WO2010098311A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2010098311A1
WO2010098311A1 PCT/JP2010/052742 JP2010052742W WO2010098311A1 WO 2010098311 A1 WO2010098311 A1 WO 2010098311A1 JP 2010052742 W JP2010052742 W JP 2010052742W WO 2010098311 A1 WO2010098311 A1 WO 2010098311A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
resin
sealing portion
electrolyte
electrodes
Prior art date
Application number
PCT/JP2010/052742
Other languages
English (en)
French (fr)
Inventor
臼井弘紀
松井浩志
岡田顕一
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP10746192.3A priority Critical patent/EP2403052B1/en
Priority to CN201080008059.5A priority patent/CN102318131B/zh
Publication of WO2010098311A1 publication Critical patent/WO2010098311A1/ja
Priority to US13/216,658 priority patent/US9153387B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • Dye-sensitized solar cells were developed by Gretzel, Switzerland, and have the advantages of high photoelectric conversion efficiency and low manufacturing costs, and are attracting attention as a new type of solar cell.
  • the schematic structure of the dye-sensitized solar cell is as follows: a working electrode in which a porous oxide semiconductor layer carrying a photosensitizing dye is provided on a transparent substrate provided with a transparent conductive film; The working electrode and the counter electrode are filled with an electrolyte containing an oxidation-reduction pair and sealed with a sealing material.
  • an electrolyte it is common to use an electrolytic solution in which a redox couple such as I ⁇ / I 3 ⁇ is dissolved in an organic solvent such as acetonitrile.
  • a configuration using a non-volatile ionic liquid, a liquid There are known a structure in which the electrolyte is gelled with an appropriate gelling agent to make it pseudo-solid, a structure using a solid semiconductor such as a p-type semiconductor, and the like.
  • the counter electrode must be made of a material that prevents corrosion due to chemical reaction with the electrolyte.
  • a material a titanium substrate on which platinum is formed, a glass electrode substrate on which platinum is formed, or the like can be used.
  • Hi-Millan (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.), which is generally an ionomer, is heated and melted and sealed to volatilize the volatile solvent in the electrolyte.
  • a dye-sensitized solar cell has been proposed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a photoelectric conversion element having excellent durability.
  • the present inventors have conducted extensive research on the cause of the change in photoelectric conversion efficiency over time, and as a result, leakage of the electrolyte from the sealing portion, particularly leakage of the organic solvent in the electrolyte, has occurred. I thought that the big cause might be the main cause. Therefore, the present inventors connect a conventional sealing portion made of only a resin along a direction in which an inorganic sealing portion made of an inorganic material and a resin sealing portion made of a resin connect a pair of electrodes. Changed to sealed part.
  • the inorganic material was further coated with a chemical resistant resin such as polyimide.
  • the protective resin layer having chemical resistance may have a weak adhesive force with the resin, and the resin sealing portion and the protective resin layer may be peeled off.
  • the photoelectric conversion element of the present invention includes a pair of electrodes opposed to each other, a porous oxide semiconductor layer provided on one of the pair of electrodes, an electrolyte disposed between the pair of electrodes, and the pair of electrodes.
  • a sealing portion that surrounds and seals the porous oxide semiconductor layer and the electrolyte, and at least a part of the sealing portion is at least one of the pair of electrodes. It is composed of an inorganic sealing portion made of an inorganic material formed on the surface, and a resin sealing portion made of a material containing a resin connected to the inorganic sealing portion along a direction connecting the pair of electrodes. The region closer to the electrolyte than the region connected to the resin sealing portion on the surface of the inorganic sealing portion is covered with a protective resin layer having resistance to the electrolyte.
  • the sealing portion seals the porous oxide semiconductor layer and the electrolyte.
  • at least one part of a sealing part consists of the inorganic sealing part which consists of inorganic materials, and the resin sealing part containing resin connected with an inorganic sealing part.
  • This inorganic sealing part has higher sealing ability than the resin sealing part with respect to the electrolyte. Therefore, in the photoelectric conversion device of the present invention, leakage of the electrolyte can be sufficiently suppressed due to the presence of the inorganic sealing portion as compared with the case where the sealing portion is configured only by the resin sealing portion.
  • the inorganic sealing portion is made of an inorganic material, the inorganic sealing portion and the resin sealing portion are connected with a strong adhesive force. Therefore, the inorganic sealing portion and the resin sealing portion are difficult to peel off. Moreover, since the area
  • a current collector wiring made of a metal provided on at least one surface of the pair of electrodes between the pair of electrodes, and a wiring protective layer made of an inorganic material covering the current collector wiring; And at least a part of the wiring part constitutes at least a part of the inorganic sealing part, and the resin sealing in a part where the wiring part constitutes the inorganic sealing part
  • the portion is connected to the wiring protective layer, and the region closer to the electrolyte than the region connected to the resin sealing portion on the surface of the wiring protective layer is covered with a protective resin layer having resistance to the electrolyte. It is preferable.
  • the wiring part which comprises a part of inorganic sealing part comprises a part of sealing part.
  • the wiring portion is not provided on the side opposite to the region surrounded by the sealing portion, and is not provided on the region side surrounded by the sealing portion. For this reason, the area which a wiring part and a sealing part occupy can be decreased, and the incident light shielded by the wiring part and the sealing part can be kept to a minimum. Therefore, the area of the porous oxide semiconductor layer can be increased while keeping the resistance low by the action of the current collecting wiring. Therefore, high photoelectric conversion efficiency can be achieved.
  • the wiring portion constitutes the inorganic sealing portion
  • the region closer to the electrolyte than the region connected to the resin sealing portion on the surface of the wiring protective layer is covered with the protective resin layer.
  • the wiring is protected from corrosion by the electrolyte over a long period of time.
  • another part of the wiring portion is provided on at least one surface of the pair of electrodes in a region surrounded by an inner periphery of the sealing portion, and the sealing portion It is preferable that the wiring protective layer in the region surrounded by the inner periphery is entirely covered with the protective resin layer.
  • the wiring portion is provided in the region surrounded by the inner periphery of the sealing portion, the resistance of the photoelectric conversion element can be further reduced. And since the wiring protective layer in the area
  • the wiring portion is provided from a region surrounded by an outer periphery of the sealing portion to an outer periphery of the sealing portion, and between the pair of electrodes in at least one of the pair of electrodes.
  • a terminal is provided on the surface opposite to the side, and the terminal is in a region surrounded by an outer periphery of the sealing portion when the electrode provided with the terminal is viewed along a direction connecting the pair of electrodes. It is preferable to be formed at a position overlapping the wiring portion.
  • the current collecting wiring of the wiring portion provided on at least one of the pair of electrodes is made of metal and thus has excellent thermal conductivity.
  • the terminal is formed at a position overlapping the wiring portion in the region surrounded by the outer periphery of the sealing portion when the electrode provided with the terminal along the direction connecting the pair of electrodes is viewed. Therefore, the position where the terminal is formed and the current collecting wiring are close to each other, and when conducting wires or the like are soldered to the terminal, the heat conducted to the inside of the outer periphery of the sealing portion through the electrode on which the terminal is formed is Easy to conduct to electrical wiring.
  • the heat conducted to the current collecting wiring is released to the outside of the outer periphery of the sealing portion by the excellent heat conduction of the current collecting wiring. In this way, when soldering to the terminal, it is possible to suppress degradation of the photosensitizing dye and electrolyte carried on the porous oxide semiconductor layer due to heat conducted through the electrode on which the terminal is formed. .
  • a photoelectric conversion element having excellent durability is provided.
  • FIG. 1 is a schematic cross-sectional view showing a photoelectric conversion element according to the first embodiment of the present invention.
  • the photoelectric conversion element 100 includes a working electrode 11, a counter electrode 12 disposed so as to face the working electrode 11, an electrolyte 5 disposed between the working electrode 11 and the counter electrode 12, and an electrolyte. 5 is included as a main component.
  • the working electrode 11 is provided on the transparent substrate 1 and the second electrode 20 composed of the transparent substrate 2 and the transparent conductor 1 provided on one surface of the transparent substrate 2, and carries a photosensitizing dye.
  • a porous oxide semiconductor layer 3 The working electrode 11 is provided on the transparent substrate 1 and the second electrode 20 composed of the transparent substrate 2 and the transparent conductor 1 provided on one surface of the transparent substrate 2, and carries a photosensitizing dye.
  • the transparent base material 2 is composed of a substrate made of a light transmissive material. Examples of such materials include glass, polyethylene terephthalate (PET), polycarbonate (PC), polyethersulfone (PES), polyethylene naphthalate (PEN), and are usually used as a transparent substrate for photoelectric conversion elements. Any material can be used.
  • the transparent substrate 2 is appropriately selected from these in consideration of resistance to the electrolyte and the like. Further, the transparent substrate 2 is preferably a substrate that is as excellent in light transmission as possible, and more preferably a substrate having a light transmittance of 90% or more.
  • the transparent conductor 1 is a transparent conductive film, and is a thin film formed on a part of one surface or the entire surface of the transparent substrate 2.
  • the transparent conductor 1 is preferably a thin film made of a conductive metal oxide.
  • conductive metal oxides include indium tin oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ).
  • the transparent conductor 1 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides.
  • the transparent conductor 1 is preferably ITO or FTO from the viewpoint of easy film formation and low manufacturing cost, and has high heat resistance and chemical resistance. From the viewpoint of having, it is more preferable that it is composed of FTO.
  • the transparent conductor 1 is composed of a laminated body composed of a plurality of layers because the characteristics of each layer can be reflected.
  • a laminated film in which a film made of FTO is laminated on a film made of ITO is preferable.
  • the transparent conductor 1 having high conductivity, heat resistance, and chemical resistance can be realized, and a transparent conductive substrate with low light absorption in the visible range and high conductivity can be configured.
  • the thickness of the transparent conductor 1 may be in the range of 0.01 ⁇ m to 2 ⁇ m, for example.
  • the oxide semiconductor that forms the porous oxide semiconductor layer 3 is not particularly limited, and any oxide semiconductor can be used as long as it is usually used to form a porous oxide semiconductor layer for a photoelectric conversion element. be able to.
  • oxide semiconductor include titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and strontium titanate.
  • the average particle diameter of these oxide semiconductor particles is 1 to 1000 nm, which increases the surface area of the oxide semiconductor covered with the dye, that is, widens the field for photoelectric conversion and generates more electrons. This is preferable.
  • the porous oxide semiconductor layer 3 is preferably configured by stacking oxide semiconductor particles having different particle size distributions. In this case, light can be repeatedly reflected in the semiconductor layer, and incident light that escapes to the outside of the porous oxide semiconductor layer 3 can be reduced, and light can be efficiently converted into electrons.
  • the thickness of the porous oxide semiconductor layer 3 may be, for example, 0.5 to 50 ⁇ m.
  • the porous oxide semiconductor layer 3 can also be comprised with the laminated body of the some oxide semiconductor which consists of a different material.
  • the photosensitizing dye examples include a ruthenium complex containing a bipyridine structure, a terpyridine structure or the like as a ligand, a metal-containing complex such as polyphylline or phthalocyanine, and an organic dye such as eosin, rhodamine or merocyanine.
  • a ruthenium complex containing a bipyridine structure, a terpyridine structure or the like as a ligand a metal-containing complex such as polyphylline or phthalocyanine
  • an organic dye such as eosin, rhodamine or merocyanine.
  • the electrolyte 5 is obtained by impregnating the porous oxide semiconductor layer 3 with an electrolytic solution, or after impregnating the porous oxide semiconductor layer 3 with the electrolytic solution, the electrolytic solution is appropriately gelled. Gelled (quasi-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 3, or a gel electrolyte containing an ionic liquid, oxide semiconductor particles, or conductive particles Can be used.
  • an electrolytic solution in which an electrolyte component such as iodine, iodide ion or tertiary-butylpyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile is used.
  • an electrolytic solution in which an electrolyte component such as iodine, iodide ion or tertiary-butylpyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile is used.
  • the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.
  • Room temperature meltable salt which is a liquid at room temperature and made the compound which has the quaternized nitrogen atom into a cation or an anion is mentioned.
