WO2010098117A1 - ノズルベーンの製造方法 - Google Patents

ノズルベーンの製造方法 Download PDF

Info

Publication number
WO2010098117A1
WO2010098117A1 PCT/JP2010/001294 JP2010001294W WO2010098117A1 WO 2010098117 A1 WO2010098117 A1 WO 2010098117A1 JP 2010001294 W JP2010001294 W JP 2010001294W WO 2010098117 A1 WO2010098117 A1 WO 2010098117A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
wing
shaft
nozzle vane
shaft portion
Prior art date
Application number
PCT/JP2010/001294
Other languages
English (en)
French (fr)
Inventor
良満 松山
幸雄 高橋
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US13/202,168 priority Critical patent/US20110296895A1/en
Priority to EP10746000A priority patent/EP2402580A1/en
Priority to CN2010800092751A priority patent/CN102333943A/zh
Publication of WO2010098117A1 publication Critical patent/WO2010098117A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes

Definitions

  • the present invention relates to a method for manufacturing a nozzle vane having a blade portion and a shaft portion protruding from a predetermined end face of the blade portion.
  • variable capacity turbocharger is a supercharger that can improve the performance of the engine over a wide range from a low rotation range to a high rotation range.
  • the turbocharger has a rotor blade that rotates by the flow of exhaust gas discharged from the engine, and a variable nozzle that surrounds the rotor blade and has a substantially annular shape and supplies exhaust gas to the rotor blade.
  • the variable nozzle has a pair of substantially annular plate-like members arranged opposite to each other and a plurality of nozzle vanes provided between the pair of plate-like members.
  • the nozzle vanes are pivotally supported by the pair of plate members so that the shaft portions are rotatably supported, and are provided at substantially equal intervals in the circumferential direction of the pair of plate members.
  • variable nozzle The flow path diameter of the variable nozzle is changed by rotating the nozzle vane about its shaft portion to change the interval between the blade portions.
  • the nozzle vane in order to maintain the operation and performance of the variable capacity turbocharger, it is important to manufacture the nozzle vanes with high accuracy. For example, in order for the nozzle vane to rotate smoothly, it is necessary to keep the diameter and roundness of the shaft portion within appropriate accuracy. In addition to this, when the nozzle vane has a pair of shaft portions protruding from both end faces of the blade portion, it is necessary to ensure the concentricity of the pair of shaft portions with appropriate accuracy. Moreover, when the gap between the plate-like member of the variable nozzle and the blade vane end face of the nozzle vane becomes large, the flow rate of exhaust gas leaking from the gap increases, and the efficiency of the turbocharger decreases. Therefore, it is necessary to keep the width of the blade portion in the axial direction of the shaft portion and the orthogonality between the axial direction and the end surface of the blade portion within appropriate accuracy.
  • Patent Document 1 discloses a method for manufacturing a nozzle vane.
  • a shaped member having dimensions slightly larger than a finished nozzle vane is formed from a metal plate having a predetermined plate thickness by a punching process or a pressing process.
  • the above-mentioned shaped member is cut by a cutting process to manufacture a nozzle vane.
  • the shaft part and blade end face of the nozzle vane are cut, and the diameter of the shaft part, the width of the blade part, and the like are kept within appropriate accuracy through this process.
  • This invention is made
  • the present invention relates to a method for manufacturing a nozzle vane having a wing portion and a shaft portion protruding from a predetermined end face of the wing portion, and is formed with a shaft portion formed with a first insertion portion having a shape in which the shaft portion is projected in the axial direction.
  • a second step of forming the wing portion by inserting the shaped member after the first step and pressing the wing portion before forming in a direction substantially orthogonal to the blade surface.
  • the pre-molding shaft portion is expanded and thickened in a direction perpendicular to the axial direction.
  • the shaft part before molding is inserted into the first insertion part of the mold for molding the shaft part, and the shaft part before molding does not expand beyond the internal shape of the first insertion part. Therefore, by pressing until the outer peripheral surface of the pre-molding shaft portion contacts the inner peripheral surface of the first insertion portion, the pre-molding shaft portion is plastically deformed into the same shape as the internal shape of the first insertion portion.
  • the first insertion portion has a shape obtained by projecting the shaft portion of the finished nozzle vane in the axial direction. Accordingly, the pre-molding shaft portion is pressed into the first insertion portion, thereby forming the same shape as the shaft portion of the finished nozzle vane.
  • the pre-molding wing is expanded in the blade surface direction by pressing the pre-molding wing in a direction substantially perpendicular to the blade surface.
  • the pre-molding wing part is inserted into the second insertion part of the wing part molding die, and the pre-molding wing part does not expand beyond the internal shape of the second insertion part. Therefore, by pressing until the end portion of the pre-molding wing portion contacts the inner surface of the second insertion portion, the pre-molding wing portion is plastically deformed into the same shape as the internal shape of the second insertion portion.
  • the second insertion portion has a shape in which a finished nozzle vane is projected in a direction substantially orthogonal to the blade surface. Therefore, the pre-molding wing part is molded into the same shape as the wing part of the finished nozzle vane by being pressed in the second insertion part.
  • the nozzle vanes protrude in the opposite directions from the both end faces of the wing portion, and the shaft portions protrude on the same shaft. And a pair of pre-molding shaft portions are pressed in the axial direction to form the pair of shaft portions.
  • the central axis of the first insertion portion in the pair of shaft molding dies installed in the same positional relationship as the pair of shaft portions in the finished nozzle vane extends on the same axis. Exist.
  • the pair of shaft portions formed by pressing the pair of pre-molding shaft portions in the axial direction extend on the same axis.
  • the following effects can be obtained. According to the present invention, there is an effect that a nozzle vane having appropriate accuracy can be manufactured without using a cutting process.
  • FIG. 4B is a sectional view taken along line BB in FIG. 4A.
  • FIG. 4B is a sectional view taken along line CC in FIG. 4A. It is the schematic which shows the state by which the shaped member was arrange
  • FIG. 10B is a sectional view taken along line FF in FIG. 10A. It is a section schematic diagram showing a variable capacity type turbocharger provided with a nozzle vane in this embodiment.
  • FIG. 1A is a plan view showing a configuration of a nozzle vane 1 in the present embodiment.
  • FIG. 1B is a side view showing the configuration of the nozzle vane in the present embodiment.
  • FIG. 2A is a plan view showing the configuration of the shaped member 2 in the present embodiment.
  • FIG. 2B is a side view showing the configuration of the shaped member in the present embodiment.
  • the nozzle vane 1 is a variable blade used in the variable displacement turbocharger 10 shown in FIG.
  • the variable capacity turbocharger is a supercharger that can improve the performance of an engine (not shown) over a wide range from a low rotation range to a high rotation range.
  • the turbocharger includes a rotor blade 23 that rotates by the flow of exhaust gas discharged from the engine, and a variable nozzle that surrounds the rotor blade 23 and has a substantially annular shape and supplies exhaust gas to the rotor blade. 50.
  • the variable nozzle 50 has a plurality of nozzle vanes 1 between a pair of plate-like members 51 and 52 that are arranged to face each other.
  • the nozzle vanes 1 are rotatably supported by the pair of plate-like members 51 and 52 and are provided at substantially equal intervals in the circumferential direction of the pair of plate-like members 51 and 52.
  • variable nozzle 50 By rotating the plurality of nozzle vanes 1, the flow path diameter of the variable nozzle 50 changes. In order to improve engine performance over a wide range from low to high rpm, select the appropriate flow path diameter of variable nozzle 50 according to the engine speed, that is, the flow rate of exhaust gas discharged from the engine. Is possible.
  • the nozzle vane 1 is in a direction opposite to the wing part 11, which is a wing-shaped member having a substantially rectangular shape, and the first end face 12 and the second end face 13 that are end faces facing each other. Each has a first shaft portion 14 and a second shaft portion 15 projecting from each other.
