozzle 2).
  • (D) One or more gases selected from the group consisting of noble gases, N 2 , CO 2 , hydrogen halides and H 2 O.
  • the gases (A) to (C) are made of porous TiO 2 by the soot method. When the SiO 2 glass body is formed, it is normally supplied from the central nozzle of the burner as a mixed gas.
  • the flame temperature (oxyhydrogen flame temperature) of the burner is controlled by mixing the gas.
  • the common point of the gas shown to the group is that all are not flammable gas and are not flammable gas.
  • a gas is included in the mixed gas supplied from the central nozzle of the burner, and the flame temperature of the burner is controlled by changing the proportion of the group (D) gas in the mixed gas.
  • the control of the flame temperature of the burner in the present invention means that the flame temperature of the burner is controlled under conditions suitable for obtaining a porous quartz glass body having a small haze after the vitrification step and a small concentration distribution of the metal dopant.
  • the flame temperature of the burner to suitable conditions. More specifically, among the flames of the burner, the temperature of the flame in the region where the mixed gas containing the gases (A) and (B), which are glass forming raw materials, circulates, that is, the flame hydrolysis of the glass forming raw material. Controlling the temperature of a region where decomposition is performed to a specific range.
  • the flame temperature of the burner refers to the flame temperature in the region where the mixed gas containing the gas of the group (A) and (B) that is the glass forming raw material flows
  • the flame temperature in this region is controlled in the range of 900 to 1600 ° C., more preferably in the range of 1000 to 1400 ° C., and still more preferably in the range of 1100 to 1300 ° C.
  • the ratio of the group (D) gas in the mixed gas is set to 5 to 70 mol%.
  • the proportion of the gas in group (D) is outside the above range, the effect of controlling the flame temperature of the burner cannot be sufficiently exhibited.
  • TiO 2 is used as the metal dopant, a porous TiO 2 —SiO 2 glass body having a small amount of precipitated TiO 2 crystals and a TiO 2 concentration distribution of 0.12 wt% or less cannot be obtained.
  • the proportion of the gas in group (D) is less than 5 mol%, the flame temperature of the burner becomes too high.
  • the concentration of TiO 2 in the central part of the base material is lower than that of the peripheral part of the base material as described above, and thus the produced porous TiO 2 —SiO 2 glass
  • the TiO 2 concentration distribution in the body becomes large, and a porous TiO 2 —SiO 2 glass body having a TiO 2 concentration distribution of 0.12 wt% or less cannot be obtained.
  • TiO 2 when TiO 2 is deposited, it is crystallized, which may cause haze or striae when the porous TiO 2 —SiO 2 glass body is used for an EUVL optical member.
  • the flame temperature of the burner becomes too low.
  • the concentration of TiO 2 in the central portion of the base material is higher than that of the peripheral portion of the base material as described above, and thus the produced porous TiO 2 —SiO 2 glass
  • the TiO 2 concentration distribution in the body becomes large, and a porous TiO 2 —SiO 2 glass body having a TiO 2 concentration distribution of 0.12 wt% or less cannot be obtained.
  • TiO 2 —SiO 2 glass particles obtained by flame hydrolysis cannot be efficiently deposited and grown on a substrate, and a porous TiO 2 —SiO 2 glass body may not be obtained.
  • the proportion of the gas in group (D) is more preferably 10 to 50 mol%, and further preferably 15 to 35 mol%.
  • the gas of group (D) When a rare gas is used as the gas of group (D), helium, neon, and argon are preferable, and among these, argon is more preferable in terms of cost.
  • hydrogen halide When hydrogen halide is used as the gas of group (D), hydrogen fluoride, hydrogen chloride or hydrogen bromide is preferred.
  • N 2 or CO 2 may be used because of the cost and because the specific heat of the polyatomic molecular gas is larger than that of the monoatomic molecular gas and the flame temperature can be easily controlled. preferable.
  • the ratio of the groups (A) to (C) in the mixed gas is as follows.
  • the ratio of the group (A) gas in the mixed gas is preferably 0.2 to 1 mol%.
  • the proportion of the group (B) gas in the mixed gas is preferably 4.7 to 26.2 mol%, more preferably 9 to 16 mol%, and still more preferably 12 to 14 mol%.
  • the proportion of the group (C) gas in the mixed gas is preferably 10 to 90.1 mol%, more preferably 30 to 80 mol%, and still more preferably 45 to 70 mol%.
  • the gases of the groups (A) to (D) are supplied from the central nozzle 1 of the burner 10 as a premixed mixed gas. Therefore, before supplying to the central nozzle 1 of the burner 10, (A) It is necessary to mix the gas of group (D). At this time, it is important for controlling the flame temperature of the burner to always keep the ratio of the gases of the groups (A) to (D) in the mixed gas uniform. When the ratio of the gas of the group (A) to (D) in the mixed gas changes, the flame temperature of the burner fluctuates.
  • the porous TiO 2 —SiO 2 glass body produced This is because the composition of the TiO 2 , in particular, the concentration distribution of TiO 2 may vary.
  • the mixing method using a mixer include a method of mixing these gases in a premix tank, a method of using a static mixer, a method of dividing and mixing gases using a filter housing, and a thin type. Examples include a method of generating a jet jet using piping and mixing gas.
  • the gas in groups (A) and (B) has a small ratio in the mixed gas. May not be able to be obtained.
  • the gases of groups (A) and (B) may be supplied in a state of being mixed with a carrier gas.
  • a carrier gas used for this purpose, H 2 , N 2 , argon, or the like can be used.
  • those corresponding to the (C) and (D) groups of gases are also included.
  • the carrier gas corresponding to the (C), (D) group gas is used, the ratio of the (C), (D) group gas in the mixed gas is the gas used as the carrier gas. It is necessary to make it the said ratio after including.
  • some of the gases in groups (A) and (B) have a relatively high boiling point.
  • a gas having a relatively high boiling point is used as the gas in groups (A) and (B)
  • the gases of the groups (A) to (D) are mixed, if the gas having a high boiling point is liquefied, the composition of the mixed gas does not become the intended composition (the liquefied gas is not sufficiently mixed and the ratio of the gas is small.
  • problems such as blockage of piping for supplying the mixed gas to the burner due to gas liquefaction may occur.
  • the pipe temperature is increased on the downstream side of the location where the gas in the groups (A) and (B) is supplied, and the location where the gas is supplied. It is necessary to prevent the vapor pressures of the gases in groups (A) and (B) from becoming low and to mix the gases in groups (A) to (D) at a temperature higher than that. Since the gas supply of the groups (A) and (B) is generally performed at a temperature of 75 ° C. or higher, the gas mixing of the groups (A) to (D) is preferably performed at 75 ° C. or higher, and 150 ° C. or higher. More preferably, it is more preferably performed at 180 ° C. or higher. Moreover, 250 degrees C or less is preferable.
  • one of H 2 and O 2 that are combustion gases for forming an oxyhydrogen flame is supplied from the central nozzle 1 of the burner 10 as a group (C) gas, and the other is (E )
  • the gas is supplied from the outer peripheral nozzle 2 of the burner 10 as a group gas.
  • the ratio of the total amount of H 2 and the total amount of O 2 (O 2 / H 2 ) is preferably 0.50 or more.
  • one of H 2 and O 2 is supplied from the central nozzle 1 of the burner 10 as the (C) group gas, and the other is supplied from the outer peripheral nozzle 2 of the burner 10 as the (E) group gas. If the two are mixed and supplied from the same nozzle (in this case, the central nozzle 1), a backfire is generated from the central nozzle 1 or a combustion reaction takes place in the immediate vicinity of the central nozzle 1. This is because there is a risk of damage.
  • the gas described as the group (D) (the gas of the (F) group) is sealed gas. It is preferable to supply as.
  • the supply of the group (F) gas does not affect the flame temperature control in the present invention.
  • the amount of gas in group (F) is changed, the temperature of the region where the gas in group (F) circulates in the flame of the burner is considered to change, but in this region, the flame hydrolysis of the glass forming raw material is Not done. That is, it is considered that the influence on the region where flame hydrolysis of the glass forming raw material is performed can be ignored.
  • gas other than said gas for example, it is possible to add water or alcohol for the purpose of promoting hydrolysis, or to add methane gas or the like for the purpose of adjusting the flame temperature.
  • the production method of the present invention has been described above by taking the case of using a triple tube structure burner as an example. That is, it is as follows.
  • Center nozzle Mixed gas (gases in groups (A) to (D))
  • a burner having a multi-tube structure of four or more tubes is also used. it can.
  • the mixed gas is supplied from the central nozzle of the burner having a multi-tube structure, and the group (E) gas is supplied from the nozzle serving as the outer peripheral nozzle to the central nozzle.
  • the mixed gas and the (E) group gas are not supplied from the adjacent nozzles, and the central nozzle that supplies the mixed gas and the (E) group It is preferable to provide a nozzle for supplying the group (F) gas between the outer peripheral nozzle for supplying the gas.
  • the group (E) gas and the group (F) gas may be supplied from a plurality of nozzles.
  • the central nozzle 1 of the burner 10 may be divided into a multi-tube burner to form a central nozzle 1 ′′ that is concentric with the central nozzle 1 ′, and the mixed gas may be supplied to both the central nozzle 1 ′ and the central nozzle ”.
  • the second outer peripheral nozzle 3 may be divided into concentric outer peripheral nozzles 3 ′ and outer peripheral nozzles 3 ′′, and (F) group of gases may be supplied to the outer peripheral nozzle 3 ′ and the outer peripheral nozzle 3 ′′.
  • the outer peripheral nozzle 2 may be divided into a concentric outer peripheral nozzle 2 ′ and an outer peripheral nozzle 2 ′′, and the group (E) gas may be supplied to both the outer peripheral nozzle 2 ′ and the outer peripheral nozzle 2 ′′.
  • the following supply forms are possible.
  • the outer peripheral nozzle (1) is a nozzle adjacent to the central nozzle, is adjacent to the outer peripheral nozzles (2), (3), and (4) in this order, and the outer peripheral nozzle (4) is the outermost nozzle.
  • Center nozzle Mixed gas (gases in groups (A) to (D))
  • at least one or more outer peripheral nozzles are provided between the central nozzle 1 of the burner 10 and the second outer peripheral nozzle 3, and the gas of the group (C) can be supplied.
  • the porous quartz glass body is formed by the reaction of the (A) group gas and the (B) group gas by the heat generated by the combustion of the (C) group gas and the (E) group gas.
  • the gas of group (C) exiting from the outer peripheral nozzle provided outside the central nozzle exits from the first outer peripheral nozzle (E)
  • the reaction between the group (A) gas and the group (B) gas can be promoted.
  • at least one outer peripheral nozzle may be provided outside the first outer peripheral nozzle 2. More specifically, an outer peripheral nozzle that supplies the (C) group gas and the (E) group gas independently may be provided outside the outer peripheral nozzle 2.
  • the (C) group gas and the (E) group gas are not supplied from the adjacent nozzles, and the (C) group outer peripheral nozzle that supplies the gas, and the (E) group (F) An outer peripheral nozzle for supplying gas must be provided between the outer peripheral nozzle for supplying the gas.
  • the deposition surface temperature of the porous quartz glass body is controlled, and a stable porous glass quartz body can be easily formed.
  • the mixed gas from the central nozzle it is preferable to supply the mixed gas from the central nozzle.
  • glass fine particles generated by hydrolyzing a metal dopant precursor such as TiO 2 and a SiO 2 precursor in a flame of a burner are deposited on a substrate and grown to be porous.
  • a quartz glass body is produced.
  • Supplying a mixed gas containing the gases of groups (A) and (B) from the central nozzle is preferable for uniformly depositing glass particles on the substrate.
  • the mixed gas supplied from the central nozzle of the burner includes the (D) group gas that is inert to combustion, and the (D) group in the mixed gas.
  • the flame temperature of the burner can be controlled. Specifically, for example, when TiO 2 is used as the metal dopant, the flame temperature in the region where the mixed gas flows is set to obtain a porous TiO 2 —SiO 2 glass body having a TiO 2 concentration distribution of 0.12 wt% or less.
  • the temperature is preferably controlled within a range of 900 to 1600 ° C.
  • the produced porous TiO 2 ⁇ The TiO 2 concentration in the SiO 2 glass body can be adjusted.
  • the group (C) gas is preferably H 2 and the group (E) gas is preferably O 2 .
  • the reaction between the metal dopant precursor and the SiO 2 precursor includes a hydrolysis reaction and a thermal oxidation reaction. In the latter case, the size of particles produced by the reaction tends to be small, and the resulting porous quartz glass body Tends to be difficult to handle.
  • the reaction is a main reaction.
  • a quartz glass seed rod for example, a seed rod described in Japanese Patent Publication No. 63-24937