  • the cation of the room temperature melting salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, quaternized ammonium derivatives and the like.
  • the anion of the room temperature molten salt include BF 4 ⁇ , PF 6 ⁇ , F (HF) n ⁇ , bistrifluoromethylsulfonylimide [(CF 3 SO 2 ) 2 N ⁇ ], iodide ion, and the like.
  • Specific examples of the ionic liquid include salts composed of a quaternized imidazolium cation and iodide ion or bistrifluoromethylsulfonylimide ion.
  • the oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those having excellent miscibility with an electrolytic solution mainly composed of an ionic liquid and gelling the electrolytic solution are used. .
  • the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte without reducing the conductivity of the electrolyte.
  • the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.
  • oxide semiconductor particles examples include SiO 2 , TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , One or a mixture of two or more selected from the group consisting of Y 2 O 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , and Al 2 O 3 is preferable, and titanium dioxide fine particles (nanoparticles) are particularly preferable. .
  • the average particle diameter of the titanium dioxide is preferably about 2 nm to 1000 nm.
  • conductive particles such as conductors and semiconductors are used.
  • the range of the specific resistance of the conductive particles is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, and more preferably 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used.
  • Such conductive particles are required to have excellent chemical stability with respect to other coexisting components contained in the electrolyte, since the conductivity is not easily lowered in the electrolyte.
  • the electrolyte contains an oxidation / reduction pair such as iodine / iodide ion or bromine / bromide ion, an electrolyte that does not deteriorate due to oxidation reaction or the like is preferable.
  • Such conductive particles include those composed of carbon-based materials, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.
  • the counter electrode 12 is configured by the first electrode 10.
  • the first electrode includes a metal plate 4 and a catalyst layer 6 made of titanium or a titanium alloy.
  • the catalyst layer 6 that promotes the reduction reaction is formed on the surface of the metal plate 4 on the working electrode 11 side.
  • the catalyst layer 6 is made of platinum or carbon.
  • the sealing part 14 includes a resin sealing part 14 a, an inorganic sealing part 14 b, and a protective resin layer 17.
  • the inorganic sealing portion 14 b is provided on the working electrode 11 so as to surround the porous oxide semiconductor layer 3, and the resin sealing portion 14 a is connected to the inorganic sealing portion 14 b and the counter electrode 12. .
  • the sealing portion 14 connects the working electrode 11 and the counter electrode 12, and the electrolyte 5 between the working electrode 11 and the counter electrode 12 is sealed by being surrounded by the sealing portion 14.
  • the resin sealing portion 14a is connected to the inorganic sealing portion 14b on the region S1 on the surface opposite to the transparent conductor 1 in the inorganic sealing portion 14b. Furthermore, the region S2 on the electrolyte side of the surface of the inorganic sealing portion 14b where the resin sealing portion 14a is formed is covered with the protective resin layer 17.
  • the resin sealing portion 14a is also provided on the surface of the protective resin layer 17 adjacent to the region S1.
  • the inorganic sealing part 14b contacts the electrolyte 5 by providing the resin sealing part 14a from the region S1 of the inorganic sealing part 14b to the surface of the protective resin layer 17 adjacent to the region S1. Is prevented, and the high durability of the inorganic sealing portion 14b is maintained.
  • the material constituting the resin sealing portion 14a examples include ionomers, ethylene-vinyl acetic anhydride copolymers, ethylene-methacrylic acid copolymers, ethylene-vinyl alcohol copolymers, ultraviolet curable resins, and vinyl alcohol heavy resins. Coalescence is mentioned.
  • the resin sealing part 14a may be comprised only with resin, and may be comprised with resin and an inorganic filler.
  • the inorganic sealing portion 14b for example, a lead-free transparent low-melting glass frit, an oxide such as titanium oxide (TiO 2 ) or alumina (Al 2 O 3 ), titanium carbide ( Examples thereof include inorganic materials such as carbides such as TiC) and silicon carbide (SiC), and nitrides such as aluminum nitride (AlN).
  • an oxide such as titanium oxide (TiO 2 ) or alumina (Al 2 O 3 ), titanium carbide
  • inorganic materials such as carbides such as TiC) and silicon carbide (SiC), and nitrides such as aluminum nitride (AlN).
  • Examples of the material constituting the protective resin layer 17 include polyimide, fluororesin, ionomer, ethylene-vinyl acetic anhydride copolymer, ethylene-methacrylic acid copolymer, ethylene-vinyl alcohol copolymer, ultraviolet curable resin, And chemical-resistant resin, such as a vinyl alcohol polymer, is mentioned.
  • the terminal 8 is formed in an outer region surrounded by the outer periphery of the sealing portion 14 on the surface of the working electrode 11 on the counter electrode 12 side.
  • the material constituting the terminal 8 include metals such as gold, silver, copper, platinum, and aluminum.
  • a solder 13 for connecting the conductive wire or the like and the terminal 8 may be formed on the terminal 8. Although it does not restrict
  • solder examples include eutectic type (eg Sn-Pb), lead-free type (eg Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Zn, Sn-Zn-B). Is mentioned.
  • the sealing portion 14 seals the porous oxide semiconductor layer 3 and the electrolyte 5. And at least one part of the sealing part 14 consists of the inorganic sealing part 14b which consists of inorganic materials, and the resin sealing part 14a containing resin connected with the inorganic sealing part 14b.
  • the inorganic sealing portion 14 b has a higher sealing ability than the resin sealing portion 14 a with respect to the electrolyte 5. Therefore, in the photoelectric conversion element 100 of the present invention, due to the presence of the inorganic sealing portion 14b, the leakage of the electrolyte 5 is sufficiently suppressed as compared with the case where the sealing portion 14 is configured only by the resin sealing portion 14a. Can do.
  • the inorganic sealing portion 14b is made of an inorganic material, the inorganic sealing portion 14b and the resin sealing portion 14a are connected with a strong adhesive force. Therefore, the inorganic sealing portion 14b and the resin sealing portion 14a are difficult to peel off. Further, since the region S2 on the electrolyte 5 side of the region S1 connected to the resin sealing portion 14a on the surface of the inorganic sealing portion 14b is covered with the protective resin layer 17, the inorganic sealing portion 14b includes the electrolyte. Therefore, it has higher durability. Thus, the photoelectric conversion element 100 has excellent durability.
  • the working electrode 11 and the counter electrode 12 are prepared (preparation process).
  • the working electrode 11 can be obtained by the following process. First, the transparent conductor 1 is formed on one surface of the transparent substrate 2 to form the second electrode 20. Next, the porous oxide semiconductor layer 3 is formed on the transparent conductor 1 in the second electrode 20. Next, the inorganic sealing part 14b is formed. Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 3.
  • Examples of the method for forming the transparent conductor 1 on the transparent substrate 2 include thin film forming methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. .
  • the spray pyrolysis method is preferable.
  • the haze ratio can be easily controlled.
  • the spray pyrolysis method is preferable because a vacuum system is unnecessary, and thus the manufacturing process can be simplified and the cost can be reduced.
  • the method for forming the porous oxide semiconductor layer 3 on the transparent conductor 1 mainly includes a coating process and a drying / firing process.
  • a coating step for example, a paste of TiO 2 colloid obtained by mixing TiO 2 powder, a surfactant and a thickener at a predetermined ratio is applied to the surface of the transparent conductor 1 that has been made hydrophilic.
  • the pressing means is made of a transparent conductor so that the applied colloid maintains a uniform thickness while pressing the colloid on the transparent conductor 1 using a pressing means (for example, a glass rod). The method of moving on 1 is mentioned.
  • the drying / firing step for example, a method of leaving the coated colloid in an air atmosphere at room temperature for about 30 minutes and drying the applied colloid, followed by firing at a temperature of 450 ° C. for about 60 minutes using an electric furnace. Can be mentioned.
  • the porous oxide semiconductor layer 3 is formed on the transparent conductor 1.
  • the inorganic sealing portion 14b is, for example, a paste obtained by blending a thickening agent, a binder, a dispersant, a solvent, or the like with an inorganic insulating material such as the above-described low-melting glass frit as necessary. It can be obtained by coating, heating and baking.
  • the protective resin layer 17 is formed.
  • the protective resin layer 17 is made of a paste obtained by blending a chemical-resistant resin or a precursor thereof with a thickener, a binder, a dispersant, a solvent, or the like, if necessary, by a screen printing method or the like.
  • a coating film so as to cover a region (region on the porous oxide semiconductor layer 3 side) where the electrolyte is expected to be filled rather than a region S1 where contact with the resin sealing portion 14a is expected on the surface of And can be obtained by heat treatment.
  • the protective resin layer 17 is a region where the melted chemical-resistant resin is expected to be filled with the electrolyte rather than the region S1 where the contact with the resin sealing portion 14a on the surface of the inorganic sealing portion 14b is planned. It can obtain by naturally cooling at room temperature after apply
  • thermoplastic chemical-resistant resin for example, an ionomer or an ethylene-methacrylic acid copolymer is used.
  • the chemical-resistant resin is an ultraviolet curable resin
  • the ultraviolet curable resin which is a precursor of the chemical resistant resin
  • the above-described ultraviolet curable resin is cured by ultraviolet rays.
  • a chemical resistant resin can be obtained.
  • the chemical resistant resin is a water soluble resin
  • the chemical resistant resin can be obtained by applying an aqueous solution containing the chemical resistant resin on the inorganic sealing portion 14b.
  • a very small amount of dye solution for supporting the dye for example, a solvent having a volume ratio of 1: 1 acetonitrile and t-butanol.
  • a solution prepared by adding N3 dye powder was prepared in advance.
  • a porous oxide semiconductor layer 3 is formed in a solution containing a photosensitizing dye as a solvent in a petri dish-like container, which is separately heated to about 120 to 150 ° C. in an electric furnace.
  • the second electrode 20 is immersed, and is immersed for a whole day and night (approximately 20 hours) in a dark place.
  • the second electrode 20 on which the porous oxide semiconductor layer 3 is formed is taken out of the solution containing the photosensitizing dye, and washed with a mixed solution of acetonitrile and t-butanol.
  • a working electrode 11 having a porous oxide semiconductor layer 3 made of a TiO 2 thin film carrying a photosensitizing dye is obtained.
  • the terminal 8 formed on the working electrode 11 is formed, for example, by applying a silver paste by printing or the like, and heating and baking.
  • the terminal 8 is preferably formed before the dye carrying step.
  • a metal plate 4 made of titanium or a titanium alloy is prepared.
  • a catalyst layer 6 made of platinum or the like is formed on the surface of the prepared metal plate 4.
  • the catalyst layer 6 is formed by a sputtering method or the like. Thereby, the 1st electrode 10 which has the metal plate 4 and the catalyst layer 6 can be obtained, and the 1st electrode 10 becomes the counter electrode 12 as it is.
  • the electrolyte 5 is surrounded and sealed by the resin sealing portion 14a between the working electrode 11 and the counter electrode 12 (sealing process).
  • a resin or its precursor for forming the resin sealing portion 14a is formed on the working electrode 11 and the previously formed inorganic sealing portion 14b. At this time, the resin or its precursor is formed so as to surround the porous oxide semiconductor layer 3 of the working electrode 11. Further, the resin or precursor thereof formed on the inorganic sealing portion 14b is provided on the region S1 where the protective resin layer 17 is not formed in the inorganic sealing portion 14b. At this time, in order to reliably cover the region S1 with the resin sealing portion 14a, it is preferable that the resin or its precursor formed on the wiring portion 30s is formed so as to cover a part on the protective resin layer 17.
  • the resin When the resin is a thermoplastic resin, it is naturally cooled at room temperature after the molten resin is applied on the working electrode 11 and the inorganic sealing portion 14b, or a film-like resin is used for the working electrode 11 and the inorganic sealing portion.
  • the resin can be obtained by bringing it into contact with 14b, heating and melting the resin with an external heat source, and then naturally cooling at room temperature.
  • the thermoplastic resin for example, an ionomer or an ethylene-methacrylic acid copolymer is used.
  • the resin When the resin is an ultraviolet curable resin, an ultraviolet curable resin that is a precursor of the resin is applied onto the working electrode 11 and the inorganic sealing portion 14b.