  • the nozzle vane 1 is made of a metal material having heat resistance and plastic deformation, and the wing part 11, the first shaft part 14, and the second shaft part 15 are integrally formed.
  • the wing part 11 has a wing shape when viewed in the axial direction of the first shaft part 14, and both wing surfaces of the wing part 11 are convex wing surfaces formed in a convex shape.
  • the first end surface 12 and the second end surface 13 are planes parallel to each other.
  • the first shaft portion 14 and the second shaft portion 15 are both cylindrical shafts, and the second shaft portion 15 is formed longer than the first shaft portion 14.
  • the nozzle vane 1 is required to be able to rotate smoothly around the first shaft portion 14 and the second shaft portion 15, while the pair of plate-shaped members in the first end surface 12 and the second end surface 13 and the variable nozzle 50 described above. It is also required to reduce leakage of exhaust gas from the gap between the members 51 and 52. Therefore, for example, the width of the wing portion 11 in the axial direction, the orthogonality between the first end surface 12 and the second end surface 13 and the axial direction, the diameters of the first shaft portion 14 and the second shaft portion 15, and also the roundness In addition, the concentricity between the first shaft portion 14 and the second shaft portion 15 needs to be within an appropriate accuracy.
  • the shaped member 2 is a member in the previous stage of the nozzle vane 1 formed by a pressing process described later, and the pre-forming wing part 21 that is a wing-shaped member having a substantially rectangular shape and the pre-forming wing part 21 face each other. It has a pre-molding first shaft portion 24 and a pre-molding second shaft portion 25 that project in opposite directions from the first end surface 22 and the second end surface 23 before molding, which are end surfaces. Both blade surfaces of the pre-molding wing portion 21 are composed of a pre-molding convex blade surface 26 formed in a convex shape and a pre-molding concave blade surface 27 formed in a concave shape.
  • the shaped member 2 is formed with various dimensions that approximate the various dimensions of the nozzle vane 1. More specifically, the thickness of the pre-molding wing portion 21 is formed to be greater than the thickness of the wing portion 11 in the nozzle vane 1.
  • the width of the pre-molding wing portion 21 in the axial direction of the first shaft portion 24 before molding is slightly narrower than the width of the wing portion 11, and the length of the pre-molding wing portion 21 is the length of the wing portion 11. It is formed slightly shorter than that.
  • the pre-molding first shaft portion 24 and the pre-molding second shaft portion 25 are formed slightly thinner and longer than the first shaft portion 14 and the second shaft portion 15, respectively.
  • the shaped member 2 is molded using a casting process such as die casting or a metal powder injection molding method (metal injection molding).
  • FIG. 3A is a cross-sectional view showing the configuration of the first shaft part molding die 5 and the second shaft part molding die 6 in the present embodiment.
  • FIG. 3B is a view on arrow A in FIG. 3A.
  • FIG. 4A is a plan view showing the configuration of the wing part molding die 7 in the present embodiment.
  • 4B is a cross-sectional view taken along line BB in FIG. 4A.
  • 4C is a cross-sectional view taken along line CC in FIG. 4A.
  • the first shaft portion molding die 5 and the second shaft portion molding die 6 are formed by connecting the first shaft portion 14 and the second shaft portion 15 from the first shaft portion 24 before molding and the second shaft portion 25 before molding, respectively.
  • This is a mold for molding.
  • the first shaft forming mold 5 and the second shaft forming mold 6 are respectively formed with a first facing surface 51 and a second facing surface 61 which are flat surfaces facing each other.
  • the 1st opposing surface 51 and the 2nd opposing surface 61 are the convex part 52 for positioning between the 1st axial part shaping
  • the convex portion 52 and the concave portion 62 can be fitted with no gap and are detachable from each other.
  • at least one of the first shaft portion molding die 5 and the second shaft portion molding die 6 is connected to a drive unit (not shown), and the first shaft portion molding mold is operated by the operation of the drive unit.
  • the mold 5 and the second shaft portion molding mold 6 can repeat separation and contact.
  • a second concave portion 53 having a depth substantially the same as the width in the axial direction of the pre-molding wing portion 21 is formed on the first facing surface 51.
  • the second recessed portion 53 has a recessed portion facing surface 54 that is a flat surface facing the second shaft portion molding die 6.
  • the distance between the recessed portion facing surface 54 and the second facing surface 61 is larger than the width in the axial direction of the front wing portion 21. Slightly wider.
  • a first hole portion (first insertion portion) 55 penetrating in the thickness direction is formed in the recess facing surface 54.
  • the shape of the first hole portion 55 viewed in the penetrating direction is the same circular shape as the first shaft portion 14 of the nozzle vane 1 projected in the axial direction, and the inner peripheral surface of the first hole portion 55 is The shape is the same as the outer peripheral surface of the first shaft portion 14.
  • a second hole portion (first insertion portion) 65 penetrating in the thickness direction is formed on the surface of the second facing surface 61 facing the second recess 53.
  • the shape of the second hole portion 65 viewed in the penetrating direction is the same circular shape as that projected from the second shaft portion 15 of the nozzle vane 1 in the axial direction, and the inner peripheral surface of the second hole portion 65 is The shape is the same as the outer peripheral surface of the second shaft portion 15.
  • the second hole 65 is provided at a position where the central axis of the first hole 55 and the central axis of the second hole 65 are the same axis when the convex part 52 is fitted in the concave part 62. Yes.
  • a first shaft pusher 57 (see FIG. 5) is disposed on the opposite side of the first hole 55 from the second shaft molding die 6, and the first shaft molding of the second hole 65 is performed.
  • a second shaft portion pusher 67 (see FIG. 5) is disposed on the opposite side of the working mold 5.
  • the first shaft portion pusher 57 has a substantially cylindrical shape, and is formed with a thickness that can be inserted into the first hole portion 55 without a gap.
  • the second shaft portion pusher 67 has a substantially cylindrical shape, and is formed with a thickness that can be inserted into the second hole portion 65 without a gap.
  • the wing part molding die 7 is a mold for molding the wing part 11 from the pre-molding wing part 21.
  • the wing part molding die 7 has a hole for a shaped member (second insertion part) 71 that is substantially rectangular and penetrates in the thickness direction.
  • the inner surface of the hole portion 71 for the shape member has a third opposing surface 72 and a fourth opposing surface 73 that are a pair of opposing flat surfaces, and a fifth opposing surface 74 and a fourth opposing surface that are opposite to each other. 6 opposed surfaces 75.
  • a third recess 76 and a fourth recess 77 are formed in the third facing surface 72 and the fourth facing surface 73, respectively.
  • the inner side surfaces of the hole 71 for the shaped member including the third concave portion 76 and the fourth concave portion 77 are both formed in parallel with the thickness direction of the wing portion molding die 7.
  • the shape member hole 71 including the third recess 76 and the fourth recess 77 has substantially the same shape as the nozzle vane 1 projected in a direction substantially orthogonal to the convex blade surface 16. More specifically, the distance between the third facing surface 72 and the fourth facing surface 73 is formed to be the same as the width of the wing portion 11 in the axial direction. The distance between the fifth facing surface 74 and the sixth facing surface 75 is longer than the length of the wing part 11.
  • the 3rd recessed part 76 and the 4th recessed part 77 have the same shape as what projected the 1st axial part 14 and the 2nd axial part 15 in the direction substantially orthogonal to the convex-shaped blade surface 16, respectively.
  • the first shaft portion 14 and the second shaft portion 15 can be fitted into the 76 and the fourth recess 77 without any gap.
  • a plane that equally divides the third recess 76 in a direction parallel to the fifth facing surface 74 and a plane that equally divides the fourth recess 77 in the above direction are the same plane (
  • the flat surface S) is provided at a position.
  • the third facing surface 72 and the fourth facing surface 73 are orthogonal to the plane S.
  • convex blade surface side pushers 78 (see FIG. 7B and FIG. 7C) and concave blade surface side pushers 79 (FIG. 7B and FIG. 7C) are arranged.