  • a quartz glass seed rod for example, a seed rod described in Japanese Patent Publication No. 63-24937
  • an EUVL optical member can be obtained from the porous quartz glass body produced by the production method of the present invention.
  • an EUVL optical member can be obtained by performing the following procedure using a porous TiO 2 —SiO 2 glass body obtained using TiO 2 as a metal dopant.
  • the porous TiO 2 —SiO 2 glass body is heated to a densification temperature in a vacuum or in an inert gas atmosphere to form a TiO 2 —SiO 2 dense body (densification step).
  • the obtained TiO 2 —SiO 2 dense body is heated to a transparent vitrification temperature to form a transparent TiO 2 —SiO 2 glass body (vitrification step).
  • the obtained transparent TiO 2 —SiO 2 glass body is heated to a temperature equal to or higher than the softening point and molded into a desired shape (molding process), and then slowly cooled at a desired temperature schedule (slow cooling process).
  • An EUVL optical member can be obtained.
  • each said process can also be performed continuously or simultaneously.
  • the porous TiO 2 —SiO 2 glass body obtained using TiO 2 as the metal dopant has a TiO 2 concentration distribution of 0.12 wt% or less.
  • the EUVL optical member obtained from such a porous TiO 2 —SiO 2 glass body has a linear thermal expansion coefficient distribution ( ⁇ CTE) of 6 ppb / ° C. or less, and satisfies the physical properties required for the EUVL optical member.
  • the obtained TiO 2 —SiO 2 dense body was heat-treated at 1660 ° C. for 2 hours to form a transparent glass (vitrification step).
  • the obtained TiO 2 —SiO 2 transparent glass body was further subjected to heat treatment at 1690 ° C. for 60 hours to form a block shape (molding step).
  • the formed TiO 2 —SiO 2 glass body is cooled down to 1000 ° C., then gradually cooled to 950 ° C. at 10 ° C./hr, then to 900 ° C. at a rate of 5 ° C./hr, and held at 900 ° C. for 70 hours.
  • the mixture was naturally cooled to room temperature (slow cooling step).
  • the obtained TiO 2 —SiO 2 glass body was sliced into a 6.35 mm thick, 152 mm square plate, and nine 20 mm square plate samples with the diagonal as a diagonal were cut out in the diagonal direction. Each was subjected to fluorescent X-ray analysis to determine the TiO 2 concentration. The difference between the maximum value and the minimum value of the TiO 2 concentration of TiO 2 concentration distribution.
  • polishing the obtained TiO 2 —SiO 2 glass body to a thickness of 2 mm After polishing the obtained TiO 2 —SiO 2 glass body to a thickness of 2 mm, light from a high-intensity light source is incident, haze is visually observed, and there are five levels (the white side is visible through the other side of the glass body).
  • ⁇ CTE of the sample was obtained from the following equation using the measurement result of the TiO 2 concentration distribution ( ⁇ TiO 2 ).
  • ⁇ CTE (ppb / ° C.) 50 (10 ⁇ 7 / ° C.) ⁇ ⁇ TiO 2 (wt%)
  • Example 1 TiCl 4 was used as the group A gas, SiCl 4 was used as the group B gas, and H 2 was used as the group C gas. Further, N 2 was used as the (D) group gas. The proportion of the group (D) gas in the mixed gas was 25 mol%.
  • the ratios of gases in groups (A) to (C) were as follows. (A) Group gas: 0.5 mol% (B) Group gas: 13.1 mol% (C) Group gas: 61.4 mol% After introducing the gas of group (A) to (D) from different ports into the premixing tank maintained at 75 ° C, and diffusing and mixing in the tank so that the gas concentration is uniform, the pipe temperature is gradually increased. The gas heated up to 200 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body is subjected to a densification step to a slow cooling step according to the above procedure, and a TiO 2 sample is sliced into a 6.35 mm thick, 152 mm square plate. It was 0.07 wt% when 2 density
  • Example 2 The O 2 as the gas (C) group, the outer peripheral nozzle for supplying and H 2 as (E) a group of gas. Other gas conditions are the same as in Example 1. After introducing the gas of group (A) to (D) from different ports into the premixing tank maintained at 75 ° C, and diffusing and mixing in the tank so that the gas concentration is uniform, the pipe temperature is gradually increased. The gas heated up to 200 ° C. is supplied to the central nozzle of the multi-tube burner through a static mixer manufactured by Apriori and a gas filter manufactured by Paul.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 300 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows is 1400 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.12 wt% or less. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less.
  • a haze will be 2 in 5-step evaluation.
  • Example 3 H 2 is used as the gas of the (C) group, and He is used as the gas of the (D) group.
  • the ratio of the group (D) gas in the mixed gas is 42 mol%.
  • the other gas types are the same as in Example 1.
  • the ratios of the gases in groups (A) to (C) are as follows.
  • Group gas: 44.4 mol% After introducing the gas of group (A) to (D) from different ports into the premixing tank maintained at 75 ° C, and diffusing and mixing in the tank so that the gas concentration is uniform, the pipe temperature is gradually increased. The gas heated up to 200 ° C.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 300 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows is 1200 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.12 wt% or less. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less. Further, the haze is 1 in a five-step evaluation.
  • Example 4 H 2 is used as the gas of the (C) group, and CO 2 is used as the gas of the (D) group.
  • the ratio of the (D) group gas in the mixed gas is 17 mol%.
  • the other gas types are the same as in Example 1.
  • the ratios of the gases in groups (A) to (C) are as follows.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 300 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows is 1250 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.12 wt% or less. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less.
  • a haze will be 2 in 5-step evaluation.
  • Example 5 H 2 is used as the gas of the (C) group, and N 2 is used as the gas of the (D) group.
  • the ratio of the group (D) gas in the mixed gas is 8 mol%.
  • the other gas types are the same as in Example 1.
  • the ratios of the gases in groups (A) to (C) are as follows.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 320 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows is 1600 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.12 wt% or less. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less.
  • haze is set to 3 by five-step evaluation.
  • Example 6 H 2 is used as the gas of the (C) group, and N 2 is used as the gas of the (D) group.
  • the ratio of the group (D) gas in the mixed gas is 59 mol%.
  • the other gas types are the same as in Example 1.
  • the ratios of the gases in groups (A) to (C) are as follows.
  • the (A) to (D) group gases are introduced into the premixing tank maintained at 75 ° C and diffused and mixed so that the gas concentration is uniform in the tank, and then the pipe temperature is gradually raised. The gas heated to 200 ° C.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 270 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows is 900 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.12 wt%. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less. Further, the haze is 1 in a five-step evaluation.
  • Example 7 The same gas conditions as in Example 1 are used.
  • the gases of groups (A) to (D) are combined into a single pipe using a union tee and passed through a static mixer maintained at 75 ° C.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 300 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows is 1200 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.12 wt%. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less.
  • a haze will be 2 in 5-step evaluation.
  • Example 8 He is supplied as the (F) group gas to the second outer peripheral nozzle of the multi-tube burner.
  • Other conditions are the same as those in the first embodiment. Under these conditions, a porous TiO 2 —SiO 2 glass body having a diameter of about 300 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame. During the production of the porous TiO 2 —SiO 2 glass body, the flame temperature of the burner in the region where the mixed gas flows is 1200 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body was subjected to a densification step to a slow cooling step according to the above procedure, and a sample sliced into a 6.35 mm thick, 152 mm square plate was used for TiO 2.
  • concentration distribution is measured, it is 0.07 wt%. From this result, it is confirmed that ⁇ CTE of the sample is 6 ppb / ° C. or less. Further, the haze is 1 in a five-step evaluation.
  • TiCl 4 was used as the group A gas
  • SiCl 4 was used as the group B gas
  • H 2 was used as the group C gas.
  • N 2 was used as the (D) group gas.
  • the proportion of the group (D) gas in the mixed gas was 17 mol%.
  • the ratios of gases in groups (A) to (C) were as follows.
  • the gas heated up to 200 ° C. was supplied to the central nozzle of the multi-tube burner through a static mixer manufactured by Apriori and a gas filter manufactured by Pall.
  • the outer peripheral nozzle of the multi-tube burner was supplied with O 2 as group (E) gas, and the second outer peripheral nozzle was supplied with N 2 as group (F) gas.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 300 mm and a length of about 500 mm was produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows was 1300 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body is subjected to a densification step to a slow cooling step according to the above procedure, and a TiO 2 sample is sliced into a 6.35 mm thick, 152 mm square plate. It was 0.05 wt% when 2 density
  • the outer peripheral nozzle of the multi-tube burner was supplied with O 2 as the (E) group gas, and the second outer peripheral nozzle was supplied with N 2 as the (F) group gas.
  • a porous TiO 2 —SiO 2 glass body having a diameter of about 330 mm and a length of about 500 mm was produced by hydrolysis with an oxyhydrogen flame.
  • the flame temperature of the burner in the region where the mixed gas flows was 1650 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body is subjected to a densification step to a slow cooling step according to the above procedure, and a TiO 2 sample is sliced into a 6.35 mm thick, 152 mm square plate.
  • a TiO 2 sample is sliced into a 6.35 mm thick, 152 mm square plate.
  • the TiO 2 concentration distribution was 0.25 wt%. From this result, it was confirmed that ⁇ CTE of the sample was 12.5 ppb / ° C. Moreover, the haze was 4 in a 5-stage evaluation.
  • the ratio of the group (D) gas in the mixed gas is 80 mol%.
  • the other gas types are the same as in Example 1.
  • the ratios of the gases in groups (A) to (C) are as follows.
  • the (A) to (D) group gases are introduced into the premixing tank maintained at 75 ° C and diffused and mixed so that the gas concentration is uniform in the tank, and then the pipe temperature is gradually raised.
  • the gas heated to 200 ° C. is supplied to the central nozzle of the multi-tube burner through an a priori static mixer and a Paul gas filter.
  • the gas of group (A) to (C) and the gas of (D ') are introduced from different ports into the premix tank maintained at 75 ° C, and diffused so that the gas concentration is uniform in the tank After mixing, the piping temperature is gradually raised, and the gas heated to 200 ° C. is supplied to the central nozzle of the multi-tube burner via an a priori static mixer and a Paul gas filter. Under these conditions, a porous TiO 2 —SiO 2 glass body having a diameter of about 320 mm and a length of about 500 mm is produced by hydrolysis with an oxyhydrogen flame. During the production of the porous TiO 2 —SiO 2 glass body, the flame temperature of the burner in the region where the mixed gas flows is 1700 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body is subjected to a densification step to a slow cooling step according to the above procedure, and a TiO 2 sample is sliced into a 6.35 mm thick, 152 mm square plate. 2
  • concentration distribution was measured, the flame temperature of the burner increased because the combustible gas CH 4 was supplied, the center of the deposition surface of the porous TiO 2 —SiO 2 glass body became high temperature, and the temperature difference at the outer periphery increased.
  • the TiO 2 concentration distribution is 0.21 wt%. From this result, it is confirmed that ⁇ CTE of the sample is 10.5 ppb / ° C.
  • the haze is 4 on a five-point scale.
  • the flame temperature of the burner in the region where the mixed gas flows is 1650 ° C.
  • the resulting porous TiO 2 —SiO 2 glass body is subjected to a densification step to a slow cooling step according to the above procedure, and a TiO 2 sample is sliced into a 6.35 mm thick, 152 mm square plate.
  • measurement of the 2 concentration distribution increases the flame temperature of the burner for supplying the combustion supporting gas Cl 2, the center of the deposition surface of the porous TiO 2 -SiO 2 glass body is heated to a high temperature, since the temperature difference between the outer periphery is increased
  • the TiO 2 concentration distribution is 0.38 wt%. From this result, it is confirmed that ⁇ CTE of the sample is 19 ppb / ° C. Moreover, haze is set to 3 by five-step evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明は、金属ドーパント前駆体と、SiO前駆体と、をバーナーの火炎中で加水分解してガラス微粒子を生成し、生成したガラス微粒子を基材に堆積、成長させて多孔質石英ガラス体を製造する方法であって、前記バーナーが少なくとも二つのノズルを有しており、(A)金属ドーパント前駆体ガス、(B)SiO前駆体ガス、(C)HおよびOのうち一方のガス、および、(D)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガス、を含有し、前記(D)のガスの割合が5~70mol%である混合ガスと、(E)上記(C)のHおよびOのうち他方のガスと、をバーナーの互いに異なるノズルに供給する、多孔質石英ガラス体の製造方法に関する。