  • the resin When the resin is a water-soluble resin, an aqueous solution containing the resin is applied on the working electrode 11 and the inorganic sealing portion 14b.
  • a vinyl alcohol polymer is used as the water-soluble resin.
  • a resin or a precursor thereof for forming the resin sealing portion 14a is formed on the counter electrode 12.
  • the resin or its precursor on the counter electrode 12 is formed at a position overlapping the resin on the working electrode 11 or its precursor when the working electrode 11 and the counter electrode 12 face each other.
  • the resin on the counter electrode 12 or its precursor may be formed in the same manner as the resin or its precursor formed on the working electrode 11.
  • an electrolyte is filled in a region surrounded by the resin on the working electrode 11 or its precursor.
  • the working electrode 11 and the counter electrode 12 are opposed to each other, and the resin on the counter electrode 12 and the working electrode 11 are overlapped. Thereafter, when the resin is a thermoplastic resin in a reduced pressure environment, the resin is heated and melted to bond the working electrode 11 and the counter electrode 12 together. Thus, the resin sealing portion 14a is obtained.
  • the resin is an ultraviolet curable resin
  • the ultraviolet curable resin of the resin on the counter electrode 12 and the working electrode 11 are overlapped, and then the ultraviolet curable resin is cured by ultraviolet rays, so that the resin sealing portion 14a is obtained.
  • the finger is dried at room temperature and then dried in a low-humidity environment to obtain the resin sealing portion 14a.
  • the resin sealing portion 14a is connected to the inorganic sealing portion 14b to become the sealing portion 14.
  • the solder 13 on the terminal 8 When the solder 13 on the terminal 8 is arranged, the solder 13 is melted on the terminal 8 and then solidified.
  • FIG. 2 is a schematic cross-sectional view showing the photoelectric conversion device of the present embodiment.
  • the photoelectric conversion element 110 is different from the photoelectric conversion element 100 in the first embodiment in that wiring portions 30 c and 30 s are formed on the working electrode 11 and a terminal 7 is formed on the counter electrode 12. Mainly different.
  • the porous oxide semiconductor layer 3 is composed of two porous oxide semiconductor layers 3a and 3b.
  • the wiring portion is a region surrounded by the inner periphery of the sealing portion 14, and between the porous oxide semiconductor layers 3 a and 3 b, the wiring portion 30 c provided on the transparent conductor 1, the working electrode 11, and the counter electrode 12. And a wiring portion 30 s provided on the transparent conductor 1 at a position overlapping the resin sealing portion 14 a in the direction connecting the two. Furthermore, both the wiring portions 30 c and 30 s extend to the outside of the outer periphery of the sealing portion 14 and are connected to the terminals 8.
  • the current collecting wiring 35 c is entirely covered with the wiring protective layer 36 c, and the wiring protective layer 36 c is entirely covered with the protective resin layer 17. Thus, contact between the electrolyte 5 and the current collector wiring 35c is prevented.
  • the wiring protective layer 36c and the protective resin layer 17 may or may not be in contact with the transparent conductor 1 of the working electrode 11 as long as the entire current collecting wiring 35c is covered.
  • the wiring part 30s constitutes at least a part of the inorganic sealing part 14b.
  • the current collecting wiring 35s is entirely covered with the wiring protective layer 36s.
  • a resin sealing portion 14a is connected to the region S1 on the surface opposite to the transparent conductor 1 side of the wiring protective layer 36s.
  • the region S2 on the electrolyte side of the region S1 to which the resin sealing portion 14a is connected on the surface of the wiring protective layer 36s is covered with the protective resin layer 17.
  • the material constituting the current collecting wirings 35c and 35s may be a metal having a resistance lower than that of the transparent conductor 1, and examples of such a material include gold, silver, copper, platinum, aluminum, titanium, and nickel. These metals are mentioned.
  • Examples of the material constituting the wiring protective layers 36c and 36s include inorganic insulating materials such as non-lead transparent low melting point glass frit.
  • the terminal 7 is formed at a position overlapping with the current collecting wiring 35c in the region.
  • the terminal 7 is made of a high melting point solder or a metal member containing at least one of copper and nickel.
  • the high melting point solder it is preferable to use a solder having a melting point of 200 ° C. or higher (for example, 210 ° C. or higher).
  • a solder having a melting point of 200 ° C. or higher for example, 210 ° C. or higher.
  • Examples of the material constituting the metal member include copper and nickel as well as alloys containing other metals in copper and nickel.
  • solder 13 for connecting the conductive wire or the like and the terminal 7 may be formed on the terminal 7.
  • the solder on the terminal 7 is the same as the solder 13 on the terminal 8.
  • the wiring part 30s formed on the working electrode 11 constitutes at least a part of the inorganic sealing part 14b. That is, the wiring part 30 s constitutes a part of the sealing part 14.
  • the wiring portion 30 s is not provided on the side opposite to the region surrounded by the sealing portion 14, and is not provided on the region side surrounded by the sealing portion 14. For this reason, the area which wiring part 30s and the sealing part 14 occupy can be decreased, and the incident light shielded by the wiring part 30s and the sealing part 14 can be kept to a minimum. Therefore, the area of the porous oxide semiconductor layer 3 can be expanded while keeping the resistance low by the action of the current collecting wiring 35s. Therefore, high photoelectric conversion efficiency can be achieved.
  • the current collecting wiring 35s is made of the electrolyte over a long period of time. Protected from corrosion.
  • the photoelectric conversion element 110 since the wiring part 30c is provided in the region surrounded by the inner periphery of the sealing part 14, the resistance of the photoelectric conversion element can be further reduced. And since the wiring protective layer 36c in the area
  • the current collecting wiring 35s of the wiring portion 30s provided on the working electrode 11 is made of metal, and thus has excellent thermal conductivity.
  • the terminal 7 is formed at a position overlapping the wiring portion 30 s when the counter electrode 12 is viewed along the direction connecting the counter electrode 12 and the working electrode 11. Therefore, the position where the terminal 7 is formed is close to the current collector wiring 35s, and when the conductive wire or the like is connected to the terminal 7 by means such as soldering, it is sealed via the counter electrode 12 on which the terminal 7 is formed. The heat conducted to the inside of the outer periphery of the stop portion 14 is easily conducted to the current collecting wiring 35s.
  • the heat conducted to the current collecting wiring 35s is released to the outside of the outer periphery of the sealing portion 14 by the excellent heat conduction of the current collecting wiring 35s.
  • a conductive wire or the like is connected to the terminal 7 by means such as soldering, the photosensitizing dye or the electrolyte 5 carried on the porous oxide semiconductor layer 3 is formed by heat conducted through the counter electrode. Deterioration can be suppressed.
  • the working electrode 11 and the counter electrode 12 are prepared (preparation process).
  • Preparation of the working electrode 11 is performed in the same manner as in the first embodiment. That is, first, the transparent conductor 1 is formed on the transparent substrate 2. Next, porous oxide semiconductor layers 3 a and 3 b are formed on the transparent conductor 1. In order to form the porous oxide semiconductor layers 3a and 3b, in the first embodiment, the same method as the method for forming the porous oxide semiconductor layer 3 is used. Good.
  • wiring portions 30c and 30s are formed. Specifically, the wiring portion 30c is formed between the porous oxide semiconductor layers 3a and 3b, and the wiring portion 30s is formed around the porous oxide semiconductor layer 3 at a place where the sealing portion 14 is to be formed. Form.
  • the current collector wirings 35c and 35s are formed by forming the porous oxide semiconductor layers 3a and 3b, and then the thickening agent, the binder, the dispersant, the solvent, and the like as necessary for the metal material constituting the current collector wirings 35c and 35s. Can be obtained by coating the paste on the places where the current collector wirings 35c and 35s are respectively formed by screen printing or the like, heating and baking the paste.
  • the terminal 8 is preferably formed simultaneously with the current collecting wires 35c and 35s.
  • the wiring protective layers 36c and 36s for example, a paste obtained by blending a thickening agent, a binder, a dispersing agent, a solvent, or the like with an inorganic insulating material such as the above-described low-melting glass frit as necessary is screen printing.
  • the current collecting wirings 35c and 35s can be applied so as to cover the whole, and then heated and baked.
  • the protective resin layer 17 is formed on the wiring protective layer 36c and the wiring protective layer 36s.
  • the protective resin layer 17 on the wiring protective layer 36c may be formed on the entire surface of the wiring protective layer 36c by the same method as that for forming the protective resin layer 17 in the first embodiment.
  • the protective resin layer 17 on the wiring protective layer 36s is connected to the resin sealing material 14a on the surface of the wiring protective layer 36s by the same method as that for forming the protective resin layer 17 in the first embodiment. What is necessary is just to form in the area
  • the sealing step the working electrode 11 and the counter electrode 12 are overlapped and sealed so that the resin sealing material 14a and the wiring portion 30s overlap.
  • the sealing method may be performed in the same manner as the sealing process in the first embodiment.
  • the terminal 7 is formed on the surface of the counter electrode 12 opposite to the working electrode 11 side, that is, on the metal plate 4 of the first electrode 10 (terminal forming step).
  • the terminal 7 is formed at a position overlapping with the current collector wiring 35 c in a region surrounded by the outer periphery of the sealing portion 14.
  • the terminal 7 is composed of a high melting point solder
  • the high melting point solder and the tip of the soldering iron are arranged in contact with each other at a position overlapping the wiring 35c.
  • the tip of the soldering iron is heated so that the high-melting-point solder can be melted and generates ultrasonic waves.
  • the high melting point solder is melted by the heat transmitted from the tip of the soldering iron and vibrated by the ultrasonic waves from the tip of the soldering iron. Therefore, the high melting point solder improves the wettability with the metal plate 4 and is fixed on the surface of the metal plate 4.
  • the terminal 7 is formed on the surface of the counter electrode 12. At this time, a part of the heat conducted to the region surrounded by the inner periphery of the sealing portion 14 via the counter electrode 12 is released to the outside of the outer periphery of the sealing portion 14 via the current collecting wiring 35c.
  • the temperature of the tip of the soldering iron is not particularly limited as long as a high melting point solder can be melted, but is preferably 200 to 450 ° C. from the viewpoint of sufficiently melting the solder, for example, 250 to 350 ° C. It is more preferable from the viewpoint of preventing oxidation of the solder and preventing deterioration of the photosensitizing dye due to heat.
  • the vibration frequency of the ultrasonic waves generated from the tip of the soldering iron is preferably 10 kHz to 200 kHz, and more preferably 20 kHz to 100 kHz from the viewpoint of preventing the metal plate 4 from being damaged.
  • the terminal 7 is formed by removing the soldering iron from the molten high melting point solder and cooling the high melting point solder.
  • the first terminal 7 is composed of a metal member containing at least one of copper and nickel, first, on the surface of the counter electrode 12 opposite to the working electrode 11 side, the first terminal 7 is perpendicular to the surface of the counter electrode 12.
  • a metal member is disposed at a position overlapping the current collecting wiring 35c, and the metal member is pressed so as to be pressed against the counter electrode 12.
  • This pressurization includes the case where pressure is applied to the metal plate by its own weight. Then, ultrasonic vibration is applied to the metal member while the metal member is pressurized.
  • the counter electrode 12 and the metal member rub against each other by ultrasonic vibration, and at least a part of the unnecessary oxide film is removed, and a solid state is formed by plastic deformation due to pressurization. Are joined together.
  • the terminal 7 is formed on the surface of the counter electrode 12 by bonding.
  • pressure between the counter electrode 12 and the metal member is preferably in the viewpoint of close contact with the counter electrode 12 and the metal member that is larger 300N / m 2 or less than 0N / m 2, at 1 ⁇ 100N ⁇ m 2 It is more preferable from the viewpoint of preventing the counter electrode 12 from being deformed.
  • the ultrasonic wave applied to the metal member is applied in a direction parallel to the surface where the counter electrode 12 and the metal member are joined.
  • the vibration frequency of the ultrasonic wave is preferably 1 kHz to 200 kHz from the viewpoint of favorably bonding the counter electrode 12 and the metal member, and is preferably 10 kHz to 100 kHz from the viewpoint of suppressing damage to the counter electrode 12.