  • the pressing surface of the convex blade surface side pusher 78 has the same shape as the convex blade surface 16, and the pressing surface of the concave blade surface side pusher 79 has the same shape as the concave blade surface 17.
  • FIG. 5 is a schematic view showing a state in which the shaped member 2 is disposed in the second recess 53.
  • FIG. 6 is a schematic view showing the molding of the first shaft portion 14 and the second shaft portion 15.
  • FIG. 7A is a plan view showing a state in which the base member 2 is disposed in the base member hole 71.
  • FIG. 7B is a cross-sectional view taken along line DD in FIG. 7A.
  • FIG. 7C is a cross-sectional view taken along line EE in FIG. 7A.
  • FIG. 8 is a schematic view showing the formation of the wing part 11.
  • the shaped member 2 which is a member in the previous stage of the nozzle vane 1 is formed.
  • the shaped member 2 is formed using a casting process such as die casting or a metal powder injection molding method.
  • the 1st axial part 14 and the 2nd axial part 15 of the nozzle vane 1 are shape
  • the first shaft portion molding die 5 and the second shaft portion molding die 6 are separated from each other by the operation of the drive unit, and the first shaft before molding is placed in the first hole 55.
  • the pre-molding wing part 21 is disposed in the second recess 53 by inserting the part 24.
  • the first shaft part molding die 5 and the second shaft part molding die 6 are brought close to each other, and the second shaft part 25 before molding is placed in the second hole 65. While inserting, the 1st opposing surface 51 and the 2nd opposing surface 61 are made to contact
  • the space between the concave facing surface 54 and the second facing surface 61 is slightly wider than the width in the axial direction of the pre-molding wing portion 21, so that the pre-molding wing portion 21 has the first shape. No urging force is received from the shaft molding die 5 and the second shaft molding die 6.
  • first shaft part 24 before molding and the second shaft part 25 before molding are pressed in the axial direction to be plastically deformed.
  • the first shaft portion 24 before molding and the second shaft portion 25 before molding are pressed in the axial direction from the respective end face sides by the first shaft portion pusher 57 and the second shaft portion pusher 67. To do.
  • the first shaft part 24 before molding By pressing the first shaft part 24 before molding in the axial direction, the first shaft part 24 before molding expands in a direction orthogonal to the axial direction and becomes thicker. At this time, the first shaft part 24 before molding is inserted into the first hole 55, and the first shaft part 24 before molding does not expand beyond the internal shape of the first hole 55. Therefore, by pressing until the outer peripheral surface of the first shaft portion 24 before molding contacts the inner peripheral surface of the first hole portion 55, the first shaft portion 24 before molding has the same internal shape as the first hole portion 55. Plastically deforms into shape. Further, the inner peripheral surface of the first hole portion 55 has the same shape as the outer peripheral surface of the first shaft portion 14 in the nozzle vane 1.
  • the first shaft part 24 before molding is molded into the same shape as the first shaft part 14 in the nozzle vane 1 by being pressed in the first hole 55.
  • the second shaft portion 25 before molding is pressed in the second hole 65 in the axial direction in the same manner as the second shaft portion 15 in the nozzle vane 1 in the same manner as the first shaft portion 24 before molding. Molded.
  • first step the step of forming the first shaft portion 14 and the second shaft portion 15 of the nozzle vane 1 (first step).
  • the wing part 11 of the nozzle vane 1 is formed (second step).
  • the shaped member 2 after the first step is inserted and arranged in the shaped member hole 71 of the wing forming die 7.
  • the first shaft portion 14 and the second shaft portion 15 formed in the first step are inserted into the third recess portion 76 and the fourth recess portion 77 without any gap.
  • a predetermined gap is formed between the first end surface 22 and the third facing surface 72 before molding and between the second end surface 23 and the fourth facing surface 73 before molding.
  • the pre-molding wing portion 21 is pressed from both wing surface sides in a direction substantially perpendicular to the pre-molding convex wing surface 26 to be plastically deformed.
  • the pre-molding wing portion 21 is pressed from both blade surface sides by a convex blade surface side pusher 78 and a concave blade surface side pusher 79.
  • the pre-molding wing portion 21 By pressing the pre-molding wing portion 21 from both blade surface sides in a direction substantially orthogonal to the pre-molding convex wing surface 26, the pre-molding wing portion 21 expands in the blade surface direction. At this time, the pre-molding wing portion 21 is inserted into the hole 71 for the shaped member, and the pre-molding wing portion 21 does not expand beyond the internal shape of the hole 71 for the shaped member. Therefore, the first end surface 22 before molding and the second end surface 23 before molding of the pre-molding wing 21 are pressed until they come into contact with the third opposing surface 72 and the fourth opposing surface 73 of the hole part 71 for the shaped member, respectively.
  • the pre-molding wing portion 21 is plastically deformed into the same shape as the internal shape of the hole 71 for the shaped member.
  • the shape member hole 71 has a shape in which the nozzle vane 1 is projected in a direction substantially orthogonal to the convex blade surface 16. Therefore, the pre-molding wing part 21 is shaped into substantially the same shape as the wing part 11 in the nozzle vane 1 by being pressed in the hole 71 for the shaped member.
  • the width in the axial direction of the wing part 11 and the orthogonality between the first end surface 12 and the second end surface 13 and the axial direction can be kept within appropriate accuracy.
  • the step (second step) of forming the blade portion 11 of the nozzle vane 1 is completed.
  • the following effects can be obtained. According to this embodiment, there is an effect that the nozzle vane 1 having appropriate accuracy can be manufactured without using a cutting process.
  • the nozzle vane 1 is a variable blade used in the variable displacement turbocharger 10, but the present invention is not limited to such an application, and generally includes a blade portion and a shaft portion. It may be used to manufacture a typical variable wing.
  • the nozzle vane 1 has the 1st axial part 14 and the 2nd axial part 15 which are a pair of axial parts, one axial part protrudes from the predetermined end surface of the wing
  • FIG. It may be a shape.
  • FIG. 9 is a schematic view showing a modification of the second shaft portion molding die 6 shown in FIG. 3A.
  • the second hole portion 65A of the second shaft portion molding die 6A does not penetrate in the thickness direction and has a bottom surface 65B.
  • the depth of the second hole portion 65A that is, the length from the second facing surface 61 to the bottom surface 65B is slightly shorter than the length of the second shaft portion 25 before molding.
  • the interval between the concave facing surface 54 and the second opposing surface 61 when the convex portion 52 and the concave portion 62 are fitted is slightly wider than the width in the axial direction of the pre-molding wing portion 21. .
  • the first shaft portion 14 and the second shaft portion 15 can be simultaneously formed by pressing the shaped member 2 with the first shaft portion pusher 57.
  • the configuration of the first shaft part molding die 5 and the second shaft part molding die 6A may be reversed.
  • FIG. 10A is a schematic view showing a modification of the wing forming die 7 shown in FIG. 4B.
  • 10B is a cross-sectional view taken along line FF in FIG. 10A.
  • the shape member hole 71A of the wing part molding die 7A does not penetrate in the thickness direction and has a bottom surface 71B.
  • the bottom surface 71 ⁇ / b> B has the same shape as the concave blade surface 17 of the nozzle vane 1. Further, the third recess 76 and the fourth recess 77 do not urge the first shaft portion 14 and the second shaft portion 15 when pressed, and penetrate in the thickness direction while maintaining their respective shapes. 10A and 10B, the wing part 11 can be formed by pressing with the convex wing surface side pusher 78.
  • molding since it is difficult to keep the length of the portion 11 within high accuracy, the length of the wing portion 11 after molding can be kept at an appropriate accuracy by setting the interval to a predetermined length of the wing portion 11.
  • the wing part molding die 7 is used.
  • the wing part molding die 7 may be shared with the first shaft part molding die 5 and the second shaft part molding die 6.
  • the shape of the space formed by the second recess 53 and the second facing surface 61 shown in FIG. 3A is the same as the shape member hole 71 shown in FIGS. 4A to 4C, and the first step is performed.
  • the wing part 11 may be formed by pressing the wing part 21 before molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