Description

多孔質石英ガラス体の製造方法およびEUVリソグラフィ用光学部材
 本発明は、多孔質石英ガラス体の製造方法、より具体的にはTiOのような金属ドーパントを含む多孔質石英ガラス体の製造方法に関する。本発明の方法により製造される多孔質石英ガラス体は、様々な用途に用いられる。例えば金属ドーパントとしてTiOを含む多孔質石英ガラス体(多孔質TiO-SiOガラス体)は、マスクブランクやミラーといったEUVリソグラフィ(EUVL)用光学基材に好適である。
 なお、本明細書において、金属ドーパントとしてTiOを含有する石英ガラスをTiO-SiOガラスという。
 また、本明細書において、EUV(Extreme Ultra Violet)光とは、軟X線領域または真空紫外域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光をいう。
 従来から、光リソグラフィ技術においては、ウェハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウェハ面上に結像させることが求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)から進んで、ArFエキシマレーザ(波長193nm)が用いられ始めている。また、さらに回路パターンの線幅が70nm以下となる次世代の集積回路に対応するため、ArFエキシマレーザを用いた液浸露光技術や二重露光技術が有力視されているが、これらも線幅が45nm世代までしかカバーできないと見られている。
 このような流れにあって、露光光源としてEUV光(極端紫外光)のうち代表的には波長13nmの光を用いたリソグラフィ技術が、回路パターンの線幅が32nm以降の世代にわたって適用可能と見られ注目されている。EUVリソグラフィ(以下、「EUVL」と略する)の像形成原理は、投影光学系を用いてマスクパターンを転写する点では、従来のフォトリソグラフィと同じである。しかし、EUV光のエネルギー領域では光を透過する材料が無いために、屈折光学系は用いることができず、光学系はすべて反射光学系となる。
 EUVL用露光装置の光学系部材(EUVL用光学部材)はフォトマスクやミラーなどであるが、(1)基材、(2)基材上に形成された反射多層膜、(3)反射多層膜上に形成された吸収体層、から基本的に構成される。反射多層膜としては、Mo層と、Si層と、を交互に積層させたMo/Si反射多層膜を形成することが検討され、吸収体層には、成膜材料として、TaやCrが検討されている。EUVL用光学部材の製造に用いられる基材(EUVL用光学基材)としては、EUV光照射の下においても歪みが生じないよう低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラス等が検討されている。
 金属ドーパントを含むことでガラス材料の熱膨張係数が下がることが知られており、特に、金属ドーパントとしてTiOを含有する石英ガラス、すなわち、TiO-SiOガラスは、金属ドーパントを含まない石英ガラスよりも小さい熱膨張係数を有する超低熱膨張材料として知られ、またTiO含有量によって熱膨張係数を制御できるために、熱膨張係数が0に近いゼロ膨張ガラスが得られる。したがって、TiO-SiOガラスはEUVL用光学基材としての可能性がある。
 特許文献1には、ガラス形成原料を火炎加水分解して得られるTiO-SiOガラス微粒子を基材に堆積、成長させて多孔質TiO-SiOガラス体を形成する工程(多孔質石英ガラス体形成工程)と、多孔質TiO-SiOガラス体を緻密化温度まで昇温して、TiO-SiO緻密体を得る工程(緻密化工程)と、H濃度が1000ppm以下の雰囲気中でTiO-SiO緻密体をガラス化温度まで昇温して、TiO-SiOガラス体を得る工程(ガラス化工程)と、を含むTiO-SiOガラス体の製造方法、および、ガラス化工程の後に透明TiO-SiOガラス体を、軟化点以上の温度に加熱して所望の形状に成形する工程(成形工程)をさらに含むTiO-SiOガラス体の製造方法、ならびに、ガラス化工程、あるいは成形工程の後にTiO-SiOガラス体を500℃を超える温度にて一定時間保持した後に500℃まで100℃/hr以下の平均降温速度で降温するアニール処理を行う工程、または、1200℃以上の成形ガラス体を500℃まで100℃/hr以下の平均降温速度で降温するアニール処理を行う工程(アニール工程)を含むTiO-SiOガラス体の製造方法が開示されている。なお、上記の多孔質石英ガラス体形成工程は、一般にスート法と呼ばれるものである。
 上記したスート法による多孔質石英ガラス体形成工程では、例えば、ガラス形成原料となるTiO前駆体と、SiO前駆体と、をバーナーから導出させて火炎中で加水分解してガラス微粒子を生成し、生成したガラス微粒子を基材に堆積、成長させて多孔質石英ガラス体を製造する。
日本国特開2006-210404号公報(WO2006/80241)
 EUVL用光学基材に用いられる多孔質TiO-SiOガラス体は、該ガラス体におけるTiOの濃度分布が小さいことが要求される。現状においては、該ガラス体におけるTiOの濃度分布が0.12wt%以下であることが要求される。該ガラス体におけるTiOの濃度分布が0.12wt%よりも大きくなると、該ガラス体を用いて製造されるEUVL用光学基材の線熱膨張係数の分布(ΔCTE)が6ppb/℃よりも大きくなる。EUVL用光学基材は、現状においてΔCTEが6ppb/℃以下であることが要求されることから、該ガラス体におけるTiOの濃度分布が0.12wt%よりも大きくなることは問題である。
 該ガラス体におけるTiOの濃度分布、および、ΔCTEについての要求はさらに厳しくなることが予想される。
 なお、本明細書中において、ppbはwtppbを意味する。
 多孔質TiO-SiOガラス体をEUVL用光学部材に用いる場合、上記した多孔質石英ガラス形成工程における火炎の温度を厳密に制御することが必要であることを本願発明者らは見出した。
 すなわち、火炎温度が高いほうが、火炎加水分解が促進されるので好ましいが、火炎温度が高すぎるとTiOが析出した際に結晶化してしまい、得られた多孔質TiO-SiOガラス体をEUVL用光学部材に用いる場合にヘイズや脈理の原因となるので問題となる。
 また、加水分解により生じる対象に着目した場合、加水分解速度はTiO>SiOの関係となっており、温度が高いほど両者の反応速度差がなくなることから、火炎温度が高すぎる場合、火炎が最もよくあたる多孔質TiO-SiOガラス体(母材)の中央部ではSiOを生じる反応が十分に起こり、TiOの濃度が相対的に低くなる。一方で、母材の外周部は温度が低く、TiOを生じる反応が促進されることと、母材中央部でガラス形成原料のうちSiClが積極的に消費された状態でガラス形成原料を含むガスが母材外周部に到達するために、母材外周部でのTiOの濃度が相対的に高くなる。この結果、製造される多孔質TiO-SiOガラス体のTiOの濃度分布が大きくなる。
 一方、火炎温度が低すぎると、火炎加水分解して得られるTiO-SiOガラス微粒子を効率的に基材に堆積、成長させることができず、多孔質TiO-SiOガラス体を得ることができない。
 また、火炎加水分解して得られるTiO-SiOガラス微粒子を効率的に基材に堆積、成長させることが可能な場合でも、火炎温度が高すぎる場合とは反対の方向で製造される多孔質TiO-SiOガラス体のTiOの濃度分布が大きくなる。すなわち、母材の中央部ではSiOを生じる反応が十分に起こらず、TiOの濃度が母材外周部よりも高くなる。また、母材外周部では母材中央部でガラス形成原料のうちTiClが積極的に消費された状態でガラス形成原料を含むガスが到達するために、TiOの濃度が母材中央部よりも低くなる。
 上記した従来技術の問題点を解決するため、本発明は金属ドーパントを含む多孔質石英ガラス体の製造方法を提供するものであり、特に、火炎温度を容易に制御することができ、TiOの濃度分布が小さく、EUVL用光学部材に好適な多孔質TiO-SiOガラス体を得ることができる多孔質石英ガラス体の製造方法を提供する。
 上記の目的を達成するため、本発明は、金属ドーパント前駆体と、SiO前駆体と、をバーナーの火炎中で加水分解してガラス微粒子を生成し、生成したガラス微粒子を基材に堆積、成長させて多孔質石英ガラス体を製造する方法であって、
 前記バーナーが少なくとも二つのノズルを有しており、
 (A)金属ドーパント前駆体ガス、(B)SiO前駆体ガス、(C)HおよびOのうち一方のガス、および、(D)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガス、を含有し、前記(D)のガスの割合が5~70mol%である混合ガスと、(E)上記(C)のHおよびOのうち他方のガスと、をバーナーの互いに異なるノズルに供給する、多孔質石英ガラス体の製造方法を提供する。
 本発明の多孔質石英ガラス体の製造方法において、前記金属ドーパントが、TiOであることが好ましい。
 本明細書においては、金属ドーパントとしてTiOを含む多孔質石英ガラス体(多孔質TiO-SiOガラス体)の製造方法について詳しく説明するが、本発明はこれに限定されない。
  本発明の多孔質石英ガラス体の製造方法において、前記(A)~(D)のガスが混合器により混合されることが好ましい。
 本発明の多孔質石英ガラス体の製造方法において、前記(A)~(D)のガスが75℃以上で混合されることが好ましい。
 本発明の多孔質石英ガラス体の製造方法において、前記バーナーが多重管バーナーであることが好ましい。
 本発明の多孔質石英ガラス体の製造方法において、前記混合ガスを前記多重管バーナーの中央ノズルに供給し、
 前記(E)のガスを、前記中央ノズルに同心円状に配置された前記多重管バーナーの外周ノズルに供給することが好ましい。
 本発明の多孔質石英ガラス体の製造方法において、前記多重管バーナーの前記中央ノズルと、前記外周ノズルと、の間には、前記中央ノズルに同心円状に配置された第2の外周ノズルが設けられており、
 (F)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガスを、該第2の外周ノズルに供給することが好ましい。
 本発明の多孔質石英ガラス体の製造方法において、前記多重管バーナーの前記外周ノズルの外側に前記中央ノズルに同心円状に配置された1以上の外周ノズルが設けられていることが好ましい。
 また、本発明は、上記した方法にて製造された多孔質石英ガラス体を用いて作製されたEUVリソグラフィ用光学部材を提供する。
 本発明の製造方法によれば、金属ドーパント前駆体と、SiO前駆体と、をバーナーの火炎中で加水分解してガラス微粒子を生成し、生成したガラス微粒子を基材に堆積、成長させて多孔質石英ガラス体を製造する際に、バーナーの火炎温度を容易に制御することができる。この結果、金属ドーパントとしてTiOを用いた場合は特に、TiOの結晶化が抑制され、かつ、TiOの濃度分布が小さい多孔質TiO-SiOガラス体を得ることができる。
 本発明の製造方法により得られる多孔質石英ガラス体は、金属ドーパントとしてTiOを用いた場合は特に、TiOの結晶化が抑制され、かつ、TiOの濃度分布が低く、0.12wt%以下であるため、EUVL用光学基材に用いるのに好適である。
図1は、本発明の製造方法に用いるバーナーの一例を示した斜視図である。
 以下、本発明について図面を参照して説明する。