  • the vibration amplitude of the ultrasonic wave is preferably 0.01 to 50 ⁇ m from the viewpoint of bonding, and 0.1 to 10 ⁇ m is a viewpoint of suppressing damage to the metal member and the metal plate 4. To more preferable.
  • the temperature of the metal member at this time is preferably 10 to 500 ° C., for example, from the viewpoint of easily joining the counter electrode 12 and the metal member, and preferably 20 to 200 ° C. From the viewpoint of maintaining a stable state, it is more preferable. At this time, a part of the heat conducted to the region surrounded by the inner periphery of the sealing portion 14 via the counter electrode 12 is released to the outside of the outer periphery of the sealing portion 14 via the current collecting wiring 35c. .
  • the inorganic sealing portion 14b is provided so as to surround the porous oxide semiconductor layer 3.
  • the present invention is not limited to this, and the inorganic sealing portion 14b includes the sealing portion. 14 may be provided only in part of the circumferential direction.
  • the resin sealing portion 14a connects the working electrode 11 and the counter electrode 12 for a portion where the inorganic sealing portion 14b is not provided.
  • the inorganic sealing portion 14b is provided only on the working electrode 11, but the present invention is not limited thereto.
  • an inorganic sealing part is provided on the working electrode 11 and the counter electrode 12, and the inorganic sealing part provided on the working electrode 11 and the inorganic sealing part provided on the counter electrode 12 are connected by a resin sealing part. You may do it.
  • the structure of the inorganic sealing part provided on the working electrode 11 and the inorganic sealing part provided on the counter electrode 12 at this time is the same as the structure of the inorganic sealing part 14b in the first and second embodiments. do it.
  • the terminal forming step is performed after the sealing step, but the present invention is not limited to this.
  • a terminal formation process may be performed before the sealing process.
  • the terminal 7 is formed on one surface of the counter electrode 12 before sealing.
  • the terminal 7 may be formed in the same manner as the terminal forming process in the above-described embodiment.
  • the working electrode 11 and the counter electrode 12 are made to face each other so that the surface of the counter electrode 12 where the terminal 7 is not formed faces the working electrode 11 side. Sealing may be performed.
  • the sealing method may be performed in the same manner as the sealing process in the above-described embodiment.
  • the porous oxide semiconductor layer 3 is formed on the second electrode 20.
  • the working electrode 11 is composed of the second electrode 20 and the porous oxide semiconductor layer 3 carrying the photosensitizing dye
  • the counter electrode 12 is composed of the first electrode 10.
  • the present invention is not limited thereto, and the porous oxide semiconductor layer 3 is formed on the first electrode 10, and the working electrode 11 is a porous oxide on which the first electrode 10 and the photosensitizing dye are supported.
  • the counter electrode 12 may be composed of the second electrode 20 and the semiconductor layer 3.
  • FIG. 3 is a cross-sectional view showing such a modification of the photoelectric conversion element 110 shown in FIG.
  • the 1st electrode 10 is comprised with the metal plate 4, and the working electrode 11 is comprised with the 1st electrode 10 and the porous oxide semiconductor layer 3 with which a photosensitizing dye is carry
  • the second electrode 20 is composed of the transparent substrate 2, the transparent conductor 1, and the catalyst layer 6 provided on the transparent conductor 1, and the counter electrode 12 is composed of the second electrode 20.
  • the catalyst layer 6 is made of, for example, platinum or the like that is thinly formed so that light can be transmitted.
  • the manufacture of the photoelectric conversion element 120 is performed as follows. First, the 1st electrode 10 comprised from the metal plate 4 is prepared. Next, the porous oxide semiconductor layer 3 is formed on the first electrode 10. The method of forming the porous oxide semiconductor layer 3 may be performed in the same manner as the step of forming the porous oxide semiconductor layer 3 in the second embodiment. Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 3. The photosensitizing dye may be supported in the same manner as the step of supporting the photosensitizing dye in the above-described embodiment. Thus, the working electrode 11 in which the porous oxide semiconductor layer 3 is formed on the first electrode 10 is obtained.
  • the counter electrode 12 is prepared.
  • the counter electrode 12 is prepared by forming the transparent conductor 1 on the transparent substrate 2 and forming the catalyst layer 6 on the transparent conductor 1 except for the region where the wiring portions 30c and 30s are to be formed. Two electrodes.
  • the method for forming the transparent conductor 1 may be performed in the same manner as the method for forming the transparent conductor 1 on the transparent substrate 2 in the second embodiment.
  • a method similar to the method of forming the catalyst layer on the metal plate 4 may be performed.
  • the second electrode thus obtained becomes the counter electrode 12.
  • wiring portions 30c and 30s are formed.
  • the wiring portions 30c and 30s may be formed by the same method as in the second embodiment.
  • the second electrode in which the wiring portions 30c and 30s are formed is obtained.
  • the porous oxide semiconductor layer 3 and the electrolyte 5 are sealed with the sealing portion 14 between the working electrode 11 and the counter electrode 12.
  • the sealing method may be performed in the same manner as the sealing process in the second embodiment.
  • the terminal 7 is formed.
  • the terminal 7 may be formed in the same manner as the terminal forming process in the second embodiment. Other processes are the same as those in the second embodiment.
  • the photoelectric conversion element 120 is obtained.
  • the terminal 7 is formed after the sealing step in the above, but the terminal 7 may be formed before the sealing step. By doing so, even when heat is applied in the terminal forming step, heat is not conducted to the electrolyte 5, and deterioration of the electrolyte 5 due to heat in the terminal forming step can be prevented.
  • the terminal 7 may be formed before the dye supporting step. By doing so, even when heat is applied in the terminal forming step, heat is not conducted to the photosensitizing dye, and deterioration of the photosensitizing dye due to heat in the terminal forming step can be prevented.
  • the terminal 7 is on the surface of the counter electrode 12 opposite to the working electrode 11 side, and when the counter electrode 12 is viewed along the direction connecting the working electrode 11 and the counter electrode 12. In the region surrounded by the outer periphery of the sealing portion 14, it is formed at a position overlapping the current collecting wiring 35 c.