翼部と前記翼部の所定の端面から突出する軸部とを有するノズルベーンの製造方法であって、前記軸部を軸方向で投影した形状の第1挿入部が形成された軸部成形用金型に、前記翼部と前記軸部との諸寸法に近似した諸寸法を各々備える成形前翼部と成形前軸部とを有する素形部材の前記成形前軸部を挿入し、前記成形前軸部を前記軸方向で押圧して前記軸部を成形する第1工程と、前記ノズルベーンを前記翼部の翼面に略直交する方向で投影した形状の第2挿入部が形成された翼部成形用金型に、前記第1工程後の前記素形部材を挿入し、前記成形前翼部をその翼面に略直交する方向で押圧して前記翼部を成形する第2工程と、を備えるノズルベーンの製造方法。

Description

ノズルベーンの製造方法
 本発明は、翼部と該翼部の所定の端面から突出する軸部とを有するノズルベーンの製造方法に関する。
 本願は、2009年2月25日に日本国に出願された特願2009-42164号に基づき優先権を主張し、その内容をここに援用する。
従来から、翼部と該翼部の所定の端面から突出する軸部とを有し、例えば可変容量型のターボチャージャで使用されるノズルベーンが知られている。
可変容量型のターボチャージャは、低回転域から高回転域までの広い範囲に亘りエンジンの性能を向上させることのできる過給機である。上記ターボチャージャは、エンジンから排出される排気ガスの流動により回転する回転翼と、該回転翼を囲んで略環状を呈し回転翼に排気ガスを供給する可変ノズルとを有している。可変ノズルは、対向して配置される一対の略環状を呈する板状部材と、該一対の板状部材の間に設けられる複数のノズルベーンとを有している。ノズルベーンは、その軸部が該一対の板状部材に回転自在に軸支され、該一対の板状部材の周方向で略等間隔に設けられている。
ノズルベーンをその軸部を中心として回動させ各翼部間の間隔を変化させることで、可変ノズルの流路径が変化する。エンジンの回転数、すなわちエンジンから排出される排気ガスの流量に合わせて適切な可変ノズルの流路径を選択することで、低回転域から高回転域までの広い範囲に亘りエンジンの性能を向上させることができる。
ところで、可変容量型のターボチャージャの動作や性能を維持するためには、ノズルベーンを精度良く製造することが重要である。
例えば、ノズルベーンが円滑に回動するためには、その軸部の径や真円度を適切な精度内に収める必要がある。これに加え、ノズルベーンがその翼部の両端面から突出する一対の軸部を有している場合は、該一対の軸部における同芯度も適切な精度で確保する必要がある。
また、可変ノズルの板状部材とノズルベーンの翼部端面との間の隙間が大きくなると、該隙間から漏出する排気ガスの流量が増え、ターボチャージャの効率が低下してしまう。
そのため、軸部の軸方向での翼部の幅や、上記軸方向と翼部端面との直交度を適切な精度内に収める必要がある。
上記精度を確保するために、ノズルベーンの製造における最終工程には切削工程が用いられている。
ここで、特許文献1には、ノズルベーンの製造方法が開示されている。
特許文献1に開示されているノズルベーンの製造方法では、まず、打ち抜き工程やプレス工程により所定の板厚を有する金属板から完成品のノズルベーンよりも僅かに大きな諸寸法を有する素形部材を成形し、次に、切削工程により上記素形部材を切削してノズルベーンを製造している。切削工程では、ノズルベーンの軸部や翼部端面を切削しており、この工程を経て軸部の径や翼部の幅等を適切な精度内に収めている。
特開2007-23840号公報(第19頁、第10図)
しかしながら、切削工程にはプレス工程等と比べ作業時間や手間が掛かるため、このような切削工程を用いることでノズルベーンの製造コストが増加してしまうという課題がある。
本発明は、このような事情に鑑みてなされたものであり、切削工程を用いることなく適切な精度を確保できるノズルベーンの製造方法を提供することを目的とする。
上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、翼部と翼部の所定の端面から突出する軸部とを有するノズルベーンの製造方法であって、軸部を軸方向で投影した形状の第1挿入部が形成された軸部成形用金型に、翼部と軸部との諸寸法に近似した諸寸法を各々備える成形前翼部と成形前軸部とを有する素形部材の前記成形前軸部を挿入し、前記成形前軸部を軸方向で押圧して軸部を成形する第1工程と、ノズルベーンを翼部の翼面に略直交する方向で投影した形状の第2挿入部が形成された翼部成形用金型に、第1工程後の前記素形部材を挿入し、成形前翼部をその翼面に略直交する方向で押圧して翼部を成形する第2工程と、を備えるという方法を採用する。
このような方法を採用する本発明における第1工程では、成形前軸部を軸方向で押圧することにより、成形前軸部は軸方向と直交する方向に拡張し太くなる。このとき、成形前軸部は軸部成形用金型の第1挿入部に挿入されており、成形前軸部は第1挿入部の内部形状以上には拡張しない。そのため、成形前軸部の外周面が第1挿入部の内周面に接触するまで押圧することで、成形前軸部は第1挿入部の内部形状と同一の形状に塑性変形する。
また、第1挿入部は、完成品のノズルベーンにおける軸部を軸方向で投影した形状となっている。したがって、成形前軸部は、第1挿入部内で押圧されることにより、完成品のノズルベーンにおける軸部と同一の形状に成形される。
続いて、本発明における第2工程では、成形前翼部を翼面と略直交する方向で押圧することにより、成形前翼部は翼面方向に拡張する。このとき、成形前翼部は翼部成形用金型の第2挿入部に挿入されており、成形前翼部は第2挿入部の内部形状以上には拡張しない。そのため、成形前翼部の端部が第2挿入部の内側面に接触するまで押圧することで、成形前翼部は第2挿入部の内部形状と同一の形状に塑性変形する。また、第2挿入部は、完成品のノズルベーンを上記翼面と略直交する方向で投影した形状となっている。したがって、成形前翼部は、第2挿入部内で押圧されることにより、完成品のノズルベーンにおける翼部と同一の形状に成形される。
また、本発明は、ノズルベーンは翼部の両端面から相反する方向で各々軸部が同一軸で突出しており、上記第1工程では、一対の成形前軸部を一対の軸部成形用金型にそれぞれ挿入し、一対の成形前軸部を軸方向で押圧して一対の軸部を成形するという方法を採用する。
このような方法を採用する本発明では、完成品のノズルベーンにおける一対の軸部と同一の位置関係で設置される一対の軸部成形用金型における第1挿入部の中心軸は同一軸で延在している。そのため、本発明では、一対の成形前軸部を軸方向で押圧して成形される一対の軸部は同一軸で延在する。