 図1は、本発明の製造方法に用いるバーナーの一例を示した斜視図である。図1に示すバーナー10は、その中心部に中央ノズル1を有し、該中央ノズル1に対し同心円状に、第2の外周ノズル3、および、外周ノズル2が配置された三重管構造のバーナーである。
 図1に示すバーナー10を用いて、本発明の製造方法を実施する場合、下記(A)~(D)のガスを含有する混合ガスを中央ノズル1から供給する。
(A)金属ドーパント前駆体ガス
(B)SiO前駆体ガス
(C)HおよびOのうち一方のガス
(D)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガス
 以下、(A)~(D)のガスについて説明する。
(A)金属ドーパント前駆体ガス
 本発明における金属ドーパントとしてはSnO、TiOなどが挙げられ、TiOが好ましい。以下、金属ドーパントとしてTiOを用いる場合について詳細に説明する。TiO前駆体ガスとは、TiCl、TiBrなどのハロゲン化チタン化合物、またRTi(OR)4-n(ここでRは炭素数1~4のアルキル基、nは0~3の整数。なお、複数のRは互いに同一でも異なっていてもよい。)で示されるアルコキシチタンといったTiO前駆体のガスである。
(B)SiO前駆体ガス
 SiO前駆体ガスとは、SiCl、SiHCl、SiHCl、SiHClなどの塩化物、SiF、SiHF、SiHなどのフッ化物、SiBr、SiHBrなどの臭化物、SiIなどのヨウ化物といったハロゲン化ケイ素化合物、またRSi(OR)4-n(ここでRは炭素数1~4のアルキル基、nは0~3の整数。なお、複数のRは互いに同一でも異なっていてもよい。)で示されるアルコキシシランといったSiO前駆体のガスである。
(C)HおよびOのうち一方のガス
 HおよびOは、バーナー10で酸水素火炎を形成するための燃焼ガスであるが、両者を同一のノズル(この場合、中央ノズル1)から供給すると、該中央ノズル1から逆火が発生したり、該中央ノズル1の直近で燃焼反応が起こり、該中央ノズル1を損傷するおそれがある。このため、HおよびOのうち一方のガス(例えば、H)を中央ノズル1から供給し、他方のガス(例えば、O)を(E)群のガスとして、バーナーの別のノズル(図1に示すバーナー10の場合、外周ノズル2)から供給する。
(D)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガス
 上記(A)~(C)のガスは、スート法により多孔質TiO-SiOガラス体を形成する場合に、混合ガスとしてバーナーの中央ノズルから通常供給されるものである。
 本発明の製造方法では、上記(A)~(C)のガスに加えて、(D)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガスを混合することにより、バーナーの火炎温度(酸水素火炎温度)を制御する。(D)群に示したガスの共通点は、いずれも可燃性ガスではなく、支燃性ガスでもないことである。本発明の製造方法では、このようなガスをバーナーの中央ノズルから供給される混合ガスに含め、混合ガス中の(D)群のガスの割合を変えることにより、バーナーの火炎温度を制御することができる。
 本発明におけるバーナーの火炎温度の制御とは、ガラス化工程後にヘイズが小さく、かつ金属ドーパントの濃度分布が小さい多孔質石英ガラス体を得るうえで好適な条件にバーナーの火炎温度を制御することをいう。
 特に好ましくは、例えば金属ドーパントとしてTiOを用いる場合、大きなTiO結晶の析出量が少なく、かつTiOの濃度分布が0.12wt%以下の多孔質TiO-SiOガラス体を得るうえで好適な条件にバーナーの火炎温度を制御することをいう。
  より具体的には、バーナーの火炎のうち、ガラス形成原料である(A),(B)群のガスを含んだ混合ガスが流通する領域における火炎の温度を、すなわち、ガラス形成原料の火炎加水分解が行われる領域の温度を、特定の範囲に制御することをいう。
 本発明において、特に説明がない場合、バーナーの火炎温度とは、ガラス形成原料である(A),(B)群のガスを含んだ混合ガスが流通する領域における火炎温度を指し、本発明の製造方法では、この領域における火炎の温度を900~1600℃の範囲、より好ましくは1000~1400℃の範囲、さらに好ましくは1100~1300℃の範囲に制御する。
  これにより、例えば金属ドーパントとしてTiOを用いる場合、TiO結晶の析出及び粒成長を抑制し、かつガラス形成原料の火炎加水分解が行われる領域の温度を、TiOの濃度分布が0.12wt%以下の多孔質TiO-SiOガラス体を得ることができる。
 本発明の製造方法では、混合ガス中の(D)群のガスの割合を5~70mol%とする。(D)群のガスの割合が上記の範囲外だと、バーナーの火炎温度を制御する効果を十分発揮することができない。また、金属ドーパントとしてTiOを用いる場合、大きなTiO結晶の析出量が少なく、かつTiOの濃度分布が0.12wt%以下の多孔質TiO-SiOガラス体を得ることができない。
 (D)群のガスの割合が5mol%未満だと、バーナーの火炎温度が高くなりすぎる。これにより、例えば金属ドーパントとしてTiOを用いる場合、前述の通り、母材外周部に比べて母材中央部のTiOの濃度が低くなることから、製造される多孔質TiO-SiOガラス体におけるTiOの濃度分布が大きくなり、TiOの濃度分布が0.12wt%以下の多孔質TiO-SiOガラス体を得ることができない。また、TiOが析出した際に結晶化してしまい、該多孔質TiO-SiOガラス体をEUVL用光学部材に用いる場合にヘイズや脈理の原因となるおそれがある。
 一方、(D)群のガスの割合が70mol%超だと、バーナーの火炎温度が低くなりすぎる。これにより、例えば金属ドーパントとしてTiOを用いる場合、前述の通り、母材外周部に比べて母材中央部のTiOの濃度が高くなることから、製造される多孔質TiO-SiOガラス体におけるTiOの濃度分布が大きくなり、TiOの濃度分布が0.12wt%以下の多孔質TiO-SiOガラス体を得ることができない。また、火炎加水分解して得られるTiO-SiOガラス微粒子を効率的に基材に堆積、成長させることができず、多孔質TiO-SiOガラス体を得ることができなくなるおそれがある。
 (D)群のガスの割合は、10~50mol%であることがより好ましく、15~35mol%であることがさらに好ましい。
 (D)群のガスとして希ガスを用いる場合、ヘリウム、ネオン、アルゴンが好ましく、これらの中でもアルゴンが価格の面からより好ましい。
 (D)群のガスとしてハロゲン化水素を用いる場合、フッ化水素、塩化水素または臭化水素が好ましい。
 また、(D)群のガスとしては、コスト面や、多原子分子ガスの比熱が単原子分子ガスよりも大きく火炎温度の制御が行いやすいという理由から、N、COを使用することが好ましい。
 一方、混合ガス中の(A)~(C)群の割合については以下の通りである。
 混合ガス中の(A)群のガスの割合は、0.2~1mol%であることが好ましい。
 混合ガス中の(B)群のガスの割合は、4.7~26.2mol%であることが好ましく、より好ましくは9~16mol%であり、さらに好ましくは12~14mol%である。
 混合ガス中の(C)群のガスの割合は、10~90.1mol%であることが好ましく、より好ましくは30~80mol%であり、さらに好ましくは45~70mol%である。
 本発明において、(A)~(D)群のガスは、予め混合された混合ガスとして、バーナー10の中央ノズル1から供給するので、バーナー10の中央ノズル1に供給する前に、(A)~(D)群のガスを混合する必要がある。この際、混合ガス中の(A)~(D)群のガスの割合を常に均一に保つことが、バーナーの火炎温度を制御するうえで重要である。混合ガス中の(A)~(D)群のガスの割合が変化すると、バーナーの火炎温度が変動し、例えば金属ドーパントとしてTiOを用いる場合、製造される多孔質TiO-SiOガラス体の組成、特に、TiOの濃度分布が変動するおそれがあるからである。
 混合ガス中の(A)~(D)群のガスの割合が均一になるように、これらのガスを混合するには混合器を用いて混合することが好ましい。混合器を用いた混合方法の具体例としては、予混合タンクにてこれらのガスを混合する方法、スタティック・ミキサーを利用する方法、フィルターのハウジングを利用してガスを分割・混合する方法、細い配管を用いてジェット噴流を発生させガスを混合する方法等が挙げられる。
 (A)~(D)群のガスのうち、(A),(B)群のガスは混合ガスにおける割合が少ないため、単独で供給した場合、供給されるガス量が少ないことから十分な流速を得ることができなくなるおそれがある。十分な流速を得るため、(A),(B)群のガスはキャリアガスと混合した状態で供給してもよい。
 この目的で使用するキャリアガスとしては、H、N、アルゴン等を用いることができる。
 上記のキャリアガスの中には、(C),(D)群のガスに該当するものも含まれている。上記のキャリアガスとして、(C),(D)群のガスに該当するものを使用する場合、混合ガス中の(C),(D)群のガスの割合は、これらキャリアガスとして使用するガスを含めたうえで、上記割合となるようにする必要がある。
 (A)~(D)群のガスのうち、(A),(B)群のガスの中には、沸点が比較的高いものも存在する。(A),(B)群のガスとして、沸点が比較的高いものを使用する場合、ガスが液化しないような条件で(A)~(D)群のガスの混合を行う必要がある。(A)~(D)群のガスを混合する際に、沸点が高いガスが液化すると、混合ガスの組成が意図した組成とならない(液化したガスが十分混合されず、該ガスの割合が少なくなる)、ガスの液化によりバーナーへ混合ガスを供給する配管が閉塞する等の問題が生じるおそれがある。
 (A),(B)群のガスの液化を防止するためには、(A),(B)群のガスを供給した箇所よりも下流側は配管温度を上げ、ガスを供給した箇所よりも(A),(B)群のガスの蒸気圧が低くならないようにし、かつそれよりも高い温度で(A)~(D)群のガスの混合を行う必要がある。(A),(B)群のガス供給は一般に75℃以上の温度で実施することから、(A)~(D)群のガス混合は75℃以上で実施することが好ましく、150℃以上で実施することがより好ましく、180℃以上で実施することが特に好ましい。また、250℃以下が好ましい。
 上述したように、酸水素火炎を形成するための燃焼ガスであるHおよびOのうち、一方は、(C)群のガスとしてバーナー10の中央ノズル1から供給され、他方は、(E)群のガスとしてバーナー10の外周ノズル2から供給される。ここで、バーナー10から供給されるHおよびOのうち、安全上の理由から、Hは完全に酸水素火炎中で消費させる必要がある。したがって、Hの合計量およびOの合計量の割合(O/H)は、0.50以上であることが好ましい。合成の安定性から考えると、O/Hが0.55~1.0となるように供給することがより好ましく、0.55~0.85がより好ましく、0.55~0.78が特に好ましい。