  • the present invention is not limited to this, and may be formed at a position overlapping the current collecting wiring 35s.
  • the second electrode is composed of the transparent substrate 2 and the transparent conductor 1 provided on the transparent substrate 2, but may be composed of conductive glass. . In this case, it is good also as a structure which forms a terminal in the surface on the opposite side to the 1st electrode side in a 2nd electrode.
  • a counter electrode is comprised with electrically conductive glass and current collection is carried out on the surface of the working electrode side of a counter electrode.
  • a wiring may be formed.
  • the first electrode is composed of titanium or an alloy containing titanium and a catalyst layer, but may be composed of a metal such as nickel provided with a catalyst layer, a platinum plate, or the like. Moreover, the material which comprises the terminal 7 will not be restrict
  • a photoelectric conversion element having excellent durability is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 本発明は、耐久性に優れる光電変換素子を提供することを目的とする。本発明の光電変換素子100は、互いに対向する一対の電極10、20と、一対の電極10、20の一方に設けられる多孔質酸化物半導体層3と、一対の電極10、20の間に配置される電解質5と、一対の電極10、20を連結して、多孔質酸化物半導体層3と電解質5とを包囲して封止する封止部14とを備え、封止部14の少なくとも一部は、一対の電極10、20の少なくとも一方の表面に形成される無機材料からなる無機封止部14bと、一対の電極10、20を結ぶ方向に沿って無機封止部14bと連結され、樹脂を含む材料からなる樹脂封止部14aとから構成されており、無機封止部14bの表面における樹脂封止部14aと連結される領域S1よりも電解質5側の領域S2は、電解質5に対する耐性を有する保護樹脂層17で被覆されることを特徴とする。

Description

光電変換素子
 本発明は、光電変換素子に関する。
 色素増感太陽電池は、スイスのグレッツェルらにより開発されたものであり、光電変換効率が高く、製造コストが安い利点を持ち、新しいタイプの太陽電池として注目を集めている。
 色素増感太陽電池の概略構成は、透明導電膜が設けられた透明基材上に、光増感色素が担持される多孔質酸化物半導体層が設けられた作用極と、この作用極に対向して設けられた対極とを備え、これら作用極と対極との間に、酸化還元対を含有する電解質が充填されて、封止材により封止されたものである。
 この種の色素増感太陽電池は、太陽光などの入射光を吸収した光増感色素により発生する電子が酸化物半導体微粒子に注入され、作用極と対極の間に起電力が生じることにより、光エネルギーを電力に変換する光電変換素子として機能する。
 電解質としては、I/I3-などの酸化還元対をアセトニトリル等の有機溶剤に溶解させた電解液を用いることが一般的であり、このほか、不揮発性のイオン液体を用いた構成、液状の電解質を適当なゲル化剤でゲル化させ、擬固体化させた構成、及びp型半導体などの固体半導体を用いた構成等が知られている。
 対極は、電解質との化学反応による腐食が抑制される材質を用いる必要がある。このような材質としては、白金を成膜したチタン基板、白金を成膜したガラス電極基板等を用いることができる。
 このような色素増感型太陽電池には、一般的にアイオノマーであるハイミラン(商品名、三井・デュポンポリケミカル社製)を加熱溶融させて封止することによって、電解液中の揮発溶媒の揮発を防止できる色素増感型太陽電池が提案されている(例えば特許文献1参照)。
 またハイミランよりも気体遮蔽性が高いという理由でエチレン-ビニルアルコール共重合体を加熱溶融させて封止することによってさらに電解液中の揮発溶媒の揮発を防止できる色素増感型太陽電池も提案されている(例えば特許文献2参照)。
特開2003-297446号公報 特開2007-149652号公報
 ところで、上記特許文献1、2に記載の色素増感型太陽電池では、光電変換効率の経時変化が十分小さいレベルにあるとは言えなく、耐久性に優れる色素増感型太陽電池が求められている。
 そこで、本発明は、耐久性に優れる光電変換素子を提供することを目的とする。
 本発明者らは、上記課題を解決するため、光電変換効率の経時変化が起こる原因について鋭意研究を重ねた結果、封止部からの電解液の漏洩、特に電解液中の有機溶媒の漏洩が大きいことが主な原因ではないかと考えた。そこで、本発明者らは、従来の樹脂のみから構成される封止部を無機材料からなる無機封止部と樹脂からなる樹脂封止部とが一対の電極を結ぶ方向に沿って連結される封止部に変更した。これにより、封止部が樹脂封止部のみで構成される場合に比べて、電解液と樹脂封止部とが接触する面積を減らし、無機封止部の高い封止能によって、電解液の漏えいを減らすことにより、光電変換素子の耐久性を向上させることができると考えた。このとき、無機封止部の耐久性を向上させるために、無機材料をポリイミド等の耐薬品性の樹脂により更に被覆した。
 ところが、耐薬品性を有する保護樹脂層は、樹脂との接着力が弱い場合があり、樹脂封止部と保護樹脂層とが剥がれてしまう場合があることが明らかとなった。
 そこで、本発明者らはさらに検討を重ね、以下の発明により上記課題を解決し得ることを見出した。
 すなわち、本発明の光電変換素子は、互いに対向する一対の電極と、前記一対の電極の一方に設けられる多孔質酸化物半導体層と、前記一対の電極の間に配置される電解質と、前記一対の電極を連結して、多孔質酸化物半導体層と前記電解質とを包囲して封止する封止部と、を備え、前記封止部の少なくとも一部は、前記一対の電極の少なくとも一方の表面に形成される無機材料からなる無機封止部と、前記一対の電極を結ぶ方向に沿って前記無機封止部と連結され、樹脂を含む材料からなる樹脂封止部とから構成されており、前記無機封止部の表面における前記樹脂封止部と連結される領域よりも前記電解質側の領域は、前記電解質に対する耐性を有する保護樹脂層で被覆されることを特徴とするものである。
 このような光電変換装置によれば、封止部が、多孔質酸化物半導体層と電解質とを封止する。そして、封止部の少なくとも一部は、無機材料からなる無機封止部と、無機封止部と連結される樹脂を含む樹脂封止部とからなる。この無機封止部は、電解質に対して、樹脂封止部よりも高い封止能を有する。従って、本発明の光電変換装置では、無機封止部の存在により、封止部が樹脂封止部のみで構成される場合に比べて、電解質の漏洩を十分に抑制することができる。
 さらに、無機封止部は無機材料で構成されるため、無機封止部と樹脂封止部とは強い接着力で連結される。従って、無機封止部と樹脂封止部とが剥がれづらい。また、無機封止部の表面における樹脂封止部と連結される領域よりも電解質側の領域は、保護樹脂層で被覆されるため、無機封止部は、電解質との接触が防止されるため、より高い耐久性を有する。こうして、光電変換素子は優れた耐久性を有する。
 また、上記光電変換素子において、前記一対の電極間における前記一対の電極の少なくとも一方の表面上に設けられる金属からなる集電配線と、前記集電配線を被覆する無機材料からなる配線保護層と、を有する配線部を更に備え、前記配線部の少なくとも一部は、前記無機封止部の少なくとも一部を構成し、前記配線部が前記無機封止部を構成する部分において、前記樹脂封止部は、前記配線保護層と連結され、前記配線保護層の表面における前記樹脂封止部と連結される領域よりも前記電解質側の領域は、前記電解質に対する耐性を有する保護樹脂層で被覆されることが好ましい。
 このような光電変換素子によれば、一対の電極間における一対の電極の少なくとも一方に形成される配線部の少なくとも一部が、無機封止部の少なくとも一部を構成する。つまり、無機封止部の一部を構成する配線部は、封止部の一部を構成する。このように、配線部の少なくとも一部は、封止部で包囲される領域とは反対側に設けられておらず、さらに、封止部で包囲される領域側に設けられていない。このため、配線部と封止部とが占める面積を少なくすることができ、配線部と封止部とにより遮蔽される入射光を最小限に留めることができる。従って、集電配線の働きにより抵抗を低く抑えつつ、多孔質酸化物半導体層の面積を拡大することができる。よって、高い光電変換効率とすることができる。
 なお、配線部が無機封止部を構成する部分においては、配線保護層の表面における樹脂封止部と連結される領域よりも電解質側の領域は、保護樹脂層で被覆されるため、集電配線は、長期間にわたって電解質による腐食から保護される。
 また、上記光電変換素子において、前記配線部の他の一部は、前記封止部の内周で包囲される領域内における前記一対の電極の少なくとも一方の表面上に設けられ、前記封止部の内周で包囲される領域内における前記配線保護層は、前記保護樹脂層で全体が被覆されていることが好ましい。
 このような光電変換素子によれば、封止部の内周で包囲される領域内に配線部が設けられるため、より光電変換素子の抵抗を低くすることができる。そして、封止部の内周で包囲される領域内における配線保護層は、保護樹脂層で被覆されるため、集電配線は、長期間にわたって電解質による腐食から保護される。
 また、上記光電変換素子において、前記配線部は、前記封止部の外周で包囲される領域から前記封止部の外周の外側にかけて設けられ、前記一対の電極の少なくとも一方における前記一対の電極間側とは反対側の表面に端子が設けられ、前記端子は、前記一対の電極を結ぶ方向に沿って前記端子が設けられる電極を見た場合、前記封止部の外周で包囲される領域における前記配線部と重なる位置に形成されることが好ましい。
 このような構成の光電変換素子によれば、一対の電極の少なくとも一方に設けられる配線部の集電配線は、金属からなるため熱伝導性に優れる。また、端子は、一対の電極を結ぶ方向に沿って端子が設けられる電極を見た場合、封止部の外周で包囲される領域における配線部と重なる位置に形成される。従って、端子の形成位置と集電配線との位置が近く、端子に導電線等をはんだ付けする際、端子が形成される電極を介して封止部の外周の内側に伝導する熱は、集電配線に伝導し易い。そして、集電配線に伝導する熱は、集電配線の優れた熱伝導により、封止部の外周の外側に放出される。こうして、端子にはんだ付けをする際、端子が形成される電極を介して伝導する熱により、多孔質酸化物半導体層に担持される光増感色素や電解質が劣化することを抑制することができる。
 本発明によれば、耐久性に優れる光電変換素子が提供される。
本発明の第1実施形態に係る光電変換素子を示す断面図である。 本発明の第2実施形態に係る光電変換素子を示す断面図である。 図2に示す光電変換素子の変形例を示す断面図である。
 以下、本発明に係る光電変換素子の好適な実施形態について図面を参照しながら詳細に説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかる光電変換素子を示す概略断面図である。
 図1に示すとおり、光電変換素子100は、作用極11と、作用極11と対向するように配置される対極12と、作用極11と対極12との間に配置される電解質5と、電解質5を包囲する封止部14とを主な構成要素として備える。
 (作用極)
 作用極11は、透明基材2及び透明基材2の一方の面に設けられる透明導電体1とから成る第2電極20と、透明導電体1上に設けられ、光増感色素が担持される多孔質酸化物半導体層3とを備える。
 透明基材2は、光透過性の材料からなる基板により構成される。このような材料としては、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)などが挙げられ、通常、光電変換素子の透明基材として用いられる材料であればいかなるものでも用いることができる。透明基材2は、これらの中から電解質への耐性などを考慮して適宜選択される。また、透明基材2は、できる限り光透過性に優れる基材が好ましく、光透過率が90%以上の基材がより好ましい。
 透明導電体1は、透明導電膜であり、透明基材2の一方の面の一部、または、全面に形成される薄膜である。作用極11の透明性を著しく損なわない構造とするために、透明導電体1は、導電性金属酸化物からなる薄膜であることが好ましい。このような導電性金属酸化物としては、例えば、酸化インジウムスズ(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが挙げられる。また、透明導電体1は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電体1が単層で構成される場合、透明導電体1は、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましく、また、高い耐熱性及び耐薬品性を有する観点から、FTOで構成されることがより好ましい。
 また、透明導電体1が複数の層で構成される積層体により構成されると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電体1が実現でき、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。また、透明導電体1の厚さは例えば0.01μm~2μmの範囲にすればよい。
 多孔質酸化物半導体層3を形成する酸化物半導体としては、特に限定されず、通常、光電変換素子用の多孔質酸化物半導体層を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような酸化物半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)が挙げられ、これらの2種以上で構成される酸化物半導体であっても良い。
 これら酸化物半導体の粒子の平均粒径は1~1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。また、多孔質酸化物半導体層3は、粒度分布の異なる酸化物半導体粒子を積層させて構成されることが好ましい。この場合、半導体層内で繰り返し光の反射を起こさせることが可能となり、多孔質酸化物半導体層3の外部へ逃がす入射光を少なくして、効率よく光を電子に変換することができる。多孔質酸化物半導体層3の厚さは、例えば0.5~50μmとすればよい。なお、多孔質酸化物半導体層3は、異なる材料からなる複数の酸化物半導体の積層体で構成することもできる。
 光増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などが挙げられ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。具体的には、N3、N719、N749(ブラックダイ)などを使用することができる。
 (電解質)
 電解質5は、多孔質酸化物半導体層3内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層3内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層3と一体に形成されてなるもの、あるいは、イオン性液体、酸化物半導体粒子若しくは導電性粒子を含むゲル状の電解質を用いることができる。
 上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ-ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