本発明によれば、以下の効果を得ることができる。
本発明によれば、切削工程を用いずとも適切な精度を有するノズルベーンを製造することができるという効果がある。
本実施形態におけるノズルベーンの構成を示す平面図である。 本実施形態におけるノズルベーンの構成を示す側面図である。 本実施形態における素形部材の構成を示す平面図である。 本実施形態における素形部材の構成を示す側面図である。 本実施形態における第1軸部成形用金型及び第2軸部成形用金型の構成を示す断面図である。 図3AにおけるA矢視図である。 本実施形態における翼部成形用金型の構成を示す平面図である。 図4AにおけるB-B線視断面図である。 図4AにおけるC-C線視断面図である。 第2凹部内に素形部材が配置された状態を示す概略図である。 第1軸部及び第2軸部の成形を示す概略図である。 素形部材用孔部内に素形部材が配置された状態を示す平面図である。 図7AにおけるD-D線視断面図である。 図7AにおけるE-E線視断面図である。 翼部の成形を示す概略図である。 図3Aに示す第2軸部成形用金型の一変形例を示す概略図である。 図4Bに示す翼部成形用金型の一変形例を示す断面図である。 図10AにおけるF-F線視断面図である。 本実施形態におけるノズルベーンを備えた可変容量型ターボチャージャを示す断面概略図である。
以下、図面を参照して本発明の実施形態について説明する。
本実施形態におけるノズルベーン1及び素形部材2の構成を、図1Aから図2Bを参照して説明する。
図1Aは、本実施形態におけるノズルベーン1の構成を示す平面図である。図1Bは、本実施形態におけるノズルベーンの構成を示す側面図である。図2Aは、本実施形態における素形部材2の構成を示す平面図である。図2Bは、本実施形態における素形部材の構成を示す側面図である。
ノズルベーン1は、図11に示す可変容量型ターボチャージャ10で使用される可変翼である。
可変容量型のターボチャージャは、低回転域から高回転域までの広い範囲に亘りエンジン(図示せず)の性能を向上させることのできる過給機である。上記ターボチャージャは、図11に示すように、エンジンから排出される排気ガスの流動により回転する回転翼23と、該回転翼23を囲んで略環状を呈し回転翼に排気ガスを供給する可変ノズル50とを有している。前記可変ノズル50は、対向して配置される一対の略環状を呈する板状部材51,52の間に、複数のノズルベーン1を有している。前記ノズルベーン1は、上記一対の板状部材51,52に回転自在に支持され、上記一対の板状部材51,52の周方向で略等間隔に設けられている。
複数のノズルベーン1を回動させることで、可変ノズル50の流路径が変化する。低回転域から高回転域までの広い範囲に亘りエンジンの性能を向上させるために、エンジンの回転数、すなわちエンジンから排出される排気ガスの流量に合わせて適切な可変ノズル50の流路径を選択することが可能である。
図1Aに示すように、ノズルベーン1は、略矩形を呈する翼形状の部材である翼部11と、翼部11の互いに対向する端面である第1端面12及び第2端面13から相反する方向で各々突出する第1軸部14及び第2軸部15とを有している。ノズルベーン1は、耐熱性を有し塑性変形可能な金属材料からなり、翼部11、第1軸部14及び第2軸部15は一体的に成形されている。
図1Bに示すように、翼部11は、第1軸部14の軸方向で見た場合に翼型を呈しており、翼部11の両翼面は、凸状に形成された凸状翼面16と凹状に形成された凹状翼面17とからなる。第1端面12及び第2端面13は、互いに平行する平面である。第1軸部14及び第2軸部15は共に円柱状の軸であり、第2軸部15は第1軸部14よりも長く形成されている。
ノズルベーン1は、第1軸部14及び第2軸部15を中心として円滑に回動できることが要求される一方で、第1端面12及び第2端面13と前述した可変ノズル50における一対の板状部材51,52との間の隙間からの排気ガスの漏出を少なくすることも要求される。そのため、例えば翼部11の軸方向での幅、第1端面12及び第2端面13と軸方向との間の直交度、第1軸部14及び第2軸部15の径、同じく真円度及び第1軸部14と第2軸部15との間の同芯度を適切な精度内に収めることが必要となる。
素形部材2は、後述する押圧工程によって成形されるノズルベーン1の前段階の部材であり、略矩形を呈する翼形状の部材である成形前翼部21と、成形前翼部21の互いに対向する端面である成形前第1端面22及び成形前第2端面23から相反する方向で各々突出する成形前第1軸部24及び成形前第2軸部25とを有している。成形前翼部21の両翼面は、凸状に形成された成形前凸状翼面26と凹状に形成された成形前凹状翼面27とからなる。
素形部材2は、ノズルベーン1の諸寸法に近似した諸寸法で成形されている。より詳細には、成形前翼部21の厚みは、ノズルベーン1における翼部11の厚みよりも厚く形成されている。成形前第1軸部24の軸方向での成形前翼部21の幅は、翼部11の幅よりも若干狭く形成されており、成形前翼部21の長さは、翼部11の長さより若干短く形成されている。成形前第1軸部24及び成形前第2軸部25は、第1軸部14及び第2軸部15よりもそれぞれ若干細くかつ長く形成されている。
素形部材2は、例えばダイカスト等の鋳造工程や、金属粉末射出成形法(メタルインジェクションモールディング)を用いて成形される。
次に、本実施形態における第1軸部成形用金型5、第2軸部成形用金型6及び翼部成形用金型7の構成を、図3Aから図4Cを参照して説明する。
図3Aは、本実施形態における第1軸部成形用金型5及び第2軸部成形用金型6の構成を示す断面図である。図3Bは、図3AにおけるA矢視図である。図4Aは、本実施形態における翼部成形用金型7の構成を示す平面図である。図4Bは、図4AにおけるB-B線視断面図である。図4Cは、図4AにおけるC-C線視断面図である。
第1軸部成形用金型5及び第2軸部成形用金型6は、成形前第1軸部24及び成形前第2軸部25から第1軸部14及び第2軸部15をそれぞれ成形するための金型である。
図3Aに示すように、第1軸部成形用金型5及び第2軸部成形用金型6には、互いに対向する平面である第1対向面51及び第2対向面61がそれぞれ形成されている。第1対向面51及び第2対向面61は、それらの面方向における第1軸部成形用金型5と第2軸部成形用金型6との間の位置決めを行うための凸部52及び凹部62をそれぞれ有している。凸部52と凹部62とは隙間無く嵌合でき、また、互いに着脱自在に形成されている。