 上述したように、HおよびOのうち、一方を(C)群のガスとしてバーナー10の中央ノズル1から供給し、他方を(E)群のガスとしてバーナー10の外周ノズル2から供給するのは、両者を混合する状態で同一のノズル(この場合、中央ノズル1)から供給すると、該中央ノズル1から逆火が発生したり、該中央ノズル1の直近で燃焼反応が起こり、該ノズルを損傷するおそれがあるからである。これらの問題を防止するうえで、中央ノズル1と外周ノズル2との間にある第2の外周ノズル3から、上記で(D)群として記載したガス((F)群のガス)をシールガスとして供給することが好ましい。この場合、(F)群のガスの供給は、本発明における火炎温度の制御には影響しないと考えられる。(F)群のガスの量を変化させた場合、バーナーの火炎のうち、(F)群のガスが流通する領域の温度は変化すると考えられるが、該領域ではガラス形成原料の火炎加水分解は行われない。すなわち、ガラス形成原料の火炎加水分解が行われる領域への影響は無視できると考えられるからである。
 なお、本発明において、上記のガス以外のガスも本発明の効果を損なわない程度で加えてもよい。
 例えば、加水分解を促進する目的で水分やアルコールなどを添加する、火炎温度を調整する目的でメタンガスなどを添加する、などが可能である。
 以上、本発明の製造方法について、三重管構造のバーナーを使用する場合を例に説明した。すなわち、以下のようになる。
中央ノズル:混合ガス((A)~(D)群のガス)
第2の外周ノズル:(F)群のガス
外周ノズル(第1の外周ノズル):(E)群のガス
  本発明の製造方法には、四重管以上の多重管構造のバーナーも用いることができる。この場合、多重管構造のバーナーの中央ノズルから混合ガスを供給し、中央ノズルに対して外周ノズルとなるノズルから(E)群のガスを供給する。さらに、上記した中央ノズルからの逆火等の防止という点で、混合ガスと(E)群のガスを、隣接するノズルからは供給せず、混合ガスを供給する中央ノズルと(E)群のガスを供給する外周ノズルとの間に(F)群のガスを供給するノズルを設けることが好ましい。この関係を満たす限り、(E)群のガスおよび(F)群のガスは複数のノズルから供給してもよい。
 また、多重管バーナーにバーナー10の中央ノズル1を分割して、中央ノズル1’と同心円状の中央ノズル1”とし、中央ノズル1’と中央ノズル”の両方に混合ガスを供給してもよい。同様に、第2の外周ノズル3を分割して、同心円状の外周ノズル3’と外周ノズル3”とし、外周ノズル3’と外周ノズル3”に(F)群のガスを供給してもよい。さらには、外周ノズル2を分割して、同心円状の外周ノズル2’と外周ノズル2”とし、外周ノズル2’と外周ノズル2”の両方に(E)群のガスを供給してもよい。
 一例を挙げると、五重管構造のバーナーの場合、以下の供給形態が可能である。
 なお外周ノズル(1)は中央ノズルに隣接するノズルであり、外周ノズル(2)、(3)、(4)の順で隣接し、外周ノズル(4)は最も外側に位置するノズルである。
中央ノズル:混合ガス((A)~(D)群のガス)
外周ノズル(1):(F)群のガス
外周ノズル(2):(F)群のガス
外周ノズル(3):(E)群のガス
外周ノズル(4):(E)群のガス
 また、図1において、バーナー10の中央ノズル1と第2の外周ノズル3の間に少なくとも1個以上の外周ノズルを設け、(C)群のガスを供給することができる。多孔質石英ガラス体は、(C)群のガスと(E)群のガスが燃焼して発生した熱によって、(A)群のガスと(B)群のガスが反応して形成されるが、(A)群のガスと(B)群のガスが反応する前に、中央ノズルの外側に設けられた外周ノズルから出る(C)群のガスが、第1の外周ノズルから出る(E)群のガスとあらかじめ燃焼して発熱することにより、(A)群のガスと(B)群のガスの反応を促進できる。
 さらに、該第1の外周ノズル2の外側に外周ノズルを少なくとも1個以上設けてもよい。より具体的には、該外周ノズル2の外側に(C)群のガス、(E)群のガスをそれぞれ単独に供給する外周ノズルを設けてもよい。ただし、逆火を防ぐ点で、(C)群のガス、(E)群のガスは隣接したノズルから供給することはなく、(C)群のガスを供給する外周ノズルと、(E)群のガスを供給する外周ノズルとの間には、(F)ガスを供給する外周ノズルを必ず設ける必要がある。これらにより、多孔質石英ガラス体の堆積面温度が制御され、安定した多孔質ガラス石英体が形成しやすい。
 多重管バーナーからのガスの供給に関して、複数の態様を選択し得ることを述べたが、いずれの場合においても、中央ノズルから混合ガスを供給することが好ましい。
 本発明の製造方法では、TiOなどの金属ドーパント前駆体と、SiO前駆体と、をバーナーの火炎中で加水分解することによって生成したガラス微粒子を基材に堆積させ、成長させることによって多孔質石英ガラス体を製造する。中央ノズルから(A),(B)群のガスを含む混合ガスを供給することは、基材上にガラス微粒子を均一に堆積させるうえで好ましい。
 上述したように、本発明の製造方法では、バーナーの中央ノズルから供給する混合ガスに、燃焼に対して不活性な(D)群のガスを含め、かつ、該混合ガスにおける(D)群のガスの割合を5~70mol%とすることで、バーナーの火炎温度を制御できる。具体的には、例えば金属ドーパントとしてTiOを用いる場合、混合ガスが流通する領域における火炎温度を、TiOの濃度分布が0.12wt%以下の多孔質TiO-SiOガラス体を得るうえで好適な温度、具体的には、900~1600℃の範囲に制御するものである。
 本発明の製造方法では、(B)群のガスの割合を(A)群のガスの量に対して調節することにより、例えば金属ドーパントとしてTiOを用いる場合、製造される多孔質TiO-SiOガラス体におけるTiO濃度を調節することができる。
 本発明では、(C)群のガスがHであり、かつ(E)群のガスがOであることが好ましい。金属ドーパント前駆体とSiO前駆体の反応には、加水分解反応と熱酸化反応があるが、後者の場合は反応して生成する粒子の大きさが小さくなりやすく、得られる多孔質石英ガラス体の嵩密度が小さくなり、ハンドリングしにくくなる傾向がある。そこで、(C)群のガスをH、(E)群のガスをOとすることで、金属ドーパント前駆体とSiO前駆体が存在する雰囲気中の酸素濃度を下げ、加水分解反応が主体となる反応とすることが好ましい。
 なお、本発明の製造方法において、基材としては石英ガラス製の種棒(例えば特公昭63-24937号公報記載の種棒)を使用できる。また棒状に限らず板状の基材を使用してもよい。
 従来と同様の手順を実施することにより、本発明の製造方法で製造された多孔質石英ガラス体からEUVL用光学部材を得ることができる。具体的には、例えば金属ドーパントとしてTiOを用いて得られた多孔質TiO-SiOガラス体を用い、以下の手順を実施することでEUVL用光学部材を得ることができる。
 多孔質TiO-SiOガラス体を真空中もしくは不活性ガス雰囲気中で緻密化温度まで昇温してTiO-SiO緻密体とする(緻密化工程)。得られたTiO-SiO緻密体を、透明ガラス化温度まで昇温して透明TiO-SiOガラス体とする(ガラス化工程)。得られた透明TiO-SiOガラス体を、軟化点以上の温度に加熱して所望の形状に成形した後(成形工程)、所望の温度スケジュールで徐冷することにより(徐冷工程)、EUVL用光学部材を得ることができる。なお、上記の各工程は連続的に、あるいは同時に行うこともできる。
 本発明の製造方法において、金属ドーパントとしてTiOを用いて得られた多孔質TiO-SiOガラス体は、TiO濃度分布が0.12wt%以下となる。このような多孔質TiO-SiOガラス体から得られるEUVL用光学部材は線熱膨張係数の分布(ΔCTE)は6ppb/℃以下であり、EUVL用光学部材に要求される物性を満足する。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されない。
 以下の実施例および比較例では酸水素火炎の温度は、B熱電対(0.5mm)の測温部分(先端)をガラス微粒子堆積面に相当する位置において測定した。
 なお、以下の実施例および比較例のガラス組成はすべてTiO=6.7wt%、SiO=93.3wt%である。
 また、実施例および比較例で作成した多孔質TiO-SiOガラス体は、メタル化炉内で真空条件にて1400℃まで昇温してTiO-SiO緻密体とした(緻密化工程)。得られたTiO-SiO緻密体は、1660℃にて2時間の熱処理を施して透明ガラス化した(ガラス化工程)。得られたTiO-SiO透明ガラス体に、さらに1690℃にて60時間の熱処理を施しブロック形状に成形した(成形工程)。成形したTiO-SiOガラス体は、1000℃まで降温したのち、950℃まで10℃/hr、その後900℃まで5℃/hrの降温速度で徐冷し、900℃で70時間保持したのち、室温まで自然冷却した(徐冷工程)。
 得られたTiO-SiOガラス体を厚さ6.35mm、152mm四方の板状にスライスしたものについて、さらに対角線方向に、その対角線を対角線とする20mm四方の板状のサンプルを9点切り出し、各々について蛍光X線分析を実施してTiO濃度を測定した。TiO濃度の最大値と最小値の差をTiO濃度分布とした。
 また、得られたTiO-SiOガラス体を厚さ2mmに研磨後、高輝度光源からの光を入射し、目視でヘイズを観察し、5段階(真っ白でガラス体の向こう側が透けて見えないものを5、ガラス体の向こう側がやや透けて見えるが、かなり曇っているものを4、ガラス体の向こう側が透けて見えるが、曇っているものを3、ガラス体の向こう側が透けて見えるがやや曇っているものを2、ヘイズがなく、ガラス体の向こう側が透けて見えるものを1)にて評価した。
 また、TiO濃度分布(ΔTiO)の測定結果を用い下記の式から、サンプルのΔCTEを求めた。
 ΔCTE(ppb/℃)=50(10-7/℃)×ΔTiO(wt%)
[実施例1]
 (A)群のガスとしてTiClを、(B)群のガスとしてSiClを、(C)群のガスとしてHを用いた。また、(D)群のガスとしてNを用いた。混合ガス中の(D)群のガスの割合は25mol%であった。(A)~(C)群のガスの割合はそれぞれ以下の通りであった。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:61.4mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給した。多重管バーナーの外周ノズルには(E)群のガスとしてOを、第2の外周ノズルには(F)群のガスとしてNを供給した。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造した。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1200℃であった。
 得られた多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定したところ、0.07wt%であった。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認された。また、ヘイズは5段階評価で1であった。
[実施例2]
 (C)群のガスとしてOを、外周ノズルには(E)群のガスとしてHを供給する。他のガス条件は実施例1と同様とする。
  75℃に保たれた予混合タンクに(A)~(D)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1400℃となる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.12wt%以下となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で2となる。