 上記イオン性液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[(CFSO]、ヨウ化物イオンなどが挙げられる。イオン性液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
 上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
 このような酸化物半導体粒子としては、SiO、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm~1000nm程度が好ましい。
 上記導電性粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10-2Ω・cm以下であり、より好ましくは、1.0×10-3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。このような導電性粒子には、電解質中において導電性が低下しにくく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが求められる。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応などによる劣化を生じないものが好ましい。
 このような導電性粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
 (対極)
 対極12は、第1電極10により構成される。第1電極は、チタンまたはチタン合金からなる金属板4と触媒層6とで構成される。なお、還元反応を促進する触媒層6は、金属板4における作用極11側の表面に形成される。触媒層6は、白金や炭素などからなる。
 (封止部)
 封止部14は、樹脂封止部14aと無機封止部14bと保護樹脂層17とから構成される。無機封止部14bは、多孔質酸化物半導体層3を包囲するように作用極11上に設けられており、樹脂封止部14aは、無機封止部14bと対極12とに連結されている。こうして、封止部14は、作用極11と対極12とを連結しており、作用極11と対極12との間の電解質5は、封止部14によって包囲されることで封止される。
 具体的には、樹脂封止部14aは、無機封止部14bにおける透明導電体1とは反対側の表面の領域S1上において無機封止部14bと連結されている。さらに、無機封止部14bの表面における樹脂封止部14aが形成される領域よりも電解質側の領域S2は、保護樹脂層17で被覆されている。
 さらに、樹脂封止部14aは、領域S1と隣り合う保護樹脂層17の表面上にも設けられている。このように無機封止部14bの領域S1上から、領域S1と隣り合う保護樹脂層17の表面上にかけて樹脂封止部14aが設けられることにより、無機封止部14bが電解質5と接触することが防止され、無機封止部14bの高い耐久性が維持されている。
 樹脂封止部14aを構成する材料としては、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体、紫外線硬化樹脂、及び、ビニルアルコール重合体が挙げられる。なお、樹脂封止部14aは樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。
 また、無機封止部14bを構成する材料としては、例えば非鉛系の透明な低融点ガラスフリットや、酸化チタン(TiO)、アルミナ(Al)等の酸化物や、炭化チタン(TiC)、炭化シリコン(SiC)等の炭化物や、窒化アルミ(AlN)等の窒化物等の無機材料が挙げられる。
 また、保護樹脂層17を構成する材料としては、ポリイミド、フッ素樹脂、アイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体、紫外線硬化樹脂、及び、ビニルアルコール重合体等の耐薬品性樹脂が挙げられる。
 なお、作用極11の対極12側の表面における封止部14の外周で包囲される外側の領域には端子8が形成される。端子8を構成する材料としては、金、銀、銅、白金、アルミニウムなどの金属が挙げられる。また、端子8上に、導電線等と端子8とを接続するためのはんだ13を形成して良い。はんだ13としては、特に制限はされないが、低融点はんだが好適である。低融点はんだとしては、例えば融点が200℃未満であるものを用いるのが好適である。この様なはんだとしては、共晶タイプ(例えばSn-Pb等)や、鉛フリータイプ(例えばSn-Ag、Sn-Cu、Sn-Ag-Cu、Sn-Zn、Sn-Zn―B等)などが挙げられる。
 本実施形態による光電変換素子100によれば、封止部14が、多孔質酸化物半導体層3と電解質5とを封止する。そして、封止部14の少なくとも一部は、無機材料からなる無機封止部14bと、無機封止部14bと連結される樹脂を含む樹脂封止部14aとからなる。この無機封止部14bは、電解質5に対して、樹脂封止部14aよりも高い封止能を有する。従って、本発明の光電変換素子100では、無機封止部14bの存在により、封止部14が樹脂封止部14aのみで構成される場合に比べて、電解質5の漏洩を十分に抑制することができる。
 さらに、無機封止部14bは無機材料で構成されるため、無機封止部14bと樹脂封止部14aとは強い接着力で連結される。従って、無機封止部14bと樹脂封止部14aとが剥がれづらい。また、無機封止部14bの表面における樹脂封止部14aと連結される領域S1よりも電解質5側の領域S2は、保護樹脂層17で被覆されるため、無機封止部14bは、電解質との接触が防止されるためより高い耐久性を有する。こうして、光電変換素子100は優れた耐久性を有する。
 次に、図1に示す光電変換素子100の製造方法について説明する。
 まず、作用極11と、対極12とを準備する(準備工程)。
 作用極11は、次の工程により得ることができる。最初に透明基材2の一方の面上に透明導電体1を形成し第2電極20とする。次に、第2電極20における透明導電体1上に多孔質酸化物半導体層3を形成する。次に無機封止部14bを形成する。次に、多孔質酸化物半導体層3に光増感色素を担持させる。
 透明基材2上に透明導電体1を形成する方法としては、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。なかでも、スプレー熱分解法が好ましい。透明導電体1を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、真空システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好ましい。
 透明導電体1上に多孔質酸化物半導体層3を形成する方法としては、主に塗布工程と乾燥・焼成工程からなる。塗布工程としては、例えばTiO粉末と界面活性剤および増粘剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電体1の表面に塗布することが挙げられる。塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電体1上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電体1の上を移動させる方法が挙げられる。乾燥・焼成工程としては、例えば大気雰囲気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ60分間、450℃の温度にて焼成する方法が挙げられる。こうして、透明導電体1上に多孔質酸化物半導体層3が形成される。
 無機封止部14bは、例えば、上述した低融点ガラスフリットなどの無機絶縁材料に、必要に応じて増粘剤、結合剤、分散剤、溶剤などを配合してなるペーストを、スクリーン印刷法などにより塗布し、加熱し焼成することによって得ることができる。
 次に、保護樹脂層17を形成する。保護樹脂層17は、耐薬品性樹脂又はその前駆体に、必要に応じて増粘剤、結合剤、分散剤、溶剤などを配合してなるペーストを、スクリーン印刷法などによって無機封止部14bの表面における樹脂封止部14aとの接触が予定される領域S1よりも電解質が充填されることが予定される領域(多孔質酸化物半導体層3側の領域)側を被覆するように塗膜し、加熱処理することによって得ることができる。或いは保護樹脂層17は、溶融させた耐薬品性樹脂を無機封止部14bの表面における樹脂封止部14aとの接触が予定される領域S1よりも電解質が充填されることが予定される領域側を被覆するように塗布した後に室温で自然冷却することによって得ることができる。或いは、フィルム状の耐薬品性樹脂を無機封止部14bの表面における樹脂封止部14aとの接触が予定される領域S1よりも電解質が充填されることが予定される領域側に接触させ、外部の熱源によってフィルム状の耐薬品性樹脂を加熱溶融させた後に室温で自然冷却することによって得ることができる。熱可塑性の耐薬品性樹脂としては、例えばアイオノマーやエチレン-メタクリル酸共重合体が用いられる。耐薬品性樹脂が紫外線硬化樹脂である場合は、耐薬品性樹脂の前駆体である紫外線硬化性樹脂を無機封止部14bに塗布した後、紫外線により、上述した紫外線硬化性樹脂を硬化させることにより耐薬品性樹脂を得ることができる。耐薬品性樹脂が水溶性樹脂である場合は、耐薬品性樹脂を含む水溶液を無機封止部14b上に塗布することにより耐薬品性樹脂を得ることができる。
 多孔質酸化物半導体層3に光増感色素を担持させる方法としては、まず、色素担持用の色素溶液、例えば、アセトニトリルとt-ブタノールを容積比で1:1とした溶媒に対して極微量のN3色素粉末を加えて調整した溶液を予め準備しておく。
 次に、シャーレ状の容器内に入れた光増感色素を溶媒として含有する溶液中に、別途電気炉にて120~150℃程度に加熱処理をし、多孔質酸化物半導体層3が形成された第2電極20を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、光増感色素を含有する溶液から多孔質酸化物半導体層3が形成された第2電極20を取り出し、アセトニトリルとt-ブタノールからなる混合溶液を用い洗浄する。これによって、光増感色素を担持したTiO薄膜からなる多孔質酸化物半導体層3を有する作用極11を得る。
 また、作用極11上に形成される端子8は、例えば、銀ペーストを印刷等により塗布し、加熱・焼成させて形成される。この端子8の形成は、色素担持工程の前に行うことが好ましい。
 一方、対極12を準備するには、まず、チタンまたはチタン合金からなる金属板4を準備する。そして、準備した金属板4の表面上に白金などからなる触媒層6を形成する。触媒層6は、スパッタリング法などにより形成する。これにより金属板4と触媒層6とを有する第1電極10を得ることができ、第1電極10がそのまま対極12となる。
 次に、作用極11と対極12との間に電解質5を樹脂封止部14aにより包囲して封止する(封止工程)。
 まず、作用極11上、及び、先に形成した無機封止部14b上に、樹脂封止部14aとなるための樹脂またはその前駆体を形成する。このとき樹脂またはその前駆体は、作用極11の多孔質酸化物半導体層3を包囲する様に形成する。また、無機封止部14b上に形成する樹脂またはその前駆体は、無機封止部14bにおける保護樹脂層17が形成されていない領域S1上に設ける。このとき、領域S1を確実に樹脂封止部14aにより覆うために、配線部30s上に形成する樹脂またはその前駆体は、保護樹脂層17上の一部を覆うように形成することが好ましい。
 樹脂が熱可塑性樹脂である場合は、溶融させた樹脂を作用極11上及び無機封止部14b上に塗布した後に室温で自然冷却するか、フィルム状の樹脂を作用極11及び無機封止部14bに接触させ、外部の熱源によって樹脂を加熱溶融させた後に室温で自然冷却することにより樹脂を得ることができる。熱可塑性の樹脂としては、例えばアイオノマーやエチレン-メタクリル酸共重合体が用いられる。樹脂が紫外線硬化樹脂である場合は、樹脂の前駆体である紫外線硬化性樹脂を作用極11上及び無機封止部14b上に塗布する。樹脂が水溶性樹脂である場合は、樹脂を含む水溶液を作用極11上及び無機封止部14b上に塗布する。水溶性の樹脂として、例えばビニルアルコール重合体が用いられる。
 次に、対極12の上に樹脂封止部14aとなるための樹脂またはその前駆体を形成する。対極12上の樹脂またはその前駆体は、作用極11と対極12とを対向させる際に、作用極11上の樹脂またはその前駆体と重なる位置に形成する。また、対極12上の樹脂またはその前駆体の形成は、作用極11の上に形成される樹脂またはその前駆体と同様にして行えば良い。
 次に、作用極11上の樹脂またはその前駆体で包囲された領域に電解質を充填する。
 そして、作用極11と対極12とを対向させ、対極12上の樹脂と作用極11とを重ね合わせる。その後、減圧環境下において、樹脂が熱可塑性樹脂である場合は、樹脂を加熱溶融させ、作用極11と対極12とを接着させる。こうして樹脂封止部14aが得られる。樹脂が紫外線硬化樹脂である場合は、対極12上の樹脂の紫外線硬化性樹脂と作用極11とを重ね合わせた後に紫外線により、紫外線硬化性樹脂を硬化させ、樹脂封止部14aが得られる。樹脂が水溶性樹脂である場合は、積層体を形成した後に室温にて触指乾燥させた後、低湿環境下で乾燥させ、樹脂封止部14aが得られる。こうして樹脂封止部14aが、無機封止部14bと連結されて、封止部14となる。
 なお、端子8上のはんだ13を配置する場合は、はんだを端子8上で溶融させて、その後、凝固させることにより形成される。
 こうして、図1に示す光電変換素子100を得る。
 (第2実施形態)
 次に、本発明の光電変換装置の第2実施形態について図2を用いて説明する。なお、図2において、第1実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。
 図2は、本実施形態の光電変換装置を示す概略断面図である。
 図2に示すように、光電変換素子110は、作用極11上に配線部30c、30sと、対極12上に端子7とが形成されている点で、第1実施形態における光電変換素子100と主に異なる。
 本実施形態において、多孔質酸化物半導体層3は、2つの多孔質酸化物半導体層3a、3bから構成される。
 配線部は、封止部14の内周により包囲される領域で、多孔質酸化物半導体層3a、3bの間において、透明導電体1上に設けられる配線部30cと、作用極11と対極12とを結ぶ方向における樹脂封止部14aと重なる位置において、透明導電体1上に設けられる配線部30sとを有する。さらに、配線部30c、30sは共に、封止部14の外周の外側まで延在して、端子8と接続されている。
 配線部30cにおいて、集電配線35cは、配線保護層36cによって全体が覆われ、さらに、配線保護層36cは、保護樹脂層17によって全体が被覆されている。こうして、電解質5と集電配線35cとの接触が防止されている。なお、配線保護層36c及び保護樹脂層17は、集電配線35cの全体を覆っている限り、作用極11の透明導電体1に接触していてもよいし、接触していなくてもよい。
 配線部30sは、無機封止部14bの少なくとも一部を構成している。そして、配線部30sにおいて、集電配線35sは、配線保護層36sによって全体が覆われている。さらに配線保護層36sの透明導電体1側とは反対側の表面の領域S1上には、樹脂封止部14aが接続されている。さらに、配線保護層36sの表面における樹脂封止部14aが接続される領域S1よりも電解質側の領域S2は、保護樹脂層17で被覆されている。
 集電配線35c、35sを構成する材料は、透明導電体1よりも低い抵抗を有する金属であればよく、このような材料としては、例えば金、銀、銅、白金、アルミニウム、チタン及びニッケルなどの金属が挙げられる。
 配線保護層36c、36sを構成する材料としては、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料が挙げられる。
 また、対極12における作用極11側とは反対側の表面上であって、作用極11と対極12とを結ぶ方向に沿って対極12を見た場合に、封止部14の外周で包囲される領域における集電配線35cと重なる位置には、端子7が形成される。端子7は、高融点はんだや銅及びニッケルの少なくとも一方を含む金属部材から構成される。
 高融点はんだとしては、融点が200℃以上(例えば210℃以上)であるものを用いることが好適である。このような高融点はんだとしては、Sn-Cu系、Sn-Ag系、Sn-Ag-Cu系、Sn-Au系、Sn-Sb系、Sn-Pb系(Pb含有量は例えば85質量%超)などを挙げることができ、これらのうち1つを単独で使用してもよいし、2以上を併用してもよい。