なお、第1軸部成形用金型5及び第2軸部成形用金型6の少なくともいずれか一方は不図示の駆動部と接続されており、該駆動部の作動により第1軸部成形用金型5及び第2軸部成形用金型6は離間と当接とを繰り返すことが可能である。
第1対向面51には、成形前翼部21の軸方向での幅と略同一の深さを有する第2凹部53が形成されている。第2凹部53は、第2軸部成形用金型6に対向する平面である凹部対向面54を有している。第1対向面51と第2対向面61とが当接しているときの、凹部対向面54と第2対向面61との間の間隔は、成形前翼部21の軸方向での幅よりも僅かに広くなっている。
凹部対向面54には、厚さ方向で貫通する第1孔部(第1挿入部)55が形成されている。貫通方向で見た第1孔部55の形状は、ノズルベーン1の第1軸部14を軸方向で投影したものと同一の円形状となっており、第1孔部55の内周面は、第1軸部14の外周面と同一の形状となっている。
第2対向面61の第2凹部53に面する面には、厚さ方向で貫通する第2孔部(第1挿入部)65が形成されている。貫通方向で見た第2孔部65の形状は、ノズルベーン1の第2軸部15を軸方向で投影したものと同一の円形状となっており、第2孔部65の内周面は、第2軸部15の外周面と同一の形状となっている。また、第2孔部65は、凸部52が凹部62に嵌合したときに、第1孔部55の中心軸と第2孔部65の中心軸とが同一軸となる位置に設けられている。
なお、第1孔部55の第2軸部成形用金型6と逆側には、第1軸部用プッシャ57(図5参照)が配置され、第2孔部65の第1軸部成形用金型5と逆側には、第2軸部用プッシャ67(図5参照)が配置されている。第1軸部用プッシャ57は略円柱状を呈しており、第1孔部55内に隙間無く挿入できる太さで形成されている。第2軸部用プッシャ67は略円柱状を呈しており、第2孔部65内に隙間無く挿入できる太さで形成されている。
図4A、及び、図4Bに示すように、翼部成形用金型7は、成形前翼部21から翼部11を成形するための金型である。
翼部成形用金型7は、略矩形を呈し厚さ方向で貫通する素形部材用孔部(第2挿入部)71を有している。
素形部材用孔部71の内側面は、互いに対向する一対の平面である第3対向面72及び第4対向面73と、互いに対向する他の一対の平面である第5対向面74及び第6対向面75とからなる。第3対向面72及び第4対向面73には、第3凹部76及び第4凹部77がそれぞれ形成されている。第3凹部76及び第4凹部77を含む素形部材用孔部71の内側面は、いずれも翼部成形用金型7の厚さ方向に平行して形成されている。
第3凹部76及び第4凹部77を含む素形部材用孔部71の形状は、ノズルベーン1を凸状翼面16に略直交する方向で投影したものと略同一の形状となっている。より詳細には、第3対向面72と第4対向面73との間の間隔は、軸方向での翼部11の幅と同一に形成されている。第5対向面74と第6対向面75との間の間隔は、翼部11の長さよりも長く形成されている。第3凹部76及び第4凹部77は、第1軸部14及び第2軸部15を凸状翼面16に略直交する方向でそれぞれ投影したものと同一の形状となっており、第3凹部76及び第4凹部77には第1軸部14及び第2軸部15がそれぞれ隙間無く嵌合することが可能である。
第3凹部76及び第4凹部77は、第5対向面74に平行な方向で第3凹部76を等分する平面と、上記方向で第4凹部77を等分する平面とが、同一平面(平面S)となる位置に設けられている。第3対向面72及び第4対向面73は、平面Sに直交している。
なお、素形部材用孔部71の厚さ方向での両側には、凸状翼面側プッシャ78(図7B、及び、図7C参照)及び凹状翼面側プッシャ79(図7B、及び、図7C参照)が各々配置されている。凸状翼面側プッシャ78の押圧面は、凸状翼面16と同一の形状となっており、凹状翼面側プッシャ79の押圧面は、凹状翼面17と同一の形状となっている。
続いて、本実施形態に係るノズルベーン1の製造方法を、図5から図8を参照して説明する。
図5は、第2凹部53内に素形部材2が配置された状態を示す概略図である。図6は、第1軸部14及び第2軸部15の成形を示す概略図である。図7Aは、素形部材用孔部71内に素形部材2が配置された状態を示す平面図である。図7Bは、図7AにおけるD-D線視断面図である。図7Cは、図7AにおけるE-E線視断面図である。
図8は、翼部11の成形を示す概略図である。
最初に、ノズルベーン1の前段階の部材である素形部材2を成形する。
前述の通り、素形部材2は、例えばダイカスト等の鋳造工程や、金属粉末射出成形法を用いて成形される。
次に、ノズルベーン1の第1軸部14及び第2軸部15を成形する(第1工程)。
図5に示すように、駆動部の作動により、第1軸部成形用金型5と第2軸部成形用金型6とを互いに離間させ、第1孔部55内に成形前第1軸部24を挿入して第2凹部53内に成形前翼部21を配置する。次に、上記駆動部の作動により、第1軸部成形用金型5と第2軸部成形用金型6とを互いに近接させ、第2孔部65内に成形前第2軸部25を挿入しつつ、第1対向面51と第2対向面61とを当接させる。
この状態での凹部対向面54と第2対向面61との間の間隔は、成形前翼部21の軸方向での幅よりも僅かに広くなっているため、成形前翼部21は第1軸部成形用金型5及び第2軸部成形用金型6から何ら付勢力を受けていない。
続いて、成形前第1軸部24及び成形前第2軸部25を軸方向で押圧して塑性変形させる。
図6に示すように、成形前第1軸部24及び成形前第2軸部25を、第1軸部用プッシャ57と第2軸部用プッシャ67とにより各々の端面側から軸方向で押圧する。
成形前第1軸部24を軸方向で押圧することにより、成形前第1軸部24は軸方向と直交する方向に拡張し太くなる。このとき、成形前第1軸部24は第1孔部55に挿入されており、成形前第1軸部24は第1孔部55の内部形状以上には拡張しない。そのため、成形前第1軸部24の外周面が第1孔部55の内周面に接触するまで押圧することで、成形前第1軸部24は第1孔部55の内部形状と同一の形状に塑性変形する。また、第1孔部55の内周面は、ノズルベーン1における第1軸部14の外周面と同一の形状となっている。したがって、成形前第1軸部24は、第1孔部55内で押圧されることにより、ノズルベーン1における第1軸部14と同一の形状に成形される。
なお、成形前第1軸部24と同様に成形前第2軸部25も、第2孔部65内において軸方向で押圧されることにより、ノズルベーン1における第2軸部15と同一の形状に成形される。