[実施例3]
 (C)群のガスとしてHを、(D)群のガスとしてHeを用いる。混合ガス中の(D)群のガスの割合は42mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:44.4mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1200℃となる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.12wt%以下となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で1となる。
[実施例4]
 (C)群のガスとしてHを、(D)群のガスとしてCOを用いる。混合ガス中の(D)群のガスの割合は17mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:69.4mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1250℃となる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.12wt%以下となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で2となる。
[実施例5]
 (C)群のガスとしてHを、(D)群のガスとしてNを用いる。混合ガス中の(D)群のガスの割合は8mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:78.4mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により直径約320mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1600℃となる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.12wt%以下となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で3となる。
[実施例6]
 (C)群のガスとしてHを、(D)群のガスとしてNを用いる。混合ガス中の(D)群のガスの割合は59mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:27.4mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスはそれぞれ導入され、タンク内にてガス濃度が均質になるように拡散混合された後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給される。この条件にて酸水素火炎での加水分解により直径約270mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は900℃となる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.12wt%となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で1となる。
[実施例7]
 実施例1と同様のガス条件を用いる。(A)~(D)群のガスはユニオンティーを用いて一本の配管に合流させ、75℃に保たれたスタティックミキサーを通過させる。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1200℃でとなる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.12wt%となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で2となる。
[実施例8]
 多重管バーナーの第2の外周ノズルに(F)群のガスとしてHeを供給する。他は実施例1と同様の条件を用いる。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1200℃となる。
 得られる多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、0.07wt%となる。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認される。また、ヘイズは5段階評価で1となる。
[実施例9]
 (A)群のガスとしてTiClを、(B)群のガスとしてSiClを、(C)群のガスとしてHを用いた。また、(D)群のガスとしてNを用いた。混合ガス中の(D)群のガスの割合は17mol%であった。(A)~(C)群のガスの割合はそれぞれ以下の通りであった。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:69.0mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給した。多重管バーナーの外周ノズルには(E)群のガスとしてOを、第2の外周ノズルには(F)群のガスとしてNを供給した。この条件にて酸水素火炎での加水分解により直径約300mm、長さ約500mmの多孔質TiO-SiOガラス体を製造した。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1300℃であった。
 得られた多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定したところ、0.05wt%であった。この結果から、該サンプルのΔCTEは6ppb/℃以下であることが確認された。また、ヘイズは5段階評価で2であった。
[比較例1]
 (A)群のガスとしてTiClを、(B)群のガスとしてSiClを、(C)群のガスとしてHを用いた。(D)群のガスは使用しなかった。(A)~(C)群のガスの割合はそれぞれ以下の通りであった。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:86.4mol%
 75℃に保たれた予混合タンクに(A)~(C)群のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、多重管バーナーの中心ノズルに供給した。多重管バーナーの外周ノズルには(E)群のガスとしてOを、第2の外周ノズルには(F)群のガスとしてNを供給した。この条件にて酸水素火炎での加水分解により直径約330mm、長さ約500mmの多孔質TiO-SiOガラス体を製造した。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1650℃であった。
 得られた多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定したところ、バーナーの火炎温度の上昇に伴い、高温となった多孔質TiO-SiOガラス体堆積面の中心ではSiOの反応が促進されてTiO濃度が低くなったため、TiO濃度分布は0.25wt%であった。この結果から、該サンプルのΔCTEは12.5ppb/℃であることが確認された。また、ヘイズは5段階評価で4であった。
[比較例2]
 混合ガス中の(D)群のガスの割合は80mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:6.4mol%
 75℃に保たれた予混合タンクに(A)~(D)群のガスはそれぞれ導入され、タンク内にてガス濃度が均質になるように拡散混合された後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により多孔質TiO-SiOガラス体を製造しようとしても、混合ガスが流通する領域におけるバーナーの火炎温度が非常に低いため(火炎温度600℃)、ガラス微粒子が基材に効率的に堆積せず多孔質TiO-SiOガラス体が得られない。
[比較例3]
 (A)群のガスとしてTiClを、(B)群のガスとしてSiClを、(C)群のガスとしてHを用いる。(D)群のガスの代わりに可燃性ガスCH(D´)を使用する。
混合ガス中の(D´)群のガスの割合は25mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:61.4mol%
である。
 75℃に保たれた予混合タンクに(A)~(C)群のガス、および、(D´)のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により直径約320mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1700℃である。
 得られた多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、可燃性ガスCHを供給したためバーナーの火炎温度が上昇し、多孔質TiO-SiOガラス体の堆積面の中心が高温となり、外周の温度差が大きくなったため、TiO濃度分布は0.21wt%となる。この結果から、該サンプルのΔCTEは10.5ppb/℃であることが確認される。また、ヘイズは5段階評価で4となる。
[比較例4]
 (A)群のガスとしてTiClを、(B)群のガスとしてSiClを、(C)群のガスとしてHを用いる。(D)群のガスの代わりに支燃性ガスCl(D´´)を使用する。混合ガス中の(D´´)群のガスの割合は25mol%とする。他のガス種は実施例1と同様とする。(A)~(C)群のガスの割合はそれぞれ以下の通りである。
(A)群のガス:0.5mol%
(B)群のガス:13.1mol%
(C)群のガス:61.4mol%
 75℃に保たれた予混合タンクに(A)~(C)群のガス、および、(D´´)のガスをそれぞれ異なる口から導入し、タンク内にてガス濃度が均質になるように拡散混合した後、配管温度を徐々に上昇させ、200℃に加熱したガスをアプリオリ社製スタティック・ミキサー、ポール社製ガスフィルターを経由させて、多重管バーナーの中心ノズルに供給する。この条件にて酸水素火炎での加水分解により直径約320mm、長さ約500mmの多孔質TiO-SiOガラス体を製造する。多孔質TiO-SiOガラス体の製造時、混合ガスが流通する領域におけるバーナーの火炎温度は1650℃である。
 得られた多孔質TiO-SiOガラス体に対して、上記の手順で緻密化工程~徐冷工程を実施し、厚さ6.35mm、152mm四方の板状にスライスしたサンプルを用いてTiO濃度分布を測定すると、支燃性ガスClを供給したためバーナーの火炎温度が上昇し、多孔質TiO-SiOガラス体の堆積面の中心が高温となり、外周の温度差が大きくなったため、TiO濃度分布は0.38wt%となる。この結果から、該サンプルのΔCTEは19ppb/℃であることが確認される。また、ヘイズは5段階評価で3となる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、さまざまな変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2009年2月24日出願の日本特許出願2009-040455に基づくものであり、その内容はここに参照として取り込まれる。
 1:中央ノズル
 2:外周ノズル
 3:第2の外周ノズル
10:バーナー