 金属部材を構成する材料としては、銅、ニッケルの単体の他、銅、ニッケルに他の金属を含有する合金が挙げられる。
 なお、端子7上に、導電線等と端子7とを接続するためのはんだ13を形成しても良い。端子7上のはんだは、端子8上のはんだ13と同様である。
 本実施形態による光電変換素子110によれば、作用極11に形成される配線部30sが、無機封止部14bの少なくとも一部を構成する。つまり、配線部30sは、封止部14の一部を構成する。このように、配線部30sは、封止部14で包囲される領域とは反対側に設けられておらず、さらに、封止部14で包囲される領域側に設けられていない。このため、配線部30sと封止部14とが占める面積を少なくすることができ、配線部30sと封止部14とにより遮蔽される入射光を最小限に留めることができる。従って、集電配線35sの働きにより抵抗を低く抑えつつ、多孔質酸化物半導体層3の面積を拡大することができる。よって、高い光電変換効率とすることができる。
 なお、配線保護層36sの表面における樹脂封止部14aと連結される領域S1よりも電解質側の領域S2は、保護樹脂層17で被覆されるため、集電配線35sは、長期間にわたって電解質による腐食から保護される。
 さらに、光電変換素子110によれば、封止部14の内周で包囲される領域内に配線部30cが設けられるため、より光電変換素子の抵抗を低くすることができる。そして、封止部14の内周で包囲される領域内における配線保護層36cは、保護樹脂層17で被覆されるため、集電配線35cは、長期間にわたって電解質による腐食から保護される。
 また、光電変換素子110によれば、作用極11上に設けられる配線部30sの集電配線35sは、金属からなるため熱伝導性に優れる。また、端子7は、対極12と作用極11とを結ぶ方向に沿って対極12を見た場合、配線部30sと重なる位置に形成される。従って、端子7の形成位置と集電配線35sとの位置が近く、端子7に導電線等をはんだ付け等の熱を伴う手段により接続する際、端子7が形成される対極12を介して封止部14の外周の内側に伝導する熱は、集電配線35sに伝導し易い。そして、集電配線35sに伝導する熱は、集電配線35sの優れた熱伝導により、封止部14の外周の外側に放出される。こうして、端子7にはんだ付け等の熱を伴う手段により導電線等を接続する際、対極を介して伝導する熱により、多孔質酸化物半導体層3に担持される光増感色素や電解質5が劣化することを抑制することができる。
 次に光電変換素子110の製造方法について説明する。
 まず、作用極11と、対極12とを準備する(準備工程)。
 作用極11の準備は、第1実施形態と同様にして行う。即ちまず、透明基材2上に透明導電体1を形成する。次に、透明導電体1の上に多孔質酸化物半導体層3a、3bを形成する。多孔質酸化物半導体層3a、3bを形成するには、第1実施形態において、多孔質酸化物半導体層3を形成する方法と同様の方法を用いて、多孔質半導体を2箇所に設ければよい。
 次に、配線部30c、30sを形成する。具体的には、多孔質酸化物半導体層3a、3bの間に配線部30cを形成し、多孔質酸化物半導体層3の周囲で、封止部14の形成が予定される場所に配線部30sを形成する。
 集電配線35c、35sは、多孔質酸化物半導体層3a、3bを形成した後、集電配線35c、35sを構成する金属材料に必要に応じて増粘剤、結合剤、分散剤、溶剤などを配合してなるペーストを、スクリーン印刷法などによって集電配線35c、35sがそれぞれ形成される場所に塗膜し、加熱して焼成することによって得ることができる。なお、端子8は集電配線35c、35sと同時に形成することが好ましい。
 配線保護層36c、36sは、例えば、上述した低融点ガラスフリットなどの無機絶縁材料に、必要に応じて増粘剤、結合剤、分散剤、溶剤などを配合してなるペーストを、スクリーン印刷法などにより集電配線35c、35sの全体を被覆するように塗布し、加熱し焼成することによって得ることができる。
 次に、配線保護層36c上、及び、配線保護層36s上に保護樹脂層17を形成する。配線保護層36c上の保護樹脂層17は、第1実施形態において、保護樹脂層17を形成したのと同様の方法により、配線保護層36cの表面全体に形成すれば良い。また、配線保護層36s上の保護樹脂層17は、第1実施形態において、保護樹脂層17を形成したのと同様の方法により、配線保護層36sの表面における樹脂封止材14aとの連結が予定される領域S1よりも電解質が充填されることが予定される領域側に形成すれば良い。
 準備工程におけるその他の工程は、第1実施形態と同様である。
 次に、封止工程において、樹脂封止材14aと配線部30sとが重なるように、作用極11と対極12とを重ねて封止する。封止の方法は、第1実施形態における封止工程と同様に行えば良い。
 次に、対極12における作用極11側とは反対側の表面上、すなわち第1電極10における金属板4上に端子7を形成する(端子形成工程)。端子7は、対極12の表面に対して垂直な方向から対極12を見た場合に、封止部14の外周で包囲される領域における集電配線35cと重なる位置に形成する。
 端子7が、高融点はんだにより構成される場合には、まず、対極12における作用極11側とは反対側の表面において、対極12の表面に垂直な方向から対極12を見た場合に集電配線35cと重なる位置に、高融点はんだと、はんだこての先端部とを接するように配置する。
 このとき、はんだこての先端部は、高融点はんだが溶融可能に加熱されると共に、超音波を発生する。こうして、高融点はんだは、はんだこて先端部から伝送する熱により溶融し、はんだこて先端部からの超音波により振動する。従って、高融点はんだは、金属板4との濡れ性が向上されて、金属板4の表面上に固定する。こうして、端子7が対極12の表面上に形成される。このとき対極12を介して封止部14の内周で包囲される領域に伝導される熱の一部は、集電配線35cを介して封止部14の外周の外に放出される。
 なお、はんだこて先端部の温度は、高融点はんだを溶融可能であれば、特に制限されないが、例えば、200~450℃であることが、はんだを十分に溶かす観点から好ましく、250~350℃であることが、はんだの酸化防止、及び、光増感色素の熱による劣化を防止する観点からより好ましい。また、はんだこての先端部から発生する超音波の振動周波数は、10kHz~200kHzであることが好ましく、20kHz~100kHzであることが金属板4に傷をつけることを防止する観点からより好ましい。
 次に、溶融した高融点はんだからはんだこてを離し、高融点はんだを冷却することで端子7が形成される。
 一方、第1端子7が銅及びニッケルの少なくとも一方を含む金属部材から構成される場合には、まず、対極12における作用極11側とは反対側の表面上において、対極12の表面に垂直な方向から対極12を見た場合に集電配線35cと重なる位置に、金属部材が配置され、金属部材が対極12に押し付けられるように加圧される。この加圧は、金属部材の自重により金属板に圧力がかかる場合を含む。そして、金属部材が加圧される状態で、金属部材に超音波振動を印加する。こうして、対極12と金属部材との間において、対極12と金属部材とは、超音波振動によって互いに擦れ合い、不要な酸化皮膜のすくなくとも一部が取り除かれて、加圧による塑性変形により固相状態で接合される。こうして、端子7が対極12の表面上に接合されて形成される。
 このとき、対極12と金属部材との間の圧力は、0N/mより大きく300N/m以下であることが対極12と金属部材とを密着させる観点で好ましく、1~100N・mであることが対極12の変形を防止する観点でより好ましい。
 また、金属部材に与える超音波は、対極12と金属部材とが接合される面に平行な方向に与えることが好ましい。さらに超音波の振動周波数は、1kHz~200kHzであることが対極12と金属部材とを良好に接合する観点から好ましく、10kHz~100kHzであることが対極12に傷をつけることを抑制する観点からより好ましい。また、超音波の振動振幅は、0.01~50μmであることが、接合の観点から好ましく、0.1~10μmであることが、金属部材及び金属板4に傷を与えることを抑制する観点からより好ましい。
 なお、金属部材を接合する際に、金属部材に対して加熱を行えば、より接合の強度が向上するため好ましい。このときの金属部材の温度は、例えば、10~500℃であることが、対極12と金属部材とを容易に接合させる観点から好ましく、20~200℃であることが、色素及び電解液を良好な状態に保つ観点からより好ましい。なお、このとき対極12を介して封止部14の内周で包囲される領域に伝導される熱の一部は、集電配線35cを介して封止部14の外周の外に放出される。
 以上、本発明について、第1、第2実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、第1実施形態において、無機封止部14bは、多孔質酸化物半導体層3を包囲するように設けられたが、本発明はこれに限らず、無機封止部14bが、封止部14における周方向の一部のみに設けられていても良い。この場合、無機封止部14bが設けられていない部分については、樹脂封止部14aが作用極11と対極12とを連結する。
 例えば、第1、第2実施形態において、無機封止部14bは、作用極11上にのみ設けられたが、本発明はこれに限らない。例えば、無機封止部を作用極11上と対極12上に設け、作用極11上に設けられた無機封止部と対極12上に設けられた無機封止部とを樹脂封止部で連結しても良い。このときの作用極11上に設けられた無機封止部と対極12上に設けられた無機封止部との構成は、第1、第2実施形態における無機封止部14bと同様の構成とすればよい。そして、作用極11上に設けられた無機封止部、及び、対極12上に設けられた無機封止部の表面において、樹脂封止部と連結される領域よりも電解質側の領域は、保護樹脂層で被覆されれば良い。
 例えば、第2実施形態において、端子形成工程は、封止工程の後に行うとしたが、本発明はこれに限らない。例えば、封止工程の前に端子形成工程を行っても良い。
 この場合、封止を行う前の対極12の一方の表面に端子7を形成する。端子7の形成は、上述の実施形態における端子形成工程と同様に行えば良い。
 次に、端子7が樹脂封止部により封止されないために、対極12における端子7が形成されていない側の表面が作用極11側を向くように、作用極11と対極12とを対面させて封止を行えば良い。封止の方法は、上述の実施形態における封止工程と同様に行えば良い。
 このように、端子形成工程を封止工程の前に行うことにより、端子形成工程において、熱が加えられる場合においても、多孔質酸化物半導体層3と電解質5とが封止される前であるため、端子形成工程における熱が光増感色素や電解質5に伝達して、光増感色素や電解質5を劣化されることが防止できる。
 また、第1、第2実施形態において、多孔質酸化物半導体層3は、第2電極20上に形成されるものとした。そして、作用極11は、第2電極20と光増感色素が担持される多孔質酸化物半導体層3とで構成され、対極12は、第1電極10で構成するものとした。しかし、本発明はこれらに限らず、多孔質酸化物半導体層3は、第1電極10上に形成され、作用極11は、第1電極10と光増感色素が担持される多孔質酸化物半導体層3とで構成され、対極12は、第2電極20で構成するものとしてもよい。図3は、図2に示す光電変換素子110のこのような変形例を示す断面図である。光電変換素子120において、第1電極10は、金属板4で構成され、作用極11は、第1電極10と光増感色素が担持される多孔質酸化物半導体層3とで構成される。また、第2電極20は透明基材2と透明導電体1と透明導電体1上に設けられる触媒層6とから構成され、対極12は、第2電極20で構成される。なお、触媒層6は、例えば、光が透過する程度に薄く製膜された白金等からなる。
 光電変換素子120の製造は、次のように行われる。まず、金属板4から構成される第1電極10を準備する。次に第1電極10上に多孔質酸化物半導体層3を形成する。多孔質酸化物半導体層3を形成する方法は、第2実施形態において多孔質酸化物半導体層3を形成する工程と同様にして行えば良い。次に多孔質酸化物半導体層3に光増感色素を担持させる。光増感色素の担持は、上述の実施形態において、光増感色素を担持させる工程と同様にして行えば良い。こうして、第1電極10上に多孔質酸化物半導体層3が形成された作用極11を得る。
 次に対極12を準備する。対極12の準備は、透明基材2上に透明導電体1を形成し、配線部30c、30sの形成が予定される領域を除いて、透明導電体1上に触媒層6を形成して第2電極とする。透明導電体1を形成する方法は、第2実施形態において、透明基材2上に透明導電体1を形成する方法と同様にして行えば良い。透明導電体1上に触媒層を形成するには、上述の実施形態において、金属板4上に触媒層を形成した方法と同様の方法で行えばよい。こうして得られる第2電極が対極12となる。
 次に、配線部30c、30sを形成する。配線部30c、30sの形成は、第2実施形態と同様の方法により形成すれば良い。こうして配線部30c、30sが形成される第2電極が得られる。
 次に作用極11と対極12との間において、多孔質酸化物半導体層3と電解質5とを封止部14で封止する。封止の方法は、第2実施形態における封止工程と同様にして行えば良い。次に端子7を形成する。端子7の形成は、第2実施形態における端子形成工程と同様にして行えば良い。また、その他の工程は、第2実施形態と同様である。
 こうして、光電変換素子120を得る。
 また、光電変換素子120の製造において、上記では端子7を封止工程の後に形成したが、端子7の形成を封止工程の前に行っても良い。こうすることで端子形成工程において、熱を加える場合でも、熱が電解質5に伝導することがなく、端子形成工程による熱による電解質5の劣化を防止することができる。
 さらに、光電変換素子120の製造において、端子7の形成を色素担持工程の前に行っても良い。こうすることで、端子形成工程において、熱を加える場合でも、熱が光増感色素に伝導することがなく、端子形成工程による熱による光増感色素の劣化を防止することができる。
 また、上述の実施形態において、端子7は、対極12における作用極11側とは反対側の表面上であって、作用極11と対極12とを結ぶ方向に沿って対極12を見た場合に、封止部14の外周で包囲される領域における集電配線35cと重なる位置に形成される。しかし、本発明は、これに限らず、集電配線35sと重なる位置に形成しても良い。
 また、第1、第2実施形態において、第2電極は、透明基材2及び透明基材2上に設けられる透明導電体1から構成されるとしたが、導電性ガラスにより構成されても良い。この場合、第2電極における第1電極側とは反対側の表面に端子を形成する構成としても良い。
 また、第1、第2実施形態では、作用極の表面上のみに集電配線を形成する構成としたが、例えば、対極を導電ガラスで構成して、対極の作用極側の表面に集電配線を形成しても良い。
 また、第1電極は、チタン或いはチタンを含む合金と触媒層とにより構成されるものとしたが、ニッケル等の金属に触媒層を設けたものや、白金板等により構成されても良い。また、端子7を構成する材料は、第1電極上に設けられる導電性の材料であれば、特に制限されない。
 本発明によれば、耐久性に優れる光電変換素子が提供される。
 1・・・透明導電体
 2・・・透明基材
 3、3a、3b・・・多孔質酸化物半導体層
 5・・・電解質
 7・・・端子
 8・・・端子
 10・・・第1電極
 11・・・作用極
 12・・・対極
 14・・・封止部
 14a・・・樹脂封止部
 14b・・・無機封止部
 17・・・保護樹脂層
 20・・・第2電極
 30c、30s・・・配線部
 35c、35s・・・集電配線
 36c、36s・・・配線保護層
 100、110、120・・・光電変換素子

Claims (4)

  1.  互いに対向する一対の電極と、
     前記一対の電極の一方に設けられる多孔質酸化物半導体層と、
     前記一対の電極の間に配置される電解質と、
     前記一対の電極を連結して、前記多孔質酸化物半導体層と前記電解質とを包囲して封止する封止部と、
    を備え、
     前記封止部の少なくとも一部は、前記一対の電極の少なくとも一方の表面に形成される無機材料からなる無機封止部と、前記一対の電極を結ぶ方向に沿って前記無機封止部と連結され、樹脂を含む材料からなる樹脂封止部とから構成されており、
     前記無機封止部の表面における前記樹脂封止部と連結される領域よりも前記電解質側の領域は、前記電解質に対する耐性を有する保護樹脂層で被覆される