また、第1孔部55及び第2孔部65のそれぞれの中心軸は同一軸で延在しているため、このような位置関係で配置される第1孔部55及び第2孔部65によって成形される第1軸部14及び第2軸部15の中心軸も同一軸で延在する。
結果として、第1軸部14及び第2軸部15の径、同じく真円度及び第1軸部14と第2軸部15との間の同芯度を、適切な精度内に収めることができる。
以上で、ノズルベーン1の第1軸部14及び第2軸部15を成形する工程(第1工程)が完了する。
次に、ノズルベーン1の翼部11を成形する(第2工程)。
図7Aに示すように、翼部成形用金型7の素形部材用孔部71内に上記第1工程後の素形部材2を挿入して配置する。このとき、上記第1工程にて成形された第1軸部14及び第2軸部15は、第3凹部76及び第4凹部77内にそれぞれ隙間無く挿入される。また、成形前第1端面22と第3対向面72との間及び成形前第2端面23と第4対向面73との間には、各々所定の隙間が形成されている。
続いて、図7B、及び、図7Cに示すように、成形前翼部21を成形前凸状翼面26に略直交する方向で両翼面側から押圧して塑性変形させる。
図8に示すように、成形前翼部21を凸状翼面側プッシャ78と凹状翼面側プッシャ79とにより両翼面側から押圧する。
成形前翼部21を成形前凸状翼面26に略直交する方向で両翼面側から押圧することにより、成形前翼部21は翼面方向で拡張する。このとき、成形前翼部21は素形部材用孔部71内に挿入されており、成形前翼部21は素形部材用孔部71の内部形状以上には拡張しない。そのため、成形前翼部21の成形前第1端面22及び成形前第2端面23が、素形部材用孔部71の第3対向面72及び第4対向面73にそれぞれ接触するまで押圧することで、成形前翼部21は素形部材用孔部71の内部形状と同一の形状に塑性変形する。また、素形部材用孔部71は、ノズルベーン1を凸状翼面16と略直交する方向で投影した形状となっている。したがって、成形前翼部21は、素形部材用孔部71内で押圧されることにより、ノズルベーン1における翼部11と略同一の形状に成形される。
結果として、翼部11の軸方向での幅や、第1端面12及び第2端面13と軸方向との間の直交度を適切な精度内に納めることができる。
以上で、ノズルベーン1の翼部11を成形する工程(第2工程)が完了する。
したがって、本実施形態によれば以下の効果を得ることができる。
本実施形態によれば、切削工程を用いずとも適切な精度を有するノズルベーン1を製造することができるという効果がある。
なお、前述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲においてプロセス条件や設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、ノズルベーン1は可変容量型ターボチャージャ10に使用される可変翼であるが、本発明はこのような用途に限定されるものではなく、翼部と軸部とを有する一般的な可変翼の製造に用いてもよい。
また、上記実施形態では、ノズルベーン1は一対の軸部である第1軸部14及び第2軸部15を有しているが、翼部11の所定の端面から一つの軸部が突出している形状であってもよい。
また、上記実施形態では、第1軸部14及び第2軸部15を成形するにあたり、一対のプッシャである第1軸部用プッシャ57及び第2軸部用プッシャ67を用いていたが、図9のような構成を用いて第1軸部14及び第2軸部15を成形してもよい。
図9は、図3Aに示す第2軸部成形用金型6の一変形例を示す概略図である。
図9に示すように、第2軸部成形用金型6Aの第2孔部65Aは、厚さ方向で貫通しておらず、底面65Bを有している。第2孔部65Aの深さ、すなわち第2対向面61から底面65Bまでの長さは、成形前第2軸部25の長さよりも若干短くなっている。また、凸部52と凹部62とが嵌合したときの凹部対向面54と第2対向面61との間の間隔は、成形前翼部21の軸方向での幅よりも若干広くなっている。
図9に示す構成によっても、素形部材2を第1軸部用プッシャ57により押圧することで、第1軸部14と第2軸部15とを同時に成形することができる。なお、図9において、第1軸部成形用金型5と第2軸部成形用金型6Aの構成が逆になっていてもよい。
また、上記実施形態では、翼部11を成形するにあたり、一対のプッシャである凸状翼面側プッシャ78及び凹状翼面側プッシャ79を用いていたが、図10A、及び、図10Bのような構成を用いて翼部11を成形してもよい。
図10Aは、図4Bに示す翼部成形用金型7の一変形例を示す概略図である。図10Bは、図10AにおけるF-F線視断面図である。
図10A、及び、図10Bに示すように、翼部成形用金型7Aの素形部材用孔部71Aは、厚さ方向で貫通しておらず、底面71Bを有している。底面71Bは、ノズルベーン1の凹状翼面17と同一の形状となっている。また、第3凹部76及び第4凹部77は、押圧時に第1軸部14及び第2軸部15を付勢しないために、各々の形状のまま厚さ方向で貫通している。
図10A、及び、図10Bに示す構成によっても、凸状翼面側プッシャ78により押圧することで、翼部11を成形することができる。
また、上記実施形態では、翼部成形用金型7の第5対向面74と第6対向面75との間の間隔は翼部11の長さよりも長く形成されているため、成形後の翼部11の長さを高い精度内に収めることは難しいが、上記間隔を翼部11の所定長さとすることで成形後の翼部11の長さを適切な精度に収めることができる。
また、上記実施形態では翼部成形用金型7を用いていたが、翼部成形用金型7を第1軸部成形用金型5及び第2軸部成形用金型6と共用としてもよい。
例えば、図3Aに示す第2凹部53と第2対向面61とにより形成される空間の形状を、図4Aから図4Cに示す素形部材用孔部71と同一の形状とし、第1工程により第1軸部14及び第2軸部15を成形した後に、図6に示す状態のまま成形前凸状翼面26と略直交する方向で凸状翼面側プッシャ78及び凹状翼面側プッシャ79により成形前翼部21を押圧して翼部11を成形してもよい。
本発明によれば、切削工程を用いずとも適切な精度を有するノズルベーンを製造することができる。
1…ノズルベーン
11…翼部
12…第1端面
13…第2端面
14…第1軸部
15…第2軸部
16…凸状翼面
17…凹状翼面
2…素形部材
21…成形前翼部21
24…成形前第1軸部
25…成形前第2軸部
26…成形前凸状翼面
27…成形前凹状翼面
5…第1軸部成形用金型
55…第1孔部(第1挿入部)
6…第2軸部成形用金型
65…第2孔部(第1挿入部)
7…翼部成形用金型
71…素形部材挿入用孔部(第2挿入部)
 