Claims (9)

  1.  金属ドーパント前駆体と、SiO前駆体と、をバーナーの火炎中で加水分解してガラス微粒子を生成し、生成したガラス微粒子を基材に堆積、成長させて多孔質石英ガラス体を製造する方法であって、
     前記バーナーが少なくとも二つのノズルを有しており、
    (A)金属ドーパント前駆体ガス、
    (B)SiO前駆体ガス、
    (C)HおよびOのうち一方のガス、および、
    (D)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガス、を含有し、
    前記(D)のガスの割合が5~70mol%である混合ガスと、
    (E)上記(C)のHおよびOのうち他方のガスと、をバーナーの互いに異なるノズルに供給する、多孔質石英ガラス体の製造方法。
  2.  前記金属ドーパントが、TiOである請求項1に記載の多孔質石英ガラス体の製造方法。
  3.  前記(A)~(D)のガスが混合器により混合される請求項1または2に記載の多孔質石英ガラス体の製造方法。
  4.  前記(A)~(D)のガスが、75℃以上で混合される請求項1~3のいずれかに記載の多孔質石英ガラス体の製造方法。
  5.  前記バーナーが、多重管バーナーである請求項1~4のいずれかに記載の多孔質石英ガラス体の製造方法。
  6.  前記混合ガスを、前記多重管バーナーの中央ノズルに供給し、
     前記(E)のガスを、前記中央ノズルに同心円状に配置された前記多重管バーナーの外周ノズルに供給する請求項5に記載の多孔質ガラス石英体の製造方法。
  7.  前記多重管バーナーにおいて、前記中央ノズルと、前記外周ノズルと、の間には、前記中央ノズルに同心円状に配置された第2の外周ノズルが設けられており、
     (F)希ガス、N、CO、ハロゲン化水素およびHOからなる群から選択される1種類以上のガスを、該第2の外周ノズルに供給する請求項5または6に記載の多孔質石英ガラス体の製造方法。
  8.  前記多重管バーナーにおいて、前記外周ノズルの外側に前記中央ノズルに同心円状に配置された1以上の外周ノズルが設けられている、請求項5~7のいずれかに記載の多孔質石英ガラス体の製造方法。
  9.  請求項1~8のいずれかに記載の方法にて製造された多孔質石英ガラス体を用いて作製されたEUVリソグラフィ用光学部材。
PCT/JP2010/052875 2009-02-24 2010-02-24 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材 WO2010098352A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011501619A JP5578167B2 (ja) 2009-02-24 2010-02-24 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材
EP10746232A EP2402293A4 (en) 2009-02-24 2010-02-24 PROCESS FOR PREPARING A POROUS QUARTZ GLASS OBJECT AND OPTICAL ELEMENT FOR EUV LITHOGRAPHY
US13/210,673 US8356494B2 (en) 2009-02-24 2011-08-16 Process for producing porous quartz glass object, and optical member for EUV lithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-040455 2009-02-24
JP2009040455 2009-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/210,673 Continuation US8356494B2 (en) 2009-02-24 2011-08-16 Process for producing porous quartz glass object, and optical member for EUV lithography