    ことを特徴とする光電変換素子。
  2.  前記一対の電極間における前記一対の電極の少なくとも一方の表面上に設けられる金属からなる集電配線と、前記集電配線を被覆する無機材料からなる配線保護層と、を有する配線部を更に備え、
     前記配線部の少なくとも一部は、前記無機封止部の少なくとも一部を構成し、
     前記配線部が前記無機封止部を構成する部分において、前記樹脂封止部は、前記配線保護層と連結され、前記配線保護層の表面における前記樹脂封止部と連結される領域よりも前記電解質側の領域は、前記電解質に対する耐性を有する保護樹脂層で被覆される
    ことを特徴とする請求項1に記載の光電変換素子。
  3.  前記配線部の他の一部は、前記封止部の内周で包囲される領域内における前記一対の電極の少なくとも一方の表面上に設けられ、前記封止部の内周で包囲される領域内における前記配線保護層は、前記保護樹脂層で全体が被覆されていることを特徴とする請求項2に記載の光電変換素子。
  4.  前記配線部は、前記封止部の外周で包囲される領域から前記封止部の外周の外側にかけて設けられ、前記一対の電極の少なくとも一方における前記一対の電極間側とは反対側の表面に端子が設けられ、前記端子は、前記一対の電極を結ぶ方向に沿って前記端子が設けられる電極を見た場合、前記封止部の外周で包囲される領域における前記配線部と重なる位置に形成されることを特徴とする請求項2または3に記載の光電変換素子。
PCT/JP2010/052742 2009-02-24 2010-02-23 光電変換素子 WO2010098311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10746192.3A EP2403052B1 (en) 2009-02-24 2010-02-23 Photoelectric conversion element
CN201080008059.5A CN102318131B (zh) 2009-02-24 2010-02-23 光电转换元件
US13/216,658 US9153387B2 (en) 2009-02-24 2011-08-24 Photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009040690A JP5230481B2 (ja) 2009-02-24 2009-02-24 光電変換素子
JP2009-040690 2009-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/216,658 Continuation US9153387B2 (en) 2009-02-24 2011-08-24 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2010098311A1 true WO2010098311A1 (ja) 2010-09-02

Family

ID=42665518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052742 WO2010098311A1 (ja) 2009-02-24 2010-02-23 光電変換素子

Country Status (6)

Country Link
US (1) US9153387B2 (ja)
EP (1) EP2403052B1 (ja)
JP (1) JP5230481B2 (ja)
CN (1) CN102318131B (ja)
TW (1) TW201101511A (ja)
WO (1) WO2010098311A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198835A (ja) * 2009-02-24 2010-09-09 Fujikura Ltd 光電変換素子
JP2013004178A (ja) * 2011-06-10 2013-01-07 Fujikura Ltd 色素増感太陽電池及びその製造方法
JP2013084596A (ja) * 2011-09-30 2013-05-09 Fujikura Ltd 色素増感太陽電池
CN103314480A (zh) * 2011-02-09 2013-09-18 株式会社藤仓 染料敏化太阳能电池
EP2752936A4 (en) * 2011-08-31 2015-07-29 Fujikura Ltd PHOTOELECTRIC CONVERSION ELEMENT
US10020120B2 (en) 2010-04-02 2018-07-10 Fujikura Ltd. Electronic device and manufacturing method for same
WO2023224005A1 (ja) * 2022-05-20 2023-11-23 パナソニックホールディングス株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614724B2 (ja) * 2011-01-31 2014-10-29 日立金属株式会社 光電変換モジュール及び光電変換モジュールの製造方法
CN103262337B (zh) * 2011-03-02 2016-06-22 株式会社藤仓 色素敏化太阳能电池模块
TWI449190B (zh) * 2011-06-21 2014-08-11 Ind Tech Res Inst 染料敏化太陽能電池
WO2013002255A1 (ja) 2011-06-30 2013-01-03 株式会社フジクラ 色素増感太陽電池及びその製造方法
JP5296904B1 (ja) 2012-05-22 2013-09-25 株式会社フジクラ 色素増感太陽電池及びその製造方法
CN102723382A (zh) * 2012-06-29 2012-10-10 苏州嘉言能源设备有限公司 硅太阳能电池用光电转化透明薄膜
JP5969844B2 (ja) * 2012-07-18 2016-08-17 株式会社フジクラ 色素増感太陽電池およびその製造方法
JP2014071951A (ja) * 2012-09-27 2014-04-21 Fujikura Ltd 光電変換素子用電極及びこれを用いた光電変換素子
JP6048047B2 (ja) * 2012-10-02 2016-12-21 凸版印刷株式会社 色素増感太陽電池および色素増感太陽電池用光電極
CN107256802B (zh) * 2012-10-19 2019-02-22 积水化学工业株式会社 电气模块
CN104813497B (zh) * 2012-11-27 2018-03-16 积水化学工业株式会社 太阳能电池的制造方法和太阳能电池
WO2015025921A1 (ja) * 2013-08-22 2015-02-26 積水化学工業株式会社 光電変換素子及び光電変換素子の製造方法
US20160351344A1 (en) * 2014-01-30 2016-12-01 Fujikura, Ltd. Photoelectric conversion element
JP5802817B1 (ja) * 2014-09-30 2015-11-04 株式会社フジクラ 色素増感型光電変換素子
JP2016086032A (ja) * 2014-10-23 2016-05-19 株式会社フジクラ 色素増感光電変換素子の製造方法
JP6521644B2 (ja) * 2015-01-22 2019-05-29 シャープ株式会社 色素増感太陽電池および色素増感太陽電池システム
KR101865997B1 (ko) * 2015-07-24 2018-06-08 현대자동차주식회사 염료감응 태양전지용 집전극 보호막 및 이의 형성방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297446A (ja) 2002-01-29 2003-10-17 Nippon Shokubai Co Ltd 色素増感太陽電池
JP2006100068A (ja) * 2004-09-29 2006-04-13 Kyocera Corp 光電変換装置およびそれを用いた光発電装置
WO2007046499A1 (ja) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha 色素増感型光電変換素子及びその製造法
JP2007149652A (ja) 2005-10-31 2007-06-14 Sumitomo Chemical Co Ltd 光電気化学電池
JP2007220606A (ja) * 2006-02-20 2007-08-30 Dainippon Printing Co Ltd 色素増感型太陽電池モジュール
JP2008186692A (ja) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd 色素増感太陽電池及びその製造方法
JP2008226782A (ja) * 2007-03-15 2008-09-25 Fujikura Ltd 光電変換素子およびその製造方法
JP2008235104A (ja) * 2007-03-22 2008-10-02 Matsushita Electric Works Ltd 光電変換素子及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP931799A0 (en) * 1999-03-18 1999-04-15 Sustainable Technologies Australia Limited Methods to implement interconnects in multi-cell regenerative photovoltaic photoelectrochemical devices
WO2004032274A1 (ja) * 2002-10-03 2004-04-15 Fujikura Ltd. 電極基板、光電変換素子、導電性ガラス基板およびその製造方法、並びに色素増感太陽電池
JP2004128267A (ja) * 2002-10-03 2004-04-22 Fujikura Ltd 光電変換素子用の導電性ガラス基板並びにその製造方法
JP4696452B2 (ja) * 2004-02-26 2011-06-08 パナソニック電工株式会社 光電変換素子
JP4635455B2 (ja) * 2004-02-27 2011-02-23 パナソニック電工株式会社 光電変換素子および光電変換モジュール
KR101001548B1 (ko) * 2004-06-29 2010-12-17 삼성에스디아이 주식회사 광전변환소자를 이용한 염료감응 태양전지
JP5028804B2 (ja) * 2006-01-19 2012-09-19 ソニー株式会社 機能デバイス
JP4488034B2 (ja) * 2007-06-29 2010-06-23 株式会社日立製作所 色素増感太陽電池
KR20110086828A (ko) * 2008-10-30 2011-08-01 가부시끼가이샤 후지꾸라 광전 변환 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297446A (ja) 2002-01-29 2003-10-17 Nippon Shokubai Co Ltd 色素増感太陽電池
JP2006100068A (ja) * 2004-09-29 2006-04-13 Kyocera Corp 光電変換装置およびそれを用いた光発電装置
WO2007046499A1 (ja) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha 色素増感型光電変換素子及びその製造法
JP2007149652A (ja) 2005-10-31 2007-06-14 Sumitomo Chemical Co Ltd 光電気化学電池
JP2007220606A (ja) * 2006-02-20 2007-08-30 Dainippon Printing Co Ltd 色素増感型太陽電池モジュール
JP2008186692A (ja) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd 色素増感太陽電池及びその製造方法
JP2008226782A (ja) * 2007-03-15 2008-09-25 Fujikura Ltd 光電変換素子およびその製造方法
JP2008235104A (ja) * 2007-03-22 2008-10-02 Matsushita Electric Works Ltd 光電変換素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2403052A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198835A (ja) * 2009-02-24 2010-09-09 Fujikura Ltd 光電変換素子
US10020120B2 (en) 2010-04-02 2018-07-10 Fujikura Ltd. Electronic device and manufacturing method for same
CN103314480A (zh) * 2011-02-09 2013-09-18 株式会社藤仓 染料敏化太阳能电池
JP2013004178A (ja) * 2011-06-10 2013-01-07 Fujikura Ltd 色素増感太陽電池及びその製造方法
EP2752936A4 (en) * 2011-08-31 2015-07-29 Fujikura Ltd PHOTOELECTRIC CONVERSION ELEMENT
US10049823B2 (en) 2011-08-31 2018-08-14 Fujikura Ltd. Photoelectric conversion element
JP2013084596A (ja) * 2011-09-30 2013-05-09 Fujikura Ltd 色素増感太陽電池
WO2023224005A1 (ja) * 2022-05-20 2023-11-23 パナソニックホールディングス株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
EP2403052A1 (en) 2012-01-04
US20120006406A1 (en) 2012-01-12
TW201101511A (en) 2011-01-01
CN102318131B (zh) 2014-12-10
JP5230481B2 (ja) 2013-07-10
JP2010198836A (ja) 2010-09-09
CN102318131A (zh) 2012-01-11
EP2403052B1 (en) 2017-09-06
US9153387B2 (en) 2015-10-06
EP2403052A4 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5230481B2 (ja) 光電変換素子
JP5430970B2 (ja) 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法
JP5430971B2 (ja) 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法
JP5346932B2 (ja) 光電変換素子モジュール、及び、光電変換素子モジュールの製造方法
JP5351553B2 (ja) 光電変換素子モジュール
JP5412136B2 (ja) 光電変換素子
JP5451106B2 (ja) 光電変換素子モジュール
JP5706786B2 (ja) 色素増感太陽電池の製造方法
JP2010198834A (ja) 光電変換素子モジュールの製造方法
JP5762053B2 (ja) 色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008059.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010746192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010746192

Country of ref document: EP