 
 
 

Claims (5)

  1. 翼部と前記翼部の所定の端面から突出する軸部とを有するノズルベーンの製造方法であって、
    前記軸部を軸方向で投影した形状の第1挿入部が形成された軸部成形用金型に、前記翼部と前記軸部との諸寸法に近似した諸寸法を各々備える成形前翼部と成形前軸部とを有する素形部材の前記成形前軸部を挿入し、前記成形前軸部を前記軸方向で押圧して前記軸部を成形する第1工程と、
    前記ノズルベーンを前記翼部の翼面に略直交する方向で投影した形状の第2挿入部が形成された翼部成形用金型に、前記第1工程後の前記素形部材を挿入し、前記成形前翼部をその翼面に略直交する方向で押圧して前記翼部を成形する第2工程と、を備えるノズルベーンの製造方法。
  2. 前記ノズルベーンは、前記翼部の両端面から相反する方向で各々前記軸部が同一軸で突出しており、
    前記第1工程では、一対の前記成形前軸部を一対の前記軸部成形用金型にそれぞれ挿入し、前記一対の成形前軸部を軸方向で押圧して前記一対の軸部を成形する請求項1に記載のノズルベーンの製造方法。
  3. 前記第一工程で成形された前記軸部を、前記翼部成形用金型に形成された第3凹部、及び、第4凹部内に隙間無く挿入する請求項1または2のいずれかに記載のノズルベーンの製造方法。
  4. 前記成形前軸部を前記軸方向で押圧する際に、軸方向に可動な一対のプッシャを用い、前記成形前翼部をその翼面に略直交する方向で押圧する際に、前記翼面に略直交する方向に可動な一対のプッシャを用いる請求項1または2のいずれかに記載のノズルベーンの製造方法。
  5. 前記成形前軸部を前記軸方向で押圧する際に、前記成形前軸部の一端側を前記軸方向に前記軸部成形用金型に固定して、前記軸方向に可動なプッシャを、前記軸方向に固定されていない他端側の前記成形前軸部に押圧し、前記成形前翼部をその翼面に略直交する方向で押圧する際に、前記成形前翼部の一端側を前記翼面に略直交する方向に前記翼部成形用金型に固定して、前記翼面に略直交する方向に可動なプッシャを、前記翼面に略直交する方向に固定されていない他端側の前記成形前翼部に押圧する請求項1または2のいずれかに記載のノズルベーンの製造方法。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2010/001294 2009-02-25 2010-02-25 ノズルベーンの製造方法 WO2010098117A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/202,168 US20110296895A1 (en) 2009-02-25 2010-02-25 Manufacturing method for nozzle vane
EP10746000A EP2402580A1 (en) 2009-02-25 2010-02-25 Fabrication method for nozzle vane
CN2010800092751A CN102333943A (zh) 2009-02-25 2010-02-25 喷嘴叶片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009042164A JP2010196583A (ja) 2009-02-25 2009-02-25 ノズルベーンの製造方法
JP2009-042164 2009-02-25

Publications (1)

Publication Number Publication Date
WO2010098117A1 true WO2010098117A1 (ja) 2010-09-02

Family

ID=42665330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001294 WO2010098117A1 (ja) 2009-02-25 2010-02-25 ノズルベーンの製造方法

Country Status (6)

Country Link
US (1) US20110296895A1 (ja)
EP (1) EP2402580A1 (ja)
JP (1) JP2010196583A (ja)
KR (1) KR20110111509A (ja)
CN (1) CN102333943A (ja)
WO (1) WO2010098117A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302011B2 (en) 2015-11-23 2019-05-28 Garrett Transportation I Inc. Exhaust gas variable turbine assembly
ES2696851T1 (es) 2016-07-29 2019-01-18 Mitsubishi Steel Mfg Colada resistente al calor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301283A (ja) * 1999-04-14 2000-10-31 Hmy Ltd 自動車用の過給機用排気ベーン翼の製造方法およびベーン翼
JP2003049660A (ja) * 2001-08-03 2003-02-21 Sogi Kogyo Kk Vgsタイプターボチャージャにおける排気ガイドアッセンブリに適用される可変翼の翼部の製造方法
JP2007023840A (ja) 2005-07-13 2007-02-01 Akita Fine Blanking:Kk Vgsタイプターボチャージャにおける可変翼の製造方法並びにこの方法によって製造された可変翼
JP2009042164A (ja) 2007-08-10 2009-02-26 Hitachi Maxell Ltd 赤外線カメラ
JP4317906B1 (ja) * 2008-10-09 2009-08-19 株式会社テクネス 可変ベーンの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59106047D1 (de) * 1991-05-13 1995-08-24 Asea Brown Boveri Verfahren zur Herstellung einer Turbinenschaufel.
US6138491A (en) * 1999-06-25 2000-10-31 General Electric Company Apparatus and method for low heat transfer rate chill down during forging
US6453556B1 (en) * 2000-10-11 2002-09-24 Hmy Ltd. Method of producing exhaust gas vane blade for superchargers of motor vehicles and vane blade
US7089664B2 (en) * 2001-08-03 2006-08-15 Akita Fine Blanking Co., Ltd. Variable blade manufacturing method and variable blade in VGS type turbo charger
FR2874339B1 (fr) * 2004-08-23 2008-12-05 Snecma Moteurs Sa Procede de fabrication de pieces constitutives d'une aube creuse par forage sur presse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301283A (ja) * 1999-04-14 2000-10-31 Hmy Ltd 自動車用の過給機用排気ベーン翼の製造方法およびベーン翼
JP2003049660A (ja) * 2001-08-03 2003-02-21 Sogi Kogyo Kk Vgsタイプターボチャージャにおける排気ガイドアッセンブリに適用される可変翼の翼部の製造方法
JP2007023840A (ja) 2005-07-13 2007-02-01 Akita Fine Blanking:Kk Vgsタイプターボチャージャにおける可変翼の製造方法並びにこの方法によって製造された可変翼
JP2009042164A (ja) 2007-08-10 2009-02-26 Hitachi Maxell Ltd 赤外線カメラ
JP4317906B1 (ja) * 2008-10-09 2009-08-19 株式会社テクネス 可変ベーンの製造方法
WO2010041735A1 (ja) * 2008-10-09 2010-04-15 株式会社Ihi 可変ベーンの製造方法

Also Published As

Publication number Publication date
EP2402580A1 (en) 2012-01-04
US20110296895A1 (en) 2011-12-08
CN102333943A (zh) 2012-01-25
JP2010196583A (ja) 2010-09-09
KR20110111509A (ko) 2011-10-11

Similar Documents

Publication Publication Date Title
EP2767722B1 (en) Radial foil bearing
JP4778097B1 (ja) 過給機用のコンプレッサハウジング及びその製造方法
JP6535584B2 (ja) コンプレッサハウジングの製造方法
JP5861550B2 (ja) ラジアルフォイル軸受
JP5129882B1 (ja) 可変ノズル機構を備えた可変容量型排気ターボ過給機
JP3776740B2 (ja) 可変容量タービン構成部材の製作方法及び構成部材の構造
WO2010098117A1 (ja) ノズルベーンの製造方法
JP5741138B2 (ja) フランジ一体型波付管の製造方法、フランジ一体型波付管、および前記製造方法に用いられる波付管用の切断装置
JP5469759B1 (ja) 回転子鉄心及びその製造方法
JP5465497B2 (ja) 圧縮機用インペラの製造方法
JP5194739B2 (ja) 円筒体の製造方法
JP5600083B2 (ja) 半割すべり軸受及びその製造方法
JP5533060B2 (ja) 過給機
WO2004007111A1 (ja) 枠体の製造方法及び枠体
JP3559784B2 (ja) ボス部を有する板金製回転部材のスプラインとキー溝の形成方法
WO2012008313A1 (ja) 偏平部とロッド部とを一体に具えて成るプレス製品の製造方法 並びにこの方法を適用したvgsタイプターボチャージャにおける可変翼の製造方法
JP5948748B2 (ja) 可変ガイドベーン及びその製造方法並びに車両用過給機
JP5110738B2 (ja) 過給機用のコンプレッサハウジング
JP2018145917A (ja) 真空ポンプおよび真空ポンプの製造方法
JP7357811B2 (ja) 分割コア、回転電機、分割コアの製造方法、および、回転電機の製造方法
JP4228190B2 (ja) 軸受用シールの製造方法及び軸受用シール
JP6667471B2 (ja) 整流子、モータ、整流子の製造方法
JP6132623B2 (ja) トルクコンバータの製造方法
JP6136951B2 (ja) タービンシェルの製造方法
JP4662265B2 (ja) 筒状部品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009275.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6473/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117020063

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010746000

Country of ref document: EP