Publications (2)

Publication Number Publication Date
WO2010098352A1 WO2010098352A1 (ja) 2010-09-02
WO2010098352A9 true WO2010098352A9 (ja) 2010-11-18

Family

ID=42665558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052875 WO2010098352A1 (ja) 2009-02-24 2010-02-24 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材

Country Status (4)

Country Link
US (1) US8356494B2 (ja)
EP (1) EP2402293A4 (ja)
JP (1) JP5578167B2 (ja)
WO (1) WO2010098352A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476982B2 (ja) * 2009-12-25 2014-04-23 信越化学工業株式会社 チタニアドープ石英ガラスの選定方法
JP2012031052A (ja) 2010-06-28 2012-02-16 Asahi Glass Co Ltd ガラス体を製造する方法及びeuvリソグラフィ用の光学部材を製造する方法
JP5381946B2 (ja) * 2010-09-21 2014-01-08 住友電気工業株式会社 ガラス母材の製造方法
JP6241276B2 (ja) * 2013-01-22 2017-12-06 信越化学工業株式会社 Euvリソグラフィ用部材の製造方法
US9505649B2 (en) 2013-09-13 2016-11-29 Corning Incorporated Ultralow expansion glass

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232932A (ja) * 1983-06-15 1984-12-27 Sumitomo Electric Ind Ltd 光フアイバ用プリフオ−ムの製造方法
DE3376110D1 (en) * 1983-12-22 1988-05-05 Shinetsu Chemical Co A method for the preparation of synthetic quartz glass suitable as a material of optical fibers
JPS60260437A (ja) * 1984-06-08 1985-12-23 Sumitomo Electric Ind Ltd 光フアイバ用ガラス母材の製造方法
JPS6197140A (ja) 1984-10-18 1986-05-15 Asahi Glass Co Ltd 改良された多孔質石英ガラス母材製造用種棒
JPH0735266B2 (ja) * 1986-04-24 1995-04-19 日本電信電話株式会社 光フアイバおよびその製造方法
US5238479A (en) * 1989-08-28 1993-08-24 Sumitomo Electric Industries, Ltd. Method for producing porous glass preform for optical fiber
JP4674972B2 (ja) * 2001-01-17 2011-04-20 株式会社オハラ 合成石英ガラス及びその製造方法
US8047023B2 (en) * 2001-04-27 2011-11-01 Corning Incorporated Method for producing titania-doped fused silica glass
US6735981B2 (en) * 2001-09-27 2004-05-18 Corning Incorporated High heat capacity burners for producing fused silica boules
JP2003212560A (ja) * 2002-01-18 2003-07-30 Sumitomo Electric Ind Ltd ガラス微粒子堆積体製造方法
JP2003238166A (ja) * 2002-02-21 2003-08-27 Sumitomo Electric Ind Ltd ガラス微粒子堆積体の製造方法
KR100507622B1 (ko) * 2002-10-17 2005-08-10 엘에스전선 주식회사 외부기상증착법을 이용한 광섬유 프리폼의 제조방법 및 장치
JP4492123B2 (ja) * 2004-01-05 2010-06-30 旭硝子株式会社 シリカガラス
JP4487783B2 (ja) 2005-01-25 2010-06-23 旭硝子株式会社 TiO2を含有するシリカガラスの製造方法およびTiO2を含有するシリカガラスを用いたEUVリソグラフィ用光学部材
JP5073408B2 (ja) 2007-08-08 2012-11-14 株式会社リブドゥコーポレーション 計量容器

Also Published As

Publication number Publication date
JPWO2010098352A1 (ja) 2012-09-06
US20110301015A1 (en) 2011-12-08
WO2010098352A1 (ja) 2010-09-02
EP2402293A1 (en) 2012-01-04
EP2402293A4 (en) 2012-10-31
JP5578167B2 (ja) 2014-08-27
US8356494B2 (en) 2013-01-22

Similar Documents

Publication Publication Date Title
JP5035516B2 (ja) フォトマスク用チタニアドープ石英ガラスの製造方法
KR101533125B1 (ko) 티타니아 도핑 석영 유리 및 그의 제조 방법
KR101513310B1 (ko) 티타니아 도핑 석영 유리 부재 및 그의 제조 방법
TWI572569B (zh) 摻雜氧化鈦之石英玻璃及其製造方法
JP2005022954A (ja) TiO2を含有するシリカガラスおよびその製造法
JP5365248B2 (ja) TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP5578167B2 (ja) 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材
JP2012072053A (ja) チタニアドープ石英ガラス及びその製造方法
KR20100116639A (ko) TiO₂ 함유 실리카 유리, 고에너지 밀도를 사용한 EUV 리소그래피용 광학 부재 및 특수 온도 제어된 TiO₂ 함유 실리카 유리의 제조 방법
TW515782B (en) Silica glass and its manufacturing method
JP2009227572A (ja) TiO2を含有するシリカガラスおよびそれを用いたリソグラフィ用光学部材
JP5549525B2 (ja) 硫黄を共添加したチタニアドープ石英ガラス部材の製造方法
US8567214B2 (en) Method for producing glass body and method for producing optical member for EUV lithography
JP3796653B2 (ja) フッ素含有合成石英ガラス及びその製造方法
JP4438948B2 (ja) 合成石英ガラス製造用バーナー及び合成石英ガラスインゴットの製造方法
JP5391923B2 (ja) 多孔質ガラス体の製造方法
JP4496421B2 (ja) 合成石英ガラスの製造方法
WO2012105513A1 (ja) チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体
JP2011132065A (ja) 多孔質石英ガラス体の製造方法
JP2014111530A (ja) チタニアドープ石英ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501619

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010746232

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE